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Flexible characterization techniques that provide a detailed picture of the experimental imperfections
under realistic assumptions are crucial to gain actionable advice in the development of quantum computers.
Gate set tomography self-consistently extracts a complete tomographic description of the implementation
of an entire set of quantum gates, as well as the initial state and measurement, from experimental data. It
has become a standard tool for this task but comes with high requirements on the number of sequences and
their design, making it already experimentally challenging for only two qubits. In this work, we show that
low-rank approximations of gate sets can be obtained from significantly fewer gate sequences and that it is
sufficient to draw them at random. This coherent noise characterization however still contains the crucial
information for improving the implementation. To this end, we formulate the data processing problem of
gate set tomography as a rank-constrained tensor completion problem. We provide an algorithm to solve
this problem while respecting the usual positivity and normalization constraints of quantum mechanics.
For this purpose, we combine methods from Riemannian optimization and machine learning and develop
a saddle-free second-order geometrical optimization method on the complex Stiefel manifold. Besides the
reduction in sequences, we numerically demonstrate that the algorithm does not rely on structured gate
sets or an elaborate circuit design to robustly perform gate set tomography. Therefore, it is more flexible
than traditional approaches. We also demonstrate how coherent errors in shadow estimation protocols can
be mitigated using estimates from gate set tomography.
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I. INTRODUCTION

The precise characterization of digital quantum devices
is crucial for several reasons: (i) to obtain “actionable
advice” on how imperfections on their implementation
can be reduced, e.g., by experimental control, (ii) to tai-
lor applications to unavoidable device errors so that their
effect can be mitigated, and (iii) to benchmark the devices
for the comparison of different physical platforms and
implementations. There is already a wide variety of pro-
tocols to characterize components of a digital quantum
computing device with a trade-off between the informa-
tion gained about the system and the associated resource
requirements and assumptions of the scheme [1,2].
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One particularly important requirement for practical
characterization protocols for quantum gates is their
robustness against errors in the state preparation and mea-
surement (SPAM). There are two general approaches that
SPAM-robustly characterize the implementation of entire
gate sets of a quantum computer. On the low complex-
ity side there is randomized benchmarking (RB) [3–5] and
variants thereof [6] that typically aim at determining a sin-
gle measure of quality for an experiment, though with the
exception of RB tomography protocols [7–10]. Yet for the
targeted improvement of individual quantum operations,
protocols that provide more detailed information beyond
mere benchmarking are crucial.

This is the motivation of self-consistent gate set tomog-
raphy (GST) [11–18]. GST estimates virtually all param-
eters describing a noisy implementation of a quantum
computing device simultaneously from the measurements
of many gate sequences. This comprises tomographic esti-
mates for all channels implementing the gate set elements,
the initial state(s), and the measurement(s). The full tomo-
graphic information can then be used to compute arbitrary
error measures for verification and to provide advice on
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error mitigation and device calibration [15,19–23]. Con-
comitant with the massive amount of inferred information
and minimal assumptions, these protocols come with enor-
mous resource requirements in terms of the necessary
number of measurement rounds and the time and stor-
age consumption of the classical postprocessing. Standard
GST, as described by, e.g., Nielsen et al. [18], uses many
carefully designed gate sequences in the experiment and
a sophisticated and challenging data processing pipeline
in post. To arrive at physically interpretable estimates,
i.e., completely positive and trace preserving (CPT) maps,
additional postprocessing is required. The massive amount
of specific data consumed by standard GST already limits
its practical applicability for two-qubit gate sets. The focus
of Nielsen et al. [18] and their implementation pyGSTi is
on so-called long sequence GST, a method to improve an
initial GST estimate by using gate sequences in which a
building block is repeated many times. The resulting error
amplification of the building block is then used to signif-
icantly improve the accuracy of the GST estimate at the
cost of larger measurement effort. In our work we focus on
short sequences and the problem of finding an initial esti-
mate without assuming any prior knowledge on the gate
set and minimal experimental requirements.

The most important diagnostic information for a quan-
tum computing device is often already contained in a
low-rank approximation of the processes, states, and mea-
surements. Coherent errors are typically those that can
be corrected by experimental control and are of interest
for refining calibration models. The strength of incoherent
noise on the other hand is arguably well captured by aver-
age error measures as provided by RB outputs. Moreover,
current fault tolerance thresholds often rely on worst-
case error measures for which no good direct estimation
technique exists [24–27] and coherent errors in particular
hinder their indirect inference from average error measures
[28–30]. For standard state and process tomography, it was
realized that low-rank assumptions can crucially reduce
the sample complexity, the required number of measure-
ments, and the postprocessing complexity [9,31–40] as
well as improve the stability against imperfections in the
measurements [41] using compressed sensing techniques
[42–44].

In this work, we take a fresh look at the data processing
problem of GST from a compressed sensing perspective
and regard it as a highly structured tensor completion prob-
lem. We develop a reconstruction method, called mGST,
that exploits the geometric structure of CPT maps with
low Kraus ranks. In numerical simulations we demonstrate
that our structure-exploiting mGST approach (i) allows
for maximal flexibility in the design of gate sequences, so
that standard GST gate sequences and random sequences
work equally well, and (ii) obtains low-rank approxima-
tions of the implemented gate set from a significantly
reduced number of sequences and samples. This allows us

to successfully perform GST with gate sets and sequences
that are not amenable to the standard GST implementa-
tion pyGSTi [17,45]. As one example, while the sequence
design of pyGSTi uses at least 907 specific sequences to
reconstruct a two-qubit gate set, we numerically demon-
strate low-rank reconstruction from 200 random sequences
of maximal length � = 7 with runtimes of less than an
hour on a standard desktop computer. Thus, compres-
sive GST significantly lowers the experimental resource
requirements for maybe the most prominent use cases of
GST, making it a tool that can be more easily and rou-
tinely applied. At the same time, for the default gate
sets and sequences from the standard GST implementa-
tion, the novel algorithm matches state-of-the-art results.
The runtime and storage requirements of mGST still scale
exponentially in the number of qubits, as does the amount
of parameters of the gate set it identifies. This limits the
feasibility of the classical postprocessing of compressive
GST to gate sets acting on only a few qubits without further
assumptions. Nonetheless, we demonstrate that coherent
errors and depolarizing noise of a three-qubit gate set
can be completely characterized, from as little as 128
sequences of length � = 7 on desktop hardware in a few
hours.

To give a novel example of how information about
coherent errors can be used, we simulate a ten-qubit sys-
tem and perform GST on neighboring two-qubit pairs.
The resulting gate set estimates then allow us to cali-
brate the postprocessing step of the shadow estimation
protocol [46], which is widely used for the sample effi-
cient estimation of observables. More concretely, we find
in simulations with moderate coherent errors that shadow
estimates of the ground-state energy of a ten-qubit Heisen-
berg Hamiltonian are heavily biased when knowledge of
the noisy gate implementation is limited. Information from
GST on two-qubit pairs allows us to reduce this bias by
about an order of magnitude.

Our mGST reconstruction method relies on manifold
optimization over complex Stiefel manifolds [47–53] in
order to include the low-rank CPT constraints. Such con-
straints emerge in several optimization problems [54–57]
with applications in machine learning [52,58], quantum
chemistry [59], signal processing in wireless communica-
tion [60,61], and more recently in the quantum informa-
tion literature; see e.g., Refs. [62–64]. In order to deal
with the nonconvex optimization landscape, we adopt a
second-order saddle-free Newton method [65] in this set-
ting. This involves the derivation of an analytic expression
for geodesics, as well as an expression for the Rieman-
nian Hessian in the respective product manifolds. Another
important motivation for phrasing GST as a randomly sub-
sampled tensor completion problem is to bring it closer
to potential analytical recovery guarantees common for
related tensor completion problems [66–73], opening up
a new research direction.
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Finally, being able to perform GST from random
sequences enables one to use the same type of data for
different, increasingly refined characterization tasks from
filtered RB [6], cross-entropy benchmarking [74], and RB
tomography [7–9] to GST. Unifying these approaches,
random gate sequences can be regarded as the “classical
shadow” of a gate set from which many properties can
be estimated efficiently [75]. Compressive gate set tomog-
raphy provides more detailed diagnostic information and
only requires to further increase the amount of data without
changing the experimental instructions.

With randomized linear GST [76] and fast Bayesian
tomography [77], related alternatives to tackle the GST
data processing problem have been proposed. Here, the
gates are assumed to be well approximated by an a pri-
ori known unitary followed by a noise channel that is
either linearized around the identity [76] or around a prior
noise estimate [77]. This allows for treatment of the out-
come probabilities as approximately linear functions. The
resulting scheme already works for random sequence data
but comes at the expense of much stronger assumptions
compared to the compressed sensing approach taken with
mGST.

The rest of the paper is structured into three parts. In
the following section, we formalize the data processing
problem of GST as a constrained reconstruction problem.
In Sec. III, we formulate the data processing problem
as a geometric optimization task and derive the mGST
algorithm. In Sec. IV we demonstrate the performance of
the novel algorithm in numerical simulations and compare
our results with the standard GST processing pipeline of
pyGSTi.

II. THE DATA PROCESSING PROBLEM OF GATE
SET TOMOGRAPHY

In GST a quantum computing device is modeled
as follows. The device is initialized with a state ρ ∈
S := {σ ∈ H : σ � 0, Tr[σ ] = 1} on a finite-dimensional
Hilbert space H = Cd. Subsequently, a sequence of noisy
operations from a fixed gate set (Gi)i∈[n] can be applied,
where we use the notation [n] := {1, 2, 3, . . . , n}. The noisy
operations Gi : L(H)→ L(H) are CPT maps on L(H), the
set of linear operators on H. We define [n]∗� :=⋃�

k=0[n]k

such that i ∈ [n]∗� defines a gate sequences with length of
at most � and associated CPT map Gi := Gi� ◦ · · · ◦ Gi1 , the
concatenation of the gates in sequence i. In the end, a mea-
surement is performed described by a positive operator-
valued measure (POVM) with elements (Ej )j∈[nE ], satisfy-
ing

∑
j Ej = 1 and 0 � Ej � 1 for all j ∈ [nE]. The full

description of the noisy quantum computing device is thus
given by the triple

X = ((Ej )j∈[nE ], (Gi)i∈[n], ρ) (1)

of a quantum state, a physical gate set, and a POVM.
Let I ⊆ [n]∗� be the set of accessible gate sequences with
nseq := |I | denoting the number of sequences. The prob-
ability of measuring outcome j upon applying a gate
sequence i ∈ I is

pj |i(X ) = Tr[Ej Gi(ρ)]. (2)

By (pi(X ))j := pj |i(X ) we denote the corresponding vec-
tor and, moreover, often omit the argument X . While being
a fairly general description, this gate set model relies on the
following assumptions.

(i) The physical system needs to be well characterized
by a Hilbert space of fixed dimension.

(ii) The system parameters need to be time independent
over different experiments.

(iii) A gate’s action is independent of the gates applied
before and after (Markovianity).

There exist multiple descriptions of quantum computing
devices within the gate set model that yield the same mea-
surement probabilities on all sequences. Below, we provide
a more detailed description of this freedom in terms of
gauge transformations. These are linear transformations
that, when simultaneously applied to all gates, input state,
and POVM elements, leave the measurement statistics (2)
invariant.

The task of GST is to infer the device’s full descrip-
tion (1) from measured data. To this end, one estimates
the output probabilities for a set of different sequences
I ⊂ [n]∗l by repeatedly performing the measurements of
the corresponding sequences. Thus, we can state the data
processing problem of GST as follows.

Problem (GST data processing): Let X be a gate set
and I ⊂ [n]∗l a set of sequences. Given empirical esti-
mates {yj |i}i∈I ,j∈[nE ] of {pj |i(X )}i∈I ,j∈[nE ], find the device
description X = ((Ej )j∈[nE ], (Gi)i∈[n], ρ) up to the gauge
freedom.

Note that GST aims at solving an identification problem.
That is, for sufficient data, find the unique device descrip-
tion of the device compatible with the data. In particular,
the input data {p̂j |i}i∈I ,j is required to uniquely single out
the device description. This is related but distinct from
the corresponding learning task to find a description that
generalizes on unseen data.

A. Compressive gate set description

At the heart of our approach is to capture this data pro-
cessing problem as a highly structured tensor completion
problem. The structure allows us to reduce the required
size and structural assumption of set I , in order to deter-
mine X . It is instructive to visualize the problem with
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tensor network diagrams. The gate set can be viewed as a
tensor of five indices and the action of gate i on the initial
state ρ can be visualized as

Gi (ρ) = G
i

ρ ,
(3)

where each leg represents an open index and the joining of
legs represents summation of the corresponding indices;
see, e.g., Chapter 5.1 of Ref. [78] for more information on
the tensor network notation. Neglecting the finite statistics
in estimating the probabilities, the GST data processing
problem can thus be rephrased as the problem of complet-
ing the translation-invariant matrix product state (MPS)
[79–81] or tensor train [82]

pj|i = Tr[Ej Gil
◦ · · · ◦ Gi2 ◦ Gi1(ρ)]

= E

j

. . .G G G
i1i2il

ρ

(4)

from access to a couple of its entries. By the following
assumptions one can introduce more structure. First, we
assume that the elements of the device description X sat-
isfy the physicality assumptions regarding normalization
and positivity. Second, the assumption that they have low-
rank approximations yields additional compressibility of
X .

In more detail, physically implementable gate sets are
completely positive and trace preserving if and only if
they admit a Kraus decomposition [83], i.e., the ith gate
implementation can be written as

Gi(ρ) =
rK∑

l=1

KilρK†
il (5)

for each i ∈ [n], where rK is the (maximum) Kraus rank of
the CPT maps {Gi}. We use the notation K to denote the
tensor containing all Kraus operators of all gates and Ki to
denote the tensor containing the Kraus operators for gate i.
In terms of tensor network diagrams the decomposition is
represented as

G
i

=

i

K

K∗

.

(6)

Moreover, the trace preservation constraints

rK∑

l=1

K†
ilKil = 1 for all i (7)

require Ki viewed as a matrix in CrK d×d to be an isometry,
i.e.,

Ki

K∗
i

= .

(8)

Constraints on a low Kraus rank rK can be naturally
enforced in this parametrization by reducing the row
dimension of Ki. The initial state and POVM elements
are constrained to be positive matrices, which we hence
parameterize as

Ej = A†
j Aj , ρ = BB† (9)

with Aj ∈ CrE×d and B ∈ Cd×rρ , where rE and rρ are the
matrix ranks. For the matrices Aj to form a valid POVM,
they have to satisfy a similar condition to the Kraus
operators,

rE∑

j=1

A†
j Aj = 1, (10)

while the initial state is of unit trace if

‖B‖F = 1. (11)

With the physicality constraints incorporated, measure-
ment outcome probabilities are given in terms of tensor
network diagrams as

pj|i = Tr[Ej Gil
◦ · · · ◦ Gi2 ◦ Gi1(ρ)]

E

j

. . .G G G
i1i2il

ρ

=

=

il i1i2

K KK

K∗ K∗K∗

. . .

. . .

j

A

A∗

B

B∗
.

(12)
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Thus, we arrive at a compressive device description Xc =
(A,K, B) that considerably reduces the amount of param-
eters compared to the triple X = ((Ej )j∈[nE ], (Gi)i∈[n], ρ)

when choosing small dimensions rρ , rK , and rE . Corre-
spondingly, we can adapt the GST data processing task to
demand only a compressive device description.

Problem (Compressive GST data processing): Let X be
a gate set and I ⊂ [n]∗l a set of sequences. Given empir-
ical estimates {yj |i}i∈I ,j∈[nE ] of {pj |i(X )}i∈I ,j∈nE and ranks
rρ , rK , and rE, find the compressive device description
Xc = (A,K, B) of dimensions rρ , rK , and rE, respectively,
so that the normalization constraints (7), (10), and (11) are
satisfied.

As before, the set of sequences needs to be large enough
so that this identification problem is well defined. Again,
a desired compressive device description Xc can only be
determined up to gauge freedom. Note that, for the identi-
fication problem to be well defined, it is not required that
the true gate set X that generated the data is of low rank
itself. As one usually aims to implement unit rank states,
unitary gates, and basis measurements, i.e., for rρ = rK =
rE = 1, it can be expected however that a compressive
device description Xc is also often a good approximation
to the true gate set. Moreover, coherent errors are arguably
the most relevant, since they give actionable advice on
error mitigation and are complementary to the incoher-
ent error measures provided by randomized benchmarking
experiments. By choosing the ranks in Xc, a problem-
specific decision can be made that balances the information
gained with the computational and sample complexity of
the model reconstruction.

Since the pj |i(X ) are high degree polynomials in the gate
set parameters, the compressive GST data processing prob-
lem is different from compressed sensing for standard state
and process tomography, where the map from the model
parameters to the outcome probabilities is linear.

Next, we discuss another unique problem of GST, the
gauge freedom, more explicitly and introduce relevant
error measures for gates sets X .

B. Gauge freedom and gate set metrics

So far we have not made explicit what “finding a device
description” actually means. What is well studied in the
GST and RB literature [6,14,16,84–86] is that, without
additional prior assumptions, there is a freedom in repre-
senting a device in the gate set model. In particular, this
freedom needs to be considered when defining a metric for
gate sets [84] with respect to which we want to recover the
device description.

Gauge freedom refers to the following observation. The
observable measurement probabilities pj |i of the form (4)

are invariant under the transformation

ρ �→ T −1(ρ), (13)

Gi �→ T −1 ◦ Gi ◦ T for all i, (14)

Ej �→ T †(Ej ) for all j , (15)

for any invertible super operator T : L(H)→ L(H),
where T † denotes the adjoint of T with respect to the
Hilbert-Schmidt inner product. This invariance is also the
well-known gauge freedom of MPS [87].

If the gate set is universal and the initial state is pure then
the gauge transformation T has to be either a unitary or
antiunitary channel. This statement can be seen as follows.

In our case the Gi are constrained to be CPT. Hence,
G �→ T −1(G)T has to map CPT maps to CPT maps. Sim-
ilarly, T −1ρ has to be a density operator and {T †(Ej )}j a
valid POVM.

A more explicit condition on T can be obtained by
considering gauge action on entire sequences. For all
sequences i, we have

pj |i = Tr[EjT ◦ T −1 ◦ Gi(ρ)],

where Gi(ρ) is a positive operator if the gates Gi are CPT.
Now T −1Gi(ρ) has to be positive as well for all sequences
i. Thus, if the gate set is universal, the map T −1 has to
be positive and trace preserving for all states. An analo-
gous statement can be made for T †, by considering that
T †G†

i (Ej ) has to be positive definite for all POVM ele-
ments Ej . This implies that T has to be a positive map as
well.

It has been shown that any positive invertible map T
with a positive inverse can be written either as T (ρ) =
PUρU†P† or T (ρ) = PUρTU†P† for U ∈ GL(d, C) and
P � 0 [88, Theorem 2]. The condition that T needs to be
trace preserving then yields P = 1, as can be seen from the
Kraus decomposition. Hence, T is indeed either a unitary
or antiunitary channel.

We note that the map ρ �→ UρTU† is positive but not
completely positive. However, it has the property that
T −1GiT is CPT whenever Gi is CPT. This can be seen
by observing that the Choi matrix of T −1GiT is given by
(U∗ ⊗ U)Choi(Gi)

T(UT ⊗ U†), which is positive definite
for Gi being CPT.

However, actual gate set implementations are noisy and
hence not universal in the sense that they cannot prepare
any pure state. Therefore, in practice, the gauge freedom
can be larger [18]. For instance, if all gate implementations
are given by unital channels then an additional freedom
exists: depolarizing noise can be commuted through the
circuit. Therefore, it can be distributed arbitrarily among
the initial state, gates, and measurement. Meaningful dis-
tance measures for gate sets should have the same gauge
freedom as the GST data. The problem of finding a gauge
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invariant distance has been studied by Lin et al. [84].
For individual gate sequences, any measure that compares
only the ideal and observed outcome probabilities is natu-
rally gauge invariant. The authors thus proposed using the
total variation error, a natural error measure to compare
probability distributions, for individual gate sequences. Let

pj |i(Ej ,Gi, ρ) := Tr[EjGi(ρ)] (16)

denote the probabilities of measuring the j th output of
the POVM with elements Ej after applying the sequence
i of gates in Gi to the state ρ. The total variation error
for sequence i between two gate sets X̂ = {(Êj ), Ĝ, ρ̂} and
X = ((Ej ),G, ρ) is defined as

δdi(X̂ ,X ) := 1
2

∑

j

|Tr[Ê†
j Ĝi(ρ̂)]− Tr[E†

j Gi(ρ)]|. (17)

The mean variation error (MVE) is defined as [84]

MVEI (X̂ ,X ) := Ei∼I [δdi(X̂ ,X )] (18)

with respect to a set of sequences I , where i ∼ I means
that i is drawn uniformly from I . Often, we omit the sub-
script I in the following. The MVE corresponds to taking
the natural worst-case error measure over the measurement
outcomes (the total variation distance) and averaging it
over the available gate sequences. Often I is chosen as the
set of all gate sequences up to some length �. Then the
expectation value (18) contains a sum over exponentially
many terms. However, since they are all non-negative, the
expectation value can be estimated efficiently via Monte
Carlo sampling [84].

A closely related error measure is the mean squared
error (MSE)

LI (X̂ ,X ) := Ei∼I

∑

j∈[nE ]

(Tr[Ê†
j Ĝi(ρ̂)]− Tr[E†

j Gi(ρ)])2,

(19)

which averages the squared deviation over all sequences
and POVM elements.

III. GST DATA PROCESSING VIA RIEMANNIAN
OPTIMIZATION

In the previous section, we defined the compressive GST
data processing problem and introduced metrics for the
quality of reconstruction. We now turn to devising a con-
crete algorithm for the data processing problem. To this
end, we formulate the reconstruction problem as a con-
straint optimization problem of a loss function for the data
fitting. A natural candidate for the loss function is the MVE
restricted to the set of measured sequences. As a proxy, we
instead minimize the MSE that depends smoothly on the

gate set and is therefore more suitable for local optimiza-
tion. In terms of the compressive device description, the
MSE (19) can be written as

LI (A,K, B|y) := 1
|I |

∑

i∈I

∑

j

(pj |i(A,K, B)− yj |i)2, (20)

where yj |i is the empirical estimate of Tr[EjGi(ρ)]. Corre-
spondingly, the compressive GST data processing problem
can be cast as the constraint optimization problem

minimize
A,K,B

LI (A,K, B|y) (21a)

subject to
rK∑

l=1

K†
ilKil = 1 for all i ∈ [n], (21b)

rE∑

j=1

A†
j Aj = 1, (21c)

‖B‖F = 1. (21d)

The constraints restrict the objective variables to embed-
ded matrix manifolds. Therefore, algorithms for the opti-
mization problem can be derived by generalizing standard
optimization algorithms for functions on the Euclidean
space to the geometric structure of these manifolds.

A. The complex Stiefel manifold

In order to formulate our main reconstruction algorithm,
we need to understand the matrix manifold that encom-
passes the physicality constraints mentioned in Sec. II A.
We start by summarizing the elementary properties of these
manifolds, to then derive a parametrization of geodesics
and the Riemannian Hessian, thereby extending what was
previously done for their real counterparts in Ref. [48]. For
a comprehensive introduction to optimization on matrix
manifolds, we refer the reader to the book by Absil et al.
[89].

Let (Kl)l∈[r] be the Kraus operators of a fixed gate. By
stacking them along their row dimension to a new matrix
K ∈ Cdr×d, we can write the CPT constraint as K†K = 1.
In the following we set D = dr. The set

St(D, d) := {K ∈ C
D×d : K†K = 1d} (22)

is called the D× d complex Stiefel manifold. This man-
ifold is the set of isometries of the Euclidean space and
contains the special cases of the sphere St(D, 1) and the
unitary matrices U(D) = St(D, D). We regard it here as a
submanifold of Cdr×d.
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The tangent space of St(D, d) at K is given by

TK St(D, d) = {� ∈ C
D×d : K†� = −�†K}. (23)

The canonical inner product of �1, �2 ∈ TK St(D, d) can
be defined as

〈�1, �2〉K = Re{Tr(�†
1��2)} (24)

with � = 1− 1
2 KK†. Another choice is the standard

Hilbert-Schmidt inner product of the embedding matrix
space. However, the advantage of the canonical inner prod-
uct is that it weights all degrees of freedom on the tangent
space equally. The Stiefel St(D, d) together with the metric
given by Eq. (24) is a Riemannian manifold. The normal
space is defined by

NK St(D, d) = {�⊥∈CD×d : 〈�, �⊥〉K
= 0 for all � ∈ TK St(D, d)}.

The projector onto the normal space at position K is given
by

PN (X ) = K(K†X + X †K)/2 (25)

for X ∈ Cdr×d and we can write the projector onto the
tangent space at K as

PT(X ) = X − PN (X ). (26)

We wish to optimize the MSE over St(D, d). In anal-
ogy to the optimization over U(n) in Ref. [47], we move
along geodesics, which are the locally length minimizing
curves. In Appendix A 1 we show that, within St(D, d), a
geodesic starting at Kt=0 ≡ K and going in the direction
� ∈ TK St(D, d) can be written as

Kt(K , �) = (K , Q) exp
[

t
(

K†� −R†

R 0

)] (
1

0

)

(27)

with Q, R given by the QR decomposition of (1− KK†)�.
Note that K̇t|t=0 = �. Often simpler curves that just satisfy
K0 = K and K̇t|t=0 = � are used instead of the geodesic in
order to save computation time [89]. However, computing
the exponential of the 2d-dimensional matrix in Eq. (27)
provides no bottleneck in our scenario as the inversion of
the 2nd2rK -dimensional Hessian is more costly (see Sec.
IV F).

In order to identify the Riemannian gradient and Hes-
sian, we generalize results from the real case [48] to
the complex case. Then we use the second-order Taylor
approximation of the objective function, which will be
given below in terms of the MSE (19) along geodesics (see
Appendix A 2). The same treatment can be applied to the

POVM given by the matrices Aj from decomposition (9),
where we define A as the matrix obtained from stacking the
Aj along their row dimension. The physicality constraint
on A is then equivalent to A ∈ St(dnE , rE) with nE being
the number of POVM elements and rE their maximal rank.
Finally, the constraint ‖B‖2

F = vec(B)† vec(B) = 1 on the
initial state (9) can also be captured by the Stiefel man-
ifold via the requirement that vec(B) ∈ St(drρ , 1), where
vec(B) ∈ Cdrρ is the vectorization of B ∈ Cd×rρ .

B. The mGST estimation algorithm

With a better understanding of the underlying manifold
structure we can now formulate a concrete optimization
approach to tackle the estimation problem (21). The least-
squares cost function (19) is a polynomial of order at
most the sequence length squared in the parameters of
G, with a highly degenerate global minimum due to the
gauge freedom. In analogy to the alternating minimization
techniques that are successful for matrix product state com-
pletion [66,90,91] we alternate between updates on A,K,
and B. Each update would naively be done via a local opti-
mization approach such as gradient descent. However, we
observe that following the gradient direction on the respec-
tive manifolds is problematic around saddle points, which
are frequently encountered in our optimization problem.
In principle, the gradient direction points away from sad-
dle points, yet the norm of the gradient can be arbitrarily
small. There are different approaches in the literature to
deal with this problem. For instance, information about
the curvature can be included [65] or, if a saddle point
is encountered, random update directions can be chosen
to escape the area of vanishing gradient [50,92]. We find
that the so-called saddle-free Newton (SFN) method [65]
yields considerably better results than first-order methods.
There the update direction is given by − |H |−1 g with H
being the Hessian, g the gradient, and the absolute value
|H | defined by spectral calculus. An instructive way to see
why this leads to a speedup is to write the Hessian H as
H =∑

i λi|vi〉〈vi|, where vi is the eigenvector to eigen-
value λi. The update direction of the SFN method then
reads −|H |−1g = −∑

i |λi|−1|vi〉〈vi|g〉. Since the vectors
|vi〉 form a basis, this can be interpreted as a rescaling of
|g〉 by |λi|−1 in the directions |vi〉. As with the standard
Newton method, this leads to a large rescaling if the cur-
vature in a particular direction is small, resulting in large
steps even close to the saddle point. Taking the absolute
value of the eigenvalues then ensures that saddle points are
repulsive. For numerical stability, it is beneficial to intro-
duce a damping term that offsets the eigenvalues of H that
are very close to zero before the inversion.

Algorithm 1 describes a single step of the damped
saddle-free Newton method with damping parameter λ and
is a generalization of the original SFN method [65] to
manifolds.
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Algorithm 1. SFN update.

Algorithm 1 is formulated in a way that is compat-
ible with an update in Euclidean space as well as an
update on the Stiefel manifold. In Euclidean space we
update along the curve Yt( · , · ) : CD×d ×CD×d → CD×d

with Yt(Y0, �) = Y0 + t � for an update direction �. On
the Stiefel manifold we have Yt( · , · ) : St(D, d)× T→
St(D, d) with the curve given by geodesic (27) and T being
the tangent bundle on St(D, d). The step size is deter-
mined by locally optimizing over the parameter t using
standard gradient-free optimizers. We derive an expression
for the Hessian on the Stiefel manifold in Appendix A 2.
In Appendix A 3, we also provide a detailed discussion
and expressions for the optimization in complex Euclidean
space.

Algorithm 2 describes the main mGST routine. It can
be run with different choices of smooth objective func-
tions, and we use MSE (19) by default. In our numerics we
often find that optimizing the loglikelihood function after
the MSE can improve estimates (see Appendix A 4 for a
discussion).

The algorithm alternates updates on A, K, and B.
Updates are performed using Algorithm 1 on the tangent
spaces of the respective Stiefel manifolds. In order to

Algorithm 2. mGST.

achieve good convergence, we run the optimization with
mGST in two consecutive steps: we start from a random
initialization and perform a coarse grained optimization
with a small batch size κ , i.e., only using κ many random
gate sequences from I for each update step. The batching
of data results in lower computation time for the deriva-
tives and adds a factor of randomness to the optimization,
which avoids getting stuck at suboptimal points to a cer-
tain degree. We terminate the first optimization loop when
the objective function LI (Ai,Ki, Bi|y) is smaller than an
early stopping value δ, which is obtained from the data as
follows.

For a number of m samples per sequence, the outcome
probabilities of each sequence for the true gate set are
given by

yj |i = kj |i/m, (28)

where kj |i is the number of times outcome j is measured
upon applying gate sequence i. Because of Born’s rule,
kj |i is distributed according to the multinomial distribu-
tion M (m, (p1|i, . . . , pnE |i)) with probabilities {pj |i}j and
m trials. We estimate the expectation value of the objec-
tive function from the values yj |i. This provides us with a
rough estimate for how low the objective function value
can become, given the sample counts kj |i. Then we set the
early stopping value to be twice that estimate,

δ := 2 Ek̃j |i∼M (m,(yj |i))
1
|I |

∑

i∈I

∑

j

(yj
i − k̃j |i/m)2. (29)

Hence, we require the objective function on the full data
set to be close to its expectation value for the measured
probabilities yj |i obtained from m samples.

While computationally inexpensive the minibatch
stochastic optimization does not converge to an optimal
point on the full data set I . In a second optimization loop,
we initialize the mGST algorithm with the result from the
first run and use all the data for the updates. Formally, we
choose the batch size κ = |I | and thereby make the random
batch selection obsolete. We perform these more costly
update steps until the change in objective function reaches
a desired relative precision ε,

LI (Ai,Ki, Bi|y)− LI (Ai−1,Ki−1, Bi−1|y) ≤ δε, (30)

or a maximal number of iterations is exceeded.
The first optimization run is initialized with a random

gate set parameterized by A0,K0, and B0 (see Sec. II A).
For the random initialization, we make use of the Gaus-
sian unitary ensemble (GUE). A matrix H belongs to the
GUE if H = (M +M †)/2, where M is a complex Gaus-
sian matrix, i.e., the real and imaginary parts of each Mij
are independently drawn from N (0, 1), the normal distri-
bution with zero mean and unit variance. In this case we
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write H ∼ GUE. For A0 and each gate in K0, we take the
first d columns of eiH with H ∼ GUE to obtain a random
isometry K0. For B0, we take a complex Gaussian matrix
and normalize it such that Tr[B0†B0] = 1.

Importantly, due to the nature of nonconvex optimiza-
tion, several initializations can be needed to converge to a
satisfactory minimum.

IV. NUMERICAL ANALYSIS

In this section, we evaluate the performance of mGST in
different scenarios in numerical simulations. In particular,
we compare its performance to the state-of-the-art imple-
mentation for gate set tomography, pyGSTi [18], in the
regimes where both methods can be applied.

For pyGSTi to be applicable, one has to use struc-
tured gate sequences inspired by standard quantum pro-
cess tomography. In Sec. IV A we evaluate the perfor-
mance of mGST and pyGSTi on minimal measurement
sequences and different models to find that mGST ben-
efits from flexibility in the sequence design and a fully
general model parametrization. Section IV B numerically
validates the expected inverse square-root scaling of the
reconstruction error with the number of measurement sam-
ples per sequence for different noise regimes. Section IV C
numerically determines the required number of random
sequences to accurately reconstruct simple and random
gate set models with mGST for different Kraus ranks.
In Sec. IV D we follow up with a numerical demonstra-
tion of unitary noise characterization for a three-qubit gate
set using a priori knowledge in the initialization. Finally,
in Secs. IV E and IV F we discuss the choice of initial-
ization and hyperparameters, as well as the runtime of
mGST.

For a model of n gates reconstructed from m measure-
ments of sequence length �, we validate the performance
of mGST by computing MVE (18) over all possible n�

sequences, or 104 random sequences of length � if n� >

104. Usually, m� min(n�, 104) and the MVE can be
thought of as a generalization error on the predicted output
probabilities of the gate set estimate. The gate sets studied
in this section all use the same target initial state |0〉〈0| and
computational basis measurement, although with different
levels of noise applied to them. For instance, we often
use global depolarizing noise, which acts on a quantum
state ρ as ρ �→ (1− p)ρ + p1/d. For the numerics pre-
sented here, we use a maximum of 100 reinitializations (if
not stated otherwise). A discussion of the required number
of initializations is given in Sec. IV E. A PYTHON imple-
mentation of mGST and a short tutorial can be found on
GitHub [93].

A. Gate set and measurement structure

We compare mGST and pyGSTi for the minimal
number of sequences doable with each method and for gate

sets of different conditionings, without using the compres-
sion capabilities of mGST yet. We find that mGST is more
flexible in the sequence design and model parametrization,
while generating estimators with lower mean variation
errors in several regimes.

The traditional strategy for GST, akin to standard quan-
tum process tomography, is to generate a frame for L(H),
measure each gate in that frame and generate an esti-
mate for each gate by applying the pseudoinverse of the
measurement operator.

This is particularly important for the first reconstruc-
tion step in pyGSTi where the sequences that generate
the frame are called fiducials. The strategy of pyGSTi is
to obtain an initial estimate via the pseudoinverse, fol-
lowed up by local optimization of a particular cost function
[18]. In contrast, we perform mGST using random ini-
tializations and thereby do not rely on designated fiducial
sequences.

Figure 1 compares mGST to pyGSTi focusing on the
regime of very few gate sequences, showing what is
needed in terms of measurement effort to obtain low
mean variation errors for different gate sets. In order
to test pyGSTi in the regime of low sequence counts,
we replace the five standard fiducial sequences with two
or three fiducial sequences drawn uniformly at random,
thereby reducing the total sequence number from 92 to
18 or 39 sequences. Since mGST is compatible with
any sequence design, we use between 10 and 58 random
sequences for mGST to explore the low sequence count
region.

The first gate set we study is the so-called XYI model, the
standard single-qubit example in the pyGSTi package [45].
The XYI model consists of the identity gate, a π/2 X rota-
tion and a π/2 Y rotation on the Bloch sphere, with initial
state |0〉〈0| and measurement in the computational basis.
Results for the ideal XYI model can be seen on the left in
Figure 1, with mGST and pyGSTi performing identically
for 92 sequences. Comparing the results for 18 sequences
we find that mGST does not converge on more than 50%
of trials, which reflects in the median MVE being above
10−1, while pyGSTi achieves lower median errors. Com-
paring the 38 and 39 sequence medians however, we find
that mGST yields lower error models than pyGSTi.

The subsequent models analyzed successively deviate
from the simple unitary XYI model and highlight the
versatility of our manifold approach. Since the full CPT
parametrization used in our optimization (21) is agnostic to
any special gate set properties, we expect it to perform well
for all possible CPT maps as gate implementations. For
instance, for random and specific non-Markovian chan-
nels. pyGSTi on the other hand uses a parametrization of
Lindblad type and is therefore based on a more limited
model space.

To illustrate this comparison, we perturb the XYI model
by adding amplitude damping noise to each gate. The
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FIG. 1. MVE comparison between mGST (with loglikelihood cost function and rK = 4) and pyGSTi, showing the dependence on
the number of sequences, the number of samples per sequence, and the gate set on a single qubit. The number of sequences used by
mGST in the range 10–58 are drawn uniformly at random, while the sequences for pyGSTi need to follow the pyGSTi fiducial design
and are limited to the fixed sequence counts (18 and 39). We choose independently drawn random fiducials for each instance. The 92
sequences used by both mGST and pyGSTi are taken from the standard pyGSTi sequence design for the XYI model. All sequences
are of length � = 7. The MVE depicted in each square is the median result for ten instances, each with random statistical measurement
noise and a random sequence drawn from the uniform distribution. In the random channel scenario, a new random channel is used for
each instance. The XYI model is a simple unitary model used in the GST literature and the weak damping model consists of amplitude
damping noise on each gate with � = 0.94, while the strong damping model uses � = −0.6. A complete description of the models
used can be found in the main text. Each model has additional depolarizing noise of strength p = 0.01 on the initial state.

amplitude damping channel can be written in terms of the
Kraus operators

K1 =
(

1 0
0 �

)

and K2 =
(

0
√

1− |�|2
0 0

)

,

which arise, e.g., from the Jaynes-Cummings model of
a qubit system interacting with a quantized bosonic field
[94]. How well mGST and pyGSTi perform on a model
with � = 0.94 can be seen in the center left block of Fig. 1
(XYI + weak damping). We find generally similar per-
formance, with mGST being a bit more accurate on 38
sequences, and a bit less accurate on 92 sequences with
106 samples.

Increasing the interaction time between qubit and
environment leads to memory effects and strong non-
Markovianity of the amplitude damping channel at � =
−0.6. This scenario is shown in the center right plot of
Fig. 1, and we see that while the accuracy of mGST is the
same as before, the model parametrization of pyGSTi can-
not fit the model with MVEs below 10−2, independent of
the sequence or sample count.

For the last comparison (rightmost block in Fig. 1),
we look at the performance for random full Kraus rank
channels. Each channel is constructed by drawing a Haar
random d3 × d3 unitary and then taking its first d columns.

The resulting d3 × d matrix is an isometry and therefore
constitutes a valid set of Kraus operators. Note that this
construction is different from the previous construction
of random channels via the Gaussian unitary ensemble.
The results show that mGST can reconstruct these models
from low sequence counts, while pyGSTi does not yield
good estimators. Using the standard sequence design of
92 sequences, mGST and pyGSTi have identical accu-
racy again, suggesting that random channels are typically
well within the model space of pyGSTi after all. These
demonstrations show that mGST is indeed flexible in
the sequence design with state-of-the-art performance for
arbitrary gate set implementations.

B. Number of samples per sequence

The probability associated with every sequence is esti-
mated from a finite number of samples. Here, we study the
resulting effect on the reconstruction accuracy as measured
by the MVE more closely.

For a high number m of samples per sequence, each
probability yj

i in the objective function is estimated with
an error of order 1/

√
m. Therefore, we expect the MVE to

also decrease as 1/
√

m if the algorithm converges to the
global minimum. This scaling was observed to hold for
pyGSTi [18]. In order to be able to compare the scaling
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FIG. 2. Reconstruction of the XYI gate set for different lev-
els of depolarizing noise with strength p and unitary noise with
strength γ on each gate. The unitary noise is given by eiγ H

with H ∼ GUE. Additional depolarizing noise with p = 0.01 is
applied before measurement. The mGST algorithm is run on the
loglikelihood cost function with rK = 4 (max), which is the same
as for pyGSTi. As gate sequences, we again used the standard
pyGSTi fiducial sequences, with the number of measurements
per sequence between 102 and 108. The lines connect data points
of which each is the median over ten runs. For each run, a new
random over-rotation is drawn and new measurements are simu-
lated. The measurement sequences are the 92 sequences provided
by the pyGSTi software, with a maximum sequence length of
� ≤ 7.

of mGST directly to that of pyGSTi, we use a standard
pyGSTi setting: the gate set is the XYI model (with π/2
rotations) and the gate sequences are the standard pyGSTi
sequences for this model with a maximum sequence length
of � = 7.

We add noise to the gate set by varying the amount of
depolarizing noise with strength p on each gate and also
over-rotating each gate by a random unitary. The random
unitaries are given by eiγ H with H ∼ GUE. In particular,
this means that H can be bounded on average as follows.
We can write H = (M1 +M T

1 + i(M2 −M T
2 ))/2 with Mi

being independent Gaussian matrices. Next, we use Gor-
don’s theorem for Gaussian matrices (see, e.g., Theorem
5.32 of Ref. [95]), which tells us that E‖M1‖[∞] ≤ 2

√
d.

The relevant magnitude of the random generator H is then
in expectation upper bounded as

E‖H‖∞ ≤ 2E‖M1‖∞ ≤ 4
√

d. (31)

State preparation and measurement are assumed to be
noise-free in this setup; however, for a fixed sequence
length, the depolarizing noise per gate is equivalent to a
global depolarizing channel applied before measurement,
since it commutes with the unitary gates. Figure 2 depicts
the resulting MVE scaling of the reconstruction where
data are generated using different numbers of samples per
sequence m.

We observe that mGST follows the expected scaling in
m, matching the scaling of pyGSTi for different levels of
unitary and depolarizing noise.

C. Number of sequences

Arguably the most challenging experimental require-
ment of GST is the number of measurement settings
(sequences) that are required for a successful gate recon-
struction. One of the main motivations of compressive
GST is to employ structure constraints, i.e., to reduce
the number of degrees of freedom of the reconstruction
problem, in order to reduce the required number of mea-
surements. Instead of reconstructing arbitrary quantum
channels we aim at reconstructing low-rank approxima-
tions of the gate set elements. In addition, we expect
that by using the mGST algorithm, compressive recov-
ery is already possible from a “few” randomly selected
sequences. We here numerically demonstrate that this is
indeed the case.

The top row of Fig. 3 shows the median performance in
MVE against the number of randomly chosen sequences
for different Kraus ranks. On the left are the results for
the single-qubit XYI model as defined in Sec. IV A. On
the right are the results for the XYICNOT gate set that
is based on the identity, controlled-NOT (CNOT) gate, and
Pauli-X and Pauli-Y rotations on each qubit individually,
with rotation angle π/2.

We observe a phase transition in the MVE that indi-
cates a minimal number of sequences that are required
for the successful reconstructions of the gate sets. As
expected, constraining the reconstruction to a lower Kraus
rank indeed reduces the amount of required sequences in
the reconstruction in most cases.

An intriguing exception is the rK = 1 reconstruction of
the two-qubit gate set that exhibits the worst reconstruction
performance compared to higher rank constraints. We sus-
pect that this is due to the optimization problem being more
dependent on the initialization for rK = 1. In more general
settings, it has been observed that the optimization over
matrix product states with fixed Kraus rank can be unsta-
ble and using rank-adaptive optimization techniques yield
much better performance [96,97]. This motivates us to use
a slightly higher rank in the optimization than the expected
rank of an effective approximation of the gate set. In accor-
dance with this intuition, we find that it is beneficial to
constrain the optimization to rK = 2 in order to achieve
an accurate unit-rank approximation. The same effect is
also observed in the single-qubit example when taking a
detailed look at the number of required initializations (see
Sec. IV E), yet less pronounced. In the bottom row of Fig. 3
we show the recovery rates for random unitary models,
with the reconstruction now using a fixed Kraus rank of
rK = 2. Note that there are three sources of randomness
present in the data: first the Haar-random unitary gates,
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FIG. 3. Median error of mGST run on the least-squares cost function, plotted over the number of sequences for a single-qubit model
(top left) and a two-qubit model (top right). Each data point is the median over the results from ten different random sequences.
Measurement data for the XYI model—and the XYICNOT gate set—are taken from a noisy version with depolarizing noise of
strength p = 0.001 on each gate, depolarizing noise with strength p = 0.01 before measurement, as well as independent random
unitary rotations eiγ H with γ = 0.001 and H ∼ GUE on each gate. In the bottom left plot the recovery rates for the reconstruction
of different models of three Haar random unitaries are shown. For each gate set, the average over ten draws of random sequences is
shown. A gate set is classified as recovered if the MVE falls below 0.03. The bottom right plot depicts the recovery rate for random
two-qubit gate sets of the form G = {14,12 ⊗ U1,12 ⊗ U2, U1 ⊗ 12, U2 ⊗ 12, U12}, where U1 and U2 are Haar random single-qubit
unitaries and U12 is a Haar random two-qubit unitary. Additionally, each single-qubit and two-qubit gate contains depolarizing noise
of strength p = 0.001 and depolarizing noise of strength 0.01 is applied before measurement. The recovery rate is averaged over ten
random sequence draws. For all gate sets, the sequences are drawn uniformly at random with sequence length � = 7 and m = 1000
samples per sequence. The maximum numbers of initializations are 80, 33, 17, and 10 for Kraus ranks 1, 2, 3, 4, respectively. They are
chosen such that the maximal computation time is equal among different ranks.

then the random drawing of gate sequences, and finally the
random initialization of the algorithm. Each shade of green
corresponds to one random gate set, and the recovery rate
tells us how many of the ten random sequence sets lead to
a successful reconstruction, given a budget of 33 initial-
izations. We find that the random single-qubit gate sets all
have similar recovery rates, with a successful reconstruc-
tion possible from nseq = 20 to nseq = 30 sequences, and a
high rate of recovery at nseq = 100 sequences. In the two-
qubit case a different picture emerges, where two of the
random gate sets show a high recovery rate at nseq = 200
sequences (akin to the XYICNOT model), while the least
favorable random gate set is only recoverable at nseq = 500
sequences. This shows that random gate sets for two qubits
can have very different conditioning.

1. Sequence number comparison to pyGSTi

Comparing the number of random sequences needed
for mGST and the number of sequences for pyGSTi is

not straightforward. The standard pyGSTi data processing
pipelines crucially rely on specific, fixed sequence con-
struction. For this reason, pyGSTi cannot be applied to
the type of data that we use here. We can however com-
pare the number of random sequences with the number
of deterministic sequences that the standard implementa-
tion of pyGSTi uses. For the single-qubit XYI model, the
minimal number of sequences given in the pyGSTi imple-
mentation is nseq = 92. This is significantly larger than
the number of random sequences at which the phase tran-
sition of mGST in Fig. 3 appears. However, the nseq =
92 sequences are overcomplete by design, and we find
that pyGSTi can also reconstruct the XYI model with
nseq = 48 sequences. Yet we do not find the same sequence
design to be successful for three Haar-random single-
qubit gates, indicating that the choice of sequences is well
tailored to the XYI model. The reduction in sequences
becomes more pronounced for the two-qubit gate set stud-
ied in the top right of Fig. 3. For this gate set, the
minimal number of gate sequences that pyGSTi uses is
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nseq = 907, which is significantly larger than what mGST
needs.

D. Characterizing unitary errors using prior
knowledge

In the previous section we demonstrated compressive
gate set tomography for one- and two-qubit gate sets using
agnostic random initializations. A major obstacle in going
beyond reconstructing entire two-qubit gate sets even com-
pressively on desktop hardware is that besides runtime
and storage, the number of required random initializa-
tions until proper convergence also grows in principle with
the number of qubits. This is due to longer sequences
being required for tomographic completeness, leading to
a higher-order polynomial in the cost function. This situa-
tion can be remedied by using prior knowledge, such as the
target gate set, for the initialization. In this case, a gate set
in the vicinity of the initial point will be found that is in bet-
ter agreement with the data. In a conceivable experimental
scenario the gates are more or less known due to the physi-
cal setup and previous benchmarking rounds, but further
calibration requires information about present coherent
errors. The use of prior knowledge can be seen as a sit-
uational tool to further reduce runtime when applicable,
but for general purpose verification and characterization,
no initial point is to be assumed for compressive GST with
the mGST algorithm.

To showcase the characterization of unitary errors using
prior knowledge, we take a three-qubit gate set that is the
direct generalization of the previous two-qubit XYICNOT
model, by adding the local X and Y rotations as individual
gates to the third qubit and adding a CNOT gate between
qubits 2 and 3. We then apply a global random rotation
to each gate individually, as well as depolarizing noise
on each gate. From random sequences of fixed sequence
length we can then, in theory, fit the noisy model perfectly
via an rK = 1 approximation, as the depolarizing channels
commute with the unitary gates and can be pulled into ini-
tial state or measurement. In Fig. 4 we see that mGST is
indeed able to precisely reconstruct the rotated gates, as
shown by the average diamond norm error. We chose a
comparatively high number of 105 samples per sequence to
showcase that high accuracy can indeed be realized using
this method: for instance, only 256 sequences are enough
to achieve an average diamond norm distance of around
0.007 between the reconstructed unitary gates and the true
unitary gates, which include over-rotations. The fact that
these over-rotations are modeled as being global on all
three qubits suggests that we can efficiently characterize
unitary crosstalk as well, by capturing the effects of single-
and two-qubit gates on their neighbors within a three-qubit
region.

No. sequences

mGST, three qubits

(1/n)

FIG. 4. Average diamond distance between three-qubit rotated
target gates Grot

i and their unitary (rK = 1) mGST estimators
Ĝi as a function of the number of sequences. The 0-sequence
data mark the average diamond distance between initialization Gi
and Grot

i . The rotated gates Grot
i are related to their counterparts

Gi by independent random (global) over-rotations on each gate,
given by exp(iγ H) with H ∼ GUE and γ = 0.05, leading to
E‖γ H‖∞ ≤ 2

√
2/5. The data are simulated from the gates Grot

i
with depolarizing noise of strength p = 0.01 on each gate and the
measurements are taken from random sequences of length � = 7,
with m = 105 samples per sequence.

E. Implementation details and calibration

We now provide more details on the simulations, the
criteria for successful recovery, and the required num-
ber of initializations. To simulate measurements on a gate
sequence i, we first compute the outcome probabilities pj |i
from Eq. (16) of the POVM elements according to the
model gate set in question. Afterwards we draw m samples
from the multinomial distribution M (m, (p1|i, . . . , pnE |i)),
where

∑
j pj |i = 1. Let kj |i be the number of times outcome

j occurred for sequence i. Then Algorithm 2 optimizes
the objective function (20) on the estimated probabilities
yj |i = kj |i/m.

For the single-qubit examples, the batch size κ = 50 is
chosen, while for the two-qubit example, we use κ = 120.
The choice of batch size determines the number of val-
ues summed over in Eq. (20). Therefore, the computation
time of the objective function and its derivatives scales lin-
early in κ , making a small batch size favorable. However,
it cannot be set too small, otherwise the update directions
become highly erratic, and no convergence is reached.
A general rule of thumb is to set the batch size close
to the number of free parameters in the model. Another
hyperparameter is the damping value λ for the saddle-free
Newton method described in Algorithm 1. We find that a
fixed value of λ = 10−3 leads to the best results across the
models tested.

Judging whether mGST recovers a gate set by looking
at the attained objective function value can only be done if
the set of measured sequences is informationally complete.
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FIG. 5. Least-squares objective function versus MVE at the
end of the mGST optimization, with the gray bar indicating the
range of stopping values below which a run is considered suc-
cessful. The plot illustrates that results with a large MVE also
have a large objective function if enough sequences are mea-
sured. The experiment is the same as in the top left of Fig. 3 for
rK = 4. The color of each point indicates the number of measured
sequences on which mGST is run.

Then there is a unique (up to gauge) global minimum in
the least-squares minimization problem and the minimum
corresponds to the true gate set in the limit of infinitely
many samples per sequence.

In Fig. 5 we take a look at the correlation between the
final least-squares objective function value L(X̂ , y) and
the mean variation error MVE(X̂ ,X ). We see that, for a
low number of sequences (10–20), a low objective func-
tion value does not imply a low MVE, yet for higher
numbers of sequences, an objective function value below
10−3 implies an MVE around 10−2. For sufficiently many
sequences, the gray line indicating our success criterion
clearly separates two clusters of points, meaning that no
intermediate quality fits are found in our model space. In
this sequence regime either the algorithm converges to a
fit as good as the sample count allows, or it does not con-
verge at all. Therefore, restarting the algorithm when an
initialization turns out to be bad yields practically optimal
results. A thorough analysis of the probability of obtain-
ing an informationally complete set of random sequences
is left for future work.

To give an intuition on how many initializations are
required for mGST to converge, we can take a look at data
from a modified XYI model with gates {1, eiασy/2, eiασx/2},
simulating more difficult gate set conditioning. Figure
6 shows histograms for the number of reinitializations
needed for convergence. The data combine the results for α

between π/18 and π/2, with depolarizing noise of strength
p = 0.001 on each gate and p = 0.01 on the initial state,
as well as a maximum of 100 reinitializations.

We observe that in 48.4% of all cases convergence
is reached on the first attempt, and in 90.4% of cases
four or fewer reinitializations are required. The histogram
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FIG. 6. Relative frequencies of reinitialization counts for
mGST run on modified XYI models (see the main text for
details).

indicates that the chance of needing multiple reinitial-
izations rapidly decays and that rank-1 optimization is
more sensitive to bad initializations compared to rank-4
optimization.

F. Runtime and scaling

In order to assess the runtime scaling of Algorithm
2 in the problem parameters we identify the two most
time-consuming steps as the computation of the second
derivative terms in H and the diagonalization of H for the
SFN update on the gates.

Recall that rK denotes the Kraus rank of the gate estima-
tors, n the number of gates in the gate set, � the number
of gates per sequence, and κ the number of sequences
per batch. The computation of the second derivative terms
scales as O(κ�3d6), while the eigendecomposition of H
scales as O((2nrK d2)3). A computationally less expensive
variant is to not optimize over all variables of the full
gate tensor at once, but over the individual gates one after
another. The complexity of the eigendecompositions then
reduces to O(n(2rK d2)3), which is beneficial for large gate
sets. However, this approach also leads to slower conver-
gence, and we choose to optimize over the full tensor by
default.

Table I contains runtimes for the system sizes studied in
our numerical experiments. We find that reconstruction of
single-qubit gate sets can be achieved within seconds and
low-rank two-qubit gate sets can be reconstructed within
minutes on a single modern 32-core CPU. The runtimes
for the gradient descent method on the two-qubit exam-
ple are very fast up to high ranks; however, we generally
find that the default Newton method is more reliable across
different gate set and sequence scenarios. If a good ini-
tialization is known, the runtime is reduced drastically.
For instance, the three-qubit reconstruction done with prior
knowledge about the gates in Sec. IV D took 5 h and 30
min to complete.

010325-14



COMPRESSIVE GATE SET TOMOGRAPHY PRX QUANTUM 4, 010325 (2023)

TABLE I. Average runtimes for one, two, and three qubits with selected Kraus ranks on a modern 32-core CPU. The average runtime
is calculated as the average time until the first successful reconstruction with a random initialization is achieved. The one-qubit gate
set is the same as in Fig. 2, the two-qubit gate set the same as in Fig. 3, and the three-qubit gate set is the same as in Fig. 4 but
without using any prior knowledge. For the gradient descent method in the three-qubit scenario, no convergence is achieved within the
maximum iteration limit. The average runtimes for pyGSTi are determined on the same models and with the same sequences.

mGST: default (Newton)

rK = 1 rK = 4 rK = 8 rK = 16

One qubit 4 s 14 s � �

Two qubits 8 min 8 s 39 min 50 s 2 h 26 min 10 s 9 h 1 min 43 s
Three qubits 3 d 2 h � � �

mGST: gradient descent

rK = 1 rK = 4 rK = 8 rK = 16

One qubit 26 s 17 s � �

Two qubits 5 min 40 s 6 min 0 s 5 min 51 s 4 min 47 s
Three qubits No convergence � � �

pyGSTi
One qubit 5 s
Two qubits 1 h 6 min 48 s
Three qubits No result after 4 d 14 h

V. NOISE-MITIGATION FOR SHADOW
ESTIMATION WITH COMPRESSIVE GST

Gate set estimates provide a detailed picture of the
imperfections that can inform prioritization and further
experimental efforts [15,19,21–23]. Coherent error esti-
mates can often be directly corrected for by adjusting or
optimizing the control. We expect that the more econom-
ically accessible compressive estimates from mGST can
be used in place of traditional GST estimates in the above
applications, in particular when complemented with RB
estimates of incoherent noise effects. However, it is beyond
the scope of this work to demonstrate mGST in a full
engineering cycle of a quantum computing device.

To still showcase the value of GST estimates, we sketch
another novel application that can be demonstrated without
simulating a whole engineering cycle. Generally speaking,
noise characterizations can be used to mitigate noise-
induced biases in other quantum characterization protocols
by adapting the classical postprocessing [98,99]. Given
a device that can repeatedly prepare a quantum state, a
fundamental characterization task is to estimate the expec-
tation values of observables from measurements. In partic-
ular, an informationally complete measurement allows one
to estimate arbitrary observables from the same data in the
postprocessing. Such an informationally complete mea-
surement can be implemented on a quantum computing
device by measuring in sufficiently many random bases,
the prototypical example being measurements in random
Pauli bases. Huang et al. [46] showed how to derive
optimal guarantees with exponential confidence for esti-
mating multiple observables simultaneously using a

median-of-means estimator and explicit bounds on the
variance for random basis measurement that constitute
unitary 3-designs. They introduced the term “classical
shadow” to refer to the elements of a dual frame of
the informationally complete POVM corresponding to
observed samples; see Appendix A 5 for a brief summary.
Importantly, one can often arrive at high-precision esti-
mates of observables long before one has measured all the
informationally complete bases in multiqubit systems.

In practice, however, implementing a random bases
measurement, say, by applying a unitary rotation followed
by a computational bases measurement will suffer from
noise from the gates and readout. This has motivated
the development of robust variants of shadow estimation
that either make use of simple depolarizing noise models
of known strength [100] or perform a separate RB-style
experiment that estimates the depolarizing noise strength
induced by a gate-independent channel acting between the
rotation and the measurement [101]. Using GST estimates
provides a complimentary, flexible approach to mitigate
even highly gate-dependent noise with finite correlations
in shadow estimation.

We demonstrate how GST estimates on two-qubit pairs
can be used to calculate noise-robust classical shadow esti-
mators in postprocessing. Our robust estimation scheme
consists of two distinct stages, each consisting of multiple
steps. (I) The calibration stage consists of three phases. (i)
The local channels implementing each combination of two
local gates are reconstructed with mGST. (ii) The gauge
of these gate estimates is matched to the gauge in which
the ideal gates and the observables are given. For this step,
we use the gauge optimization provided by the pyGSTi
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FIG. 7. Energy estimation for the ten-qubit Hamiltonian H = 1
2

∑10
j=1(σ

j
x σ

j+1
x + σ

j
y σ

j+1
y + σ j

z σ j+1
z − σ j

z ) with periodic boundary
conditions. The top left plot shows the sample dependence of the relative accuracy |(Ê − E)/E| for estimating the ground-state energy.
The colored blocks extend from the first quartile to the third quartile around the median (black line) of the data (50 repetitions per
sample value). The whiskers extend from the 5th to the 95th percentile and the dashed lines indicate the infinite sample expectation
values. In the bottom left and bottom middle plots two histograms are shown that compare the theoretical infinite sample energy
estimates Ê∞ (biases) for 1000 random pure states and for all 1024 eigenstates of the Hamiltonian, respectively. All simulations are
done with noisy Clifford gates, whose average gate fidelity to their ideal counterparts is at 0.99± 10−3. In the top right plot the Pauli
transfer matrix of a two-qubit effective measurement map M� under this noise model is shown. The bottom right plot displays the
difference between M� and its noise-free counterpart M. Gate estimates for GST-mitigated shadow estimation are produced with
mGST (rK = 2), using 400 random sequences equally distributed among sequence lengths {6, 7, 8, 9} with 104 samples per sequence.
The noise in the simulations is given by two-qubit random unitary noise eiγ K with K ∼ GUE. The error parameter is γ = 0.14 on H
and on HS, leading to the aforementioned average gate fidelities of about 0.99. For the bottom left histogram, random pure states are
generated as U|0〉, with U drawn according to the Haar measure.

package [45]. (iii) From the gauge-optimized channel esti-
mates, we numerically calculate the effective measurement
map when implementing random Pauli measurements with
the characterized noisy gate set.

(II) After calibration, the second stage is a shadow esti-
mation protocol that consists of two separate phases: (i)
the data acquisition by repeatedly measuring the unknown
state of the quantum device in a randomly selected Pauli
basis; (ii) the classical postprocessing where estimators of
the observables are calculated using the data. We use the
inverse of the effective measurement map from the calibra-
tion stage to calculate the empirical estimators. We give
a more detailed description of the individual steps of the
procedure in Appendix A 5.

Using an empirically estimated effective measurement
map instead of the ideal theoretical result is the essential

modification compared to standard shadow estimation. In
this way, we also “invert” the effect of the noise on our
estimator. The right column of Fig. 7 shows an effective
measurement map implemented with imperfect gates.

As a proof of concept, we choose the following simple
but practically relevant setup. Random local Pauli basis
measurements are implemented by native measurements
in the computational basis after rotating with a Hadamard
gate H (if the Pauli-X basis is to be measured) or a phase
gate S followed by a Hadamard gate (for measurement in
the Pauli-Y basis). Since throughout the protocol the S gate
only turns up before application of the Hadamard gate, we
treat the sequence HS as a single gate.

We assume that the dominant noise associated with the
single-qubit rotations of each local gate in the experiment
stays confined to two neighboring qubits. This assumption
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makes both the gate set estimation and the postprocessing
of the shadow estimation highly scalable.

Figure 7 shows the results of our scheme in simulations
of the energy estimation of a Heisenberg Hamiltonian on
a ten-qubit system. We observe that using the estimated
effective measurement map instead of the ideal theoreti-
cal one significantly reduces the relative error |(Ê − E)/E|
between the estimated energy Ê and the true energy E of
a given state. There are two contributions to the relative
error in a shadow estimation protocol: first, the statistical
fluctuation from the randomness of both the Pauli basis
selection and the single-shot measurements; second, the
systematic bias introduced in the postprocessing due to
imperfect implementations of the measurements. The his-
tograms in Fig. 7 show the infinite measurement limit of
the relative error and thus directly reflect the bias. We
observe that, for a fixed noise model, the magnitude of the
bias depends heavily on the selected initial state, with rel-
ative errors being distributed over 2 orders of magnitude.
When comparing the most likely errors between standard
shadow estimation and GST-mitigated shadow estimation,
we find that using GST data leads to a reduction in rela-
tive error by half an order of magnitude for random pure
states and an order of magnitude for eigenstates of the
Hamiltonian. The simulation of the protocol in the top
left of Fig. 7 includes statistical fluctuations and show-
cases how estimates spread for different sample counts
when the ground-state energy is estimated. We find that,
from 104 samples on, the GST-mitigated protocol yields a
significantly more accurate estimate.

VI. CONCLUSION AND OUTLOOK

We have revisited the data processing task of GST from
a compressed sensing perspective, regarding it as a highly
structured and constrained tensor completion problem. In
this formulation, we can naturally require the reconstructed
gate set to be physical and, moreover, of low rank. Com-
pressive gate set tomography thus aims at extracting con-
siderably fewer parameters of the gate set. At the same
time we have argued that the low-rank approximation to
the implementation of a gate set contains the most valu-
able information about experimental imperfections for the
practitioner.

The set of Kraus operators of a low-rank gate can be
regarded as isometries that make up the complex Stiefel
manifold. This observation has motivated the solution of
the compressive GST data processing problem via geo-
metrical optimization on the respective product manifolds.
We have devised the optimization algorithm mGST that
performs an adapted saddle-free Newton method on the
manifold. To this end, we have derived the Rieman-
nian Newton equation, Hessian equation, and geodesic
curves.

In numerical experiments we have studied the perfor-
mance of the mGST algorithm. We have compared it to
pyGSTi, the state-of-the-art approach to the GST data pro-
cessing problem, in settings where both algorithms can
be applied and using full rank mGST estimates. We have
found that in these settings mGST matches the perfor-
mance of pyGSTi, while offering a larger model space,
more flexibility in the sequence design, and allowing for
low-rank assumptions. Moreover, we have numerically
demonstrated that making use of the low-rank constraints
significantly reduces the required number of measured
sequences and the runtime of the reconstruction algorithm
for a standard single- and two-qubit model. Importantly,
we have found that we can successfully reconstruct generic
unitary channels and depolarizing noise of one- and two-
qubit gate sets from random gate sequences. This reduces
the demands of GST both for experiments and classical
postprocessing: the data that compressive GST requires
are virtually identical with the experimental data produced
by randomized benchmarking experiments. The classical
postprocessing of mGST for a low-rank reconstruction
of two-qubit gate sets takes only minutes even on desk-
top hardware, compared to over an hour with pyGSTi.
We expect that this speedup and the low number of
sequences required can lift two-qubit GST from being a
protocol that is unpractical in many situations to one that
is routinely applied, thus enabling it to be used in the
engineering cycle for the design and calibration of gate
sets.

Furthermore, compressive GST makes it feasible to per-
form self-consistent tomography on three-qubit systems.
Making use of often available prior knowledge about an
initialization can further reduce the computing time. We
demonstrated this by performing tomography of unitary
errors for three-qubit gate sets, using only a small number
of random gate sequences, and with the postprocessing still
running on desktop hardware in a few hours. We expect
that even going slightly beyond three qubits is feasible
by simply using more computing power. We leave it to
future work to further tweak the numerical implementa-
tion in order to improve the scalability of the classical
postprocessing. We also expect that progressively longer
sequences can be added at the end of our optimization
method, much in the same fashion as in pyGSTi, in order
to further improve reconstruction accuracy of gate set
estimates.

To demonstrate the use of compressive GST for error
mitigation, we have introduced one novel application
where low-rank mGST reconstructions are used to alle-
viate the effect of coherent errors in classical shadow
estimation. The protocol uses a set of gates to imple-
ment basis changes before the measurement. We have
demonstrated that with tomographic information on these
gates through two-qubit compressive GST, more accurate
ground state energy estimates are obtained in practically
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relevant regimes. This constitutes just one example where
the full information of a low-rank GST estimate is used
to correct errors, and we expect that the reduced runtime
requirements of mGST enable frequent use of GST for
error diagnosis and mitigation.

Finally, besides making GST more applicable and flexi-
ble in practice, our reformulation is motivated by bringing
it closer to theoretical recovery guarantees quantifying
a required and sufficient number of random sequences
for accurate reconstruction. Regarding the data process-
ing of GST as a translation-invariant matrix-product-state
completion problem makes it more amenable to prove
techniques from compressed sensing. For example, estab-
lishing local convergence guarantees for mGST would
allow one to quantify the assumptions on the experimen-
tal implementation that justify certain initialization of the
algorithm. We hope that our work can serve as a foundation
and inspiration in the quest of establishing mathematically
rigorous guarantees for GST.
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APPENDIX A

In this appendix, we provide the mathematical details
required for the saddle-free Newton method within the
Riemannian optimization framework; see Appendices
A 1–A 3. Moreover, we compare the dependence of the
mGST MVE on the choice of objective function (mean
squared error versus maximum likelihood) in Appendix
A 4.

1. Geodesics on the Stiefel manifold

Edelman et al. [48] derived the geodesic on the
real Stiefel manifold by solving the respective geodesic
equation. We now show that the simple generalization
given in Eq. (27) is indeed the correct geodesic in the
complex case. For a curve Kt ≡ K(t), the general geodesic

equation is [89, Chapter 5.4, Proposition 5.3.2]

PT(Kt)(K̈t + CKt(K̇t, K̇t)) = 0, (A1)

where the Christoffel symbol CKt depends on the chosen
metric. Here, we use the canonical metric

〈�1, �2〉K = Re{Tr(�†
1��2)} =: g(�1, �2) (A2)

with � = 1− 1
2 KtK

†
t . Using the Einstein summation con-

vention, the Christoffel symbol at K can be computed
as

(Ck
Kt

)ij = 1
2

g−1
kl

(
∂glj

∂Kti
+ ∂gli

∂Ktj
− ∂gij

∂Ktl
+ c.c.

)

, (A3)

where Ck
Kt

is the kth component of the Christoffel symbol
at Kt with respect to a basis {Ek, E∗k }k∈[Dd] on the ambient
space CD×d.

Lemma 1: The geodesic equation on the complex Stiefel
manifold St(D, d) equipped with the canonical metric for
the curve Kt : R→ St(D, d) is given by

PT(Kt)(K̈t + K̇tK̇
†
t Kt − KtK̇

†
t K̇t − K̇tK

†
t K̇t) = 0. (A4)

Proof. By noting that �−1 = 1+ KtK
†
t we can determine

the function g−1(�1, �2) via the condition g(g−1(�1, · ),
�2) = Tr[�†

1�2 +�2�
†
1], meaning that the inverse g−1

would recover the standard symmetric inner product on
TK St(D, d). One can quickly verify that g−1(�1, · ) =
�−1�1 satisfies this condition.

We determine the derivatives of g needed for the
Christoffel symbol by explicitly writing out g as

g(�1, �2) = Tr
[

�
†
1

(

1− 1
2

KtK
†
t

)

�2

+�
†
2

(

1− 1
2

KtK
†
t

)

�1

]

, (A5)

from where we can find the derivatives by K and K∗ as

∂gij

∂Ktl
= ∂g

∂Ktl
(Ei, Ej ) = −1

2
Tr[E†

i ElK†Ej + E†
j ElK†Ei],

(A6)

∂g
∂K∗tl

(Ei, Ej ) =
(

∂g
∂Ktl

(Ei, Ej )

)∗

= − 1
2 Tr[E†

i KE†
l Ej + E†

j KE†
l Ei].

(A7)
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With these derivatives we can calculate

Ck
Kt

(K̇t, K̇t) = (Ck
Kt

)ij (K̇t)i(K̇t)j

= 1
2

g−1
kl

(
∂glj

∂Kti
+ ∂gli

∂Ktj
− ∂gij

∂Ktl
+ c.c.

)

K̇tiK̇tj

= 1
2

(
∂g
∂Kti

(g−1(Ek, ·), K̇t)K̇ti + ∂g
∂Ktj

(g−1(Ek, ·), K̇t)K̇tj − ∂g
∂Ktl

(K̇t, K̇t)(g−1(Ek, ·))l + c.c.
)

= − 1
2 Re{Tr[2E†

k �
−1K̇tK

†
t K̇t + 2K̇†

t K̇tK
†
t �−1Ek − 2K̇†

t �−1EkK†
t K̇t]}

= −Re{Tr[K̇tKtK̇
†
t �−1Ek + K̇†

t K̇tK
†
t �−1Ek − K†

t K̇tK̇†�−1Ek]}
= 〈(K†

t K̇tK̇
†
t − K̇†

t K̇tK
†
t − K̇†

t KtK̇
†
t )†, Ek〉

= 〈K̇tK̇
†
t Kt − KtK̇

†
t K̇t − K̇tK

†
t K̇t, Ek〉, (A8)

where we have used the facts that (�−1)† = �−1 and Re Tr[X ] = Re Tr[X †]. We now first write out the geodesic equation
(A1) on the ambient space,

〈K̈t, Ek〉 + Ck
Kt

(K̇t, K̇t) = 〈K̈t, Ek〉 + 〈K̇tK̇
†
t Kt − KtK̇

†
t K̇t − K̇tK

†
t K̇t, Ek〉

= 0 for all Ek, (A9)

which is equivalent to

K̈t + K̇tK̇
†
t Kt − KtK̇

†
t K̇t − K̇tK

†
t K̇t = 0. (A10)

This completes the proof. �
To arrive at the geodesic equation (27), it remains to project the above equation onto the tangent space. Indeed, with the

explicit form of the geodesic equation from Lemma 1 we can show that the immediate generalization from the geodesic
in the real case [48] gives a valid geodesic for the complex case.

Lemma 2: The curve given by

Kt = (K , Q) exp
(

t
(

A −R†

R 0

)) (
1

0

)

(A11)

is a geodesic on St(D, d), determined through the initial conditions Kt=0 = K and K̇t=0 = �, with Q, R given by the QR
decomposition of (1− KK†)� and A = K†�.

Proof. We recall that the ambient space splits into the tangent space and its orthogonal complement, the normal space.
Therefore, the condition that the projection of the left-hand side onto the tangent space in Eq. (A4) vanishes is equivalent
to demanding that it lies solely in the normal space. If it is in the normal space, K†

t applied from the left will yield a
Hermitian matrix. We now show that this is indeed the case. For that, we first need to determine the first and second
derivatives of Kt:

K̇t = (K , Q) exp
(

t
(

A −R†

R 0

)) (
A −R†

R 0

) (
1

0

)

= KtA︸︷︷︸
K̇1

+ (K , Q) exp
(

t
(

A −R†

R 0

)) (
0
1

)

R
︸ ︷︷ ︸

K̇2

, (A12)

010325-19



BRIEGER, ROTH, and KLIESCH PRX QUANTUM 4, 010325 (2023)

K̈t = (K , Q) exp
(

t
(

A −R†

R 0

)) (
A −R†

R 0

)2 (
1

0

)

= K(t)(A2 − R†R)
︸ ︷︷ ︸

K̈1

+ (K , Q) exp
(

t
(

A −R†

R 0

)) (
0
1

)

RA
︸ ︷︷ ︸

K̈2

. (A13)

We immediately see that K†
t K̈1 = A2 − R†R, which is Hermitian, as A is skew Hermitian. We will now show that K†

t K̈2 = 0
starting with

K†
t K̈2 = (1, 0) exp

(

−t
(

A −R†

R 0

)) (
K†

Q†

)

(K , Q) exp
(

t
(

A −R†

R 0

)) (
0
1

)

RA

= (1, 0) exp
(

−t
(

A −R†

R 0

)) (
1 K†Q

Q†K 1

)

exp
(

t
(

A −R†

R 0

)) (
0
1

)

RA

= (1, 0) exp
(

−t
(

A −R†

R 0

)) ((
1 0
0 1

)

+
(

0 K†Q
Q†K 0

))

× exp
(

t
(

A −R†

R 0

)) (
0
1

)

RA

= (1, 0) exp
(

−t
(

A −R†

R 0

)) (
0 K†Q

Q†K 0

)

exp
(

t
(

A −R†

R 0

)) (
0
1

)

RA. (A14)

To simplify the last expression, we set

(
U00 U01
U10 U11

)

= exp
(

t
(

A −R†

R 0

))

(A15)

and obtain K†
t K̈2 = (U†

00K†QU11 + U†
10Q†KU01)RA. From the series representation of the matrix exponential we gather

that U11 = 1+ R · X for some matrix X . Moreover, U10 = RX̃ and U†
10 = X̃ †R† for some X̃ , leading to

K†
t K̈2 = (U†

00K†Q+ U†
00K†QRX + X̃ †R†Q†KU01)RA = 0, (A16)

since K†QR = K†(1− KK†)� = 0.
This shows that K̈t lies in the normal space, leaving us with the terms in the geodesic equation (A4) that depend only

on K̇t:

K†
t (K̇tK̇

†
t Kt − KtK̇

†
t K̇t − K̇tK

†
t K̇t)

= K†
t K̇tK̇

†
t Kt − K̇†

t K̇t − (K†
t K̇t)

2

= (A+ K†
t K̇2)(A+ K†

t K̇2)
† − (A†A+ A†K†

t K̇2 + K̇†
2 KtA+ K̇†

2 K̇2)− (A+ K†
t K̇2)

2

= AA† − A†A− K̇†
2 K̇2 − A2.
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The last line follows from K̇2A = K̈2 and our previous observation that K†
t K̈2 = 0, which implies that K†

t K̇2 = 0 as well.
The remaining term K̇†

2 K̇2 can be computed similarly to K†
t K̈2 and we obtain

K̇†
2 K̇2 = R†(0,1) exp

(

−t
(

A −R†

R 0

)) (
1 K†Q

Q†K 1

)

exp
(

t
(

A −R†

R 0

)) (
0
1

)

R

= R†(0,1) exp
(

−t
(

A −R†

R 0

)) ((
1 0
0 1

)

+
(

0 K†Q
Q†K 0

))

× exp
(

t
(

A −R†

R 0

)) (
0
1

)

R

= R†R+ R† (
0 1

)
exp

(

−t
(

A −R†

R 0

)) (
0 K†Q

Q†K 0

)

× exp
(

t
(

A −R†

R 0

)) (
0
1

)

R

= R†R+ R†(U†
11Q†KU01 + U†

01K†QU11)R

= R†R+ R†((1+ X †R†)Q†KU01 + U†
01K†Q(1+ RX ))R

= R†R, (A17)

where we have again used the fact that K†QR = R†Q†K = 0 in the last line.
We can now put all the terms obtained by multiplying Eq. (A10) with K†

t from the left together to obtain

K†
t (K̈t + K̇tK̇

†
t Kt − KtK̇

†
t K̇t − K̇tK

†
t K̇t) = A2 − R†R− AA† − A†A− R†R− A2

= −2R†R− A†A− AA†. (A18)

We see that these remaining terms are Hermitian and therefore the left-hand side of Eq. (A10) is in the normal space. �

2. Complex Newton equation

In this section, we derive the Riemannian Hessian operator and solve the Hessian equation to obtain an update direction
on the tangent space, which we can follow along the geodesic defined in Eq. (27). This can be done for each gate indi-
vidually, or simultaneously over all gates, in which case we operate on the Cartesian product St(D, d)×n of single Stiefel
manifolds. We consider the latter case, whereby we obtain the single Stiefel Newton equation [Eq. (A27)] as a byproduct.
The method is based on the real case [48]. See also Ref. [49] for a recent treatment of second-order optimization on
the complex Stiefel manifold, where instead of following geodesics, each optimization step is done in Euclidean space
followed by a projection onto the manifold.

First let us make a general observation that will be useful at several points.

Lemma 3 (Theorem 14 of Ref. [49]): Let f : TK St(D, d)→ C be a C-linear function, and let 〈 · , · 〉K be the canonical
metric on St(D, d) as defined in Eq. (24). Then the solution to

Re{f (�)} = 〈X , �〉K for all � ∈ TK St(D, d) (A19)

is given by X = F∗ − KFTK ∈ TK St(D, d), where F is chosen such that f (�) = Tr(FT�).

Proof. It is straightforward to see that X ∈ TK St(D, d) by applying the projector onto the tangent space: PTK (X ) = F∗ −
KFTK − 1

2 K(K†F∗ + FTK)+ 1
2 K(FTK + K†F∗) = F∗ − KFTK .
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To show that X solves Eq. (3), we use the fact that K†� is skew Hermitian, as well as the fact that Re Tr[HS] = 0 for
any skew Hermitian matrix S and Hermitian matrix H . Substituting X = F∗ − KFTK into Eq. (3) we obtain

〈X , �〉K = Re Tr
[
X †(1− 1

2 KK†)�
]

= Re Tr[(FT − K†F∗K†)
(
1− 1

2 KK†)�]

= Re Tr
[(

FT − 1
2 (FTK + K†F∗)K†)�

]

= Re Tr[FT�]− Re Tr[herm(FTK)K†�]

= Re Tr[FT�].

This completes the proof. �
Our goal is to simultaneously update all gates along the geodesic

⊕n
i=1 Ki(t) ∈ St(D, d)×n, with the single Stiefel

geodesics Ki(t) being given by Eq. (27). We define the initial directions as �i = K̇i(0). The first step to identify the
Riemannian gradient and Hessian is to compute the second-order Taylor series expansion of L in t at t = 0. Using (Ki)lm ≡
Kilm and Einstein notation, we find that

L(K1 ⊕ · · · ⊕Kn;K∗1 ⊕ · · · ⊕K∗n)

= L|t=0 + 2 Re
{

∂L
∂Kilm

∂Kilm

∂t

}∣
∣
∣
∣
t=0
· t

+ 2 Re
{

∂2L
∂Kjop∂Kilm

∂Kjop

∂t
∂Kilm

∂t
+ ∂2L

∂K∗jop∂Kilm

∂K∗jop

∂t
∂Kilm

∂t
+ ∂L

∂Kilm

∂2Kilm

∂t2

}∣
∣
∣
∣
t=0

× t2/2+O(t3). (A20)

We have ∂Kilm/∂t|t=0 = (�i)lm and define (LKi)lm := ∂L/∂Kilm, so that we can write

∂L
∂Kilm

∂Kilm

∂t
= Tr(LT

Ki
�i) and

∂L
∂Kilm

∂Kilm

∂t
=: LKi[�i].

In a similar fashion we define

LKj Ki[�j , �i] := ∂2L
∂Kjop∂Kilm

∂Kjop

∂t
∂Kilm

∂t
,

where LKj Ki[·, ·] is a bilinear function, which is symmetric per definition via the second derivative. For more details on
how to compute these derivatives for the objective function used in the main text, see Appendix A 3.

Before determining the relevant terms for the update on St(D, d)×n we first consider the gradient and Hessian, as well
as the Newton equation for a single variable K ∈ St(D, d), leaving all others constant.

The Riemannian gradient G ∈ TK St(D, d) can be identified from the first-order term in the Taylor expansion via its
definition [49]

2 ∗ Re{LK [�]} = 〈G, �〉K for all � ∈ TK St(D, d). (A21)

The solution for G in the canonical metric (24) is given by

G = 2(L∗K − KLT
K K), (A22)

as per Lemma 3.

Lemma 4: The Riemannian Hessian Hess : TK St(D, d)× TK St(D, d)→ R of a function L : St(D, d)→ R with respect
to the canonical metric on St(D, d) is given by

Hess(�, �) = 2 Re{LKK [�, �]+ LK∗K [�∗, �]}
+ Re{Tr[LT

K(�K†�+�K†�)]− Tr[LT
K K(�†��+�†��)]}. (A23)
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Proof. According to Proposition 5.5.5 of Ref. [89], we can compute Hess(�, �) via

Hess(�, �) = 1
2

d2

dt2
[L(K(t(�+�)))− L(K(t�))− L(K(t�))]

∣
∣
∣
∣
t=0

, (A24)

where K(t�) satisfies K̇(t�)|t=0 = � (see Ref. [48] for a discussion of the real case). The individual terms in Eq. (A24)
can be determined from our general Taylor approximation in Eq. (A20), i.e., with i = j = 1, if we take K = K1. The term

∂L
∂K

[
∂2K(t�)

∂t2

]∣
∣
∣
∣
t=0

contains second derivatives of the geodesic given in Lemma 2, which we write out next. We have

K̈(t) = (K , Q) exp
(

t
(

A −R†

R 0

)) (
A −R†

R 0

)2 (
1

0

)

= (K , Q) exp
(

t
(

A −R†

R 0

)) (
A2 − R†R

RA

)

.

It follows using QR = (1− KK†)� =: �� and A = K†� from the definition of the geodesic that

K̈(0) = K(A2 − R†R)+ QRA

= K(A2 − R†Q†QR)+��K†�

= K(K†�K†�−�†�†��)+��K†�

= K(K†�K†�−�†��)+�K†�− KK†�K†�

= �K†�− K�†��.

Putting the terms together, we arrive at

d2

dt2
L(K(t�))

∣
∣
∣
∣
t=0
= 2 Re{LKK [�, �]+ LK∗K [�∗, �]}

+ Re{Tr[LT
K(�K†�− K�†��)]}. (A25)

The terms involving LKK and LK∗K satisfy LKK [�, �] = LKK [�, �] and LK∗K [�∗, �] = LK∗K [�∗, �], by the symmetry
of second derivatives. Using this symmetry property, we obtain the full Hessian (A24), which turns out to be

Hess(�, �) = 2 Re{LKK [�, �]+ LK∗K [�∗, �]}
+ Re{Tr[LT

K(�K†�+�K†�)]− Tr[LT
K K(�†��+�†��)]}, (A26)

where it is helpful to note that Eq. (A26) is related to Eq. (A25) via a symmetrization of the LK term. �

Theorem 1: Let vec(�) be the row-major vectorization of � ∈ TK St(D, d). Furthermore, let T and L̃KK be defined by
T vec(X ) = vec(X T) and LKK(�, ·) = L̃T

KK vec(�). Then the solution � of the linear equation in vec(�) and vec(�∗)
given by

(
L̃†

K∗K − (K ⊗ KT)TL̃T
KK − 1

21⊗ (KTLK)− 1
2 (KLT

K)⊗ 1− 1
2�⊗ (L†

K K∗)
)

vec(�)

+ (
L̃†

KK − (K ⊗ KT)TL̃T
K∗K + 1

2 (L∗K ⊗ KT)T + 1
2 (K ⊗ L†

K)T
)

vec(�∗)

= − 1
2 vec(G) (A27)

is the update direction along the geodesic given in Lemma 2 for the complex Newton method of a real function L at
position K ∈ St(D, d).
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Proof. The update direction � for the standard Newton method [48] is determined through the equation

Hess(�, �) = −〈G, �〉K for all � ∈ TK St(D, d), (A28)

which can be solved by rewriting the left-hand side as Hess(�, �) = 〈f (�), �〉K (for some yet to be determined f ) and
setting � = PT(X ) with arbitrary matrix X . This leads to

〈f (�), PT(X )〉K = −〈G, PT(X )〉K , (A29)

〈PT(f (�)), X 〉K = −〈G, X 〉K for all X ∈ C
D×d; (A30)

in the second line the scalar product is extended from the canonical scalar product initially defined on TK St(D, d) to CD×d

and we use the same notation for both. The second line follows from the fact that any matrix X can be decomposed as
X = PT(X )+ PN (X ) and from 〈A, B〉K = 0 for A ∈ TK St(D, d) and B ∈ NK St(D, d). To determine f (�), we split it into
three terms f (�) = fKK(�)+ fK∗K(�)+ fK(�), where fKK(�), fK∗K(�), and fK(�) depend only on LKK ,LK∗K , and LK ,
respectively [compare Eq. (A26)].

We first look at the term 2 Re{LKK [�, �]} = 2 Re{Tr(LKK [�, ·]T�)}, where LKK [�, ·] is in CD×d.
To solve 2 Re{Tr(LKK [�, ·]T�)} = 〈fKK(�), �〉K for all � ∈ TK St(D, d) and to find fKK , we use Lemma 3 and obtain

fKK(�) = 2(LKK [�, ·]∗ − KLKK [�, ·]TK). (A31)

The same argument can be made for the LK∗K term, leading to

fK∗K(�∗) = 2(LK∗K [�∗, ·]∗ − KLK∗K [�∗, ·]TK). (A32)

To identify fK(�), we rewrite the second line in Eq. (A26) as

Re{Tr[LT
K(�K†�+�K†�)]− Tr[LT

K K(�†��+�†��)]}
= Re{Tr[(LT

K�K† + K†�LT
K − LT

K K�†�− (��LT
K K)†)�]}

!= Re{Tr[fK(�)†��]},

where we have used the fact that Re{Tr[AB†]} = Re{Tr[A†B]}. Thus, we find that

fK(�) = [(LT
K�K† + K†�LT

K − LT
K K�†�− (��LT

K K)†)�−1]†

= 2K�†L∗K + �−1L∗K�†K −��K†L∗K −��LT
K K

by using � = �†, ��−1 = �−1� = �, K†�−1 = 2K†.
Equation (A30) implies that PT(f (�)) = −G, and it remains to compute PT(fK(�)), as PT(fKK(�)) = fKK(�)

and PT(fK∗K(�∗)) = fK∗K(�∗) (see Lemma 3). After a straightforward computation using �−1 = 1+ KK†, ��−1 =
�, PT(�Z) = PT(Z), as well as K†� = �K = 0, we get

PT(fK(�)) = −��K†L∗K − 2 skew(�LT
K)K − 2K skew(LT

K�) (A33)

with skew(A) = (A− A†)/2.
Finally, by substituting Eqs. (A31)–(A33) into Eq. (A30), we obtain the Newton equation

LKK [�, ·]∗ − KLKK [�, ·]TK + LK∗K [�∗, ·]∗ − KLK∗K [�∗, ·]TK

− 1
2��K†L∗K − skew(�LT

K)K − K skew(LT
K�)

= −G/2. (A34)

This is a linear equation in � and �∗ that can be solved via rewriting it as an equation in vec(�). Using row-
major vectorization with vec(AXB) = (A⊗ BT) vec(X ), and matrices T and L̃KK defined as T vec(X ) = vec(X T) and
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LKK(�, ·) = L̃T
KK vec(�), we arrive at the final equation for the single gate case

(
L̃†

K∗K − (K ⊗ KT)TL̃T
KK − 1

21⊗ (KTLK)− 1
2 (KLT

K)⊗ 1− 1
2�⊗ (L†

K K∗)
)

vec(�)

+ (
L̃†

KK − (K ⊗ KT)TL̃T
K∗K + 1

2 (L∗K ⊗ KT)T + 1
2 (K ⊗ L†

K)T
)

vec(�∗)

= − 1
2 vec(G).

This completes the proof. �
Now, for the simultaneous optimization over all gates on St(D, d)×n, the Hessian as defined in Eq. (A24) is determined

by including all terms in Eq. (A20). The Newton equation reads

Hess(�1 ⊕ · · · ⊕�n; �1 ⊕ · · · ⊕�n) = −
n∑

i=1

〈Gi, �i〉Ki (A35)

for all �i ∈ TKi St(D, d). The terms in Eq. (A20) where i = j are obtained from the single variable case. The mixed
variable terms fKiKj (�i) and fK∗i Kj (�

∗
i ) still need to be determined. Analogous to Eq. (A32) we need to solve

2 Re{Tr(LK∗i Kj [�∗i , ·]T�j )} = 〈fK∗i Kj (�i), �j 〉Kj for all �j ∈ TKj St

and 2 Re{Tr(LKiKj [�i, ·]T�j )} = 〈fKiKj (�i), �j 〉Kj for all �j ∈ TKj St .

We can use Lemma 3 again and obtain

fK∗i Kj (�i) = 2(L∗K∗i Kj
[�i, ·]−KjLK∗i Kj [�∗i , ·]TKj )

and fKiKj (�i) = 2(L∗KiKj
[�∗i , ·]−KjLKiKj [�i, ·]TKj ),

which satisfy fK∗i Kj (�
∗
i ) ∈ TKj St(D, d) and fKiKj (�i) ∈ TKj St(D, d). The full Newton equation on St(D, d)×n in

vectorized form then reads

n⊕

i=1

(

L̃†
K∗i Ki
− (Ki ⊗KT

i )TL̃T
KiKi
− 1

2
1⊗ (KT

i LKi)−
1
2
(KiLT

Ki
)⊗ 1− 1

2
�⊗ (L†

Ki
K∗i )

)

vec(�i)

+
n⊕

i=1

∑

j :j �=i

(L̃†
K∗j Ki
− (Ki ⊗KT

i )TL̃T
Kj Ki

) vec(�j )

+
n⊕

i=1

(

L̃†
KiKi
− (Ki ⊗KT

i )TL̃T
K∗i Ki
+ 1

2
(L∗Ki
⊗KT

i )T + 1
2
(Ki ⊗ L†

Ki
)T

)

vec(�∗i )

+
n⊕

i=1

∑

j :j �=i

(L̃†
Kj Ki
− (Ki ⊗KT

i )TL̃T
K∗j Ki

) vec(�∗j )

= −1
2

n⊕

i=1

vec(Gi). (A36)

We are now faced with an equation of the type Ax+ Bx∗ = c, a solution to which can be obtained by solving

(
A B
B∗ A∗

) (
x
x∗

)

=
(

c
c∗

)

. (A37)

Equation (A36) is an equation on the tangent space and can be solved by finding a basis therein. However, in order to
avoid a basis change at every step, we choose to solve it on the ambient space by setting �i = PTi(�i) and �∗i = P∗Ti

(�∗i ).
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The matrix equation for the update directions �i is now given by

(
HG←�

⊕
i PTi HG←�∗

⊕
i P∗Ti

H ∗G←�∗
⊕

i P∗Ti
H ∗G←�

⊕
i PTi

)

︸ ︷︷ ︸
=:H

⎛

⎜
⎜
⎜
⎜
⎜
⎝

vec(�1)

. . .

vec(�n)

vec(�∗1)
. . .

vec(�∗n)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= −1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

vec(G1)

. . .

vec(Gn)

vec(G∗1)
. . .

vec(G∗n)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (A38)

where the submatrices HG←� and HG←�∗ can be identified from Eq. (A36).
The update directions for the saddle-free Newton method (Algorithm 1) are calculated by applying

(|H | + λ1)−1 (A39)

to the right-hand side of Eq. (A38). In practice, we use 1
2 (H + H †) as the Hessian, since there exist more efficient methods

for diagonalizing a Hermitian matrix compared to an arbitrary matrix.

3. Complex Euclidean gradient and Hessian

To compute the Riemannian Hessians for optimization on the Stiefel manifolds, the complex Euclidean gradients and
Euclidean Hessians are needed. Here we go into more detail on their derivations for the least-squares objective function.
In this section we also detail how the terms LKK and LK∗K and their conjugates from Appendix A 2 are calculated.

As the tensor network whose contraction yields pj |i in the cost function (20) is parameterized in terms of matrix variables
and their conjugates, we use Wirtinger calculus for the derivatives and treat the conjugate variables as independent. A
method for finding all the relevant terms in the Hessian for a scalar function of complex matrix variables is outlined in,
e.g., Ref. [102], and we summarize it in the following. See also Ref. [103] for a short derivation of the complex derivative
and Hessian in the context of optimization in complex Euclidean space.

Our objective function is in general not analytic, as is the case with real-valued functions of complex variables. This
can be seen for the simplest case with one unitary gate U and ρ = E = |0〉〈0|, where L = |〈0|U |0〉|4 = |U00|4 = (U00 ∗
U∗00)

2. However, the derivatives with respect to the real and imaginary parts of the matrix variables exist and one can
define formal derivatives for f : CM×N ×CM×N → R via

∂f (Z, Z∗)
∂Z

:= ∂f (Z, Z∗)
∂Re[Z]

− i
∂f (Z, Z∗)
∂Im[Z]

,

∂f (Z, Z∗)
∂Z∗

:= ∂f (Z, Z∗)
∂Re[Z]

+ i
∂f (Z, Z∗)
∂Im[Z]

,

where ∂f (Z, Z∗)/∂Z ∈ CM×N with [∂f (Z, Z∗)/∂Z]ij = ∂f (Z, Z∗)/∂Zij . These formal derivatives have nice properties,
for instance ∂f (Z, Z∗)/∂Z∗ is the direction of maximum increase of f and ∂f (Z, Z∗)/∂Z∗ = 0 identifies a stationary
point of f ; see, e.g., Theorems 3.2 and 3.4 of Ref. [102]. Furthermore, the product rule and the chain rule apply as they
do for real-valued matrix variables.

As laid out in Ref. [102, Lemma 5.2], we can write the second-order Taylor series of f as

f (Z + dZ, Z∗ + dZ∗)

= f (Z, Z∗)+
(

∂

∂ vec(Z)
f (Z, Z∗)

)

d vec(Z)+
(

∂

∂ vec(Z∗)
f (Z, Z∗)

)

d vec(Z∗)

+ 1
2

[d vecT(Z∗)d vecT(Z)]
[

fZZ∗ fZ∗Z∗
fZZ fZ∗Z

] [
d vec(Z)

d vec(Z∗)

]

+ r(dZ, dZ∗), (A40)

where the higher-order contribution r(dZ, dZ∗) satisfies

lim
(dZ,dZ∗)→0

r(dZ, dZ∗)
‖(dZ, dZ∗)‖2

F
= 0. (A41)
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FIG. 8. Tensor network representation of first derivative.

The second-order derivatives are defined via

fZZ = = ∂

∂ vec(Z)T

∂

∂ vec(Z)
f (Z, Z∗, . . . ; y),

and similarly for fZ∗Z∗ , fZ∗Z , and fZZ∗ . The vectorization is to be understood as joining together of indices in a fixed
order. For instance, vec : Cn×d2×d×d → Cnd4

vectorizes K, where the individual d-dimensional legs are the matrix indices
of the Kraus operators, and the d2 index numbers the different Kraus operators. Note that vec(∂f (Z, Z∗, y)/∂Z) =
∂f (Z, Z∗, y)/∂ vec(Z).

For the optimizations over A, K, and B, we need the first and second derivatives of L by the respective variables and
their conjugates. Let Z ∈ {A, A∗,K,K∗, B, B∗} and Y ∈ {Z, Z∗}. Then

∂

∂Z
L(Z, . . . ; y) = 2

m

∑

i

(pi(Z, . . .)− yi)
∂pi

∂Z
,

∂

∂Y
∂

∂Z
L(Z, Y, . . . ; y) = ∂

∂Y
2
m

∑

i

(pi(Z, Y, . . .)− yi)
∂pi

∂Z

= 2
m

∑

i

∂pi(Z, Y, . . .)
∂Y

∂pi(Z, Y, . . .)
∂Z

+ 2
m

∑

i

(pi(Z, Y, . . .)− yi)
∂2pi(Z, Y, . . .)

∂Y∂Z
,

meaning that derivatives of the objective function reduce to the derivatives of the tensor p . Taking the derivative of a
tensor network with respect to one of its constituent tensors can be easily done in the pictorial representation by removing
the respective tensor. For instance, ∂pi/∂K∗ can be calculated as shown in Fig. 8, using the product rule. Care has to be
taken for the order of open indices when removing a tensor. In practice, we do not calculate the full tensor ∂p/∂K∗ of size
n� and only compute ∂pi/∂K∗ for i ∈ I , since usually |I | � n�.

4. Mean variation error dependence on the choice of objective function

A well-motivated alternative to the least-squares objective function defined in Eq. (20) is the likelihood function

LI (A,K, B|y) :=
∏

i∈I

∏

j∈[nE ]

pj |i(A,K, B)kj |i , (A42)

where yj |i = kj |i/m again denotes the relative number out of m times outcome j is measured for sequence i; see also Eq.
(28). The likelihood function at a given model parametrization (A,K, B) and for measurement results y is precisely the
probability of observing y, given the model probabilities p(A,K, B). To simplify the optimization, often the logarithm of
the likelihood function is chosen, since it shares the same maxima. This loglikelihood function, which is also used in the
final optimization procedure of pyGSTi [18] is then given by

log LI (A,K, B|y) := m
∑

i∈I

∑

j

yj |i log[pj |i(A,K, B)]. (A43)

In Fig. 9 we show the effects of augmenting mGST (which is by default run on the least-squares objective function for
numerical reasons) with the loglikelihood function after a least-squares estimate is found. To do this, we use Algorithm 2
with the negative loglikelihood function (A43) as the objective function.
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We observe that, for the XYI-gate set, which we use
to compare mGST and pyGSTi in the main text, optimiz-
ing the loglikelihood function decreases the mean variation
error on the data sequences as well as on all sequences of
the same length. The improvement is stronger for fewer
samples and becomes negligible at around 106 samples.
Interestingly, loglikelihood optimization also improves the
least-squares error on all sequences, at the cost of slightly
increasing it on the data sequences. This indicates that
in the sample count range of 102–106, optimizing the
loglikelihood function leads to less overfitting.

5. Noise mitigation of shadow estimation with GST
characterization

In Sec. V we numerically demonstrated how the results
of a low-rank GST experiment can be used to correct esti-
mation protocols based on inverting an informationally
complete POVM. Such protocols are recently referred to as
shadow estimation [46]. We now give a short mathematical
description of the method and explain how low-rank GST
estimates can be included in a scalable way.

In the following, we use also bra-ket notation for the
space of linear operators L(H) and its dual space as defined
by the canonical isomorphism induced by the Hilbert
Schmidt inner product (O|ρ ) = Tr(O†ρ). The quantum
channel of a unitary U is written by the corresponding
calligraphic letter, e.g., U |ρ) ≡ |UρU†).

We consider the task of estimating the expectation value
of multiple observables in an unknown quantum state that
we can repeatedly prepare on a quantum device. Being able
to measure an informationally complete POVM {�x} on
the state, one can construct an estimator for an observable
O. Informational completeness is equivalent to, in mathe-
matical terms, the POVM constituting a frame for L(H),
and the associated frame operator M =∑

x |�x)(�x|
being invertible; see, e.g., Ref. [104]. We can calculate the
canonical dual frame to the POVM as |�̃x) =M−1|�x).
By construction we have the frame duality relation

∑

x

|�̃x)(�x| = IdL(H) . (A44)

Thus, for any state ρ,

(O|ρ) =
∑

x

(O|�̃x)(�x|ρ). (A45)

By Born’s rule, repeated measurements of the POVM
yield independent and identically distributed samples � =
(x1, . . . , xm) from the distribution with density pρ(x) =
(�x|ρ). Given �, we can calculate the empirical mean
estimator

ô = 1
|�|

∑

x∈�
(O|�̃x), (A46)

and, by Eq. (A45), E[ô] = (O|ρ).
The sequence of dual frame elements (�̃x1 , . . . , �̃xm)

given by the measured samples � has been called the
classical shadow of ρ in Ref. [46].

A practical implementation of an informationally com-
plete POVM on a digital quantum computer can be realized
with measurements in randomly selected bases from a
sufficiently large group. To be explicit, we consider the
simplest and perhaps most well-known example: the mea-
surement in a randomly chosen multiqubit Pauli basis. The
POVM can be implemented by applying a random (differ-
ent) local Clifford rotation on every qubit and measuring in
the computational basis. For informational completeness,
it is sufficient to choose the rotations uniformly from the
set C = {Id, H , HS}, where H is the Hadamard gate and S
the phase gate. In our notation, we consider POVM effects
�x = �g,b =

⊗
l �gl,bl indexed by Cn × {0, 1}n that are

the tensor products of the local POVM effects �gl,bl =
1
3 g†

l |bl〉〈bl|gl with gl ∈ C. Let {σ̂k | k ∈ {0, 1, 2, 3}} denote
the Pauli matrices normalized in the Frobenius norm. The
frame operator is given by

3nM = 1
3n

( ∑

U∈{1,H ,HS}
U†(|σ̂0)

(
σ̂0

∣
∣+ |σ̂3)

(
σ̂3

∣
∣)U

)⊗n

= 1
3n

(

3|σ̂0)
(
σ̂0

∣
∣+

∑

i

|σ̂i)
(
σ̂i

∣
∣
)⊗n

=

⎛

⎜
⎝

1 0 0 0
0 1/3 0 0
0 0 1/3 0
0 0 0 1/3

⎞

⎟
⎠

⊗n

, (A47)

where the matrix in the last line is represented in
the Pauli basis. Since M−1 acts on qubit l as
M−1

l (X ) = 3X − Tr(X )1 for any X , we find that �̃gl,bl =⊗n
i=1(3g†

l |bl〉〈bl|gl − 1) [46].
Huang et al. [46] showed that, when using random Pauli

basis measurements, the variance of the mean estimator for
estimating local observables does not scale with the sys-
tem size. Using a median-of-means estimator to boost the
confidence, Huang et al. [46] further established that the
expectation value of M different k-local observables can
be estimated to ε-additive precision from O(log(M )4k/ε2)

state copies.
Experimental implementations of the POVM are prone

to errors, effectively implementing a noisy POVM with
effects �

�
x. In the envisioned implementation here, noise

sources effect the implementation of the gates C and the
noise induces a bias in the estimator for the observables.
However, if the noise is characterized to some extent,
we can correct the estimators for this bias. To this end,
let M� be the (half-sided) noisy frame operator M� =
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FIG. 9. Effect of optimizing the loglikelihood function after the least-squares objective function. The results of only the least-squares
optimization are denoted by mGST-lsq and those of additional loglikelihood optimization by mGST-lsq-mle. The left plot shows the
least-squares objective function L(X̂ ,X ) on the data sequences (used for estimation), as well as on all sequences of a given length
l (here l = 7). The right plot uses the MVE, again on data sequences or all sequences. The underlying gate set is given by the XYI
model with depolarizing noise of strength p = 0.01 on each gate and p = 0.01 on the initial state, as well as random unitary rotations
eiγ H with H ∼ GUE and γ = 0.01 on each gate. To ensure that mGST-lsq is fully converged, we set the desired relative precision to
ε = 10−5 in the convergence criterion, see Eq. (30).

∑
x |�x)(�

�
x|. If we know M� in the classical postpro-

cessing, we can calculate a dual frame to (�
�
x| by |�̃�

x) =
M�−1|�x). Note that using the “half-sided noisy” frame
operator instead of the frame operator of the noisy POVM
yields an expression of a dual frame in terms of the ideal
POVM and not the noisy POVM. Using {�̃�

x} instead of the
ideal dual-frame in Eq. (A46) yields unbiased estimators of
observables even in the presence of noise, thus effectively
mitigating the noise.

This motivates our approach to noise-mitigated shadow
estimation. Having extracted a noise model via gate
set tomography, we can numerically estimate M� and,
thus, construct (approximately) unbiased estimators. Our
method is summarized in Protocol 1 below.

The results in Sec. V demonstrate our scheme numeri-
cally in simple but already practically relevant settings that
we describe in the following. When the multiqubit uni-
taries and computational basis measurement implementing
the POVM factorize into local tensor products, so does
the ideal frame operator M and the dual frame (shadow).
But due to correlated gate-dependent noise, M� might not
exhibit this computationally tractable structure. Further-
more, characterizing the implementation of exponentially
many multiqubit unitaries and the basis measurements
without additional assumptions is infeasible. In practice,
however, noise-induced correlations and crosstalk might
still predominantly affect a limited number of qubits simul-
taneously. For example, when noise predominantly affects
neighboring qubits, we can use the implementation X of a
gate set including C× C on neighboring qubits extracted
via mGST to calculate M�. To this end, let G(i,i+1)

g1,g2
denote

the two-qubit process implementing the gate g1 × g2 on

qubits i and i+ 1. For simplicity, we ignore errors in the
computational basis measurement. We set �

�,(i,i+1)

(g1,g2),(b1,b2) =
1
9 (G(i,i+1)

g1,g2
)†|b1, b2〉〈b1, b2|(G(i,i+1)

g1,g2
)† and numerically calcu-

late

M�

i,i+1 =
∑

g1,g2∈C, b1,b2∈{0,1}
|�g1,b1)|�g2,b2)(�

�,(i,i+1)

(g1,g2),(b1,b2)|.

(A48)

This amounts to calculating a 16× 16 matrix in the Pauli
basis that can be easily inverted. The noise-mitigated
single-shot estimators thus read

(O|�̃�
g,b) = (O|

n/2⊗

i=1

(M �

2i,2i+1)
−1|�g2i,b2i)|�g2i+1,b2i+1).

(A49)

With this expression at hand, the rest of the protocol con-
sists of computing the mean or median of means from a
collection of single-shot estimators, following the standard
method of shadow estimation [46].

Chen et al. [101] proposed a complimentary approach
for robust shadow estimation, also inferring an approxima-
tion of the noisy frame operator from a separate calibration
experiment. Under the assumption of gate-independent
noise, the authors derived a 2n parameter expression for
M� as a Pauli-noise channel and devised (SPAM-robust)
RB-style experiments to learn arbitrarily many of its
parameters, where each parameter corresponds to an irre-
ducible representation of the local Clifford group. We find,
in the gate-dependent noise model used here, that the frame
operators significantly deviate from being a Pauli-noise
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Protocol 1. GST-mitigated shadow estimation.

channel. For this reason, this particular setting is more
amenable to GST-mitigated shadows than to the protocol
of Ref. [101]. The plots on the left in Fig. 7 show that
already a typical n = 2 frame operator with gate-dependent
noise does not adhere to being diagonal in the Pauli basis.

Ultimately, we envision that different robust and self-
consistent noise and error characterization protocols, such
as mGST for local coherent errors and RB for incoherent
noise strength in different irreducible representations, can
be combined to arrive at accurate and scalable estimates of
the effective frame operator in the presence of noise.
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