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Abstract: Monitoring cortisol replacement therapy in congenital adrenal hyperplasia (CAH) patients
is vital to avoid serious adverse events such as adrenal crises due to cortisol underexposure or
metabolic consequences due to cortisol overexposure. The less invasive dried blood spot (DBS) sam-
pling is an advantageous alternative to traditional plasma sampling, especially in pediatric patients.
However, target concentrations for important disease biomarkers such as 17α-hydroxyprogesterone
(17-OHP) are unknown using DBS. Therefore, a modeling and simulation framework, including a
pharmacokinetic/pharmacodynamic model linking plasma cortisol concentrations to DBS 17-OHP
concentrations, was used to derive a target morning DBS 17-OHP concentration range of 2–8 nmol/L
in pediatric CAH patients. Since either capillary or venous DBS sampling is becoming more common
in the clinics, the clinical applicability of this work was shown by demonstrating the comparability of
capillary and venous cortisol and 17-OHP concentrations collected by DBS sampling, using a Bland-
Altman and Passing-Bablok analysis. The derived target morning DBS 17-OHP concentration range
is a first step towards providing improved therapy monitoring using DBS sampling and adjusting
hydrocortisone (synthetic cortisol) dosing in children with CAH. In the future, this framework can be
used to assess further research questions, e.g., target replacement ranges for the entire day.

Keywords: congenital adrenal hyperplasia; 17α-hydroxyprogesterone; dried blood spots; target
concentration range; pediatrics; pharmacometrics

1. Introduction

Congenital adrenal hyperplasia (CAH) is a form of adrenal insufficiency most com-
monly leading to a lack of the enzyme P450c21 and, therefore, to cortisol deficiency. The
accumulation of cortisol precursors, including dehydroepiandrosterone and androstene-
dione (adrenal androgens), often results in clinical signs of virilization or hirsutism in
female patients and acceleration of skeletal age in both sexes [1–3]. Cortisol deficiency in
CAH requires life-long hormone replacement therapy with hydrocortisone (synthetic corti-
sol) in a daily dose of 10–15 mg/m2 given three times per day to the growing patient [4].
Cortisol replacement needs to be carefully monitored to avoid adverse events such as
adrenal crisis (cortisol underexposure) or Cushing’s syndrome (cortisol overexposure) [2,4].
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Dried blood spot (DBS) sampling, when compared to plasma blood sampling, is a
less invasive option to monitor cortisol and further steroid marker concentrations. DBS
sampling only requires full blood volumes of approximately 20 µL, obtained via a finger
prick and dropped on filter paper [5–7]. The feasibility of DBS sampling, as well as long-
term stability at room temperature, was investigated and confirmed for CAH-relevant
steroids in DBS in previous literature [8–10]. Therefore, DBS sampling can facilitate ther-
apeutic monitoring for pediatric CAH patients. However, therapeutic monitoring using
DBS measurements remains a challenge since no target blood biomarker concentrations
are currently established for the DBS methodology. Analyte concentrations collected by
DBS relate linearly to plasma or serum concentrations, differing by a factor specific to the
analyte [7] or nonlinearly, as is observed for cortisol [11].

Knowing target morning biomarker concentrations is vital for successful CAH ther-
apy monitoring. A key biomarker for guiding replacement therapy in CAH is 17α-
hydroxyprogesterone (17-OHP), a precursor of cortisol and adrenal androgens, which
accumulates in CAH patients. The administration of hydrocortisone downregulates adreno-
corticotropic hormone (ACTH) and sequentially the 17-OHP concentration by negative
feedback [1,2,12]. The target morning 17-OHP concentration range in traditionally mea-
sured plasma has been suggested to be 12–36 nmol/L (dependent on body surface area) in
CAH patients [2] but is still unknown for concentrations collected by DBS sampling. The
aim of this analysis was to derive a DBS 17-OHP morning target concentration range using
nonlinear mixed effects (NLME) modeling, a pharmacometric modeling and simulation
approach. In contrast to classical regression methods, NLME modeling enables the quantifi-
cation of the relationship between, e.g., plasma and DBS concentrations by considering all
available data simultaneously, thereby quantifying within- and between-subject-variability
and explaining this variability using subject-specific characteristics [13]. The modeling
and simulation-derived target range can pave the way for guidance for clinicians when
investigating biomarker concentrations using DBS sampling and could have the potential
to improve therapy monitoring in pediatric CAH patients.

2. Methods

To derive a target morning 17-OHP concentration range using DBS sampling, a mod-
eling and simulation framework was developed, leveraging different sources of drug
pharmacokinetics (PK, i.e., cortisol concentrations) and biomarker pharmacodynamics (PD,
i.e., 17-OHP concentrations), and exploring their relationships. This framework approach
was chosen because of the limited availability of data from clinical studies or routine
clinical data collection, i.e., clinical study data including plasma cortisol concentrations
in pediatric CAH patients, venous 17-OHP concentrations from simultaneous DBS mea-
surements, endogenous plasma cortisol concentrations in healthy children and 17-OHP
target morning concentrations only known in plasma (Figure 1). An overview of the pop-
ulation characteristics in all used datasets can be found in the Supplementary Material
(Supplementary Table S1).

The following sections describe the different steps of this framework in detail, namely:
(A) the development of a PK/PD model linking plasma cortisol concentrations and venous
DBS 17-OHP concentrations based on a pediatric CAH patient study, (B) a Bland-Altman
and Passing-Bablok regression analysis to investigate the comparability of simultaneously
measured venous and capillary 17-OHP concentrations, because in clinical practice both
matrices can be used for DBS sampling in pediatric CAH patients; and finally, (C1) the
derivation of a DBS 17-OHP target morning range by leveraging the developed PK/PD
model and plasma cortisol data of non-CAH children and (C2 and C3) assessing the
plausibility of the derived 17-OHP target morning concentration from DBS sampling by
comparing to an expected target range, based on 17-OHP target morning concentration
range in plasma, known from the literature.
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Figure 1. Modeling and simulation framework to derive target morning concentration range for the 
biomarker 17α-hydroxyprogesterone (17-OHP) sampled from dried blood spots (DBS) in pediatric 
congenital adrenal hyperplasia (CAH) patients in clinical routine.For the goal of this analysis, the 
derivation of the target range (dark blue box C1), a pharmacokinetic/pharmacodynamic (PK/PD) 
model, quantitatively linking plasma cortisol and venous DBS 17-OHP, was developed (A). The 
applicability of the derived target range, which was based on venous DBS data, to capillary DBS 
sampling was shown in a Bland–Altman analysis and Passing–Bablok regression (B). To check for 
plausibility (C3), the derived target range was compared to a calculated expected DBS 17-OHP 
target range (C2). 
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Model Development 
2.1.1. Data and Graphical Evaluation 

To determine a relationship between pediatric plasma cortisol and venous DBS 17-
OHP concentrations, data from a phase 3 trial for the pediatric hydrocortisone formulation 
Alkindi® (Cardiff Medicentre, Cardiff, UK) (ClinicalTrials.gov Identifier: NCT02720952) 
[14,15] was used (Figure 1, Box A). In this study, 24 pediatric adrenal insufficiency patients 
(23 CAH patients, 1 hypopituitarism patient) received an individualized morning dose of 

Figure 1. Modeling and simulation framework to derive target morning concentration range for the
biomarker 17α-hydroxyprogesterone (17-OHP) sampled from dried blood spots (DBS) in pediatric
congenital adrenal hyperplasia (CAH) patients in clinical routine.For the goal of this analysis, the
derivation of the target range (dark blue box C1), a pharmacokinetic/pharmacodynamic (PK/PD)
model, quantitatively linking plasma cortisol and venous DBS 17-OHP, was developed (A). The
applicability of the derived target range, which was based on venous DBS data, to capillary DBS
sampling was shown in a Bland–Altman analysis and Passing–Bablok regression (B). To check for
plausibility (C3), the derived target range was compared to a calculated expected DBS 17-OHP target
range (C2).

2.1. Step A: Establishing a Quantitative Relationship between Plasma Cortisol (PK) and Venous
DBS 17-OHP (PD) Concentrations in Pediatric CAH Patients: PK/PD Clinical Trial Data and
Model Development
2.1.1. Data and Graphical Evaluation

To determine a relationship between pediatric plasma cortisol and venous DBS 17-OHP
concentrations, data from a phase 3 trial for the pediatric hydrocortisone formulation Alkindi®

(Cardiff Medicentre, Cardiff, UK) (ClinicalTrials.gov Identifier: NCT02720952) [14,15] was
used (Figure 1, Box A). In this study, 24 pediatric adrenal insufficiency patients (23 CAH
patients, 1 hypopituitarism patient) received an individualized morning dose of Alkindi®

(Cardiff Medicentre, Cardiff, UK). For the PK/PD model development, the data of 12 young
children, aged 2–6 years and of 6 infants, aged 28 days-2 years old, was used. Total plasma
cortisol concentrations were available prior to dosing, 1 h and 4 h post-dose and in the
young children cohort at 2 additional time points. Further details on the clinical trial
data are described in Michelet et al. [16]. Additionally, venous DBS cortisol and 17-OHP
concentrations were measured in the same patients [11]. The data used for PK/PD modeling
were graphically analyzed, investigating the DBS 17-OHP concentrations as a function of
time and of plasma cortisol concentrations (R (4.0.2) and R Studio (1.3.1056) [17,18]).

2.1.2. PK/PD Modeling

For the development of the PK/PD model characterizing the relationship between
cortisol in plasma and 17-OHP in venous DBS, NLME modeling was applied [13]. The
model development was based on a previously published pediatric hydrocortisone PK
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model [11,16]. A sequential approach was used [19] in which the individual PK model
parameters from this previously published PK model [11] were included in the model
dataset, and the PD parameters were estimated.

Since 22 (25%) out of 88 venous DBS 17-OHP concentrations were below the lower
limit of quantification (LLOQ, <1.3 nmol/L: 22.5% in young children and 35.3% in infants),
the so-called M3 method [20] was applied (for more details see Supplementary Material).

For the PK/PD model development, the software packages NONMEM (7.4.3, ICON,
Dublin, Ireland) and Perl speaks NONMEM 4.7.0 (Uppsala University, Uppsala, Sweden)
were used, embedded in the workbench Pirana (version 2.9.6) [21,22]. Model evaluation
and selection were performed using standard diagnostics such as the objective function
value (OFV), parameter plausibility, relative standard errors (RSE), goodness-of-fit (GOF)
plots and visual predictive checks (VPC, n = 1000).

2.2. Step B: Comparison of Capillary and Venous DBS Cortisol and 17-OHP Concentrations
from Routine Monitoring in Pediatric CAH Patients: Bland-Altman and Passing-Bablok
Regression Analysis

In clinical practice, either venous or capillary DBS samples are usually obtained in
pediatric CAH patients. However, the trial data used for the PK model [11] and PK/PD
model development in step (A) included, besides plasma cortisol concentrations, venous
(not capillary) DBS cortisol and 17-OHP concentrations only. To assess the comparability
between capillary and venous DBS cortisol and 17-OHP concentrations, a Bland–Altman
analysis as well as a Passing–Bablok regression were conducted (Figure 1, Box B) [23,24].
CAH monitoring data obtained from routine clinical sampling at the Charité-University
Hospital Berlin was used for the analysis, including DBS cortisol and 17-OHP concentra-
tions from venous and capillary blood, simultaneously measured in 15 pediatric patients
aged from 2 months to 11 years (median: 8 years). One parallel venous and capillary
DBS sample was obtained from each patient between the morning and late afternoon and
between 1–9 h after the last HC administration.

In the Bland-Altman analysis, the differences in the measurements in the two matrices
were plotted versus the mean of the capillary and venous concentrations. Due to the
large concentration range, the relative method differences were presented. The agreement
interval was defined as within the mean difference ± 1.96*standard deviation (SD) [23,25].

For the Passing-Bablok regression, scatter plots of venous versus capillary DBS con-
centrations were generated, including a regression line, a 95% confidence interval (CI) of
its intercept and slope, as well as a regression function. The intercept and slope of the line
of identity laying within the CI of the regression were used to demonstrate whether there
was no constant and proportional difference between the two examined methods [24,26].

2.3. Step C: Derivation and Evaluation of Venous and Capillary DBS 17-OHP Target Morning
Concentration Range for Pediatric CAH Patients: PK/PD Model Predictions

The developed PK/PD model (Figure 1, Box A) was applied to derive a DBS 17-
OHP target morning concentration range in simulations (n = 1000; Figure 1, Box C1).
To predict physiological (=healthy) DBS 17-OHP concentrations, physiological plasma
cortisol concentrations, densely sampled over 24 h from 28 non-CAH children aged from
5 to 9 years (Figure 2) [27,28], were used as the PK (plasma cortisol) input, inhibiting the
synthesis of 17-OHP. The 17-OHP compartment was initialized with the median 17-OHP
baseline, i.e., morning concentrations observed in the young children and infants in the
Alkindi® (Cardiff Medicentre, Cardiff, UK) trial (=14.4 nmol/L). The prediction focused on
physiological DBS 17-OHP concentrations simulated between 6 and 8 a.m. in order to cover
the monitoring time range of interest, corresponding to the time before the morning dose.
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Figure 2. Individual plasma cortisol concentration-time profiles (gray) and median plasma cortisol
concentration-time profiles (blue) obtained over 24 h from 28 healthy children aged 5–9 years.

To avoid a higher risk for adverse events, it is advised not to let the 17-OHP concentra-
tions decrease to physiological ranges in CAH therapy [1]. Indeed, among clinical experts,
the target 17-OHP concentrations are assumed to be approximately 3–5 times higher than
physiological 17-OHP concentrations. Thus, the simulated physiological DBS 17-OHP
morning concentrations were multiplied by 3 and by 5 to approximate the DBS 17-OHP
target morning concentration range.

To assess the plausibility of the simulation-derived DBS 17-OHP target morning
concentration range, a simple calculation of an expected DBS 17-OHP target morning range
was performed (Figure 1, Box C2). The calculation of the expected range was based on
baseline 17-OHP concentrations which were simultaneously measured in plasma and in
DBS in the same young children and infants who were investigated during the Alkindi®

(Cardiff Medicentre, Cardiff, UK) study. The ratio of these plasma and DBS 17-OHP baseline
concentrations observed in the two age groups as well as the (adult) plasma 17-OHP target
morning concentration range known from the literature [2], were used for determining the
expected target morning range to which the model-based derived target morning range
was then compared (Figure 1, Box C3).

3. Results
3.1. Step A: Establishing a Quantitative Relationship between Plasma Cortisol (PK) and Venous
DBS 17-OHP (PD) Concentrations in Pediatric CAH Patients: PK/PD Clinical Trial Data and
Model Development
3.1.1. Data and Graphical Evaluation

The observed concentration-time profiles of DBS 17-OHP (Figure 3A) indicated a
trend towards a u-shape relationship, which was more pronounced in the young children
patient cohort due to the longer sampling interval. This u-shape trend indicated an initial
decrease of 17-OHP, likely due to the hydrocortisone treatment-mediated inhibition of
17-OHP synthesis, followed by a subsequent increase of 17-OHP due to decreasing plasma
cortisol concentrations after hydrocortisone administration. The result of these mecha-
nisms/processes was also visible in DBS 17-OHP versus plasma cortisol concentrations
(Figure 3B), revealing 17-OHP decreasing with increasing cortisol concentrations, except
the highest cortisol concentrations measured right after hydrocortisone administration, i.e.,
before the feedback mechanism set in (gray box in Figure 3B). The DBS 17-OHP concentra-
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tions, including the concentrations at baseline, had similar ranges in young children and
infants.
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Figure 3. 17α-hydroxyprogesterone (17-OHP) concentrations measured in venous dried blood spots
(DBS) over time after first (baseline) observation, semi-log scale (A) and versus plasma cortisol
concentration, log scales (B), in pediatric CAH patients receiving hydrocortisone single morning dose.
Red: young children, blue: infants, dashed line: lower limit of quantification = 1.3 nmol/L, gray box:
highest plasma cortisol concentrations directly after hydrocortisone administration.

3.1.2. PK/PD Modeling

Based on the exploratory graphical analysis, the PK/PD model was developed to
describe a cortisol-mediated inhibition of the 17-OHP synthesis, concretely on its syn-
thesis rate ksyn (indirect response model; Figure 4). The full PK/PD model scheme
(Supplementary Figure S1), information on the estimated pediatric individual parame-
ters from Stachanow et al. [11], which were part of the dataset, corresponding model
equations and the NONMEM model code can be found in Supplementary Materials.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 4. Simplified schematic representation of developed pharmacokinetic/pharmacodynamic 
(PK/PD) model for cortisol (top box)-mediated inhibition of synthesis of 17α-hydroxyprogesterone 
(17-OHP; bottom box). Pediatric cortisol concentration in plasma (Cpla, child), pediatric cortisol 
amount (Apla), central volume of distribution (Vcen), 17-OHP concentration in dried blood spots (C17-

OHP, DBS), synthesis rate constant of 17-OHP (ksyn), and first-order degradation rate constant of 17-
OHP (kdeg). For the full model scheme of the developed PK/PD model, see Supplementary Material. 

The maximum inhibitory effect (Imax) was pre-defined as 1 (=100% inhibition), and the 
Hill Factor (Hill) was fixed to 1 after obtaining estimates close to 1 (Table 1). The synthesis 
rate constant ksyn was defined as the product of the estimated first-order degradation rate 
constant (kdeg) and the DBS 17-OHP concentration at baseline (17-OHPBASE). The cortisol 
concentration inhibiting 50% of the maximum inhibitory effect (IC50) was estimated to be 
21 nmol/L with a high estimated interindividual variability (IIV on IC50 = 104%CV), which 
was not explained by any covariate present in the dataset, such as body weight, 
corticosteroid-binding globulin (CBG) or albumin. Relative standard errors of the 
estimated model parameters were low, except for IIV on IC50 (53%). 

Table 1. Parameter estimates of developed pharmacokinetic/pharmacodynamic (PK/PD) model for 
cortisol (drug) and 17α-hydroxyprogesterone (biomarker) concentrations in young children and 
infants. 

Parameter Estimate (RSE, %) 
Structural model  

kdeg [1/h] 1.22 (7.0) 
IC50 [nmol/L] 
Imax [-] 
Hill [-] 

21.0 (27) 
1 * 
1 * 

 
Interindividual variability (IIV)  

IIV on kdeg, %CV 5.0* 
IIV on IC50, %CV 104 (53) 
IIV on 17-OHPBASE, %CV 131 * 
 
Residual unexplained variability (RUV)  

RUV [%CV] 38.1 (15) 
* Fixed parameter. Residual variability was estimated by an additive model on a logarithmic scale.  
17-OHPBASE: 17α-hydroxyprogesterone (17-OHP) dried blood spot concentration at baseline, Hill: 
Hill coefficient, IC50: Cortisol concentration inhibiting 50% of the maximum inhibitory effect Imax, 
kdeg: first-order degradation rate constant of 17-OHP, RSE: Relative standard error. 

Figure 4. Simplified schematic representation of developed pharmacokinetic/pharmacodynamic
(PK/PD) model for cortisol (top box)-mediated inhibition of synthesis of 17α-hydroxyprogesterone
(17-OHP; bottom box). Pediatric cortisol concentration in plasma (Cpla, child), pediatric cortisol amount
(Apla), central volume of distribution (Vcen), 17-OHP concentration in dried blood spots (C17-OHP, DBS),
synthesis rate constant of 17-OHP (ksyn), and first-order degradation rate constant of 17-OHP (kdeg).
For the full model scheme of the developed PK/PD model, see Supplementary Material.
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The maximum inhibitory effect (Imax) was pre-defined as 1 (=100% inhibition), and the
Hill Factor (Hill) was fixed to 1 after obtaining estimates close to 1 (Table 1). The synthesis
rate constant ksyn was defined as the product of the estimated first-order degradation rate
constant (kdeg) and the DBS 17-OHP concentration at baseline (17-OHPBASE). The cortisol
concentration inhibiting 50% of the maximum inhibitory effect (IC50) was estimated to
be 21 nmol/L with a high estimated interindividual variability (IIV on IC50 = 104 %CV),
which was not explained by any covariate present in the dataset, such as body weight,
corticosteroid-binding globulin (CBG) or albumin. Relative standard errors of the estimated
model parameters were low, except for IIV on IC50 (53%).

Table 1. Parameter estimates of developed pharmacokinetic/pharmacodynamic (PK/PD) model
for cortisol (drug) and 17α-hydroxyprogesterone (biomarker) concentrations in young children
and infants.

Parameter Estimate (RSE, %)

Structural model
kdeg [1/h] 1.22 (7.0)
IC50 [nmol/L]
Imax [-]
Hill [-]

21.0 (27)
1 *
1 *

Interindividual variability (IIV)
IIV on kdeg, %CV 5.0*
IIV on IC50, %CV 104 (53)
IIV on 17-OHPBASE, %CV 131 *
Residual unexplained variability (RUV)
RUV [%CV] 38.1 (15)

* Fixed parameter. Residual variability was estimated by an additive model on a logarithmic scale. 17-OHPBASE:
17α-hydroxyprogesterone (17-OHP) dried blood spot concentration at baseline, Hill: Hill coefficient, IC50: Cortisol
concentration inhibiting 50% of the maximum inhibitory effect Imax, kdeg: first-order degradation rate constant of
17-OHP, RSE: Relative standard error.

The GOF plots and the VPC indicated that the venous DBS 17-OHP observations were
appropriately described by the PK/PD model (Supplementary Materials, Figures S2 and S3).

3.2. Step B: Comparison of Capillary and Venous DBS Cortisol and 17-OHP Concentrations
from Routine Monitoring in Pediatric CAH Patients: Bland-Altman and Passing-Bablok
Regression Analysis

To investigate whether venous DBS concentrations (as in step (A)) are comparable to
capillary DBS concentrations, which can be obtained in clinical practice as well, the Bland-
Altman and Passing-Bablok regression analyses were conducted (Figure 1, Box B). The
Bland-Altman analysis (Figure 5A,B) did not show any substantial bias between capillary
and venous DBS measurements for the drug (cortisol mean difference: +3.13%) and 17-OHP
(mean difference: +3.73%). Almost all data points except one each (93% of both cortisol and
17-OHP measurements) were within the range of the mean difference ± 1.96*SD. Moreover,
the Passing–Bablok regression also showed an agreement between the venous and capillary
DBS concentrations since, for both cortisol and 17-OHP, the lines of identity lay within the
CIs of the regression lines (Figure 5C,D). The slopes of the regression lines for cortisol and
17-OHP were close to 1 (1.0 and 0.7, respectively), and the y-intercept for cortisol was close
to 0 (0.8), indicating a high similarity between capillary and venous DBS concentrations.

Thus, the capillary and venous DBS concentrations were considered comparable for
cortisol and 17-OHP. This finding allowed us to use the developed PK/PD model for
deriving a 17-OHP target morning range for DBS sampling, which is applicable for both
venous and capillary DBS 17-OHP concentrations (Figure 1, Box C1).
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Figure 5. Comparison between capillary and venous cortisol (A,C) and 17α-hydroxyprogesterone
(17-OHP, A,D) dried blood spot (DBS) concentrations, obtained from 15 pediatric congenital adrenal
hyperplasia (CAH) patients. (A,B): Bland–Altman analysis. Capillary-venous/mean of differ-
ence [%] versus the mean of capillary venous cortisol and DBS 17-OHP concentrations. Red
line: Mean difference [%], black lines: Mean difference—1.96*SD (standard deviation) and mean
difference + 1.96*SD [%]. (C,D): Passing–Bablok regression. Red line: line of identity, blue line:
regression line, gray area: 95% confidence interval for the regression line.

3.3. Step C: Derivation and Evaluation of Venous and Capillary DBS 17-OHP Target Morning
Concentration Range for Pediatric CAH Patients: PK/PD Model Predictions

The PK/PD model-based derivation of the DBS 17-OHP morning target concentration
range for pediatric CAH patients resulted in a range of 2.1–8.3 nmol/L (Figure 6, median:
4.4 nmol/L) after multiplying simulated physiological (=healthy) concentrations by factors
3 and 5 as assumed ratios for the target-to-physiological 17-OHP concentrations (see
Section 2.3). The derived target range (interquartile range) excluded 25% of the lowest and
25% of the highest concentrations of all simulated physiological DBS 17-OHP morning
(6–8 a.m.) concentrations due to the very high variability in the prediction.

To assess the plausibility of the derived target range (Figure 1, box C3), an ap-
proximately expected DBS 17-OHP target morning range was calculated (Figure 1, box
C2) based on the known (adult) 17-OHP target morning concentration range in plasma
(12–36 nmol/L) [2], divided by the median plasma/DBS 17-OHP morning concentration
ratio of 9.29 which was observed in young children and infants (n = 18) during the Alkindi®

(Cardiff Medicentre, Cardiff, UK) trial (Supplementary Materials, Figure S4).
Since the DBS 17-OHP target morning range (2.1–8.3 nmol/L), derived from the

modeling and simulation framework analysis, was in the same order of magnitude as
the approximately expected range (1.3–3.9 nmol/L), indicated by the red horizontal lines
(Figure 6), the results were judged as plausible.
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Figure 6. Derived dried blood spot (DBS) 17α-hydroxyprogesterone (17-OHP) target morning
concentration range (=model-predicted physiological range multiplied by 3 to 5). Interquartile range
(gray box) and median (black line) of the derived DBS 17-OHP target morning concentrations (see
step (C1) in text). Red lines: Calculated expected target DBS 17-OHP concentration range in the
morning (see step (C2) in text).

4. Discussion

We developed a modeling and simulation framework based on data from different
matrices (i.e., plasma, venous and capillary DBS samples) and different sources (i.e., clinical
trials, clinical routine and literature data) due to the limited availability of data. The
framework included a PK/PD model which successfully linked DBS 17-OHP to plasma
cortisol concentrations in pediatric CAH patients. By leveraging this framework, we were
able to derive a plausible target morning concentration range for the clinically important
biomarker 17-OHP, for DBS sampling in pediatric CAH patients, in the range of 2–8 nmol/L,
which is applicable for both venous or capillary DBS samples.

The PK/PD model captured the known mechanism of administered hydrocortisone
inhibiting 17-OHP biosynthesis via the suppression of the HPA-axis by a negative feedback
mechanism [1,2,12]. This mechanism was implemented in an indirect response model
with 17-OHP synthesis inhibition, well characterizing the u-shape trend observed in the
17-OHP concentration-time profiles. A main limitation of in silico approaches such as
PK/PD modeling is that the purpose and validity of the model depend on the data it is
based on. The development of the PK/PD model was based on sparse pediatric clinical
trial data and therefore did not allow for a more complex model structure, e.g., including
covariate relationships. Despite the limited available data, as typical for trials in this
vulnerable patient population, the model resulted in plausible parameter estimates with
satisfactory precision. The estimated IC50 of 21.0 nmol/L (=plasma cortisol concentration
leading to 50% of maximum inhibitory effect Imax on 17-OHP synthesis) was in the same
order of magnitude as previously determined IC50 values, e.g., 40.3 nmol/L by Al-Kofahi
et al. [29] and 48.6 nmol/L by Melin et al. [30]. The current lower estimate of IC50 can be
explained by the difference in matrices between the former studies and our analysis. As
in the current study, plasma cortisol PK was linked to PD in full blood obtained via DBS,
where DBS cortisol concentrations are substantially lower than plasma concentrations, an
approximately 2-fold lower IC50 value, in line with reported plasma/DBS cortisol ratio
ranges [11], was expected.

For the derivation of a DBS 17-OHP target morning concentration range, published
physiological plasma cortisol concentrations from healthy children aged between 5 and
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9 were applied [27,28]. This age range was also covered in the young children cohort
in the Alkindi® (Cardiff Medicentre, Cardiff, UK) trial (2–6 years). Besides the young
children data, infant data (28 days-2 years) was also included due to the very similar
17-OHP concentrations between these two age groups in the current study. To support
this inclusion, we also developed a PK/PD model based on young children only. No
significant differences were found in the estimated model parameters, their imprecisions,
and the derived DBS 17-OHP concentrations using this further reduced model dataset. The
presented model for infants and young children can serve as a basis to obtain DBS 17-OHP
target concentrations in, e.g., neonates or older children in the future when corresponding
data becomes available.

Bland-Altman and Passing-Bablok regression analyses were conducted to translate the
modeling and simulation results which are based on venous DBS 17-OHP concentrations
to clinical routine where, besides venous, also capillary DBS 17-OHP concentrations can
be sampled. The analyses demonstrated that capillary and venous DBS measurements of
cortisol and 17-OHP are comparable. Thus, the results from our previously published PK
model [11], as well as from this PK/PD analysis (both based on venous DBS data), can be
applied to capillary DBS samples.

The plausibility of the derived DBS 17-OHP morning concentration range was as-
sessed by comparing the results to an expected concentration range which was based on
the 17-OHP target morning concentration range in plasma, reported in Merke et al. [2].
This expected target range is to be viewed as a simple plausibility check only since the
underlying plasma 17-OHP target range applies to adults. To the best of our knowledge,
no further 17-OHP target concentrations have been reported.

Whereas a target range is established for plasma 17-OHP concentrations [2], there
are no cortisol target concentrations suggested except for mimicking the physiological
circadian rhythm [1]. 17-OHP is a commonly used biomarker as it is a precursor of cortisol
and androgens, of which elevated concentrations are closely linked to the clinical signs
of CAH. DBS sampling can facilitate regular and less invasive measurement of cortisol
and numerous biomarkers [5]. Therefore, besides in plasma, it is also needed to identify
biomarker target concentrations in DBS.

Despite its advantages and high potential, especially for pediatric patients, DBS
sampling is not fully established yet in drug and biomarker monitoring. The techniques
used for DBS sampling and measurements can vary between laboratories [6,31,32], and
therefore further research, the establishment of standardization of DBS sampling and of
the corresponding bioanalysis is needed. Furthermore, taking the patients’ hematocrit
values into consideration is vital to ensure accurate quantification of the analyte, as the
hematocrit influences the spreading of the sampled blood on the DBS filter paper [5,7,33].
Since hematocrit values are known to be higher in neonates [33], these are potentially
valuable covariates to be investigated in future analyses, once available. Target biomarker
concentrations for alternative child-friendly sampling techniques, such as mouth swabs to
measure steroids in saliva, are to be investigated in the future, for which the developed
modeling and simulation framework could serve as a starting point.

Since the cortisol-mediated inhibition of the 17-OHP synthesis, which is incorporated
into the PK/PD model, does not suffice to characterize the circadian rhythm of 17-OHP
during the day, we focused on the most relevant target concentrations in the morning only.
Circadian rhythms of 17-OHP and other CAH-relevant analytes, e.g., corticosteroid-binding
globulin, have already been quantified within PK model analyses [30,34]. In the future,
the presented PK/PD model can be expanded with the impact of ACTH on the circadian
rhythm of 17-OHP to suggest target DBS 17-OHP concentration-time profiles indicating the
target ranges for any time of the day.

5. Conclusions

Within the modeling and simulation framework described here, we obtained a plausi-
ble 17-OHP concentrations target range to be measured before the morning hydrocortisone
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dose for the first time using DBS sampling methodology. This derived target morning range
has the potential to develop further and could provide guidance for monitoring young
children suffering from CAH in the future.

Further model development is suggested to derive circadian DBS-derived target 17-
OHP concentration-time profiles over 24 h to contribute meaningful target concentrations
which clinicians can refer to for the treatment of CAH in children.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ph16030464/s1. Figure S1. Schematic representation of developed pharma-
cokinetic/pharmacodynamic (PK/PD) model. PK parameters of which the pediatric individual
estimates from the previous PK model (Stachanow et al.) [2] were used as part of the dataset are
marked in orange. Pharmacokinetics: Bioavailability (F), amount in depot compartment (Adepot),
maximum absorption rate (Vmax), amount in depot compartment resulting in half of Vmax (Km),
amount bound (Ab), amount bound to albumin (Ab:Alb), amount associated to red blood cells
(Ab:RBC), unbound amount (Au), amount bound to corticosteroid-binding globulin (Ab:CBG), linear
non-specific parameter for albumin binding (NSAlb) and association to red blood cells (kaRBC),
maximum binding capacity (Bmax), equilibrium dissociation constant (Kd), intercompartmental
clearance (Q), central volume of distribution (Vcen), peripheral volume of distribution (Vper), cortisol
plasma baseline of children (BASEchild, pla). The dashed line divides the central compartment into
the Ab and Au subcompartments, respectively. Pharmacodynamics: 17-α-hydroxyprogesterone
(17-OHP) concentration in dried blood spots (C17-OHP, DBS), synthesis rate constant of 17-OHP
(ksyn), first-order elimination rate constant of 17-OHP (kdeg). Figure S2. Goodness-of-fit plots for
developed pharmacokinetic/pharmacodynamic (PK/PD) model. A: Population-predicted dried
blood spot (DBS) 17-α-hydroxyprogesterone (17-OHP) concentrations versus observed DBS 17-OHP
concentrations, B: Individual DBS 17-OHP predictions versus observed DBS 17-OHP concentrations,
C: Conditional weighted residuals versus population-predicted DBS 17-OHP concentrations, D:
Conditional weighted residuals versus time. Red dots: children (cohort 1, age: 2–6 years), green
dots: infants (cohort 2, age: 28 days–2 years), red line: line of identity (A, B), line y = 0 (C, D),
vertical dashed line: lower limit of quantification (LLOQ) = 1.3 nmol/L. Figure S3. Visual predictive
check (n = 1000) for developed pharmacokinetic/pharmaco-dynamic (PK/PD) model. A: Circles:
17-α-hydroxyprogesterone (17-OHP) dried blood spot (DBS) observations, solid line: 50th percentile
of observed (black) and simulated (gray) DBS 17-OHP concentrations, dashed lines: 10th and 90th
percentiles of observed (black) and simulated (gray) DBS 17-OHP concentrations, shaded areas: 95%
confidence intervals for the percentiles of the simulated data. B: Black line: Observed probability of
DBS 17-OHP concentrations below lower limit of quantification (LLOQ), gray area: 95% confidence
interval for simulated probability of 17-OHP concentrations below LLOQ. Figure S4. Plasma to dried
blood spot (DBS) 17-α-hydroxyprogesterone (17-OHP) concentration ratio, measured at baseline in
the morning, in young children and infants. Table S1. Summary of population characteristics in
all datasets leveraged in the modeling and simulation analysis, by framework step as described in
Figure 1.
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