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Simple Summary: Adult multipotent mesenchymal stem/stromal cells (MSCs) have the ability to
self-renew and differentiate into various cell types. MSCs, especially those derived from adipose
tissue (ASCs), are easily available and abundant. In order to expand the current knowledge of
clinically relevant properties of ASCs obtained from equine abdominal, retrobulbar and subcutaneous
adipose tissue using explantation and collagenase digestion, the study’s aim was to investigate the
proliferation and multilineage differentiation potential of equine ASCs in vitro. ASCs showed a
high proliferation and adipogenic, osteogenic and chondrogenic differentiation potential, whereby
a significant effect of the tissue localization and isolation procedure was detected in the case of
adipogenic and osteogenic differentiation. However, equine ASCs were refractory to activin A,
bone morphogenetic protein-4 and Dickkopf-1-induced upregulation of cardiomyogenic marker
expression, characteristic for in vitro cardiomyogenesis. Follow-up studies are required to further
investigate the effect of isolation methods and tissue sources on clinically relevant multilineage
differentiation potential in equine MSCs. Moreover, the use of stem cells with higher pluripotency
should be considered for in vitro cardiomyogenesis in further studies.

Abstract: The investigation of multipotent stem/stromal cells (MSCs) in vitro represents an important
basis for translational studies in large animal models. The study’s aim was to examine and compare
clinically relevant in vitro properties of equine MSCs, which were isolated from abdominal (abd),
retrobulbar (rb) and subcutaneous (sc) adipose tissue by collagenase digestion (ASCs-SVF) and an
explant technique (ASCs-EXP). Firstly, we examined proliferation and trilineage differentiation and,
secondly, the cardiomyogenic differentiation potential using activin A, bone morphogenetic protein-4
and Dickkopf-1. Fibroblast-like, plastic-adherent ASCs-SVF and ASCs-EXP were obtained from all
sources. The proliferation and chondrogenic differentiation potential did not differ significantly
between the isolation methods and localizations. However, abd-ASCs-EXP showed the highest
adipogenic differentiation potential compared to rb- and sc-ASCs-EXP on day 7 and abd-ASCs-SVF

a higher adipogenic potential compared to abd-ASCs-EXP on day 14. Osteogenic differentiation
potential was comparable at day 14, but by day 21, abd-ASCs-EXP demonstrated a higher osteogenic
potential compared to abd-ASCs-SVF and rb-ASCs-EXP. Cardiomyogenic differentiation could not be
achieved. This study provides insight into the proliferation and multilineage differentiation potential
of equine ASCs and is expected to provide a basis for future preclinical and clinical studies in horses.

Keywords: equine; mesenchymal stromal cells; adipose tissue; proliferation; trilineage differentiation;
cardiomyocyte-like cells

Animals 2023, 13, 1352. https://doi.org/10.3390/ani13081352 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani13081352
https://doi.org/10.3390/ani13081352
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0009-0004-4639-3919
https://orcid.org/0000-0001-5103-8402
https://orcid.org/0000-0002-8688-2926
https://orcid.org/0000-0001-5080-1007
https://orcid.org/0000-0001-5451-4232
https://doi.org/10.3390/ani13081352
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani13081352?type=check_update&version=2


Animals 2023, 13, 1352 2 of 22

1. Introduction

Since the discovery by Friedenstein et al., who first isolated precursor cells from bone
marrow in 1968 [1,2], multipotent mesenchymal stem/stromal cells (MSCs) have been
studied by many different research groups to this day. MSCs have the ability to self-renew,
can differentiate into distinct cell types of mesodermal [3–5] and ectodermal origin [6,7]
and exhibit a paracrine effect and a regenerative potential [8,9]. These characteristics justify
the use of MSCs in various preclinical and clinical studies and make MSCs a promising
cell source. In addition to their regeneration ability of tissues, the use in drug testing and
in the development of disease models should also be mentioned [10–12]. This is based on
the identification of appropriate cell sources and the in vitro characterization of the cells
harvested [13,14]. MSCs can be isolated from a variety of tissues, including, inter alia, ten-
don tissue [15,16], synovial fluid [17] and membrane [18,19], peripheral blood [20,21] and
adipose tissue [15–17,22,23], in addition to bone marrow [1,2]. MSCs from adipose tissue
(adipose tissue-derived stem/stromal cells, ASCs) proved to be particularly suitable for use
in in vitro models due to their existence in large quantities, large tissue availability [24–26]
and high proliferation and differentiation potential [14]. ASCs are usually obtained from
the easily accessible white adipose tissue (WAT) using stromal vascular fraction (SVF)
after collagenase digestion [15,17,27–29] or by an explant technique (EXP) [29–31]. The
identification of the cells is carried out in accordance with the minimum criteria for hu-
man MSCs established by the International Society for Cellular Therapy (ISCT), which
includes examination of the surface marker profile, the trilineage differentiation poten-
tial and the ability to adhere to plastic [32]. The use of various isolation and cultivation
methods has a significant influence on cell yield and characteristics of MSCs, i.e., the
proliferation and differentiation ability [33–35]. The multilineage differentiation potential
was investigated in various studies, which included, in particular, the examination of the
differentiation potential into adipogenic, osteogenic and chondrogenic lineages (classic
trilineage differentiation) [4,23,32,36]. In recent years, the osteogenic, chondrogenic and
tenogenic differentiation has shown clinical relevance in equine medicine, whether it is
for the treatment of osteoarthritis [37,38], tendon and ligament injury [39,40] or for bone
fracture repair in clinical research [41–43]. However, the in vitro adipogenesis has currently
no clinical relevance in horses. In contrast, in human medicine, adipogenesis models are
used in different clinical areas, e.g., for research into diabetes, cardiovascular diseases
and mental disorders [44]. The differentiation ability of MSCs into cardiomyocyte-like
cells (CLCs) has also been described in certain species [5,45–49], but not for horses, for
which there is a lack of evidence so far. For differentiating MSCs into CLCs in vitro, but
also embryonic (ESCs) and induced pluripotent stem cells (iPSCs), the induction protocols
described in literature often make use of the signaling pathways and transcription factors
of embryonic cardiomyogenesis [46,50,51]. These include, in particular, the transforming
growth factor (TGF)β/bone morphogenic protein (BMP) [52] and Wnt/β-catenin signaling
pathways [53,54]. Further cardiomyogenic differentiation strategies are also described,
such as growth factors, small molecules and mechanical and electrical stimulation [55].
In vitro cardiomyogenesis is also of clinical relevance. For example, myocard ischaemia
models in rodents have shown that MSCs leads to myocardial regeneration after transplan-
tation [56,57]. Initial clinical studies in humans also exist [58].

In order to be able to use MSCs in a clinical context or for disease models (research
into the development of diseases, drug testing, etc.), knowledge of the cultural behavior
of cells and proliferation and multilineage differentiation potential in vitro provides an
important basis. Therefore, the present in vitro study had the following aims: equine
MSCs, which are isolated from abdominal (abd), retrobulbar (rb) and subcutaneous (sc)
adipose tissue using the EXP and SVF isolation methods, are investigated with regard to
their proliferation potential and further examined regarding their trilineage differentiation
potential into adipogenic, osteogenic and chondrogenic lineage. It was hypothesized that
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equine MSCs behave equally, regardless of the isolation method, and differ from each other
depending on the tissue source used. Furthermore, based on the unsuccessful induction of
cardiomyogenic differentiation using 5-azacytidine (5-AZA) in our previous study [59], a
different protocol for cardiomyogenic differentiation relying on BMP, activin (Act) A and
Dickkopf (DKK)-1 was tested in the present study on equine ASCs.

2. Materials and Methods
2.1. Sample Collection, Isolation and Cultivation of Equine ASCs

Sample collection and isolation of equine ASCs have already been published in our
previous study [59]. In brief, equine abd, rb and sc adipose tissue from n = 16 horses (mares,
geldings, stallions; median age [interquartile range]: 13.5 [18.0] years) was harvested
after euthanasia at the Equine Clinic: Surgery and Radiology, Department of Veterinary
Medicine, Freie Universität (FU) Berlin or slaughter in commercial slaughterhouses up to a
maximum of 8 h post mortem. Sampling took place in accordance with the German law of
animal welfare and was communicated to the responsible authorities, the Landesamt für
Gesundheit und Soziales (LAGeSo) Berlin (StN 008/20–IV C 10).

ASCs were harvested from abd, rb and sc adipose tissue using EXP and SVF techniques
as described in Trachsel et al. [59]. Briefly, cell harvest with the SVF method relied on
classical collagenase digestion. In the EXP method, 2 × 2 × 2 mm small tissue pieces were
placed into 12-well culture plates (tissue culture test plate 12, TPP Techno Plastic Products
AG, Trasadingen, Switzerland). After ASCs-EXP grew out into the surrounding, adipose
tissue pieces were removed. In both EXP and SVF procedures, adherent precursor cells
were cultured in basal medium (B-M), a Dulbecco’s Modified Eagle’s Medium (DMEM)
with high glucose (4.5 g/L; Life Technologies GmbH, Karlsruhe, Germany), supplemented
with 20% fetal bovine serum (FBS; Sigma Aldrich, Taufkirchen, Germany), 1% amphotericin
B (2.5 µg/mL; BioWest, Riverside, CA, USA), 1% penicillin-streptomycin (100 U/mL and
100 µg/mL, respectively; Sigma Aldrich, Taufkirchen, Germany) and HEPES (15 mM; Carl
Roth GmbH + Co. KG, Karlsruhe, Germany) under standard culture conditions (37 ◦C, 5%
CO2 and a humidified atmosphere). The medium was changed every two to three days.
After first passaging, FBS content was reduced to 10% (expansion medium, E-M). The cells
were multiplied up to passage (P) 2 or 3 and stored in liquid nitrogen until performance of
the experiments described hereafter.

2.2. Proliferation Assay

ASCs-EXP and ASCs-SVF of the abd, rb and sc localizations from n = 3 horses were
included in the experiment. On day zero, 30,000 cells/well of P3 from each source and
isolation procedure were seeded in 12-well cell culture plates. According to the protocol
of Alipour et al. [60], cells were detached daily after 24 h of cultivation from three wells
with Trypsin-EDTA (Trypsin-EDTA solution, 0.25% Trypsin/0.02% EDTA, Sigma Aldrich,
Taufkirchen, Germany) and were counted in duplicate using the automated cell counter
TC20TM (Bio-Rad Laboratories GmbH, Feldkirchen, Germany). Population doubling time
(PDT) was determined using the formula PDT = (T−T0) lg2/(lgNt–lgN0) according to
Alipour et al., where T is the harvest time of culture, T0 the starting time of culture, and Nt
and N0 are the cell count of harvest and cell count of seeding, respectively [60].

2.3. Trilineage Differentiation Potential

To investigate the trilineage differentiation potential, ASCs-EXP and ASCs-SVF of abd
adipose tissue and ASCs-EXP of rb and sc adipose tissue were initially expanded to P5 or
P6 and then induced to adipogenic, osteogenic and chondrogenic differentiation in two
experimental runs (n = 6). In all experiments, negative controls (NC) were included. The
medium was changed every two to three days. In the case of adipogenic and osteogenic dif-
ferentiation, cell culture vessels were coated with 2 µg/cm2 murine laminin (Sigma Aldrich,
Taufkirchen, Germany) in order to avoid cell detachment as far as possible, which was
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observed in Trachsel et al. due to the absence of any coating [59]. To ensure reproducibility,
experiments were carried out in duplicate.

2.3.1. Adipogenic Differentiation

For adipogenic differentiation, 20,000 cells/cm2 were seeded in 25 cm2 cell culture
flasks (5 × 105 cells/25 cm2) and 12-well cell culture plates (38,000 cells/well) in duplicate.
At 70–90% confluence, standard culture medium was replaced with adipogenic induction
medium (day 0) and changed into adipogenic differentiation medium according to Jurek
et al. on day 3 [61]. The adipogenic induction medium contained DMEM (Life Technologies
GmbH, Karlsruhe, Germany), supplemented with 10% FBS (Sigma Aldrich, Taufkirchen,
Germany), 10 mM glucose (Carl Roth GmbH + Co. KG, Karlsruhe, Germany), 100 U/mL
and 100 µg/mL penicillin-streptomycin, respectively (Sigma Aldrich, Taufkirchen, Ger-
many), 2.5 µg/mL amphotericin B (BioWest, Riverside, CA, USA), 15 mM HEPES (Carl
Roth GmbH + Co. KG, Karlsruhe, Germany), 10 µM biotin, 3 µg/mL insulin, 0.3 µM
dexamethasone, 0.1 mM 3-isobutyl-1-methylxanthin (IBMX) and 10 µM rosiglitazone (all
from Sigma Aldrich, Taufkirchen, Germany). When adipogenic differentiation medium
was used, the last three additives mentioned were replaced by 227 µM ascorbic acid (Sigma
Aldrich, Taufkirchen, Germany) and 10 µL/mL bovine serum-lipids (BSL; EX-CYTE, Sigma-
Aldrich, Taufkirchen, Germany). Adipogenic differentiation medium was used until days 7
or 14, with medium changes every two to three days.

Glycerol 3-Phosphat Dehydrogenase Assay

On day seven, cells in 25 cm2 cell culture flasks were washed, trypsinized and cen-
trifuged at 500× g at 4 ◦C for 5 min due to the large lipid droplet formation. The cell pellet
was resuspended in Dulbecco’s phosphate-buffered saline (DPBS) without calcium and
magnesium (DPBS w/o Ca2+/Mg2+, Sigma Aldrich, Taufkirchen, Germany). A live/dead
staining with 0.4% trypan blue solution (Sigma Aldrich, Taufkirchen, Germany) followed,
and cells were counted using an automated cell counter (TC20TM; Bio-Rad Laboratories
GmbH, Feldkirchen, Germany). After a second centrifugation step (500× g, 4 ◦C, 5 min),
further processing followed the GPDH assay kit protocol (Glycerol-3-Phosphate Dehydro-
genase Activity Colorimetric Assay Kit; Abcam, Cambridge, UK). Positive controls (PC)
and NADH standard curves were included. All samples were pipetted into 96-well plates
in duplicate. Measurements were performed at 450 nm using a multiplate reader (Tristar 3,
Berthold Technologies GmbH & Co. KG, Bad-Wildbad, Deutschland) and recorded every
60 s for 1 h at 37 ◦C.

Nile Red Staining and Lipid/Nuclei-Ratio

On day 14, differentiated cells in 24-well plates were stained with Nile red in order
to verify the existence of intracellular lipids. Nuclei were stained with DAPI (staining
protocol see Supplementary Table S1). A Leica DMI 6000B Epi-fluorescence microscope
(Leica Microsystems GmbH, Wetzlar, Germany) was used for visualization at excitation
and emission wavelengths of 480/530 nm (neutral lipids) and 515/590 nm (total lipids),
respectively, and for DAPI at 360/470 nm (nuclei). To normalize lipid content for cell
density, the lipid/nuclei index was calculated according to Becker et al. [62] after measuring
the fluorescence of Nile red (lipid-index) and DAPI (nuclei-index) at 475/570 nm and
358/461 nm, respectively, using the 2300 EnSpireTM multiplate reader (PerkinElmer Inc.,
Waltham, MA, USA). Measurements were carried out in triplicates.

2.3.2. Osteogenic Differentiation

For osteogenic differentiation, cells were seeded in 25 cm2 cell culture flasks and
24-well cell culture test plates (20,000 cells/cm2) in duplicate. At 70–90% confluence
(day 0), osteogenic induction and differentiation were promoted using an osteogenic
differentiation medium up to day 14 or 21. The medium consisted of DMEM with 4.5 g/L
glucose (Life Technologies GmbH, Karlsruhe, Deutschland), 10% FBS (Sigma Aldrich,
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Taufkirchen, Germany), 100 U/mL and 100 µg/mL penicillin-streptomycin (Sigma Aldrich,
Taufkirchen, Germany), 2.5 µg/mL amphotericin B (BioWest, Riverside, CA, USA), 0.1 µM
dexamethasone (Sigma-Aldrich, Taufkirchen, Germany), 10 mM ß-glycerophosphate and
50 µM ascorbic acid (all from Sigma Aldrich, Taufkirchen, Germany).

Alkaline Phosphatase Activity Measurement

On day 14, osteogenic differentiation of cells incubated in 25 cm2 cell culture flasks
were determined quantitatively by measuring the alkaline phosphatase (ALP) enzyme
activity using a fluorometric Alkaline Phosphatase Assay Kit (Abcam, Cambridge, UK). In
total, 4 × 105 cells were centrifugated at 300× g at 4 ◦C for 5 min, washed with DPBS with
Ca2+/Mg2+ (Sigma-Aldrich, Taufkirchen, Germany) and centrifuged again (300× g, 4 ◦C,
5 min). The cell pellet was dissolved in 400 µL ALP Assay Buffer. After centrifugation at
13,000× g at 4 ◦C for 3 min, supernatant was removed and the cell pellet was processed
according to the ALP assay kit protocol. Measurements of the fluorescence intensities of
the samples, which were pipetted in duplicate into 96-well plates, were performed using a
2300 EnSpireTM multiplate reader at excitation and emission wavelengths of 360 nm and
440 nm, respectively.

Von Kossa Staining and Index of Osteogenic Differentiation

The osteogenically differentiated cells in 24-well plates were stained according to
Von Kossa on day 21 (staining protocol see Supplementary Table S2). Visualization was
performed by transmitted light microscopy (AE2000, Motic Deutschland GmbH, Wetzlar,
Germany). The optical densities (OD) of the induced (ind) and non-induced NC were
measured at a wavelength of 492 nm by means of a 2300 EnSpireTM multiplate reader.
Thereafter, the index of osteogenic differentiation (IOD) was determined as the ratio of
OD492nm of induced cells and NC [IOD = OD492nm (ind)/OD492nm (NC)]. Measurements
were performed in triplicates.

2.3.3. Chondrogenic Differentiation

Chondrogenic differentiation was performed in pellet culture in duplicate using
5 × 105 cells in a 15 mL conical centrifugation tube (TPP Techno Plastic Products AG,
Trasadingen, Switzerland). A total of 2 mL chondrogenic differentiation medium was added
to the cells, which consisted of DMEM (Life Technologies GmbH, Karlsruhe, Germany), sup-
plemented with 25 mM glucose, 100 U/mL and 100 µg/mL penicillin-streptomycin (Sigma
Aldrich, Taufkirchen, Germany), 2.5 µg/mL amphotericin B (BioWest, Riverside, CA, USA),
10 ng/mL TGF-β3 (Life Technologies GmbH, Karlsruhe, Germany), 1% CorningTM ITS +
Premix Universal (Fisher Scientific GmbH, Schwerte, Germany), 100 nM dexamethasone,
100 µM ascorbic acid and 400 µM proline, (all from Sigma-Aldrich, Taufkirchen, Germany).
Cell pellets were formed by centrifugation at 280× g at 4 ◦C for 5 min. After a 21 d induc-
tion period, cell pellets were fixed with ROTI®Histofix 4% (Carl Roth GmbH + Co. KG,
Karlsruhe, Germany) overnight, embedded in paraffin in the embedding station Logos One
(A. Menarini Diagnostics, Berlin, Germany), cut to a layer thickness of 0.5 µm in a rotary
microtome (HM325; Thermofisher Scientific, Waltham, MA, USA) and placed onto coated
slides (StarFrost Advanced Adhesive; Engelbrecht GmbH, Edermünde (Besse), Germany).
NC were cultured in 24-well plates (20,000 cells/cm2) in monolayers in duplicate after
preliminary experiments (not published) had shown that non-induced cell pellets disag-
gregate over the 21 d cultivation period and were fixed in ROTI®Histofix 4% for further
staining procedures.

Hematoxylin–Eosin and Alcian Blue Staining

After deparaffinization and rehydration, samples were stained with hematoxylin
(Carl Roth GmbH + Co. KG, Karlsruhe, Germany) and eosin (Waldeck GmbH & Co. KG,
Münster, Germany) (HE) and Alcian blue in duplicate. Alcian blue was to detect acidic gly-
cosaminoglycans and followed the protocol of the Alcian Blue-Nuclear Fast Red for Acidic
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Mucosubstances staining kit (Morphisto GmbH, Offenbach am Main, Germany; staining
protocols see Supplementary Tables S3 and S4). Similar to the “Bern Score” developed
by Grogan et al., which evaluates the safranin O-fast green-stained pellet cultures [63], a
scoring system for the Alcian blue-stained pellet cultures was established to classify the
chondrogenic differentiation. The criteria were the same as stated in the above-mentioned
study [63]. Blinded evaluation was performed by two observers using transmitted light
microscopy.

2.4. Cardiomyogenic Differentiation

Based on our previous study, in which no cardiomyogenic differentiation was achieved
using 5-AZA in uncoated cell culture flasks [59], the cardiomyogenic differentiation protocol
of the present study applied Act A (Peprotech, Hamburg, Germany) for 24 h, BMP-4
(R&D Systems, Inc., Minneapolis, MN, USA) for 96 h and DKK-1 (Peprotech, Hamburg,
Germany) in abd-ASCs-SVF (P3–6) for 48 h (n = 5), factors that are involved in embryonic
cardiomyogenesis [52,64–68]. In addition, the 25 cm2 cell culture flasks were coated with
2 µg/cm2 murine laminin (Sigma Aldrich, Taufkirchen, Germany) in order to prevent cell
detachment. The study design is shown in Figure 1. The experiment was carried out in two
parts in two replicates each in which different concentrations of the induction factors were
tested (first sub-experiment: protocols A and B; second sub-experiment: protocols A, B and
C). In the first sub-experiment, the cardiomyogenic induction of the 80–90% confluent ASCs
was performed (A) with 100 ng/mL Act A, 10 ng/mL BMP-4 and 100 ng/mL DKK-1 and
(B) with 100 ng/mL Act A, 20 ng/mL BMP-4 and 100 ng/mL DKK-1. In the second sub-
experiment, cardiomyogenic induction protocols included (A) 0 ng/mL Act A, 50 ng/mL
BMP-4 and 150 ng/mL DKK-1, (B) 100 ng/mL Act A, 50 ng/mL BMP-4 and 150 ng/mL
DKK-1, and (C) 100 ng/mL Act A, 50 ng/mL BMP-4 and 0 ng/mL DKK-1. After seven
days of induction, cells were further incubated in a modified basal medium (MB-M) until
day 21. MB-M consisted of DMEM supplemented with 20% FBS, 10 mM glucose, 100 U/mL
and 100 µg/mL penicillin-streptomycin, 2.5 µg/mL amphotericin B and 15 mM HEPES. On
day 0 (T0) and three weeks thereafter (T3), cells were harvested. Gene expression analysis
of the cardiac markers NKX2-5, GATA4, MYH6, MYH7 and TNNI3, the muscle marker
MYF6 and the pluripotency associated markers OCT4/POUF5, MYC and DNMT3B was
performed using SYBR Green reverse-transcription quantitative PCR (RT-qPCR). RT-qPCR
analyses were performed according to our previous study in triplicates [59]. The primers
used for RT-qPCR are listed in the Supplementary Table S5.
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Figure 1. Study design of the cardiomyogenic differentiation experiments using the induction factors
activin A (Act A), bone morphogenetic protein-4 (BMP-4) and Dickkopf-1 (DKK-1). In both sub-
experiments, equine adipose-derived stem cells were induced with Act A on day 0, with BMP-4 from
day 1 to 5 and with DKK-1 from day 5 to 7 in laminin-coated cell culture flasks. Further cultivation
from day 7 on was performed in a modified basal medium, and, on day 21, cells were harvested
for subsequent molecular–biological studies. Abbreviations: DMEM, Dulbecco’s Modified Eagle’s
Medium; FBS, fetal bovine serum; MC, medium change; T0, time point day 0; T3, time point 3 weeks
after induction.
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2.5. Statistical Analysis

Data analysis was performed using IBM SPSS software, Version 27 and Graph Pad
Prism, Version 9.1.2. for Mac, Graph Pad Software. Initially, a descriptive data analysis and
a test for normal distribution was carried out (Kolmogorov–Smirnov and Shapiro–Wilk
tests, visual examination of the histograms, QQ-plots and boxplots). A significance level of
5% was set for all experiments (α = 0.05). Repeated measures analysis of variance (ANOVA)
was performed to examine cell growth and PDT with cell numbers and PDT of consecutive
days (representing the repeated measurements). A Greenhouse–Geisser correction was
used. Non-parametric tests were used in the trilineage differentiation experiments to
assess the effect of tissue localization among abd-ASCs-EXP, rb-ASCs-EXP and sc-ASCs-EXP
(Kruskal–Wallis test) and the effect of isolation techniques between abd-ASCs-EXP and
abd-ASCs-SVF (Mann–Whitney U test). When data were collected for both induced cells
and NC, treatment effects were additionally examined using the Mann–Whitney U test.
In case of multiple comparisons, significance values were adjusted with the Bonferroni
correction [69]. Data are shown in dot plots with medians and interquartile ranges (IQR).
In order to evaluate the cardiomyogenic differentiation potential, a univariate ANOVA was
carried out, as well as a Tukey HSD post-hoc test. Here, dot plots show mean values ±
standard deviations (SD). In accordance with previous experiments, statistical tests of RT-
qPCR were performed only if Ct mean values of individual markers and treatments were
more than four cycles away from the Ct mean values of non-RT and H2O technical control
samples [59]. Experiments were performed without replicates if not stated otherwise.

3. Results
3.1. Proliferation Assay

A high proliferation potential was demonstrated in cells of all tested origins and
isolation methods. After seeding, cells quickly adapted to the culture conditions (~2 days).
An exponential cell growth followed until days 5–6. Cell growth curves are shown in
Figure 2.
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Figure 2. Cell growth curves of equine adipose-derived stem cells of passage 3. The proliferation
ability of ASCs-SVF (black) und ASCs-EXP (red), which were isolated from abdominal (abd, blue),
retrobulbar (rb, green) and subcutaneous (sc, dark red) adipose tissue of n = 3 horses, were deter-
mined on days 3 to 8. Cell counts are summarized for isolation techniques (A) and adipose tissue
localizations (B).

Significant differences were observed in cell counts among days (p < 0.001) but not
among isolation techniques (p = 0.64) and localizations (p = 0.35), using repeated measures
ANOVA; although, subjectively, abd-ASCs-EXP showed the best growth. Regarding days,
significant differences were detected between days 4 and 5 (p < 0.001), days 5 and 6
(p = 0.007), as well as days 6 and 7 (p = 0.049) by means of the Greenhouse–Geisser test.
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Interactions between days and isolation techniques (p = 0.64) as well as the days and
localizations (p = 0.35) were not significant, i.e., the influence of the localizations and
isolation techniques were the same at different time points. Additionally, with regard to the
PDT, neither a significant localization effect (p = 0.48) nor a significant isolation technique
effect (p = 0.91) was shown, i.e., the PDT of different adipose tissues and isolation methods
did not differ significantly. The cell counts and PDTs of individual groups can be found in
Supplementary Table S6.

3.2. Trilineage Differentiation Potential
3.2.1. Adipogenic Differentiation

Adipogenic differentiation was observed in all samples by transmitted light mi-
croscopy, except for rb-ASCs-EXP of one horse. While the NC retained their fibroblast-
like cell morphology, the adipogenically induced cells changed their morphology to large
rhomboid and drop-shaped cells containing lipid droplets from day five on.

Glycerol-3-Phosphate Dehydrogenase Assay

Upon examination of the GPDH activity, a significant localization effect was demon-
strated (Kruskal–Wallis test: p < 0.001). GPDH activity was higher in abd-ASCs-EXP com-
pared to rb-ASCs-EXP (p < 0.001) and sc-ASCs-EXP (p < 0.001), with no difference between the
latter two (p > 0.99). No significant difference was detected between induced abd-ASCs-EXP
and abd-ASCs-SVF (Mann–Whitney U Test: p = 0.28). When comparing the GPDH activity
of induced cells and NC, a significant treatment effect was demonstrated in abd-ASCs-EXP
and abd-ASCs-SVF (Mann–Whitney U Test: both p < 0.001). No GPDH activity (except for
rb-ASCs-EXP of one horse) and therefore no significant treatment effects were detected in
rb-ASCs-EXP (Mann–Whitney U Test: p = 0.18) and sc-ASCs-EXP (Mann–Whitney U Test:
p = 0.51). GPDH activities of induced and non-induced cells are shown in Figure 3B.

Nile Red Staining and Lipid/Nuclei-Ratio

In line with the transmitted light microscopic observations, fluorescence microscopy
after Nile red staining verified that all samples exhibited lipid droplet formation (apart
from rb-ASCs-EXP of one horse) with, subjectively, the highest formation in abd-ASCs-SVF.
In Figure 3A, fluorescence microscopic images after Nile red and DAPI staining are shown
exemplarily for one horse. The lipid/nuclei-ratio was determined 14 days after induction.
No significant differences were detected between ASCs-EXP of abd, rb and sc adipose tissues
(Kruskal–Wallis test: p = 0.078). When comparing abd-ASCs-EXP and abd-ASCs-SVF, on the
other hand, a significant difference was detected (Mann–Whitney U Test: p = 0.020), i.e.,
induced abd-ASCs-SVF had a significantly higher lipid/nuclei-ratio compared to induced
abd-ASCs-EXP (Figure 3C). All treatment effects proved significant (Mann–Whitney U
Test: all p < 0.001), i.e., all induced cells showed a significantly higher lipid/nuclei-ratio
compared to their corresponding non-induced NC.

3.2.2. Osteogenic Differentiation

Osteogenic differentiation was observed in all samples by transmitted light microscopy
with the first punctual, bright-shining deposits appearing in the extracellular matrix (ECM)
from day 11 onwards. These were transformed into blackish, punctual to extensive deposits
over the later course of induction. The extracellular calcium phosphate deposits were
verified by Von Kossa staining on day 21. Subjectively, abd-ASCs-EXP showed the highest
osteogenic differentiation potential, and no ECM-deposits could be observed within all NC
(Figure 4A).
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Figure 3. Adipogenic differentiation. (A) Fluorescence microscopic images of adipogenically 
induced equine adipose-derived stem cells (ASCs) after Nile red and DAPI staining of one 
representative horse on day 14. Preadipocyte differentiation was induced in ASCs harvested from 
abdominal (abd), retrobulbar (rb) and subcutaneous (sc) adipose tissue using the explant method 
(EXP) or using the stroma vascular fraction (SVF) after collagenase digestion. Cell nuclei were 
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except for non-induced negative control (NC), lipid droplets were detected. Scale bar: 100 µm (20× 

Figure 3. Adipogenic differentiation. (A) Fluorescence microscopic images of adipogenically induced
equine adipose-derived stem cells (ASCs) after Nile red and DAPI staining of one representative
horse on day 14. Preadipocyte differentiation was induced in ASCs harvested from abdominal (abd),
retrobulbar (rb) and subcutaneous (sc) adipose tissue using the explant method (EXP) or using the
stroma vascular fraction (SVF) after collagenase digestion. Cell nuclei were stained blue (DAPI),
non-polar lipids green and total lipids red (Nile red). In all induced samples, except for non-induced
negative control (NC), lipid droplets were detected. Scale bar: 100 µm (20× objective). (B) Glycerol-3-
phosphate dehydrogenase (GPDH) activity and (C) Lipid/nuclei-ratio of adipogenically induced
equine ASCs measured on day 14. NC were included in the experiment. Median values are shown
with interquartile ranges as error bars (n = 6). The p-values shown are from the Mann–Whitney
U test (comparisons of isolation methods and treatment effects) or from the Kruskal–Wallis test
(comparisons of adipose tissue localizations).
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Figure 4. Osteogenic differentiation. (A) Transmitted light microscopic images of the osteogenic
differentiation of equine adipose-derived stem cells (ASCs) of one representative horse. ASCs were
generated from abdominal (abd), retrobulbar (rb) and subcutaneous (sc) adipose tissue using the
explant method (EXP) or using the stroma vascular fraction (SVF) after collagenase digestion. Images
were taken either before (day 0) and after induction (day 7, 14 and 21). Two weeks after induction,
induced cells showed bright shining, punctual, extracellular deposits compared to non-induced
negative controls (NC), which increasingly turned into blackish deposits. On day 21, the calcium
phosphate deposits were detected by means of Von Kossa staining. Scale bar: 100 µm (10× objective).
(B) Alkaline phosphatase activity (on day 14) and (C) indices of osteogenic differentiation (IOD) of
osteogenically induced equine ASCs (on day 21) are shown for induced (ind) and NC cells. The
median value and interquartile range (error bar) are shown (n = 6). The p-values shown are from
the Mann–Whitney U test (comparisons of isolation methods and treatment effects) or from the
Kruskal–Wallis test (comparisons of adipose tissue localizations).
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Alkaline Phosphatase Activity Measurement

No significant localization effect was detected when comparing induced abd-ASCs-EXP,
rb-ASCs-EXP and sc-ASCs-EXP (Kruskal–Wallis Test: p = 0.06; Figure 4B). When comparing
abd-ASCs-EXP and abd-ASCs-SVF, no significant effect of isolation technique was detected
(Mann–Whitney U Test: p = 0.38). Regarding treatment effects, alkaline phosphatase
(ALP) appeared slightly higher in all induced samples (except for one horse); however, a
significantly increased enzyme activity of ALP was detected only for sc-ASCs-EXP ind vs.
NC (Mann–Whitney-U-Test: p = 0.033) but not for rb-ASCs-EXP (p = 0.41), abd-ASCs-EXP
(p = 0.21) and abd-ASCs-SVF (p = 0.18).

Index of Osteogenic Differentiation

After Von Kossa staining, calcium phosphate deposits were semi-quantified by the
IOD on day 21 (Figure 4C). A significant localization effect was detected (Kruskal–Wallis
Test: p = 0.049) with significantly higher IOD in abd-ASCs-EXP compared to rb-ASCs-EXP
(p = 0.047); the other adipose tissue localizations did not differ significantly from each
other (abd-ASCs-EXP vs. sc-ASCs-EXP: p = 0.33; rb-ASCs-EXP vs. sc-ASCs-EXP: >0.99).
Furthermore, abd-ASCs-EXP showed a significantly higher IOD than abd-ASCs-SVF (Mann–
Whitney U Test: p = 0.005).

3.2.3. Chondrogenic Differentiation

Chondrogenesis was observed by transmitted light microscopy subjectively in all
samples. Initially, an overview staining was achieved with HE. Alcian blue stains acidic
mucopolysaccharides produced by chondroblasts in the cartilage matrix in blue, whereas
nuclear fast red stains cell nuclei red (Figure 5A). In all samples, an accumulation of
acidic mucopolysaccharides was detected (abd-ASCs-EXP, abd-ASCs-SVF, rb-ASCs-EXP
and sc-ASCs-SVF), with no subjective difference among groups. In accordance with the
observations made by transmitted light microscopy, no significant differences were detected
between the two isolation methods (Mann–Whitney U Test: p = 0.66) and adipose tissue
localizations (Kruskal–Wallis Test: p = 0.15) using the modified “Bern Score” (Figure 5B),
i.e., adipose tissue localizations and isolation methods generated similar chondrogenic
differentiation potential.

3.3. Cardiomyogenic Differentiation

After consecutive incubation with Act A for 24 h, BMP-4 for 96 h and DKK-1 for 48 h,
no changes of cell morphology towards a cardiomyogenic phenotype and no spontaneous
beating activity of cells were detected. This applied to all concentrations of the induction
factors. Cells retained their fibroblast-like morphology, and “dome” formation was ob-
served due to over-confluent cell growth, which was of different intensity in the five donor
horses (see Figure 6A for the first and Figure 6B for the second sub-experiment). These
cell morphological observations were also confirmed by SYBR Green RT-qPCR. Neither
an upregulation of the cardiac markers MYH6, MYH7, TNNI3 nor of the early cardiac
markers NKX2-5 und GATA4 were observed in both sub-experiments. However, significant
downregulation of the pluripotency-associated markers MYC, OCT4/POUF5 and DNMT3B
was observed from time point T0 until three weeks after induction. All RT-qPCR-results
are shown in detail in Supplementary Figures S1 and S2.
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Figure 5. Chondrogenic differentiation. (A) Transmitted light microscopic images of chondrogenically
induced adipose-derived stem cells (ASCs) of one representative horse. ASCs were generated from
abdominal (abd), retrobulbar (rb) and subcutaneous (sc) adipose tissue using the explant method
(EXP) or using the stroma vascular fraction (SVF) after collagenase digestion. Cells were subsequently
stained with hematoxylin–eosin and Alcian Blue-Nuclear Fast Red to detect mucopolysaccharides on
day 21. Scale bar (black): 100 µm (10× objective), scale bar (yellow): 25 µm (40× objective). (B) The
chondrogenic differentiation potential of equine ASCs was assessed using the modified “Bern Score”
according to [63]. Due to the small size of the cell pellets, the preparation of histological sections was
not possible for all samples. The dot plot shows median values and interquartile ranges (error bars)
(n = 4 to 5).
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experiment. Cell morphology of two representative horses is shown before (day 0) and 21 days after 
cardiomyogenic induction. Neither relevant differences between the induced cells and non-induced 
negative controls nor a cardiomyogenic differentiation could be detected. Cells retained their 
fibroblast-like cell morphology and formed “domes”, which were more obvious in horse 16 
compared to horse 15, particularly three weeks after induction. Scale bar: 100 µm (10× objective). 

  

Figure 6. Application of substances for cardiomyogenic differentiation. Cell morphology of equine
adipose-derived stem cells exposed to different concentrations of activin (Act) A, bone morphogenetic
protein (BMP)-4 and Dickkopf (DKK)-1 in (A) a first and (B) a second sub-experiment. Cell morphol-
ogy of two representative horses is shown before (day 0) and 21 days after cardiomyogenic induction.
Neither relevant differences between the induced cells and non-induced negative controls nor a
cardiomyogenic differentiation could be detected. Cells retained their fibroblast-like cell morphology
and formed “domes”, which were more obvious in horse 16 compared to horse 15, particularly three
weeks after induction. Scale bar: 100 µm (10× objective).

4. Discussion

The present study aimed to examine and compare the proliferation and differentiation
potential of equine ASCs isolated from different adipose tissues via two isolation methods.
The main findings of our study were that isolation of equine ASCs from abd, rb and sc
adipose tissue is possible using the EXP and SVF isolation methods and that these ASCs
showed a high proliferation and adipogenic, osteogenic and chondrogenic differentiation
potential. However, under the test conditions selected, a cardiomyogenic differentiation of
equine ASCs could not be achieved with Act A, BMP-4 and DKK-1.
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This study is one of the first to compare equine ASCs from different adipose tissues. In
the literature, there are some studies in horses in which retroperitoneal, inguinal, subcuta-
neous adipose tissue, lipoma tissue or adipose tissue from the mesentery of the small colon
were compared on the basis of their differentiation and proliferation potential [17,27,70].
There have been no studies on horses that examined ASCs from rb adipose tissue un-
til today. Tissue source may have a direct impact on the in vitro properties of derived
MSCs [14,27]—even the cut depth during tissue sampling showed such influence [71–73].
The study of Baglioni et al. demonstrated that deep-lying visceral adipose tissues have a
lower proliferation and differentiation potential compared to sc adipose tissue [71]. In the
present study, it was first hypothesized that deep-lying rb adipose tissue has a lower poten-
tial in this regard. On the contrary, we showed in the experiments that equine ASCs had a
comparably high proliferation potential, regardless of the adipose tissue source. We used a
DMEM high glucose medium to culture the equine ASCs from different sources. In other
species, it was described that decreasing glucose concentration increases the proliferation
ability of MSCs [74,75]. It could thus be speculated that an even better proliferation could
have been achieved by using a lower glucose concentration in the present study. However,
PDT in the present study amounted to an average of about 41–58 h, which is in rather
good agreement with literature data, where PDTs of 40–46 h [60] or 2,2 days (=approx.
53 h) have been reported for horses [76]. It has also been described in previous studies for
horses [14,77] and rats [78] that ASCs have a higher proliferation potential than MSCs from
umbilical cord blood (UCB-MSCs) and bone marrow (BM-MSCs). The growth potential
of MSCs has not only a high relevance for the establishment of in vitro models, but also a
high clinical relevance for regenerative medicine [13,14,79].

By examining the trilineage differentiation potential in vitro, conclusions can be drawn
on the multipotent characteristics of MSCs. Consequently, a multipotent differentiation
potential could be demonstrated in abd-ASCs-EXP, abd-ASCs-SVF, rb-ASCs-EXP and sc-
ASCs-EXP in this study, whereby differences could be found in cells of different isolation
methods and adipose tissue localizations. It had already been proven in various studies
that the tissue origin of MSCs plays a decisive role [14,15,17,27]. In adipogenic differen-
tiation, we showed that the use of 10% FBS led to a lipid droplet accumulation that was
observed from the fifth day on. Other studies selected considerably less induction time
(e.g., three days) and the use of rabbit serum [14,15,29]. According to various studies, a
Nile red staining [31,61,62] and measurement of the lipid/nuclei-ratio [61,62] were per-
formed. Contrary to studies of Lee et al. and Gittel et al. [19,29], ASCs-SVF exhibited a
significant higher adipogenic differentiation potential compared to ASCs-EXP on day 14,
but only abd-ASCs were examined in the present study. In addition, significant localiza-
tion effects were shown within the GPDH activity measurement. Even if GPDH activity
measurement has not yet been implemented in horses’ literature as standard procedure,
GPDH represents an important differentiation marker, as described in various studies for
human [80,81] and murine MSCs [82]. It can be assumed that increased GPDH activity
may be beneficial for cellular utility in cell-based therapy. In cattle, for example, Becker
et al. suggested that increased GPDH activity could help sequester excessive serum lipids,
which may prevent lipid accumulation in other tissues. Moreover, adipogenically induced
bovine ASCs demonstrated highest GPDH activity at the lowest insulin concentration [62].
Hence, we suggest that horses with hyperinsulinemia, as in equine metabolic syndrome
(EMS), might have a lower GPDH activity. This is in accordance with Marycz et al., who
demonstrated that equine EMS-ASCs have a lower adipogenic differentiation capacity [83].
Therefore, ASCs for cell-based therapies should not be derived from EMS-affected donors.
Regarding adipogenic differentiation in horses, significant localization effects were also
described by Arnhold et al., who demonstrated that ASCs from retroperitoneal adipose
tissue had a higher adipogenic differentiation potential than ASCs from lipoma and sc
adipose tissue [27]. On the contrary, it was proven in rats that sc-ASCs exhibited a higher
adipogenic differentiation potential than visceral ASCs because of a lower expression of
stemness markers amongst others [84]. However, how far these markers of stemness differ
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in equine abd-ASCs compared to rb- and sc-ASCs was not investigated in the present
study. Finally, a number of studies observed no significant localization effects regarding
adipogenic differentiation potential of equine [76,85] and rabbit MSCs [86].

In various studies, MSCs of different species and tissue sources, consistent with our
work, have been shown to have a high osteogenic differentiation potential [15,17,27,60,76].
MSCs from umbilical cord blood and tissue have a lower osteogenic differentiation poten-
tial than ASCs, BM-MSCs and MSCs from tendon tissue (TT-MSCs) [14]. Equine ASCs have
a particularly high potential for in vitro osteogenesis compared to human [15], porcine and
canine ASCs [87]. In the present study, osteogenesis was demonstrated by means of Van
Kossa staining and determination of the IOD on day 21 [14,15,27,29,88]. In addition, an
ALP assay was performed on day 14 in accordance with other studies [27,89,90]. Samples
from all but one horse showed slightly increased and sc-ASCs-EXP significantly increased
ALP activity. ALP represents an important marker within osteoblast differentiation [89].
Additionally, on day 14, a matrix mineralization was observed by transmitted light mi-
croscopy, which was, compared to the ALP activity, least pronounced in the one horse. In
the study by Gittel et al., no significant differences were shown between ASCs of EXP and
SVF isolation methods when measuring the IOD, but only sc-ASCs were examined in their
study [29]. In the present work, on the other hand, abd-ASCs-EXP exhibited a significantly
higher IOD compared to abd-ASCs-SVF, as well as abd-ASCs-EXP compared to rb-ASCs-EXP.

Chondrogenic differentiation was performed in a standard 3D micromass pellet cul-
ture according to previous studies [14,15,91,92]. NC in pellet culture could not be included
because preliminary tests had shown that a compact pellet structure could not be achieved
without using chondrogenic induction factors and that the pellet could even disintegrate, as
also described in previous studies [93,94]. A chondrogenic differentiation potential could
be detected in all samples after Alcian blue staining, where no differences could be detected
between ASCs from the different localizations and isolation methods in the present study
using the modified “Bern Score” [63]. On the other hand, significant differences between
ASCs of different adipose tissue localizations could be demonstrated in the study by Arn-
hold et al., in which ASCs from retroperitoneal and sc adipose tissue showed a higher
chondrogenic differentiation potential than ASCs from lipoma fat [27]. A comparable
chondrogenic differentiation potential of MSCs of the SVF and EXP isolation methods was
demonstrated in other studies [19,29]. The data suggest that equine ASCs from abd, rb
and sc adipose tissue may be suitable for clinical use in cartilage regeneration. However,
further investigation is necessary, especially regarding the paracrine activity of the cells.
Moreover, studies investigating the immunomodulatory properties of MSCs based on their
tissue origin would be advisable, as has already been described for different species [95–98].
The investigation of the in vitro chondrogenesis represents an important basis for the clini-
cal application of MSCs in equine orthopedics. In horses, the first drug (“Arti-Cell®Forte”,
Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany) based on chon-
drogenically preconditioned MSCs from peripheral blood was approved for the market
in 2019 to reduce lameness in aseptic joint diseases [99–101]. In the case of adipogenic,
osteogenic and chondrogenic differentiation, follow-up studies would be advisable in
which not only ASCs-EXP and ASCs-SVF from the abd localization, but also ASCs of the
EXP and SVF methods from rb and sc adipose tissue are compared with each other.

The cardiomyogenic differentiation potential was examined solely in equine abd-
ASCs-SVF since previous studies in other species usually used ASCs-SVF for in vitro car-
diomyogenesis [47,49,102,103]. In the present study, abd-ASCs also achieved good results
regarding the proliferation and trilineage differentiation potential. However, there have not
yet been studies by other research groups examining the cardiomyogenic differentiation
potential in equine ASCs. The success of the cardiomyogenic differentiation depends not
only on the cell type chosen (multipotent vs. pluripotent), but also on the differentiation
media, the induction factor concentrations and the cell culture model selected (2D vs.
3D) [104,105]. Compared to the induction factor 5-AZA used in our previous study [59],
there are comparatively few publications on Act A, BMP-4 and DKK-1 in which these
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factors were used in the cardiomyogenic differentiation of ASCs. To the best of the au-
thors’ knowledge, the protocol chosen in this study has so far not been used in MSCs.
However, there are studies in humans and rodents using either BMP-4 alone [46,48,106]
or in combination with other factors, such as bFGF [46], VEGF [47] or 5-AZA [48]. For
the cardiomyogenic induction of pluripotent embryonic stem cells (ESCs) and iPSCs, the
factors Act A, BMP-4 and DKK-1 are used much more frequently [54,107,108] than in MSCs.
In this regard, for example, 10 ng/mL [107] or even 100 ng/mL Act A [54] were used for
24 h, 10 ng/mL BMP-4 for 4 days and DKK-1 on days 5 to 7 [108] or on days 5 to 11 [54],
as in the present study. DKK-1 should not be used on days two to three, as it initially
inhibits the induction of cardiomyogenesis [50]. Furthermore, Van Dijk et al. hypothesized
that when ASCs attach to ECM molecules, e.g., laminin, there is an increase in stem cell
differentiation. These ECM molecules are physiologically present in healthy hearts and
are upregulated during myocardial infarction. In particular, laminin plays a role in the
late cardiomyogenic differentiation of ASCs in vitro [103]. In the present study, however,
a cardiomyogenic differentiation of equine abd-ASCs-SVF could not be achieved by the
induction factors Act A, BMP-4 and DKK-1 in combination with a laminin coating. An up-
regulation of cardiac markers in the induced cells compared to the non-induced NC was not
detected by means of RT-qPCR. At time point T0, the expression of pluripotency-associated
markers OCT4/POUF5, MYC and DNMT3B were confirmed in the cells examined. Within
all induction experiments, a significant downregulation of the gene expression of these
markers was observed at time point T3, both in induced and non-induced cells (apart
from DNMT3B and OCT4/POUF5, T0 vs. T3-NC, in the second sub-experiment). Studies
in rodents and humans have shown that when MSCs are induced to differentiate, there
is a downregulation of pluripotency-associated ESC markers [109,110]. In the present
study, however, not only induced cells were affected by this downregulation, but also NC,
so that cardiomyogenic differentiation activity was excluded. That this downregulation
can be associated with the occurrence of senescence in cells has already been discussed
in detail in Trachsel et al. [59]. While some studies demonstrated that BMPs possess a
cardiomyogenesis-promoting effect [106,111,112], other research groups showed that tran-
sient inhibition of BMPs is necessary for in vitro cardiomyogenesis [25,113]. Although
many different in vitro differentiation protocols were studied in the literature, it has not
yet been possible to find the optimal cardiomyogenic inducer [114], including this study
in horses. Our previous study also failed to determine cardiomyogenic induction by us-
ing 5-AZA [59], as has already been described in other studies, particularly for human
ASCs [110,115]. The need for future studies further investigating in vitro cardiomyogenesis
of MSCs is evident [116].

Due to the heterogeneity of the study population (different breed, age, sex and pre-
existing conditions of horses), which must be regarded as a limitation, the present study
did not focus on the individual animal itself, but rather on the comparison of MSCs from
different isolation techniques and adipose tissue localizations. Follow-up studies with a
more homogenous donor cell population are advised. It should also be considered that the
passage number, tissue source, isolation method and culture conditions can influence the
characteristics of cells in vitro, as has already been described in various studies [26,33].

5. Conclusions

The results obtained in the present study regarding the proliferation and multilineage
differentiation potential of equine ASCs provide important insights for preclinical studies
in large animal models and represent a basis for translational medicine (clinical appli-
cability of MSCs), even if the in vivo behavior of the cells certainly cannot be translated
one-to-one from the in vitro behavior. Further studies are advisable in which the paracrine
mechanisms of MSCs are examined on large animal models. Regarding the cardiomyo-
genic differentiation potential, it is recommended to use pluripotent stem cells instead of
multipotent ASCs, especially iPSCs, which have a higher cardiomyogenic differentiation
potential due to their pluripotency behavior. The knowledge gained from in vitro studies
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on large animal models can also be relevant for questions relating to the application of
MSCs in human medicine.
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