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a b s t r a c t 

Spatial attention helps us to efficiently localize objects in cluttered environments. However, the processing stage 

at which spatial attention modulates object location representations remains unclear. Here we investigated this 

question identifying processing stages in time and space in an EEG and fMRI experiment respectively. As both 

object location representations and attentional effects have been shown to depend on the background on which 

objects appear, we included object background as an experimental factor. During the experiments, human partic- 

ipants viewed images of objects appearing in different locations on blank or cluttered backgrounds while either 

performing a task on fixation or on the periphery to direct their covert spatial attention away or towards the 

objects. We used multivariate classification to assess object location information. Consistent across the EEG and 

fMRI experiment, we show that spatial attention modulated location representations during late processing stages 

( > 150 ms, in middle and high ventral visual stream areas) independent of background condition. Our results clar- 

ify the processing stage at which attention modulates object location representations in the ventral visual stream 

and show that attentional modulation is a cognitive process separate from recurrent processes related to the 

processing of objects on cluttered backgrounds. 

1

 

v  

(  

i  

a

 

m  

H  

W  

h  

p  

t  

e  

m  

H  

2  

u  

V  

2  

l  

G  

i  

s  

1  

L  

s  

r  

 

p  

o  

F  

i  

G  

N  

a  

l  

K  

e  

h

R

A

1

(

. Introduction 

Spatial attention helps us to focus visual processing on the rele-

ant portions of the visual field while ignoring its irrelevant portions

 Desimone and Duncan, 1995 ). For example, spatial attention helps dur-

ng navigation to determine where in visual space objects are located,

llowing us to avoid obstacles and to reach desired targets better. 

In spite of ardent research in humans and other primates over

ore than 50 years ( Desimone and Duncan, 1995 ; Mangun, 1995 ;

illyard et al., 1998a , 1998b ; Luck et al., 2000 ; Carrasco, 2011 ;

olfe et al., 2011 ; Squire et al., 2013 ; Maunsell, 2015 ), no unified view

as pinpointed attentional modulation of object location to a specific

rocessing stage in the visual hierarchy. Previous research yielded con-

radictory results. Considering the temporal emergence of attentional

ffects, some studies which cued the stimulus location found attentional

odulation early ( Van Voorhis and Hillyard, 1977 ; Mangun, 1995 ;

illyard et al., 1998a , 1998b ; Hopfinger et al., 2000 ; Luck et al.,

000 ) within a time window that corresponds to the initial bottom-

p response within the first 150 ms ( Lamme and Roelfsema, 2000 ;

anRullen and Thorpe, 2001 ; Fahrenfort et al., 2007 ; Camprodon et al.,
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010 ; Koivisto et al., 2011 ). In contrast, studies with no pre-stimulus

ocation cue found such effects predictably later ( Wyatte et al., 2014 ;

roen et al., 2016 ; Kaiser et al., 2016a ; Battistoni et al., 2020 ). Sim-

larly, considering the locus in the visual processing hierarchy some

tudies found attentional modulation already in V1 ( Roelfsema et al.,

998 ; Martínez et al., 2001 ; Noesselt et al., 2002 ; Khayat et al., 2006 ;

akatos et al., 2008 ; Briggs et al., 2013 ; Herrero et al., 2013 ) while other

tudies found such effects only or predominantly in higher-level brain

egions ( Buffalo et al., 2010 ; Peelen and Kastner, 2011 ; Kay et al., 2015 ).

The contradiction might be resolved when considering together the

rocessing stage at which object location representations emerge, the

bject’s viewing conditions and the timing of attentional engagement.

or example, studies detecting attentional modulation at early process-

ng stages often used low-level stimuli on blank backgrounds such as

abor patches ( Hillyard et al., 1998b , 1998a ; Martínez et al., 2001 ;

oesselt et al., 2002 ; Briggs et al., 2013 ). In contrast, studies finding

ttentional modulation at later processing stages used realistic, high-

evel stimuli such as objects and scenes ( Peelen and Kastner, 2011 ;

ay et al., 2015 ; Kaiser et al., 2016b ; Battistoni et al., 2020 ). How-

ver, the general pattern of results suggests that even with low-level
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timulation, attentional modulation is lower in V1 than in higher areas

ike V4 ( Tootell et al., 1998 ; Kastner et al., 1999 ; Buffalo et al., 2010 ;

arrasco, 2011 ). Thus, previous studies varied both in pre-stimulus lo-

ation cueing and viewing conditions. Cueing might influence the tim-

ng of the measured onset of attentional modulation because attention

an be engaged before stimulus onset and therefore results in differ-

nt latencies of attentional modulation onset. Viewing conditions might

nfluence the results because recent research has shown that they in-

uence the processing stage at which object location representations

merge. For example, object location representations emerge early for

bjects on blank and late on cluttered backgrounds ( Hong et al., 2016 ;

raumann et al., 2022 ). These findings are important for two reasons:

irst, they show that with no clutter, object location likely reflects sim-

le retinotopic mapping, while with clutter, a more complex process-

ng cascade is necessary to encode an object’s location. This stands in

ontrast to traditional theories of object perception ( Ungerleider and

axby, 1994 ; Milner and Goodale, 2006 ). Second, the surroundings of

n object modulates the employment of spatial attention: spatial atten-

ion is more relevant for the localization of objects in clutter than in

solation ( Treisman and Gelade, 1980 ; Wolfe, 1994 ). 
ig. 1. Experimental predictions based on hypotheses. A, Predictions for the effect of 

n time for location information with high clutter compared to no clutter. B, Predict

redictions are based on H R in A. H D predicts that the time point when attentional m

t time points when location information is highest, depending on background con

rocessing stages, independent of background condition. C, Predictions for the effect

ncrease along the ventral stream for location information with high clutter compared

n the fMRI experiment. Predictions are based on H R in C. H D predicts that the regio

odulation is highest in regions where location information is highest, depending on 

long the ventral stream, independent of background condition. 

2 
Here we set out to untangle the complex link between the process-

ng stage at which object location representations emerge, its viewing

onditions, and the processing stage of attentional modulation when the

ocation is not cued in advance. 

Our hypotheses are as follows. We set the stage by hypothesizing

ased on recent findings that the processing stage at which object lo-

ation representations emerge depends on the object’s viewing condi-

ions in particular its background ( Graumann et al., 2022 ) independent

f spatial attention. This replication hypothesis was termed H Replication 

abbreviated H R ; Fig. 1 A,C). 

On this basis we then theorize how an objects background impacts

hen (in time with respect to stimulus onset) and where (in the cortical

rocessing hierarchy) attention modulates location representations. We

ropose two alternative hypotheses. 

The first hypothesis is that attention and background interact: atten-

ion dynamically modulates location representations at the processing

tage at which they first emerge, resulting in an interaction between

ackground and attention (H Dynamic , abbreviated H D ; Fig. 1 B,D). The

lternative hypothesis is that attention modulates location representa-

ions statically and always during a late processing stage ( Wyatte et al.,
background on location information in the EEG experiment. H R predicts a delay 

ions for the effect of attention on location information in the EEG experiment. 

odulation is highest depends on background: attentional modulation is highest 

dition. H S predicts that attentional modulation is always highest during late 

 of background on location information in the fMRI experiment. H R predicts an 

 to no clutter. D , Predictions for the effect of attention on location information 

n where attentional modulation is highest depends on background: attentional 

background condition. H S predicts that attentional modulation always increases 
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014 ; Kay et al., 2015 ; Groen et al., 2016 ; Kaiser et al., 2016a ;

attistoni et al., 2020 ), independent of the background (H Static , abbre-

iated H S ; Fig. 1 B,D). 

We investigated these hypotheses in an integrated research project

onsisting of an EEG and fMRI experiment in combination with multi-

ariate pattern analysis methods. We manipulated background by pre-

enting objects on backgrounds of different clutter levels, and atten-

ion by task instruction that attracted or diverted spatial attention from

n object’s location. Here we defined location representations as the

eural response patterns of an area to an object in a given retino-

opic location, thereby linking brain activity to visual object localization

 Kriegeskorte and Diedrichsen, 2019 ). Thus, we focused on retinotopic

ather than spatiotopic location representations. 

To anticipate, we first confirmed H R , i.e., object location represen-

ations emerged later in time and space when the object appeared on a

luttered background than on a blank background, independent of atten-

ion. We then found strong empirical support for H S . That is, attention

odulates object location representations late in both time and space,

ndependent of background. 

. Materials and methods 

.1. Participants in EEG and fMRI experiment 

27 participants completed the EEG experiment. One participant was

xcluded because of technical problems, resulting in 26 participants

mean age 26.42 years, SD = 4.12, 19 female) included in the final EEG

tudy. 23 participants completed the fMRI experiment, out of which one

lso participated in the EEG experiment. Three participants were ex-

luded because they did not complete the whole experiment, resulting

n 20 participants (mean age 26.71 years, SD = 4.48, 13 female) included

n the final fMRI study. Sample sizes were chosen to be comparable to

 previous similar study ( Graumann et al., 2022 ). 

All participants had no history of neurological disorders and normal

r corrected-to-normal vision. Participants provided written informed

onsent prior to the studies and participation was compensated with

ayment or course credit. The study was conducted in accordance with

he Declaration of Helsinki and the ethics committee of the Department

f Education and Psychology of the Freie Universität Berlin approved

he study in advance. 

.2. Experimental design 

.2.1. EEG experimental design 

The experimental design in the EEG study comprised the four factors

bject category (animals, cars, faces, chairs, Fig. 2 A left, with 3 exem-

lars per category), location (left up, left bottom, right bottom, right up,

ig. 2 A left center), background (no and high clutter, Fig. 2 A center) and

ttention (on periphery or on fixation, Fig. 2 A right center). These four

actors were fully crossed, to investigate them independently of each

ther. Specifically, including the factor category served to systemati-

ally analyze location information that was independent of potentially

onfounding category information in a cross-classification approach (see

ection 2.7). In total, this created 192 individual conditions (12 object

xemplars × 4 locations × 2 background conditions × 2 attention con-

itions). For further analysis, data was collapsed across exemplars, so

hat data was analyzed at the level of category. Thus, the number of

onditions for further analysis was 64 (4 categories × 4 locations × 2

ackground conditions × 2 attention conditions, Fig. 2 A right). 

.2.2. fMRI experimental design 

The experimental factors in the fMRI experiment were the same as

n the EEG experiment, but there were two instead of four levels for the

actors category (cars, faces) and location (left, right; Fig. 2 B). This re-

ulted in 48 individual conditions (6 object exemplars × 2 locations × 2
3 
ackground conditions × 2 attention conditions). As in the EEG experi-

ent, the inclusion of the factor category served to systematically ana-

yze location information that was independent of potentially confound-

ng category information in a cross-classification approach (see section

.7). For further analysis, data was likewise collapsed across exemplars,

o that data was analyzed at the level of category. Thus, the number of

onditions for further analysis was 16 (2 categories × 2 locations × 2

ackground conditions × 2 attention conditions). 

.3. Stimulus set generation 

.3.1. Stimulus set generation: EEG experiment 

The experimental design in the EEG study comprised 96 individual

timulus conditions shown in each attention condition, as detailed in

he previous section. To create these stimuli, each exemplar was super-

mposed onto backgrounds with or without scene images in four loca-

ions. First, to position object exemplars onto the four image locations,

e projected the 3D rendered objects onto to the four quadrants of the

creen ( Fig. 2 A, left center). Rendered objects did not extend beyond a

uadrant. Each object’s center was positioned 3° from the vertical and

° from the horizontal central midline (i.e., 4.2° diagonally from image

enter to fixation, Fig. 2 A right), subtending 2.4° ( SD = 0.4) in vertical

nd 2.2° ( SD = 0.6) in horizontal extent. 

Second, each exemplar in each location was superimposed onto

 background with no and with high clutter ( Fig. 2 A, center; the

ackgrounds shown here are comparable to the original backgrounds

sed in the experiments). We chose the background conditions no

nd high clutter to compare visual stimuli with low and high image

omplexity, respectively ( Groen et al., 2018 ). The no clutter condi-

ion was a uniform gray background. In the high clutter condition,

e selected 60 natural scene images from the Places365 database

 http://places2.csail.mit.edu/download.html ) that did not contain

bjects of the categories included in our experimental design (i.e.,

o animals, cars, faces, chairs) and were highly cluttered (as de-

ned by 10 independent subject ratings; for methods and results

ee Graumann et al., 2022 ). We converted the images to grayscale

nd superimposed a circular aperture of 15°. Original backgrounds

re not shown because of copyright reasons but are available here:

ttps://osf.io/85sak/?view_only = db183dde8f4b406aaba5dfc0dd0ae67d

From the set of 60 scene images, we selected 48 scene images to

o with the 48 stimulus conditions within the high clutter condition (12

xemplars × 4 locations). To avoid systematic congruencies between ob-

ects and background images within the high clutter condition, stimulus

onditions and backgrounds were randomly paired for each of the 20

uns into which the EEG experiment was divided (see below). Together

ith the 48 stimulus conditions in the no clutter condition, this resulted

n 96 individual images per run. The 12 remaining scene images from

he set of 60 were used to create catch trials. Images were not normal-

zed for overall luminance and luminance was higher in the no (109)

han in the high clutter condition (100). The average contrast across

mages was higher with high clutter (59) than with no clutter (36). 

.3.2. Stimulus set generation: fMRI experiment 

Stimulus set generation for the fMRI experiment was equivalent to

he EEG experiment, with the difference that objects were positioned

n two instead of four image locations ( Fig. 2 B) 4.2° to the left or right

f the image’s center. In the fMRI experiment, each background condi-

ion had 12 individual stimulus conditions (6 exemplars × 2 locations).

n combination with the 12 stimulus conditions in the no clutter condi-

ion, this resulted in 24 individual images per run. The remaining scene

mages from the set of 60 were used to create 24 catch trials (1 catch ob-

ect × 12 scene images × 2 locations), which were randomly presented

uring the fMRI experiment. Images were not normalized for overall

uminance and luminance was higher in the no (109) than in the high

lutter condition (100). The average contrast across images was higher

ith high clutter (59) than with no clutter (36). 

http://places2.csail.mit.edu/download.html
https://osf.io/85sak/?view_only=db183dde8f4b406aaba5dfc0dd0ae67d
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Fig. 2. Experimental design and tasks. A, Experimental design in the EEG experiment. We used a fully crossed design with factors: object category, location, 

background and attention. Green translucent circles represent attentional width. B , Experimental design in fMRI experiment. The design was equivalent to the EEG 

experiment, except that the factors category and location had two levels. C, Trial timing and example condition in EEG experiment. D, Trial timing and example 

condition in fMRI experiment. E, Tasks. In the peripheral attention condition (left) participants responded with button press when a glass appeared in the periphery, 

while fixating their gaze on the central cross. Digits presented on fixation were task-irrelevant. In the fixation attention condition (right) participants responded with 

button press when the digit 0 appeared on fixation, while fixating on the central cross. Objects in the periphery were irrelevant in this task. Visual stimulation was 

the same in both tasks on regular trials (see bottom row ‘Button press: no’). 
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.4. Experimental procedures 

.4.1. EEG main experiment 

Each of the 26 participants completed one EEG recording session

ith 20 runs (run duration: 277 s). Overall, the EEG session lasted for

2 min. Participants performed attention tasks on separate runs. The
4 
EG recording session consisted of 10 periphery attention runs and 10

xation attention runs in randomized order. Within each attention con-

ition, there were 96 individual stimulus conditions (12 exemplars × 4

ocations × background conditions). Runs consisted of the presentation

f regular trials and catch trials. In each run, there were 192 regular

rials, representing the 96 stimulus condition images presented twice.
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hese trials formed the basis for further analysis. On regular trials, dig-

ts between 1 and 9 were overlaid for 117 ms each, followed by a 50 ms

resentation of the image and fixation cross after each digit ( Fig. 2 C).

n total, stimuli were presented for 0.5 s followed by 0.5 or 0.6 s of ISI

equally probable; Fig. 2 C). Participants were asked to fixate their eyes

n the central cross at all times. 

On catch trials, a target was presented to which participants were

sked to respond with button press ( Fig. 2 E). These trials were excluded

rom the analyses. Catch trials were presented on every 3rd to 5th trial

equally probable, in total 48 per run). Participants were instructed to

espond with button press to catch trials and to blink their eyes to min-

mize eye blink contamination on subsequent trials. The ISI was 1 s on

atch trials to avoid contamination of movement and eye blink artefacts

n subsequent trials. 

In the periphery and the fixation attention condition different tri-

ls were task-relevant catch trials. In the periphery attention condition,

atch trials were trials during which a target object (a glass) was pre-

ented ( Fig. 2 E). The target could be presented at any of the four lo-

ations and on any type of background. Digits on fixation were task-

rrelevant in this attention condition. In the fixation attention condi-

ion, catch trials were trials during which the digit 0 appeared among

ny of the 3 digits that were presented on fixation during a single trial

 Fig. 2 E). The presented object in the periphery was task-irrelevant in

his attention condition ( Fig. 2 E). The digit 0 never appeared on periph-

ry attention runs and the glass never appeared on fixation attention

uns. 

.4.2. fMRI main experiment 

Each of the 20 participants completed one fMRI recording session

ith 20 runs (run duration: 288 s). Overall, an fMRI recording in the

ain experiment lasted for 96 min. Each of the 24 images of the stimu-

us set was shown 3 times in random order without back-to-back repe-

itions in each run. On each trial, the image was presented for 0.5 s at

he center of a black screen. The inter-stimulus-interval (ISI) was 2.5 s

 Fig. 2 D). Images were overlaid with a red central cross for fixation. Par-

icipants were instructed to fixate their eyes on this cross throughout the

xperiment. Every 3rd to 5th trial (equally probable, in total 18 per run)

 catch trial was presented. The tasks in the attention conditions and the

atch objects were identical to the EEG experiment ( Fig. 2 E). Catch trials

ere excluded from further analysis. 

.4.3. fMRI localizer experiment 

Prior to the main fMRI experiment, participants completed a separate

ocalizer run to define ROIs in early visual, dorsal and ventral visual

tream. We presented images from three categories: faces, objects, and

crambled objects. Each image showed identical versions of the same

bject located left and right of fixation to stimulate the same retinotopic

egions of visual cortex as the objects in the main experiment. 

The localizer run lasted for 384 s, during which we presented 6 stim-

lation blocks. Each block was 16 s long with presentations of 20 dif-

erent objects from one of the three categories (500 ms on, 300 ms

ff) block-wise. Each block included two one-back image repetitions

o which participants had to respond to with a button press. The or-

er of these blocks was first order counterbalanced: triplets of stimula-

ion blocks were presented in random order and interspersed with blank

ackground blocks. 

.5. EEG acquisition and preprocessing 

To record EEG data, we used the EASYCAP 64-channel system with

 Brainvision actiCHamp amplifier at a sampling rate of 1000 Hz and

ith an online filter between 0.03 and 100 Hz. The signal was online

e-referenced to FCz. Electrode placement followed the standard 10–10

ystem. Data was preprocessed offline with the EEGLAB toolbox ver-

ion 14 ( Delorme and Makeig, 2004 ). This comprised a low-pass filter
5 
ith a 50 Hz cut-off, trial epoching in a peri ‑stimulus time window be-

ween − 100 ms and 999 ms, and baseline-correction by subtracting the

ean of the 100 ms prestimulus time window from the entire epoch.

e used independent component analysis (ICA) to clean the data from

cular and muscular artefacts. To guide the visual inspection of com-

onents for removal we used SASICA ( Chaumon et al., 2015 ). To iden-

ify horizontal eye movement components, we used external electrodes

rom the horizontal electrooculogram (HEOG). We detected blink arte-

act and vertical eye movements using the two frontal electrodes Fp1

nd Fp2. On average, we removed 18 ( SD = 5) components per partic-

pant. We finally applied multivariate noise normalization on the pre-

rocessed data to improve the signal-to-noise ratio and reliability of the

ata ( Guggenmos et al., 2018 ). 

.6. Preprocessing and univariate fMRI analysis 

.6.1. fMRI acquisition and preprocessing 

MRI data was recorded using a 12-channel head coil on a 3T

iemens Tim Trio Scanner (Siemens, Erlangen, Germany). The struc-

ural image was acquired with a T1-weighted sequence (MPRAGE;

-mm 

3 voxel size). To acquire functional data for the main experi-

ent and the localizer run, we ran a T2 ∗ -weighted gradient-echo pla-

ar sequence (TR = 2, TE = 30 ms, 70° flip angle, 3-mm 

3 voxel size, 37

lices, 20% gap, 192-mm field of view, 64 × 64 matrix size, inter-

eaved acquisition) on the entire brain. fMRI data was preprocessed us-

ng SPM8 ( https://www._l.ion.ucl.ac.uk/spm/ ), involving realignment,

oregistration and normalization to the structural MNI template brain.

e smoothed functional data from the localizer run with an 8 mm

WHM Gaussian kernel, but the data from the main experiment were

ot smoothed. 

.6.2. Univariate fMRI analysis 

We modelled the fMRI responses of the experimental conditions at

he level of category. This was done for each run in the main experi-

ent separately using a general linear model (GLM). We entered onsets

nd durations of stimulus presentations per category, pooling exemplars

nd repetitions. Thus, each GLM was estimated based on 9 trials (3 ex-

mplars × 3 condition repetitions per run) and was convolved with the

emodynamic response function (hrf). We further entered movement

arameters into the GLM as nuisance regressors. This resulted in 8 beta

aps per attention condition run (2 categories × 2 locations × 2 back-

rounds). For each run, we converted GLM parameter estimates into t -

alues by contrasting each parameter estimate against the implicit base-

ine for each condition. This resulted for each participant and attention

ondition run separately in 8 (2 categories × 2 locations × background

onditions) t -value maps per condition. In sum, this resulted in 8 t -value

aps per 10 runs, per 2 attention conditions and per participant, which

ere later used in the classification analysis. 

For the fMRI responses to the localizer experiment, we modelled the

esponses to objects, faces and scrambled objects by entering block on-

ets and durations as regressors of interest and movement parameters

s nuisance regressors into the GLM and convolved them with the hrf.

his resulted in three parameter estimates which we used to generate

wo contrasts that formed part of ROI definitions. The first contrast was

efined as objects and scrambled objects > baseline and was used to

ocalize activations in early, mid-level ventral and dorsal visual regions

V1, V2, V3, V4, IPS0, IPS1, IPS2, SPL). The second contrast was defined

s objects and faces > scrambled objects and was used to localize acti-

ations in object-selective area LOC. Overall, this yielded two t -value

aps for the localizer run for each participant. 

.6.3. Definition of regions of interest 

To define ROIs, we first applied anatomical masks and then selected

oxels using appropriate contrasts from the functional localizer run. In

etail, we first defined ROIs using anatomical masks from a probabilistic

tlas ( Wang et al., 2015 ) and combined these for both hemispheres. We

https://www._l.ion.ucl.ac.uk/spm/
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ncluded three masks in early visual cortex V1, V2 and V3. V4 and LOC

erved as ROIs in mid- and high-level ventral visual cortex. We also in-

luded four ROIs from dorsal visual cortex: IPS0, IPS1, IPS2 and SPL. We

emoved all overlapping voxels from these masks to avoid overlap be-

ween ROIs. The second step entailed selecting the most activated voxels

f the participant-specific t -value maps of the localizer run within the

reviously defined anatomical masks. To keep the number of voxels con-

tant between ROIs and participants and improve comparability across

OIs, we determined a fixed voxel number across ROIs and participants

nstead of using a threshold to avoid a variable number of voxels and

hus power. For this, we determined the smallest ROI in any participant

hen overlaying the localizer t -value maps and the anatomical masks.

his resulted in a minimum ROI size of 288 voxels. This was then the

xed number of highest activated voxels to select of the participant-

pecific localizer t -value maps within all anatomical masks and partici-

ants. To select voxels in LOC we used the objects > scrambled contrast

nd to select voxels in the remaining ROIs we used the objects & scram-

led objects > baseline contrast. This resulted in ROI definitions that

ere specific to each participant with an equal number of voxels across

OIs and participants. 

.7. Object location classification from brain measurements 

To measure location information in time using EEG and in space us-

ng fMRI, we applied multivariate classification ( Carlson et al., 2011a ;

ichy et al., 2011 , 2013 ; Isik et al., 2014 ) of object location. Since ob-

ect location and object category have partly overlapping neural finger-

rints in time and space ( Cichy et al., 2011 ; Graumann et al., 2022 ),

e applied a cross-classification scheme that avoided location informa-

ion results to be confounded with category information ( Carlson et al.,

011b ; Isik et al., 2014 ). For this, we cross-classified locations across

ategories, meaning that during each classification of a given loca-

ion pair, we trained and tested on different object categories. For all

lassification analyses described, we employed a binary c-support vec-

or classification (C-SVC) with a linear kernel from the libsvm tool-

ox ( Chang and Lin, 2011 ) ( https://www.csie.ntu.edu.tw/cjlin/libsvm ).

his cross-classification scheme was applied separately within each

ackground condition, within each attention condition and within each

ndividual participant. The classification scheme was adapted to the

pecifics of the methods used here: it was applied per time point on

he EEG data and per ROI in the fMRI data. 

.7.1. Time-resolved classification of location from EEG data 

The time-resolved EEG classification analysis ( Carlson et al., 2011b ;

sik et al., 2014 ) served to determine the temporal dynamics with which

ategory-independent location information emerged in the brain. 

For each time point of the epoched EEG data, we extracted activa-

ions from 33 EEG channels. We chose the 33 central and posterior chan-

els starting from the central midline, because we were interested in

isual responses and previous studies had shown that location informa-

ion was most pronounced in those areas ( Graumann et al., 2022 ). We

rranged activations from these channels into pattern vectors of 64 con-

itions and 60 raw trials. Raw trials were randomly arranged into four

ins of 15 trials each and averaged by bin into four pseudo-trials to in-

rease SNR. The classification procedure was repeated 100 times, each

ime assigning random trials into the bins before averaging into pseudo-

rials. For classification, three of the pseudo-trials that came from two

ocation conditions of the same category went into the training set. The

odel resulting from SVM classifier training was then tested on other

seudo-trials coming from the same two location conditions, but from

 different category. The accuracy of the classification procedure was

easured in percent classification accuracy (50% chance level). This

mounted to 6 pairwise location classifications since we had 4 locations

hat were all classified pairwise once. During each iteration of pairwise

ocation classification, the SVM was trained and tested across all com-

inations of the four categories in the training and testing set. For ex-
6 
mple, for a given location classification, the SVM was trained on faces

nd tested on animals ( Fig. 3 A). Then the same procedure was applied

ombing the remaining categories. With four categories in total, this re-

ulted in 6 classification iterations to combine all categories into train-

ng and testing pairs. The direction of all training and testing pairs was

eversed once (e.g., training on animals and testing on faces and vice

ersa), yielding a total of 12 classification iterations per pairwise lo-

ation classification. We averaged 72 (6 location pairs × 12 category

rain/test pairs) classification accuracies in total per iteration. With 100

terations with random trial assignment into pseudo-trials, this resulted

n 7200 classification accuracies that were averaged per background

ondition, attention condition and participant. The result reflects the

mount of location information that is independent of category at each

ime point, and within a background condition, attention condition and

articipant. 

.7.2. Time-resolved EEG searchlight in sensor space 

To gain insights into which EEG channels contained the highest

mount of location information we conducted a time-resolved EEG

earchlight analysis in EEG channel space. This analysis followed the

ame scheme as the time-resolved EEG classification described above

ut extended it by one step: For each EEG channel c, the classification

rocedure was conducted not on all 33, but on the five closest channels

urrounding c. The resulting classification accuracy was stored at the

osition of c. Iterating across all EEG channels with a temporal resolu-

ion downsampled to 10 ms steps, this yielded a map of classification

ccuracy across all channels and downsampled time points, for each

articipant, background condition and attention condition. 

.7.3. Time generalization analysis of location from EEG data 

To characterize the neural dynamics of object location repre-

entations across time, we used temporal generalization analysis

 Carlson et al., 2011b ; Cichy et al., 2014 ; Isik et al., 2014 ; King and

ehaene, 2014 ). 

In this analysis, the classification scheme was the same as in the

ime-resolved EEG classification but with the following extension: be-

ides training and testing the SVM on data from the same time point, we

dditionally tested the SVM on data from all other time points within

 − 100 to 600 ms peristimulus time window, downsampled to a 10 ms

emporal resolution. This resulted in a two-dimensional matrix of clas-

ification accuracies, indexed in rows and columns by the time points

f data used for training and testing the SVM. This matrix indicates

ow much location information was shared at a given combination of

ime points. This analysis was conducted within time point combination,

ackground condition, attention condition and participant. 

.7.4. Multivariate fMRI ROI analysis 

The fMRI ROI classification analysis served to determine where

ategory-independent location information emerged in the brain. For

ach ROI of the fMRI data, we extracted and arranged t -values into pat-

ern vectors, one for each of the 16 conditions and 10 runs of the main

xperiment. Raw trials were randomly arranged into five bins with two

uns each and averaged by bin into five pseudo-runs to increase SNR.

e then proceeded with a 5-fold leave-one-pseudo-run-out-cross valida-

ion procedure. During each classification iteration, we trained an SVM

n 4 and tested it on one pseudo-trial. The classification scheme was

onceptually equivalent to the EEG classification. Training and testing

as conducted across the two different categories, with each being in

he training set once. We averaged across the two different training and

esting directions of the two categories. The result reflects how much

ategory-tolerant location information was present for each ROI, partic-

pant, background and attention condition separately. 

https://www.csie.ntu.edu.tw/cjlin/libsvm
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Fig. 3. Classification schemes and results of EEG location classification. A, Scheme for the classification of object location across categories within any background 

and attention condition. We trained a support vector machine (SVM) to distinguish brain activation patterns evoked by objects of a particular category presented 

at two locations (here: faces bottom left and right) and tested the SVM on activation patterns evoked by objects of another category (here: animals) presented at 

the same locations. Objects are enlarged here for display purposes. In the experiment objects did not extend across quadrants. B, Results of time-resolved location 

across category classification from EEG data. Results are color-coded by background and attention condition, with significant time points indicated by lines below 

curves ( N = 26, P < 0.05, FDR-corrected), 95% confidence intervals of peak latencies are indicated by lines above curves. Shaded areas around curves indicate SEM. 

C, Comparison of peak latencies of curves in B. Error bars represent 95% CIs. Stars indicate significant peak latency differences ( N = 26, bootstrap test with 10,000 

bootstraps). D, Results of the location across category classification searchlight in EEG channel space at peak latencies (as shown in B) in each condition. Significant 

electrodes are indicated by gray dots ( N = 26, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR-corrected across electrodes and time points). E, Difference curves 

resulting from subtracting the time courses of the foveal from the peripheral attention condition in each background condition. Conventions as in B. 
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.8. Statistical testing 

.8.1. Wilcoxon signed-rank tests 

To test for above-chance classification accuracy at time points in

he EEG time courses, in the EEG time-generalization matrix and for

bove-chance classification in the fMRI ROI results, we performed non-

arametric two-tailed Wilcoxon signed-rank tests. The null hypothesis

as always that the parameter being tested (i.e., classification accuracy)

ame from a distribution with a median of chance level (i.e., 50% classi-

cation accuracy for pairwise classification). We corrected the resulting

 -values for multiple comparisons using false discovery rate at 5% level

n every case where more than one test was conducted. 

.8.2. Bootstrap tests 

To estimate confidence intervals and to compute the significance of

eak-to-peak latency differences in the EEG time courses we used boot-

trapping. We bootstrapped the participant pool 10,000 times with re-

lacement and calculated the statistic of interest for each of the boot-

trap samples. 

For the peak-to-peak latency differences in the EEG time courses,

e bootstrapped the latency difference between the peaks of the two

ime courses being compared. This resulted in a bootstrapped distribu-

ion that could be compared to zero. To determine the significance of
7 
eak-to-peak latencies in the EEG time courses, we computed the pro-

ortion of values that were equal to or smaller than zero and corrected

hem for multiple comparisons using FDR at P = 0.05. For computing

he 95% confidence intervals of peak latencies of each time course, we

ootstrapped the peak and computed the 95% percentiles of this distri-

ution. 

.8.3. ANOVAs 

We used repeated-measures ANOVAs to test for main effects and the

nteraction between the factors background and attention within ROIs.

ince both factors had two levels, the assumption of sphericity was al-

ays met. 

All post-hoc tests were conducted using pairwise t -tests and P -values

ere corrected for multiple comparisons using Tukey correction. 

.9. Code accessibility 

The analysis code is publicly available via https://github.com/

raumannm/AttentionLocation . 

. Results 

For both the EEG and fMRI experiments the strategy to deter-

ine when and where attention modulates location representations was

https://github.com/graumannm/AttentionLocation
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quivalent: first we sought to establish H R , i.e., that location represen-

ations of objects emerge at a later processing stage when objects are

resented on cluttered backgrounds compared to blank backgrounds,

ndependent of attention. On this basis we then arbitrated between H D 

nd H S , i.e., whether attention dynamically modulates object location

epresentations at different processing stages depending on background

H D ), or whether it statically modulated object location representations

lways at a late processing stage (H S ). 

The difference between the EEG and the fMRI analyses lies in the way

hat the processing stages are determined: EEG determines the temporal

elay with respect to image onset ( Fig. 1 A,B) and fMRI determines the

egion in the ventral visual stream ( Fig. 1 C,D) in which experimental

ffects emerge. 

In the following we give the specifics of the EEG and fMRI experi-

ents, the precise predictions, and the results. We begin with the EEG

xperiment determining the timing of attentional modulation, followed

y the fMRI experiment determining where in the visual processing hi-

rarchy the attentional modulation occurs. 

.1. Attentional modulation of object location representations in time 

For the EEG experiment we used an experimental design with fully

rossed experimental factors background and attention with two levels

er factor (2 background condition levels × 2 attention condition levels,

ig. 2 A). 

In detail, participants saw objects from four different categories, each

resented in four locations ( Fig. 2 A). The two background conditions

ere no and high clutter. Each object in each location was presented

n both background conditions. Each combination of object category,

ocation and background was then also crossed with the two levels of

ttention conditions: the peripheral and fixation attention conditions

 Fig. 2 A). Attention conditions were solely defined by the task that par-

icipants performed, while visual stimulation was identical ( Fig. 2 E).

n the peripheral attention condition, participants directed their covert

patial attention to the periphery and responded to a catch object (glass)

ith button press ( Fig. 2 A,E). In the fixation attention condition, partic-

pants performed a demanding task on fixation to remove their spatial

ttention from the objects in the periphery ( Fig. 2 A,E). Overall, partic-

pant’s performance was high in all conditions (Supplementary Fig. 1),

ith higher performance in the fixation than in the peripheral attention

ask (for details see Supplementary Fig. 1). 

In total, the 2 × 2 experimental design resulted in 4 factor combina-

ions. We performed a time-resolved and pair-wise classification analysis

f location across category within each of these four factor combinations

eparately ( Fig. 3 A,B). This meant training a classifier to distinguish be-

ween millisecond-specific EEG pattern vectors associated with two lo-

ations and testing on a held-out testing data set associated with the

ame two locations. We performed the classification across object cate-

ory, that is training on data associated with locations from one object

ategory and testing on data from another category ( Fig. 3 A). This en-

ured that location classification results were not confounded with cat-

gory information and allowed us to draw conclusions about location

epresentations independent of object category representations. 

.1.1. The temporal dynamics of object location representations with blank 

nd cluttered backgrounds 

To lay the basis for later analyses on attentional modulation, we

rst tested H R , i.e., that location representations of objects with clut-

er emerge later than on blank backgrounds, independent of attention.

or this we determined and compared the latencies of the classification

eaks in the EEG time courses of both background conditions, assuming

hat the peaks represent the time points at which representations be-

ome most differentiable ( DiCarlo and Cox, 2007 ). Our prediction was

hat location information would peak later in the high than in the no

lutter condition, because dissecting objects from the background re-

uires additional grouping and segmentation operations implemented in
8 
ecurrent processing and thus increasing processing time ( Groen et al.,

018 ; Seijdel et al., 2020 , 2021; Graumann et al., 2022 ). 

The results of the time-resolved location classification are shown in

ig. 3 B. We read out location information from the EEG signal in all

ackground and attention conditions above chance level ( N = 26, two-

ailed Wilcoxon signed-rank test, P < 0.05, FDR-corrected across time

oints). 

Focusing on peak latencies (95% confidence intervals reported in

rackets, N = 26, 10,000 bootstrap samples), we observed that time

ourses in the no and high clutter conditions peaked at different times.

n the no clutter condition, location information peaked early, regard-

ess of attention condition ( Fig. 3 B; peak latency peripheral condition:

48 ms (135–153.5 ms); peak latency fixation condition: 137 ms (135–

52 ms)). With high clutter, location information peaked later in both at-

ention conditions ( Fig. 3 B; peripheral condition: 264 ms (232–365 ms);

xation condition: 216 ms (213–251 ms)). Onset latencies followed a

imilar pattern, with significant classification onsets being earlier in

he no clutter conditions (peripheral condition: 77 ms; fixation con-

ition: 75 ms) than in the high clutter conditions (peripheral condi-

ion: 121 ms; fixation condition: 140 ms). To test whether the peak

atencies across background conditions were significantly different, we

ootstrapped the peak-to-peak latency differences between pairs of no

nd high clutter condition peaks ( Fig. 3 C, 95% confidence intervals in

rackets, N = 26, bootstrap test, 10,000 bootstraps, FDR-corrected).

his was done both within and across attention conditions. Overall,

he results clearly and consistently support H R (delayed emergence of

ocation representations with clutter compared to no clutter, indepen-

ent of attention). Location information peaked significantly earlier in

he no compared to the high clutter conditions independent of atten-

ion condition: Within attention condition, the peak-to-peak latency

ifference between background conditions was 116 ms (83–223 ms;

 < 0.001) in the peripheral attention condition and 79 ms in the fixa-

ion attention condition (63–114 ms; P < 0.001). Across attention con-

itions, the delays between background condition peaks were also sig-

ificant (peripheral attention and no clutter condition vs. fixation at-

ention and high clutter condition: 68 ms delay, 63–105 m; P < 0.001;

xation attention and no clutter condition vs. peripheral attention and

igh clutter condition: 127 ms delay, 83–224 ms, P < 0.001). Follow-

ng the results of three control analyses (Supplementary Fig. 2), we as-

essed the contribution of confounding eye-movement artefacts to be

nlikely. 

Additional analyses of the observed effects reproduced pre-

iously observed characteristics of object location representations

 Graumann et al., 2022 ) and thus further supported H R . A searchlight

nalysis in EEG sensor space ( Fig. 3 D) localized the sources of the peaks

o occipito-temporal electrodes ( Fig. 3 D), suggesting the locus of ob-

ect location representations to be in occipital and temporal cortices. A

upplementary time-generalization analysis ( King and Dehaene, 2014 )

howed that location representations for objects on blank and cluttered

ackgrounds emerged within the same processing stage, but with a de-

ay with cluttered backgrounds (Supplementary Fig. 3, Supplementary

ethods 1). 

Interestingly, we also observed an unexpected result: in the no clut-

er condition, the latency of the 2nd peak was earlier in the fixation

ttention condition (256 ms) than in the peripheral attention condition

350 ms). Supplementary analyses revealed that location information in

he two no clutter conditions was shared between the two 2nd peaks

Supplementary Fig. 4 A,B) with comparable topographies (Supplemen-

ary Fig. 4 C,D). Such shared information across time has in the past

een linked to delays due to recurrence ( Graumann et al., 2022 ) and

ight in this case be related to top-down attentional modulation im-

lemented in long-range feedback from prefrontal areas ( Squire et al.,

013 ) requiring additional processing time. 

Together, these results provide empirical evidence for the hypothesis

 R , that location representations of objects with clutter emerge later

han on blank backgrounds, independent of attention. 
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.1.2. Late attentional modulation of location representations independent 

f background 

Affirming H R formed the basis for arbitrating between our main hy-

otheses H D and H S . H D predicts that attentional modulation is highest

hen location information is highest: with no clutter, it predicts an early

odulation in time of location representations and with high clutter it

redicts a late modulation in time ( Fig. 1 B). H S states that spatial at-

ention modulates location representations always late, after the end of

he bottom-up response at ∼100–150 ms ( Lamme and Roelfsema, 2000 ;

anRullen and Thorpe, 2001 ; Fahrenfort et al., 2007 ; Camprodon et al.,

010 ; Koivisto et al., 2011 ). Thus, H D predicts an interaction between

ttention and background and H S predicts that they are independent. 

To assess H S and H D we determined the time course of attentional

odulation in both background conditions. Attentional modulation was

efined as an enhancement of representations ( Desimone and Dun-

an, 1995 ; Reynolds and Chelazzi, 2004 ; Briggs et al., 2013 ). To quan-

ify attentional modulation, we subtracted classification accuracies in

he fixation attention condition from the peripheral attention condition,

ithin each background condition. Since visual stimulation was identi-

al across attention conditions, we attributed differences between them

o attentional modulation. 

Fig. 3 E shows the result of this analysis. We found attentional modu-

ation of location representations in both background conditions in a late

ime window, providing clear evidence for H S . In detail, we observed a

ignificant positive difference in the no clutter condition starting from

01 ms, reflecting attentional modulation ( Fig. 3 E; N = 26, two-tailed

ilcoxon signed-rank test, P < 0.05, FDR-corrected across time points).

n the high clutter condition, we found evidence for attentional modula-

ion starting from 182 ms ( Fig. 3 E; N = 26, two-tailed Wilcoxon signed-

ank test, P < 0.05, FDR-corrected across time points), as reflected in a

ignificant positive difference that lasted until the end of the time win-

ow. 

Although attentional modulation occurred in the late time window

 > 150 ms) in both background conditions, the significance onset of at-

entional modulation was earlier in the high (182 ms) than in the no

lutter condition (240 ms), indicating a slightly earlier effect of attention

n location representations of objects on cluttered backgrounds than on

lank backgrounds. This indicates that neural responses to cluttered im-

ges are sensitive to attentional effects earlier than with blank back-

rounds. 

Together, these results constitute strong evidence for H S , showing

hat attention modulates object location representations in a late time

indow after the bottom-up response, independent of background. 

.1.3. Dissecting transient and persistent components of attentional 

odulation 

While clearly supporting H S (late attentional modulation indepen-

ent of background), the results hitherto do not yet characterize the tem-

oral dynamics underlying attentional modulation of location represen-

ations. Typically during visual perception, time-resolved multivariate

esults reflect a conglomerate of both rapidly changing transient infor-

ation flow as well as persistent activity which maintains certain types

f information over long stretches of time ( Cichy et al., 2014 ; King and

ehaene, 2014 ). 

Thus, here we investigated whether attention and background mod-

late persistent, transient or both aspects of location representations.

or this we conducted temporal generalization analysis ( King and De-

aene, 2014 ). This resulted in two-dimensional time generalization ma-

rices, indexed in both dimensions in time indicating similarities of ob-

ect location representation across time. While transient representations

re reflected as high information on the diagonal of such matrices, per-

istent representations are found off-diagonal. 

As previously, we classified location representations within back-

round and attention condition, resulting in 4 time-generalization ma-

rices ( Fig. 4 A,B,D,E), corresponding to the 4 classification time courses
9 
bove ( Fig. 3 B). We first present the single results ordered by back-

round condition, before quantifying attentional modulation. 

In the no clutter condition, we found similar results in both attention

onditions ( Fig. 4 A,B): location information peaked early at ∼100 ms on

he diagonal, representing transient information flow ( N = 27, P < 0.05,

wo-tailed Wilcoxon signed-rank test, FDR-corrected). Starting from

250 ms, location information generalized more broadly across time

oints, indicating persistent information. In the high clutter condition

 Fig. 4 D,E) information generalized broadly across time points starting

rom ∼140 ms in both attention conditions, ( N = 27, P < 0.05, two-tailed

ilcoxon signed-rank test, FDR-corrected), indicating persistent infor-

ation. Transient information peaked on the diagonal starting from

240 ms. 

We quantified attentional modulation as above ( Fig. 3 E) by compar-

ng the classification results for the two attention conditions, subtracting

he results of the fixation attention condition from the peripheral atten-

ion condition. 

We found that spatial attention modulated both transient and per-

istent representations in late time windows, independent of back-

round. In the no clutter condition, attention modulated the persis-

ent clusters from ∼230 ms and both transient and persistent infor-

ation from ∼300 ms ( Fig. 4 C; N = 27, P < 0.05, two-tailed Wilcoxon

igned-rank test, FDR-corrected). In the high clutter condition, spa-

ial attention modulated location representations across the entire time

indow starting from ∼180 ms ( Fig. 4 F; N = 27, P < 0.05, two-tailed

ilcoxon signed-rank test, FDR-corrected). Although overall attentional

odulation was observed in a late time window ( > 150 ms) in both

ackground conditions, we observed an earlier effect of attentional

odulation in the high clutter condition than in the no clutter con-

ition, similar to the time course results ( Fig. 3 E). This might indi-

ate that the noisy input created by cluttered backgrounds renders

he neural responses to these stimuli more sensitive to attentional

odulation. 

In sum, we found that attention modulates both transient and per-

istent representations of object location in late time windows beyond

50 ms. 

.2. Clutter and attention independently affect location representations 

long the ventral visual stream 

We proceed to investigate which visual processing stages are modu-

ated by background and attention in an fMRI experiment, determining

rocessing stages by localizing and assessing cortical regions of the ven-

ral visual stream ( Fig. 1 C,D). In this context H R predicts that location

epresentations of objects emerge in higher regions along the ventral

tream when objects are presented on cluttered backgrounds compared

o blank backgrounds ( Graumann et al., 2022 ; Fig. 1 C). H D predicts

hat attentional modulation is high where location information is high

 Fig. 1 D): with no clutter, attention modulates location representations

hroughout the ventral stream and with high clutter attention modu-

ates location representations in mid- or high-level visual areas. H S in-

tead predicts that attentional modulation is high in mid- and high-level

isual areas only, independent of background. 

We further investigated the dorsal cortex because it is assumed

o process visuospatial information ( Ungerleider and Haxby, 1994 ;

ilner and Goodale, 2006 ; Kravitz et al., 2011 ; Groen et al., 2022 ) and

t has also been implicated in attentional processing ( Silver et al., 2005 ;

zczepanski et al., 2010 ; Sprague and Serences, 2013 ). In contrast to

hose findings, more recent work did not find evidence for strong rep-

esentations of object location in the dorsal stream ( Graumann et al.,

022 ). However, that study did not manipulate attention. To investi-

ate whether location representations in the dorsal stream depend on

ttention and resolve inconsistencies in previous research, we also in-

luded regions from the dorsal stream in our analyses. 

The design of the fMRI experiment was equivalent to the design in

he EEG experiment with a reduced number of levels for the factors cate-
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Fig. 4. EEG results of time-generalization analyses within each background and attention condition. Rows represent background and columns represent attention 

conditions. A, Location classification across categories and time points in the no clutter & peripheral attention condition. Horizontal and vertical black lines indicate 

stimulus onset, oblique black line highlights the diagonal. White outlines indicate significant time points ( N = 26, two-tailed Wilcoxon signed-rank test, P < 0.05, 

FDR-corrected). B, Location classification across categories and time points in the no clutter & fixation attention condition. C, Difference matrix resulting from 

subtracting the matrices representing fixation (B) from peripheral attention (A) in the no clutter condition. Plot conventions as in A. D, Location classification across 

categories and time points in the high clutter & peripheral attention condition. E, Location classification across categories and time points in the high clutter & 

fixation attention condition. F, Difference matrix resulting from subtracting the matrices representing fixation (E) from peripheral attention (D) in the high clutter 

condition. 
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c  
ory and location. This adaptation was made to accommodate the longer

rial duration required for our fMRI event-related design ( Fig. 2 D) while

aintaining a feasible session duration. We presented objects from two

ategories (faces, cars) in two locations (left and right horizontally from

xation; Fig. 2 B) instead of four categories and locations. To charac-

erize the effects of background and spatial attention on location repre-

entations in visual cortex, we defined regions-of-interest (ROIs) along

he ventral stream, since H R predicted effects to emerge there based on

revious studies ( Hong et al., 2016 ; Graumann et al., 2022 ). We also

ncluded ROIs along the dorsal stream to resolve contradictory findings

rom previous research. 

We classified location across category using an analogous classifica-

ion scheme as in the EEG experiment. We trained a classifier on fMRI

atterns associated with two locations of one object category and sub-

equently cross-validated the classifier on new testing data associated

ith the same locations of a new object category. This classification

as performed in each ROI separately, for each level of the background

ondition (no clutter, high clutter) and for each level of attention con-

itions (periphery, fixation) separately, resulting in four classification

ccuracies per ROI and subject. We included three ROIs in early visual

ortex (V1, V2, V3), two ROIs in the ventral stream (V4, LOC) and four

OIs in the dorsal stream (IPS0, IPS1, IPS2, SPL). 

We tested H R , H S and H D in 2 × 2 repeated-measures ANOVAs

 N = 20, FDR-correction for multiple comparisons) with factors back-

round (no clutter, high clutter) and attention (peripheral, fixation) in

ll ROIs of the ventral and dorsal visual streams, focusing on the ventral

isual stream first. 

Hypothesis H R predicted a main effect of background in early visual

reas, but not in high-level visual areas of the ventral visual stream.

onsistent with the predictions of H R , we found significant main ef-

ects of background in early visual areas V1 and V2 ( Fig. 5 A,B; V1:

 (1,19) = 9.88, P = 0.005, partial 𝜂2 = 0.34; V2: F (1,19) = 11.56, P = 0.003,
10 
artial 𝜂2 = 0.3), but not in mid- and high-level visual areas V3 and

OC ( Table 1 ), except for V4, which also showed a main effect of back-

round ( F (1,19) = 16.64, P < 0.001, partial 𝜂2 = 0.47). In line with this, a

upplementary ANOVA comparing the background difference between

OIs additionally revealed a significant main effect of ROI with higher

ackground differences in V2 and V4 than in LOC (Supplementary Fig.

A). 

On this basis arbitrating between H S and H D we found clear evidence

or H S (the hypothesis predicting late attentional modulation indepen-

ent of background). Location information in mid- and high-level ven-

ral visual areas V3, V4 and LOC all showed a significant main effect of

ttention ( Fig. 5 C,D,E; V3: F (1,19) = 13.36, P = 0.002, partial 𝜂2 = 0.41;

4: F (1,19) = 45, P < 0.001, partial 𝜂2 = 0.70; LOC: F (1,19) = 24.04, P < 0.001,

artial 𝜂2 = 0.56), but no significant interaction between background

nd attention as would have been predicted by H D . These results were

onfirmed through a univariate analysis that revealed main effects of

lutter in early- and mid-level areas V1, V2, V3 and V4 and main effects

f attention in mid- and high-level areas V4 and LOC (Supplementary

ig. 6A). Comparing attentional modulation across ROIs provided fur-

her evidence for H S rather than H D : attention differences across ROIs

howed a significant main effect of ROI with higher attentional modu-

ation in LOC than in V2 (Supplementary Fig. 5B). However, univari-

te activation differences between attention conditions along the ven-

ral stream were significantly higher in the high than in the no clut-

er condition (Supplementary Fig. 6B), but we found no evidence for a

ignificant univariate effect of attention in V1. Furthermore, univari-

te results showed a right-lateralized effect of clutter in V1 and V4

nd a left lateralized effect in V2 (Supplementary Fig. 6C,D). These

nalyses were exploratory and future studies are needed to see if they

eplicate. 

Equivalent testing in the dorsal visual stream revealed no signifi-

ant main or interaction effect in any regions along the dorsal stream
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Fig. 5. Location across category classification results in the four conditions in early (V1, V2, V3), ventral (V4, LOC) and dorsal (IPS0–2, SPL) visual ROIs. Stars 

below bars indicate significant above-chance classification ( N = 20, two-tailed Wilcoxon signed-rank test, P < 0.05 false discovery rate (FDR) corrected). Error bars 

represent standard error of the mean (SEM). A, ROIs on cortical surface. B, V1. C, V2. D, V3. E, V4. F, LOC. G, IPS0. H, IPS1. I, IPS2. J, SPL. 

Table 1 

Results of the 2 × 2 repeated-measures ANOVA ( N = 20) with factors background (no clutter, high clutter) and attention (peripheral, 

fixation), analyzing location classification accuracies in 9 ROIs that were included in the analyses. Asterisks behind P -values indicate 

significance with FDR correction across number of comparisons (for 9 ROIs). 

ROI Main effect background Main effect attention Interaction effect 

V1 F (1,19) = 9.88, P = 0.005 ∗ , partial 𝜂2 = 0.34 F (1,19) = 2.30, P = 0.15, partial 𝜂2 = 0.11 F (1,19) = 0.00, P = 0.97, partial 𝜂2 = 0.00 

V2 F (1,19) = 11.60, P = 0.003 ∗ , partial 𝜂2 = 0.38 F (1,19) = 0.94, P = 0.35, partial 𝜂2 = 0.38 F (1,19) = 0.58, P = 0.46, partial 𝜂2 = 0.03 

V3 F (1,19) = 3.48, P = 0.08, partial 𝜂2 = 0.16 F (1,19) = 13.36, P = 0.002 ∗ , partial 𝜂2 = 0.41 F (1,19) = 0.67, P = 0.42, partial 𝜂2 = 0.03 

V4 F (1,19) = 16.64, P < 0.001 ∗ , partial 𝜂2 = 0.47 F (1,19) = 45, P < 0.001 ∗ , partial 𝜂2 = 0.70 F (1,19) = 2.21, P = 0.15, partial 𝜂2 = 0.10 

LOC F (1,19) = 0.08, P = 0.78, partial 𝜂2 = 0.00 F (1,19) = 24.04, P < 0.001 ∗ , partial 𝜂2 = 0.56 F (1,19) = 0.06, P = 0.81, partial 𝜂2 = 0.00 

IPS0 F (1,19) = 0.29, P = 0.60, partial 𝜂2 = 0.02 F (1,19) = 1.40, P = 0.25, partial 𝜂2 = 0.07 F (1,19) = 5.45, P = 0.03, partial 𝜂2 = 0.22 

IPS1 F (1,19) = 0.03, P = 0.87, partial 𝜂2 = 0.00 F (1,19) = 2.41, P = 0.14, partial 𝜂2 = 0.11 F (1,19) = 0.53, P = 0.47, partial 𝜂2 = 0.03 

IPS2 F (1,19) = 0.97, P = 0.34, partial 𝜂2 = 0.05 F (1,19) = 0.58, P = 0.46, partial 𝜂2 = 0.03 F (1,19) = 0.03, P = 0.87, partial 𝜂2 = 0.00 

SPL F (1,19) = 0.12, P = 0.74, partial 𝜂2 = 0.01 F (1,19) = 4.38, P = 0.05, partial 𝜂2 = 0.19 F (1,19) = 0.72, P = 0.41, partial 𝜂2 = 0.04 
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 Fig. 5 F,G,H,I; Table 1 ), consistent with the observation that object lo-

ation representations emerge rather along the ventral than the dorsal

tream ( Hong et al., 2016 ; Graumann et al., 2022 ). 

In sum, the results of the fMRI experiment concur with the results of

he EEG experiment in providing evidence for H R and H S : object location

epresentations emerge gradually along the processing hierarchy of the

entral visual stream in line with H R , and attention modulates object lo-

ation representations in mid- and high-level ventral areas independent

f the object’s background, in line with H . 
S 

11 
. Discussion 

Using EEG and fMRI we investigated at which stage of the visual pro-

essing hierarchy attention modulates object location representations.

ur results converge across the two experiments and imaging modal-

ties into a common view. We reproduced the recent observation that

bject location representations emerge at later processing stages when

resented on cluttered than on blank backgrounds (H R ) and showed

hat this holds independent of attention. On this basis we examined the
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ffect of attention on object location representations, finding that atten-

ion modulated location representations statically during late stages of

isual processing in cortical time and space, independent of the object’s

ackground (H S ). 

.1. Disentangling the influences of background and attention on the 

emporal dynamics of location representations 

Recent research has revealed that object location representations

merge later in the ventral visual processing hierarchy when objects ap-

ear on cluttered rather than on blank backgrounds ( Hong et al., 2016 ;

raumann et al., 2022 ). However, it remained unclear to which degree

his effect relied on or was influenced by attention or not. Previous

esearch has highlighted attention as important for object perception

nder cluttered conditions ( Treisman and Gelade, 1980 ; Wolfe, 1994 ;

eddy and Kanwisher, 2007 ; Lee and Maunsell, 2010 ). Further, both

emporal delays observed for object perception and attention have been

elated to recurrent processes ( Tang et al., 2014 ; Kar et al., 2019 ;

ajaei et al., 2019 ; van Bergen and Kriegeskorte, 2020 ), suggesting

hared neural mechanisms. 

Here, we clarify the relationship and find a dissociation: while clut-

ered viewing conditions delay processing (see also time-generalization

nalysis in Supplementary Fig. 3, Supplementary Methods 1), spatial

ttention in contrast increases information without changing its tim-

ng. These results suggest that background clutter and attention have

ifferential effects on object location processing. Background clutter,

ike other factors that increase image complexity, triggers local recur-

ent processes that can be measured in delayed responses ( Tang et al.,

014 , 2018 ; Groen et al., 2018 ; Kar et al., 2019 ; Rajaei et al., 2019 ;

eijdel et al., 2021 ; Graumann et al., 2022 ). These effects might be

riven by the average contrast of a cluttered scene, which increases

he need for segmentation operations ( Groen et al., 2018 ; Seijdel et al.,

020 , 2021 ). In contrast, spatial attention triggers modulation of neu-

al responses that can be measured as enhancement of response mag-

itude ( Desimone and Duncan, 1995 ; Reynolds and Chelazzi, 2004 ;

riggs et al., 2013 ). 

However, an unexpected result in the no clutter condition indicates a

otential interaction between recurrence and attention. In both no clut-

er conditions, after the initial peak at ∼140 ms, we observed second

eaks. These second peaks might represent a recurrent processing loop,

hile the first peaks mark the feedforward sweep ( Kietzmann et al.,

019 ). Unexpectedly, the second peak with attention on periphery was

elayed compared to the second peak with attention on fixation. This

elay might represent long-range feedback from prefrontal areas imple-

enting attentional modulation, requiring additional processing time.

owever, our supplementary analyses cannot elucidate whether this is

he underlying mechanism and thus this result needs further investiga-

ion in future research. 

.2. Attention modulates location representations later than the initial 

ottom-up response 

The EEG results revealed attentional modulation of location repre-

entations in a late time window beyond the first 150 ms of the bottom-

p response, independent of the object’s background. This directly

upports the hypothesis H S i.e., that the processing stage of attentional

odulation is statically late and refutes the hypothesis H D , i.e., that

he processing stage of attentional modulation changes dynamically de-

ending on the background. In-depth investigation further revealed at-

entional modulation of transient and persistent temporal dynamics of

ocation representations. This modulation was likewise found in late

ime windows independent of background, providing further evidence

or H S . 

Interestingly, we also observed that the onset of attentional modula-

ion for location representations of objects with high clutter, although
12 
ate ( > 150 ms), occurred earlier than the onset of attentional modula-

ion when objects were presented on blank backgrounds. This might be

elated to increased noise added to the visual information by the back-

round clutter which might render neural responses sensitive to atten-

ional fine-tuning earlier in time than with blank backgrounds. 

Our results are seemingly at odds with earlier studies finding at-

entional modulation before 150 ms in the P1 ( Hillyard et al., 1998b ;

uck et al., 2000 ; Itthipuripat et al., 2019 ) and the N1 ( Mangun, 1995 ;

illyard et al., 1998a ; Itthipuripat et al., 2019 ) component. How is this

iscrepancy to be explained? One possible reason might be that above

entioned studies used space-based attention where participants were

ued to attend either to the left or right whereas our study uses a differ-

nce in spatial deployment of attention that interacts with the incoming

timulus. It is possible that pre-stimulus cueing on the left or right side

f fixation, as used in earlier paradigms, bundles attentional resources

arlier and stronger, resulting in early attentional effects on ERPs. In

omparison, our study directed attention towards the periphery which

ight have diluted attention more compared to previous work. Another

ossible reason might be the choice of the stimulus in general. Above

entioned ERP studies employed simple artificial stimulation condi-

ions which might elicit attentional modulation already early. However,

ater studies using naturalistic stimuli, comparable to the ones used here,

id not find early attentional modulation ( VanRullen and Thorpe, 2001 ;

roen et al., 2016 ; Kaiser et al., 2016a ; Battistoni et al., 2020 ). Together

his questions the degree to which previously observed effects of early

ttentional modulation generalize to more complex stimuli and natural-

stic viewing conditions encountered in the real world where the loca-

ion of attended objects is not always predictable. 

Another contributing factor to the discrepancy could be that at-

entional enhancement of early neural responses is stronger when the

isual task is more difficult or when visual processing is overloaded

 Spitzer et al., 1988 ; Lavie, 1995 ; Luck et al., 2000 ; Boudreau et al.,

006 ; Chen et al., 2008 ) which might have been the case in earlier ERP

tudies e.g. by presenting stimuli in faster sequences ( Hillyard et al.,

998b ). In contrast in our experiment, stimuli in the no clutter condi-

ion were highly salient and presented long enough to be clearly visible.

uture research comparing attentional modulation of artificial vs. real-

orld stimuli with different levels of task difficulty are needed to resolve

his issue. In our study, differences in task difficulty might in turn have

trengthened the attentional manipulation: our behavioural results sug-

est that the peripheral task was harder than the fixation task in the EEG

xperiment (Supplementary Fig. 1), possibly due to multiple vs. single

arget locations. The attentional effects might thus haven been enhanced

y task difficulty ( Boudreau et al., 2006 ; Chen et al., 2008 ). 

We cannot rule out that participants overtly or covertly explored the

mage in the high clutter condition. However, we believe that such ef-

ects should be minor or absent, because objects were presented close to

xation (4,2° of visual angle from fixation to object center), rendering

hem clearly visible from fixation at all times. Furthermore, such effects

hould introducte noise and therefore attenuate the attentional modula-

ion in the high clutter compared to no clutter condition with attention

n periphery, which is not what we observe in our results ( Fig. 3 E).

inally,object location was classified as early as 120 and 140 ms with

igh clutter, which is well before the onset of saccades at ∼200–250 ms

 Carrasco et al., 2011 ), making overt exploration unlikely. 

.3. Attentional modulation in mid- and high-level ventral visual areas 

Consistent with the EEG results indicating attentional modulation of

ater visual object processing stages in time, the fMRI experiment lo-

alized those modulations to mid- and high-level ventral visual areas.

hile our results do not exclude the existence of attentional modula-

ion also in early visual cortex as observed previously ( Roelfsema et al.,

998 ; Gandhi et al., 1999 ; Martínez et al., 2001 ; Noesselt et al.,

002 ; Khayat et al., 2006 ; Lakatos et al., 2008 ; Briggs et al., 2013 ;

errero et al., 2013 ; Itthipuripat et al., 2019 ), they suggest that the
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odulation might be strongest and thus most likely to be detected

t later stages of ventral visual cortex ( Murray and Wojciulik, 2004 ;

uffalo et al., 2010 ; Peelen and Kastner, 2014 ; Kay et al., 2015 ). 

Like previous studies, we found that high-level ventral visual cor-

ex encodes retinotopic location representations ( Cichy et al., 2011 ;

olomb and Kanwisher, 2012 ). It might seem surprising that we do

ot find more prominent location representations in the dorsal stream,

iven that it has traditionally been labelled the “where ” pathway

 Ungerleider and Haxby, 1994 ) and has been related to visuospatial

rocessing. However more recently, dorsal stream representations have

een closely linked to vision for goal-directed behavior and are mod-

lated by task ( Bracci et al., 2017 ; Vaziri-Pashkam and Xu, 2017 ;

ebart et al., 2018 ). Therefore, the dorsal stream might represent

ction-relevant visual information rather than visuospatial information

er se ( Milner and Goodale, 2006 ). 

Our results add further evidence towards the view that attentional

odulation begins in higher processing stages and is then relayed back

o lower stages ( Buffalo et al., 2010 ), which could be reflected as in-

reasing attentional modulation along the ventral stream ( Kay et al.,

015 ). 

.4. Location representations of objects on cluttered backgrounds in the 

entral stream 

The fMRI results reveal a double dissociation between the effects of

lutter and attention on early and late ventral visual areas: early visual

reas show an effect of background but not of attention, while the re-

erse is true for mid- and high-level visual areas. Put differently, we

nd that both robustness to clutter ( Hong et al., 2016 ; Graumann et al.,

022 ) and attentional modulation increase along the ventral visual

tream ( Buffalo et al., 2010 ; Kay et al., 2015 ). We speculate that these

henomena depend on the common mechanistic and computational ba-

is of receptive field size increases along the ventral visual stream. At-

ention increases population receptive field (pRF) size in higher-level

entral areas, thereby enhancing location sensitivity ( Kay et al., 2015 ).

n addition, the biased competition model of attention predicts that if

n object appears on a cluttered background, attention biases the neu-

al response towards the relevant object, while suppressing the response

o the background clutter within the same RF ( Kastner and Ungerlei-

er, 2001 ; Reddy and Kanwisher, 2007 ; Reddy et al., 2009 ). Together,

hese computational models and previous findings might explain why

oth attentional modulation and location information increase along the

entral visual stream. 

An increase in pRF size might simultaneously benefit object segmen-

ation from cluttered backgrounds by encoding object location in global

oxel patterns ( Eurich and Schwegler, 1997 ; Kay et al., 2015 ). This ben-

fit for object segmentation and biased competition within RFs might

n contrast not be present in early visual cortex where RF size is small

 Wandell and Winawer, 2015 ) and cells respond in a location-unspecific

ay across all stimulated portions of the visual field to both objects and

ackground clutter. 

.5. Limitations 

We highlight three limitations of our experimental designs that are

mportant for the correct interpretation of the results. 

The first limitation is that in our experiment object locations and

he content of the background are randomly paired and thus incongru-

nt. In contrast, in the real world objects typically appear in locations

ongruent with the background scene. Attentional selection can exploit

uch relations between objects and backgrounds ( Wolfe et al., 2011 ;

aiser et al., 2019 ; Võ et al., 2019 ; Battistoni et al., 2020 ) on the basis

f scene gist information ( Oliva, 2005 ; Greene and Oliva, 2009 ). In our

xperiment this type of information cannot be exploited. Thus, when

bject locations and scene background are congruent, attentional mod-

lation might be faster than revealed here. The flipside of the limitation
13 
s that our experimental design isolates the effect of clutter on visual pro-

essing and attentional modulation independent of congruency effects.

o determine the effect of congruency of object location and background

n visual processing, studies are needed that additionally investigate

ongruency as an experimental factor. 

The second limitation is that we did not directly assess the behavioral

ffects of attentional modulation on localization performance. Spatial

ttention benefits object localization in cluttered displays ( Treisman and

elade, 1980 ; Wolfe, 1994 ; Wolfe et al., 2011 ) by increasing processing

peed. Future studies may combine assessment with brain imaging to

ink the effect of attention for objects on cluttered backgrounds in brain

nd behavior. 

Our results might be explained not solely by the effect of spatial at-

ention, but might be influenced by task difficulty, task relevance and

eature-based attention, too. Behavioural data suggest that the periph-

ral task was more difficult than the fixation task (Supplementary Fig. 1)

ecause hit rates were higher in the fixation than in the peripheral task.

ask difficulty enhances effects of spatial attention ( Boudreau et al.,

006 ) by enhancing responses at the attended locations and suppress-

ng responses at non-attended locations. Therefore, the effect of spatial

ttention in the peripheral task might have been boosted by task dif-

culty. Further, task relevance varied along with attention in our ex-

eriment. However we do not expect this to drive our results, because

ask relevance shows a stronger effect in dorsal than in ventral regions

 Hebart et al., 2018 ; Vaziri-Pashkam and Xu, 2017 ; Bracci et al., 2017 ),

hich is contrary to our results. Finally, our task manipulated not only

patial attention (fixation vs. periphery) but also feature-based atten-

ion, because digits and objects vary in spatial frequency (high for digits,

ow for objects). But since all of our analyses were carried out on objects

n the periphery, spatial attention was most likely the main driver of our

esults. 

.6. Conclusion 

In daily life, we use our spatial attention to help us focus on rele-

ant portions of the visual field in cluttered environments ( Wolfe et al.,

011 ). Our results clarify that attention modulates object location rep-

esentations at late processing stages, using both spatial and temporal

arkers. Furthermore, they establish that attentional modulation is a

ognitive process which is separate from recurrent processes which are

ngaged when objects appear in cluttered environments. 
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