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Summary

Summary


Prostate carcinoma (PCa) is one of the most frequently diagnosed cancers in men worldwide and 

the second most common cause of cancer death in 2021. The etiology of PCa is still largely 

unknown, but some factors promote tumor development and progression in the prostate. These 

factors include environmental factors, genetic predisposition, and especially age. At >65 years, the 

risk of PCa increases exponentially and the mortality rate can be linked to age. Patients can remain 

symptom-free in the early PCa stage. As the tumor progresses, symptoms may include bone pain, 

urinary dysfunction, weight loss, and anemia. In the course, metastases develop in the body, 

initially in local lymph nodes or bones. PCa is usually diagnosed at an intermediate or terminal 

stage, which makes it challenging for treatment and recovery.


Human prostate tissue consists of three main types of epithelial cells: luminal, basal, and 

neuroendocrine. These epithelial cell types are also found in the prostate of male mice, making a 

mouse model ideal for PCa research. PCa develops mainly from luminal cells, but basal cells can 

also act as prostate cancer-initiating cells. Several processes are involved in the pathophysiology of 

PCa progression: precursor intraepithelial neoplasia, followed by localized PCa and advanced PCa. 

Progression of prostate cancer occurs in several phases and is associated with various genetic, 

molecular, and cellular changes, e.g. changes in androgens. The prostate-specific antigen (PSA) is 

involved in the regulation of androgens. PSA is mainly used in oncology as a biomarker for PCa but 

is criticized for its low specificity. The tumor microenvironment also plays an important role in 

tumorigenesis, being involved in numerous processes such as tumor development, metastasis, and 

the development of resistance to therapy. Stromal cells include fibroblasts, macrophages, 

lymphocytes, mast cells, endothelial cells, pericytes, smooth muscle cells, and extracellular matrix 

(ECM) proteins.


The current clinical reference standard to diagnose PCa is the histologic evaluation by transrectal 

ultrasound-guided systematic core needle biopsy. In addition, rectal palpation, biomarker 

determination in the blood, and different imaging techniques are used in the diagnostic workup. 

These imaging techniques include transrectal ultrasound (TRUS), computed tomography (CT), 

positron emission tomography (PET), and conventional magnetic resonance imaging (MRI). For 

MRI examinations, a gadolinium-based imaging probe is often used to obtain strong contrast 

images of the tissue structure.


Molecular MRI is an intensively researched field since it allows in vivo visualization of biological 

and biochemical processes at the molecular and cellular levels. This work aimed to apply specific 

molecular probes in PCa using a probe that specifically binds to elastic fibers and visualizes 
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pathological changes quantitatively. Secondly, iron-oxide particles, ferumoxytol, were used, 

whereby the particles are phagocytosed by macrophages in the tumor and therefore enable the 

evaluation of cellular characteristics. The experiments were performed in a small animal xenograft 

prostate tumor model, firstly by investigating the feasibility of each molecular probe and secondly 

by comparing different tumor volumes. Both imaging probes, the elastin-specific probe, and 

ferumoxytol, showed a good visualization and enabled an improved differentiation of PCa on MRI 

compared to an unenhanced scan. The tumor sizes were significantly different from each other, 

which could be visualized and quantified in the imaging as well as in the pathological and biological 

examinations.  


The studies demonstrate that molecular MR imaging has great potential to improve the diagnosis, 

cellular characterization, risk assessment, and treatment monitoring of prostate cancer. 

Additionally, avoiding invasive surgery for obtaining punch biopsies would reduce the risks of 

complications in patients. Molecular probes improve understanding of tumor development and 

biology.
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Zusammenfassung


Prostatakarzinome (PCa) zählen zu den häufigsten diagnostizierten Krebserkrankungen bei 

Männern weltweit. PCa gehörte im Jahr 2021 zu den zweithäufigsten Krebstodesursachen. Die 

Ätiologien für diese Erkrankung sind noch weitestgehend unbekannt, aber es gibt Faktoren, die 

begünstigend auf eine Tumorentwicklung und die Tumorprogression in der Prostata wirken. Zu den 

Faktoren gehören Umweltfaktoren, genetische Prädisposition und besonders das Alter spielt eine 

essenzielle Rolle. Mit fortschreitendem Alter, >65 Jahren, erhöht sich das Risiko für PCa und die 

Sterblichkeitsrate ist sehr stark davon abhängig. Patienten können im frühen PCa-Stadium 

symptomfrei bleiben. Mit dem Fortschreiten des Tumors können Symptome, wie 

Knochenschmerzen, Harnfunktionsstörungen, Gewichtsverlust und Anämien auftreten.  Schreitet 

der Tumor weiter fort, entstehen Metastasen im Körper, zu Anfang in den lokalen Lymphknoten 

oder im Knochen. PCa wird meistens in einer mittleren oder terminalen Phase diagnostiziert, 

welches eine Herausforderung für die Behandlung und Genesung darstellt. 


Das menschliche Prostatagewebe besteht aus drei Haupttypen von Epithelzellen: luminale, basale 

und neuroendokrine Zellen. Diese Epithelzelltypen finden sich auch in der Prostata von männlichen 

Mäusen, wodurch ein Mausmodell ideal für die PCa-Forschung ist. PCa entwickelt sich 

hauptsächlich aus luminalen Zellen, aber auch basale Zellen können als Prostatakrebs auslösende 

Zellen fungieren. An der Pathophysiologie der PCa-Progression sind mehrere Prozesse beteiligt: die 

intraepitheliale Vorläuferneoplasie, gefolgt vom lokalisierten PCa und dem fortgeschrittenen PCa. 

Das Fortschreiten des Prostatakrebses verläuft in mehreren Phasen und ist mit verschiedenen 

genetischen, molekularen und zellulären Veränderungen verbunden, z. B. mit Veränderungen der 

Androgene. Das prostataspezifische Antigen (PSA) ist an der Regulierung der Androgene beteiligt. 

PSA wird in der Onkologie hauptsächlich als Biomarker für PCa verwendet, wird aber wegen seiner 

geringen Spezifität kritisiert. Die Mikroumgebung des Tumors spielt ebenfalls eine wichtige Rolle 

bei der Tumorentstehung und ist an zahlreichen Prozessen wie der Tumorentwicklung, der 

Metastasierung und der Entwicklung von Therapieresistenz beteiligt. Zu den Stromazellen gehören 

Fibroblasten, Makrophagen, Lymphozyten, Mastzellen, Endothelzellen, Perizyten, glatte 

Muskelzellen und Proteine der extrazellulären Matrix (ECM). 


Der aktuelle klinische Referenzstandard, um PCa sicher zu diagnostizieren ist die rektale Palpation, 

Biomarkerbestimmung im Blut, unterschiedliche bildgebende Verfahren und insbesondere die 

pathologischen Untersuchungen der zuvor gewonnen Biopsien. Zu den bildgebenden Verfahren 

gehören unter anderem die transrektale Ultraschalluntersuchung (TRUS), Computertomographie 

( C T ) , P o s i t r o n e n - E m i s s i o n s - To m o g r a p h i e ( P E T ) u n d d i e k o n v e n ti o n e l l e 
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Magnetresonanztomographie (MRT). Bei MRT-Untersuchungen wird oft ein Gadolinium-haltiges 

Kontrastmittel verwendet, um einen stärkeren Kontrast in der Gewebestruktur aufzuzeigen.


Die molekulare MR-Bildgebung ist ein intensiv erforschtes Gebiet, da hierdurch eine Visualisierung 

von biologischen und biochemischen Prozessen in vivo auf molekularer und zellulärer Ebene 

dargestellt werden kann.  Das Ziel dieser Studien war die Anwendung von spezifischen 

molekularen Sonden. Zum einen wurde eine auf Gadolinium basierende molekulare Sonde 

verwendet, welche spezifisch an elastischen Fasern bindet, pathologische Veränderungen darstellt 

und quantifiziert werden kann. Zum anderen wurden Eisenoxidpartikel, Ferumoxytol, verwendet, 

wobei die Partikel im Tumor von Makrophagen phagozytiert werden und somit zelluläre 

Charakteristika evaluiert werden können.  Die Versuche wurden in einem Xenograft-Prostatatumor-

Kleintiermodell durchgeführt, indem zum einen die Anwendbarkeit der jeweiligen Kontrastmittel 

untersucht und zum anderen unterschiedliche Tumorvolumina verglichen wurden.  Sowohl die 

Elastin-spezifische Sonde als auch Ferumoxytol zeigten, dass eine Visualisierung und eine bessere 

Differenzierung von PCa im MRT mit diesen Sonden möglich war. Die Tumorgrößen unterschieden 

sich signifikant voneinander, was sowohl in der Bildgebung als auch bei den pathologischen und 

biologischen Untersuchungen dargestellt und quantifiziert werden konnte 


Die Studien zeigen, dass die molekulare Bildgebung mittels MRT ein großes Potenzial zur 

Verbesserung der Diagnose, zur zellulären Charakterisierung, Risikobewertung und 

Therapieüberwachung von Prostatakarzinomen darstellt. Diese neuen Parameter können zu den 

bereits etablierten Diagnosemöglichkeiten ergänzend wirken. Zudem würde eine molekulare 

Bildgebung im MRT den Patienten vor Risiken eines invasiven Eingriffes, wie der Gewinnung von 

Stanzbiopsien, bewahren. Molekulare Sonden verbessern das Verständnis der Tumorentwicklung 

und -biologie.
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1. Introduction


1.1. Prostate cancer

One in eight men is diagnosed with prostate cancer (PCa) at an average age of 66. It is rare for PCa 

to be diagnosed in men under 40 years of age. PCa was among the second leading causes of cancer 

death in 2021 [1]. PCa is also expected to be one of the most common causes of death in men in 

2022 [2]. In 2018, according to the Robert Koch Institut and Zentrum für Krebsregisterdaten, the 

PCa incidence in Germany was 65,200 and the prognosis for 2022 will be 70,100 [3].


The prostate is one of the male reproductive organs that produces seminal fluid, which is rich in 

phosphatase, citrate, prostate-specific antigen (PSA), and glycoproteins [4]. The prostate is a 

tubuloalveolar gland penetrated by the common ogival tubules of the two vas deferens and the 

two ducts of the vesicular glands and urethra. It is anatomically divided into four lobes [5].


One of the special characteristics of PCa is that it grows slowly compared to other cancers. The 

tumor initially develops inside the prostate. As the disease progresses, the tumor cells can break 

through the connective tissue capsule and migrate into the neighboring tissue. In addition, the risk 

of metastases in the body, e.g. in the bones, increases with the progression of the disease. 

Together with age, ethnicity plays an important role in the incidence of PCa [7, 8]. PCa is diagnosed 

twice as often in dark-skinned men and has a higher mortality rate than in light-skinned men [9]. 

Other causes of PCa may be related to genetic background, environmental factors, and 

physiological status [10-12]. 


Figure 1. Schematic representation of zones of the human prostate 
(modified from Sauer et al. [6]).
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1.1.1. Molecular biology of prostate cancer

The development of PCa is still mainly unknown. Several processes are involved in the 

pathophysiology of PCa: intraepithelial precursor neoplasia, followed by localized PCa, and 

advanced PCa [13]. Many factors are important in the development of PCa, including androgens 

(AR). Until recently, high testosterone levels were thought to be among the main factors [14]. 

However, recent research has shown that testosterone is not responsible for the development of 

PCa but rather promotes tumorigenesis [15-18]. 


Human prostate tissue consists of three main types of epithelial cell types: luminal, basal, and 

neuroendocrine [19, 20]. Luminal epithelial cells are polarized, columnar cells that line the lumen. 

The lumen and stroma are separated by the elongated basal cells. Neuroendocrine cells are AR-

negative and secrete neuropeptides and growth factors for luminal cell growth. Pathologically, the 

different cell types can be distinguished using cellular markers. These epithelial cell types are also 

found in the prostate of male mice, which makes a mouse model ideal for PCa research [21]. 


It has long been hypothesized that primary prostate cancer begins in the luminal cells, luminal 

phenotype, which is characterized by the absence of basal cells [23, 24]. However, murine studies 

have shown that both basal cells and luminal cells can act as the cell of origin for prostate 

Figure 2. Schematic representation of prostate epithelium from human (left) and mouse (right) 
(modified from Crowell et al. [22]).
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cancer [25-28]. PCa develops from the existing prostate epithelium through a multistage 

histological transformation, which is controlled by molecular changes [13]. Loss of phosphatase 

and tensin homolog (PTEN), NK3 homeobox 1 (NKX3.1), and high expression of c-MYC 

protooncogene (MYC) result in prostate intraepithelial neoplasia (PIN) lesions [29-33]. If the PIN 

lesion progresses and there is also loss of retinoblastoma protein (Rb), activation of telomerase, 

and usually forkhead box A1 (FOXA1) mutation, prostate adenocarcinoma develops [33-39]. 

Further molecular changes and mutations lead to metastases [40-45]. 


PTEN is a tumor suppressor. In PCa carcinogenesis, PTEN inactivation is strongly associated with 

tumor manifestation, through genomic deletion and rearrangement, intragenic breakage, or 

translocation. Loss of PTEN negatively regulates PI3'K/PKB/Akt signaling, which is involved in 

survival, proliferation, and energy metabolism [46]. A homeodomain transcription factor, NKX3.1, 

encodes a transcription factor whose expression is largely restricted to the prostate and controlled 

by AR [47]. Disruption of NKX3.1 contributes to prostate tumorigenesis by enabling the 

dedifferentiation of luminal cells [48]. MYC is a master transcription factor and is overexpressed in 

PCa. This can be observed in the early phase of PCa as well as in the metastatic phase. MYC 

overexpression has been shown to contribute to tumor initiation and progression by interfering 

with the AR transcription program [49]. The retinoblastoma susceptibility gene (RB1), a tumor 

suppressor, plays a key role in repressing the transcriptional activity of the E2F transcription factors 

(E2F1 and E2F3) [50, 51]. E2Fs regulate a variety of transcription genes required for the cell cycle, 

involved in DNA replication, nucleotide synthesis, and checkpoint control [52]. FOXA1 regulates 

gene transcription and is able to open surrounding chromatin and allow other transcription factors 

such as AR receptors to come close to their target site and exert transcriptional control of gene 

expression. Molecular and genetic studies have shown that FOXA1 is involved and abnormally 

expressed in various cancer diseases like myeloid leukemia [53], lung- [54], esophageal- [54], 

thyroid- [55], breast- [56], and prostate cancers [57, 58]. Human prostate cancer samples have 

shown that FOXA1 is overexpressed in metastatic and castration-resistant prostate cancer patients 

(CRPC) compared to normal and neoplastic transition zone tissues [35]. A high FOXA1 level is 

associated with a poor prognosis for the patient [35, 58], but other studies show that low FOXA1 

levels can be found in metastatic and CRPC tumors [59, 60]. These results show that studies are 

needed to fully understand the role of FOXA1 in PCa. A cell proliferation regulator, p27, also plays 

an important role in the development of PCa. p27 binds and inhibits cyclin D, E, A, and B cyclin-

dependent kinase (CDK) complexes [61]. 
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Luminal epithelial cells express a high concentration of AR [62]. They are positive for CD57- 

epitopes for human natural killer-1, NKX3.1, prostate-specific antigen (PSA), and cytokeratin 8 and 

18- epithelium-specific filament with 19 subtypes [62, 63]. Basal epithelial cells are positive for 

cytokines 5 and 14, p63 (prostate basal cell marker of some PCa subtypes [64]), CD44 (a cell 

surface protein involved in glucose metabolism of PCa cells [65]), and GSTP1 (involved in cell cycle 

regulation) [62, 63, 66]. 


PSA is an androgen-regulated serine protease and belongs to the tissue kallikrein family [67]. PSA is 

mainly used as a biomarker in oncology for PCa [68]. Prostate-specific membrane antigen (PSMA), 

a unique cell surface marker, is a type II membrane protein that is highly overexpressed in PCa [69]. 

PSMA, a cell surface marker, is the most widely used biomarker for PCa [70, 71] and it is a 

membrane-bound glycoprotein that is expressed in healthy prostate cells as well as in prostate 

cancer cells. Consisting of 750 amino acids, PSMA plays an important role in nutrient uptake, 

receptor function, signal transduction, and cell migration [70]. In PCa, PSMA is more strongly 

expressed due to the downregulation of androgen receptors. Data suggest that PSMA and PSA are 

connected [70, 72-74]. Higher PSA levels in patients are associated with increased PSMA 

expression [63]. Treatments of tumor cells expressing PSMA have often achieved good therapy 

outcomes [70].


Figure 3. Model of prostate cancer progression (modified from Shen et al. [13]). This model shows histological 
changes associated with important factors in the development and progression of prostate cancer initiation 

and progression. 
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Hub genes, such as histones H3 variant centromere protein A (CENPA), kinesin family member 20A 

(KIF20A), and human cell division cycle-related protein 8 (CDCA8) are overexpressed in PCa 

development and tumor progression [63, 76]. CENPA, an epigenetic marker, is highly 

overexpressed in PCa tissue and cell lines, and CENPA levels correlate with the PCa phase [77]. 

CENPA seems to act as a transcriptional regulator for the expression of proliferation genes, cell 

Figure 4. Androgen cycle in the prostate cancer cell (modified from Apad et al. [75]). Activation of the 
androgen receptor (AR) occurs through the binding of androgen ligands. This is followed by dimerization of the 

AR and translocation to the nucleus. In the nucleus, canonical transcription programs are subsequently 
activated, which promote cell survival, proliferation, and secretion of prostate-specific antigen (PSA). 
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cycle genes, and centromeres [77]. Thus, CENPA plays a significant role in the development of PCa 

[77]. Different tumor diseases show high expression of KIFA20A, a kinesin-like protein [78-80]. 

KIF20A plays a function in mitosis and the chromosome passager complex [79]. In addition, high 

expression of KIF20A correlates with poor patient survival rate [79], which has also been observed 

with cell division cycle associated 8 (CDCA8) [81]. CDCA8 is a chromosomal complex that is 

essential for genome transfer during cell division [82]. 


Stromal cells play a major role in tumor development and tumor progression. Stromal cells include 

fibroblasts, macrophages, lymphocytes, mast cells, endothelial cells, pericytes, smooth muscle 

cells, and extracellular matrix (ECM) proteins [83-85]. Fibroblasts, specific connective tissue cells, 

are involved in the formation and degradation of the ECM [63, 86]. They are particularly common 

in the prostate and when a tumor produces fibroblasts they can be recruited to cancer-associated 

fibroblasts [87]. The innate cellular immune system includes macrophages, which develop from 

peripheral monocytes circulating in the blood and are responsible for tissue homeostasis [88]. In 

the presence of a tumor, macrophages can be converted to tumor-associated macrophages (TAMs) 

and are essential in the infiltration of inflammatory cells. Type M1 TAMs have an inhibitory effect 

on tumor cells in contrast to type 2 TAMs, which have a promoting effect on tumor cells [63, 89]. 

These effects could also be observed in PCa [90]. Lymphocytes, a subtype of leukocytes, are an 

important factor in the development of PCa. Low lymphocyte levels are observed in PCa patients 

[91]. Mast cells influence and promote tumor angiogenesis [92, 93]. Mast cells in PCa promote the 

proliferation of PCa cells and the occurrence of epithelial-mesenchymal transition, invasion, and 

metastasis [94, 95]. Endothelial cells secrete C-C motif chemokine ligand 5 and induce autophagy, 

by suppressing AR expression [63, 96]. Increased autophagy promotes focal adhesion and invasion 

of PCa [96]. Pericytes are involved in the development and maintenance of vascular systems [97]. 

They regulate vascular permeability, vascular stability, and blood flow regulation, and they are 

involved in the interaction of vascular compression and maturation [97]. Pericytes migrate 

heterogeneously in tumor tissue, are freely bound to the endothelium, and are disorganized 

during tumor development and tumor angiogenesis [97].


Carcinoma cells can convert fibroblasts into reactive myofibroblasts, which are able to synthesize 

different ECM components. For the architecture and function of the ECM, protein and 

glycosaminoglycan fibers like collagen, fibronectin, tenascin, versican, galectin, laminin, and elastin 

are the most important building blocks [98]. Collagen and fibrillar proteins influence tumor 

progression, cell survival, apoptosis, and cell invasion [99]. Tenascin-C is a large hexametric 

multidomain glycoprotein in the ECM. Tenascin expression in PCa stroma and tenascin-C in the 
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stroma around neoplastic glands is significantly increased, suggesting a possible role for tenascin-C 

in regulating tumor proliferation, invasion, and metastasis [98, 100, 101]. Galectin interacts with 

intracellular glycoproteins, cell surface molecules, and the ECM. Galectin is thought to be 

expressed at a reduced level in carcinoma compared to adjacent peri-tumorous tissue [98]. 

Laminins are heterotrimeric molecules consisting of an α-, β- and γ-chain that are significantly less 

expressed in PCa compared to adjacent prostate tissue [102]. Elastin fibers are an important 

component of tissue stiffness and flexibility and play an important role in tumor invasion, 

metastasis, cell proliferation, adhesion, apoptosis, and angiogenesis [98, 103, 104]. Elastic fibers 

and their peptides are significantly involved in tumor invasion. Tumor cells are able to express 

elastin proteins, adhere, degrade and migrate [105]. The promotion of cross-linking of collagen and 

elastin in the tissue is determined by lysyl oxidase, a copper-dependent enzyme, and is responsible 

for the activation of elastin promoters [106, 107]. Interaction between tumor cells and elastin is 

mediated by two elastin-binding proteins, s-Gal and Galectin-3, and by laminin receptors [105].


The tumor microenvironment (TME) surrounding cancer cells plays an important role in cancer 

development. However, it is involved in numerous processes, including tumor growth, metastasis, 

and the development of therapy resistance [108]. 


1.1.2. Biomarker for PCa and clinical diagnosis

In the early stage of PCa, patients often remain symptom-free. Symptoms like bone pain, urinary 

dysfunction, weight loss, and anemia usually occur when metastases have already formed, 

especially in the local lymph nodes or in the skeleton [63, 109]. Most patients are diagnosed with 

intermediate or terminal PCa, which is a major challenge for treatment and recovery [63]. 

Although in recent years the diagnosis and treatment of PCa have improved, the mortality of the 

disease remains high.


The clinical reference standard is accompanied by rectal palpation of the prostate, and if changes 

in size or consistency are detected, further testing, e.g. PSA screening, is initiated [110, 111]. A 

high PSA level can indicate a malignant tumor, inflammation of the prostate, or prostatic 

hyperplasia. This is followed by a digital rectal examination (DRE) and/or a transrectal ultrasound 

examination (TRUS) [63, 111]. With TRUS, a needle biopsy can be combined with the collection of 

about twelve tissue samples for pathological-histological examination. However, a biopsy 

represents only a small part of the total tissue [112]. Additionally, it is an invasive procedure for 

the patient and involves risks such as bleeding, inflammation, infection, and also spreading of 

tumor cells, which detach during the biopsy and migrate into the surrounding tissue such as 
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perirectal or rectal tissue [113, 114]. When diagnosing PCa, a classification called TNM (T= tumor 

volume; N= involvement of lymph nodes; M= metastasis classification) and the Gleason score is 

used [115]. These parameters can be used to determine the stage of PCa. If a malignant disease of 

the prostate has been detected, the body is examined for the spread of the tumor by determining 

the spread in the body using computed tomography (CT) and/or magnetic resonance imaging 

(MRI). Other imaging techniques that may also be used include positron emission tomography 

(PET) and multi-paramagnetic MRI (mpMRI). A mpMRI includes a T2-weighted image, diffusion-

directed imaging, and imaging of the prostate by using an imaging probe. This method allows not 

only to record the prostate volume and localization, but also to evaluate other properties of the 

prostate, such as cell density, certain metabolic processes, or prostate blood flow. However, there 

is the problem of different interpretations in reading this data, which is why the Prostate Imaging 

Reporting and Data System (PI-RADS) was introduced for standardization [63, 116, 117]. So far, the 

success has been moderate [118].


Figure 5. Schematic illustration of histological phenotypes classified by Gleason score  
(modified from Kim et al. [119]).
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1.1.2.1. Challenges in PCa biomarker screening 

For more than 50 years, prostate-specific antigen (PSA) has been used as a biomarker for PCa, 

although in recent years PSA has been found to have low specificity [120]. Screening ensures 

overdiagnosis of PCa, resulting in potential patient damage [121]. PSA is a protein of the kallikrein 

family that is synthesized in the prostate epithelium. It is segregated using seminal fluid. PSA 

screening is performed by immunoassay.


Not all prostate cancers increase serum PSA levels. Factors such as prostatitis, benign prostatic 

hyperplasia, prostate biopsies, bacterial infections, and trauma can lead to increased expression of 

PSA [122, 123]. Meta-analyses show that PSA screening led to an increase in prostate cancer 

diagnosis, but mortality remained unchanged [121]. 


PSA screening remains a controversial tool for the diagnosis of PCa, and new prognostic 

biomarkers have been explored for a while to distinguish the wide spectrum of PCa. The Prostatic 

Health Index (PHI) has been introduced in the United States, Australia, and European markets to 

predict PCa risk in addition to PSA screening. For this purpose, the biomarkers PSA, free PSA (fPSA), 

and [-2]proPSA are analyzed in blood serum [124].


Table 1. Classification of prostate cancer stage (2002 AJCC TNM).

T Characteristics

T1 Clinically asymptomatic, non-palpable tumor

T1a Histological analysis of prostate tissue with < 5% tumorous tissue

T1b Histological analysis of prostate tissue with >5% tumorous tissue

T1c Tumor detection by punch biopsy, elevated PSA level

T2 Palpable tumor, localized in the prostate

T2a Maximal half tumor flap tumorous

T2b More than half of a prostate lobe is tumorous

T2c Both prostate lobes affected

T3 Volume of tumor over the prostate capsule

T3a Tumor spread on one or both sides beyond the prostate capsule, seminal vesicles not affected

T3b Extension into the seminal vesicle

T4 Tumor is fixed and/ or adjacent tissue involved

N Characteristics M Characteristics

N0 No regional lymph nodes M0 No metastasis

N1 Regional lymph nodes are existing M1 Metastasis are existing

NX Regional lymph nodes cannot be identified M1a No regional lymph nodes

M1b In bones

*T = volume of tumor; N = involvement of lymph nodes; M = metastasis classification
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The 4Kscore®-blood test examines four prostate biomarkers, total PSA, fPSA, intact PSA, and 

human kallikrein-related peptidase 2 in combination with clinical parameters in an algorithm that 

reflects a percentage risk of high-grade PCa [122, 125].  Higher values indicate a higher probability 

of tumor cells being identified in a biopsy. This combination of tests seems to be better than the 

collection of single biomarkers, but surgical intervention is still necessary. 


Another non-invasive method is the ExoDxTM Prostate (IntelliScore) Test 18 for the diagnosis of 

high-grade prostate cancer. Through molecular analysis of urine, exosomal RNA, ERG, PCA3, and 

SPDEF are extracted [126]. The gene signature of the urine exosome gene expression assay comes 

from genes known to play a role in the initiation and progression of prostate cancer [126-137]. 


These new biomarkers appear to be promising, but they are not accessible to the entire population 

due to the high costs or lack of approval in the country [122]. 


Figure 6. Prostate cancer biomarker to differentiate aggressive from non-aggressive tumors (modified from 
Simoes et al. [122]). The Prostate Health Index and the 4Kscore® are also based on blood tests, making it 

possible to determine the aggressiveness of the tumor. Urine tests are also suitable as a non-invasive method. 
Biomarkers in urine include PCA3 score and TMPRSS2:ERG fusion gene. microRNA (miRNA) appears to be 

useful as a biomarker, in urine as well as in blood, to detect PCa. 
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1.1.3. Treatment of PCa

Depending on the degree of PCa disease, one or more of the following treatments are selected: 

observation or active surveillance for PCa, surgical removal of the tumor mass, radiation therapy, 

cryotherapy, hormone therapy, and/or chemotherapy for prostate cancer. The following text 

explains the forms of therapy briefly.


In active observation, no special measures are required except for regular check-ups. Surgery aims 

to completely remove the cancerous tissue. The surgical technique is constantly being improved to 

reduce the risk of complications and side effects of the operation. Radiation therapy is 

continuously improved by directing the radiation precisely on the tumor tissue and without 

harming neighboring tissue. New technologies that can be used include conformal radiation 

therapy (CRT), intensity-modulated radiation therapy (IMRI), and proton radiation, which aim to 

reduce the side effects of radiation therapy. Early-stage PCa can be treated with high-intensity 

focused ultrasound (HIFU). It is used as a single treatment or in combination with radiotherapy if 

areas of tissue have not responded to radiotherapy. In this form of therapy, ultrasound beams are 

highly focused and generate heat, which destroys cancer cells. Cryotherapy can also be used as a 

form of treatment. Here, very low temperatures are used specifically to freeze and kill prostate 

cancer cells. Cryotherapy is usually only considered if the previous radiotherapy has not been 

successful. Hormone therapy involves suppressing the androgens to reduce the level of androgens 

in the body. This type of therapy is used when cancer has spread, and no surgery or radiotherapy is 

promising. It is also employed when surgery and/or radiotherapy have not been effective, in 

patients at increased risk of PCa, or before radiotherapy to reduce the size of the tumor. Androgen 

therapy involves medication or surgery (orchiectomy). Chemotherapy is most often used in 

patients at an advanced stage, by vein injection or by taking cancer drugs orally. Several 

chemotherapeutical drugs can be used, including Docetaxel, Cabazitaxel, Mitoxantrone, and 

Estramustine. Immunotherapy is based on drugs that stimulate the patient's immune system to 

recognize and eliminate cancer cells. A cancer vaccine (sipuleucel-T) is used, which strengthens the 

immune system. This type of therapy is used for advanced PCa. Targeted therapy involves drugs 

that identify and attack cancer cells while not harming healthy cells. Poly-APD-ribose polymerase 

(PARP) inhibitors are used, which block the PARP signaling pathways that are necessary for DNA 

repair. Targeted drug therapy is applied in advanced castration-resistant PCa. Typically, PCa needs 

normal testosterone levels, but in castration-resistant prostate cancer, the tumor grows despite 

low testosterone levels. Once the cancer cells have spread throughout the body, there are several 

therapy options. The metastases usually form in the bones first, which causes the patient to 

experience pain. 
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Therapy aims to prevent cancer from healing or spreading and to reduce pain. Combination 

therapy such as hormone therapy, chemotherapy, and vaccines could bring a positive therapeutic 

outcome. Drugs such as bisphosphonates, denosumab, corticosteroids, and radiopharmaceuticals 

can be combined with additional external radiotherapy, surgery, and/or painkillers.


All forms of therapy: observation or active surveillance for PCa, surgical removal of the tumor 

mass, radiation therapy, cryotherapy, hormone therapy, and chemotherapy, are recommended by 

the American Cancer Society [138].


1.1.4. Animal models of prostate cancer

Animal models are essential for research into the etiology, prevention, and treatment of human 

prostate cancer. In particular, mouse models are popular because of their similarities to the human 

morphology of the tissue. Additional advantages of the mouse model are handling and 

reproducibility.


Tissue cultures are useful for understanding the cell biology of PCa. However, they cannot reflect 

cellular interactions within the tumor microenvironment, so animal models still represent an 

unavoidable tool in PCa research. 


So far, there are only a few available animal models for PCa research: 


Rats are able to spontaneously develop prostate tumors [139]. The Dunning rat model is the most 

commonly used [140]. The Dunning R-33-27 tumor develops spontaneously, grows slowly, is well 

differentiated, and does not metastasize. The Lobund-Wistar rat strain develops PCa at 26 months 

of age on average, and when PCa is induced in these rats (using a combination of N-methyl-N-

nitrosourea/testosterone treatment), PCa takes approximately 10.5 months to grow [141]. Another 

possibility is to generate transgenic rats. One advantage in rats over mice is the size of the 

prostate. Disadvantages include the smaller number of analytical reagents for tumor analysis and 

transgenic and knockout lines for breeding compared to mice [142].


Dogs very often develop PCa spontaneously and are mostly used to evaluate novel PCa therapies. 

These spontaneous models are useful, but they are genetically difficult to manipulate, unlike mice.


Mouse models play a central role in PCa research. Very often, the xenograft model is used. Here, 

mostly human PCa cell lines are implanted either subcutaneously or orthotopically into the 

prostate of immunocompromised mice, severe combined immunodeficiency (SCID), or nude mice. 

In 1966, the immunodeficient rodent model was first used for PCa [143]. In 1970, human prostate 
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cancer tissues were xenografted for the first time and in subsequent years, a spectrum of PCa cells 

with specific characteristics was developed [144]. The SCID mouse model is deficient in T-and B-

lymphocyte functions, but normal natural killer cells and myeloid functions are present and can 

influence tumor growth and metastasis [145]. In the mouse orthotopic model, where human 

tumor cell lines are injected into the mouse prostate, it is possible to study the growth of PCa 

within the prostate microenvironment, tumorigenicity as well as the incidence of metastases [146].


In 1995, a new immunodeficient mouse model was established, which is a cross of the SCID and 

non-obese diabetic (NOD) mouse line [140].  This strain is characterized by the functional deficit in 

natural killer cells, the absence of circulating complement, and defects in the differentiation and 

function of antigen-presenting cells, meaning that multiple functional deficits of the adaptive and 

innate immune systems are present. For the study of human PCa cells, such as PC3, DU145, and 

LNCaP, this model is suitable for both subcutaneous and orthotopic implantation [147]. In another 

xenograft model or tissue recombinant model, benign or malignant epithelial cells are 

implanted subcutaneously or under the kidney capsule together with mesenchymal cells in 

immunosuppressed mice. This model is particularly well adapted to study epithelial-stromal 

interaction [148, 149]. There is also a xenograft model, whereby human PCa tissue is produced and 

Figure 7. Different prostate cancer mouse models in SCID-mice. (Left side) shows a schematic subcutan 
xenograft mouse model with a tumor in the right scapula area of the mouse. The red arrow points to the 

tumor. The lower image shows the tumor which had a size of about 1000 mm3. (Right side) An orthotropic 
xenograft mouse model with tumor in the dorsal prostate lobe. The red arrow shows the tumor. The lower 

image shows the mouse male urogenital organs with the PC3 tumor. 

21



Introduction

injected into a mouse as xenografts. This is a popular choice for therapeutic research. Mouse PCa 

xenografts from mouse PCa cell lines can be produced in syngeneic, immunocompetent host mice, 

which plays a major role in immunotherapy research. In addition, it is possible to use mouse 

xenografts in immunocompetent mice, which is suitable for studying the tumor microenvironment 

during tumor progression and therapeutic resistance studies [150]. 


1.2. Imaging modalities for prostate cancer 

An increased PSA level and, in the case of abnormalities, a DRE is not specific or sensitive enough 

to reliably diagnose PCa. Three-quarters of patients with an elevated PSA level (> 4 ng/ml) are not 

diagnosed with PCa [151]. Ultrasound examination can only be used to a limited degree to detect 

PCa, as focal lesions occur in only about 11-35% and the tumor is detected in only about 17-57% 

[152]. A CT scan shows high specificity, however, there are major disadvantages with this imaging 

modality, including the lack of soft tissue detail and the lack of molecular information [153]. A PET 

scan is performed with a tracer fluid to locate cancer cells. Tracers are radioactive and very costly.


MRI is a superior method to the imaging modalities mentioned above to reliably detect primary 

prostate lesions and allows detailed images of soft tissue. A PROMIS study showed a significantly 

higher sensitivity for identifying cancer compared to TRUS-guided biopsies [152].


1.2.1. Magnetic resonance imaging 

Magnetic resonance imaging is a non-ionizing imaging modality based on a strong magnetic field 

and radio waves [63]. It is a non-invasive and low-risk examination technique that is widely used in 

clinical practice [154]. MRI makes it easier to detect tumors, which produces high spatial and 

temporal resolution [155-157]. 


An MRI scan in PCa patients uses an endorectal coil with a phased array coil of moderate to high 

field strength in the pelvic region [134, 135]. T2-weighted images provide a morphological 

representation of the prostate in three dimensions. Axial T1-weighted images are used to identify 

lymph nodes, post-biopsy hemorrhage, and metastases. However, native T1-weighted images of 

the prostate show a uniform intermediate signal intensity, which means that the zonal anatomy 

cannot be clearly differentiated.


The MRI works with a very strong magnetic field, which means that it must be ensured that no 

magnetic objects are introduced into the examination room. Patients with implants, especially 

those containing iron, should not be examined in an MRI. A rapid change of MRI fields can cause 

nerve stimulation in the patient. Closed MRI machines can also cause claustrophobia. The 
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currently most debated risk in MRI is the use of gadolinium-based contrast media, which contain 

gadolinium chelates (Gd3+).


1.2.1.1. Principles of MRI 

Atomic nuclei are composed of protons and neutrons, which rotate around their own axis. 

Depending on the composition of the atomic nuclei, the nuclei have a nuclei spin (nuclei spin 

number ≠ 0), which generates a magnetic moment and induces a local magnetic field with north as 

well as south poles. When a strong external magnetic field (B0) is applied, the nucleus aligns itself 

either parallel or antiparallel to the external field. These properties apply to the nuclei of 

hydrogen. By placing hydrogen-containing molecules in the B0 field, two possible energy states can 

occur:


1- a low energy state, aligned parallel with the magnetic field, or 2- a high energy state, aligned 

anti-parallel to the magnetic field [154]. By putting the substance in B0 usually, there would be a 

small excess of spins in the low energy state [154]. Additionally, to the alignment to B0 due to the 

rotation, the nuclei get angular momentum so that they rotate/advance about the axis of B0 [154]. 

The rate of rotation about the field direction is the Larmor frequency. This is proportional to the 

field strength and is described by the Larmor equation: ω0 = γB0 (angular frequency of protons = 

gyromagnetic ratio x field strength) [154]. Nuclei that have spins can be excited in the magnetic 

field B0 by applying a high-frequency magnet field B1 that is perpendicular to B0 [154]. 


High-frequency energy is applied in short pulses, each lasting seconds. The absorption of energy by 

the core causes a transition from higher to lower energy levels and from lower to higher energy 

levels (relaxation) [154]. Energy originating from the cores generates a voltage that can be 

detected by a tuned wire coil, amplified, and displayed as a free induction decay. In the absence of 

continued high-frequency modulation, relaxation processes will bring the system back to thermal 

equilibrium [154]. Therefore, each nucleus oscillates at a specific frequency when it is within this 

magnetic field [154]. Making a transition between energy levels depends on the strength of the B0 

magnetic field to which the nuclei are exposed [154]. The application of a high-frequency pulse at 

resonance frequency produces a free induction decay. To improve the signal-to-noise ratio, several 

high-frequency pulses are applied to obtain several free-induction decays, which are then averaged 

[154]. The averaged field induction decay is a time domain signal and can be resolved by 

mathematical processes (known as Fourier transform) into either an image (MRI) or a frequency 

spectrum that provides biochemical information [154].
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Transmitter and receiver coils are placed on the object e.g., animal, human, or phantom. The 

receiver coil consists of a wire loop that is placed within the area to be examined or lies within the 

transmitter coil. Phased array coils contain several coils that receive the MR signal simultaneously 

and independently of an excitation. 


There are two types of relaxation (which describes the process by which a nuclear spin returns to 

thermal equilibrium after absorption), longitudinal stress, and transverse stress, which are 

described by the time constant T1 or T2, respectively. T1, also known as spin-lattice relaxation, 

occurs when the longitudinal voltage dissipates energy into the grid. T1 is the time it takes for the 

system to return to thermal equilibrium at 63% after a high-frequency pulse as an exponential 

function of time. T1 manipulation can be done by changing the time between high-frequency 

pulses defined as the repetition time (TR). T1-weighted images appear dark because water and CSF 

have a long T1 value, 3000-5000 ms. Fat has a short T1 value, 260 ms, and appears bright in the T1 

weighted images [154]. Depending on the field strength, the parameters vary or have to be 

adjusted. T2 describes spin-spin relaxation. Relaxation processes can also redistribute energy to 

the nuclei within a spin system without losing the entire spin system [154]. When a high-frequency 

pulse is applied, the nuclei align predominantly along the axis of the applied energy. During 

relaxation, a dephasing of the nuclear orientation occurs. T2, which is called the transverse 

relaxation, indicates how fast the spins exchange energy in the XY plane. Diffusion-weighted 

imaging (DW) is an MR technique that allows quantification of the motion of water molecules. The 

principle is based on the principles of Brownian motion.


The currently used diagnostic MRI scanners employ cryogenic superconducting magnets in the 

range of 0.5 Tesla (T) up to 3 T. Cooling of the magnetic field is usually done with liquid helium. 

Research MRIs use a field strength of 3 T - 11.7 T, resulting in improved signal-to-noise ratio (SNR), 

higher spectral, spatial, and temporal resolution as well as better quantification [160, 161]. 

Disadvantages of MRI include magnetic susceptibility, eddy current artifacts, and magnetic field 

instability [162, 163]. 


The use of an imaging probe increases the sensitivity and specificity of diagnostic images in MRI by 

changing the intrinsic properties of tissues that influence basic contrast mechanisms [164]. 

Imaging probes affect the relaxation times of tissues. Most clinically allowed imaging probes 

decrease the T1 relaxation time of protons in tissues. Imaging probes affect the relaxation times of 

tissues and can be administered to the body in different ways: 1- oral, predominantly for imaging 

of the gastrointestinal tract, or 2- intravenous, for all other body regions. Imaging probes are 

differentiated by their chemical composition, magnetic properties, bio-distribution, and use [165]. 
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Gadolinium-based imaging probes are currently used for almost all contrast-enhanced MRI 

examinations, including vascular imaging [166, 167]. A dose of up to 0.1 mmol/kg can be 

administered for larger vessels, e.g. the aorta. For imaging, the dose is crucial because, for 

example, if the concentration is too high, there is a T2 shortening effect which means that the 

brightness through the gadolinium is lower than in the surrounding tissue [168].


1.2.1.2. MRI of prostate cancer


MR imaging techniques are used to identify the stage of the tumor more accurately. Depending on 

the clinical goal, such as cancer detection, assessment of tumor aggressiveness, or response to 

therapy, different techniques or combinations may be considered. For imaging of the prostate, a 

field intensity of 3 T is recommended. The feasibility of 7 T for clinical examinations is currently 

being tested [169-173]. 


The standard prostate examination includes multiplanar T1- and T2-weighted imaging and DW- 

MRI. T1-weighted images of the entire male pelvis are acquired to assess bleeding in the prostate, 

and metastases in the pelvic bones and lymph nodes. T2-weighted images depict the zonal 

anatomy of the prostate, which are essential for the detection, localization, and staging of prostate 

cancer [174, 175]. 


Both reduced and increased signal intensities can be observed in PCa in the peripheral zone on T2-

weighted images [176]. Tumors are also present in the transition zone. One challenge in detecting 

the tumor reliably is the over- or under-diagnosis of PCa due to confounding factors such as 

bleeding after a biopsy. Therefore, it is recommended to perform an MRI examination no earlier 

than 8 weeks post-biopsy [177]. Another confounding factor is chronic prostatitis, which also 

shows low signal intensity on T2-weighted images, resulting in images being interpreted as false 

positives [178]. In most cases, a DW-MRI is also performed, which provides data on the 

physiological properties of water diffusivity [179-181]. Possible losses of signal intensity due to the 

interaction between water molecules and other molecules can be quantified using apparent 

diffusion coefficients (ADC). ADC is a measure of average molecular motion and is a low-range PCa 

[181, 182]. Dynamic contrast-enhanced MRI (DCE-MRI) shows signal intensity changes after 

intravenous administration of the imaging probe. Most commonly, gadopentetate dimeglumine 

(Gd-DTPA) is used, which travels from the intravascular space to the interstitial space [183]. Factors 

such as perfusion, vascularity, and tissue permeability influence signal accumulation. The 

longitudinal relaxation time, T1 value, of the blood and interstitial water will change the signal 

intensity in T1-weighted imaging, by the imaging probe. Up to one minute after the imaging probe 
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injection, several T1-weighted images are taken to visualize the tissue. Quantitative analysis of 

parameters reflecting tumor vessel permeability, tumor perfusion, and extracellular-extravascular 

volume fraction follows [183, 184]. Proton magnetic resonance spectroscopic imaging (1H-MRSI) 

indicates the distribution of metabolites, such as choline, creatine, citrate, and polyamines, 

throughout the prostate. In PCa, choline levels increase, which is normally accompanied by a 

decrease in citrate and polyamines [176].


In summary, the underlying physical principles of MRI are an important aspect in the investigation 

of PCa and disease in general. 


1.3. Molecular MR imaging

Molecular MR imaging is an intensively researched field that enables the visualization of biological 

and biochemical processes in vivo at the molecular level [63]. Cells are constantly reorganizing and 

in permanent communication with neighboring cells, with continuous changes in biochemical 

processes in the organism [63]. Imaging at the molecular level makes it possible to visualize 

specific characteristics in the organism without invasive procedures. For this, it is necessary to use 

a specific biomarker that is conjugated to a complex between chelate and paramagnetic metal ions 

like Gd3+ or Fe3+ and causes a signal change in the MRI. The probes bind to the target based on the 

induced fit principle and can be visualized in MR by the MR active complex.


Tumors can be easily detected on MRI due to the high spatial resolution [156, 157, 185]. Diagnostic 

MRI is dominated by Gd3+ based imaging probes, such as Magnevist®, Omniscan®, Dotarem®, 

Gadovist®, and Multihance® [63, 186, 187]. Since the beginning of 2018, Magnevist® and 

Omniscan® are no longer allowed to be used, as studies have shown that Gd is released and 

deposited in the tissue [63, 188]. When imaging probes are used, the longitudinal T1 relaxation 

rate and transverse T2 relaxation rate of H2O molecules change [63, 187]. However, Gd-based 

imaging probes have been criticized for some time because they have been associated with 

gadolinium deposition in the brain, skin, heart, bone, and kidney after multiple administrations, 

especially in patients with renal dysfunction [63, 189-195]. Especially linear imaging probes release 

Gd-ions in the body due to their unstable form [188, 196]. A distinction is also made between ionic 

and non-ionic imaging probes. Ionicity is related to osmolarity. This factor (linear or macrocyclic; 

ionic or non-ionic) plays a role in the patient/organism tolerance of the imaging probe [197]. It is 

important to pay attention to how often a patient gets an imaging probe dose and whether there 

are pre-existing health conditions that promote deposition of Gd. A better alternative would be to 

use stable structures so that few to none of the Gd can be deposited into the organism. 
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At the onset of the disease, and during progression, cells are constantly changing [198-202]. Tumor 

diseases are a good example, as tumor cells absorb and use different nutrients than healthy tissue 

[203, 204]. Due to the modified metabolic processes, it is possible to determine the change in the 

organism by using specific markers in the region of interest. Under these circumstances, the 

possibility of imaging cellular and molecular characteristics with specific molecular probes in MRI 

represents a promising alternative to the current clinical practices [205]. Molecular probes can be 

categorized into two groups: 1- biological targets, such as proteins, and 2- cellular targets, such as 

macrophages.


1.3.1. Biological targets for molecular imaging 

Specific molecular imaging can be used for the early detection, identification, and treatment 

processes of diseases. Therefore, in disease overexpressed molecules, like receptors, fibers, or 

enzymes, can be used as a target. By performing high-throughput screenings against these targets, 

peptide binders can be found and afterward, modified to obtain specific probes [206, 207]. 

Overexpressed molecules and receptors can ideally function as optimal biomarkers.


A major advantage of using a peptide-based molecular probe is their small size and often good 

physiologically compatibility. Therefore, they can diffuse into extracellular areas and have a fast 

blood clearance. For MR activity, the peptides are normally bound to a gadolinium (III) complex, 

which causes a positive signal change in T1-weighted MR images. Based on the tissue, the 

administration of the Gd-containing imaging probe results in changes/enhancement of the 

longitudinal relaxation time, as the seven unpaired electrons of the paramagnetic Gd3+ have a high 

longitudinal relaxivity, which can be further enhanced by the correct choice of chelating ligands.


Additionally, to peptide-based probes, peptides can be coupled to a protein carrier. Thereby, the 

protein carrier uses modified metal ion binding sites for the complexation of gadolinium. The 

advantage of such a protein carrier is the longer blood retention time and due to the decreased 

mobility of the gadolinium complex, the T1 relaxivity will be increased [206]. Wei et al. modified 

this imaging probe by adding a gastrin release sequence, which allowed for better targeting [208]. 

Gastrin-releasing peptide (GRP) binds specifically to the surface receptors of GRPR, which are 

abundant in PCa [208]. The binding affinity is due to the loop structure of the C-terminus. 

Experiments were performed in different cell experiments with PCa tumor cells and studied in vivo 

in a xenograft mouse model. 140 mM of imaging probe were injected into the mouse.


Pu et al. developed an imaging agent targeting GRPR with a Gd3+ binding site (PRoCA1.GRPR) [209]. 

GRPR is differentially expressed on the surfaces of different diseased cells. The imaging agent 
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shows a strong binding affinity to GRPR as well as a high relaxivity and a strong Gd3+ selectivity 

towards physiological metal ions. The in vivo experiments were performed in a mouse model with 

PC3 and H441 tumors. Higher signal intensity was achieved after imaging agent administration, 

using eight times lower compared to the clinical injection dose [209]. Several studies suggest that 

gastrin-releasing peptides promote tumor growth [210, 211]. GRPR is not only overexpressed in 

PCa but has also been found to be overexpressed in breast cancer, pancreatic cancer, colorectal 

cancer, and lung cancer [210]. For molecular imaging, GRPR is a promising target and a good 

indicator of PCa, which could play an important role in early detection and treatment monitoring. 

However, the different tumors need to be widely analyzed at a more molecular level, as different 

GRPR intensities were shown in the two PCa cell lines that Pu et al. used in the study.


Another study by Pu et al. developed a molecular probe targeting PSMA (protein MRI molecular 

probe, named ProCA32) [70]. It showed high Gd3+ binding affinity and metal selectivity, relaxation 

ability, and strong PSMA targeting [70]. The molecular probe was investigated in the xenograft 

tumor mouse model. PSMA is well suited as a target for PCa as it is expressed ten times more than 

in healthy tissues and is also specific for PCa [70].


Heckl et al. developed an intravital and intracellular molecular probe that consists of peptide 

nucleic acid and a transmembrane carrier peptide conjugated with a c-mys-specific Gd3+ complex 

[212]. The molecular probe was first tested in vitro using HeLa cells, and signal intensity was 

detected in 1.5 T MRI after only 10 min and the maximum was reached after 1 h. For the control 

group, the non-specific imaging probe, Magnevist®, was used. After incubation with the specific 

molecular probe, relaxation increased more than threefold compared with the non-specific probe. 

Subsequently, the imaging probe could be studied in the rat model, Dunning R-3327. The 

intravenously administered dose was 0.25 μmol/kg and a maximum was reached after 30 min. A 

high expression level of c-myc mRNA was confirmed in the cytoplasm of the rat prostate primary 

tumor [212].


Another molecular probe for imaging is targeted at fibronectin. Fibronectin is highly expressed in 

malignant PCa and is a feature of the epithelial-mesenchymal transition [213]. Wu et al. 

synthesized a molecular probe targeting the fibrin-fibronectin complex by solid-phase peptide 

synthesis [214]. It was studied in an orthotopic mouse model and strong signal enhancement was 

observed after 5 min post-injection with a dose of 0.03 mmol Gd/kg for at least 30 min. 

Measurements were performed on a Bruker Biospec 7 T MRI scanner, which is specifically designed 

for small animals. The control group received a non-specific imaging probe, KAREC-dL-(DOTA-Gd)4, 
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at the same dose. The fibronectin molecular probe shows high water solubility, high relaxation, 

small size, tumor specificity, and strong signal enhancement [214].


Tan et al. also modified a molecular probe targeting the fibrin-fibronectin complex based on the 

cyclic peptide CLT1 (CGIIQKNEC) [215]. It contains the nanoglobular Gd-DOTA monoamide 

conjugate, CLT1-G2-(Gd-DOTA) [215]. Since the size of the probe is very small, it can diffuse better 

into tumor tissue. The specific binding of the CLT1 peptide was investigated in an orthotopic tumor 

mouse model. A dose of 30 μmol Gd/kg was used. The specific binding of the molecular probe 

could be shown in this study.


Four peptides, GVK, IGK, SGV, and ZD2 have been identified that are specific for extra domain B 

fibronectin (EDB-FN) for tumor targeting and can be used for molecular imaging as peptide-Gd-

DOTA conjugates [216]. The four macrocyclic peptide-Gd-DOTA conjugates were investigated in a 

prostate cancer xenograft mouse model. All synthesized molecular probes resulted in tumor 

contrast enhancement in MR imaging [216]. They showed high relaxation and high water solubility 

[216]. EDB-FN-specific molecular probes may become an important component in the 

identification of aggressive tumors, but this is also a limitation [63].


1.3.2. Macrophage marker for molecular imaging 

Magnetic iron-oxide nanoparticles (IONPs) demonstrate a unique magnetic characteristic that can 

be used in a variety of biomedical applications, such as drug administration [217], magnetic 

hyperthermia [218, 219], magnetic particle imaging [220], and also in MRI [221-225]. The particle 

size is key for the magnetic property of IONPs, which results from the magnetic domain structure 

[223, 226]. Superparamagnetic iron-oxide nanoparticles (SPION) are magnetic iron particles and 

have a size of 1-100 nm [227-229]. SPIONs exhibit no remanent magnetization without an external 

magnetic field at room temperature. SPIONs are very popular as iron-oxide-based T2 molecular 

probes due to their relatively good biocompatibility [230-232]. In the diagnosis or tumor 

treatment, SPIONs are used as MRI imaging probe in the clinic. In most cases, SPION imaging 

probes act as negative imaging probe because the accumulation of iron results in hypointense 

contrast on MRI. Following intravenous injection, the molecular probe enters the bloodstream and 

the particles are phagocytosed by macrophages [233]. SPIONs, in contrast to Gd-containing 

imaging probes, shorten the relaxation time of T1- and T2-weighted images [234]. 


Bates et al. linked a commercially available superparamagnetic iron-oxide-containing molecular 

probe, MIRB- Molday ION Rhodamine-B carboxyl, to a deimmunized mouse monoclonal antibody, 

muJ591: muJ591:MIRB [235], targeting PSMA. The experiments have only been performed in vitro 
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up to now. In addition to flow cytometry and immunofluorescence, inductively coupled plasma 

atomic emission spectrometry (ICP-AES) showed that the modified molecular probe had a loading 

concentration of 1958 ± 611 (n=8) elemental iron per antibody, which was covalently bound. The 

results indicate specific binding of the molecular probe to PSMA-expressing cells. However, in vivo 

experiments in animal models are needed, to assess the feasibility of this approach. 


The nano pharmaceutical ferumoxytol was modified for use in PCa so that it binds specifically to 

PSMA [236]. This created a cyclic PSMA-targeting peptide, allowing the functional state of the 

androgen receptor to be assessed by MRI and used therapeutically [236]. The experiments were 

performed in vitro in cell experiments and subsequently, the nano pharmaceutical was 

investigated for its therapeutic potential in the mouse xenograft model (in vivo) [236].


In the study by Zhu et al., a polypeptide CQKHHNYLC-SPION molecular probe was conjugated, 

which binds specifically to PSMA [237]. The in vitro experiments showed that LNCaP cells took up 

more polypeptide SPIONs than the reference cells. The in vivo experiments in the tumor-induced 

mouse model showed a significant decrease in T2 tumor signal intensity. This observation could be 

confirmed in histological examinations.


Biocompatible magnetic iron-oxide nanoparticles (MNPs) can also be modified to obtain better 

contrast on MRI for PCa. Tse et al. developed an MNP-J591 molecular probe [238]. J591 is an 

antibody against an extracellular epitope of PSMA. In both in vitro cell experiments and orthotopic 

tumor-bearing mice, the conjugate was able to enhance the magnetic resonance contrast of 

tumors [238]. A non-targeting MNP was used as a reference. Ultimately, this study demonstrates 

the potential of improving MRI signals in the detection/localization of PCa using specific 

conjugated MNPs.
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2. Aims and Objectives of the Thesis 


This thesis aims to evaluate a murine in vivo xenograft prostate cancer model via molecular 

magnetic resonance imaging by testing the following hypotheses:


Hypothesis 1: An elastin-specific molecular probe enables the diagnosis and characterization of 

different tumor volumes of prostate cancer in a mouse model.


Hypothesis 2: A superparamagnetic iron-oxide probe allows the visualization of different tumor 

volumes of prostate cancer in a mouse model.
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Simple Summary: One of the most commonly diagnosed cancers in men is prostate cancer (PCa).
Understanding tumor progression can help diagnose and treat the disease at an early stage. Compo-
nents of the extracellular matrix (ECM) play a key role in the development and progression of PCa.
Elastin is an essential component of the ECM and constantly changes during tumor development.
This article visualizes and quantifies elastin in magnetic resonance imaging (MRI) using a small
molecule probe. Results were correlated with histological examinations. Using an elastin-specific
molecular probe, we were able to make predictions about the cellular structure in relation to elastin
and thus draw conclusions about the size of the tumor, with smaller tumors having a higher elastin
content than larger tumors.

Abstract: Human prostate cancer (PCa) is a type of malignancy and one of the most frequently
diagnosed cancers in men. Elastin is an important component of the extracellular matrix and is
involved in the structure and organization of prostate tissue. The present study examined prostate
cancer in a xenograft mouse model using an elastin-specific molecular probe for magnetic resonance
molecular imaging. Two different tumor sizes (500 mm3 and 1000 mm3) were compared and
analyzed by MRI in vivo and histologically and analytically ex vivo. The T1-weighted sequence
was used in a clinical 3-T scanner to calculate the relative contrast enhancement before and after
probe administration. Our results show that the use of an elastin-specific probe enables better
discrimination between tumors and surrounding healthy tissue. Furthermore, specific binding of
the probe to elastin fibers was confirmed by histological examination and laser ablation–inductively
coupled plasma–mass spectrometry (LA-ICP-MS). Smaller tumors showed significantly higher signal
intensity (p > 0.001), which correlates with the higher proportion of elastin fibers in the histological
evaluation than in larger tumors. A strong correlation was seen between relative enhancement (RE)
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and Elastica–van Gieson staining (R2 = 0.88). RE was related to inductively coupled plasma–mass
spectrometry data for Gd and showed a correlation (R2 = 0.78). Thus, molecular MRI could become a
novel quantitative tool for the early evaluation and detection of PCa.

Keywords: magnetic resonance imaging; molecular imaging; prostate cancer

1. Introduction
Prostate cancer (PCa) accounts for one in five cancer diagnoses in men, making it one

of the most commonly diagnosed carcinomas in men in the Western world [1]. It can be a
highly malignant tumor disease, and represents one of the most common fatal cancers in
men [1]. The causes of the disease are yet not fully understood. Risk factors include age,
ethnic origin, geographical location, and genetic predisposition [2–5]. In the last few years,
both the diagnosis and treatment of PCa have improved due to medical advances.

Early-stage prostate-specific antigen (PSA) screening is considered practical for decision-
making and treatment in PCa [2]. The laboratory-chemical survey determination of the
PSA level is well established in Western countries, but this method also shows significant
limitations. Due to its relatively low specificity and a low sensitivity, it leads to many
false positive diagnoses [6,7]. As a result, many patients undergo unnecessary prostate
biopsy [7]. In patients with a normal PSA level, PCa could be diagnosed in 30% of cases,
with 10% being assigned to aggressive PCa [6]. The PSA value therefore does not necessar-
ily provide any information about the aggressiveness of the tumor. Other factors can also
affect PSA level, such as bacterial prostatitis and acute urinary retention [8]. PSA screening
also leads to over-diagnosis of PCa and thus initiates unnecessary surgical procedures to
collect tissue samples [9].

Another diagnostic option is transrectal ultrasound (TRUS) [10], which is now well
established in clinical practice. TRUS can help determine the volume of the prostate and is
used as a supplementary diagnostic test.

An indispensable method for the diagnosis of PCa is magnetic resonance imaging
(MRI). Diffusion-weighted apparent diffusion coefficient (ADC) imaging, T2-weighted
imaging, and dynamic intravenous contrast-enhanced (DCE) imaging with unspecific
contrast agents are among the standard MRI examinations in PCa, referred to as multipara-
metric MRI (mpMRI) [11,12]. Some of the advantages of MRI are the high-resolution spatial
imaging of tissue with strong soft tissue contrast, the quantitative imaging technique, and
the lack of invasiveness and radiation. mpMRI has a high sensitivity and specificity, but it
has a low positive predictive value (PPV) [13]. The Prostate Imaging Reporting and Data
System (PI-RADS) helps to detect PCa in a standardized form. The main challenge is the
different interpretation of the PI-RADS results by clinicians and medical staff [13]. PCa
mpMRI diagnosis must finally be verified by biopsy. Therefore, it is necessary to develop a
non-invasive screening method with high specificity.

To improve MRI contrast, the paramagnetic lanthanide metalion gadolinium (III)
(Gd3+) can be used in a complex with organic chelates, like the macrocyclic DOTA (2,20,2”,20 0 0-
(1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid) or the linear DTPA (2,20,20 0,
20 0 0-{[(Carboxymethyl)azanediyl]bis(ethane-2,1-diylnitrilo)}tetraacetic acid) as contrast me-
dia. Thereby, the unpaired electrons in the Gd-ion will shorten the T1 relaxivity of the
neighboring water protons and thus, the signal intensity of the Ta-weighed image will be
increased [14].

To further improve tissue differentiation, molecular probes could be used as opposed
to the currently available unspecific extracellular Gd-based contrast agents [15]. In addition,
molecular imaging could be used as an added tool to current diagnostic techniques.

A possibility to use appropriate small molecule biomarkers for the detection of ma-
lignant diseases would be to target extracellular matrix (ECM) components. These can be
coupled with MRI-compatible elements. The ECM architecture plays a main role during
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the development and progression of PCa [16]. Palumbo et al. showed strong stimulation of
the proliferation and migration of tumor cells (LNCaP) by the ECM, but also inhibition of
apoptosis and deregulation of the expression of several genes [16].

The main matrix macromolecule components are elastin, collagen, fibronectin, laminin,
and proteoglycan [17–19]. The interaction between tumor cells and elastic fibers is con-
trolled by a 67 kDa receptor [20,21]. Although the signal mediation of the receptor in tumor
cells is not yet fully elucidated, a different extensive binding of tumor cell lines to elastin
has been observed in Lewis lung carcinoma cells [22]. Tumor cells are able to express,
adhere, degrade, and migrate elastin proteins [23]. Lysyl oxidase, a copper-dependent
aminodase, promotes the cross-linking of collagen and elastin in tissue and is responsible
for the activation of the elastin promoters [24,25]. This is a determining factor in the stiff-
ness and structural stability of ECM [24]. An interaction between the tumor cells and the
ECM protein elastin is mediated by two elastin-binding proteins (S-gal and galectin-3) and
two laminin receptors [23].

The expression of elastin-binding proteins is strongly related to the metastatic potential
of the tumor [23]. One possible explanation is that cancer cells are able to synthesize
elastin and express lysyl oxidase [23]. Calderón et al. showed that PCa contains more
elastic fibers than normal tissue [26]. Elastin fibers are implicated in tumor invasion
and metastasis, cell proliferation, adhesion, apoptosis, and angiogenesis [26–28]. Finally,
elastin represents a novel promising molecular biomarker also in the field of cardiovascular
diseases [29,30]. Additionally, hepatic cancer [31] could be evaluated using an elastin-
specific MRI molecular probe.

Despite the advances in the diagnosis of PCa over the course of time, further studies
are needed to clarify the onset and mechanism of PCa progression.

We therefore analyzed the role of elastin in conjunction with molecular MR imaging in
a xenograft mouse model, comparing two different tumor sizes. This study aimed to use a
low-molecular elastin-specific probe in MRI examinations and, thus, to obtain information
on changes in the ECM during prostate cancer development for a better differentiation
between tumor tissue and healthy tissue.

2. Materials and Methods
2.1. Cell Culture

Human PC3 cells were obtained from ATCC® CRL-1435™ (Manassas, VA, USA) and
cultured in Roswell Park Memorial Institute (RPMI) 1640 Medium (Gibco™, Thermo
Fischer Scientific, Waltham, MA, USA) supplemented with 10% fetal calf serum (FCS)
(Gibco™, Thermo Fischer Scientific, Waltham, MA, USA). Cells were cultured in 150 cm2

tissue culture flasks until they reached about 80% confluence. Cells were washed with
phosphate buffered saline (PBS) (Gibco™, Thermo Fischer Scientific, Waltham, MA, USA),
trypsinized, and subsequently re-suspended in 1 mL RPMI-medium and counted with
0.4% Tryptan blue solution (Gibco™, Thermo Fischer Scientific, Waltham, MA, USA).

2.2. Xenograft Mouse Model
This study was performed corresponding to the local guidelines and provisions for

the implementation of the Animal Welfare Act and the regulations of the Federation of
Laboratory Animal Science Associations (FELASA). This animal study was approved
by the regulatory authority of the Regional Office for Health and Social Affairs Berlin
(LAGeSo) (G0094/19). Male, eight-week-old SCID-mice (CB17/Icr-Prkdcscid/IcrIcoCrl)
were obtained from Charles River Laboratories (Sulzfeld, Germany) (N = 28). The animals
were randomly assigned to two different groups (n = 14).

For anesthesia, the mice were intraperitoneally injected with medetomidin (500 µg/kg),
midazolam (5 mg/kg), and fentanyl (50 µg/kg). Cell suspension with 2 ⇥ 106 PC3-cells
was injected subcutaneously (s.c.) in the area of the right scapula. Anesthesia was subse-
quently antagonized with atipamezol (750 µg/kg), flumazenil (0.5 mg/kg), and naloxon
(1200 µg/kg).
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MR imaging was performed on a tumor size of 500 mm3 (n = 14) or 1000 mm3 (n = 14).
The size of the tumor was determined using calipers. Following MRI, mice were euthanized
and tumor tissue was removed for ex vivo examination.

2.3. In Vivo MRI
MR imaging was performed using a 3.0 Tesla MR scanner (MAGNETOM Lumina,

Siemens, Erlangen, Germany) and a 4-channel receive-coil array for mouse body applica-
tions (mouse scapula array, P-H04LE-030, Version1, Rapid Biomedical GmbH, Germany).
Following s.c. anesthesia as described above, mice were positioned on the MRI patient
table in a prone position. A venous access through the tail vein was established for admin-
istration of the contrast agent during the MR imaging. The body temperature (37 �C) was
monitored with the use of an MR-compatible heating system (Model 1025, SA Instruments
Inc, Stony Brook, NY, USA) to avoid rapid cooling.

2.4. Elastin-Specific Contrast Agent for the MRI
A contrast agent that specifically binds to elastin was used for the experiments

(ESMA; Lantheus Medical Imaging, North Billerica, MA, USA). It is a low-molecular-
weight gadolinium-based contrast agent with a molecular mass of 856 g/mol [30]. The
highest binding is achieved after 30 to 45 min [30,32]. The longitudinal relaxivity of
4.68 ± 0.13 mM�1s�1 and 8.65 ± 0.42 mM�1s�1 [30,32] is known. The contrast agent was
administered intravenously via the tail vein in a clinical dose of 0.2 mmol/kg.

2.5. Elastin Imaging Using T1 Weighted Sequences
MR imaging was realized with a 3.0 Tesla MR scanner. The mice were imaged in

prone position with a 4-channel receive-coil array for mouse body applications. For the
localization of the tumor, a low-resolution three-dimensional localizer scan was used,
which was performed in sagittal, coronal, and transverse orientation with the following
parameters: field-of-view (FOV) = 280 ⇥ 280 mm, matrix = 320, slice thickness = 1.5 mm,
repetition time (TR) = 11.0 ms, echo time (TE) = 5.39 ms, flip angle = 20�, and slices = 10.
Anatomic images were captured using a T2-weighted sequence with the following parame-
ters: FOV = 150 mm, matrix = 201, slice thickness = 1.2 mm, TR = 3200.0 ms, TE = 77.0 ms,
flip angle = 140�, and slices = 25. To visualize the gadolinium-based contrast agent, a
T1-weighted sequence was performed with the following parameters: FOV = 70 mm,
matrix = 131, slice thickness = 0.4 mm, TR = 833.8 ms, TE = 6.34 ms, flip angle = 30�, and
slices = 30.

2.6. MRI Measurements
MR images were analyzed using Visage 7.1 (Version 7.1, Visage Imaging, Germany).

The T1-weighted images were compared before and after the administration of the contrast
agent (signal intensity = SI). For relative enhancement (RE) assessment, 2D regions of
interest (ROIs) were drawn around the respective areas in pre-contrast and post-contrast
MR images. The following formula was used to calculate the relative enhancement (RE):

RE =
(SIpostcontrast � SIprecontrast)

SIprecontrast

2.7. Competition Experiment
Three mice were used for the competition experiment (n = 3). After a tumor size of

1000 mm3 was reached, the animals were anesthetized and examined in an MRI (MAG-
NETOM Lumina, Siemens, Erlangen, Germany). On day one, imaging without a con-
trast agent was followed by an intravenous injection of the elastin-specific contrast agent
(0.2 mmol/kg). Additional MRI images were acquired as described above (Elastin imaging
using T1 weighted sequences) and the animals were then antagonized. On day two, following
a native MRI scan, a 5-fold higher dose of an elastin-specific europium-coupled contrast
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agent was administered through the tail vein. After this imaging, the Gd-containing elastin-
specific contrast agent was administered and imaged in an MRI. The data obtained were
compared for signal changes.

2.8. Histological Analysis
Frozen samples were cut into 9 µm-thick serial sections at �20 �C. The sections were

then fixed with cold acetone (�99%, Fisher Scientific, Hampton, VA, USA) for 6 min
at �20 �C. Miller’s Elastica–van Gieson-stain (EvG) was performed. EvG was used to
visualize elastic fibers. In addition, immunofluorescence staining was conducted using
an anti-elastin antibody (Rabbit anti-Mouse pAb Elastin, abcam®, Cambridge, United
Kingdom) that was diluted 1:100 with Dako REALTM Antibody Diluent (DAKO, Glostrup
Denmark), and incubated overnight at 4 �C. The sections were washed three times with PBS
(pH = 7.4), followed by a 1 h incubation with the secondary antibody (1:200, donkey anti-
rabbit IgG, Invitrogen, Carlsbad, CA, USA). The samples were washed again three times
with PBS and covered with DAPI staining solution (ROTI® Mount FluorCare DAPI, Carl
Roth, Karlsruhe, Germany). Last, the sections were analyzed using a Keyence microscope
(BZ-x800 Series, Osaka Prefecture, Japan).

2.9. Quantification of the EvG Stain and Immunofluorescence
The quantification of the staining area of the EvG and immunofluorescence sections

was measured with the image analysis software BZ-X800 Analyzer (Keyence, Osaka pre-
fecture, Japan). Three representative areas (two different peripheral areas and one central
region) were analyzed for each probe. The mean value was calculated in each case. First,
the entire region of interest was marked. Consecutively, all elastic fibers were identified
and the relation of the elastic fibers to the entire marked tumor region was calculated using
marked pixels.

2.10. Laser Ablation–Inductively Coupled Plasma–Mass Spectroscopy (LA-ICP-MS)
LA-ICP-MS was performed for localization of gadolinium (Gd) in the tumor tissue

(n = 3 per group). Tumor samples were cut into 9 µm cryosections at �20 �C and mounted
on SuperFrost Plus adhesion slides (Thermo Scientific, Waltham, MA, USA).

The analysis was performed by continuously scanning the thin sections and transport
of the aerosol via He-gas flow to the ICP-MS. Two different LA-ICP-MS systems were used,
which are described in the Supplementary Materials. Matrix matched gel standards were
used for drift control and calibration of 158Gd.

2.11. Inductively Coupled Plasma–Mass Spectrometry (ICP-MS)
ICP-MS was used to determine total gadolinium concentrations in tumor samples.

A piece of the tumor sample was prepared (n = 5 per group) and dried under a vacuum
atmosphere (vacuum pumping unit, vacuubrand®, Wertheim, Germany). One mL of 66%
nitric acid was added to each sample and incubated at room temperature until the tissue
was completely dissolved. Deionized water was then added to each sample. Digested
samples were diluted in 1% HNO3 sub-boiling (s.b.) and analyzed with an iCAP Qc ICP
quadrupole mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) in combina-
tion with the autosampler 4DXF-73A (ESI Elemental Service & Instruments GmbH, Mainz,
Germany) using a 200 µL PFA nebulizer and a cyclonic spray chamber (see Table 1 for more
details). Calibration was carried out using diluted Gadolinium ICP Standard CertiPUR
(Merck KGaA, Darmstadt, Germany) and using rhodium as the internal standard. More
details can be found in the Supplementary Materials.
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Table 1. Experimental parameters of iCAP Qc.

Parameter Value

Power (W) 1550
Nebulizer gas flow rate (L min�1) 1.08

Aux gas flow rate (L min�1) 0.65
Cool gas flow rate (L min�1) 14
Sample flow rate (mL min�1) 0.40

Dwell time [ms] 0.01
Isotopes monitored 103Rh, 155Gd, 156Gd, 157Gd, 158Gd, 160Gd,

2.12. Western Blot
For protein isolation from the tissue, a tumor piece was first homogenized in RIPA

buffer (n = 3 per group). For this purpose, 50 mM Tris·HCl (Carl Roth GmbH, Karlsruhe,
Germany), 150 mM NaCl (Carl Roth GmbH, Karlsruhe, Germany), 0.1% SDS (Carl Roth
GmbH, Karlsruhe, Germany), 1% sodium deoxycholate (Carl Roth GmbH, Karlsruhe,
Germany), and 1% Triton X-100 (Merck, Darmstadt, Germany) were mixed with protease
inhibitor I and protease inhibitor II (Thermo Fisher Scientific, Waltham, MA, USA). The
samples were shaken shortly and shaken for 2 h at 4 �C. This was followed by centrifugation
at 12,000 rpm for 20 min at 4 �C. Samples were filtered using tip filters (1 µm, 0.45 µm,
0.1 µm). The sample concentration was determined using the BC assay method (Pierce™
BCA Protein Assay Kit, Thermo Fisher Scientific, Waltham, MA, USA). The manufacturer’s
protocol was used. The same protein amount (50 µg) was loaded into the wells of the gel
under unreduced conditions (SERVAGel™ TG 8% PRiME™, Heidelberg, Germany) and
separated in the running gel system (SERVA™ Heidelberg, Germany) at a voltage of 70 V
for 60 min and then at 160 V for 60 min in running buffer (250 mM TrisBase (Carl Roth
GmbH, Karlsruhe, Germany), 1.92 M glycine (Carl Roth GmbH, Karlsruhe, Germany),
and 1% SDS (Carl Roth GmbH, Karlsruhe, Germany)). Subsequently, the proteins were
transferred from sodium dodecyl sulphate (SDS) gel to a nitrocellulose membrane (Trans-
Blot® Turbo™ RTA Mini PVDF Transfer Kit, Bio-Rad Laboratories, Hercules, CA, USA).
The blot system Trans-Blot® Turbo™ (Bio-Rad, Laboratories, Hercules, CA, USA) was
used. A 5% skim milk powder (Carl Roth GmbH, Karlsruhe, Germany) in 0.05% PBS-
Tween20 (PBS-T) (Carl Roth GmbH, Karlsruhe, Germany) solution was used to block
non-specific antibody binding. Incubation was performed at room temperature for 1 h.
Blots were incubated with a mouse monoclonal anti-elastin antibody (sc-166543, Santa
Cruz Biotechnology, Dallas, TX, USA) diluted 1:1000 in 5% milk solution overnight at
4 �C. After washing the membrane three times with PBS-T, the blots were incubated with
HRP-coupled mouse IgGlight chain binding protein diluted 1:5000 in PBS-T for 60 min.
The band was detected using the membrane substrate (SeramunBlau® prec, Seramun
Diagnostica GmbH, Heidesee, Germany). GAPDH (Invitrogen, Carlsbad, CA, USA) was
used for charge control.

The intensity of the bands was measured with the software Image J (ImageJ software,
Version 1.53).

2.13. Statistical Analysis
A mean bet was calculated and presented from all the data. The significance was

compared by unpaired and bilateral t-test analysis and significance was shown at p < 0.05.
Statistics were performed with Microsoft Excel.

3. Results
In this study, a gadolinium-based elastin-specific probe was used to examine ECM

changes during PCa development. Two different tumor sizes were examined. For a detailed
study setup please see Figure 1.

38



Publication I

Biology 2021, 10, 1217 7 of 14

Biology 2021, 10, x 7 of 16 
 

 

3. Results 
In this study, a gadolinium-based elastin-specific probe was used to examine ECM 

changes during PCa development. Two different tumor sizes were examined. For a 
detailed study setup please see Figure 1.  

 
Figure 1. Overview of the experiment. Human PC3 cells were cultured in a cell-culture flask. A total of 2 × 106 cells were 
subcutaneously injected into male SCID mice. Two different tumor sizes were achieved: 500 mm3 and 1000 mm3. After 
obtaining the desired tumor size, MR imaging was performed using an elastin-specific contrast agent. Tumor tissue was 
excised for ex vivo analysis. 

All animals developed a tumor. Tumor growth at the same injection time was 
heterogenic. The final size of the tumor was determined by daily tumor measurement. 
The final tumor size of 1000 mm3 was reached after 36 to 50 days. In the other group, which 
developed a tumor volume of 500 mm3, the target volume was reached after 30 and 64 
days. One animal had to be withdrawn from the trial early because of poor general 
condition (n = 1) (was replaced by another mouse). 

3.1. Molecular Characterization in T1-Weighted MR Imaging Using Gd-Based Elastin-Specific 
Contrast Agent 

The intravenous administration of the elastin-specific contrast agent resulted in a 
significant MR signal increase (p ≤ 0.001) in the area of the subcutaneous tumor in all 
examined mice. Figure 3B shows a pre-contrast image and Figure 3C shows an image with 
a contrast medium. A good difference between the two groups can already be seen here. 
Mice with a tumor size of 1000 mm3 showed a twofold increased SI, whereas mice with 
500 mm3 tumors showed an even higher (threefold) increased SI (Figure 2A). In the group 
with a tumor volume of 1000 mm3, the SI was 3037 after contrast agent administration 
(pre-contrast SI of 897) (p ≤ 0.001). In mice with a tumor size of 500 mm3, after application 
of the elastin-specific contrast agent an SI of 3819 was determined (pre-contrast SI of 907) 
(p ≤ 0.001). 

Figure 1. Overview of the experiment. Human PC3 cells were cultured in a cell-culture flask. A total of 2 ⇥ 106 cells were
subcutaneously injected into male SCID mice. Two different tumor sizes were achieved: 500 mm3 and 1000 mm3. After
obtaining the desired tumor size, MR imaging was performed using an elastin-specific contrast agent. Tumor tissue was
excised for ex vivo analysis.

All animals developed a tumor. Tumor growth at the same injection time was het-
erogenic. The final size of the tumor was determined by daily tumor measurement. The
final tumor size of 1000 mm3 was reached after 36 to 50 days. In the other group, which
developed a tumor volume of 500 mm3, the target volume was reached after 30 and 64 days.
One animal had to be withdrawn from the trial early because of poor general condition
(n = 1) (was replaced by another mouse).

3.1. Molecular Characterization in T1-Weighted MR Imaging Using Gd-Based Elastin-Specific
Contrast Agent

The intravenous administration of the elastin-specific contrast agent resulted in a
significant MR signal increase (p  0.001) in the area of the subcutaneous tumor in all
examined mice. Figure 3B shows a pre-contrast image and Figure 3C shows an image with
a contrast medium. A good difference between the two groups can already be seen here.
Mice with a tumor size of 1000 mm3 showed a twofold increased SI, whereas mice with
500 mm3 tumors showed an even higher (threefold) increased SI (Figure 2A). In the group
with a tumor volume of 1000 mm3, the SI was 3037 after contrast agent administration
(pre-contrast SI of 897) (p  0.001). In mice with a tumor size of 500 mm3, after application
of the elastin-specific contrast agent an SI of 3819 was determined (pre-contrast SI of 907)
(p  0.001).
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agent. (A) MRI measurements show the evaluation of MRI images (T1-weighted sequence) before and after contrast agent
administration in two tumor volumes (1000 mm3 and 500 mm3). A total of 14 animals were examined per group (n = 14).
After the elastin-specific contrast agent was administered, the value increased to an RE of 3037 (1000 mm3) and 3819
(500 mm3). The data are significant (p  0.001). (B) A competition experiment was performed to show the specific binding
of the elastin-specific contrast agent. Three mice were used for this experiment (n = 3). On day 1, images were taken before
and after the elastin-specific contrast agent administration. After 24 h (day 2) the animals were examined again. First a
pre-contrast image was taken, then an elastin-specific probe with europium was administered (instead of Gd3+, it was
conjugated with europium), and finally the elastin-specific contrast agent was applied. There was very little to no signal
change. The data therefore show specific binding of the elastin-specific contrast agent. (C) Elastin levels of n = 14 animals
per group were analyzed by histology. (D) The dot plot shows the correlation between MRI data (relative enhancement) and
histological data. The Elastica–van Gieson stain was used to stain elastin fibers in the tumor tissue. The R-squared value is
0.88. (E) Elastin levels of n = 4 animals per group were analyzed by immunofluorescence. The data are significant (p  0.05).
(F) shows the correlation between MRI data and Gd content in tumor tissue measured with ICP-MS. The R-squared value
is 0.78.

The specific binding of the contrast agent was demonstrated by a competition experi-
ment. The administration of a europium-coupled elastin-specific probe did not provide
sufficient signal enhancement, as shown in Figure 2B. These data from the previous day
(pre-scan and after elastin-specific contrast agent administration) were compared with the
second-day data (pre-scan, europium-coupled probe and elastin-specific contrast agent).
On the first day, an SI of around 3000 was obtained after elastin-specific contrast agent
administration. On the second day, the data from native imaging, the europium-coupled
probe, and the elastin-specific contrast agent showed no change in RE.

To show signal enhancement within a mouse, a fusion map was created (Figure 3D)
that shows the SI between the T2 and T1 sequences after contrast administration in the
same mouse.
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Figure 3. MRI and histological images of prostate cancer: histological characterization of elastin distribution in 1000 mm3

and 500 mm3 PC3 tumors. (A) shows a representative native MRI image of a T2-weighted sequence from the scapula area
of a mouse that developed a tumor with a volume of 1000 mm 3 (top) and 500 mm3 (bottom). The red arrows indicate the
tumor. (B) shows a representative native MRI image of a T1-weighted sequence from the scapula area of a SCID mouse
that developed a tumor volume of 1000 mm3 (top) and 500 mm3 (bottom). (C) shows an MRI image of a T1-weighted
sequence with administration of the elastin-specific contrast agent. A signal change in the tumor area after contrast agent
administration is visible. The red arrows mark the total area of the tumor. In this region there are clear white/bright areas
showing the signal change from the previous image (1000 mm3 (top) and 500 mm3 (bottom)). (D) shows a fusion of a native
T2-weighted sequence and a T1-weighted sequence after administration of the elastin-specific contrast agent in the same
mouse (1000 mm3 (top) and 500 mm3 (bottom)).
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3.2. Detection of Elastin Fibers in Tumor Tissue with Histological Analysis
In both tumor sizes, elastin fibers were observed in the entire tumor tissue, as shown

in Figure 4A. The elastin fibers were dyed blue to purple. To determine the elastin content
of a sample, three areas were selected for each slide and the percentage of elastin content
was determined with the analyzer. The evaluation showed a difference between the two
groups: Fewer elastic fibers were detected in 1000 mm3 tumors compared to 500 mm3. The
mean value of n = 14 was 3.3% (� = 0.9) in the 500 mm3 and 3.0 % (� = 0.9) in the 1000 mm3

tumors (n = 14) (Figure 2C). In addition, the detected values (percentage of elastin) of
each tumor strongly correlated with the RE data of in vivo MRI imaging (T1-weighted MR
sequences) (Figure 2D, y = 1.1304x � 0.7943, R = 0.877).

Biology 2021, 10, x 10 of 16 
 

 

The Western blot showed a lower elastin expression in the 1000 mm3 group compared 
to the 500 mm3 group (Figure 4D) (full WB can be found in Supplementary Materials). For 
each group, n = 3 animals were evaluated. The antibody used for the Western blot was 
different than that used for immunofluorescence, as the respective antibodies had to be 
applied specifically to one method. 

 
Figure 4. Histological characterization of elastin distribution in 1000 mm3 and 500 mm3 PC3 tumors. (A) shows Elastica–
van Gieson staining in frozen sections with a slice thickness of 10 um from 1000 mm3 (top) and 500 mm3 (bottom) PC3 
tumors. Elastic fibers are blue-violet. Elastin fibers were detected especially in the marginal area. In the lower right corner 
is an enlarged section of the image of the peripheral area of the tumor. Scale bar = 500 µm. (B) A parallel section of the 
same tumor (thickness 10 µm) as in A was prepared with an anti-elastin antibody (specific for immunofluorescence). The 
elastic fibers are visible in red. Staining of the cell nuclei was achieved using Dapi (blue). Scale bar = 500 µm; 1000 mm3 
(top) and 500 mm3 (bottom) PC3 tumors. (C) The element gadolinium was detected by LA-ICP-MS. The scale shows the 
intensity of the detected gadolinium (cps) (red—high to blue—low). Scale bar = 2 mm; 1000 mm3 (top) and 500 mm3 
(bottom) PC3 tumors. (D) For each group, 3 tumors (n = 3 per group) were used for Western blot analysis to detect the 
expression of elastin E-11. Here, a different antibody was used than for immunofluorescence, as the antibody is specific 
for Western blot analyses. GAPDH was included to control protein levels. 

3.3. Elemental Analysis of Tumor Tissue with Specific Regard to Gadolinium 

Figure 4. Histological characterization of elastin distribution in 1000 mm3 and 500 mm3 PC3 tumors.
(A) shows Elastica–van Gieson staining in frozen sections with a slice thickness of 10 um from
1000 mm3 (top) and 500 mm3 (bottom) PC3 tumors. Elastic fibers are blue-violet. Elastin fibers
were detected especially in the marginal area. In the lower right corner is an enlarged section of
the image of the peripheral area of the tumor. Scale bar = 500 µm. (B) A parallel section of the
same tumor (thickness 10 µm) as in A was prepared with an anti-elastin antibody (specific for
immunofluorescence). The elastic fibers are visible in red. Staining of the cell nuclei was achieved
using Dapi (blue). Scale bar = 500 µm; 1000 mm3 (top) and 500 mm3 (bottom) PC3 tumors. (C) The
element gadolinium was detected by LA-ICP-MS. The scale shows the intensity of the detected
gadolinium (cps) (red—high to blue—low). Scale bar = 2 mm; 1000 mm3 (top) and 500 mm3

(bottom) PC3 tumors. (D) For each group, 3 tumors (n = 3 per group) were used for Western
blot analysis to detect the expression of elastin E-11. Here, a different antibody was used than for
immunofluorescence, as the antibody is specific for Western blot analyses. GAPDH was included to
control protein levels.
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The in vivo MRI images showed an irregular distribution of the elastin fibers. This
observation was also confirmed in the ex vivo histological analysis (Figure 4A).

To further evaluate the distribution of elastic fibers in the PC3 tumor, an immunofluo-
rescence staining with an anti-elastin antibody was performed (Figure 4B). This showed an
irregular distribution of the elastin fibers in the tissue. The mean value of n = 4 was 7.5%
(� = 1.8) in 500 mm3 and 3.7% (� = 0.9) in 1000 mm3 tumors (p < 0.05).

The Western blot showed a lower elastin expression in the 1000 mm3 group compared
to the 500 mm3 group (Figure 4D) (full WB can be found in Supplementary Materials). For
each group, n = 3 animals were evaluated. The antibody used for the Western blot was
different than that used for immunofluorescence, as the respective antibodies had to be
applied specifically to one method.

3.3. Elemental Analysis of Tumor Tissue with Specific Regard to Gadolinium
LA-ICP-MS measurements were used to localize gadolinium in PC3 tumor tissue.

Three tumor sections were analyzed for each group (n = 3). Strong colocalization of
gadolinium with elastic fibers was shown (Figure 4C). Here it can be seen that the peripheral
area of the tumor, as well as the intra-tumoral space, contained gadolinium.

The gadolinium concentration in the tumor was quantified by ICP-MS after dissolution
of the samples. The concentration of gadolinium with elastic fibers was correlated with
in vivo RE data and showed a strong correlation (y = 1.7606x + 0.6126; R2 = 0.78; p  0.001)
(Figure 2E). Measurements by ICP-MS were performed in n = 5 for each group.

4. Discussion
This study shows the feasibility of an elastin-specific MRI molecular probe for the

characterization of a PC3 tumor in a SCID mouse model. The results indicate that elastic
fibers have an irregular distribution across the entire PC3 tumor tissue. In all examined
tumors, a high number of elastic fibers was measured, especially in the marginal area,
regardless of the tumor size. Thus, a better distinction between healthy tissue and tumorous
tissue was feasible. In addition, smaller tumors were found to express more elastin than
larger tumors.

ECM proteins play an essential role in tumor development, cell behavior, and microen-
vironment. The ECM is responsible for the architecture of the tumor [33] and can change
continuously [34]. The structure of the ECM in tumor diseases is essential for understand-
ing tumor development and therefore for developing diagnostic and therapeutic options.
Not only does the elasticity of a tumor depend on the ECM but also the stiffness, and it is
responsible for the homeostasis of the tissue [33].

In many types of cancer, such as liver cell carcinoma, the elastin content is a major
factor. The elasticity of a tumor depends on the ECM and the stiffness and is responsible
for tissue homeostasis [35]. In colorectal cancer (CRC), elastin gene expression was recently
examined and it was found that elastin decisively regulates tumor development and the
microenvironment [36]. In this study, elastin gene expression was compared in CRC tumors
from patients with adjacent non-tumorous colon tissue and healthy tissue (control). Elastin
gene expression was found to be increased in patients with CRC tumors compared to the
control group and adjacent non-tumor colon tissue. Metallopeptidase (MMP) 9 and 12 and
TIMP3 were increased in the colon cancer cells. Another example is breast cancer, where
elastin promotes the invasiveness of breast cancer cells [37].

The interaction between the tumor cells and the matrix protein elastin is mediated by
elastin-binding proteins (EBPs), S-Gal, and Galectin-3 through the expression and release
of elastases [23]. Comparing our two groups, 500 mm3 and 1000 mm3, showed that the
group with smaller tumor volumes had a higher SI using the elastin-specific contrast agents.
It can be concluded that smaller tumors can be detected particularly well due to a clear
distinction from surrounding tissue. In contrast, tumors with a larger volume have fewer
elastic fibers, which could be a clear signal of metastasis [23].
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The expression level of elastin was not reflected in the Western blot (Figure 4D), as
expected from the MRI images. In the Western blot we detected weak bands expressing
elastin. The weak bands can be explained by the fact that elastin fibers are insoluble. Elastin
is a cross-linked polymer whose cross-linking is difficult to break. Before cross-linking, the
soluble precursor tropoelastin forms self-associated aggregates (coacervation) after expres-
sion [15]. Only these non-cross-linked aggregates can be broken down back into the small
soluble tropoelastin proteins that can be detected in the Western blot. Thus, the Western
blot showed the expression of tropoelastin and the coacervated elastin. The band intensity
showed a higher expression of new elastin in the 500 mm3 compared to the 1000 mm3

tumors. This correlates to the higher amount of elastin in the immunofluorescence staining
(Figure 2E) and the higher MRI signal (Figure 2A) in the 500 mm3 tumors. Since both MRIs
showed a high increase in contrast in the T1 measurement after applying the elastin-specific
probe, a high elastin density, especially in the periphery of the probe, could be estimated.
The immunofluorescence staining against elastin as well as the EvG staining (Figure 4A,B)
supports this thesis.

Through cell–matrix interaction, the extracellular matrix is constantly remodeled. The
remodeling of the ECM creates a new microenvironment that promotes tumorigenesis
and metastasis [38]. Elastin-derived matrikines promote tumor progression (for example,
Val-Gly-Val-Ala-Pro-Gly or Ala-Gly-Val-Pro-Gly-Leu-Gly-Val-Gly) [38]. The degradation
of elastin produces various proteolytic enzymes, elastases, and MMPs. Matrikins are able
to activate the expression of MMPs, which positively promotes the tumor [38]. Elastin can
help to detect a tumor or metastases at an early stage by morphologically changing the
tumor and initiate appropriate therapy [23]. In addition, a therapy that specifically targets
elastin peptides would be a possibility to reduce tumor growth and invasion.

Molecular imaging provides precise information about the tumor but also about the
structural characteristics of the tumor. An important step is the use of molecular imaging
techniques to make predictions about the molecular characteristics of the tumor to prevent
invasive surgery. Currently, molecular imaging methods are based on cell metabolism,
hormone receptors, and membrane proteins [39]. The cell metabolism of tumor cells differs
from surrounding healthy cells, which can be exploited in molecular imaging. Current
research is being conducted on radiolabeled analogs of the metabolic substrates choline,
acetate, glucose, amino acids, and nucleosides [39]. These are not specific to the detection
of malignant diseases. Specific imaging for PCa can also be achieved using androgen
receptors and membrane proteins. For the development of such biomarkers, it is important
that they be of low molecular weight and can therefore be released faster in the blood.
Pu et al. (2016) showed the targeting of prostate-specific membrane antigen (PSMA)
with a protein MRI contrast agent (ProCA) [40]. The 100 kDa glutamate carboxypeptide
PSMA is involved in signal transduction, receptor function, nutrient uptake, and cell
migration. It is overexpressed in epithelial cells of prostate cancer. PSMA can be detected
in primary, secondary, and metastatic prostate cancer, which makes it a good marker [41].
Pu et al. demonstrated that the targeted MRI contrast agent has good Gd3+ binding affinity,
metal selectivity, and relaxivity, and strong PSMA targeting ability [40]. The contrast
agent (ProCA32.PSMA) showed a signal change in T1-weighted images in tumor-bearing
mice (xenograft model), but also in the T2-weighted images [40]. The experiments were
performed on a 7 Tesla MRI. The results are promising and can be implemented for early
detection, but still need to be tested in an orthotopic model first.

Our results show the detection of tumors with components of the ECM in a clinical
MRI, which can generate statements about tumor volume and enable predictions about
the further course of a tumor. With the help of molecular imaging methods, it is possible
to make individual disease predictions without taking tissue samples from the organism.
Molecular imaging would be a good addition to existing commercial diagnostic possibilities.
The main advantage of molecular MRI is to generate a non-invasive assessment at cellular
level. An elastin-specific contrast agent has not only shown good results in cardiovascular
diseases [42–44] but could also be used for the detection of malignant liver tumors. In a
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recent study, an elastin-specific contrast agent was used to visualize VX2-hepatic tumors
in a rabbit model, and the use of the molecular agent to differentiate specific tumor and
peritumoral regions based on its ECM composition was confirmed [31]. In addition, Sun
et al. were able to demonstrate the usefulness of the probe even in kidney fibrosis [45].

A combination of available diagnostic techniques and molecular imaging would allow
specific statements about the stage of disease in a non-invasive manner. If therapy is
initiated at an early stage, the chances of survival for the affected patient will increase.

Limitations
This study was conducted in a xenograft mouse model. This allows the tumor to grow

in the organism outside the organ. An orthotopic mouse model would allow the tumor to
grow in its natural microenvironment.

5. Conclusions
Our study demonstrates that molecular imaging using an elastin-specific gadolinium-

containing contrast agent is feasible in prostate cancer. The study also confirms an apparent
loss of elastin-specific ECM components in larger tumors. Such an imaging approach could
be useful, for example, in predicting the metastatic potential of the tumor.
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2.10. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) 

System 1 

A LSX 213 G2+ laser system (CETAC Technologies, Omaha, NE, USA) with a two vol-
ume HelEx II cell connected via Tygon tubing to an ICPMS-2030 (Shimadzu, Kyoto, Ja-
pan) were used for the measurement of the 1000 mm3 PC3-tumor sample. The samples 
were scanned at points with a size of 30 µm at a speed of 90 µm/s and 800 mL/min He as 
the transport gas. Standards were used for the quantification of 158Gd, which are based 
on a gelatine standard (10% w/w) and are set at different concentrations of Gd from 1 to 
500 µg/g. Three more isotopes, 31P, 57Fe and 64Zn were measured in addition to the Gd in 
collision gas mode with He as the collision gas and an integration time of 100 ms. The 
limit of detection and the limit of quantification calculated with the 3σ- and 10σ-criteria, 
were 33 ng/g and 110 ng/g Gd.  

System 2 

LA-ICP-MS analysis of the 500 mm2 PC3-tumor sample was performed on a commercial 
LA system (NWR-213, ESI, Bozeman, MT, USA) equipped with a two-volume sample 
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chamber coupled to a sector field ICP-MS (Element XR, Thermo Fisher Scientific, Bre-
men, Germany). 

Helium was used as carrier gas with 1000 mL/min transporting the sample aerosol to the 
sector field ICP-MS, which was using the following parameters: sample time 0.002 s-1, samples 
per peak 100, segment duration per isotope 0.01 s-1, mass window per isotope 5%, search win-
dow 0%, integration window 5%. The samples were scanned with a spot size of 80 µm, 
50 µm line spacing and a scan speed of 100 µm/s. The isotopes 31P, 34S, 57Fe, 65Cu, 66Zn, 
153Eu, 160Gd were measured in addition to 158Gd. 

Matrix-matched agarose gel standards cast on glass slides were used for drift control 
and calibration.[1] These standards contain Gd concentrations between 26.6 pg mm-2 and 
600.1 pg mm-2. Intensities of six line scans per standard were averaged for calibration.  

 

Figure 5: Western Blot analyse 

 

Figure 5.1: Western Blot analyse for Elastin-E11. For each group, 3 tumors (n = 3 per group) were used for western blot 
analysis to detect the expression of elastin E-11. Intensity signal: Tumor 1000: left line 10.252, middle line 10.212 and right line 
10.259; Tumor 500: left line 29.392, middle line 22.351 and 17.535. 
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Figure 5.2: Western Blot analyse for GAPDH. For each group, 3 tumors (n = 3 per group) were used for western blot analysis 
to control protein levels. Intensity signal: Tumor 1000: left line 18.874, middle line 17.081 and right line 17.516; Tumor 500: left 
line 15.588, middle line 15.394 and 15.547. 
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Simple Summary: Magnetic resonance imaging (MRI) is a non-invasive method and can be used to
diagnose prostate cancer (PCa). Due to their high biological safety, iron oxide nanoparticles are becoming
increasingly important as contrast agents for MRI. Macrophages are able to take up these iron particles,
which leads to a loss of signal in T2- and T2*-weighted images during MRI. Macrophages play an
important role in the development and progression of prostate cancer. In this article, ferumoxytol
is visualized at two different PCa volumes on MRI in a xenograft mouse model. Ferumoxytol is a
superparamagnetic iron oxide probe and was used here as a contrast agent. The in vivo data were
correlated with histological data. When using ferumoxytol, we found that small tumors took up more
ferumoxytol than larger tumor volumes. These results were obtained in vivo as well as ex vivo.

Abstract: Prostate cancer (PCa) is one of the most common cancers in men. For detection and
diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce
the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we
investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different
tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and
they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted
sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for
each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss
for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological
examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors
had 1.5% iron content (n = 14; � = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14;
� = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of
elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the
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MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low
toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa.

Keywords: molecular imaging; prostate cancer; iron oxide nanoparticle

1. Introduction
Prostate cancer (PCa) is a malignant and heterogeneous tumor disease, being one of the

most common fatal cancers in men [1]. Biomarker testing is often used as a screening test,
whereby the prostate-specific antigen (PSA) value is determined from a blood sample. In
addition, determination of the prostate health index (PHI) and 4K score can help distinguish
between indolent and progressive prostate tumors [2]. Magnetic resonance examinations
provide a non-invasive and non-ionizing method to diagnose PCa [3].

Early and reliable detection of tumors based on non-invasive methods is one of the
main goals of current tumor research. Multifunctional magnetic nanoparticles can be used
in different therapies but also for imaging methods, including magnetic resonance imaging
(MRI) [4]. MRI has a high-spatial resolution, is noninvasive, and can be performed in vivo.
Iron-containing contrast agents, such as iron oxide nanoparticles, show high biosafety and
can be visualized in T2 and T2*-weighted images [4].

After administration of superparamagnetic iron oxide nanoparticles (SPIONs), SPIONs
accumulate in the tissue, decreasing the transverse relaxation time of T2, which leads to
increased magnetic susceptibility and signal loss in T2 and T2*-weighted images [5–7].

Compared to other SPIONs, Feraheme® (ferumoxytol) shows high stability due to
reduced carboxymethyl dextran, uniform particle size, and an improved safety profile. Fer-
umoxytol exhibits a core size of 3 nm to 12 nm [4,8] and a particle size of 17–30 nm. When
these particles enter the blood circulation, they will be internalized by activated macrophages.
Macrophages have one of the most important functions of the innate immune response and
can be involved in the development of tumors [9]. Due to the microenvironment, macrophages
can be pro-inflammatory (M1) or anti-inflammatory (M2). The distinction between M1 and
M2 can always be clearly differentiated by the variability in the molecular expression profile.
In tumors, tumor-associated macrophages (TAMs) also play a key role. Circulating monocytes
mature into macrophages. When these migrate in the tumor microenvironment they can be
recruited to TAMs [10]. During tumor progression, they influence various processes, such
as angiogenesis, tumor cell proliferation, and metastasis [11]. Several research groups have
shown a correlation between the uptake of ferumoxytol by TAMs, therapeutic response, and
cancer stage [12,13]. The uptake of ferumoxytol by TAMs could be an important step for
molecular imaging. The phagocytic cells store the ferumoxytol nanoparticles in secondary
lysosomes [14,15]. The carboxymethyl dextran coating is cleaved by dextranase and can be
completely excreted by the kidneys. The iron nucleus is integrated into the body’s iron store
and is used for cell metabolism and hemoglobin synthesis [15].

Biocompatible magnetic iron oxide nanoparticles (MNPs) have the potential to im-
prove tumor evaluation. Tse et al. developed an MNP conjugated with J591 [16]. J591 is an
antibody against an extracellular epitope of prostate-specific membrane antibody (PSMA).
It was shown that tumors in vivo enhanced magnetic resonance contrast of tumors with
PSMA targeting MNPs. Conjugated superparamagnetic iron oxide particles to target PSMA
showed promising results in in vitro tests [17]. Zhu et al. synthesized a PSMA-targeting
polypeptide CQKHHNYLC conjugated with SPIONs [18].

In vivo studies enhanced the MRI signal in PSMA-expressing tumors. Histological ex-
amination showed heterogeneous deposition of SPIONs in prostate tumor tissue. Modified
SPIONs indicate tumor-specific targeting, but not all tumors express these antibodies or
proteins, e.g., PSMA [19].
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This study investigated the applicability of ferumoxytol for MRI imaging in a xenograft
prostate cancer mouse model. Two tumor sizes, 500 mm3 and 1000 mm3, were investigated. The
imaging results were analyzed and compared with histological and biochemical measurements.

2. Materials and Methods
2.1. Cell Culture

PC3 cells were purchased from ATCC® CRL-1435™ (Manassas, VA, USA) and grown in
Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco™, Thermo Fischer Scientific,
Waltham, MA, USA) and supplemented with 10% fetal calf serum (FCS) (Gibco™, Thermo
Fischer Scientific, Waltham, MA, USA). The genetic information of the cell line are available
on the website from ATCC®. Cells were cultured in 150 cm3 tissue culture flasks until they
were about 80% confluent. Then, the cells were washed with phosphate-buffered saline (PBS)
(Gibco™, Thermo Fischer Scientific, Waltham, MA, USA), trypsinized and resuspended in 1
mL RPMI medium. Cells were grown at 37 �C and 5% CO2. To count the cells, 0.4% trypan
blue solution (Gibco™, Thermo Fischer Scientific, Waltham, MA, USA) was used.

2.2. Xenograft Mouse Model and In Vivo Study Design
Experiments were performed in accordance with the local guidelines and regulations

for the implementation of the Animal Welfare Act and the regulations of the Federation of
Laboratory Animal Science Associations (FELASA). Animal experiments were approved by
the supervisory authority of the Berlin State Office for Health and Social Affairs (LAGeSo)
(G0094/19). Eight-week-old male SCID mice (CB17/Icr-Prkdcscid/IcrIcoCrl) were obtained
from Charles River Laboratories (Sulzfeld, Germany) (n = 28). The animals were randomly
divided into two separate groups (n = 14).

For anesthesia, medetomidine (500 µg/kg), midazolam (5 mg/kg), and fentanyl
(50 µg/kg) were injected intraperitoneally into the mice for anesthesia. A cell suspen-
sion containing 2 ⇥ 106 PC3 cells was injected subcutaneously into the right scapula
area. Anesthesia was subsequently antagonized with atipamezole (750 µg/kg), flumazenil
(0.5 mg/kg), and naloxone (1200 µg/kg).

In vivo MR imaging was performed when the tumor size reached 500 mm3 (n = 14) or
1000 mm3 (n = 14), respectively. Tumor size was measured with a caliper. The in vivo imaging
was obtained on two consecutive days. On day one, first a native MRI acquisition took place
followed by the administration of the contrast agent, ferumoxytol, via the tail vein. Subsequently,
the anesthesia was antagonized. A second MRI was performed for the detection and imaging of
the accumulation of ferumoxytol 24 h later on day two. After MRI, mice were euthanized, and
tumor tissues were collected for ex vivo studies. Figure 1 demonstrates the study design.
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Figure 1. Study design. After reaching the desired tumor size, a pre-contrast image of the tumor 
was taken. MRI examination was followed by iron-oxide particle injection (ferumoxytol) into the 
tail vein of the mouse. After 24 h, a post-contrast MRI scan was taken. After in vivo imaging, the 
tumor was removed and examined. 

2.3. In Vivo MRI 
In vivo MR imaging was performed using a 3.0 Tesla MR scanner (MAGNETOM 

Lumina, Siemens, Erlangen, Germany) and a 4-channel receive coil array for mouse body 
applications (Mouse scapula Array, P-H04LE-030, version1, Rapid Biomedical GmbH, 
Rimpar, Germany). Following intraperitoneal anesthesia, we positioned the mice on the 
MRI patient table in the prone position. For administration of the contrast agent during 
MR imaging, venous access was established via the tail vein. Body temperature (37 °C) 
was monitored using an MR-compatible heating system (model 1025, SA Instruments Inc., 
Stony Brook, NY, USA) to prevent rapid cooling. 

2.4. Ferumoxytol as a Contrast Agent for MRI 
Feraheme (Ferumoxytol) (AMAG Pharmaceuticals, Waltham, MA, USA) is a super-

paramagnetic iron-oxide particle preparation used in adult patients for the treatment of 
iron deficiency anemia. The preparation can also be used off-label as a contrast agent in 
MRI examinations [20]. Ferumoxytol was commercially purchased and used for this 
study. In this study, it was used as a contrast agent for MRI, leading to a large decrease in 
T1, T2, and T2* relaxation times [15,21]. Feraheme has a prolonged blood pool phase with 
a plasma half-life of 14–21 h. The iron particles are taken up intracellularly with a time 
delay, which allows MR imaging after 24 h. Mice were administered a clinical dose of 4 
mg/kg ferumoxytol via the tail vein. 

2.5. Ferumoxytol Imaging Using T2* Weighted Sequences 
MR imaging was performed with a 3.0 Tesla MR scanner. Following anesthesia, the 
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Figure 1. Study design. After reaching the desired tumor size, a pre-contrast image of the tumor was
taken. MRI examination was followed by iron-oxide particle injection (ferumoxytol) into the tail vein
of the mouse. After 24 h, a post-contrast MRI scan was taken. After in vivo imaging, the tumor was
removed and examined.
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2.3. In Vivo MRI
In vivo MR imaging was performed using a 3.0 Tesla MR scanner (MAGNETOM

Lumina, Siemens, Erlangen, Germany) and a 4-channel receive coil array for mouse body
applications (Mouse scapula Array, P-H04LE-030, version1, Rapid Biomedical GmbH,
Rimpar, Germany). Following intraperitoneal anesthesia, we positioned the mice on the
MRI patient table in the prone position. For administration of the contrast agent during
MR imaging, venous access was established via the tail vein. Body temperature (37 �C)
was monitored using an MR-compatible heating system (model 1025, SA Instruments Inc.,
Stony Brook, NY, USA) to prevent rapid cooling.

2.4. Ferumoxytol as a Contrast Agent for MRI
Feraheme® (Ferumoxytol) (AMAG Pharmaceuticals, Waltham, MA, USA) is a super-

paramagnetic iron-oxide particle preparation used in adult patients for the treatment of
iron deficiency anemia. The preparation can also be used off-label as a contrast agent in
MRI examinations [20]. Ferumoxytol was commercially purchased and used for this study.
In this study, it was used as a contrast agent for MRI, leading to a large decrease in T1,
T2, and T2* relaxation times [15,21]. Feraheme® has a prolonged blood pool phase with a
plasma half-life of 14–21 h. The iron particles are taken up intracellularly with a time delay,
which allows MR imaging after 24 h. Mice were administered a clinical dose of 4 mg/kg
ferumoxytol via the tail vein.

2.5. Ferumoxytol Imaging Using T2* Weighted Sequences
MR imaging was performed with a 3.0 Tesla MR scanner. Following anesthesia, the

mice were positioned in the prone position and examined using a 4-channel receive-coil
array. For the localization of the tumor in low resolution, a three-dimensional localizer
scan was used, which was performed in sagittal, coronal, and transverse orientation
with the following parameters: field-of-view (FOV) = 280 ⇥ 280 mm, matrix = 320, slice
thickness = 1.5 mm, repetition time (TR) = 11.0 ms, echo time (TE) = 5.39 ms, flip angle = 20�,
and number of slices = 10. T1-weighted anatomical images were acquired using the
following parameters: FOV = 70 mm, matrix = 131, slice thickness = 0.4 mm, TR = 833.8 ms,
TE = 6.34 ms, flip angle = 30�, and number of slices = 30. To visualize the iron-oxide-based
contrast agent, a T2*-weighted sequence with the following parameters: FOV = 150 mm,
matrix = 201, slice thickness = 1.2 mm, TR = 3200.0 ms, TE = 77.0 ms, flip angle = 140�, and
number of slices = 25.

Native MRI acquisition took place on day one and contrast-enhanced MRI on day two.
After the first MRI pre-contrast session, the contrast agent was administered via the tail vein.
Subsequently, the anesthesia was antagonized, and a second MRI was performed 24 h later.

2.6. MRI Measurements
MR images were evaluated using Visage 7.1 (Version7.1, Visage Imaging, Berlin,

Germany). The T2*-weighted images were analyzed before and 24 h after the administration
of the contrast agent (signal loss = Sl). For relative reduction (RR) assessment, 2D regions of
interests (ROIs) were drawn around the respective areas in pre-contrast and post-contrast
MR images. The following formula was used to calculate the relative reduction (RR):

RR =
(Slprecontrast � Sl postcontrast)

Sl precontrast

2.7. Histological Analysis
Frozen tumor samples were cut in 9 µm thick serial sections at �20 �C. Sections were

then fixed with cold acetone (�99%, Fisher scientific, Hampton, VA, USA) for 6 min at
�20 �C. To visualize the iron ions, a Perls’ Prussian blue stain was performed. Immunoflu-
orescence staining was used to assess the localization and density of macrophages. The
tumor tissue was cut in 9 µm thick serial sections at �20 �C on SuperFrost Plus adhesion
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slides (Thermo Scientific, Waltham, MA, USA). The sections were incubated overnight at
4 �C with a monoclonal CD68 antibody (1:100) (rat anti-mouse CD68, clone FA-11, Bio-Rad,
Hercules, CA, USA) diluted in Dako REALTM Antibody Diluent (Dako, Denmark). Follow-
ing, slides were washed three times with PBS (pH = 7.4). For macrophage visualization,
slides were incubated for one hour with AlexaFluor 568 polyclonal secondary antibody
diluted 1:200 (goat versus rat IgG, Thermo Fisher Scientific, Massachusetts, USA), then
counterstained, and mounted with Roti®-Mount FlourCare (Carl Roth, Karlsruhe, Ger-
many). In conclusion, the sections were analyzed using a Keyence microscope (BZ-X800
Series, Osaka Prefecture, Japan).

2.8. Quantification of the Iron and Macrophages in Immunofluorescence
Quantification of staining of iron and immunofluorescence sections was measured

using BZ-X800 Analyzer image analysis software (Keyence, Osaka Prefecture, Japan). Three
representative areas (two peripheral areas and one central area) were analyzed for each
sample. The mean value was calculated in each case. First, the entire region of interest was
marked. Then, all stained iron particles or macrophages were identified, and this ratio to
the total labeled tumor region was calculated using the labeled pixels.

2.9. Laser Ablation-Inductively Coupled Plasma-Mass Spectroscopy (LA-ICP-MS)
Localization of iron in tumor tissue was performed by LA-ICP-MS (n=3 per group).

The tumor samples were cut into 9 µm cryosections at �20 �C and mounted on SuperFrost
Plus slides (Thermo Scientific, Waltham, MA, USA). LA-ICP-MS analysis was performed
with a LSX 213 G2+ laser system (CETAC Technologies, Omaha, NE, USA) equipped with a
two volume HelEx II cell connected via Tygon tubing to an ICPMS-2030 (Shimadzu, Kyoto,
Japan). Line-by-line scanning of the samples was used with a spot size of 30 µm, a scan
speed of 90 µm/s, and 800 mL/min. He was used as the transport gas. The analysis was
performed in collision gas mode with He as the collision gas and 50 ms integration time for
the 57Fe isotope. For the quantification of Fe, matrix-matched standards based on gelatin
were used. Nine gelatin standards (10% w/w), including a blank, were spiked with different
Fe concentrations, ranging from 7 to 1300 µg/g. Averaged intensities of the scanned lines
of the standards showed good linear correlation with the regression coefficient, R2 = 0.996,
within this concentration range. Limit of detection (LOD) and limit of quantification (LOQ),
calculated with the 3�- and 10�-criteria, were 3.4 µg/g and 11.4 µg/g Fe, respectively. The
quantification and visualization were performed with an in-house developed software
(written by Robin Schmid, University of Münster, Münster, Germany).

2.10. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)
ICP-MS was used to determine the total iron (Fe) concentration in the tumor samples.

A section of tumor probe was prepared (n = 6 per group) and dehydrated under a vacuum
atmosphere (vacuum-pumping device, vacuubrand, Wertheim, Germany). To each of the
samples, 1 mL of 66% nitric acid was added, followed by incubation at room temperature
until the tissue was completely dissolved. Afterwards, deionized water was then added to
each sample.

The digested samples were diluted in nitric acid (sub-boiled) 1% and analyzed with an
iCAP Qc ICP quadrupole mass spectrometer (Thermo Fisher Scientific, Bremen, Germany)
in combination with the autosampler, SC4-DX (ESI Elemental Service & Instruments GmbH,
Mainz, Germany), using a 200 µL PFA nebulizer and a cyclone spray chamber. Measure-
ments of the isotopes 56Fe, 57Fe were performed in KED mode using a nebulizer gas flow
rate of 1.08 L/min and a helium flow rate of 5 mL/min as the collision gas. Calibration was
carried out in the concentration range of 0.1–50 ng/L with the diluted iron ICP standard
CertiPUR (Merck KGaA, Darmstadt, Germany); rhodium was used as the internal standard.
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2.11. Western Blot
For the western blot, tumor pieces (n = 3 per group) were first homogenized in RIPA

buffer (50 mM Tris·HCl (Carl Roth GmbH, Karlsruhe, Germany), 150 mM NaCl (Carl
Roth GmbH, Karlsruhe, Germany), 0.1% SDS (Carl Roth GmbH, Karlsruhe, Germany), 1%
sodium deoxycholate (Carl Roth GmbH, Karlsruhe, Germany), 1% Triton X-100 (Merck,
Darmstadt, Germany), and Protease Inhibitor I and Protease Inhibitor II (Thermo Fisher
Scientific, Waltham, MA, USA). The samples were shaken for 2 h at 4 �C followed by
centrifugation at 12.000 RPM for 20 min at 4 �C. The samples were filtered using syringe
filters (1 µm, 0.45 µm and 0.1 µm). The concentration was determined using the BC assay
protocol (Pierce™ BCA Protein Assay Kit, Thermo Fisher Scientific, Waltham, MA, USA).
The same protein amount (50 µg) was loaded into the wells of the gel under unreduced
conditions (SERVAGel™ TG 8% PRiME™, Heidelberg, Germany) and separated in the
running gel system (SERVA™ Heidelberg, Germany) at a voltage of 70 V for 60 min
followed by 60 min at 160 V in running buffer (250 mM TrisBase (Carl Roth GmbH,
Karlsruhe, Germany), 1.92 M glycine (Carl Roth GmbH, Karlsruhe, Germany), and 1%
SDS (Carl Roth GmbH, Karlsruhe, Germany)). Subsequently, the proteins were transferred
from sodium dodecyl sulphate (SDS) gel to a nitrocellulose membrane (Trans-Blot® Turbo™
RTA Mini PVDF Transfer Kit, Bio-Rad Laboratories, Hercules, CA, USA). The blot system,
Trans-Blot® Turbo™ (Bio-Rad, Laboratories, Hercules, CA, USA), was used. A 5% skimmed
milk powder (Carl Roth GmbH, Karlsruhe, Germany) in 0.05% PBS-Tween20 (PBS-T)
(Carl Roth GmbH, Karlsruhe, Germany) solution was used to block non-specific antibody
binding. Incubation was performed at room temperature for 1 h. Blots were incubated
with an antibody marker for macrophages, CD68 (Bio-rad MCA1957, Hercules, CA, USA),
diluted 1:500 in 5% milk solution overnight at 4 �C. After washing the membrane three
times with PBS-T, the blots were incubated with HRP-coupled Mouse IgGlight chain
binding protein diluted 1:5000 in PBS-T for 1 h. The band was detected using the membrane
substrate (SeramunBlau® prec, Seramun Diagnostica GmbH, Heidesee, Germany). GAPDH
(Invitrogen, Carlsbad, CA, USA) was used for charge control.

The intensity of the bands was measured with the software Image J (version: 1.53k).

2.12. Statistical Analysis
From all data, a mean inset was calculated and presented. The significance was

compared by unpaired and bilateral t-test analysis and was indicated at p < 0.05. Statistics
were performed using Microsoft Excel (version: 16.57; Microsoft, Washington, DC, USA).

3. Results
In this study, an iron-containing contrast agent was applied to mice with PCa to

visualize macrophages in vivo on MRI. Two tumor sizes, 500 mm3 and 1000 mm3, were
studied and compared. Figure 1 shows the study design.

All animals developed a tumor (n = 28). Although the amounts of cells and the time
frame of the study were standardized, the animals developed the target tumor volume
at different time points. To determine tumor size, the tumors were measured daily with
a caliper or palpatory and documented. The final tumor size of 500 mm3 was reached
between 30–58 days after surgery. The tumor size of 1000 mm3 was reached after 44–61 days
after cell implantation.

3.1. Characterization in T2*-Weigthed MR Imaging Using Superparamagnetic Iron-Oxide Particle
After a pre-scanning of the mouse in MRI, intravenous administration of 4 mg/kg

ferumoxytol was performed via the tail vein. After 24 h, a second MRI examination was per-
formed. The comparison between the pre-contrast and post-contrast images (Figure 2A,B)
showed a signal loss after administration of ferumoxytol in the tumor tissue. Mice with a
500 mm3 tumor showed a higher signal loss than mice with a 1000 mm3 tumor after admin-
istration of ferumoxytol. In the group with a tumor volume of 500 mm3, the pre-contrast
imaging demonstrated a signal loss (Sl) of 721. After the administration of ferumoxytol, a
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Sl of 139 (p < 0.001) was shown (Figure 2C). In 1000 mm3 tumors, the Sl before ferumoxytol
administration was 521 compared to 204 after 24 h (p < 0.001) (Figure 2C). The RR was 0.8
in 500 mm3 tumors (n = 14) compared to a RR of 0.6 in 1000 mm3 tumors (n = 14).
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Figure 2. MRI images of prostate cancer in xenograft model of two different tumor sizes, 500 mm3

and 1000 mm3. (A) shows a representative native MRI image of a T2*-weighted sequence from the
mouse that developed a tumor with a volume of 500 mm3 (top) and 1000 mm3 (bottom) in the scapula
area of the mouse. Red arrows are pointing at the tumor. (B) shows a post-contrast T2*-weighted
sequence with ferumoxytol from a tumor-bearing mouse after 24 h. Top: 500 mm3. Bottom: 1000 mm3.
Red arrows show the tumor. (C) shows the analysis of MRI images (T2*-weighted sequence) before
and after contrast agent administration (ferumoxytol) in two different tumor volumes (500 mm3 and
1000 mm3). A total of 14 animals per group were studied (n = 14).

3.2. Ex Vivo Analysis
In both tumor sizes, iron particles were detected in the tissue using Perls’ Prussian

blue stain (Figure 3A). The iron particles are shown in blue. To determine the iron content,
three different areas were selected for each slide and the percentages of the presence of
iron were determined using the analyzer. The analysis revealed a different amount of iron
between the two tumor sizes. The 500 mm3 tumors had an average of 1.5% iron (� = 1.1,
n = 14), and the 1000 mm3 tumors showed only 0.4% iron (� = 0.2, n = 14) (Figure 3D). The
iron particles were distributed differently in the tumor tissues.

In addition, immunofluorescence staining by using antibodies to CD68 was performed
(Figure 3B) to confirm the results. This showed that in 500 mm3 tumors the mean value was
9.6% CD68 (� = 1.1, n = 3) and in 1000 mm3 tumors 5.2% (� = 0.9; n = 3). Additional Western
blot analysis was conducted in which the previous results were confirmed. A stronger
expression of CD68 was detected in the 500 mm3 tumors, mean value of 703.7 (n = 3), than
in the 1000 mm3 tumors, mean value of 304.8 (n = 3) (Figure 3E). The intensities of each
band can be seen in the Supplementary Material. GAPDH was included as a control.

The in vivo MRI data (T2-weighted MR sequences) were correlated with the ex vivo
data (percent Fe by Perls’ Prussian staining). A correlation was found (y = 0.025x + 0.76;
R2 = 0.74) (Figure 4A).
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Counterstaining was performed with DAPI. (C) LA-ICP MS was performed to localize iron particles.
(D) The percentage of iron in the histological Perls’ Prussian stain was determined. Three areas per
slide were calculated and graphically displayed. Per group, n = 14 animals were analyzed. (E) A
Western blot was performed for n = 3 tumors per group to detect the expression of CD68, 500 mm3
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3.3. Elemental Analysis of Tumor Tissue with Specific Regard to Fe
LA-ICP-MS analysis was performed to localize Fe in the tumor tissue. For each tumor

size, n = 3 animals were visualized. The LA-ICP-MS data showed good colocalization of
the iron-oxide nanoparticles with the histological data, as shown in Figure 3C. Iron could
be detected in the intra-tumoral space as well as in the peripheral region of the tumor.
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There is an overlap between the immunofluorescence staining of CD68 and the LA-ICP-MS
measurement for Fe (Figure 3A,B).

To accurately determine the concentration of Fe in the tissue, a quantitative ICP-MS
analysis was conducted. The determined iron content in the tumor tissue was correlated
with the MRI RR data, which showed a correlation (y = �1.13x + 0.93; R2 = 0.83) (Figure 4B).
For each group, n = 6 measurements were performed.

4. Discussion
This study investigated the feasibility of using a clinically applicable iron-based probe

for molecular MRI as a signal-reducing substance (off-label) to image and characterize a
PC3 tumor in vivo in a SCID mouse model. Two tumor volumes were compared, 500 mm3

and 1000 mm3. The results show that more iron particles were assimilated in the smaller
tumor volume than in the larger ones. Regardless of tumor volume, both tumor volumes
were found to take up iron. A clear differentiation between healthy and tumorous tissues
was possible. The results could be confirmed by ex vivo examination methods.

In our study, we note a heterogeneous distribution of the iron-oxide particles in the
tumor during MRI, which means that iron-oxide particles were not specifically found only
in the periphery or in a specific area of the tumor. The histological results confirm this
assumption. We could detect an overlap of the CD68 positive areas in the immunofluo-
rescence with the positive Fe areas in the LA-ICP-MS measurement. Thus, it can be said
that macrophages are able to take up ferumoxytol. We have already been able to show this
in other diseases [21–23]. Some publications indicate that tumor-associated macrophages
(TAMs) are able to take up administered nanoparticles [24,25]. TAMs account for about
50% of the total tumor mass [26]. They promote tumor growth by suppressing immuno-
competent cells, inducing neovascularization, and supporting cancer stem cells [27]. TAMs
can invade and distribute in the tumor mass so that they may be instrumental in diagnosis,
treatment, and therapy. Daldrup-Link et al. demonstrated that ferumoxytol can be used to
detect TAMs in MRI in a breast carcinoma mouse model [25].

In this study, a lower uptake of iron-oxide particles in the group with the tumor
volume of 1000 mm3 was observed. A possible explanation for this is provided by a
study by Franklin et al. [28]. They studied macrophages during growth in breast tumors.
Among other things, a distinction between TAMs and breast tissue macrophages (MTMs)
was investigated using different methods. This showed a correlation between increase in
tumor volume with decrease in MTMs [28,29]. Further studies could prove that there is a
correlation between the aggressiveness of the prostate tumor and an increased occurrence
of TAMs [11,30]. The exact role of TAMs in different types of cancers has not been fully
clarified. The role of TAMs in PCa progression is multifactorial, including involved in
tumor invasion, increase tumor angiogenesis, tumor proliferation, tumor metastasis, and
immune suppression [31,32]. Thus, our results suggest that although TAMs are able to
initialize foreign particles, other functions take precedence in increasing tumor volume.
Further research is needed to fully understand the role of TAMs in PCa progression and to
determine which functions TAMs prioritize at which stage of tumor progression.

Another reason for the lower uptake of iron particles in tumors with a larger volume
can be due to necrosis inside a tumor. With the progression of tumor growth, necrosis
plays an important role. An important aspect is tumor necrosis factor-↵ (TNF-↵), which
influences tumorigenesis and tumor progression [33,34]. High TNF and interleukin-6 (IL-6)
levels, which are known to be responsible for the proliferation and metastatic potential of
tumor cells, indicate a negative prognosis for the patient [35]. Maolake et al. were able to
demonstrate a TNF-↵ loop in PC3 cells in their study [36]. A high TNF-↵ concentration
inhibited PC3 proliferation, a low TNF-↵ concentration caused an upregulation of C-C
chemokine receptor, which is significantly associated with lymph node metastasis [37,38].
Our study did not investigate these factors, which is a limitation. Further studies are
needed to fully investigate the tumor microenvironment after ferumoxytol administration.
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Magnetic iron-oxide particles can be used as off-label MRI contrast agents in the clinical
setting. In particular, ferumoxytol is currently used as an MRI contrast agent because it
has all the positive properties of iron-oxide nanoparticles, including long blood-retention
time, biodegradability, and low toxicity [39]. Additionally, the surface coating of iron-oxide
nanoparticles can be modified to achieve specific binding. Thus, conjugation of specific
tumor binders to iron-oxide nanoparticles can yield to targeted tumor contrast agents.
In addition to magnetic and crystalline properties, the essential properties of iron-oxide
nanoparticles must also be considered, such as size, surface charge, and lipophilicity [40].
Iron is a physiologically ubiquitous element in the mammalian body and is more easily
metabolized than the conventionally used gadolinium-based contrast agents [41].

Ferumoxytol is mainly used as a replacement therapy in the treatment of anemia.
In addition, it can also be used in MRI. In a study by Zanganeh et al., the therapeutic
effect of the iron-oxide nanoparticles on the growth of early breast cancer and lung cancer
metastases in liver and lung was also investigated [24]. The in vivo experiments showed
inhibition of subcutaneous adenocarcinoma growth in mice by administration of ferumoxy-
tol. Intravenous administration of ferumoxytol prevented development of liver metastases.
An increased presence of M1 macrophages in tumor tissue was determined [24]. The study
shows that ferumoxytol can be used in a variety of medical applications.

The tumor microenvironment is essential for progression and metastasis [24,42,43].
Elemental iron plays an important role in this process. In cancers, iron supply, export, and
storage are usually impaired [42]. Targeted iron metabolization could be an innovative
approach to treat cancer [42].

Ferumoxytol is not only used in imaging techniques for tumor diseases but may also
have applications in cardiovascular diseases [21,22,44] and the central nervous system [15].
Different studies have investigated the molecular properties of cardiovascular disease with
a combined approach using iron-oxide nanoparticles and a gadolinium-based contrast
agent [21,22,44]. A limitation that needs to be considered regarding ferumoxytol is that
it is not prostate tumor specific or even tumor specific. A possible solution would be a
conjugation with a disease- or tumor-specific antibody [45]. This would require determining
the appropriate targeting ligands for PCa, possible examples being the PSA antigen, alpha-
methylacyl-CoA racemase [46], or prostate stem cell antigen [47].

In this context, our study shows that MRI visualization with ferumoxytol is possible
in PCa and that there is a heterogeneous distribution in the tumor. This method could be
used in combination with other diagnostic methods for non-invasive assessment of the
molecular nature of PCa.

5. Limitations
The study was performed in a xenograft model. An orthotopic mouse model would

allow the tumor in the target tissue and thus in a natural microenvironment to be studied.
Ferumoxytol is not prostate cancer specific and can also be used as an MRI-contrast agent
for other diseases. In addition, this study only investigated the feasibility of ferumoxytol in
PCa, and a full investigation of the tumor microenvironment after administration of the
contrast agent would have to follow.

6. Conclusions
Our study demonstrates a visualization with ferumoxytol, an iron-oxide nanoparticle

probe, is feasible for prostate cancer. The study shows that macrophages in smaller tumors
take up more iron than in larger tumors. This non-invasive method could help to detect
tumors and to identify molecular characteristics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14122909/s1, Figure S1. Western Blot analyse.
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Figure S1. Western Blot analyse. A: Western Blot analyse for CD68. For each group, 3 tumors (n = 
3 per group) were used for western blot analysis to detect the expression of CD68. Relative intensity 
from left to right: 290.1; 321.6; 302.7; 618; 966.0; 1144.4; PC: 1174.2. B: Western Blot analyse for 
GAPDH. For each group, 3 tumors (n = 3 per group) were used for western blot analysis to control 
protein levels. 
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5. Discussion


Molecular imaging is a non-invasive imaging modality, that provides information about the 

biological nature of tissues and pathological processes at the molecular and cellular levels. In the 

assessment of PCa, molecular imaging can be invaluable as the extracellular matrix and tumor 

microenvironment influence tumor progression. The ECM is responsible for tumor architecture 

[239] and is continuously changing [240].


5.1. Molecular MR imaging for diagnosis and characterization of PCa with an  

elastin-specific molecular probe 

In carcinomas, the ECM is a network of macromolecules that are involved in the development of 

metastases, among other things [241]. The ECM structure in carcinomas is essential for 

understanding tumor development and thus for establishing diagnostic and therapeutic options 

[242]. Tumors are often characterized by stiffening due to high ECM deposition [241]. To progress, 

tumor cells must damage the ECM structure to migrate to other tissues and metastasize [243]. 

Matrix metalloproteinases (MMPs) are required to cleave ECM components. Matrikines activate 

MMPs, which are tumor-promoting [244].


The elasticity of tissue depends strongly on the ECM. In tumors, elasticity also plays a major 

function; for example, elastin is responsible for stability and tissue homeostasis [239]. Two elastin-

binding proteins (EBPs), s-Gal and Galectin-3, mediate the expression and release of elastases 

[105].


This work showed that two groups with different PCa volumes, 500 mm3, and 1000 mm3, had 

different signal intensities (SI) on MRI measurement after injection of an elastin-specific molecular 

probe. A significantly higher SI was shown for smaller tumors than for larger tumors. Thus, it can 

be assumed that tumors with a larger volume express less elastic fibers, which can be a signal of 

future metastases [105]. Both MRI images and pathological examinations showed an irregular 

spatial distribution of elastic fibers over the whole PC3 tumor tissue. Regardless of the size of the 

tumor, more elastin was detected in the peripheral area than in the medial area of the tumor. In 

the MRI examinations, it was possible to make a clear differentiation between healthy and 

tumorous tissue. The Western blot analysis does not reflect the complete expression level of 

elastin. Elastin fibers are insoluble, which explains the weak bands. Elastin is a cross-linked polymer 

and breaking these cross-links is difficult. However, the soluble precursor tropoelastin can be 

detected in the Western blot. The Western blot in this study shows the expression of tropoelastin 

and coacervated elastin. The 500 mm3 tumors showed higher expression of new elastin compared 
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to the larger 1000 mm3 tumors. This observation correlates with immunofluorescence stains and 

with the higher MR signal in 500 mm3 tumors. Using the elastin-specific probe, an increased 

contrast could be measured in T1-weighted sequences, showing especially a high elastin density in 

the peripheral zone. The observations were confirmed by ex vivo investigations, 

immunofluorescence, laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), 

inductively-coupled plasma mass spectrometry (ICP-MS), and Elastica-van-Gieson staining.


High elastin levels play an important role in many cancers, for example, elastin promotes the 

invasiveness of human breast cancer cells [245]. More elastin has been detected in colorectal 

cancer compared to non-tumor colon tissues from the same patients. Elastin was found to critically 

regulate the tumor microenvironment and tumor development [246]. MMP9, MMP12, and TIMP3 

were increased in the colon cancer cells. An elastin-specific molecular probe not only shows better 

characterization in tumor diseases but also provides better T1 imaging after injection of the 

molecular probe in cardiovascular diseases, such as aortic aneurysms and atherosclerosis 

[247-250]. In another study by Keller et al., the elastin-specific molecular probe was visualized in 

VX2 hepatic tumors in a rabbit model, and the use of the molecular agent to differentiate specific 

tumors and peritumoral regions based on its ECM composition was confirmed [123, 251]. It was 

also shown that after thermal ablation of hepatic carcinomas in the VX2 model, molecular imaging 

with an elastin-specific probe is feasible and it provides an evaluation of ablation-induced 

remodeling of the ECM in the periphery of peri-ablation [252]. Another study by Sun et al. 

demonstrates the usefulness of the probe in renal fibrosis. The study was performed on several 

mouse models of renal fibrosis and fibrotic human kidneys. The elastin-specific probe enabled 

repeated and reproducible assessment of fibrosis and longitudinal monitoring during the 

therapeutic intervention [253]. Here, the potential for the specific probe to serve as a non-invasive 

specific imaging modality for the assessment of renal fibrosis was demonstrated [253]. Recently, a 

molecular agent targeting tropoelastin cross-linking (Gd4-TESMA) has been synthesized. Thereby, 

the tropoelastin-binding peptide (TESMA) was conjugated to four Gd (III)-DOTA- moieties [254]. 

Gd4-TESMA accumulates in atherosclerotic plaques in the murine model of plaque progression 

[254]. The molecular agent showed good binding affinity to tropoelastin and a serum half-life of 

more than 2 h [254]. Whether the probe also provides good imaging in PCa needs to be 

researched.


The results from the first part of this work show detection of tumors with elastin in a clinical MRI 

setup, which generates statements about the tumor volume and allows predictions about the 

further course of the tumor progression. Molecular imaging with an elastin-specific gadolinium-
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based molecular probe in PCa is feasible. The study confirms an apparent loss of elastin in tumors 

with a larger volume. Such an imaging approach could be useful in predicting metastases.


5.2. Superparamagnetic iron-oxide nanoparticle for visualization of PCa in MRI 

Ferumoxytol, while initially developed as an anemia treatment drug, is widely used as an off-label 

MRI molecular probe nowadays. Ferumoxytol shows good pharmacological properties, such as a 

long blood retention time, biodegradability, and low toxicity, which are all favorable for an MRI 

molecular probe [255]. Due to its high transverse relaxation activity, ferumoxytol produces 

negative contrast in the cellular uptake of these ultra-small superparamagnetic iron-oxide 

nanoparticles (uSPIONs) in T2-weighted MRI. 


In this doctoral thesis, ferumoxytol was used off-label as a negative imaging MRI probe to visualize 

and characterize a PC3 tumor in a xenograft tumor-bearing mouse model. It was demonstrated 

that both the small and larger tumors took up iron-oxide nanoparticles. The focus was on the 

comparison between two tumor volumes, 500 mm3, and 1000 mm3. It was demonstrated that in 

smaller tumor volumes more iron particles were assimilated to a higher extent than in larger 

tumor volumes. In addition, a clear differentiation between healthy and tumorous tissue could be 

seen in the MR images. Heterogeneous distribution of the iron-oxide particles was observed, 

which means that the particles could be visualized both peripheral and intracorporeal in the tumor. 

With the help of pathological examinations, the results of the in vivo examination could be 

confirmed. An overlap of the CD68-positive areas in the immunofluorescence with the positive Fe 

areas in the LA-ICP-MS measurement was found. CD68 is a histochemical marker for macrophages 

[256, 257]. By this co-localization, it can be concluded that macrophages can take up ferumoxytol. 

Previous studies have shown the uptake of ferumoxytol in other diseases, such as aortic aneurysms 

or atherosclerosis [249, 250, 258]. Ferumoxytol is not only used preclinically but also clinically, as it 

already has had a marketing license since 2012 for anemia treatment. Iv et al. examined patients 

with high-grade malignant gliomas [259]. For this purpose, they administered 5 mg/kg ferumoxytol 

intravenously and carried out an MRI measurement after 24 h. Samples were then taken and 

analyzed histopathological, whereas the iron-oxide nanoparticles were only found in the 

macrophages [259]. MRI measures of sensitivity after ferumoxytol administration correlate with 

the concentration of macrophages that have taken up iron [259]. Ferumoxytol shows potential as a 

quantitative biomarker of macrophages in malignant gliomas. 
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Ferumoxytol-enhanced MR imaging has also been detected and quantified in lymphomas and 

bone sarcomas of pediatric patients [260]. Recently, ferumoxytol was shown to be useful as an 

additional diagnostic tool in differentiating intrapancreatic splenules from other pancreatic lesions 

[261]. However, larger cohorts of patients need to be studied to confirm this observation. A 

comparative study was conducted to determine whether ferumoxytol-enhanced MRI is as effective 

as gadolinium-enhanced MRI in detecting intracranial metastatic disease.


Preclinical studies such as those by Sillerud et al. show that ferumoxytol was phagocytosed by 

TAMs in a breast cancer mouse model [262]. They were able to make statements about the TAM 

density in tumor tissue using MRI evaluation and pathological examination (anti-F4/80 

immunohistochemistry and iron staining). Other studies could confirm these results [263]. Further 

publications confirm the assumption that TAMs are able to take up nanoparticles [263, 264]. The 

tumor mass consists of about 50% TAMs [265]. TAMs promote tumor growth by suppressing 

immunocompetent cells, inducing neovascularization, and supporting cancer stem cells [266]. The 

presence of TAMs in the tumor mass makes them a good target for diagnosis, treatment, and 

therapy.


In this doctoral thesis, lower uptake of the iron-oxide particles was observed in the group with 

1000 mm3 PC3 tumors [242]. A possible explanation for this is provided by a study by Franklin et al. 

who evaluated macrophages during breast cancer growth [242, 267]. As tumor volume increased, 

the presence of breast cancer macrophages (MTMs) decreased [242, 267, 268]. A correlation 

between the aggressiveness of the tumor and an increased incidence of TAMs has been 

demonstrated in prostate tumors [242, 269, 270]. Therefore, the obtained data suggest that TAMs 

can internalize foreign particles, but other functions play a more important role in the increase of 

the tumor volume [242]. To fully understand the role of TAMs in PCa progression and to find out 

which functions TAMs prioritize at which tumor stage of tumor progression still needs to be 

studied. Another explanation for the lower uptake of iron-oxide particles in the 1000 mm3 tumors 

may also be necrosis in tumors. Necrosis usually develops at an advanced stage due to the 

expression of TNF-α. It influences tumorigenesis and progression [242, 271, 272]. High TNF-α and 

interleukin-6 (IL-6) levels suggest a negative outlook for the patient [242, 273]. A high TNF-α 

concentration inhibits the proliferation of PC3 cells. A low TNF-α level upregulates C-C chemokine 

receptors, which is significantly associated with lymph node metastasis [274, 275].


All these studies and numerous others show the enormous potential of iron-oxide nanoparticles in 

MRI in the diagnosis of multiple diseases, including tumors. The surface coating of iron-oxide 
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nanoparticles can be changed to obtain a specific binding [63]. Teh et al. conjugated ferumoxytol 

with a fluorescent marker and PCa targeting agent heptamethine carbocyanine, under the name 

HMC-FMX nanoprobe [276]. Experiments were conducted in subcutaneous and orthotopic PCa 

mouse models [276]. However, the conjugate was not investigated in an MRI but by near-infrared 

fluorescence imaging, for better differentiation and visualization of tumor margins [276].


In addition to magnetic and crystalline characteristics, factors such as size, surface charge, and 

lipophilicity must also be included in the modification of iron-oxide nanoparticles [277]. Iron is a 

physiologically ubiquitous element in the body of mammals and is more lightly metabolized than 

Gd3+ based imaging probe [278]. Studies in healthy patients showed measurable amounts of 

residual iron on MRI, ranging from 3 to more than 11 months, after administration of ferumoxytol 

in healthy subjects [279]. This limitation can lead to misdiagnosis [279]. 


Ferumoxytol shows a therapeutic effect of the iron-oxide particles on breast cancer growth, and 

lung cancer metastases in the liver and lungs. Zanganeh et al. showed inhibition of subcutaneous 

adenocarcinoma growth after intravenous administration of ferumoxytol in a mouse model [264]. 

The administration prevented the development of liver metastases [264]. Further experimental 

work showed high levels of M1 macrophages [264]. Ferumoxytol can be used in a variety of 

medical interventions [264].


In principle, ferumoxytol shows enhanced MRI and is clinically immediately applicable. The study 

shows that MRI imaging with ferumoxytol is possible in primary PCa and that there is a 

heterogenic distribution of iron-oxide particles in the tumor. Histological examinations confirm the 

hypothesis that the signal reduction was caused due to the uptake of the molecular probe in 

macrophages in the tumor tissue. The obtained results from the study have the potential for 

translation into prostate cancer diagnosis.


5.3. Current and future trends in molecular imaging of prostate carcinoma 

Molecular imaging using the elastin-specific molecular probe and iron-oxide nanoparticles can help 

to identify a tumor at an early stage by showing morphological changes in the target tissue. It can 

also be used to initiate appropriate therapies. Molecular visualization of biological or cellular 

changes or characteristics of the tumor can be performed without invasive surgery. Currently, 

molecular imaging methods are focused on the metabolism of cells, hormone receptors, and 

membrane proteins [112]. Tumor cells compared to healthy cells have differences in cell 

metabolism, which can be used for molecular imaging. Therefore, mainly radioactively labeled 

analogues of the metabolic substrates acetate [280-283], amino acids [284-288], choline [281, 

289-291], glucose [292-295] and nucleosides [296, 297] are being investigated [63, 112]. However, 
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these metabolites are not specific for PCa, as some also occur in benign prostatic hyperplasia 

[298]. Pu et al. demonstrated the applicability of a protein MRI molecular probe (ProCA), which 

targeted PSMA [70]. The targeted molecular probe showed good Gd3+ binding affinity, metal 

selectivity and relaxivity, and strong PSMA targeting [63]. The experiments were performed in 

tumor-bearing mice, xenograft model, on a 7 T MRI. The results are promising and can be 

implemented for the early detection of PCa. However, further experiments in animal models have 

to follow to investigate the applicability in the target organ.


In addition, other components of the ECM, including collagen, laminins, fibronectin, and 

proteoglycans, may also have applications for the molecular imaging of PCa. For example, a 

molecular probe targeting collagen type 1 already exists. For the first time, the cyclic collagen 

molecular probe was investigated in a fibrosis-myocardial infarction mouse model by Caravan et al. 

[299]. The collagen-specific molecular probe was specific and showed high contrast for fibrotic 

tissue scars [299]. The molecular probe can be used to detect and evaluate a diverse range of 

diseases associated with fibrosis and extracellular matrix remodeling [299-301]. Not only 

cardiovascular diseases could be imaged with a collagen-specific probe but also tumors, such as 

fibrosis in pancreatic adenocarcinomas [302, 303] in lung or liver fibrosis [304]. About PCa, the 

applicability of the collagen probe needs to be reviewed. Due to the function of collagen in 

prostate cancer and the association of collagen with the pathological stage, the use of a collagen-

specific probe can be very helpful [305]. 


Ye et al. reported a peptide-based molecular probe targeted for molecular imaging of the 

fibronectin-fibrin complex [306]. The studies were performed in a colorectal cancer xenograft 

mouse model. Meanwhile, there are numerous studies with promising results with a potential 

translational application for the development of fibrin probes for the detection of tumorous 

diseases as well as for the evaluation of thrombi [216, 307-310]. Recently, a new MRI molecular 

probe targeting extra domain B fibronectin was reported to be overexpressed in aggressive tumors 

[216]. Four small peptides were identified (GVK, IGK, SGV, and ZD2) specific for extra domain-B 

fibronectin, and these were conjugated to be visualizable on MRI. A PC3 mouse xenograft model 

was used. The results show improved tumor contrast on MRI.


Currently, molecular imaging is mostly performed using PET [311-313]. But there is continuous 

research to synthesize, modify and optimize MRI molecular probes for molecular imaging [307, 

314]. To date, there are only preclinical studies with gadolinium-based molecular probes. Much 

research has been done in the field of molecular research over the last 30 years and many 

promising biomarker-targeted molecular imaging probes have been developed and successfully 
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tested in proof-of-concept animal studies [315]. However, so far, none has received clinical 

approval because of many challenges in implementation. This is mainly due to the safety profile 

related to metal toxicity and deposition of the imaging probe. When developing new biomarkers, it 

is important to have a low molecular weight to initiate rapid release in the blood and induce strong 

tumor and tissue penetration. They must also have high thermodynamic stability, high affinity, and 

specificity for the desired target. In contrast, ferumoxytol already has clinical approval and can 

therefore be used in patients. So far, no data have been collected regarding the use of ferumoxytol 

in patients with prostate carcinoma for tumor characterization. Some studies have conjugated 

ferumoxytol with a fluorescent dye (HMC-FMX) to perform MR lymphography in patients [276]. 

Using HMC-FMX, intraoperative and postoperative assessment of the peripheral area of the tumor 

was possible. Thus, the previous studies are dedicated to the use of ferumoxytol in patients with 

PCa to detect lymph nodes [316-322]. With regard to the primary assessment of PCa, further 

clinical studies are warranted. 


With the help of molecular imaging methods, it is possible to make individual disease predictions 

without the need to take tissue samples from the organism. This can reduce invasive procedures 

and possible complications. Molecular imaging shows potential as an adjunct to existing 

commercial diagnostic tools, with the major advantage of providing a non-invasive assessment at 

the cellular level.


5.4. Limitations

In this study, xenograft models were used to demonstrate the visualization of the molecular 

probes. In order to also study and analyze the tumor microenvironment, it is necessary to use an 

orthotropic mouse model. This will make it possible to grow a tumor in the target tissue, the 

prostate, and decode the complete tumor microenvironment. In addition, analysis of secreted 

proteins, such as MMPs, would be another methodology to understand elastin degradation. To 

determine necrosis in the tumor, further methods are also necessary. These were not investigated 

in the present studies, which is a limitation. 


It has been shown that the molecular probe can be used in PCa, but other studies also show the 

applicability of the molecular probes in other diseases, such as cardiovascular diseases or fibrosis. 

Therefore, the molecular probes are not specific for prostate cancer. In addition, the deposition of 

the elastin-specific molecular probe should be assessed after multiple administrations in different 

organs to investigate the possible toxicity of the molecular probe. A long-term study is also useful 
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for ferumoxytol, although the long residence time of the particles in the tissue may result in a 

misleading evaluation.
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