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Glossary of frequently used variables

variable unit description

x m spatial coordinate

xs, xd m coordinate of (physical) source and detector position

x′
s, x′

d m coordinate of simulated (shifted) source and detector position

xsi
, xdi

m coordinate of (physical) source and detector position of source-
detector combination i

r m distance

a(x) m−1 scattering amplitude at position x

b scattering power

λ, λf m laser and fluorescence wavelength

λreg regularization parameter

µa(x, λ) m−1 absorption coefficient (intrinsic and dye) at position x at wave-
length λ

µ0
a(λ) m−1 absorption coefficient (intrinsic and dye) of (homogeneous) bulk

at wavelength λ

µsph
a (λ) m−1 absorption coefficient (intrinsic and dye) of lesion-simulating

spherical heterogeneity used in phantom simulation or experi-
ment at wavelength λ

µchrom
a (x, λ) m−1 intrinsic (chromophore) absorption coefficient at position x at

wavelength λ

µchrom
a,0 (λ) m−1 intrinsic (chromophore) absorption coefficient of (homoge-

neous) bulk at wavelength λ

µdye
a (x, λ) m−1 absorption coefficient of exogenous fluorescent dye at wave-

length λ

µbreast
a (λ) m−1 fitted average absorption coefficient of breast tissue at wave-

length λ

µs(x, λ) m−1 scattering coefficient at position x at wavelength λ

µ′
s(x, λ) m−1 reduced scattering coefficient at position x at wavelength λ

µ′
s,0(λ) m−1 reduced scattering coefficient of (homogeneous) bulk at wave-

length λ

δµa(x, λ), δµκ
a (x, λ) m−1 corrections of absorption coefficient at position x (recon-

structed at nonlinear iteration step κ) at wavelength λ

D(x, λ) m diffusion coefficient at position x at wavelength λ

D0(λ) m diffusion coefficient of (homogeneous) bulk at wavelength λ

Dsph(λ) m diffusion coefficient (intrinsic and dye) of lesion-simulating
spherical heterogeneity used in phantom simulation or experi-
ment at wavelength λ

Dbreast(λ) m fitted average diffusion coefficient of breast tissue at wavelength
λ
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variable unit description

δD(x, λ), δDκ(x, λ) m corrections of diffusion coefficient at position x (reconstructed
at nonlinear iteration step κ) at wavelength λ

cchrom
i (x) M chromophore concentration of tissue constituent i at position x

η quantum yield of fluorescent dye

τ s fluorescence lifetime

ǫi(λ) M−1m−1 molar extinction coefficient of tissue constituent i at laser wave-
length

ǫdye(λ) M−1m−1 molar extinction coefficient of fluorescent dye at the laser wave-
length

n refraction index

n (outward pointing) normal vector on surface ∂Ω or directional
unit vector

v = c/n m s−1 speed of light in medium

q0(x, xs, λ, ω) s m−4 isotropic part of source term (in frequency domain) at position
x and angular frequency ω for a source located at xs emitting
photons at wavelength λ

qκ
0 (x, xs, λ, ω) s m−4 isotropic part of source term (in frequency domain) at position

x and angular frequency ω (at nonlinear iteration step κ) for a
source located at xs emitting photons at wavelength λ

q̃0(x, xs, λ, t) m−4 isotropic part of the source term in time-domain for a source
located at xs emitting photons at wavelength λ

Ω m3 volume of interest

∂Ω m2 surface of volume Ω

κ iteration step of nonlinear reconstruction

κc nonlinear iteration step at convergence of absorption recon-
struction

σsrc m width of 3D or 2D Gaussian blurred source

σdye m2mol−1 molar absorption cross section of exogenous (fluorescent) dye

K reflectivity at surface ∂Ω

Tdi,si
, T f

di,si
ratio of instrumental factors for source-detector combination i

ξj subset j of source-detector combinations corresponding to sub-
volume vj

Ξ set of source-detector combinations corresponding to complete
volume of interest Ω

δ(x) m−3 delta function

Θ(x) Heaviside function of scalar x

Φinf
0 (x, xs, λ, ω) s m−3 photon density per unit angular frequency interval at position

x and angular frequency ω for a source located at xs emitting
photons at wavelength λ in an infinite homogeneous medium
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variable unit description

Φ(x, xs, λ, ω) s m−3 photon density per unit angular frequency interval at position
x and angular frequency ω for a source located at xs emitting
photons at wavelength λ

Φ(x, xs, λ) m−3 continuous wave photon density at position x for a source lo-
cated at xs emitting photons at wavelength λ

Φ0(x, xs, λ, ω) s m−3 photon density per unit angular frequency interval at position
x and angular frequency ω for a source located at xs emitting
photons at wavelength λ in a homogeneous medium (reference
scan)

Φ0(x, xs, λ) m−3 continuous wave photon density at position x for a source lo-
cated at xs emitting photons at wavelength λ in a homogeneous
medium (reference scan)

Φ̃(x, xs, λ, t) m−3 photon density in time-domain at position x for a (pulsed)
source located at xs emitting photons at wavelength λ

Φf(x, xs, λ, ω) s m−3 fluorescence photon density per unit angular frequency interval
at position x and angular frequency ω for a source located at
xs emitting photons at wavelength λ

Φsim
0 (x, xs, λ, ω) s m−3 simulated photon density per unit angular frequency interval at

position x and angular frequency ω for a source located at xs

emitting photons at wavelength λ in a homogeneous medium
(i.e. simulated photon density of reference measurement)

Φsim
κ (x, xs, λ, ω) s m−3 simulated photon density per unit angular frequency interval at

position x and angular frequency ω for a source located at xs

emitting photons at wavelength λ in an inhomogeneous medium
of optical properties reconstructed at nonlinear iteration step
κ − 1 for κ ≥ 1 (i.e. nonlinearly simulated photon density of
inhomogeneous medium)

G0(x, xs, λ, ω) s m−3 Green’s function (in frequency domain) at position x and an-
gular frequency ω for a spatial and temporal delta-like source
located at xs emitting photons at wavelength λ in a homoge-
neous medium

Gκ(x, xs, λ, ω) s m−3 Green’s function (in frequency domain) at position x and an-
gular frequency ω for a spatial and temporal delta-like source
located at xs emitting photons at wavelength λ in an inho-
mogeneous medium having optical properties reconstructed at
nonlinear iteration step κ − 1 for κ ≥ 1

w(x) m3 Voronoi cell volume associated with vertex x

aκ
i (x, λ, ω) m complex-valued sensitivity coefficient (in frequency domain) at

position x and angular frequency ω of source-detector combi-
nation i for absorption coefficient reconstruction at wavelength
λ using optical properties reconstructed at iteration step κ− 1
for κ ≥ 1 (element of system matrix A); aκ=0

i (x, λ, ω) refers to
homogeneous medium
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variable unit description

âκ
i (x, λ, ω) m−1 complex-valued sensitivity coefficient (in frequency domain) at

position x and angular frequency ω of source-detector combi-
nation i for diffusion coefficient reconstruction at wavelength λ
using optical properties reconstructed at iteration step κ − 1
for κ ≥ 1 (element of system matrix A); âκ=0

i (x, λ, ω) refers to
homogeneous medium

af
i(x, λ, ω) M−1 complex-valued sensitivity coefficient (in frequency domain) at

position x and angular frequency ω of source-detector combi-
nation i for dye concentration reconstruction at wavelength λ

y signal vector (reconstruction input vector)

b image update vector (reconstruction output vector)

A system matrix (a.k.a. sensitivity matrix, stiffness matrix)

ν = ω/(2π) s−1 modulation frequency

ω s−1 angular (modulation) frequency

∂n = n · ∇ m−1 directional derivation

k(λ, ω) m−1 complex wave number (in frequency domain) at wavelength λ
and angular frequency ω
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List of acronyms

ART Algebraic Reconstruction Technique

BI-RADS Breast Imaging Reporting and Data System

CCD Charge-coupled device

CG Conjugate gradient

CT Computed tomography

cw Continuous wave

DBC Dirac boundary condition

DCIS Ductal carcinoma in situ

DOSI Diffuse optical spectroscopic imaging

DOT Diffuse optical tomography

DPDW Diffuse photon density wave

FD Frequency domain

FE Finite element

FEM Finite element method

HbO Oxyhemoglobin

HbR Deoxyhemoglobin

ICG Indocyanine green

LCIS Lobular carcinoma in situ

LHS Left hand side

MC Monte Carlo (simulations)

MF Matching fluid (opt. properties given in Sec. A.5)

MRI Magnetic resonance imaging

NIR Near infrared

PDE Partial differential equation

PTB Physikalisch-Technische Bundesanstalt

RBC Robin boundary condition

RHS Right hand side

RTE Radiative Transfer Equation

TCSPC Time-correlated single photon counting

TPSF Temporal point spread function

UMC Utrecht University Medical Center Utrecht

VOI Volume of interest
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Chapter 1

Introduction

Besides its human dimension, breast cancer is of considerable socioeconomic importance. About every
8th woman contracts breast cancer during her lifetime in industrialized countries (USA, Europe) and,
there, breast cancer is the second leading cause of death of women [1]. Early detection of the disease
is considered as the key to good prognosis and survival. Imaging modalities that are routinely used
clinically to detect and diagnose breast cancer are X-ray mammography, ultra-sound (US) mammog-
raphy and dynamic contrast enhanced magnetic resonance (DCE-MRI) imaging (MR mammography),
with X-ray mammography used for screening. Many attempts are being currently made to improve on
existing imaging modalities (e.g. X-ray mammographs to allow for digital tomosynthesis) and to develop
alternative techniques that may offset some of the drawbacks of the standard modalities or that provide
new information, e.g. positron emission mammography (PEM) [2, 3], electrical impedance mammography
[4, 5], elastography [6], and last but not least optical mammography.

The first attempts to use visible light to detect breast tumors were made by Cutler [7] about 80
years ago, who used a classical light source (electric light bulb) to illuminate the breast and inspected
the transmitted light by the naked eye. Light transmitted though the breast is exponentially attenuated
with tissue thickness. Attenuation is the combined effect of absorption and scattering properties of
the tissue. Whereas tissue chromophores (e.g. hemoglobin) strongly absorb light below about 650 nm,
breast tissue is rather transparent in the red to near infrared (NIR) spectral range (650 nm ≤ λ ≤ 950 nm,
”diagnostic window”) with a typical free absorption length of la ≈ 50 cm. Therefore, all of today’s optical
mammographs use (laser) light sources that emit in this spectral range. In the NIR major chromophores
of breast tissue are hemoglobin, oxy-hemoglobin, water and lipids. Besides absorption, NIR light is
strongly scattered by tissue, the free scattering length of breast tissue is typically ls ≈ 100 µm. The
microscopic scattering centers are cells, in particular cell nuclei and other cell organelles. Scattering is
strongly forward peaked, aiding light transport with a free transport scattering length l′s ≈ 1 mm, after
which directional correlation with the direction of the incident light is lost. The exponential attenuation
constant of light k in breast tissue amounts to about k =

√
3/(lal′s) ≈ 0.8 cm−1. After a few millimeter,

spatial coherence of the laser light is lost and radiation transport can be modeled as photon diffusion.
Because of strong scattering, photons follow complicated trajectories that are considerably longer than
the geometrical source-detector distance (e.g. breast thickness). The ratio of the average path length of
photons to the geometrical distance (”differential path length factor”) is about 10 for breast tissue.

Carcinomas beyond a few mm in diameter develop their own abnormal vasculature [8]. The higher
concentration of blood in tumor tissue compared to the average blood concentration of normal breast
tissue allows carcinomas to be detected by their absorption of NIR radiation. In tumor tissue total
hemoglobin concentration and water concentration are each higher by about a factor 1.4 compared to
normal breast tissue [9]. Although (breast) tumors are generally believed to be hypoxic on average [10],
diffuse optical spectroscopic imaging (DOSI) [9] did not reveal a difference in tissue oxygen saturation

11



12 CHAPTER 1. INTRODUCTION

between tumors and normal breast tissue. The same conclusion was deduced from clinical studies on
optical mammography [11, 12]. Furthermore, it was shown from these studies that carcinomas may
exhibit both, lower as well as higher scattering, however, on average scattering is increased in carcinomas
by about 20% [12, 13]. There is rather little information available on the optical properties of benign
lesions. Cysts generally show considerably lower scattering than surrounding breast tissue.

Many decades after the initial attempts by Cutler, interest in optical mammography renewed, in par-
ticular since the early nineties of the last century, when adequate optoelectronic components including
laser diodes and miniaturized photon detectors, compact signal processing electronics and powerful PCs
became available that allowed to develop compact optical mammographs that could be operated in a clini-
cal setting. Many different experimental instrumentations for optical mammography have been developed
since then, using continuous wave (cw) laser light [14, 15], short (ps) laser pulses (time-domain instrumen-
tation) [16, 17, 18], or amplitude-modulated laser light (frequency-domain mammographs) [19, 20, 21].
Continuous wave instruments measure light attenuation and generally cannot distinguish between scat-
tering and absorption properties of breast tissue. Time-domain mammographs, on the other hand, record
distributions of times of flight of photons caused by the different photon path lengths through tissue.
By measuring the shape of the transmitted laser pulse, absorption, reducing the pulse amplitude, and
scattering, affecting the width of the broadened laser pulse, can be distinguished. Frequency-domain
mammographs record phase shifts and demodulation of transmitted amplitude-modulated laser radia-
tion and hence allow to separate absorption from scattering as well, in particular when more than one
modulation frequency is used. Most mammographs operate at two red to NIR wavelengths at least,
instruments with up to seven wavelengths have been reported [22] in order to distinguish the contribu-
tions of the various chromophores to total absorption (tissue optical spectroscopy). Independently of
the particular type of light sources used, presently all optical mammographs irradiate a small spot on
the surface of the breast, one at a time, subsequently sampling many (source) positions, rather than
applying the broad-beam illumination of the early instruments. At each source position, transmitted
laser light is recorded simultaneously at a number of (detector) positions on the surface of the breast.
While consecutive sampling of source positions increases the time required to record a mammogram, by
measuring the response of the system to a (spatial) δ-like photon source at selected source positions on
the breast surface, spatial resolution and contrast is improved considerably compared to the broad-beam
instrumentation used initially. Many different source-detector arrangements have been realized, tomo-
graphic instruments [15, 21, 23] place sources and detectors at fixed positions over the entire surface of
the breast, providing approximately complete angular sampling, whereas scanning optical mammographs
[14, 16, 17, 19, 20] slightly compress the breast between two glass plates, scanning the source across one
compression plate, while detectors are either placed at fixed positions or scan in tandem with the source.
Such source-detector arrangements, however, allow to sample a restricted range of (projection) angles
only, reducing further the limited spatial resolution of diffuse optical tomography (DOT).

At the same time when instrumental developments were pursued for optical mammography, consider-
able theoretical advances were made in tissue optics. Photon transport in a turbid medium such as tissue
can be described by the radiative transfer equation (RTE). Because scattering dominates over absorp-
tion in the NIR, the diffusion approximation of the RTE can be used [24], except e.g. in the immediate
vicinity of boundaries or close to a δ-like photon source. There exist analytical solutions to the diffusion
equation for highly idealized situations (e.g. a homogeneous diffusely scattering and absorbing infinite
medium with or without a spherical heterogeneity simulating a tumor) [24, 25, 26, 27], yet for more re-
alistic numerical breast models the diffusion equation is solved numerically using finite element methods
(FEM, [28, 29, 30]). Such forward calculations require the spatial distribution of the absorption and
reduced scattering coefficients to be known within the volume of interest (VOI) to simulate the diffusely
transmitted laser (and fluorescence) radiation. The inverse problem, i.e. reconstructing absorption and
reduced scattering coefficients and the concentration of an exogenous fluorescent dye from simulated or
experimental data of diffuse transmittance and reflectance taken at the surface, is ill-posed due to the
large volume which influences a transmission measurement. In contrast to X-ray tomography analytical
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solutions of the inverse problem are not known for diffuse optical tomography because the problem is
nonlinear. Prior knowledge, e.g. on the spatial distribution of optical properties, should be included into
reconstruction algorithm to reduce the degree of ill-posedness, and methods of regularization need to be
applied, however, affecting the results of the reconstruction.

One may ask what advantages and disadvantages optical mammography may have over other imaging
modalities to detect and diagnose breast cancer. In contrast to X-ray, MR-, and US- mammography
spatial resolution of optical mammography is poor, being close to centimeters rather than millimeters,
because of light scattering. However, unlike X-ray mammography, optical mammography does not use
ionizing radiation and compared to DCE-MRI it is cost effective, allowing optical mammograms to be
taken frequently. Most importantly, however, unlike the three other modalities optical mammography
exploits the power of optical spectroscopy and, in principle, allows the metabolic state of breast tissue to
be assessed non-invasively including that of benign and malignant lesions. This aim might be achieved
when monitoring (neo-adjuvant) chemotherapy of known (superficial) breast tumors prior to surgery by
in vivo DOSI [31]. However, up to now such hopes did not come true for optical mammography based on
contrast of intrinsic chromophores. Two (retrospective) clinical studies on time-domain scanning optical
mammography, both using very similar instrumentation, one employing two optical wavelengths [13],
the other one up to seven wavelengths [22] yielded a true positive rate (sensitivity) of about 80%-85%,
whereas the false positive rate (1-specificity) was between 40% and 50%. In other words, lesions could be
detected with adequate sensitivity, but despite the considerable advances made in instrumentation and
data analysis, carcinomas could not be discriminated from benign lesions. It is unlikely that this result
can be improved by adding a (classical) light source that covers the entire bandwidth of the diagnostic
window to improve spectroscopic resolution.

To find an explanation for this disappointing result and a way to overcome this dilemma, one may look
at DOSI of breast tumors during neo-adjuvant chemotherapy [31] and to DCE-MRI [32, 33]. Without
applying a contrast agent (Gd-DTPA) specificity of MR-mammography is poor, i.e. benign and malignant
lesions cannot be discriminated by their properties relevant to MRI, i.e. by their proton (H2O) density,
and their relaxation rates T1, T2 and T ⋆

2 . Likewise, the optical properties of benign and malignant
breast lesions overlap, in particular, taking the large biological variability of carcinomas into account.
Discrimination of such lesions as being benign or malignant is much more likely by dynamic rather than
static measurements, e.g. when the response of the lesion is monitored following administration of a
suitable (fluorescent) contrast agent. Similarly, cancers can be classified as responders or non-responders
to neo-adjuvant chemotherapy by monitoring changes in their optical properties using DOSI.

Neo-angiogenesis associated with tumor growth leads to tumor vasculature that is ”leaky”, i.e. more
permeable to medium-sized molecules such as Gd-DTPA compared to healthy breast tissue or benign
lesions [8]. Therefore, at the site of the carcinoma, the (unspecific) contrast agent Gd-DTPA leaves
the vasculature more rapidly, resulting in early signal enhancement in (T1-weighted) MR images of the
breast, increasing specificity in this way. Likewise, after administration of a NIR fluorescent contrast
agent, such as Indocyanine green (ICG) or the ICG derivative Omocyanine, these molecules are expected
to extravasate more readily in tumors compared to normal breast tissue and benign breast lesions as well.
By taking fluorescence mammograms besides mammograms based on the transmittance of exciting laser
radiation, there is a good chance that specificity of optical mammography can sufficiently be increased.
Importantly, tissue autofluorescence is low within the diagnostic window. Very recently, first fluorescence
mammograms obtained from three patients with carcinomas following administration of ICG as fluores-
cent contrast agent were reported by an American research group and 3D reconstructions of the intrinsic
optical (absorption and scattering) properties as well as the ICG concentration was carried out [34].

In this thesis, performed at the Philips Research Laboratories, Hamburg, a software suite was devel-
oped based on the finite element method to simulate propagation of NIR (laser) light and fluorescence
radiation through inhomogeneous turbid media based on the diffusion equation and to carry out linear
and nonlinear reconstructions of the absorption and scattering properties of the medium as well as fluores-
cent dye concentrations from simulated or experimental data taken in frequency domain or time-domain.
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Simulations of photon densities of diffusely transmitted or remitted laser radiation and fluorescence radi-
ation from an exogenous fluorescent contrast agent are supported by the software package for arbitrary
object (breast) geometries and arrangements of sources and detectors. The software package was used
to quantitatively assess the performance of various instrumental concepts for fluorescence mammographs
and to analyze laser and fluorescence mammograms taken by a tomographic instrument (Philips Re-
search) employed in a clinical study on fluorescence mammography carried out at the University Medical
Center Utrecht, using Omocyanine as fluorescent dye.

This thesis is structured in the following way. After an introduction to the medical background of
breast cancer and breast cancer screening (Chapter 2), the physical background of modalities used in the
current workflow of mammography screening (X-ray, MRI, Ultrasound) is discussed and compared with
that of optical mammography (Chapter 3). Subsequently, different instrumentations used for optical
mammography are explained and the laboratory setup is outlined (Chapter 4) that was used by the
Physikalisch-Technische Bundesanstalt (PTB) for phantom experiments analyzed in this thesis.

The main results of the thesis are divided into three chapters, separating topics mainly related to
the forward model (Chapter 5) and image reconstruction (Chapters 6 and 7), respectively. After an
introduction to the theoretical background of forward model calculations (Sec. 5.1), results of the im-
proved time-window analysis (Sec. 5.2.1) and the performance analysis of instrumentation in optical
mammography (Sec. 5.2.2) are presented.

The chapter related to image reconstruction (Chapter 6) presents, after explaining the theoretical
background in Sec. 6.1.1, improvements in reconstruction algorithms and reconstruction results of phan-
tom data, achieved in this thesis, e.g. improved data preprocessing (Sec. 6.2.1), investigation of spatial
resolution (Sec. 6.2.2), and sub-volume reconstruction (Sec. 6.2.3). Furthermore, linear and nonlinear
reconstructions of clinical data were carried out to determine intrinsic contrast based on absorption and
fluorescent dye concentrations (Chapter 7), using algorithmic improvements introduced before.

Conclusions, summary, and outlook of the thesis are given in chapter 8, followed by an appendix
containing further technical details, e.g. description of the Philips tomographic fluorescence mammograph
(appendix A.1), details on numerical implementations (appendices A.2, A.3), and on phantom setups used
throughout this thesis (appendices A.4, A.5, A.6). Furthermore, derivations of selected formulas are given
in appendix C.



Chapter 2

Medical background

2.1 Etiopathology and treatment of breast cancer

Breast cancer mainly begins in the glands, i.e. in the lobules that provide the milk production, or in the
ducts that connect lobules to the nipple. Different types of benign tumors exist that are not cancerous
although having an abnormal growth. These lumps neither spread (nonmetastatic) nor are life threaten-
ing. Nonetheless, some benign breast lumps can increase the risk of getting cancer, i.e. malignant tumors.
Such tumors begin with a hyperplasia, an abnormal increase in the number of cells. At this state, the
tumors are regarded to be in pre-cancerous (in situ) state, and depending on their location, these tumors
are called ductal or lobular carcinoma in situ (DCIS or LCIS, respectively), occurring 80% and 15% re-
spectively as a pre-cancer in breasts. As characteristicum, DCIS and LCIS neither spread nor invasively
infiltrate surrounding tissue, but micro calcifications start to exist in these tumors, making them visible
on X-ray mammograms. Most cancers at in situ stage can be cured by surgery, hence detecting cancer
at this early state is beneficial, allowing a less drastic follow-up therapy.

Within one to more than 10 years, tumors can become invasive in a next step. Invasive tumors are
more dangerous and break through the duct or gland walls to invade the surrounding (fatty) tissue. These
invasive cancers can be characterized being at one of the following three stages (TNM staging), i.e. being
either locally confined to the breast (T-stage, USA five year survival rate 97%), spread to surrounding
tissue or nearby lymph nodes (N-stage, 80%), or already metastasized and spread to distant organs (M-
stage, 23%). Most of the invasive findings have their origin in the ducts or lobules (80% invasive ductal
carcinoma and 10% invasive lobular carcinoma), making early diagnosis of DCIS and LCIS an important
factor for successful cancer therapy.

No sui generis exists for breast cancer, instead it is a result of multiple genetic changes or mutations
caused by several unmodifiable (e.g. age, inherited genetic mutations [35, 36], high breast density, age
at first birth, early menarche, late menopause, and regular ovulation [37]) and modifiable (e.g. post-
menopausal obesity, alcohol consumption, and physical inactivity [38]) risk factors.

It was shown that the use of postmenopausal hormone therapy (hormone replacement therapy, i.e. a
combined estrogen and progestin therapy) with extended use increases breast cancer risk considerably [39].
This treatment of menopausal symptoms shows multiple positive and negative side effects as increased
mineral bone density, decreased colorectal cancer risk, but also increased heart disease and dementia risk.
Hence, treatment has to be chosen carefully and individually. While oral contraceptives may slightly
increase the risk of breast cancer [40, 41], it was shown by randomized trials that breast cancer risk does
not increase by use of underwire bras, antiperspirants [42] or an abortion [43].

Some of the mentioned causes for increased breast cancer risk are directly related to elevation of the
exposure to ovarian hormones, because estrogen increases the chance of DNA replication errors leading to
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carcinogenic mutations. Others causes are purely correlated to the socioeconomic status of the patient.
If a patient is known to have an increased risk of breast cancer, the use of a hormone chemopre-

vention or a prophylactic mastectomy (removal of both breasts) [44] can be adviseable. Also starting
mammography screening at younger age can be a possibility for high risk patients, or taking additional
tests like magnetic resonance imaging (MRI) and ultrasound (US). But a prevention of breast cancer by
full mastectomy is only adviseable for a fraction of patients. For all others, early detection can be live
saving. Therefore, awareness about symptoms is an important key aspect. In most cases the tumor can
be detected early as a painless mass (only 10% of breast cancer patients have breast pain and no mass).
Mostly, breast pain is commonly due to benign conditions and is in general not a sign for malignant
breast cancer. Nonetheless, thickening, swelling, scaliness, skin irritation, ulceration, nipple symptoms as
spontaneous discharge, erosion, inversion, or tenderness can be symptoms of breast cancer. Although not
being useless if performed correctly, the effects of a monthly breast self examination are non conclusive
and recommendations have been dropped in some countries [45]. Instead, the American Cancer Society
guidelines recommend an annual clinical breast examination including mammography.

After detection of breast cancer, the treatment consits of a variety of options, depending on the type
of cancer that has been found [46]. In early stages, some type of surgery is performed (lumpectomy,
i.e. a local removal of the tumor) often followed by radiation therapy to prevent recurrence of the cancer.
Also mastectomy, accompanied by the removal of (axillary) lymph nodes to determine the spread of the
cancer, but without radiation therapy, is commonly used. As an adjuvant (i.e. after surgery) systemic
treatment, chemotherapy, hormone therapy, or monoclonal antibody therapy are performed to reduce the
rate of recurrence.

2.2 Screening and diagnosis

Screening aims at finding breast cancer at an early stage to allow for a cost effective and minimally
invasive treatment. The gold standard for breast cancer screening is X-ray mammography, but it exposes
the breast to carcinogenic ionizing radiation and causes severe pain in many patients due to the strong
breast compression needed temporarily during an examination.

Qualified discussions about the justification of screening mammography to reduce mortality exist [50].
While it was shown in numerous trials performed in the USA that early detection improves treatment
options and survival rates [51, 52, 53, 54], Swedish trials, on the other hand, show that mass screening
for breast cancer does not increase the survival benefit, whereas it leads to increased useage of aggressive
treatment [55, 56]. Nonetheless, mammography will detect about 90% of breast cancers in women without
symptoms [57] and is advised for European women between an age of 50 to 69.

The typical workflow of screening is shown in Fig. 2.1 using patient numbers based on USA data. For
women having normal breast cancer risk, screening mammography starts at an age of 40, with younger
women not being screened due to higher breast densities. Approximately 40 million patients undergo the
annual screening in the USA, with 10% having inconclusive or positive findings and undergo a call-back
with subsequent US diagnosis and additional mammography. A small but increasing amount of patients
(1% to 3%) is imaged by MR.

The remaining 1 million call-back-patients with suspicious, positive, or inconclusive findings undergo
tissue sampling by surgery or (guided) needle biopsy for subsequent histopathology to gain confidence or
to characterize the detected tumor. There is an increasing number of false-positive biopsies with nearly
four times as many patients having negative, and only 200.000 patients having positive findings. This
gap is especially large in the USA and the suspected reason for this is to secure clinics from litigations.
Also, a significant portion of breast cancers can be found in retrospect of previously acquired X-ray
mammograms, where tumors have been missed during the examinations [58].
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Figure 2.1: Workflow of breast cancer screening using USA data. Of 40 million women that attend the
yearly screening program, 200.000 have true positive findings (malignancies) while four times as many
patients who underwent biopsy had negative findings. [47, 48, 49]
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Chapter 3

X-ray mammography, MRI, and

ultrasound mammography

In this chapter, physical principles of X-Ray mammography, MR mammography and US
mammography are briefly discussed. Differences and similarities to optical mammography
are pointed out.

Several competing modalities have been adapted to mammography, e.g. acousto-optic, optoacoustic,
impedance tomography, elastography, but only three modalities possess a key role in the current screening
and diagnosis workflow, i.e. X-ray, magnetic resonance imaging, and ultrasound. For comparison with
DOT, contrast mechanisms, image acquisition, and image reconstruction of these three modalities is
explained in the following sections.

Fig. 3.1 shows the true positive rate (TPR, i.e. sensitivity) and the false positive rate (FPR, i.e. 1 −
specificity) of MRI, X-ray, and US for breast cancer detection as determined in several clinical studies
performed from 2000 to 2005. Although determined sensitivity and specificity are scattered quite signifi-
cantly in the plot for each modality, it is evident that MRI mammography exhibits a very high sensitivity
but only a slightly smaller or equal specificity compared with X-ray mammography. In contrast, the two
results available for sensitivity of ultrasound seem inconclusive.

For illustration and comparison of mammograms acquired with the three modalities, data taken
with each modality from a selected patient during a clinical study performed at the University Medical
Clinic Utrecht in 2007 is shown for illustration in the following sections. For this puprose, data chosen
was collected from a 41 year old patient bearing a cyst in the upper quadrants of her right breast
(23 mm × 11 mm) and having a suspicious mass (18 mm × 11 mm) in the lower quadrants of the same
breast. Although biopsy results are not available, a (benign) fibromadenoma is suspected at this location.

3.1 X-ray mammography

X-rays penetrating tissue are attenuated depending on the density and the atomic number of the material
crossed, hence can be utilized to distinguish water, fat, and musculature. Furthermore, calcifications can
be detected, which is exploited to find tumors in mammograms even at the in situ stage. Due to its
rather high sensitivity and specificity and its low costs, X-ray mammography is the primary screening
modality for breast cancer and reaches a high spatial resolution of approximately 50 µm, hence allowing
detection of small calcifications present in DCIS or LCIS quite early, and leaving more follow-up options
for therapy. Nonetheless, interpretation of mammograms, especially if taken from younger women, can
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Figure 3.1: Sensitivity (true positive rate, TPR) and 1-specificity (false positive rate, FPR) of different
modalities (X-ray, MR, US Mammography) from different clinical studies. N indicates the number of
patients per study and bc is the number of patients with breast cancer.

be difficult due to more glands and ligaments present in the breast, obscuring abnormal findings in the
images.

In contrast to NIR imaging, X-rays propagate through tissue on a straight line, with only a small
number of photons undergoing scattering events (Rayleigh-scattering, Compton-effect). Furthermore,
scattered photons can be filtered out in front of the detector by an anti-scatter grid. The radiation
intensity IXray

0 emitted from the source is attenuated while the beam is propagating on a straight line s
(in 2D) through the tissue,

IXray(ρ, ϑ)

IXray
0

= exp

(
−
∫

s(ρ,ϑ)

µXray(x, y)ds

)
, (3.1)

where µXray(x, y) is the spatial distribution of the material dependent absorption coefficients (in m−1),
and IXray(ρ, ϑ) is the intensity measured under projection angle ϑ and lateral offset ρ. As illustrated in
Fig. 3.2, the measurement is either described by a coordinate system fixed to the object (x–y coordinates)
or fixed to the source-detector combinations (ρ–ϑ coordinates).

Due to the dependence of the absorption coefficient on the X-ray tube voltage, dimensionless Hounsfield
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Figure 3.2: Illustration of coordinate systems in X-ray imaging. Coordinates xy are fixed to the imaged
object, with its spatial distribution of absorption coefficient µXray(x, y). Orientation of the source-detector
combination is described by the angle ϑ and the lateral offset ρ.

units (HU) are used, giving the variations of the absorption coefficient compared with water (in per mill),

HU =
µXray − µXray,H2O

µXray,H2O
1000, (3.2)

resulting in a Hounsfield unit of 0 for water and -1000 for air. In several application scenarios, the image
contrast can be enhanced by using contrast agent (e.g. BaSO4) with increased absorption coefficient,
e.g. in coronary angiography, where contrast agent is injected into one of the two major coronary arteries
by a catheter to enhance visibility of vessels or measure their lumen.

The line integrals pXray(ρ, ϑ) appearing in Eq. (3.1), i.e.

pXray(ρ, ϑ) = ln
(
IXray
0 /IXray(ρ, ϑ)

)
=

∫

s(ρ,ϑ)

µXray(x, y)ds, (3.3)

are the Radon-transform of µXray(x, y). The Fourier-slice theorem (in 2D) (a.k.a. central-slice theorem or
projection-slice theorem) states that the 1D Fourier transform of the projections pXray(ρ, ϑ) with respect
to ρ of µXray(x, y) onto a line (i.e. ϑ = const.) are equal to the slice through the origin of the (2D)
Fourier transform of µXray(x, y), which is parallel to the projection. Hence, the spatial distribution of the
absorption coefficient µXray(x, y) can be calculated analytically from the Radon-transform pXray(ρ, ϑ) via
Fourier transformation, if all ρ and ϑ have been sampled. Therefore, in CT, where data acquisition is
carried out with full angular sampling, an analytical reconstruction is possible (at least approximative,
ignoring limitations caused by the cone-beam, spiral movement, etc). Due to the high angular sampling
and the corresponding high number of projection images, CT results in a higher radiation dose compared
with standard (planar) X-ray image acquisition and hence is inappropriate for breast screening. Thus,
X-ray mammography is performed by a low-dose X-ray system using a planar geometry with a (up to the
point of painful) strong compression to examine breasts by taking images on a silver-bromide film or by
using CCD detectors (full-field digital mammography). During a standard breast screening examination
in the USA, an axial and a mediolateral oblique (from breast center to upper outer quadrant) view is
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taken per breast, resulting in an absorbed radiation dose of about 4 mGy. Although the exposure of the
patient to radiation due to X-ray mammography induces the risk of getting cancer, 50 lives are saved
due to early cancer detection per one life lost due to the ionizing radiation [59]. As CCD detectors allow
for fast readout of acquired images and for digital postprocessing of the results, an axial resolution can
be achieved by imaging the breast under several angles and carrying out a tomosynthesis reconstruction.
During this examination, the overall dose can be kept similar to the standard screening investigation,
although a larger number of low signal-to-noise projection images is taken.

As can be seen in Fig. 3.1, compared with MR mammography, X-ray mammography has a high
specificity (percentage of correctly identified negatives), but a low sensitivity which ranges from 45% to
about 90% depending on factors such as density of the breast. The sensitivity can be significantly lower
for younger women having more glandular tissue and hence radiographically dense breasts [60], rendering
screening mammography useless for such patients.

As an example of an X-ray mammogram, an image taken in mediolateral oblique view of the right
breast of the selected patient is given in Fig. 3.3 (left). A lot of structures can be seen in this image,
making a diagnosis problematic for an untrained observer who will have problems to find the (quite large)
cyst and the suspicious mass.

3.2 MR mammography

Magnetic resonance imaging provides contrasts between different soft tissues without using ionizing radi-
ation, but instead uses magnetization of protons in water molecules that account for approximately 2/3
of the human body.

Ground state atomic nuclei with an uneven number of protons or neutrons have an angular momentum
~I and a dipole moment of

µ = γ~I, (3.4)

where h = ~2π = 6.63 · 10−34 Js is Planck’s constant, γ is the gyromagnetic ratio, which is characteristic
for nuclei of atomic number A and proton number Z, and I is the spin of the nucleus. Quantum mechanics
shows that in a magnetic field B0 = (0, 0, Bz)

T the z component of the spin can only have discrete values,
while the spin precesses around B0 with Larmor frequency

ωL = γBz. (3.5)

For hydrogen nuclei (I = 1/2, γ(1H) = +2.675 · 108 rad/(T s), µ(1H) = +2.7928 µN, where µN is the
nuclear magneton), the z component of its spin is either aligned parallel (up) or antiparallel (down) to
the magnetic field, i.e. eigenvalues of Iz are given by m = +1/2,−1/2, respectively, each corresponding
to a Zeeman energy Em = −γ~Bzm. When the hydrogen nucleus switches between these two Zeeman
levels, a quantum of ∆E = γ~Bz of magnetic dipole radiation is emitted or absorbed.

In case of investigating the human body via MRI, where the patient is positioned (partially) in a
magnetic field, ensembles of hydrogen nuclei instead of a single nucleus are investigated, and occupation
numbers Nup (m = +1/2) and Ndown (m = −1/2) of the corresponding two energy states are given by

Ndown

Nup
= exp (−∆E/(kBT )) , (3.6)

where kB = 1.38 · 10−23 Ws/K is the Boltzmann constant and T is the absolute temperature of the
ensemble. Hence, in case of clinical applications (T ≈ 300 K and Bz =1.5 T or 3 T), nuclei corresponding
to the lowest energy state, i.e. spin aligned parallel to B0, outnumber the nuclei with antiparallel orien-
tation by 10 to 20 ppm, depending on the field strength. Such ensemble of nuclei has a magnetic moment
m0, which is aligned parallel to the magnetic field B0 in equilibrium, but which can be excited towards
the plane transversal to B0, when exposed to an additional field B1 (RF pulse) superimposed to B0.
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Switching off B1 causes the excited magnetic moment m = (mx, my, mz)
T to return to its equilibrium

state (parallel to B0) [61],
dmz

dt
= γ(m × B0)z + (m0 − mz)/T1,

dmx,y

dt
= γ(m × B0)x,y − mx,y/T2,

(3.7)

a process called relaxation. The precessing magnetic moment can be detected as an AC voltage in a coil
perpendicular to Bo surrounding the ensemble (free induction decay, FID). Here, T1 is the longitudinal
relaxation time caused by the exchange of energy between nuclei and the lattice, and T2 is the transverse
relaxation time due to the loss of phase coherence of the spins in the transverse plane.

In medical applications, where the field is inhomogeneous due to the presence of the patient, the
Larmor frequencies ωL of the nuclei slightly vary with location inside the inhomogeneous magnetic field,
reducing the coherence of the ensemble, hence causing a reduced transverse relaxation time T ⋆

2 with

1

T ⋆
2

=
1

T2
+ γ∆B(x), (3.8)

where ∆B(x) = B(x)−Bz is the variation in the magnetic field, and x is a spatial coordinate. Nonethe-
less, this destructive interference of the transverse magnetizations is reversible if a selected (180◦) RF-pulse
is applied at a time TE/2 after the first RF-pulse. In doing so, the magnetizations of regions with varying
Larmor frequency result in a coherent transversal magnetization at time TE after the first RF-pulse,
causing increased signal in the RF coil (spin echo) [62]. The amplitude of the refocussed magnetization
is down by the factor exp(−TE/T2). The additional contribution γ∆B(x) to the effective relaxation rate
1/T ⋆

2 are not of stochastic origin and hence compensated provided movements can be excluded.
The signal measured in the RF coil is caused by all spins inside the imaged volume. Nonetheless, spatial

resolution can be achieved by applying three gradient fields. Therefore, an additional magnetic gradient
field Gz = (0, 0, ∂Bz/∂z)T is superimposed to B0 during the RF-pulse, causing a spatial dependence
of the Larmor frequency ωL(z) = γ (Bz + z∂Bz/∂z). Hence, by choosing the corresponding angular
frequency of the RF-pulse, only nuclei inside a selected slice perpendicular to Gz are excited (slice
selection) and contribute to the measurement signal. The thickness of the slice depends on the RF
bandwidth. Subsequently, a phase gradient Gy = (0, ∂Bz/∂y, 0)T is applied for a time τphase and a read
out gradient Gx = (∂Bz/∂x, 0, 0)T is used. Presence of a gradient field introduces a phase shift of the
previously coherent magnetizations in the selected xy slice. By introducing spatial frequencies

ky = γ

∫

τphase

Gy(t
′)dt′, (3.9)

and using varying gradient fields Gy, the measurement signal s(kx, ky) at selected values ky = −ky,max/2,
..., +ky,max/2 is sampled. In contrast, the read out gradient Gx samples various kx by using (consecutive)
read out times t

kx(t) = γ

∫

t

Gx(t′)dt′. (3.10)

It can be shown that the (complex) measurement signal s(kx, ky) of the RF coil is given by the Fourier
transform of the transversal magnetization (M⊥(x, y) = dm⊥(x, y)/dV ) of the selected slice with respect
to the spatial frequencies kx, ky , i.e. the measurement signal is given in k-space by

s(kx, ky) =

∫

slice

dxdyM⊥(x, y) exp (−i(kxx + kyy)) . (3.11)

Therefore, an analytical reconstruction of the magnetization distribution is possible in MR imaging by
performing Fourier transformation. If the k-space is sampled in Cartesian coordinates, real-time imaging
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can be achieved (in 2D) by Fast Fourier Transformation. Although data acquisition in three dimensional
k-space and subsequent analytical reconstruction is possible, often slice selection is used, where adjacent
2D slices are reconstructed and are merged into a 3D image, to reduce acquisition time. Each image
represents a selected time-point during relaxation. By using sequences of magnetic field gradients and
RF-pulses, images with varying contrasts depending on T1, T2, T ⋆

2 , and magnetization can be achieved.
In general, MRI is an expensive modality (approximately 600 US Dollar per examination) and hence

is not used for breast cancer screening except for high risk patients or patients with difficult to read
mammograms [63]. Furthermore, MR mammography is sometimes used for (neo-adjuvant) breast cancer
therapy monitoring [64].

Due to the structural information provided by MRI, tumors are visible on images due to increased vas-
cularization. However, also benign lesions have more blood vessels, thus differential diagnosis is improved
by using a contrast agent, e.g. by intravenously injecting gadolinium-DTPA, which is paramagnetic and
reduces the relaxation times of neighboring hydrogen nuclei. The (unspecific) contrast agent accumulates
in the tumor due to enhanced extravasation, similar to unspecific fluorescent dyes used in optical imag-
ing (see Sec. 5.1.3). Furthermore, dynamic contrast-enhanced MRI (DCE-MRI) investigates wash-in and
wash-out dynamics of the contrast agent, allowing determination of physiological parameters as perfusion
and permeability of vessels in addition to morphological information. Comparable, physiological infor-
mation can be gained in optical imaging from spectral measurements and by investigating the temporal
characteristics of the fluorescent dye. DCE-MRI of breast cancer has a high sensitivity (94%) but a
specificity which is slightly below X-ray mammography.

The mammogram given in Fig. 3.3 (right) shows a coronal gadolinium-enhanced MRI slice1 through
the right breast and intersects the cyst and the suspicious mass. The cyst can be seen as a darker area
at the rim of the otherwise bright glandular tissue. The suspicious mass is clearly brightened, although
being expected to be a (benign) fibroadenoma and not a malignant tumor.

3.3 Ultrasound mammography

Ultrasound imaging uses focused sound waves to create areas of compression and rarefaction in tissue
by piezo-ceramic elements that are coupled to the surface of the tissue. Vibrations of the elements
are caused by electric current and, depending on the medical application, create coherent sound waves
of frequencies between 2 to 20 MHz. While sound waves of high frequencies achieve a better spatial
resolution for imaging applications, they suffer from a lower depth of penetration, for the absorption
coefficient approximately increases linearly with the sound frequency used. The piezo-ceramic elements
can also measure echo amplitudes to reconstruct anatomy of organs and tissue by using detection location
and amplitude delay of reflected sound waves.

In an idealized model, the propagation of sound waves in a homogeneous medium is described by the
wave equation

△pUS(x) − ρUSκUS
∂2pUS(x)

∂2t
= 0, (3.12)

where △ is the Laplace operator, ρUS is the density of the medium at equilibrium, κ is its compressibility,
and pUS(x) is the acoustic pressure. The speed of the sound in the medium is given by

vUS =
1√

ρUSκUS
= λUSνUS, (3.13)

where λUS is the wavelength and νUS is the frequency of the Ultrasound, respectively. The propagation
speed vUS is approximately 1500 m/s in tissue, while the acoustic impedance is defined by ZUS = ρUSvUS.

1The scan protocol included an axial high-resolution T1-weighted fast gradient echo (HR-T1FFE) fat suppressed series
(TE/TR 1.7/4.5 ms, inversion delay SPAIR 130 ms, flip angle 10◦; FOV 340 × 340 mm2, acquired voxel size 0.66 × 0.66 ×

1.6 mm3, reconstructed voxel size 0.66 × 0.66 × 0.8 mm3) [65].
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Figure 3.3: (left) Mediolateral oblique X-ray image of right breast of a patient bearing a cyst and a
suspected fibroadenoma (suspicious mass). (right) Coronal Gd-enhanced MR slice intersecting the cyst
in the upper quadrants of the breast and the suspicious mass in the lower quadrants. (H: head, F: foot,
R: right, L: left)

The propagation of sound in tissue is influenced by absorption, coherent reflection, refraction, scattering,
and diffraction. A planar sound wave of sound pressure pUS

0 at the transducer face propagating a distance
r through a homogeneous medium, is damped due to the attenuation coefficient µUS by [66]

pUS(r) = pUS
0 exp(−µUSr/2). (3.14)

Scattering of sound waves due to acoustic impedance irregularities can be approximated by the Rayleigh-
scattering, which models the medium as consisting of (hard) spheres having a radius Rsph smaller than
the wavelength λUS of the sound wave, i.e.

2πRsph/λUS ≪ 1. (3.15)

Note that in NIR imaging Eq. (3.15) is rendered invalid due to the shorter optical wavelengths used.
Therefore, Mie-theory has to be used (see Sec. 5.1.3) to model the scattering of light, which includes the
Rayleigh scattering as approximation for small particle radii, but is also valid for large partice radii.

An US transducer is build up of an array of piezo-ceramic elements, and the focusing of the sound
wave can be achieved purely by diffraction, even without the need of additional acoustic lenses. The
lateral range, where the wave of increased pressure inside the tissue propagates, is approximately limited
by the width of active transducer elements (dUS) of the array and hence allows a spatial focus of the
sound wave, see Fig. 3.4 left. In axial direction, the scan field can be separated into a near filed (of length
d2
US/4λUS for the given example) and a far field. By switching through subsequent groups of adjacent

piezo-ceramic elements, lateral resolution can be achieved.
Further beamshaping is possible by activating (adjacent) elements of the transducer array with a phase

shift, e.g. to achieve a propagation of the wave front under an angle α, when the adjacent elements of
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the transducer are excited with a (constant) temporal delay, as illustrated in Fig. 3.4 right. Such phased
arrays can perform a sector scan, hence increasing the area imaged without moving the transducer.
Furthermore, conventional US uses multiple transmit foci, i.e. the focus of the sound wave emitted is
varied in axial direction by utilizing a phase delay between elements of the transducer array. Similarly,
phase delays can be used during detection of reflected sound waves to achieve dynamic focussing, i.e. the
time delay of a reflected sound wave propagating from the location of reflection towards the various
elements of the detection array is exploited. In doing so, the axial and lateral position of the detection
focus can be varied, determining the origin of the reflected sound waves caused by variations in acoustic
impedance and the amplitude of the wave, i.e. a sonogram is created in this way, where image contrast
corresponds to the spatial distribution of acoustic impedance variations.
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Figure 3.4: (left) Linear transducer array used for scanning. A subset of adjacent transducer elements of
width dUS creates sound waves propagating in a confined area (scan area). (right) Phased array used for
sector scans. Active transducer elements have a phase shift causing the wave front to propagate under
angle α.

Breast abnormalities found in X-ray mammography or in a clinical breast examination are diagnosed
by US. Although US has a good axial resolution, image contrast can be low and suffers from noise.
Furthermore, US is quite operator dependent and therefore not used as a screening tool. Nontheless, US
is the preferred modality to differentiate whether a detected abnormality is a breast lump filled with fluid
(a cyst) or whether it is a solid mass, because the modality is sensitive to acoustic impedance variations
of tissue. For this purpose, a handheld probe (transducer) is gently pressed onto the breast over the
region of interest. An US examination can be performed fast and cheaply compared with X-ray and MRI
mammography, and does not present potential harm to the patient, i.e. no ionizing radiation is used.
Sensitivity and specificity of ultrasound are given as 90% and 78%, respectively, in [60] but more recent
results (as given in Fig. 3.1) are inconclusive.

For illustration, Fig. 3.5 presents two sonograms of the diseased breast of the same patient as shown
in Fig. 3.3, recorded by an US probe. The sonograms are taken with the probe located at the position of
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the suspected fibroadenoma (left) and at the position of the cyst (right), with the abnormalities showing
up as areas of reduced acoustic impedance (dark areas). Orientation of the transducer on the right breast
is illustrated by the schematic sketch of the breast quadrants at the right bottom of each image, where
the dot is associated with one side of the transducer and corresponds to the dot in the upper left part of
each panel.

Figure 3.5: US sonograms of the ipsilateral breast of the same patient as given in Fig. 3.3, taken at the
location of the suspicious mass (left panel) and at the location of the cyst (right panel). Orientation of
the transducer is illustrated using a sketched coronal breast view presented at the right bottom of each
panel.
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Chapter 4

Instrumentation and data acquisition

for laser and fluorescence

mammography

A brief overview on optical mammography is given, and instrumental concepts for laser and
fluorescence mammographs are discussed. In this thesis, cw tomographic data recorded by
the Philips fluorescence mammograph (see appendix A.1) and time-domain transmittance
and reflectance data recorded with a laboratory setup will be reconstructed. The laboratory
setup mimicking the scanning PTB fluorescence mammograph with parallel plate geometry
is briefly described and examples of measured and simulated TPSFs are given.

4.1 Optical Mammography

First research of diffuse optical imaging began around 1929 [7] and was started again around 1977, as the
relative good transparency of biological materials at near-infrared (NIR) wavelengths was used to monitor
tissue [67]. But at that time, light sources did not provide enough intensity in the NIR spectral range
for probing larger volumes without damaging the tissue. Since then, new possibilities have evolved from
improvements in monochromatic light sources (lasers), but penetration depths reached are still limited
to several cm thickness, hence mammography is an ideal application for diffuse optical imaging.

Several applications of diffuse optical imaging are investigated by research groups, like bedside mon-
itoring for hemorrhage detection [68, 69], measurement of blood oxygenation [70, 20, 71], functional
imaging of brain activities [72], Alzheimer diagnosis [73], early diagnosis of rheumatic disease in joints
[74], prostate cancer detection [75], and monitoring of breast cancer during neo-adjuvant chemotherapy
[76].

In DOT, spatial information is gained by probing the tissue from several positions using NIR light
sources coupled into the tissue by fibers and detecting radiation of diffusely scattered light transmitted
through or diffusely reflected from the tissue. The detected light is sensitive to absorption and scattering
hence physiological and structural information of the investigated tissue can be reconstructed.

Human tissue has the lowest absorbance at NIR wavelengths, yet light undergoes a high number of
scattering events while propagating through the tissue. Due to this scattering, tissue probing is influenced
by the optical properties of an extended volume between source and detector, and not only along a straight
line as in X-ray imaging. Subsequently, a low spatial resolution is inherent in DOT. Therefore, DOT is
sometimes combined with other modalities to improve spatial resolution (DOT and US [77, 78], DOT
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and MRI [79, 80, 81, 82], DOT and computer tomography [83]) but making it less cost effective.
Patient studies using DOT for breast cancer detection [13, 11] revealed that intrinsic properties of

tissue alone are not sufficient to differentiate malignant and benign tumors [84, 85], even when multiple
wavelengths in the NIR spectral range are used, to gain information about tissue chromophore concen-
trations [12]. Nontheless, it is expected that by using contrast agents [86] that either increase absorption
contrast [87, 88] or emit fluorescence light [89] increase specificity, and hence provide differential diagnosis,
i.e. allow to differentiate between malignant and benign tumors.

Fluorescent dyes used for this application have their absorption and emission spectrum in the NIR
range, so that fluorophores inside the tissue can be excited by NIR laser light emitted from fibers located
at the breast surface, and emitted fluorescence photons can travel towards a detector at the tissue surface.

Depending on the yet unknown performance of fluorescence enhanced DOT, the modality could be
used for several application scenarios like screening of young women, of women with high hereditary risk,
women with radiographically dense breasts, for reduction of biopsies with benign outcome, or even as
screening standard. Although spatial resolution in DOT is low due to the blurring from the scattering of
light in tissue, and early diagnosis, e.g. of LCIS and DCIS, is the key for effective therapy (80% of detected
lesions are already smaller than 20 mm in diameter in common screening [90]), increased specificity by
a fluorescent dye is expected to improve the value of DOT in clinical applications regarding differential
diagnosis. But such classification of fluorescence enhanced DOT can not be given without further clinical
trials (phase III studies). Therefore, no investigation of differential diagnosis achieved by fluorescence
enhanced DOT can be given in this thesis.

4.2 Detection concepts

The existing DOT systems can be grouped into three categories regarding the different source and detec-
tion techniques used.

i) The cheapest and most compact setup uses continuous wave (cw) laser sources and measures the
light intensity emitted from the tissue via a number of individual photodiode detectors [15] or via
a CCD camera. Furthermore, such approach benefits from the availability of high power laser
diodes and high sensitive detectors, but it lacks a reliable separation of scattering and absorption
properties of tissue which is a severe drawback in image reconstruction.

ii) Separation of optical properties can be achieved by frequency domain measurements, where amplitude-
modulated laser sources at a single [91] or at multiple frequencies [92] are used and the amplitude
demodulation and the phase shift caused by the tissue are measured.

iii) A third and most expensive setup uses pulsed laser sources (from fs to ps range) and measures
times of flight of single photons (time-correlated single photon counting, TCSPC) [93, 22, 94], thus
covering a large bandwidth of modulation frequencies. Due to high equipment costs, these systems
often use a small number of sources and detectors, although compensate this drawback by scanning
across the investigated object.

Furthermore, hybrid systems exist that use cw and amplitude modulated sources and corresponding
detector techniques simultaneously [20, 34] to combine their advantages, i.e. to determinate optical prop-
erties by frequency domain measurements and to gain spatial resolution by numerous cw measurements.
Additionally, laser sources at multiple wavelengths in the NIR spectral range can be used [12] to de-
termine the concentrations of the tissue constituents via a spectral model [95] with an optimal set of
wavelengths [96, 97].

Apart from the different source and detector technologies used in setups, competing detection and
source arrangement geometries exist for DOT of the female breast. In handheld probes [98], source and
detector fibers are integrated into a plate that is pressed against the patient’s breast, providing only
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Figure 4.1: PTB laboratory setup for time-resolved measurements in slab geometry (top view with
coordinate system). TCSPC = time-correlated single photon counting.

poor angular sampling resulting in low spatial resolution. Such setups are mainly used for diffuse optical
spectroscopic imaging (DOSI). Some (stationary) systems arrange sources and detectors interleaved on a
single ring [99] with the pendulous breast positioned at its center. Others use multiple rings or distribute
sources and detectors on the surface of a cup [15, 21, 100], respectively, leaving the breast uncompressed
for high patient comfort. Although providing slightly less patient comfort, arrangements using parallel
plates [13, 20, 22] with gentle compression of the breast benefit from a lower breast thickness leading
to higher signal strength. Therefore, such systems have better detection sensitivity, as will be shown in
this thesis. Furthermore, the planar geometry lends itself for using of CCD cameras for detection, and
projection images allow to detect lesions without the need for image reconstruction.

Several mammographs use liquids having similar optical properties as tissue to fill the gap between
breast surface and fibers and to achieve better coupling of sources and detectors to the tissue [15, 23]
compared with direct contact in air.

Commercialization of DOT using different system approaches has been investigated by companies like
IDSI (Imaging Diagnostic Systems Inc., Plantation, Florida, USA), ART (Advanced Research Technolo-
gies Inc., Montreal, Canada), Zeiss, Siemens, and Philips (Philips Medical Systems, Best, The Nether-
lands). Currently, commercially available DOT systems for the European and Canadian market are
available from ART only.

4.3 Laboratory setup for time-domain measurements

In this section, measurements are described that were taken at the PTB and were used for data analysis
and reconstruction of optical properties in this thesis. Therefore, the instrumentation is briefly described.

Fig. 4.1 shows a schematic view of the laboratory setup used to perform time-resolved measurements
in slab geometry that have been analyzed throughout this thesis. Measurements were taken on slab-like,
absorbing, diffusely scattering, and fluorescent phantoms containing absorbing, scattering, and fluores-
cent inhomogeneities, using sub ps laser pulses and time correlated single photon counting. The source
of excitation photons was scanned across the entrance face of the phantom (cuvette), and at each source
position, data were collected in transmission and reflection at various detector positions. These mea-
surements simulate in vivo data that will be obtained employing a scanning, time-domain fluorescence
mammograph, where the breast is gently compressed between two parallel glass plates, and source and
detector optical fibers scan synchronously at various source-detector offsets, allowing to record laser and
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fluorescence mammograms.
For the phantom studies, a Ti:Sapphire laser provided short (100 fs) pulses at λ = 730 nm incident

on the entrance face of the cuvette (z = 0) by a multicore fiber with 2 mm diameter consisting of
100 µm multimode fibers (numerical aperture NA=0.22). Because of the open design of the laboratory
setup, ambient light contributed to the background of the detected laser and fluorescence signals. In
order to minimize the influence of ambient light, a rather high laser power (100 mW) incident on the
entrance window of the phantom was chosen. Transmitted and diffusely reflected light is collected by
fiber bundles (4 mm diameter, NA=0.54) and subsequently attenuated correspondingly by sets of filters in
front of the photocatode of a (cooled) photomultiplier tube (R7400U-02, Hamamatsu Photonics GmbH,
Herrsching, Germany), to achieve photon count rates of about 1 MHz, representing optimum values with
respect to scan time. The photomultiplier tube (PMT) signal is amplified and fed into a time-correlated
single-photon counting electronics (SPC-134, Becker & Hickl GmbH, Germany).

Because taking different filter sets, each set of raw data corresponding to a particular source-detector
offset had to be corrected for filter transmittance before entering reconstruction. Data preprocessing is
described in more detail in Sec. 6.2.1.

Homogeneous phantoms were created by filling a cuvette (25 × 25 × 6 cm3) with absorbing and
scattering fluid, simulating compressed breast tissue. Additionally, fluorescent dye was added to simulate
background fluorescence. Reflection measurements are prone to artefacts that originate from reflections
of the incident laser radiation on the front glass face of the cuvette and from light guiding effects within
the glass plane. Such light has not or only partially sampled the diffusely scattering medium inside the
cuvette and its intensity may be several orders of magnitude larger than that of the diffusely backscattered
light [101]. To avoid such problems, the entrance face of the cuvette was made from regularly perforated,
blackened sheet metal (1.5 mm thick) backed by a thin transparent plastic foil. The 2.5 mm pitch of the
perforated sheet metal is commensurate to the step size of the scan across the entrance face.

4.4 Temporal point spread functions

In tissue, due to numerous scattering events, photons travel from a source towards a detector along
various trajectories of different path lengths. Therefore, after injection of a short laser pulse into the
scattering medium, distributions of times of flight of transmitted laser photons or distributions of times
of arrival of fluorescence photons are observed, corresponding to temporal point spread functions (TPSF)
[102], which are characteristic for each medium and its optical properties.

For illustration, Fig. 4.2a shows four different TPSFs measured in (on-axis) transmission through a
diffusely scattering homogeneous cuboid phantom, 6 cm thick, with and without one of three different
spheres (2 cm diameter) centered in beam direction. One sphere (”pure absorber”) has an absorption
contrast of 2:1 with respect to the surrounding medium, a second one (”pure scatterer”) a scattering
contrast of 0.5:1, and the third one increased absorption (2:1) and lower scattering (0.5:1) contrast.
However, the spheres where made from rubber finger stalls and filled with corresponding liquid. The
walls of the finger stalls contributed to some extent to scattering and absorption.

Photons were counted up to several ns in time bins of approximately 160 ps. All of the presented
TPSFs have their maximum of photon counts at 2.5 ns to 3 ns, which shows that due to the many
scattering events these photons have path lengths more then ten times the distance between source
and detector position. As can be seen by comparing the four different TPSFs, a variation in optical
properties modifies amplitude and phase. A sphere having an increased absorption coefficient decreases
the amplitude of the associated TPSF (blue line) compared with the TPSF of the homogeneous medium
(magenta line), whereas the pulse slope is unchanged corresponding to the same response. The photons
are absorbed to a higher degree, but the pathlength of unabsorbed photons reaching the detector stays
unchanged, therefore resulting in the same phase of the TPSF. When only the diffusion coefficient of the
sphere is increased (red line), photons in general reach the detector faster (undergoing fewer scattering
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Figure 4.2: TPSFs measured in (on-axis) transmission through a 6 cm cuvette filled with scattering liquid
and one of three different (2 cm diameter) spheres centered in beam direction. The three spheres have
different contrasts in the absorption and diffusion coefficient (2:1). Measurement data is given in photon
counts in time-domain (a), and as Fourier amplitude (b) and phase (c) in frequency domain.
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events and hence having shorter path lengths), resulting in a phase shift, i.e. an earlier peak value of
the TPSF. Additionally, the amplitude increases since the sphere is more transparent compared to the
surrounding medium. When diffusion and absorption are increased simultaneously (black line), the TPSF
exhibits a similar peak time as for the pure scatterer, but simultaneously the amplitude is reduced by
the increased absorption coefficient.

Hence, raw data are sometimes analyzed to detect effects of scattering and absorption coefficient vari-
ations by investigating the total number of photons at selected time points or intervals. This so-called
time-window analysis is used as standard technique to generate projection mammograms displaying pre-
dominantly absorption and scattering properties of breast tissue. Although sufficient for lesion detection
(as will be shown in Sec. 5.2.1), a more elaborate method for separating the absorption and scattering
properties is derived and compared with the standard time-window analysis by using simulated data and
a realistic noise model. Furthermore, the new method provides absolute optical properties from a simple
analysis of raw data without fitting experimental to simulated TPSFs.

For numerical stability, analysis of TPSFs will mainly be carried out in frequency domain in the
following of this thesis. Therefore, the same TPSFs as given in Fig. 4.2a are plotted in frequency domain
after a discrete Fourier transformation. The Fourier (modulation) amplitude (Fig. 4.2b) and the phase
shift (see Fig. 4.2c) of the same four different TPSFs are given for modulation frequencies ν = ω/2π from
0 to 700 MHz. Discrete Fourier transformation results in a limited set of data points in this frequency
band. Although data taken at higher frequencies provide a larger phase shift, data suffer from low
signal-to-noise ratios. Noise can be reduced by counting more photons, yet at longer acquisition times.

As can be seen from Fig. 4.2, changes in the absorption and diffusion coefficients lead to changes in
the Fourier amplitude over the entire frequency band including ν = 0. On the other hand, all phase shifts
start at zero for ν = 0 and therefore cw experiments can not discriminate between changes in absorption
and scattering. Furthermore, Fourier amplitude and phase shifts are very smooth at low frequencies.
Therefore, measurements performed at multiple frequencies do not significantly increase the information
content.



Chapter 5

Forward modeling

DOT images the optical properties of a biological tissue by measuring NIR laser light transmitted through
or backscattered from the tissue. For this purpose, the light is radiated into the tissue from a multitude
of positions, and the photon density emitted from the surface of the tissue is measured with detectors
surrounding the region of interest. Based on these measurements, images can be reconstructed, which
represent the spatial distribution of absorption and scattering properties of the examined tissue by inves-
tigating the variations in amplitude and (optionally) phase. Determination of the optical properties inside
the tissue from measurements at the tissue surface is an inverse problem for which no closed form solution
(as e.g. the inverse Radon transformation for computed tomography reconstruction) exists. A general
approach to solve the inversion problem in such a situation is to use an iterative algorithm composed of
two main steps:

i) Simulating diffuse transmitted of reflected photon densities for given values of the tissue optical
properties.

ii) Modification of the assumed tissue optical properties based on the difference of simulated and
measured data, i.e. the image update.

The first step is also called the forward model. Here, accuracy and efficiency are most important.
The forward model is largely determined by the underlying physics of the data acquisition process. The
forward model must be able to predict measurements to within the experimental error. Any systematic
model errors will likely lead to reconstruction artefacts.

The second step, i.e. the image update, determines the convergence properties of the iterative algo-
rithm, its speed and robustness against measurement noise. This step is constrained to a much lesser
degree than the forward model, and it is this step where most reconstruction algorithms differ. Hence,
an accurate prediction of the light propagation is an essential prerequisite for the reconstruction.

Ignoring polarization and interference, the propagation of light can be described by the radiative
transfer equation (RTE), an integro-differential equation that has been introduced by Chandrasekhar in
1960 [103]. This model takes anisotropic scattering into account, can be used for scattering and absorbing
media, and is valid even in void regions. This model is unnecessary complex when applied to human
tissue. In this case, the reduced scattering coefficient µ′

s is larger than the absorption coefficient by several
orders of magnitude. After a few reduced scattering lengths l′s = 1/µ′

s, the correlation between the actual
and the previous (incident) light direction is lost and an isotropic situation prevails at locations that are
apart from light sources and boundaries by several reduced free scattering lengths at least. Therefore, in
these cases, the RTE can be approximated by an isotropic diffusion equation to describe photon transport
in biological tissue in the NIR spectral range with the reduced scattering coefficient µ′

s = (1−g)µs entering
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the diffusion equation rather than the scattering coefficients µs itself. The factor g is called anisotropy
factor and represents the average of cos θ, with θ being the scattering angular distribution.

It has been shown by comparing (numerical) solutions of the diffusion equation with results of Monte
Carlo (MC) simulations that this approximation is valid for human tissue in most parts of a large vol-
ume, but deviations occur near source positions or at boundaries [104, 105]. Nonetheless, the diffusion
approximation is used in most cases for the simulation of NIR light propagation in breast tissue due to
its speed gain and its robustness in numerical calculations.

For volumes including void or non-scattering regions, e.g. the simulation of reflectance measurements
of the brain with its non-scattering cerebrospinal fluid below the skull, often a more elaborate model is
applied including the RTE for regions where the diffusion equation is invalid [106, 107].

For fluorescence enhanced DOT a fluorescent dye is added to the medium, therefore an additional
diffusion equation is needed describing the propagation of fluorescence light. The diffusion equation at
the laser wavelength models the absorption and scattering of the transmitted laser photons by the tissue,
which contains additional absorption by the fluorescent dye. When laser photons are absorbed by the
fluorescent dye which is distributed throughout the tissue, dye molecules are excited. From all of these
excited molecules, a certain percentage given by the fluorescence quantum yield emits fluorescence light
in a spectrum which is characteristic for each dye. The propagation of these fluorescence photons is
modeled analogously to the transmitted laser photons, although using a modified source term, which
couples both differential equations.

In this chapter we introduce the diffusion equation in time- and frequency domain (see Sec. 5.1.1) and
explain how absorption and scattering coefficients of breast tissue can be calculated using a spectral model
(Sec. 5.1.3). We present analytical solutions of the diffusion equation at laser and fluorescence wavelength
for a homogeneous medium and explain how solutions for slab geometry can be constructed from those
solutions (see Sec. 5.1.4). Since analytical solutions are known only for simple geometries and simple
distributions of optical properties, we explain how the diffusion equation can be solved numerically using
Galerkin’s method, which transforms a differential equation into an integral equation. By discretizing
the volume of interest (VOI) on a finite element (FE) grid, the resulting system of linear equations can
be solved by standard methods (e.g. conjugate gradient). We show that the FE method is more flexible
than analytical solutions and can be applied to steady-state (Sec. 5.1.5), to time-domain (Sec. 5.1.6),
and to frequency domain solutions and allows to carry out numerical simulations being less limited in
geometry and in distributions of optical properties, although needing longer calculation times.

Furthermore, forward model calculations are used to characterize and investigate effects of system
noise, as a key factor in limiting the performance of DOT. A design study is carried out by using a realistic
noise model derived from measurements and applied to simulated data, to analyze existing (cw) detection
setups and to determine their limiting factors (Sec. 5.2.2). Such performance studies, investigating two
different geometries (breast slightly compressed between two parallel plates and an uncompressed breast
in a cup) and different noise settings, give insight into the limiting factors of detection sensitivity. To this
end, dye concentration contrast, breast compression, absolute, and relative noise contributions is varied
in the numerical phantoms and their influence on detection limits are investigated.

5.1 Theoretical background

5.1.1 The diffusion equation for laser and fluorescence light

Transport of laser and fluorescence radiation in biological tissue is modeled as diffusion of pho-
tons. The corresponding diffusion equations are derived from the radiative transfer equation
and limitations are briefly discussed. Further details can be found in appendix C.3.

The time-dependent distribution of light in a scattering and absorbing medium can be described by
the radiative transfer equation [103, 108], which is a conservation equation on the volume Ω ∋ x with
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boundary ∂Ω,

(
1

v

∂

∂t
+ ∂n + µa(x, λ) + µs(x, λ)

)
Ĩ (x, xs, λ, n, t) = µs(x, λ)

∫

4π

θp(n, n′)Ĩ (x, xs, λ, n′, t) dn′

+ S̃ (x, xs, λ, n, t) ,

(5.1)

with v = c/n the speed of light in the medium of refraction index n, Ĩ (x, xs, λ, n, t) the radiance at
position x in the direction n at wavelength λ, the scattering coefficient µs(x, λ) = 1/ls(x, λ) with ls being
the free scattering length, the (normalized) phase function θp(n, n′) representing the angular scattering

distribution, the spatial and angular distribution of the source S̃ (x, xs, λ, n, t) for a time-dependent
source located at xs, and the absorption coefficient µa(x, λ). The directional derivative is abbreviated

by ∂n := n · ∇. In our case, the radiance Ĩ (x, xs, λ, n, t) corresponds to the photon flux density in the
direction n per unit solid angle (1/(s m2 sr)).

The anisotropy factor g is defined as [109]

g =

∫

4π

(n · n′) θp(n, n′)dn′, (5.2)

and the reduced scattering coefficient as

µ′
s(x, λ) = µs(x, λ)(1 − g), (5.3)

which takes the anisotropy of multiple scattering events into account as an averaging factor.
For the phase function, often the Henyey-Greenstein function is used [110], expressed in terms of the

anisotropy factor g and the scattering angle θ (cos θ = n · n′),

θHG(n, n′) =
1

4π

1 − g2

(1 + g2 − 2gn · n′)3/2
. (5.4)

The RTE can be used for radiation transport in media with anisotropic scattering and for radiation
transport in void regions or regions with no or low scattering as well, thus modeling more scenarios than
needed for light propagation in human breast tissue at NIR wavelengths. Despite anisotropic scattering
in breast tissue (g ≈ 0.8−0.99 [111]) the radiance Ĩ (x, xs, λ, n, t) and the spatial and angular distribution

of the source S̃ (x, xs, λ, n, t) are nearly isotropic except at positions x that are within several reduced
scattering lengths l′s from source positions xs and from the tissue boundaries. Therefore, for the remaining
volume, one carries out a multipole expansion of the radiance and the spatial and angular distribution of
the source up to first order (P1 approximation) [30], yielding

S̃ (x, xs, λ, n, t) =
1

4π

(
S̃0 (x, xs, λ, t) + 3S̃1 (x, xs, λ, t) · n

)
, (5.5)

where S̃0 (x, xs, λ, t) = vq̃0 (x, xs, λ, t) is the isotropic part and S̃1 (x, xs, λ, t) is the dipolar part. Like-
wise,

Ĩ (x, xs, λ, n, t) =
1

4π

(
vΦ̃ (x, xs, λ, t) + 3J̃ (x, xs, λ, t) · n

)
, (5.6)

where vΦ̃ (x, xs, λ, t) is the isotropic part with Φ̃ (x, xs, λ, t) being the photon density and J̃ (x, xs, λ, t)
is the (net) photon current density (1/(s m2))

J̃ (x, xs, λ, t) =

∫

4π

n′Ĩ (x, xs, λ, n′, t) dn′. (5.7)
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Analogously, the photon density can be expressed as

Φ̃(x, xs, λ, t) =
1

v

∫

4π

Ĩ(x, xs, λ, n′, t)dn′ . (5.8)

Using Eq. (5.1) and the expressions (5.5), (5.6), (5.7), (5.8) results in the diffusion equation

{
∇ · D(x, λ)∇− µa(x, λ) − 1

v

∂

∂t

}
Φ̃(x, xs, λ, t) = −q̃0(x, xs, λ, t), (5.9)

which models the transport of light in a highly scattering medium as a diffusive process characterized by
the diffusion coefficient D(x, λ) = 1/3µ′

s(x, λ). A derivation of the diffusion equation from the RTE and
a discussion of the approximations made is given in appendix C.3.

The (net) photon current density J̃(x, xs, λ, t) satisfies a Fick-law,

J̃(x, xs, λ, t) = −vD(x, λ)∇Φ̃(x, xs, λ, t). (5.10)

Besides simulations in time-domain, we carry out calculations in frequency domain using the diffusion
equation to model the propagation of excitation (laser) light pulses through the turbid medium [30]:

∇ · D(x, λ)∇Φ(x, xs, λ, ω) − µa(x, λ)Φ(x, xs, λ, ω) − iω

v
Φ(x, xs, λ, ω) = −q0(x, xs, λ, ω), (5.11)

where Φ(x, xs, λ, ω) is the (laser) photon density per unit interval of angular frequency ω inside the
medium, and q0(x, xs, λ, ω) is the source term given in s/m4. The time-dependent photon density

Φ̃(x, xs, λ, t) is obtained by Fourier transformation from the photon density in frequency domain,

Φ̃(x, xs, λ, t) =
1

2π

∫ +∞

−∞

Φ(x, xs, λ, ω)e+iωtdω. (5.12)

When using an exogenous fluorescent dye at a concentration c(x) in the scattering medium, the
absorption coefficient µa(x, λ) is given by the contribution of tissue chromophores and of the dye,
µa(x, λ) = µchrom

a (x, λ) + µdye
a (x, λ). The propagation of the fluorescence light inside the tissue can

be described by an analogous diffusion equation, where the source term qf(x, xs, λ, ω) is proportional to
the laser photon density, the absorption coefficient of the dye, and the fluorescence quantum yield η:

∇ · D(x, λf)∇Φf(x, xs, λ, ω) − µa(x, λf)Φf(x, xs, λ, ω) − iω

v
Φf(x, xs, λ, ω) = −ηµdye

a (x, λ)

1 + iωτ
Φ(x, xs, λ, ω),

(5.13)
with

qf(x, xs, λ, ω) =
ηµdye

a (x, λ)

1 + iωτ
Φ(x, xs, λ, ω). (5.14)

The density of fluorescence photons per unit interval of angular frequency ω is designated as Φf(x, xs, λ, ω).
The absorption and diffusion coefficient at the fluorescence wavelength are represented by µa(x, λf) and
D(x, λf), respectively. In the following we assume the diffusion coefficients at the excitation and fluo-
rescence wavelengths to be equal, i.e. D(x, λf) = D(x, λ) = 1/3µ′

s(x, λ), this assumption being a good
one because of the rather small Stoke’s shifts of the NIR dyes used (typically 20 nm). In Eq. (5.13) we
have assumed the fluorophore lifetime τ and quantum yield η to be independent of position x. Strictly
speaking, an equation such as (5.13) should be solved for the entire emission spectrum η(λf). However,
since the fluorescence is not measured spectrally resolved in the experiments analyzed in this thesis, an
equation such as (5.13) is solved for an averaged fluorescence wavelength λf . Furthermore, we neglect
any re-emission of fluorescence by the dye itself.
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In Eq. (5.13) the term 1/ (1 + iωτ) results in a phase shift of the density of fluorescence photons due to
the exponential fluorescence decay. Equation (5.13) neglects any tissue autofluorescence, i.e. fluorescence
from chromophores, since tissue autofluorescence is low in the diagnostic window.

For continuous wave sources, one can derive the corresponding equations from (5.11) and (5.13) by
setting ω = 0.1

In order to simulate measured distributions of times of flight of laser photons (i.e. temporal point
spread functions (TPSFs)) and distributions of times of arrival of fluorescence photons, the two diffusion
equations (5.11) and (5.13) were solved on an FE grid sequentially, using the deal.II finite element
library [113] for several modulation frequencies, followed by Fourier transformation. We used a modified
Robin boundary condition [114, 115]

[Φ(x, xs, λ, ω) + 2A(λ)n · D(x, λ)∇Φ(x, xs, λ, ω)]∂Ω(ζ) = 0, (5.15)

where ζ is a point on the surface ∂Ω having reflectivity K(λ), n the outward pointing surface normal at
ζ, and

A(λ) =
1 + K(λ)

1 − K(λ)
. (5.16)

The boundary condition is applied to both diffusion equations. Details on the chosen RBC are presented
in appendix A.2.

The diffusion approximation holds true for isotropic light sources, but the light is coupled into the
cup by a fiber with a certain numerical aperture (i.e. in a non-isotropic way). As usual, we modeled this
situation by shifting the light source position in beam direction by one transport scattering length and
assume an isotropic source at the shifted position [28].

5.1.2 Light sources S0 and source terms q0 for pulsed and cw irradiation

In this thesis, two illumination scenarios will be considered, i.e. injection of a short, δ-like laser pulse
at position xs containing a total of Nphot photons, and injection of cw laser radiation at position xs,
corresponding to the rate Rphot of injected photons per second. In this section, we model the spatial
dependence of the source term as δ(x − xs), other spatial source term models that are more suited for
numerical simulations are discussed in a later section (Sec. 5.1.7). Furthermore, throughout this thesis

we set Nphot = 1 and Rphot = 1/s. For irradiation with a short laser pulse we set S̃0(x, xs, λ, t) =
Nphotδ(t)δ(x − xs), yielding

S0(x, xs, λ, ω) = Nphotδ(x − xs) (5.17)

and

q0(x, xs, λ, ω) =
Nphot

v
δ(x − xs). (5.18)

For cw irradiation we model the source as S̃0(x, xs, λ, t) = Rphotδ(x − xs), and therefore

S0(x, xs, λ, ω) = Rphotδ(x − xs)2πδ(ω). (5.19)

When solving the frequency domain diffusion equation for ω = 0, using as source term q0(x, xs, λ, ω) =
Rphotδ(x − xs)/v the resulting Fourier amplitude Φ(x, xs, λ, ω = 0) of the photon density is used to
calculate the time-independent photon density Φ(x, xs, λ), i.e.

Φ(x, xs, λ) ≡ Rphot

∫ +∞

−∞

Φ(x, xs, λ, ω)δ(ω) exp(+iωt)dω = RphotΦ(x, xs, λ, ω = 0). (5.20)

1There is some disagreement in the literature about the definition of the diffusion coefficient. It can be shown that for
the steady-state case the diffusion coefficient depends on the absorption coefficient as well [112] and is usually approximated
in the NIR by D(x, λ) = 1/3(µ′

s(x, λ)+µa(x, λ)), giving only a small deviation in numerical calculations due to µa(x, λ) ≪
µ′

s(x, λ) throughout the tissue volume.
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5.1.3 Tissue spectral model, NIR dyes and their accumulation in tumors

The absorption coefficient of breast tissue and its spectral dependence are expressed by the
concentration and absorption spectra of major tissue constituents. The spectral dependence
of the reduced scattering coefficient is based on Mie theory. Absorption and emission spec-
tra of exogenous fluorescent dyes (contrast agents) are shown and the processes leading to
accumulation of such dyes in tumors are briefly discussed.

Only a few chromophores dominate the absorption coefficient of tissue in the NIR wavelength band.
Main contributions stem from blood (deoxyhemoglobin (HbR) and oxyhemoglobin (HbO)), water (H2O),
and fat. Their absorption spectra (absorption coefficients) are shown in Fig. 5.1 throughout the NIR
band. As can be seen from this figure, the chromophores are less absorbing in the NIR region, i.e. the
total absorption coefficient is rather low. Therefore, this wavelength band is ideal for probing large tissue
volumes by the attenuation of transmitted NIR radiation. For shorter wavelengths (λ < 650 nm), tissue
absorption increases due to the presence of HbR and HbO, whereas water and fat begin to dominate
absorption at long wavelengths (λ > 950 nm).

We model the absorption properties of a female breast within the wavelength range 690 nm ≤ λ ≤
850 nm taking the absorption of HbR (i = 1), HbO (i = 2), and H2O (i = 3) into account, but neglecting
the contribution of fat [116]. The intrinsic absorption coefficient can be calculated from the molar
extinction coefficients of these constituents [15, 20]

µchrom
a (x, λ) =

3∑

i=1

εi(λ)cchrom
i (x) ln 10, (5.21)

and are chosen for water as listed in [117], for HbR and HbO as given in [118]. Likewise, the absorption
coefficient of the dye can be expressed as

µdye
a (x, λ) = ǫdye(λ)c(x) ln 10. (5.22)

For the scattering coefficient, a simplified Mie scattering model is used [119, 120],

µ′
s(x, λ) = a(x)

(
λ

λ0

)−b

, (5.23)

with scattering amplitude a(x), and scattering power b representing model parameters. The slope of the
scattering coefficient, given by the scattering power b, is related to the average particle size and steepens
for smaller particles, while the scattering amplitude a is related to the number density of particles times
their cross-section [119, 120]. The reference wavelength λ0 in Eq. (5.23) can be chosen arbitrarily and is
set to 1000 nm in the following.

When multiple laser wavelengths are used to measure tissue optical properties, the absorption co-
efficient for each selected wavelength can be determined separately. Alternatively, the concentration of
the constituents can be calculated using the spectral model as a constraint. To determine chromophore
concentrations, the number of wavelengths measured has to be at least equal to the number of free param-
eters of the model. Therefore, in the NIR spectral range, at least six different wavelengths are needed to
determine the concentration of the main chromophores (i = 1, 2, 3), the fluorophore concentration c(x),
the scattering amplitude a(x), and the scattering power b. A detailed description is given in Sec. 6.2.5
how to determine these parameters from multi-spectral cw measurements. It was shown in [96] that an
optimal set of wavelengths exists to determine these model parameters most accurately, if the number
of wavelengths is predetermined. This conclusion was extended in [97] additionally taking measurement
errors of the absorption spectra into account.
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Figure 5.1: Absorption spectra of tissue chromophores oxyhemoglobin (dashed red line), deoxyhemoglobin
(solid black line), fat (dashed-dotted green line), and water (dotted blue line) within the NIR band.
Breast tissue is least absorbing (transmissive window) throughout the NIR band. Hemoglobin and de-
oxyhemoglobin predominantly absorb light at lower wavelengths (λ < 650 nm), water and fat at higher
wavelengths (λ > 950 nm).
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By deriving concentrations of chromophores instead of absorption and scattering coefficients at various
wavelengths, metabolic information about tissue and tumors is obtained. This information is exploited
by diffuse optical spectroscopic imaging (DOSI) of breast tumors for therapy monitoring [121, 9].

Several fluorescent NIR dyes exist to increase contrast between normal tissue and tumors and have
been investigated and used during phantom and (phase I) patient measurements [87, 88, 34] (SF64 a.k.a.
Omocyanine [122], NIR 96010 a.k.a. SIDAG [123], and Indocyanine Green (ICG) [124, 125]).

Fig. 5.2 shows the absorption and emission spectrum of Omocyanine together with its chemical struc-
ture, while the absorption spectra of these three dyes are compared in Fig. 5.3. In addition, the emission
spectrum Omocyanine is also shown. Each spectrum can shift slightly depending on the medium the
dye is dissolved in (e.g. water, phosphate buffered saline (PBS), serum) due to the various degrees of
aggregation. The spectral shifts of the absorption and emission spectra of these dyes in serum are caused
by binding of the dyes to proteins, e.g. albumin.

600 650 700 750 800 850
0

2

4

6

8

10

12

14

16

x 10
4

wavelength / nm

m
ol

ar
 e

xt
in

ct
io

n 
co

ef
fic

ie
nt

 / 
(M

 ⋅c
m

)−
1

600 650 700 750 800 850
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

no
rm

al
iz

ed
 fl

uo
re

sc
en

ce
 e

m
is

si
on

mol. extinction coeff.
fluor. emission

Figure 5.2: Chemical structure of Omocyanine and its absorption and emission spectrum [122].
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Figure 5.3: Absorption spectra of NIR dyes used: Omocyanine, SIDAG, and ICG in the NIR wavelength
band.

Hitherto, these fluorescent dyes used in patients are unspecific, i.e. they accumulate at the tumor
position mainly due to extravasation caused by the increased permeability (leakiness of vessel membranes)
of the tumor vasculature. In contrast, specific dyes target certain proteins (e.g. fibronectin) that are
expressed at the cells surface e.g. during neo-angiogenesis. But such dyes are still at a research stage
and not yet available for patient measurements and will need several years before an approval for clinical
applications can be obtained.

The unspecific dyes mentioned above are generally administered by intravenous injection. Depending
on the molecular size of a particular dye and its binding to other molecules or proteins contained in
the blood plasma, each dye or dye-protein complex has a characteristic wash-in and wash-out behavior.
Therefore, optimal concentration contrast between tumor and normal tissue might be achieved after
minutes to hours before dyes are mainly excreted via urine or feces. Fluorescence measurements should
be carried out at a time after injection of the dye at which dye contrast is optimal and dye concentration
is sufficiently high to provide strong fluorescence signals. A phase I clinical study was carried out at
the University Medical Center Utrecht to determine optimal time after injection of Omocyanine and
the required dose of the dye. Compared to the Omocyanine fluorescence intensities generally recorded,
autofluorescence contributions are low in the NIR spectral range and can be neglected.

5.1.4 Analytical solutions of the diffusion equation

The analytical solution of the frequency domain diffusion equation for a homogeneous infinite
slab is derived. Analytical solutions for other simple geometries are found in appendix C.1.

For some simple geometries, analytical solutions of the diffusion equation are known in frequency do-
main and time-domain. Solutions for the infinite homogeneous medium, homogeneous half space, and
homogeneous infinite slab were reported in the literature [24]. For the (partially) homogeneous infi-
nite medium with a nonfluorescent of fluorescent spherical heterogeneity analytical exact solutions exist
[25, 26], whereas for an infinite half space and an infinite slab containing a spherical heterogeneity ap-
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proximate analytical solutions have been reported [27, 126]. In the following, we will state the analytical
solutions for homogeneous infinite medium and homogeneous slab geometry. Although solutions for a
homogeneous slab with an additional fluorescent sphere have been used to validate the numerical simula-
tions, the solution of the diffusion equations have been presented in [27] and can be found in the appendix
C.1.

The frequency domain solution of Eq. (5.11) for the homogeneous infinite medium (D(x, λ) = D0(λ),
µa(x, λ) = µ0

a(λ)) with a delta-like source term q0(x, xs, λ, ω) = (1/v)δ(x − xs) at source position xs is
given by

Φinf
0 (x, xs, λ, ω) =

1

4πvD0(λ)

exp (−ik(λ, ω)|x − xs|)
|x − xs|

, (5.24)

with

k2(λ, ω) =
−µ0

a(λ) − iω/v

D0(λ)
. (5.25)

A derivation of the real and imaginary parts of k(λ, ω) is presented in appendix C.2.3. For the source
term chosen, the photon density corresponds to the Green’s function of the infinite homogeneous medium,

Φinf
0 (x, xs, λ, ω) = Ginf

0 (x, xs, λ, ω). (5.26)

Solutions for a finite medium (Ω) that solve the Robin boundary condition (Eq. (5.15)), i.e. have a
non-vanishing flux and a given photon density at the medium surface δΩ are approximated by solutions
fullfilling the Dirichlet boundary condition, i.e. Φ(x, xs, λ, ω)|x∈δΩ′ = 0, at an extrapolated surface δΩ′

that has been shifted outwards of the investigated volume Ω. This approach allows to approximate the
Robin boundary condition by using virtual sources and results in a simple analytical solution. For a
boundary having reflectivity K(λ) this shift is given by

rRBC(λ) = 2D0(λ)
1 + K(λ)

1 − K(λ)
. (5.27)

The solution for semi-infinite slab geometry can be written as an infinite sum [76],

Φslab
0 (x, xs, λ, ω) =

∞∑

j=−∞

(
Φ+

j (x, xs, λ, ω) − Φ−
j (x, xs, λ, ω)

)
, (5.28)

using infinite medium solutions analogous to Eq. (5.24),

Φ±
j (x, xs, λ, ω) =

1

4πvD0(λ)

exp
(
−ik(λ, ω)|x − r±

j (λ)|
)

|x − r±
j (λ)|

, (5.29)

where r±
j (λ) is the position of the jth positive or negative (virtual) source that is chosen to comply with

the Dirichlet boundary condition at δΩ′. The displacements of the positive and negative virtual sources
are shown in Fig. 5.4 and can be calculated from the slab thickness d, and the (reflectivity dependent)
extrapolated boundary shift rRBC. We chose the slab surface to lie in the xy plane without loss of
generality, and used the same reflectivity K(λ) at both interfaces. Here,

r+
j (λ) = x′

s + jrshift(λ),

r−
j (λ) = x−(λ) + jrshift(λ),

(5.30)

where x′
s is the shifted source position, and the distance between two positive respectively two negative

sources is given by
rshift(λ) = (0, 0, 2d + 4rRBC(λ))T , (5.31)
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and

x−(λ) = x′
s + (2rRBC(λ) + 2/µ′

s(λ))ez, (5.32)

with ez being the unit vector in z direction, and |xs − x′
s| = 3D0(λ) the shift of the source into the slab

volume (as depicted in Fig. 5.4), provided the laser source is emitting light via a fiber source oriented
perpendicularly to the interface.
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Figure 5.4: Arrangement (in xz plane) of real source at xs and virtual (positive and negative) mirror
sources used for the diffusion equation solution in slab geometry. The origin of the right-handed coordinate
system is indicated by 0.

5.1.5 Solving the steady-state diffusion equation numerically via Galerkin’s

method

The method to discretize the continuous wave and frequency domain diffusion equations on a
finite element grid is described, which forms the basis of the FEM calculations used throughout
this thesis. The differential equations are converted to integral equations, which can be written
in matrix form.

Analytical solutions are limited to simple geometries and a homogeneous medium with or without a
spherical heterogeneity. An analytical solution is not known, when sources and detectors are positioned
on a more complex (e.g. ring or cup) geometry. As will be shown later, the same holds true for reconstruc-
tions, where the diffusion equation has to be solved for arbitrary heterogeneous distributions of optical
properties. Therefore, a numerical solution of the diffusion equation is needed for several applications.
In this section we show, how the diffusion equation can be discretized and solved on a finite element
grid. For this purpose, we use Galerkin’s method [127], which transforms the differential equation into
an integral equation, allowing a discretization of the integrals and hence a formulation as a system of
linear equations.
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To solve the cw diffusion equation (i.e. Eq. (5.11) for ω = 0) on an FEM grid, we use the expansion

ΦFEM(x, xs, λ) =
N∑

i=1

φi(xs, λ)ϕi(x) , (5.33)

where ϕi(x) is a piecewise linear function (after transformation to the unit cell) that is centered at the
ith vertex of the grid and linearly decreases from one to zero to all neighboring vertices. N is the total
number of vertices, and φi is the corresponding expansion coefficient. All expansion coefficients φ1 to φN

define the nodal solution vector Φnodal(xs, λ) = [φ1(xs, λ), ..., φN (xs, λ)]
T
.

For simplicity, the spectral dependence of the shape functions ϕi(x) is neglected throughout this
section. Likewise, we use the abbreviations ΦFEM := ΦFEM(x, xs, λ), ϕj := ϕj(x), q0 := q0(x, xs, λ),
D := D(x, λ), µa := µa(x, λ), and A(λ) := A to shorten notation. Fig. 5.5 illustrates the shape function
on a simple 2D quadratic FEM grid. Although illustration is limited to a 2D FE grid, computations have
conclusively been calculated on 3D grids.
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Figure 5.5: Extraction of a 2D quadratic FEM grid with shape function ϕi(x) and quadrature points
q1, ..., q4.

Inserting ΦFEM(x, xs, λ) into the diffusion equation (5.11 with ω = 0), multiplying with ϕj , and
integrating, one obtains

∫

Ω

dΩϕj

(
∇ · D∇ΦFEM − µaΦ

FEM
)

= −
∫

Ω

dΩϕjq0 . (5.34)

Integration by parts (see Eq. (C.63) using v = ϕ and a = D∇ΦFEM) results in

−
∫

Ω

dΩD∇ϕj · ∇ΦFEM +

∫

∂Ω

dωDϕj∂nΦFEM −
∫

Ω

dΩϕjµaΦ
FEM = −

∫

Ω

dΩϕjq0 , (5.35)

which can be simplified using the boundary condition (5.15) to obtain the following integral formulation
of the diffusion equation (5.11),

∫

Ω

dΩ
(
D∇ϕj · ∇ΦFEM + ϕjµaΦ

FEM
)

=

∫

Ω

dΩϕjq0 −
∫

∂Ω

dω
ϕjΦ

FEM

2A
, (5.36)



5.1. THEORETICAL BACKGROUND 47

for all ϕj(x) with j ∈ {1, ..., N}.
This system of equations can be written as a matrix equation

[K(λ) + C(λ) + B(λ)] Φnodal(xs, λ) = Q(xs, λ) , (5.37)

with the matrix and vector components:

Kij(λ) =

∫

Ω

dΩD(x, λ)∇ϕi(x) · ∇ϕj(x) (5.38)

Cij(λ) =

∫

Ω

dΩµa(x, λ)ϕi(x)ϕj(x), (5.39)

Bij(λ) =

∫

∂Ω

dω
ϕi(x)ϕj(x)

2A(λ)
, (5.40)

Qj(xs, λ) =

∫

Ω

dΩϕj(x)q0(x, xs, λ), (5.41)

where all matrices K, C, and B are sparse. As depicted in Fig. 5.5, the integrals of the matrix-components
Eq. (5.38) to Eq. (5.41) are approximated by sums over nq quadrature points qn having quadrature weight
w(qn) (i.e. pixel or voxel size), e.g.

Kij(λ) =

nq∑

n=1

w(qn)D (qn, λ)∇ϕi (qn) · ∇ϕj (qn) . (5.42)

To calculate the nodal solution vector Φnodal, we solve the symmetric and positive definite matrix
K +C +B given in equation (5.37) by using a conjugate gradient (CG) iterative solver with a symmetric
successive overrelaxation method (SSOR) as preconditioner to speed up the convergence [128]. Details
on the implementation using the deal.II library are given in the appendix A.3. Subsequently, the FEM
solution ΦFEM(x) is obtained by inserting the coefficients φi into equation (5.33).

The fluorescence diffusion equation (Eq. (5.13) with ω = 0) is solved in essentially the same way

[K(λf) + C(λf) + B(λf)]Φ
f
nodal(xs, λ) = Qf(xs, λ) , (5.43)

yielding the nodal solution vector of fluorescence photons Φf
nodal(xs, λ) =

[
φf

1(xs, λ), ..., φf
N (xs, λ)

]T
. The

expression for the matrices K, C, and B are the same as for the laser photons (Eq. (5.38) to Eq. (5.40))
except for the source term, which is given by

Qf
j(xs, λ) =

∫

Ω

dΩϕj(x)ηµdye
a (x, λ)ΦFEM(x, xs, λ). (5.44)

It should be noted that the same FEM grid and hence the same shape functions are used to solve the
laser and fluorescence diffusion equations.

The FEM solution ΦFEM
f (x, xs, λ) for fluorescence photons of wavelength λf after excitation of the

fluorescent dye at wavelength λ is obtained as

ΦFEM
f (x, xs, λ) =

N∑

i=1

φf
i(xs, λ)ϕi(x). (5.45)

The coefficients φf
i are calculated analogously to φi using CG as iterative solver and SSOR as precondi-

tioner.
The frequency domain solutions ΦFEM(x, xs, λ, ω 6= 0) can be derived by substituting the absorption

coefficient µa(x, λ) with µa(x, λ) + iω/v. Likewise, to obtain ΦFEM
f (x, xs, λ, ω 6= 0) the analogous sub-

stitution at the fluorescence wavelength has to be made. These substitutions result in complex matrices
C(λ) and C(λf ), requiring a different iterative solver. Therefore, a biconjugate gradient (BI-CGSTAB)
iterative solver with a Jacobi preconditioner is used.
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5.1.6 Numerical solutions in time-domain using time steps

The following paragraph describes how the time-domain diffusion equation is discretized on
a finite element grid for numerical integration. A matrix equation analogous to the cw case
has to be solved for each time step, making this method too time consuming and prone to
numerical instabilities. Instead, to obtain time-domain solutions of the diffusion equation,
frequency domain solutions are calculated at a finite number of angular frequencies followed
by Fourier transformation.

The derivation of the integral formulation of the diffusion equation in time-domain is similar to the
cw case discussed in the previous section. One expands the time-dependent FEM solution in terms of
time-independent shape function

Φ̃FEM(x, xs, λ, t) =

N∑

i=1

φ̃i(xs, λ, t)ϕi(x), (5.46)

where the expansion coefficients φ̃i(xs, λ, t) are time-dependent.
Multiplying the time-dependent diffusion equation (5.9) with the shape function ϕj(x) and integrating,

one obtains
∫

Ω

dΩϕj(x)

{
∇ · D(x, λ)∇− µa(x, λ) − 1

v

∂

∂t

}
Φ̃FEM(x, xs, λ, t) = −

∫

Ω

dΩϕj(x)q̃0(x, xs, λ, t). (5.47)

Again, to simplify notation we abbreviate Φ̃ := Φ̃(x, xs, λ, t), q̃0 = q̃0(x, xs, λ, t), D := D(x, λ), µa :=
µa(x, λ) and ϕj := ϕj(x) throughout this section. In this way, one obtains

∫

Ω

dΩ

(
D∇ϕj · ∇Φ̃FEM + µaϕjΦ̃

FEM + ϕj
∂

v∂t
Φ̃FEM

)
= −

∫

∂Ω

dω
ϕjΦ̃

FEM

2A
+

∫

Ω

dΩϕj q̃0. (5.48)

The latter equation is written as matrix equation

[K(λ) + C(λ) + B(λ)] Φ̃nodal(xs, λ, t) + M
1

v

∂Φ̃nodal(xs, λ, t)

∂t
= Q̃(xs, λ, t), (5.49)

where Kij(λ), Cij(λ), Bij(λ) are given by Eq. (5.38), (5.39), (5.40), and

Mij =

∫

Ω

dΩϕi(x)ϕj(x), (5.50)

Q̃j(xs, λ, t) =

∫

Ω

dΩϕj(x)q̃0(x, xs, λ, t). (5.51)

The time-dependent nodal solution vector of equation (5.49),

Φ̃nodal(xs, λ, t) =
[
φ̃1(xs, λ, t), φ̃2(xs, λ, t), ..., φ̃N (xs, λ, t)

]T
, (5.52)

is obtained by using iterative time increments ∆t, hence the name time-slice method. The nodal solution
for t = ∆t is obtained according to [129, 28] by

F+(λ)Φ̃nodal(xs, λ, t = ∆t) = Q̃(xs, λ, t = 0), (5.53)

where

F±(λ) =
1

2
K(λ) +

1

2
C(λ) +

1

2
B(λ) ± 1

v∆t
M. (5.54)
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For subsequent iteration steps k ≥ 1 the nodal solution vectors are calculated by a recursion formula, i.e.

F+(λ)Φ̃nodal(xs, λ, t = (k + 1)∆t) = F−(λ)Φ̃nodal(xs, λ, t = k∆t), (5.55)

which, for a homogeneous medium and a regular grid, is stable provided ∆t is sufficiently small [130],
i.e.

∆t ≤
h2

grid

4Dv
, (5.56)

where hgrid is the vertex distance of the (2D) grid.
Compared to the cw matrix equation given in (5.37), an additional matrix 2M/(v∆t) appears in

Eq. (5.55) on the LHS as result of Eq. (5.54). The matrices C and M (Eq. (5.39) and (5.50)) have the
same dependence on the shape function. Therefore, every incremental step simulating the propagation
of diffuse light during the time ∆t is equal to a solution of the cw equation with an increased absorption
coefficient µ′

a(x, λ) = µa(x, λ) + 1/(v∆t) and a modified source term F−(λ)Φ̃nodal(xs, λ, t = k∆t) of the
previous iteration step.

We compared a TPSF simulated by the time-slice method with the distribution of times of flight
of laser photons measured in transmission through a glass cuvette filled with scattering solution (µ0

a =
(0.0043 ± 0.002) mm−1, D0 = (0.37 ± 0.13) mm) and a spherical absorbing lesion (µsph

a = (0.0087 ±
0.005) mm−1, Dsph = (0.36 ± 0.13) mm, rsph = 15 mm) at its center.

The source term was modeled according to equation (5.53) as a spatial delta peak located at the
(shifted) source position, i.e. q̃0(x, xs, λ, t) = δ(x − x′

s)/(v∆t) at t = 0, and q̃0(x, xs, λ, t) = 0 for all
following time steps ∆t = 50 ps. Equation (5.55) was solved iteratively up to t = 8 ns. The resulting
TPSF was convolved with the instrumental response function and is shown in Fig. 5.6 (full line). The
simulated curve has two free parameters, the time origin t0 and the total number of photons. For
comparison, simulated data is scaled to have the same integral photon count as the measurement data
(plusses). The simulated TPSF is in good agreement with the measurement and photon counts show a
maximum approximately 3 ns after the laser pulse.

In water the light needs approximately 270 ps for the distance between source and detector (6 cm),
but due to the many scattering events in the turbid medium the path length for photons detected at peak
time (3 ns) is longer by a factor of approximately 10.

Refinement problems

The stability constraint (5.56) imposes a limitation for the forward model calculations. With a decrease
of the minimum vertex distance hgrid the number of simulation steps needed increases quadratically. Due
to local refinement of the FEM grid at sources and detectors the smallest hgrid defines the maximal
acceptable time step even on an elsewhere coarse grid, as will be shown in the following.

To illustrate the stability problems that occur when the condition (5.56) is violated, we numerically
calculated the photon density on a locally refined 2D grid via the time-slice method. In Fig. 5.7a we
show the generated grid, which is formed as a rectangle and is locally refined at the source and detector
positions (x′

s ≈ (0, 19) mm, xd = (0,−20) mm). Each FE grid vertex is indicated by a dot. An additional
(artificial) refinement was performed around the center of the rectangle.

Figure 5.7b shows a min/max gray scale image of the photon density at t = 3 ns that has been
calculated for 60 time steps of ∆t = 50 ps, violating Eq. (5.56) by six orders of magnitude at refined
positions. In Fig. 5.7c, a line plot of the same photon density is given for x = 0. The photon den-
sity shows unphysical oscillating and even negative values around the source position rather than the
smooth variation expected because of the wide spectrum of modulation frequencies contained in the
delta function δ(t)δ(x − x′

s), whereas the solution behaves numerically stable at the detector position.
Furthermore, numerical instabilities are observed at positions, where additional local refinement of the
grid was performed, i.e. at the center of the rectangle.
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Figure 5.6: Laser photon TPSF simulated by time-slices method (black line) compared with measurement
data (plusses) for an absorbing lesion in a 6 cm thick cuvette filled with scattering solution. The simulated
TPSF has been scaled to the same total photon counts as recorded in the measurement and shifted in
time.

To circumvent these numerical instabilities, one must choose smaller time steps ∆t, but at the ex-
pense of longer calculation times. Therefore, the time slice method was not pursued any further in this
thesis. Instead, the diffusion equation is solved in frequency domain for typically five angular frequency
components up to ωmax = 2π · 500 MHz and, subsequently, the solutions are Fourier transformed to
time-domain (see appendix A.3.3).

5.1.7 Source term modeling

Different approximations to a spatial delta function used as source term are discussed that
avoid numerical instabilities. The source terms are adapted to narrow laser pulses that are
coupled into the medium by means of narrow optical fibers.

For analytical solutions we often model the source term by a (temporal and) spatial delta distribution
located at the source position. This approximation is sufficient, if a short pulsed (100 fs to ps) laser
source is used, and the source-detector distance is large compared with the reduced scattering length, l′s.

The situation is more difficult for numerical FEM calculations of the diffusion equation and extra care
has to be taken in modeling source terms. An isotropic source modelled in the diffusion equation does
not correspond to experimental situations, where light from a certain direction impinges on the surface
∂Ω, e.g. by using a laser beam or optical fibers.

Using a spatial delta distribution as source term has obvious drawbacks, if calculated on a grid. It is
not always feasible to have a grid vertex exactly at the source position (e.g. if optical properties change
between nonlinear iterations and therefore the shift of the source by 1/µ′

s slightly changes due to updated
reduced scattering coefficients). The sharp decrease of laser light photon density around the source
position can result in numerical instabilities, sometimes causing unphysical negative photon densities.
This problem can be alleviated but not solved by refining the grid around the source position.
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Figure 5.7: Numerical instabilities of time-slices method introduced by refinement of FE grid: (a) The two
dimensional grid with refinements at source position x′

s ≈ (0, 19) mm, at detector position xd = (0,−20)
mm, and refinements around the center position. FE grid vertices are indicated by dots. (b) Gray scale
plot of simulated photon density via time-step method on corresponding grid at t = 3 ns. (c) Line plot of
corresponding simulated photon density for x = 0, and normalized to the photon density at the detector
position.
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Furthermore, a delta distribution as a source term does not describe the physical situation that we
have in a laboratory experiment, where the laser is coupled into the tissue by a fiber having a numerical
aperture. This situation can be described more realistically by a Gaussian blurred source having a certain
width of several mm.

In diffusion approximation, the (anisotropic) laser beam source that is coupled into the tissue at the
surface is often modeled as an isotropic source shifted into the tissue by one reduced scattering length,
yielding the maximum of the photon density located at this shifted source position and not at the tissue
surface itself. For the simulation of photon densities at detector positions any inaccuracies associated
with the shifted source are attenuated and can be neglected. In contrast, when reconstructing absorption
and scattering properties, photon densities need to be calculated at the source position or within positions
smaller than one free scattering length and the approximation of a shifted photon source causes severe
artifacts in the reconstructed optical properties. As will be shown in more detail in Chapter 6, the
gradient of the photon density is used when reconstructing scattering properties. Because of the shift of
the simulated source position into the tissue volume, we get an unphysical photon density gradient value
between source position and tissue surface, causing edge artifacts in reconstructions. The situation can
be alleviated by modified source terms, i.e. by a source term that exponentially decays in beam direction
and has its maximum at the tissue surface.

In the following, the implementation of different source terms that have been used throughout this
thesis are described in detail. For a source located at xs, i.e. at the true (physical) position at the point
ζ on the boundary ∂Ω, the source term as given in Eq. (5.11) is modeled by

q0(x, xs, λ, ω) =
S0(x, xs, λ, ω)

v‖S0(x, xs, λ, ω)‖1
(5.57)

where ‖ · ‖1 is the L1-norm (volume integral over x).

Point source

The simplest form of an isotropic source is a point source located at xs. If the source is not located
exactly on a vertex of the chosen grid, the closest vertex is used as source position instead. The source
is modeled using

S0(x, xs, λ, ω) =

{
1/w(xs) for x = xs

0 else
for all λ and ω. (5.58)

Here, w(xs) is the Voronoi cell volume [131] associated with the vertex at position xs.

Fiber source

When light from an optical fiber impinges perpendicularly on the surface, the source is modeled as
shifted point source with a displacement in the fiber direction −n by one reduced scattering length,
i.e. 1/µ′

s(xs, λ). Thus, the shifted source position x′
s(λ) is calculated by

x′
s(λ) = xs +

1

µ′
s(xs, λ)

(−n) . (5.59)

Therefore, the resulting source term is constructed using

S0(x, xs, λ, ω) =

{
1/w(x′

s, λ) for x = x′
s(λ)

0 else
for all ω. (5.60)

Since the shift of the source depends on wavelength, the chosen FE grid with a refinement at source
position depends implicitly on the wavelength.



5.1. THEORETICAL BACKGROUND 53

Gaussian blurred source

1 2 3 5 10
−7

−6

−5

−4

−3

−2

−1

0

1

r / mm

ln
 (

 Φ
 / 

Φ
m

ax
,p

s )
Point source
Gaussian source

Figure 5.8: Plot of the radial dependence (r = |x − xs|) of simulated photon densities within a homoge-
neous infinite medium using Gaussian blurred sources of various widths (FWHM = 1 mm, 2 mm, 3 mm, 5
mm, and 10 mm) compared with a point source. All photon densities are normalized to the maximum of
the simulated photon density Φmax,ps corresponding to a point source. Logarithms of normalized photon
densities are plotted.

Using a point source in FEM calculations means trying to simulate a spatial delta distribution nu-
merically on a coarse grid. Moreover, it is known analytically that the photon density close to the source
position xs is proportional to exp (−k |x − xs|) / |x − xs|, i.e. the solution for a point source is singular
at the source position. It is not surprising that this attempt will fail numerically.

To ease these problems, Gaussian blurred sources can be used. The slope of such sources is less steep
at or close to the center position and therefore such sources are less critical in numerical simulations.
Gaussian blurred sources are defined by

S0(x, xs, λ, ω) =
1

(2πσ2
src)

3/2
exp

−(x − xs)
2

2σ2
src

for all λ and ω, (5.61)

where σsrc is the source width. Such a source term is nonvanishing throughout the entire volume, hence
it contributes to each vertex of the grid.

In Fig. 5.8 we show a comparison of photon densities deduced from a point source and Gaussian
blurred sources of varying source width (FWHM = 2

√
2 ln(2)σsrc = 1 mm, 2 mm, 3 mm, 5 mm, and 10

mm). The photon densities are normalized to the maximum of the photon density corresponding to
a point source, and their dependence on source-detector distance r = |x − xs| is illustrated in a semi-
logarithmic plot. As can be seen by comparing photon densities from point and Gaussian blurred sources,
deviations can be found mainly at distances smaller then the given source width, and values of photon
densities coincide at larger distances.

Obviously, it is also possible to use shifted Gaussian sources, shifted along −n by an amount 1/µ′
s(xs, λ).

The displacement of the source is calculated as was shown for fiber sources by Eq. (5.59) and xs is replaced
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by x′
s on the RHS of Eq. (5.61).

Exponentially attenuated sources

We used an additional source term to simulate light injected into the medium by an optical fiber with
a certain numerical aperture and oriented perpendicularly to the surface. The exponentially attenuated
source is given by

S0(x, xs, λ, ω) =
µ′

s(xs, λ) + µ′
a(xs, λ)

2πσ2
src

exp
(
− [µ′

s(xs, λ) + µa(xs, λ)]
∣∣x‖

∣∣)

· exp(−x2
⊥/2σ2

src) for all λ and ω,

(5.62)

where x‖ = [n · (x − xs)] ·n, x⊥ = − [n · (x − xs)] ·n+x−xs, n is the outward pointing surface normal
at source position xs, and σsrc is the width of the source perpendicular to the fiber axis. In this thesis,
exponentially attenuated sources have been positioned on the surface ∂Ω only.

Fig. 5.9 compares simulated photon densities corresponding to an exponentially attenuated source
(σsrc = 2 mm) and a (shifted) fiber source. All photon densities were normalized to the maximum photon
density obtained with the fiber source. The panels on the LHS plot the logarithms of the normalized
photon densities versus the distance |x‖| along the beam direction, whereas panels on the RHS illustrate
normalized photon densities perpendicular to this direction at axial slices of x‖ = −n · (x − xs).

Panels on the top correspond to zero reflectivity (K = 0), while the bottom panels were calculated
assuming a reflectivity of K = 1. As can be seen by comparing the top and bottom panels, the higher
reflectivity leads to higher photon density at the surface. Furthermore, at large distances along the beam
direction, the exponentially attenuated source leads to a slightly higher photon density compared to the
shifted fiber source.

5.2 Results using forward simulations

5.2.1 Data analysis of time-domain measurements

A model independent raw data analysis (time-window analysis) to derive mammograms from
measured distribution of times of flight is motivated by numerical simulations, and methods
of improvement are suggested.

Data collected via TCSPC allows to separate scattering from absorption. In such measurements,
variations in the absorption coefficient modify the total number of photons collected, i.e. the amplitude
of the TPSF is in- or decreased, while variations in the diffusion coefficient change the number of scattering
events for each photon traveling from the source to the detector, hence changing the path length of the
trajectories for all transmitted photons, introducing a temporal shift and a narrowing or broadening of the
TPSF. Therefore, effects caused by variations in absorption can be seen best by analyzing late photons
that have traveled along the longest trajectories through the investigated object. On the other hand, the
initial rise of the TPSF, or more generally the initial part of the TPSF is most sensitive towards changes
in the reduced scattering coefficient.

For simplicity, the following discussion is limited to a slab of 6 cm thickness and an on-axis arrangement
of source (z = 0) and detector (z = 6 cm). By limiting all calculations to one wavelength, the notation
of the simulated photon densities can be simplified to

Φ̃(x, y, t) := Φ̃(xd, xs, λ, t). (5.63)

with xs = (x, y, 0) and xd = (x, y, 6 cm), and for the homogeneous bulk to

Φ̃bulk(t) := Φ̃bulk(xd, xs, λ, t). (5.64)
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Figure 5.9: Photon densities normalized to the maximum of the fiber source along beam direction (a,
c) and perpendicular to beam direction (b, d) corresponding to an exponentially attenuated source
(black line) and fiber source (dotted blue line), respectively. The volume boundary is located at x‖ = 0
in each case. The top panels correspond to a reflectivity of K = 0, the bottom panels to K = 1.
The black lines in the top and bottom panel on the right hand side correspond to photon densities at
x‖ = 2 mm, 0 mm, 10 mm and 50 mm and x‖ = 0 mm, 2 mm, 10 mm and 50 mm, respectively (from top
to bottom at x⊥ = 0).
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From TPSFs measured in slab geometry, projection mammograms are generally generated by time-
window analysis. To this end, Φ̃bulk(t) measured in the homogeneous part of the breast or phantom is
divided into ten contiguous time windows, each containing 10% of the total number of photons detected,
i.e. ∫ ti

ti−1
Φ̃bulk(t)dt

∫∞

0
Φ̃bulk(t)dt

= 0.1, (5.65)

where i = 1, ..., 10. Fig. 5.10 illustrates the time-slicing of a simulated TPSF Φ̃bulk(t) (solid line) calculated
for a 6 cm thick homogeneous slab with K = 0.5, n = 1.3, µ0

a = 0.0045 mm−1, D0 = 0.34 mm. Time
windows are colored alternately in green and yellow.

The same time windows are used to analyze TPSFs Φ̃(x, y, t) measured at any point x, y of the scanned
area. Projection mammograms associated with a selected time-window Ni (ti−1 ≤ t < ti) are generated
by calculating normalized photon counts in this time-window Ni, i.e.

Ni(x, y)

Ni,bulk
=

∫ ti

ti−1
Φ̃(x, y, t)dt

∫ ti

ti−1
Φ̃bulk(t)dt

. (5.66)

Mammograms showing photon counts in the first time window, i.e. associated with early arriving photons,
show predominantly effects of scattering, while mammograms at later time windows, e.g. N8, are sensitive
to changes in absorption since late arriving photons travel along long trajectories.

Such projection images turned out to be helpful in detecting areas having reduced scattering (e.g. cysts)
or increased absorption (e.g. tumors) coefficients in optical mammograms without the need for image re-
construction. Furthermore, this method of data analysis does not depend on a physical model and hence
turned out to be very robust. Also, projection images calculated in this way can be used in tomosyn-
thesis reconstructions, yielding 3D spatial information of changes of absorption and reduced scattering
coefficients, yet not providing absolute values of optical properties.

Additionally, two simulations were carried out, each with one spherical heterogeneity (rsph = 0.25 cm)
located at (xl, yl, zl) = (0, 0, 3) cm, one sphere (pure absorber) having an absorption coefficient larger
by 10% (µsph

a = 0.00495 mm−1) and the other one (pure scatterer) with a reduced scattering coefficient

larger by 10% (Dsph = 0.32 mm), resulting in simulated TPSFs Φ̃a(0, 0, t) and Φ̃s(0, 0, t), respectively.
This notation indicates that the center of the spherical heterogeneity falls on the line of sight connecting
source and detector. The difference of TPSFs caused by the increase of absorption or reduced scattering
coefficients of the spherical heterogeneity is given by

∆Φ̃s(0, 0, t) = Φ̃bulk(t) − Φ̃s(0, 0, t),

∆Φ̃a(0, 0, t) = Φ̃bulk(t) − Φ̃a(0, 0, t).
(5.67)

To identify effects on the TPSF caused by changes of the scattering or absorption coefficients, the
dimensionless motivation function fmot(t) = ∆Φ̃s(0, 0, t)/ms − ∆Φ̃a(0, 0, t)/ma is introduced, with the
normalization factors

ms = max
(∣∣∣Φ̃bulk(t) − Φ̃s(0, 0, t)

∣∣∣
)

,

ma = max
(∣∣∣Φ̃bulk(t) − Φ̃a(0, 0, t)

∣∣∣
)

,
(5.68)

thus treating the influence of absorption and scattering on an equal footing. The absolute value |fmot|
is shown in Fig. 5.10 as dashed line. As can be seen, the motivation function has two extrema, the first
one at early times resulting from the changes in the reduced scattering coefficient, while the second one
at a later time is caused by changes in the absorption coefficient. The zero crossing of fmot is located at
t′ ≈ 1.9 ns. This time depending on the optical properties, e.g. of the homogeneous slab.
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Figure 5.10: Standard time-slicing method applied to the (normalized) TPSF (full line) of the homo-
geneous background medium and its associated motivation curve (blue dashed line) showing the areas
of predominant influences of variations of the reduced scattering coefficient and absorption coefficient.
Time windows are alternately colored in green and yellow.

To compare the motivation function with the times associated with the time intervals N1 and N8, the
center of mass for the two parts of the motivation function is calculated separately, i.e.

tscatcm =

∫ t′

0 tfmot(t)dt
∫ t′

0
fmot(t)dt

= 1.4 ns, (5.69)

and

tabs
cm =

∫∞

t′
tfmot(t)dt∫∞

t′
fmot(t)dt

= 3.4 ns, (5.70)

giving similar results as the standard time-window analysis. This shows that the usage of N1 for detection
of changes of the scattering coefficient and of N8 for the detection of changes of the absorption coefficient
is a reasonable approximation.

Decoupling of time windows

In the following paragraph, a more elaborate approach is introduced to separate the effects of scattering
and absorption in a given projection mammogram. For this purpose, we assume that a change in the
perturbed TPSF Φ̃(x, y, t) compared with the TPSF of the bulk, i.e.

∆Φ̃(x, y, t) = Φ̃bulk(t) − Φ̃(x, y, t) (5.71)

can be expressed as a linear superposition of TPSFs caused by the absorption and by the reduced
scattering coefficient,

∆Φ̃(x, y, t) = cs(x, y)∆Φ̃s(0, 0, t) + ca(x, y)∆Φ̃a(0, 0, t). (5.72)

The definition of the L1 pseudo norm

〈f |g〉 =
1

te − ts

∫ te

ts

f(t)g(t)dt, (5.73)
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where ts and te are the start and end time of the TPSF, respectively, allows to write

Ns = 〈∆Φs|∆Φs〉 ,

Na = 〈∆Φa|∆Φa〉 .
(5.74)

To solve for cs and ca, the relations

〈∆Φs|∆Φ〉 = Nscs + ca 〈∆Φs|∆Φa〉 ,

〈∆Φa|∆Φ〉 = Naca + cs 〈∆Φs|∆Φa〉
(5.75)

are used, and after some further algebra one obtains

ca =
〈∆Φa|∆Φ〉 − N−1

s 〈∆Φs|∆Φ〉 〈∆Φs|∆Φa〉
Na − N−1

s 〈∆Φs|∆Φa〉2
, (5.76)

cs =
〈∆Φs|∆Φ〉 − N−1

a 〈∆Φa|∆Φ〉 〈∆Φa|∆Φs〉
Ns − N−1

a 〈∆Φa|∆Φs〉2
. (5.77)

To decouple the effects caused by variations in absorption and scattering, assumptions about the
functions ∆Φ̃s(0, 0, t) and ∆Φ̃a(0, 0, t) have to be made. These functions can be calculated exactly, when
the size, shape, and position of the heterogeneity embedded in the homogeneous medium are known.
Generally, this information generally is not available prior to reconstructions. As an initial guess, the
functions ∆Φ̃s(0, 0, t) and ∆Φ̃a(0, 0, t) that will be used in the following for decoupling are calculated from
a homogeneous medium having shifted optical properties. To estimate the error that is introduced by
this approach, the functions ∆Φ̃s(0, 0, t) and ∆Φ̃a(0, 0, t) are computed additionally for a single centered

sphere, i.e. using the exact perturbation of the phantom. Therefore, the functions ∆Φ̃s(0, 0, t) and

∆Φ̃a(0, 0, t) are calculated numerically for two setups,

i) for a homogeneous medium with shifted optical properties, i.e. with absorption and scattering
coefficient increased by 10% (1%), and

ii) for the homogeneous medium (µ0
a = 0.0045 mm−1, D0 = 0.34 mm−1) with a centered spherical

lesion (radius rsph = 2.5 mm) and absorption and scattering coefficients increased by 10% (1%).

Results for ∆Φ̃s(0, 0, t) and ∆Φ̃a(0, 0, t) normalized to their maxima are shown in Fig. 5.11 for a 1%
increase (full lines) and a 10% increase (full lines with plusses) of the absorption and scattering coefficient
of the spherical heterogeneity. As can be seen, results obtained from 1% or 10% increases in the absorption
coefficient and reduced scattering coefficient coincide within line thickness, indicating that the linear
ansatz is still valid at the small changes considered. For larger spheres, when the linear approach no longer
holds true, the normalized functions ∆Φ̃a(0, 0, t)/ max(∆Φ̃a(0, 0, t)) and ∆Φ̃s(0, 0, t)/ max(∆Φ̃s(0, 0, t))
for 1% and 10% will no longer coincide. Furthermore, as can be seen from Fig. 5.11, the results for the
homogeneous medium shifted by 1% or 10% in its reduced scattering coefficient or its absorption coefficient
no longer agree with the normalized results obtained for a sphere of radius rsph = 2.5 mm. This is to be
expected since the shifted homogeneous medium corresponds to a large sphere with rsph → ∞.

For comparison of the standard time window approach and the decoupling method derived in this
section, TPSFs corresponding to on-axis scans of 425 source positions x = −6 cm, ..., +6 cm, y =
−4 cm, ..., +4 cm, z = 0 with a step size of ∆x = ∆y = 5 mm were simulated. For this purpose, data
was calculated using an FE cuboid of volume Ω = 16 × 12 × 6 cm3 (6 cm thickness), with two spheres
of radius rsph = 7.5 mm positioned at xl = ±2.5 cm , yl = 0, and zl = 2.2 cm. The optical properties
of the background medium of the slab were set to µ0

a = 0.0045 mm−1 and D0 = 0.37 mm, while the two
lesions had a 2:1 contrast of absorption and scattering coefficient, respectively. To suppress numerical
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Figure 5.11: Functions ∆Φ̃s(0, 0, t) and ∆Φ̃a(0, 0, t) simulated for a homogeneous phantom containing a
spherical heterogeneity (rsph = 2.5 mm) centered on the line of sight between source and detector with
10% (full lines with plusses) and 1% (full lines) increase in absorption coefficient (blue) and reduced
scattering coefficient (black), and for homogeneous media (dotted lines) having the same increase in the
optical properties. Solid lines and solid lines with plusses are indistinguishable within the line thickness.

errors, the homogeneous background scan was simulated for all 425 source positions using the same FE
grid, but with the two lesions removed in the numerical phantom.

Data was simulated in frequency domain using 8 equidistant angular frequencies from ω1 = 0 to
ω8 = 2π · 1.2 GHz. Poisson noise, 1% Gaussian noise, and a noise floor estimated from experiments
were added to the simulated data in time-domain. Results are compared in Fig. 5.12, presenting the
calculated absorption and reduced scattering coefficients (left and right panel of top row, respectively) in
mm−1 by the new decoupling method and by using and the standard time-window method (bottom row),
investigating the difference of photon counts of the N1 (right) and N8 (left) time bins corresponding to the
simulation of the bulk and with additional sphere, respectively. Decoupling was achieved by the functions
∆Φ̃a(0, 0, t) and ∆Φ̃s(0, 0, t) computed for a homogeneous medium with a 1% increase in absorption and
reduced scattering coefficient, respectively.

As can be seen in Fig. 5.12, the results of both methods look quite similar. Although the proposed
decoupling method shows a reduced cross-talk between absorption and scattering, it has a lower signal-
to-noise ratio in the image corresponding to the reduced scattering coefficient (Fig. 5.12 top right).
Although the time-windows analysis is not based on a physical model, the use of photon counts N1 and
N8 in the first and eights time windows is sufficient to discriminate changes in scattering from absorption.
As improvement, the proposed decoupling allows calculating projection images of optical properties in
absolute values. As drawback, these optical properties suffer from an error introduced by calculating
∆Φ̃a(0, 0, t) and ∆Φ̃s(0, 0, t), i.e. by assuming a homogeneous shift of optical properties throughout the
volume. Such an approach suffers from lower absorption and scattering contrast of heterogeneities because
of partial volume effects.

We conclude this section on data analysis of time-domain measurements by pointing out the close
relation of the decoupling method with first order time-dependent perturbation theory, considering the
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Figure 5.12: Projection images (top row) calculated by using the decoupling method, yielding recon-
structed absorption coefficients (top row left) and reduced scattering coefficients (top row right) given in
mm−1. The bottom row shows projection images obtained by the standard time-window analysis illus-
trating photon counts in the eights (N8) window (bottom row left) and in the first (N1) window (bottom
row right).
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same situation, i.e. a homogeneous slab with background optical properties µ0
a, D0, on-axis arrangement

of source and detector and a spherical heterogeneity of radius rsph centered on the line of sight halfway
between source and detector with absorption and diffusion coefficients µsph

a = µ0
a + δµa and Dsph =

D0 + δD. Similar to Eq. (5.71) and (5.72) the transmitted photon density following injection of a
temporal and spatial delta-like laser pulse is written as

Φ̃(x, y, t) = Φ̃bulk(t) + δΦ̃(x, y, t), (5.78)

with
δΦ̃(x, y, t) = δµafa(x, y, t) + δDfD(x, y, t) (5.79)

where fa(x, y, t) and fD(x, y, t) are called (first order) shape functions. Generally, these shape functions
depend on the size and shape of the homogeneous background medium, on its optical properties and
on the size, shape and location of the heterogeneity, being itself homogeneous, but do not depend on
the changes δµa and δD of the heterogeneity [132]. One may analyze temporal point spread functions
recorded through the compressed breast at zero source detector offset (on-axis geometry) by a scanning
mammograph using first order perturbation theory [133]. In this case a virtual spherical heterogeneity
is assumed on the line of sight between source and detector that moves together with the source and
detector fiber and the temporal point spread function measured at each scan position is analyzed for
changes δµa and δD, generating optical mammograms that reflect absorption and scattering properties.

5.2.2 Performance analysis of instrumentation in optical mammography

A statistical test is presented using simulated photon migration data and a noise model
derived from the Philips tomographic fluorescence mammograph to predict its detection limits.
This method allows to assess the spatial distribution of the detection sensitivity of arbitrary
geometries and noise without requiring phantom measurements and reconstructions. The
minimal detectable lesion size at selected lesion positions is determined and the predicted
results compared with phantom measurements carried out with the Philips mammograph. In
addition, we apply our method to predict the smallest size of detectable lesions at various
positions in cup and slab geometry and model how detection sensitivity depends for the latter
geometry on breast compression and lesion fluorescence contrast. Our investigation shows
that lesion detection is limited by absolute noise in cup geometry and by relative noise in slab
geometry.

The spatial resolution of the DOT images is quite low, since the photons are scattered many times,
before they leave the tissue. Furthermore, the reconstruction problem is under-determined, because the
number of measurements is usually lower than the number of reconstructed image elements.

Due to these two problems, DOT image reconstruction is a challenging task. To reconstruct a meaning-
ful image, the use of regularization schemes and/or the consideration of a-priori information is necessary.
Some methods to regularize the reconstruction and to use a-priori information are described in the liter-
ature [30]. The content of the resulting images is highly dependent on the choice of the reconstruction
algorithm. Due to this fact, the question is nontrivial, whether a heterogeneity of a certain size and a
certain contrast in its optical properties can be detected with an optical tomograph.

A method to predict, what lesions can be detected with a particular optical imaging system, is
desirable for the system design as well as for comparison of different systems of e.g. different source-
detector arrangements. In the contrast detail analysis [134, 135], one defines objects with different
optical contrast, simulates or measures data for these objects and then judges, whether the object is
visible or not in the reconstructed image. This method is widely used, but also very time-consuming.
Another disadvantage is that its results do not depend on imaging hardware alone, but additionally on
the image reconstruction method used. It is then difficult to determine if the reconstruction algorithm
or the imaging system is limiting the performance.
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A comparison of imaging systems and detector configurations based on a singular value decomposition
of the system matrix containing all source-detector combinations has been proposed before [136, 137].
Although that approach can predict which system geometry has a better detection sensitivity, it can
neither predict detection limits quantitatively, nor calculate spatial dependence of detection limits.

In the following, an alternative method is presented, which analyzes the raw data to decide, whether
an object causes a statistically significant signal above the background level. The method is based on
simulations and on a noise model of the photon densities measured by the imaging system. This approach
has the advantage that only the system hardware is characterized, thus making it possible to simulate
the effects of hardware changes, e.g. changes in geometry, in the number of detectors and sources, and
their arrangement, and of noise reduction on the detection sensitivity. The results can be easily used to
identify the main limiting components and serve as guidelines for system improvements.

A disadvantage of this approach is that there is no guarantee that the object can indeed be recognized
in a reconstructed image, since contrast depends also on the image reconstruction algorithm used. It
follows that our method gives an answer to the question, which lesions can definitely not be detected
using the selected hardware, but no answer, which lesion can be recognized using the system and a
selected reconstruction algorithm.

In the following, we investigate the sensitivity of fluorescence measurements performed in cup geometry
by using raw data analysis. The predictions of this analysis are compared with sensitivity limits gained
from a contrast detail analysis using phantoms consisting of lesion-simulating inhomogeneities immersed
in a cup-shaped detection chamber filled with scattering liquid.

In this section we explain the method of raw data analysis followed by the derivation of the noise
model. Data on laser and fluorescence transmission are simulated applying the diffusion approximation
for selected geometries.

The section describes the phantom measurements that were performed to validate the raw data
analysis, and explains, how to scale simulated data to measurement data for quantitative comparison.

Furthermore, we compare the contrast detail analysis and raw data analysis for a series of phantom
experiments performed in cup geometry. This comparison shows that the predictions of the raw data
analysis are accurate for the selected measurement system.

Chi-square test

The minimal lesion size that can be detected in scans of transmitted laser radiation (absorption scan)
or fluorescence radiation (fluorescence scan) is estimated by analyzing simulated data for a phantom
modeling a breast carrying a lesion. A large number of simulations was carried out, where the position,
diameter, and optical contrast of the lesion were varied. The following sections describe in detail the raw
data analysis method, the breast phantoms and the numerical simulations.

For the determination of sensitivity limits, we analyze simulated data with the chi-square test [138].
This allows to predict and compare detection limits for different imaging systems and detector configu-
rations. The test method (Sec. 5.2.2) is based on a description of the system geometry and on a noise
model that allows to predict, how measurements are affected by noise.

First, we explain the idea of the test method for the case of fluorescence detection. Subsequently
we discuss the case of absorption measurements. To determine, whether a lesion is detectable under a
certain condition, two data sets for the fluorescence reconstruction are simulated: one data set Sf with
the lesion, and one data set Rf without the lesion. Each data set is the ratio of two simulations and
consists of m values Sf

j and Rf
j , respectively (j = 1, ..., m):

Sf
j =

Φf,L,j

ΦL,j
(5.80)
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and

Rf
j =

Φf,B,j

ΦB,j
. (5.81)

Here, m is the total number of source-detector combinations in set M , ΦL is the density of transmitted
laser photons per unit interval of frequency for the breast with the lesion-simulating heterogeneity, and ΦB

is the corresponding density for the breast without any lesion. This definition of data sets as ratio of two
measurements corresponds to the normalized Born-approximation [139, 140] used in reconstruction algo-
rithms. The subscript f indicates the detection at the fluorescence wavelength. Background absorption,
absorption coefficient of the fluorescent dye and scattering properties of the homogeneous background
medium enter into the photon densities ΦB,j and Φf,B,j in Eq. (5.81), whereas the background absorption,
the absorption coefficient of the dye and the scattering properties of the heterogeneity are additionally
contained in the photon densities ΦL,j and Φf,L,j in Eq. (5.80).

These simulations reflect ideal measurements without noise. Now N noise realizations Ŝ
i(f)
j of the

simulation with the lesion are generated using a noise model,

Ŝ
i(f)
j = Sf

j + X i
j

(
σ
(
Sf

j

))
. (5.82)

Here, σ(Sf
j) represents the standard deviation for data point Sf

j at the fluorescence wavelength. X(σ)
is a random variable of Gaussian distribution with zero mean and standard deviation σ. The values for
σ(Sf

j) are calculated by error propagation (see below) from the errors of the transmitted photon densities
Φf,L,j and ΦL,j, which are known from experiment. We now apply a test, whether there is a statistically

significant difference between Rf
j and Ŝ

i(f)
j (null hypothesis). For this purpose, we calculate the chi-square

values χ2
i for the difference between Ŝ

i(f)
j and Rf

j :

χ2
i =

∑

j∈M ′

(
Ŝ

i(f)
j − Rf

j

σ(Rf
j)

)2

. (5.83)

Since the location of the lesion is known, it is also known, which data points are influenced by its pres-
ence. Therefore, we restrict the summation in Eq. (5.83) to that subset of source-detector combinations
j that contain information about the lesion. The subset was defined in the following way:

M ′ =

{
j ∈ M

∣∣∣∣

∣∣Sf
j − Rf

j

∣∣
max Sf

> 0.001

}
, (5.84)

i.e., taking all m′ data points into account, where the presence of the lesion leads to a change in the
simulated data by more than 0.1% of the maximum value.

The distribution of χ2
i is known for the case that Ŝ

i(f)
j is a noisy realization of Rf

j . Or, in other words,

the probability pi that Ŝ
i(f)
j is measured without the lesion being present can be calculated from the

χ2
i distribution of m′ degrees of freedom [141]. We calculate the probability 1 − p for a χ2

i value to lie
between a lower (xl) and an upper (xu) threshold to be

1 − p = P

(
xu

2
,
m′

2

)
− P

(
xl

2
,
m′

2

)
(5.85)

with

P

(
x

2
,
m′

2

)
=

1

Γ(m′/2)

∫ x/2

0

t
m′

2
−1 exp(−t)dt, (5.86)

given by the incomplete gamma function and the degree of freedom m′. The upper and lower boundary
xu and xl are chosen such that the probability (1− p) is distributed equally below and above the median
value of χ2

i .
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One can say that the lesion is detectable in the data set Ŝ
i(f)
j if pi is below some threshold pT. We

introduce δi to count the number of data sets with detectable lesions:

δi =

{
1 : if pi < pT

0 : otherwise
. (5.87)

The choice of pT has some influence on the results of the analysis, but the influence is rather small. In
the following, we use pT = 1%, unless stated otherwise.

We define the significance ratio rsgn as the fraction of the data sets Ŝ
i(f)
j that differed statisticly from

Rf
j :

rsgn =
1

N

N∑

i=1

δi. (5.88)

We count a lesion as detectable, if it was detected in at least 80% of these noise realizations, i.e. rsgn ≥ 0.8.
The discussion given above applies to fluorescence measurements, but it can be transferred to mea-

surements of transmitted laser photons as well. In this case we take the density of transmitted laser
photons ΦF,j through the homogeneous background medium as a reference, but without absorption by
the fluorescent dye. The definition of the noise-free data sets Sx and Rx corresponds to the Rytov-
approximation [142]:

Sx
j = − ln

(
ΦL,j

ΦF,j

)
(5.89)

and

Rx
j = − ln

(
ΦB,j

ΦF,j

)
. (5.90)

Similar to equation (5.82), the data sets Ŝ
i(x)
j with noise added are generated by

Ŝ
i(x)
j = Sx

j + X i
j

(
σ
(
Sx

j

))
. (5.91)

and the χ2
i values as

χ2
i =

∑

j∈M ′

(
Ŝ

i(x)
j − Rx

j

σ(Rx
j )

)2

. (5.92)

with M ′ given by

M ′ =

{
j ∈ M

∣∣∣∣
∣∣Sx

j − Rx
j

∣∣ > 0.001

}
. (5.93)

CW noise model

We define the noise for each of the transmitted photon densities ΦB, Φf,B, ΦL, Φf,L, and ΦF as

σ
(f,x)
X,j =

√
(nrΦX,j)

2 + (na)
2, (5.94)

with X = B, L, or F, and ΦX,j the simulated photon density at the fluorescence or laser wavelength,
respectively. nr and na are free parameters of the noise model and called relative and absolute noise
of the measurement system, respectively. The simulated transmitted photon densities need to be scaled
properly to experimental data, before Eq. (5.94) is evaluated with na given in fA. Furthermore, to
prevent numerical problems introduced by low signal strengths, we additionally use the constraints for
scaled photon densities Φf,B,j > 3na and ΦF,j > 6na. Here, na is the expected noise floor of the detection
setup.



5.2. RESULTS USING FORWARD SIMULATIONS 65

10
2

10
4

10
6

10
8

10
10

10
0

10
2

10
4

10
6

10
8

signal / fA

no
is

e 
/ f

A

Figure 5.13: Dependence of noise on signal strength determined by a calibration experiment. The mea-
surement noise (dots) and the fitted noise model (solid line) are given on a logarithmic scale.

Our noise model describes well the experimentally observed dependency of noise on signal strength as
is shown in Fig. 5.13. We present the measurement noise of a reference scan and its dependence on the
signal strength as dots, whereas the noise model of Eq. (5.94) fitted to the measurement data is given
as a solid line. It can be seen that the noise floor (na = 5.5 fA) is dominant for low signal strengths,
whereas a simple linear relation between noise and signal strength holds true for signals in excess of about
5 ·104 fA. Our model slightly underestimates noise at large signal strengths. The parameters of the noise
model are of course highly dependent on the system hardware (type and output power of lasers, detector
type, quantum efficiency of the detectors, etc.). The procedure to scale simulated to measured data is
described in the following paragraph.

The noise of the data sets Rx
j , Sx

j can be calculated by error propagation from the noise of the
transmitted photon densities at the laser wavelength

σ
(
Rx

j

)
=

√(
σx

B,j

ΦB,j

)2

+

(
σx

F,j

ΦF,j

)2

, (5.95)

σ
(
Sx

j

)
=

√(
σx

L,j

ΦL,j

)2

+

(
σx

F,j

ΦF,j

)2

, (5.96)

and likewise for the fluorescence data sets Rf
j , Sf

j as

σ
(
Rf

j

)
=

√√√√
(

σf
B,j

ΦB,j

)2

+

(
σx

B,j

Φf,B,j

Φ2
B,j

)2

, (5.97)

σ
(
Sf

j

)
=

√√√√
(

σf
L,j

ΦL,j

)2

+

(
σx

L,j

ΦL,j

Φ2
f,L,j

)2

, (5.98)

using Eq. (5.80), (5.81), and (5.94).
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Forward simulations of data

We use the steady state (cw) diffusion approximation to model the propagation of laser and fluorescence
light through the turbid medium [30]. The density per unit frequency interval Φ(x) of laser photons
is obtained by solving the cw diffusion equation, i.e. Eq. (5.11) for ω = 0, where q0(x, xs, λ, ω = 0) =
δ(x − x′

s)/v is the source term given by a delta distribution with its peak value at the (shifted) source
position x′

s (see Sec. 5.1.7) and v the speed of light in the medium, and D(x, λ) and µchrom
a (x, λ) represent

the spatial distribution of the diffusion and absorption coefficients, respectively. For the numerical breast
model (Φ(x, xs, λ) = ΦL(x, xs, λ)), the absorption coefficient µa(x, λ) = µdye

a (x, λ)+µchrom
a (x, λ) consists

of the chromophore contribution µchrom
a (x, λ) and of the contribution of the fluorescent dye. In this case

the parameters D(x, λ), µa(x, λ), µdye
a (x, λ), c(x) are related to two homogeneous regions, i.e. to the

background medium and to the heterogeneity. The density Φ(x, xs, λ) = ΦB(x, xs, λ) of laser photons
is obtained from Eq. (5.11) taking the homogeneous background medium into account only. For the
reference experiment (Φ(x, xs, λ) = ΦF(x, xs, λ)), Eq. (5.11) is solved for the same background medium,
but without fluorescent dye added (µdye

a (x, λ) = 0).

The density of fluorescence photons per unit frequency interval (Φf(x, xs, λ)) is obtained from equation
(5.13), Furthermore, a single fluorescence wavelength λf rather than a fluorescence spectrum is considered,
and the fluorescence quantum yield η is taken to be constant, i.e. to be independent of position x.
We neglect any re-emission of fluorescence by the dye and in the following set D(x, λ) = D(x, λf) for
simplicity, this assumption being justified because of the rather small Stoke’s shift observed of the NIR
dye used. For the breast simulating situation, Φf,L(x, xs, λ) is obtained from Eq. (5.13) for ω = 0 with
the density of laser photons ΦL(x, xs, λ) entering on the RHS, while the density of fluorescence photons
Φf,B(x, xs, λ) describing the background situation is calculated using ΦB(x, xs, λ).

In order to simulate distributions of laser and fluorescence photons using the source and detector
locations of the cup-geometry, the coupled diffusion equations (5.11) and (5.13) were solved on a Finite
Element (FE) grid for ω = 0, using the deal.II finite-element library [113] and a proprietary simulation
software. We used a Robin boundary condition given in Eq. (5.15).

The diffusion approximation holds true for isotropic light sources, but the light is coupled into the
cup by a fiber with a certain numerical aperture (i.e. in a non-isotropic way). As usual, we modeled this
situation by shifting the light source position in beam direction by one transport scattering length and
assume an isotropic source at the shifted position [28].

Fluorescence phantom study

To validate the results on lesion detection sensitivity derived from raw data analysis, a series of phantom
experiments was carried out by Alfons Schipper, Rik Habers, and Michiel van Beek to determine the
detection sensitivity for fluorescent lesions via a contrast detail analysis. The chosen phantoms simulated
the ideal case, when a breast fills the cup entirely, so that no additional scattering fluid is required to fill the
gap between breast and cup surface. A scattering liquid (µchrom

a = 0.0033 mm−1 and µ′
s = 1.3 mm−1 at

the laser wavelength λ = 690 nm) was used as background medium with the fluorescent dye (Omocyanine
[123]) concentration of 10 nM.

The lesion-simulating heterogeneity consisted of a single fluorescent object submerged into the fluo-
rescent scattering fluid. This object was filled with the same scattering fluid, but with different concen-
trations of the dye. The position and size of the object and the contrast between background and lesion
was varied. Fig. 5.14 shows the coordinates of the 2 lesion positions that were examined.

The heterogeneity was made of two hollow delrin cones mounted on top of each other. Three sizes
are available with 10, 15, and 20 mm diameter, corresponding to volumes of 0.26, 0.88, and 2.1 ml,
respectively (see Fig. 5.15).

Table 5.1 gives an overview of all measurements that were performed. Here, clesion is the dye concen-
tration inside the cones.
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Figure 5.14: Cup axial cross section and lesion positions. The black line outlines the cup shape. The dots
are the positions of the fiber rings. The rhombuses show the lesion positions A (y = 30 mm, z = 20 mm)
and B (y = 30 mm, z = 0 mm).

Figure 5.15: Photograph of the phantom lesions. The lesions consist of two hollow cones made of delrin.
The center diameters are 20, 15, and 10 mm.
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Table 5.1: List of all experiments of the fluorescence phantom study. The background concentration of
the fluorescent dye was 10 nM in all cases.

number position size / mm clesion / nM

1 A 20 100

2 A 20 50

3 A 20 30

4 A 20 20

5 A 15 50

6 A 10 50

7 B 20 100

8 B 20 50

9 B 20 30

10 B 20 20

Scaling of simulated data to measurement data

The noise model used in this study has two free parameters: the relative noise nr, and the absolute noise
na. In contrast to the relative noise, the absolute noise is given in some physical units, either as noise
equivalent power, photo current, or else. Simulated data need to be expressed in the same physical units
as used to measure absolute noise in order to evaluate Eq. (5.94).

Fig. 5.16 shows the transmitted light intensities recorded by the measurement system during a typical
reference scan (black plusses). The light intensities are given in fA and displayed on a logarithmic scale.
The dots are the results of a simulation scaled to fit the measured data best. The scaling factor was
determined independently for several reference scans using various wavelengths and optical properties.

Comparison of experiment and theory

In this section, we compare the results of the raw data analysis with the results of the fluorescence
phantom measurements. To this end, we simulated data for lesion positions A and B and all lesion
sizes (small, medium, and large) and all concentration contrasts (1:2, 1:3, 1:5, and 1:10) using spherical
inhomogeneities with the same volume as the delrin double cones (see Fig. 5.15). The optical properties
of the background medium were the same as in the reference experiments, and a 10 nM background
concentration of the dye was used (µdye

a = 0.002 cm−1).
The top image in Figure 5.17 shows the results of the raw data analysis for position A. The gray

level scale shows the significance ratio rsgn (see Eq. (5.88)), where white represents detectable lesions and
black undetectable lesions.

We use symbols to illustrate the results of the phantom measurements, where “+” stands for a visible
lesion, and “0” denotes a lesion that could not be detected on dye concentration images reconstructed
from measured data. According to the raw data analysis, the detection of the smallest lesion is borderline,
i.e. at the detection limit of the instrument. From measured data, the concentration of the fluorescent
dye was reconstructed with axial slices containing position A as shown in Fig. 5.18.

The arrangement of panels of Fig. 5.18 corresponds to the arrangement of symbols shown in Fig. 5.17
(top). All images shown in Fig. 5.18 were scaled separately in such a way that 99% of all voxels fall
into the gray level scale. This is essentially a min/max scaling, but ignores extreme outliers which can
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Figure 5.16: Scaling of simulated to measured data (transmitted laser intensities ΦF). The plus symbols
are data from a reference scan, the dots are the scaled results of a simulation. The scaling factor was
determined by minimizing the difference of the logarithms of measured and simulated data using a least-
squares fit. The accuracy for the scaling factor is estimated to be 10%.

sometimes occur at source or detector positions.
In the images presenting the medium or the large heterogeneity, the lesion is clearly visible, but in the

case of the smallest lesion, the lesion signal approaches the non-uniformity of the background as predicted
by the raw-data analysis.

Fig. 5.17 (bottom) shows the significance ratio rsgn and the reconstruction results of the phantom
measurements at position B. As can be seen from the raw data analysis, the detection of the largest lesion
with lowest concentration contrast is borderline. Accordingly on the images representing reconstructed
dye concentration from phantom measurements (not shown), this lesion is still visible, but its contrast
approaches that of image artifacts. Generally, the visibility of lesions in images of dye concentrations
reconstructed from phantom measurements agrees with the predictions of the raw data analysis. It
follows that for this simple setting (a single lesion in an otherwise homogeneous background) the results
of contrast detail analysis and raw data analysis are not far apart. This conclusion might no longer hold
true, when the lesion is to be detected on a background that shows some structures in itself. Also, the
lesion signal must be larger than background variations in order to be detected. In this case, the spatial
resolution that can be achieved in the reconstruction is important, because increasing spatial resolution
leads to an increased peak height of the lesion in the reconstructed dye concentration. We expect that the
gap between predictions of the raw data analysis and the actual lesion visibility in reconstructed images
will be larger for objects located within a varying background.

Conclusions

We presented a statistical method using simulated data and a realistic noise model to calculate the
performance of a diffuse fluorescence optical tomography system. Our approach allows to numerically
study the detection limits of a heterogeneity on a given background without the need for phantom
experiments and the need for reconstructions. By our method, one calculates the ultimate detection
limit given by the geometry, the background optical properties, lesion optical contrast, and the noise of
the measurement system. In case, a lesion of particular size, location and dye concentration contrast
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Figure 5.17: Results on detection sensitivity from raw data analysis for lesion position A (top) and B
(bottom) for different lesion sizes and dye contrast. The gray level indicates the significance ratio rsgn (see
Eq. (5.88)), where black stands for undetectable lesions, and white represents a detectable lesion. Symbols
mark those settings that were measured in phantom experiments. Detected lesions in the reconstructed
images are marked with a “+” and with “0” otherwise.
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Figure 5.18: Slices of the reconstructed dye concentration through volumes containing the lesion at
position A. All images are scaled separately in such a way that 99% of all voxels fall into the gray level
scale (essentially min/max scaling). The arrangement of the panels corresponds to the detectability
matrix shown in Fig. 5.17 (top).
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falls below the ultimate detection limit it will definitely not be detected in reconstructed images, yet for
lesions above this limit, detection is not guaranteed by our analysis. Our method can be used to predict
the influence of changes of the system hardware on the detectability of lesions. Hardware changes could
be for example different numbers of sources and detectors used, different noise properties, or a different
imaging geometry.

The sensitivity of detection was predicted for a cup geometry using simulated fluorescence data with
a 2:1 to 10:1 dye contrast and lesions of various sizes at different positions within the detection volume.
The predicted sensitivities were compared with phantom measurements of the same system setup (same
geometry and noise) and, generally, predicted and observed lesion detectabilities agreed well.

Analysis of slab and cup geometry for breast imaging

Besides handheld probes primarily used for diffuse optical spectroscopic imaging (DOSI) at the site of
a known breast tumor to deduce tumor metabolic information [9], two general types of source-detector
arrangements exist for diffuse optical imaging, either using parallel plates with slight compression of the
breast, or tomographic systems with sources and detectors distributed on a ring or on the surface of a
cup without compression of the breast tissue.

Cup geometry offers higher patient comfort because the breast is not compressed. Spatial resolution
is isotropic due to the tomographic data acquisition. Slab geometry allows only limited angular sampling
resulting in anisotropic spatial (depth) resolution along the compression direction [143]. This drawback
can be overcome in part by performing both transmittance and reflectance measurements [144]. However,
due to the reduced thickness of the compressed breast signal strengths in transmission are higher and,
generally, a smaller dynamic range is required for detection using a slab system.

Here, we analyze the detection sensitivity of both geometries. Our method is based on a statistical test
on simulated data using a realistic noise model derived from the system’s hardware as explained in the
previous paragraph. Using the same noise model for the cup and the slab geometry, we investigate lesion
detection sensitivity for three different patient types, a small dense breast with high attenuation of NIR
light, a medium size breast with small attenuation and a large breast with average attenuation. Using
the statistical chi-square test on simulated data, we analyze the impact of the measurement geometry
and of several other factors on the sensitivity for lesion detection in slab geometry.

First, we perform simulations that predict the smallest lesion size that can be detected at selected
positions from densities of transmitted laser photons (absorption scan) and fluorescence photons (fluo-
rescence scan) for cup and slab geometry. These results give insight into which factors limit detection
sensitivity for both systems. Further, we investigate how lesion detectability in slab geometry depends
on relative and absolute noise. From this analysis the upper noise limits are derived for the detection of
a 5 mm diameter lesion assuming a fluorescent dye contrast of 5:1.

Since the amount of breast compression is a free parameter, it is important to understand how lesion
contrast and hence detectability depends on slab thickness. By investigating the detection limit for a
lesion at the center of the compressed breast and by varying slab thickness, we simulated how compression
influences detection sensitivity for several noise settings.

Fluorescence detection of a lesion depends strongly on fluorescent dye contrast, i.e. on the ratio of
the concentration of the fluorescent dye in the lesion and the surrounding tissue (background). This
important factor is unknown, and hence we investigated how a slab geometry mammograph performs at
various assumed dye contrasts.

In the appendix further details are given on assumed lesion positions (appendix A.4.1), on source-
detector arrangements (scan heads) and on scan geometry (appendix A.4.2), on phantom geometry, and
on the finite element grids used for the forward model calculations (appendix A.4.3).
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Forward simulations and chi-square analysis

The minimal detectable lesion size is estimated by analyzing simulated data for a numerical phantom
modeling a (homogeneous) breast containing a single (spherical) heterogeneity simulating a lesion. A large
number of simulations was carried out varying the position, diameter, and dye contrast of the lesion. In
addition, three different model breasts with different optical densities were investigated, corresponding
to a small (high attenuation), medium size (small attenuation), and large breast (average attenuation),
respectively. From the noise model, which was deduced from measurements using a cup tomograph, we
added noise to simulated data and determined the detectability of a lesion by the χ2 test (null hypothesis).
Further details of this method are explained in [145]. For each case detection sensitivity was deduced
from simulated data and the results of both geometries were compared.

Numerical phantoms for slab and cup geometry

We used three numerical phantoms each with the same optical properties adapted to the slab and the
cup geometry. A crucial parameter for the comparison is the assumed reduction of the breast thickness
achieved by compression (compression factor) in a slab measurement. We assumed a compression factor
of approximately two which is a conservative estimate.

Data from a clinical trial conducted during the European research project “OPTIMAMM”[13] resulted
in thicknesses of gently compressed breasts ranging between 4 and 9 cm, with an average thickness of
about 6 cm.

The cup measurement system supports three different sizes (80B, 80D, and 80F) to achieve a good fit
of the cup measurement chamber to the size of a patient’s breast. The geometry of each of these three
cups was explained in more detail in [145]. During a clinical trial with the cup measurement system at
the University Medical Center Utrecht 80D and 80F cups were used in most cases. Thus, most likely, the
generally achieved compression is underestimated when we associate the 80B cup with a 6 cm slab as is
done in the following. Furthermore, we compare the 80D cup with the 7 cm slab, and the 80F cup with
the 9 cm slab.

Phantom optical properties

For the cup geometry the numerical breast phantom is chosen to fit each of the three cup sizes perfectly,
so that no additional scattering fluid is needed to match the breast to the size of the cup. The upper rim
of the cup is assumed to touch the breast wall. In slab geometry, the three numerical phantoms simulate
breasts gently compressed between two plates of d = 6 cm, 7 cm, and 9 cm separation, with the breast
being immersed in scattering fluid to fill the remaining volume. The compression plates are assumed to
extend to the breast wall.

To realistically simulate the absorption and scattering spectra of a breast, the absorption coefficient
of the numerical phantom is given by the molar extinction coefficients εi of five (i = 1, ..., 5) constituents
and their concentrations ci(r): Water (H2O, i = 1), deoxyhemoglobin (HbR, i = 2), oxyhemoglobin
(HbO, i = 3), the fluorescent dye (Omocyanine [122], i = 4), and fat (i = 5).

The chromophore absorption can be calculated from the molar extinction coefficients of these con-
stituents [15, 20] as given in Eq. (5.21), and the absorption coefficient of the dye by Eq. (5.22), setting
ǫdye = ǫ4. The extinction coefficients were chosen for water as listed in [117], for HbR and HbO as
reported in [118], and for Omocyanine as given in [122]. The contribution of fat [116] can be ignored
at the excitation (λ = 730 nm) and fluorescence (λf = 780 nm) wavelength used in this study. For the
scattering coefficient, a simplified Mie scattering model as given in Eq. (5.23) is used. Its reference wave-
length λ0 can be chosen arbitrarily and is set to 1000 nm in the following. The absorption coefficient
of the homogeneous part of our numerical breast models, i.e. outside the lesion simulating heterogeneity,
is denoted as µchrom

a,0 , with the dye absorption µdye
a,0 not being included. Setting µt = µchrom

a,0 + µ′
s three
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Table 5.2: Constituents and corresponding concentrations for three numerical breast phantoms. The

breast tissue has an attenuation coefficient of k =
√

3µchrom
a,0 µt at the laser wavelength (730 nm), without

the absorption contribution µdye
a,0 of the fluorescent dye included.

Slab d = 6 cm d = 7 cm d = 9 cm

Cup 80B 80D 80F

H2O 60 % 47 % 47 %

HbR 8 · 10−6 M 5 · 10−6 M 3 · 10−6 M

HbO 17 · 10−6 M 12 · 10−6 M 8 · 10−6 M

dye 2 · 10−8 M 2 · 10−8 M 2 · 10−8 M

µchrom
a,0 0.0048 mm−1 0.0033 mm−1 0.0024 mm−1

µdye
a,0 0.0004 mm−1 0.0004 mm−1 0.0004 mm−1

a 1.62 mm−1 0.95 mm−1 1.59 mm−1

b 0.68 0.68 0.67

µ′
s 2.01 mm−1 1.18 mm−1 1.96 mm−1

k 170 m−1 108 m−1 120 m−1

different values for the light attenuation k =
√

3µchrom
a,0 µt were selected for the phantom ranging from

extremely dense (k = 170 m−1) small breasts to medium dense (k = 120 m−1) large breasts. The optical
properties of the phantoms were defined by first selecting realistic values for blood and water content in
tissue, subsequently the scattering amplitude and scattering power were fine-tuned to match the desired
k-value. In each case, the fluorescent dye concentration amounted to 20 nM in the homogeneous part
outside the lesion simulating heterogeneity.

Inside the numerical breast the single spherical heterogeneity is embedded assuming various diameters
(d = 5 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm). For each lesion, we chose a reduced water fraction
but increased HbR and HbO concentrations, compared to surrounding breast tissue, i.e. 0.8 times the
breast’s concentration of H2O, and twice the breast’s concentration of HbR and HbO [13, 12]. The
scattering amplitude of the lesion is increased by 20%, while the scattering power is decreased by 20%
[13]. However, more recent spectroscopic measurements on 58 malignant breast tumors [9] indicate that
on average HbR, HbO concentrations, and water percentage are increased by a factor of about 1.4.

The dye concentration contrast of the lesion was chosen to be 5 : 1. Table 5.2.2 lists HbR, HbO,
Omocyanine concentrations, and H2O percentage for the background tissue, Table 5.3 for the lesions
of our numerical phantoms. The tissue optical properties of the three different breast types chosen fall
within a realistic range as reported in [146]. In each case fluorescence quantum efficiency η was set to
0.1.

To calculate the detection limits of the two systems at various lesion positions (xl, yl, zl) inside the
slab and cup, five lesions of various diameters were assumed at selected positions inside the breast. For
the cup phantom, the lesions were confined in the yz plane of the cup changing their positions at a step
size of 10 mm. For the slab phantom a detailed explanation of the selected lesion positions is given in
appendix A.4.1.

The scattering liquid without any fluorescent dye added and used to fill the remaining space of the
slab outside the breast has optical properties of µa = 0.0033 mm−1 and µ′

s = 1.3 mm−1. Due to the
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Table 5.3: Optical properties of simulated spherical lesions for the three phantoms of Table 5.2.2. Com-
pared with breast tissue, the lesions have a reduced amount of H2O, and doubled concentrations of HbR
and HbO.

Slab d = 6 cm d = 7 cm d = 9 cm

Cup 80B 80D 80F

H2O 48 % 37.6 % 37.6 %

HbR 16 · 10−6 M 10 · 10−6 M 6 · 10−6 M

HbO 34 · 10−6 M 24 · 10−6 M 16 · 10−6 M

dye 10−7 M 10−7 M 10−7 M

a 1.94 mm−1 1.14 mm−1 1.91 mm−1

b 0.57 0.57 0.56

compression of the breast by the slab mammograph, the sources couple light directly into the tissue at
most positions, scattering fluid near a source position is only present at the tip of the breast.

Detector setup and scan head geometry

In order to investigate the effect of geometry on detection sensitivity, the same sources (lasers) and
photodetectors (diodes) were used in each case. The relative and absolute noise of the detectors is
discussed in detail in [145].

In the slab setup considered, two sources scan in tandem (on-axis arrangement) across an area of
(8× 9) cm2 on both sides of the compression unit at increments of 2.5 mm, and each scan head carries a
detector plate besides the source. Scanning covers an area of (18×13) cm2 (from x = −9 cm to x = 9 cm,
and from y = 0 cm to y = 13 cm) due to the ±5 cm maximal offset in x and +4 cm maximal offset in y
direction between sources and detectors. Due to the number of source positions that are sampled by each
scan head, the slab and cup systems have a comparable number of total source-detector combinations.
A detailed description of the detector positions can be found in appendix A.4.2.

Smallest detectable lesion size for slab and cup geometry

In Figure 5.19 (top) the baseline signal strengths associated with different source-detector combinations
of the slab geometry are plotted versus the corresponding source-detector distances. Noise-free simulated
data are integrated into this figure for the three homogeneous breast phantoms with d = 6 cm (circles),
7 cm (squares), and 9 cm (triangles) with the lesion simulating heterogeneity removed and with the
scattering liquid added to fill the remaining slab volume. The laser light had an intensity incident on the
surface of the phantom of about 5 W/cm2 at a dwell-time of 100 ms, which was below but close to the
regulatory limit2. All simulated data have been converted to absolute units (fA) as explained in [145].

In Fig. 5.19 absorption data are represented by open symbols, whereas filled symbols correspond
to fluorescence data. Absorption signal strengths for a particular source-detector combination j corre-
sponds to the density of transmitted laser photons ΦB,j through the homogeneous breast model, being
proportional to the current at the particular photodiode detector. Likewise, fluorescence signal strength
corresponds to the density of transmitted fluorescence photons Φf,B,j through the homogeneous breast
phantom. The dotted horizontal line represents the absolute noise floor na = 5.4 fA.

2European Standard EN 60825-1 Safety of laser products Part 1, Equipment classification, requirements and user’s

guide, March 1994.
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For absorption scans, all simulated data are above the absolute noise level by several orders of mag-
nitude, but for fluorescence scans some off-axis data at large source-detector distances are below the
absolute noise level. Due to the high attenuation coefficient of k = 170 m−1 of the d = 6 cm slab
phantom, some data corresponding to low signal strengths reach the absolute noise level even at smaller
source-detector distances. In Fig. 5.19 (right), the three symbols (circle, square, and triangle) correspond
to the 80B, 80D, and 80F cup, respectively. Fig. 5.19 shows the large dynamic range of absorption and
fluorescence signals of the cup geometry compared with the slab geometry.
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Figure 5.19: Noise-free signal strength for slab (left) and cup (right) geometry calculated from three
homogeneous numerical breast phantoms, d = 6 cm/80B cup (circles), 7 cm/80D cup (squares), and
9 cm/80F cup (triangles) with (top) and without (bottom) additional scattering fluid. Open symbols
represent simulated absorption data, filled symbols correspond to simulated fluorescence data. The
horizontal dotted line indicates the absolute noise level.

The parameters of the noise model are chosen according to the photodiode detectors with large
dynamic range used in the existing cup system. Accordingly, the absolute noise was set to na = 5.4 fA.
This value was deduced from a reference scan with the existing cup mammograph using the scattering
fluid only and 100 ms integration time.

Lesion detection limits corresponding to absorption and fluorescence measurements were obtained
from the raw data analysis. Forward model calculations for all 6 phantoms (three slab thicknesses and
three cup sizes) were performed using the background and lesion optical properties given in Table 5.2.2
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and 5.3, respectively. Subsequently, noise was added to the simulated data, using N = 100 realizations
of noise throughout this study.

The results on detection sensitivity are shown in Fig. 5.20 for the slab for an assumed relative noise
level of nr = 1%. Detection limits are given for d = 6 cm (left), 7 cm (middle), and 9 cm (right)
thicknesses of absorption (top) and fluorescence (bottom) scans. The gray scale level of each square
represents the minimal detectable lesion diameter at this position. A black square indicates that none
of the lesions considered can be detected. The solid line shows the outer contour of the simulated breast
and the black dots are the source positions of the two scan heads in the x = 0 slice. The detection limit is
quite homogeneous along the z-direction throughout the entire breast phantom. However, the detection
limit (lesion diameter) increases at the breast tip (e.g. d = 6 cm, absorption) due to the presence of the
additional scattering fluid, and near the chest wall (e.g d = 9 cm, fluorescence) due to the scan head
geometry and the undersampling of this breast area. A lesion of 7.5 mm diameter is detectable at the
center of the breast in all six cases. At d = 6 cm even a lesion of 5 mm diameter is detectable at the
center position in an absorption scan. The slab system allows to detect lesions that are located closer to
the breast wall by 1 cm than the closest source position sampled.

Results on detection sensitivity for the cup geometry at a relative noise level of nr = 1% and an
absolute noise of na = 5.4 fA are presented in Fig. 5.21 with the same arrangement of panels with respect
to breast type, absorption, and fluorescence data as in Fig. 5.20 and using the same gray level scale.
Due to the larger distances between sources and detectors, the noise floor affects detection sensitivity
more strongly, especially for low intensity fluorescence measurements. Therefore, only large lesions can
be detected in the case of a dense breast or a large breast.

Dependence of detection limits on noise

In this section we investigate how relative and absolute noise contributions influence detection limits in
slab geometry. For this purpose, we compare simulations with different noise settings, varying both the
absolute and relative noise.

Sensitivity calculations were performed at four different settings of relative noise (nr = 1%, 0.5%, 0.1%,
and 0%) and two settings of absolute noise (na = 5.4 fA, 0.54 fA). This approach allows us to determine
the maximal detector noise that can be tolerated to reach a given detection limit at the center of the slab.
A relative noise of 0.1% can be achieved in practice, when laser and fluorescence photons are detected
simultaneously avoiding sequential scans at both wavelengths.

In Fig. 5.22 we show how relative noise affects the detection of a 5 mm diameter lesion keeping the
absolute noise fixed at na = 5.4 fA. Each square shows the maximal relative noise level that still allows to
detect of the lesion at this position. A black square indicates that even without any relative noise (nr = 0)
the lesion can not be seen because of the absolute noise floor. The results are given for absorption (top
row) and fluorescence (bottom row) scans for the phantoms d = 6 cm, d = 7 cm, and d = 9 cm (left,
middle, and right column).

The different gray scale levels of the squares show that a relative noise level between 0 and 1% is
needed to detect the 5 mm diameter lesion. A relative noise of 0.5% would be sufficient to detect this
lesion in most of the breast volume for the three given absorption scans.

At a relative noise of 0.1% the 5 mm diameter lesion can be detected within the entire bulk in
absorption and fluorescence scans. Apart from the fluorescence scan of the d = 9 cm phantom this lesion
can be detected even 1 cm closer to the chest wall than the closest source position sampled.

It seems unnecessary to reach relative noise levels below 0.1%. Such improvement would only allow
to additionally detect a lesion close to the chest wall of the d = 9 cm case. Everywhere else, a relative
noise level of 0.1% seems adequate for a detection of 5 mm diameter lesions.



78 CHAPTER 5. FORWARD MODELING

−2 0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

y / cm

z 
/ c

m

−2 0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

y / cm

z 
/ c

m

−2 0 2 4 6 8 10

−5

−4

−3

−2

−1

0

1

2

3

4

5

y / cm

z 
/ c

m

−2 0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

y / cm

z 
/ c

m

−2 0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

y / cm

z 
/ c

m

−2 0 2 4 6 8 10

−5

−4

−3

−2

−1

0

1

2

3

4

5

y / cm

z 
/ c

m

lesion diameter / mm
5 7.5 10 12.5 15 >15

Figure 5.20: Detection limits (diameter of spherical lesion) deduced from the χ2 test and an assumed 80%
lesion detectability limit [145] of absorption (top) and fluorescence (bottom) scans for nr = 1% relative
noise, and na = 5.4 fA absolute noise. Results are given for d = 6 cm, d = 7 cm, and d = 9 cm slab
thickness (left, middle, and right column) with background and lesion optical properties listed in Tables
5.2.2 and 5.3, respectively. The gray scale value of each square represents the minimal lesion diameter
that can be detected at the given lesion position. Black means that none of the considered lesions could
be detected. The black dots indicate the source positions in the x = 0 slice on both compression plates.
The radius vector of the spherical calotte simulating the breast tip is included for easy comparison with
Fig. A.4 illustrating the geometry of the breast phantoms.
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Figure 5.21: Detection limits of the cup system for absorption (top) and fluorescence (bottom) scans
deduced from the χ2 test and a 80% detectability of the lesions for nr = 1% relative noise and na = 5.4 fA
absolute noise. Results are given for the 80B, 80D, and 80F cup (left, middle, and right column). The
gray scale value of each square represents the minimum lesion diameter that can be detected at the given
lesion position. Black means that none of the considered lesions could be detected. The black dots
indicate the source positions on the cup surface in the x = 0 slice.
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Figure 5.22: Relative noise limits for the detection of a 5 mm diameter lesion in absorption (top) and
fluorescence (bottom) scans deduced from the χ2 test for a 80% detectability of the lesion (x = 0 slices).
Black indicates that the lesion can not be detected due to the absolute noise floor of na = 5.4 fA.
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Dependence on compression for slab geometry

To investigate the effect of compression on lesion detection sensitivity, we simulated a compressed breast
with reduced breast thicknesses using the optical properties of the 80B case (see Tab. 5.2.2 and 5.3), i.e.
assuming an attenuation k = 170 m−1.

The slab thickness was varied from d = 9 cm to d = 3 cm in increments of 0.5 cm. The entire
geometry including source and detector positions, lesion position and diameters, and the FE grid were
kept the same for all thicknesses, i.e. the geometry was not scaled down to the reduced slab thickness;
instead, both rim areas overlapping the scanning surface were clipped, to produce the desired thickness.

It was assumed that the optical properties were identical for all thicknesses, which is a rather crude
approximation since breast compression will influence blood flow, at least at high pressures.

The sources scanned the same area as described previously for the d = 6 cm case. To reduce compu-
tational efforts, lesions of various diameters were assumed at one position only (xl = zl = 0, yl = 3 cm),
i.e. close to the center of the slab. Simulations were carried out for diameters of 3 mm, 3.5 mm, 4 mm,
4.5 mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. For diameters below 10 mm, the FE grid was
additionally refined at the lesion position when simulating absorption and fluorescence scans for a homo-
geneous breast, a breast with the lesion in place, and the reference scan.

For an optically dense breast with k = 170 m−1 it is expected that compression will dramatically
improve detection sensitivity, because the average length of the photon trajectories through the tissue
dominates sensitivity. This can be seen by plotting the lesion signal over lesion size and slab thickness.
The effect of compression on lesion signal and hence lesion detectability was simulated and results are
illustrated in Fig. 5.23 and Fig. 5.24.

Fig. 5.23 shows the largest signal change due to the presence of the lesion at the position assumed
above, i.e. the relative lesion fluorescence signal

Lf = max
j

(
Sf

j − Rf
j

Rf
j

)
, (5.99)

for the simulated parameter space (breast thickness from 3 cm to 9 cm in increments of 0.5 cm, lesion
diameter from 3 mm to 1.5 cm). Here, Sf

j = Φf,L,j/ΦL,j is the ratio of densities of transmitted fluorescence

photons, and transmitted laser photons with the lesion in place and Rf
j = Φf,B,j/ΦB,j the corresponding

ratio with the heterogeneity removed. The subscript j denotes a particular source-detector combination.
A motivation and detailed discussion of these parameters can be found in [145].

As can be seen in Fig. 5.23, the relative lesion fluorescence signal decreases from more than 20% to
below 0.5% by varying breast thickness and lesion diameter within the limits given above.

For a lesion diameter of 5 mm the relative lesion fluorescence signal is below 5% (k = 170 m−1) at
all thicknesses (d ≥ 3 cm) and even below 0.5% at breast thicknesses exceeding 7 cm. Therefore, it can
be anticipated that the total noise on the data must be below 0.5% when a 5 mm diameter lesion is to
be detected. Support for this simple scaling approach to give correct estimates for noise requirements is
provided by the following results of detailed simulations.

In Fig. 5.24 we present detection limits for various selected relative and absolute noise parameters for
a lesion at the center position. The two images correspond to different absolute noise floors of na = 5.4 fA
(top) and na = 0.54 fA (bottom). For each of the two scenarios we calculated detection limits (lesion
diameters) for different relative noise values (nr = 1%, 0.5%, 0.1%, and 0%) and plotted the lesion
detection limits for each of these four relative noise settings as a function of breast thickness. The gray
scale coding indicates the relative noise level required for detection of the lesion of a particular diameter.
A region associated with a certain gray level indicates how detection sensitivity changes with breast
thickness at the center position. The region in pale gray means that a lesion can not be detected at all,
due to the presence of the noise floor.
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The detection limit suffers strongly from the absolute noise, for a slab thickness of 7 cm or larger. For
such compressed breast thicknesses only large lesions with diameters of 1 cm or larger can be detected at
the center position.

For a slab thickness of d = 9 cm signal attenuation becomes so strong that fluorescence detection
of a lesion is hardly possible. At this thickness, lesions can only be detected with diameters of 1.4 cm
at least. However, it should be kept in mind that the strong attenuation coefficient of k = 170 m−1 is
generally associated with small breasts, whereas large breasts, yielding a thickness of 9 cm after gentle
compression exhibit lower attenuation. Rather, the purpose of this section is to demonstrate the strong
dependence of detection sensitivity on breast thickness.

Fig. 5.24 (bottom) shows the simulation results assuming an absolute noise floor one order of magni-
tude lower, i.e. na = 0.54 fA. Such a reduction of the noise floor can be achieved by using e.g. photomul-
tipliers instead of photodiodes, and the associated gain in detection sensitivity can be seen by comparing
Fig. 5.24 top and bottom. For the lower absolute noise floor the region indicating undetectable lesions
has shrunk considerably. Fig. 5.24 bottom also shows that little can be gained in detection sensitivity by
reducing the relative noise below the 0.1% level.
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Figure 5.23: Relative lesion fluorescence signal Lf (in %) depending on true lesion diameter and breast
thickness (k = 170 m−1).

Detection sensitivity and dye contrast for slab geometry

One important parameter for fluorescence enhanced optical mammography is the fluorescent dye contrast.
While specific tumor targeting dyes are expected to achieve highest concentration contrast, such dyes
are presently not available for clinical use. Rather, unspecific fluorescent dyes exploiting the enhanced
vascular permeability of tumors are likely to become available first. Concentration contrast between
tumor and surrounding tissue are expected to be in the range of 2:1 to 5:1 for such dyes. In this section
we investigate to what extent lesion detection sensitivity improves with concentration contrast. For this
purpose we calculated lesion detection sensitivity for an optically dense breast (k = 170 m−1, d = 6 cm)
assuming various lesion diameters (3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, and
15 mm) and dye contrasts of 1.5:1 to 5:1 at increments of 0.5 with the lesion located at the position
xl = zl = 0, yl = 3 cm and assume a fluorescence quantum efficiency of the dye of η = 0.1. Again, the FE
grid was refined at the lesion position for lesion diameters below 10 mm when performing simulations of
absorption and fluorescence scans with and without the lesion being present and for the reference scan.

In Fig. 5.25 (top) we plot the relative lesion fluorescence signal Lf as defined in Eq. (5.99) versus the
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Figure 5.24: Lesion detection limits (lesion diameter) versus thickness of compressed breast for various
relative and absolute (na) noise levels. A white area indicates a lesion of corresponding diameter can
be detected at the 1% relative noise level in a compressed breast with associated breast thickness (k =
170 m−1). The different gray scale areas indicate that the lesion can be detected at the corresponding or
lower relative noise. The pale gray area shows that no lesion can be detected due to the presence of the
absolute noise floor.
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true lesion diameter and the breast thickness. Lf varies between 10% and slightly below 0.1% in the entire
sampled parameter space. For the concentration contrast of 2:1, a lesion of 5 mm diameter positioned at
the center produces a signal being at most 0.1% larger than the background. It follows that the noise on
the signal must be below this threshold if the lesion is to be detected.

The plot in Fig. 5.25 (bottom) shows the detection sensitivity (lesion diameter) assuming an absolute
noise floor na = 5.4 fA. The diagram shows the detectability for four settings of relative noise (nr = 1%,
nr = 0.5%, nr = 0.1%, and nr = 0%) encoded by the gray scale values. A pale gray colored region
indicates that no lesions can be detected, not even in the absence of relative noise because of presence of
the absolute noise floor.

The graph shows how strongly the detection sensitivity limit depends on concentration contrast. A
contrast of at least 2.5:1 is required to detect a 5 mm diameter lesion at the center position (d = 6
cm). Surprisingly, higher concentration contrasts will only moderately improve lesion detection limits,
provided relative noise can be kept at the 0.1% level.

Conclusions

We numerically investigated the detection of a single scattering, absorbing and fluorescent (spherical)
heterogeneity simulating a breast bearing a tumor after administration of a fluorescent dye as unspecific
contrast agent. The lesion is embedded in an otherwise homogeneous background medium of similar
scattering and absorption properties, but lower concentration of the fluorescent dye. Three different
numerical breast phantoms corresponding to a small strongly attenuating breast, a medium size (small
attenuation), and a large (average attenuation) breast were used in our study, simulating densities of
transmitted laser and fluorescence photons for two different source-detector geometries, i.e. a cup-based
tomographic mammograph (cup-geometry) and a scanning mammograph, where the breast is gently
compressed between two parallel plates (slab geometry).

Lesion detection sensitivity, expressed by the diameter of the smallest spherical heterogeneity that can
be detected in absorption and fluorescence scans, was derived from simulated data with noise added taken
from a realistic noise model, applying a chi-square test (null hypothesis). Lesion detection sensitivity was
determined for the three different breast models and for both (cup, slab) geometries, systematically
varying the position of the lesion within the breast volume. For the slab geometry, lesion detection
sensitivity was additionally explored changing relative as well as absolute noise contributions. Because of
the smaller thickness of the compressed breast, lesion detection sensitivity of the slab geometry depends
on relative noise contributions, the noise floor plays a minor role only due to the higher transmitted laser
and fluorescence intensities. In contrast, because of the larger source-detector separations sampled by the
tomographic mammograph and hence lower transmitted intensities, lesion detection sensitivity is limited
in this case by the absolute noise.

Lesion detection sensitivity is fairly homogeneous throughout the slab volume. Except for large thick-
nesses of the compressed breast, the detection sensitivity drops slightly towards the mammilla due to the
presence of the scattering liquid used to fill the remaining slab volume not covered by the breast. We
systematically investigated how detection of a lesion at the center of the breast improves with increased
compression. A 5 mm diameter lesion is the required detection limit for an optical mammograph to be
competitive with existing modalities. At a relative noise level of 0.1% a 5 mm diameter lesion can be
detected in almost the entire volume of the compressed breast at the absorption contrast (2:1) and fluo-
rescent dye concentration contrast (5:1) assumed for the three different breast models. In slab geometry
lesions can be detected being closer to the breast wall by up to 1 cm compared to the closest source or
detector position.

A dye concentration contrast below 2.5:1 does not allow to detect a 5 mm diameter lesion at the center
of a small dense (k = 170 m−1) compressed breast (d = 6 cm) in fluorescence scans. Concentration con-
trasts above this level are needed to detect a lesion of this size. The increase in lesion detection sensitivity
is rather limited at higher concentration contrasts, provided the relative noise can be maintained at the
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Figure 5.25: Relative lesion fluorescence signal Lf (in %) depending on fluorescent dye concentration
contrast and true lesion diameter (top). Detection limits (lesion diameter) versus fluorescent dye con-
centration contrast (bottom) for various relative noise levels at fixed absolute noise floor (na = 5.4 fA).
A white region indicates that lesions with corresponding diameters and concentration contrast can be
detected at a relative noise of nr = 1% or better. The same holds true for regions with other grayscale
values indicating the corresponding relative noise level. The region in pale gray shows, that no lesion can
be detected due to the presence of the absolute noise floor.
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0.1% level.
All lesion detection sensitivities reported in this section refer to a homogeneous background on which

the absorbing and fluorescent lesion is to be detected. In case this background has some structure in
itself, relative and absolute noise may no longer represent the dominant limitations rather than the spatial
variations of the background signals.



Chapter 6

Reconstruction algorithms and

methods

Due to the many scattering events of NIR light in (breast) tissue, reconstruction for diffuse optical
tomography is a challenging task. As NIR light does not travel from the source to the detector directly
(like in X-ray imaging), we are not only sensitive to the optical properties on the line of sight between
source and detector, but instead probe an extended volume. Detection sensitivity of DOT is not constant
throughout the investigated tissue, but instead is higher close to source and detector positions, increasing
the complexity of reconstructions even further and the probability of artefacts in the reconstruction
images at these positions.

Several reconstruction methods have been adapted to diffuse optical tomography like tomosynthe-
sis, which has the advantage of being a fast and robust reconstruction method but is limited to planar
geometries. Additionally, (CT-like) Radon transformation based reconstructions have been carried out,
neglecting the scattering of light inside the tissue sampled [147, 148], but results from patient data seem
to be inconclusive. As a promising new method, shape function reconstruction for optical mammography
is still under development [149, 150, 151] but until now has not been used with clinical data. Furthermore,
computationally intensive RTE based reconstructions [152] and hybrid reconstructions combining both,
the RTE and the diffusion equation [106, 107], were applied to clinical data mainly to volumes contain-
ing void or non-scattering regions (e.g. optical imaging of the brain), i.e. volumes, where the diffusion
approximation is not longer valid everywhere.

Considerable progress has been made over the last years adding anatomic prior knowledge (spatial
priors) from other modalities (e.g. MRI) to the DOT reconstruction [81, 82]. Although being promising,
such reconstructions will not be discussed here, for a multimodal approach was not aim of this thesis.
Instead, we perform reconstructions based on forward model calculations of the diffusion approximation
carried out on an FE grid, as was proposed in [28, 153, 29, 115]. Reconstructions of absorption and
scattering coefficients are carried out iteratively (nonlinearly) in two alternating steps:

i) Data for all source-detector combinations is simulated for assumed spatial distributions of absorp-
tion and diffusion coefficients using the diffusion equation. At the first iteration step, data is
simulated assuming homogeneous optical properties, i.e. due to the lack of prior information we
assume optical properties corresponding to the scattering liquid used in the reference scan for the
breast tissue as start value. In subsequent iterations, the estimate of the optical properties is based
on the last reconstruction result.

ii) By using a perturbative approach (Rytov approximation [142]) deviations between simulated and
measured data are used to update the optical properties that have been assumed in the forward

87



88 CHAPTER 6. RECONSTRUCTION ALGORITHMS AND METHODS

model simulations. These improved optical properties are the reconstructed images of absorption
and scattering coefficients.

Forward model simulations and reconstruction steps are iterated until convergence of the reconstructed
optical properties is reached.

Simultaneous reconstruction of absorption and reduced scattering coefficients can be achieved from
time-resolved or frequency domain measurements only, but not from cw measurements taken at a single
wavelength. Nonetheless, such separation of µa(x, λ) and µ′

s(x, λ) is crucial for a quantitative determina-
tion of optical properties. Therefore, prior to reconstructions based on cw measurements, averaged optical
properties of breast tissue are calculated from multi-wavelength cw measurements performed with the
Philips tomographic fluorescence mammograph using a spectral model. The feasibility of such spectral
fit of optical properties in the presence of a scattering fluid is shown by numerical phantoms and by de-
termining optical properties of breast tissue of patients that attended a clinical study. Subsequently, the
fitted averaged optical properties of a patient’s breasts were used to initialize the nonlinear reconstruc-
tions of clinical data, showing improvements in reconstructed images over the results obtained assuming
general optical properties of breast tissue.

For fluorescence reconstruction, i.e. the reconstruction of the concentration of an exogenous fluorescent
dye serving as contrast agent, the (linear) Born approximation is used, which is equivalent to the Rytov
approximation in first order. Hence, fluorescence reconstructions are carried out analogously but non-
iteratively. For simplification of numerical calculations, the fluorescence emission was modeled at a single
wavelength throughout this thesis, not taking the emission spectrum of a fluorescent dye into account.
Furthermore, although reabsorption of fluorescent photons by the fluorophore are taken into account, the
emission of fluorescence being proportional to η2 is neglected.

6.1 Theoretical background

6.1.1 Linear reconstruction based on Rytov and normalized Born approxi-

mation

We motivate the Rytov (laser radiation) and normalized Born (fluorescence radiation) approx-
imations for solving the frequency domain diffusion equation with spatially varying optical
properties. The sensitivity factors that weight the influence of local changes in the absorp-
tion and diffusion coefficient and of the concentration of a fluorescent dye on transmitted
photon densities are introduced and absorption sensitivity factors for a homogeneous medium
are illustrated. The derivation of the Rytov and normalized Born approximations from the
diffusion equation is given in appendix C.2.1.

The reconstruction of absorption and scattering coefficients is based on the Rytov approximation.
This approximation describes how ratio of the photon density transmitted through the breast partially
filling the measurement chamber (cup) to the photon density recorded when the cup is filled with the
reference (scattering) liquid is related to changes (differences) δµa in the absorption coefficient and to
changes δD in the diffusion coefficient with respect to the reference values. More explicitly, denoting the
laser photon density transmitted through the breast and through the reference liquid as Φ(xdi

, xsi
, λ, ω)
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and Φ0(xdi
, xsi

, λ, ω), respectively, the Rytov approximation reads [142]

ln

(
Φ(xdi

, xsi
, λ, ω)

Φ0(xdi
, xsi

, λ, ω)

)
= − v

∫

Ω

δµa(x, λ)
G0(xdi

, x, λ, ω)G0(x, xsi
, λ, ω)

G0(xdi
, xsi

, ω)︸ ︷︷ ︸
a′

i
(x,λ,ω)

dΩ

− v

∫

Ω

δD(x, λ)
∇G0(xdi

, x, λ, ω) · ∇G0(x, xsi
, λ, ω)

G0(xdi
, xsi

, λ, ω)︸ ︷︷ ︸
ba′

i
(x,λ,ω)

dΩ,

(6.1)

where i denotes the particular source-detector combination. In first order (linear approximation) the
propagation of light through the turbid medium is described by using homogeneous Green’s functions
G0(x, x′, ω, λ), which are the pulse response functions1 (fundamental solutions) of the diffusion equa-
tion (5.11), i.e. these functions describe the propagation of light though a medium having a homoge-
neous absorption and diffusion coefficient for a δ-like source located at x′. Therefore, the first inte-
gral kernel a′

i(x, λ, ω) in Eq. (6.1) can be interpreted as corresponding to the probability that light
travels from the source position xsi

to position x, where it is attenuated by the perturbation of the
absorption coefficient δµa(x, λ), before it reaches the detector at position xdi

. In other words, the in-
tegration kernel a′

i(x, λ, ω) weights the effect that a change δµa(x, λ) in the absorption coefficient at
position x has on the (normalized) difference (Φ(xdi

, xsi
, λ, ω) − Φ0(xdi

, xsi
, λ, ω))/Φ0(xdi

, xsi
, λ, ω) ≈

ln {Φ(xdi
, xsi

, λ, ω)/Φ0(xdi
, xsi

, λ, ω)}. An analogous interpretation can be given for the second integra-
tion kernel â′

i(x, λ, ω), weighting the effect of changes δD(x, λ) in the diffusion coefficient at position x

on this normalized difference. Since diffusion is driven by gradients, the second kernel â′
i(x, λ, ω) involves

gradients of the (homogeneous) Green’s functions.
Strictly speaking, the light traveling from source at xsi

to the detector at xdi
samples the entire volume

Ω as can be seen from the volume integrals of Eq. (6.1). However, the norm of the weighting factors
(sensitivity factors) a′

i(x, λ, ω) and â′
i(x, λ, ω) are larger than a chosen cut-off value within a restricted

volume only, defining a “sensitivity volume” essentially sampled by the photons. For illustration, Fig.
6.1 shows the kernel a′(x, y = 0, z, ω = 0) for a homogeneous slab (top row) for zero source-detector
offset (left) xs = (0, 0, 0), xd = (0, 0, 6 cm) and for a source-detector offset of 5 cm xd = (5 cm, 0, 6 cm).
The weighting factors a′(x, y = 0, z, ω = 0) are normalized to the value at the corresponding center
position, i.e. on the center line from the source to the detector at the particular depth z. The two panels
in the bottom row show the kernels a′(x, y = 0, z, ω = 0) in the presence of a spherical pure absorber
(absorption contrast 5:1) that have been calculated using exact Green’s functions rather than those of
the homogeneous medium. As can be seen from Fig. 6.1, the shape of the sensitivity volume depends
(banana shapes [154]) on the location of the source xs and the detector xd, and the sensitivity factors
are strongly affected by the presence of the absorber.

To reconstruct optical properties, δµa(x, λ) and δD(x, λ) have to be calculated by inversion of the
integral equation Eq. (6.1). For this purpose, the integral equations for all source-detector combinations
i are discretized on a grid and the resulting system of linear equations is written as a matrix equation,
whereby optical properties at each grid vertex can be in principle calculated by a matrix inversion. To
prevent numerical errors [155], care has to be taken in the selection of the FE grid. Throughout this
thesis, the same grids were used for the forward model simulations and reconstructions.

Due to the dimension of the matrix describing the linear system of equations, an analytical inversion
is not feasible, thus calculations can only be performed by an iterative method, e.g. using conjugate
gradient [153, 156] (CG) or the algebraic reconstruction technique (ART) for inversion. While matrix
inversions by CG in general need fewer iteration steps for convergence, this method has a higher memory
demand and needs longer times for calculations at each iteration step. It was shown in research related to
this thesis that the residuum of simulated and measured data converges more slowly when using an ART

1Green’s functions obey the symmetry relation G0(x, x′, ω, λ) = G0(x′, x, ω, λ).
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inversion method compared with a CG inversion, but the properties reconstructed by ART can converge
faster in certain scenarios [157].

The number of unknowns during reconstructions, i.e. the optical properties associated with each ver-
tex of the reconstructed volume, is larger than the number of simulated or experimental data collected
at the surface and the presence of noise results in an ill-posed and ill-conditioned problem. Furthermore,
ill-posedness is caused by a strong overlap of the sensitivity volumes of neighboring source and detector
positions. In addition, reconstruction of DOT suffers from nonuniqueness [158], for different distributions
of optical properties inside the volume can result in the same transmitted photon densities at the positions
sampled on the surface. Therefore, a Tikhonov regularization [159] has to be used during reconstructions,
however, affecting the results. Above all, the reconstruction is based on a first order perturbation ap-
proach, being limited to small deviations in optical properties. This may be true for phantoms e.g. with
homogeneous optical properties apart from a small heterogeneity with slightly changed absorption and
diffusion coefficients. In contrast, breast tissue is rather heterogeneous and may have optical properties
significantly different from the scattering liquid used in the reference experiment violating the prerequisite
of perturbation theory. In this case, a homogeneous breast model with an estimated shape and fitted
(average) tissue optical properties derived from multi-wavelength in vivo data is a better starting point
and can bypass this limitation [160].

In order to apply the diffusion approximation, generally the (point) source is shifted into the tissue by
by one reduced scattering length. Therefore, the maximum of the corresponding Green’s function is lo-
cated inside the tissue and not at its surface, as expected in the experimental situation. Consequently, the
component of the gradient of the Green’s function in beam direction changes sign at the (shifted) source
location. Although still producing artifacts during the reconstruction, this problem can be meliorated
partially by using Gaussian blurred or exponentially attenuated sources for the numerical calculation of
Green’s functions.

In the presence of a fluorescent dye of concentration c(x), the ratio of the transmitted density of
fluorescence photons Φf(xdi

, xsi
, λ, ω) at the detector position xdi

to that of transmitted laser photons
Φ(xdi

, xsi
, λ, ω) is related to the dye concentration by the normalized Born approximation [139, 140],

Φf(xdi
, xsi

, λ, ω)

Φ(xdi
, xsi

, λ, ω)
=

vηǫdye(λ) ln 10

1 + iωτ

∫

Ω

c(x)
G0(xdi

, x, λf , ω)G0(x, xsi
, λ, ω)

G0(xdi
, xsi

, λ, ω)︸ ︷︷ ︸
af′

i
(x,λ,ω)

dΩ, (6.2)

where xsi
is the position of the source of (laser) photons (see Sec. C.2.1).

6.1.2 Iterative nonlinear reconstruction of absorption and reduced scattering

coefficients

An iterative scheme based on the linear Rytov and normalized Born approximations is de-
scribed to nonlinearly reconstruct absorption and reduced scattering coefficients. The change
of the nonlinearly computed sensitivity factors due to the presence of a pure absorber over the
first order result is shown. Linear and nonlinear reconstructions of the absorption and reduced
scattering coefficients from simulated noise-free data of a 2D phantom with two heterogeneities
are illustrated and compared.

Modeling the propagation of light in Eq. (6.1) by homogeneous Green’s functions is an approximation.
Although breast tissue is inhomogeneous, we do not know the corresponding Green’s functions prior
to reconstructions. Therefore, reconstructions begin using a homogeneous model. Nonetheless, the
perturbations in the medium can influence the propagation of light significantly as is illustrated in Fig. 6.1
(bottom panels), where the sensitivity profiles are plotted for the same homogeneous medium but with
with an additional sphere (pure absorber, contrast 5:1) of 1 cm radius located at x = 1 cm, z = 3 cm. As
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can be seen, such heterogeneity disturbs the sensitivity profiles, making the use of homogeneous Green’s
functions in Eq. (6.1) questionable, especially when large variations of optical properties are present.
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Figure 6.1: Illustration of normalized sensitivity profiles (banana shapes) in homogeneous (top row) and
inhomogeneous medium (bottom row) for on-axis (left) and off-axis (right) geometry. The spherical
heterogeneity (1 cm radius, located at x = 1 cm, z = 3 cm) has an increased absorption coefficient
(contrast 5:1) and is indicated by the blue circle. The sensitivity profiles correspond to ω = 0.

Taking inhomogeneous optical properties into account during reconstructions improves the predicted
optical properties and the spatial resolution. This effect is illustrated in Fig. 6.2, where absorption and
reduced scattering coefficients (left and right column, respectively) of a numerical 2D phantom repre-
senting a coronal slice through a breast in cup geometry (top row) is reconstructed from (noise-free)
frequency domain data using homogeneous Green’s functions (middle row) and using inhomogeneous
Greens functions calculated iteratively (bottom row). The simulated breast phantom bears two inho-
mogeneities, a pure absorber (contrast 2:1) and one with increased absorption coefficient (contrast 2:1)
and higher reduced scattering coefficient (contrast 1.36:1). The numerical breast does not fill the cup
shape completely and scattering fluid, having a similar attenuation coefficient as the breast but a higher
reduced scattering coefficient, fills the gap between cup (gray region) and breast tissue. The reconstruc-
tions using homogeneous Green’s functions are more blurred compared with the results of the nonlinear
reconstructions, which show more distinct features of constant optical properties.

Even though nonlinear reconstructions use inhomogeneous Green’s functions, the method can fail
to converge, if large perturbations in optical properties compared with the reference scene are present.
Each iteration step is based on first order perturbation theory, and in case the first iteration fails since
changes in the optical properties are too large compared to the reference, subsequent iterations might
not correct the unrealistic optical properties obtained in the first step, and the entire reconstruction
procedure may fail. Hence, initializing reconstructions with a realistic image, i.e. an estimated breast
shape with averaged optical properties derived from in vivo data, improves convergence and is necessary
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Figure 6.2: Comparison of 2D linear and nonlinear reconstructions using simulated (noise-free) frequency
domain data acquired in ring geometry: (top row) phantom optical properties, (middle row) recon-
structed image after linear iteration step, i.e. using homogeneous Green’s functions, and (bottom row)
reconstructed image after seven steps of nonlinear iterations. The same scale applies to all three images
of a column.
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for the nonlinear method, especially when reconstructing patient data (Sec. 6.2.4).

Iterative reconstruction methods are widely used in literature [161]. These reconstructions are ini-
tialized using homogeneous Green’s functions that are updated at each iteration step, taking the recon-
structed optical properties of the last iteration step into account for the following step, resulting in more
accurate optical properties. Such CG based nonlinear algorithms have already been used in reconstruc-
tions of absorption and scattering coefficients of patient data collected in frequency domain [21] but are
limited to smaller numbers of source-detector combinations and grid vertices due to the higher memory
requirement compared with an ART approach [157]. A similar implementation of the nonlinear recon-
struction, as presented in this thesis, has been proposed in [162], but was abandoned because of concerns
about the computational times required. Implementing parallelization of forward model calculations and
developing the sub-volume reconstruction method (Sec. 6.2.3) leads to a sufficient increase in computation
speed.

6.1.3 Discretization of Rytov and Born approximations and algorithms for

numerical reconstructions

The Rytov and normalized Born approximations are discretized to yield a matrix equation
that is solved numerically by FEM for the absorption and reduced scattering coefficients and
for fluorescent dye concentrations (image vectors). Rather than inverting the system matrix,
regularization and ART reconstruction with noise-weighted relaxation and normalization of
image vectors is applied.

In the following, algorithms are introduced that are used throughout this thesis for nonlinear recon-
struction of absorption and scattering coefficients and for reconstruction of fluorescent dye concentrations.
Furthermore, the matrix equations corresponding to the discretization on an FE grid are derived and the
implementation of regularization used during ART based reconstructions is explained.

Using the Rytov-approximation for each iteration step κ of a nonlinear reconstruction algorithm, the
change of the absorption coefficient δµκ

a (x, λ) and diffusion coefficient δDκ(x, λ) between object measure-
ment, with the heterogeneity in place, and reference measurement with (homogeneous) background optical

properties (D(x, λ) = D0(λ), µa(x, λ) = µ0
a(λ) = µchrom

a,0 (λ) + µdye
a,0 (λ), where µdye

a,0 (λ) = ǫdye(λ)c0 ln 10)
can be written as (see Sec. C.2.2)

ln

(
Φ(xdi

, xsi
, λ, ω)

Φ0(xdi
, xsi

, λ, ω)

Φsim
0 (xdi

, xsi
, λ, ω)

Φsim
κ (xdi

, xsi
, λ, ω)

)
= − v

∫

Ω

δµκ
a (x, λ)

Gκ(xdi
, x, λ, ω)Gκ(x, xsi

, λ, ω)

Gκ(xdi
, xsi

, ω)
dΩ

− v

∫

Ω

δDκ(x, λ)
∇Gκ(xdi

, x, λ, ω) · ∇Gκ(x, xsi
, λ, ω)

Gκ(xdi
, xsi

, λ, ω)
dΩ.

(6.3)
Here, Gκ(x, xsi

, λ, ω) is the Green’s function of iteration κ = 0, 1, 2, ... at point x for a point source of
laser photons at xsi

. The iteration κ = 0 corresponds to the homogeneous case. The Green’s function
Gκ(x, xsi

, λ, ω) is obtained by solving Eq. (5.11) for the background medium with absorption and diffusion
coefficient

µκ
a (x, λ) = µ0

a(λ) +
∑

0≤i<κ

δµi
a(x, λ)

Dκ(x, λ) = D0(λ) +
∑

0≤i<κ

δDi(x, λ).
(6.4)

Here, µ0
a(λ) and D0(λ) are the optical properties of the homogeneous medium at the reference scan (see

above) and the source is modeled by a shifted Gaussian blurred or an exponentially attenuated source
term (see Sec. 5.1.7).
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The simulated data Φsim
κ (xdi

, xsi
, λ, ω) is the solution of Eq. (5.11) with the distribution µκ

a (x, λ)
and Dκ(x, λ) = 1/3µ′

s,κ(x, λ) of the absorption and diffusion coefficient and the (unshifted) source
of source-detector combination i located at xsi

, and, in our case, is given by the Green’s function,
i.e. Φsim

κ (xdi
, xsi

, λ, ω) = Gκ(xdi
, xsi

, λ, ω).
Sampling transmitted laser radiation and fluorescence radiation for a total of k source-detector com-

binations i (i = 1, ..., k), the integral equations (6.3) are discretized for p frequency components ωq

(q = 1, ..., p) on an FE grid of N vertices. This yields a system of linear equations y = Ab, with image
update vector b = (δµκ

a (x1, λ), ..., δµκ
a (xN , λ), δDκ(x1, λ), ..., δDκ(xN , λ))T and the 2 · k · p component

signal vector y,

y =




ℜ ln
(

Φ(xd1
,xs1

,λ,ω1)

Φ0(xd1
,xs1

,λ,ω1)

Φsim
0 (xd1

,xs1
,λ,ω1)

Φsim
κ (xd1

,xs1
,λ,ω1)

)

ℑ ln
(

Φ(xd1
,xs1

,λ,ω1)

Φ0(xd1
,xs1

,λ,ω1)

Φsim
0 (xd1

,xs1
,λ,ω1)

Φsim
κ (xd1

,xs1
,λ,ω1)

)

...

ℜ ln
(

Φ(xdk
,xsk

,λ,ω1)

Φ0(xdk
,xsk

,λ,ω1)

Φsim
0 (xdk

,xsk
,λ,ω1)

Φsim
κ (xdk

,xsk
,λ,ω1)

)

ℑ ln
(

Φ(xdk
,xsk

,λ,ω1)

Φ0(xdk
,xsk

,λ,ω1)

Φsim
0 (xdk

,xsk
,λ,ω1)

Φsim
κ (xdk

,xsk
,λ,ω1)

)

...

ℜ ln
(

Φ(xdk
,xsk

,λ,ωp)

Φ0(xdk
,xsk

,λ,ωp)

Φsim
0 (xdk

,xsk
,λ,ωp)

Φsim
κ (xdk

,xsk
,λ,ωp)

)

ℑ ln
(

Φ(xdk
,xsk

,λ,ωp)

Φ0(xdk
,xsk

,λ,ωp)

Φsim
0 (xdk

,xsk
,λ,ωp)

Φsim
κ (xdk

,xsk
,λ,ωp)

)




. (6.5)

The (2kp) × 2N system matrix A is given by

A =




ℜ aκ
1(x1, λ, ω1) ... ℜ aκ

1 (xN , λ, ω1) ℜ âκ
1 (x1, λ, ω1) ... ℜ âκ

1 (xN , λ, ω1)

ℑ aκ
1(x1, λ, ω1) ... ℑ aκ

1 (xN , λ, ω1) ℑ âκ
1 (x1, λ, ω1) ... ℑ âκ

1 (xN , λ, ω1)
...

...
...

...

ℜ aκ
k(x1, λ, ω1) ... ℜ aκ

k(xN , λ, ω1) ℜ âκ
k(x1, λ, ω1) ... ℜ âκ

k(xN , λ, ω1)

ℑ aκ
k(x1, λ, ω1) ... ℑ aκ

k(xN , λ, ω1) ℑ âκ
k(x1, λ, ω1) ... ℑ âκ

k(xN , λ, ω1)
...

...
...

...

ℜ aκ
k(x1, λ, ωp) ... ℜ aκ

k(xN , λ, ωp) ℜ âκ
k(x1, λ, ωp) ... ℜ âκ

k(xN , λ, ωp)

ℑ aκ
k(x1, λ, ωp) ... ℑ aκ

k(xN , λ, ωp) ℑ âκ
k(x1, λ, ωp) ... ℑ âκ

k(xN , λ, ωp)




, (6.6)

where the complex-valued sensitivity coefficients are given by

aκ
i (x, λ, ω) = −v

Gκ(xdi
, x, λ, ω)Gκ(x, xsi

, λ, ω)

Gκ(xdi
, xsi

, λ, ω)
w(x) (6.7)

for absorption and

âκ
i (x, λ, ω) = −v

∇Gκ(xdi
, x, λ, ω) · ∇Gκ(x, xsi

, λ, ω)

Gκ(xdi
, xsi

, λ, ω)
w(x) (6.8)

for scattering. Here, w(x) denotes the Voronoi cell volume [131] associated with the vertex x.
When the convergence criterion of the nonlinear reconstruction is reached at iteration step κc, the

fluorescence reconstruction uses the Born-approximation [139, 140]

Φf(xdi
, xsi

, λ, ω)

Φ(xdi
, xsi

, λ, ω)
=

vηǫdye(λ) ln 10

1 + iωτ

∫

Ω

c(x)
Gκc

(xdi
, x, λf , ω)Gκc

(x, xsi
, λ, ω)

Gκc
(xdi

, xsi
, λ, ω)

dΩ, (6.9)
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with the fluorescence photon density Φf(xdi
, xsi

, λ, ω) per unit interval of angular frequency ω at the
detector position xdi

and for a point source of laser photons at xsi
, and the Green’s functions at the

fluorescence wavelength Gκc
(xdi

, x, λf , ω) for a point source at x emitting at the fluorescence wavelength.
In Eq. (6.9) we have assumed the quantum efficiency η and the fluorescence lifetime τ to be independent
of location x. The Green’s function Gκc

(x, xsi
, λf , ω) is obtained by solving Eq. (5.13) for the inhomoge-

neous medium with the optical properties reconstructed from Eq. (6.4) at iteration step κc, replacing the
expression on the RHS of Eq. (5.13) by −qκc

0 (x, xs, λ, ω), see Sec. 5.1.7. Throughout our reconstructions
from phantom data we used the approximation Gκc

(xdi
, x, λf , ω) = Gκc

(xdi
, x, λ, ω), hence ignoring the

change in optical properties between excitation and fluorescence wavelength. For the phantom experi-
ments analyzed in this thesis, this assumption is well justified since optical properties only slightly change
with wavelengths in the spectral range considered and the Stoke’s shift is comparable to the width of the
fluorescence band.

We note in passing that under the assumptions made (µf
a(x, λ) = µa(x, λ), Df(x, λ) = D(x, λ), and

hence Gκc
(xdi

, x, λf , ω) = Gκc
(xdi

, x, λ, ω)) Eq. (6.9) has a simple physical meaning: setting µdye
a (x, λ) =

ǫdye(λ)c(x) ln 10, the integral

v

∫

Ω

µdye
a (x, λ)

Gκc
(xdi

, x, λ, ω)Gκc
(x, xsi

, λ, ω)

Gκc
(xdi

, xsi
, λ, ω)

dΩ (6.10)

corresponds to the relative increase ∆Φ(xdi
, xsi

, λ, ω)/Φ0(xdi
, xsi

, λ, ω) in laser transmission when ab-
sorption of laser photons by the dye is neglected. It follows

Φf(xdi
, xsi

, λ, ω)

Φ(xdi
, xsi

, λ, ω)
=

η(λ)

1 + iωτ

∆Φ(xdi
, xsi

, λ, ω)

Φ0(xdi
, xsi

, λ, ω)
. (6.11)

For fluorescence reconstruction, the system matrix simplifies to

A =




ℜ af
1(x1, λ, ω1) ... ℜ af

1(xN , λ, ω1)

ℑ af
1(x1, λ, ω1) ... ℑ af

1(xN , λ, ω1)
...

...

ℜ af
k(x1, λ, ω1) ... ℜ af

k(xN , λ, ω1)

ℑ af
k(x1, λ, ω1) ... ℑ af

k(xN , λ, ω1)
...

...

ℜ af
k(x1, λ, ωp) ... ℜ af

k(xN , λ, ωp)

ℑ af
k(x1, λ, ωp) ... ℑ af

k(xN , λ, ωp)




, (6.12)

with the dye concentration sensitivity coefficients given by the general expression

af
i(x, λ, ω) =

vηǫdye(λ) ln 10

1 + iωτ

Gκc
(xdi

, x, λf , ω)Gκc
(x, xsi

, λ, ω)

Gκc
(xdi

, xsi
, λ, ω)

w(x), (6.13)

and the image vector b = (c(x1), ..., c(xN ))T . Using the linear Born approximation, the signal vector of
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Figure 6.3: Scheme of the nonlinear reconstruction of the spatial distribution of optical properties and
fluorescent dye concentration, initialized with a homogeneous distribution at iteration κ = 0.

the fluorescence reconstruction is given by

y =




ℜ Φf (xd1
,xs1

,λ,ω1)

Φ(xd1
,xs1

,λ,ω1)

ℑ Φf (xd1
,xs1

,λ,ω1)

Φ(xd1
,xs1

,λ,ω1)

...

ℜ Φf (xdk
,xsk

,λ,ω1)

Φ(xdk
,xsk

,λ,ω1)

ℑ Φf (xdk
,xsk

,λ,ω1)

Φ(xdk
,xsk

,λ,ω1)

...

ℜ Φf (xdk
,xsk

,λ,ωp)

Φ(xdk
,xsk

,λ,ωp)

ℑ Φf (xdk
,xsk

,λ,ωp)

Φ(xdk
,xsk

,λ,ωp)




. (6.14)

ART reconstruction with noise weighted relaxation and normalized image vector

Calculation of the image vector is carried out by using the algebraic reconstruction tech-
nique, which iteratively uses single rows of the system matrix. To solve the ill-posed and
ill-conditioned system of linear equations, a regularization has to be applied, and details on
its chosen implementation are explained.

Reconstructions are performed using the algebraic reconstruction technique (ART), which has the
advantage that only single rows of the system matrix describing the sensitivity of light inside the volume
for all source-detector combinations is needed at each step (for that reason it is also known as ”row
action method”). The algorithm tries to minimize the difference between the measured data and the
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simulated data (if the regularization term is ignored). ART is known to need more iterations than CG
before convergence is reached, but minimizing the difference between measurement and forward model
data does not imply that the image converges to the true scenario. Furthermore, the first (linear) ART
iteration step can converge faster to the correct image for certain scenarios, although having a larger
residuum in data [157]. Another benefit of ART is its flexibility, where each update step can simply
be adapted to the physical problem, e.g. it was shown in work related to this thesis that ART can
be adapted to spectral reconstructions [157], to reconstructions achieving separation of absorption and
scattering [163], and to reconstructions incorporating different noise (see Sec. 6.1.3).

As mentioned before, the algebraic reconstruction technique acts only on single rows of [164]

A = (Aij)i∈I,j∈J , (6.15)

with I = {1, . . . , 2kp} and J = {1, ..., 2N} for absorption and diffusion reconstruction and J = {1, ..., N}
for fluorescence reconstruction, to solve for

b = (bj)j∈J . (6.16)

The difference between measurement data and forward model data ∆yil
= yil

−
∑

j Ailjb
l
j is reduced at

every ART iteration step l. At each of these iterations, a random row il of the signal vector y is chosen
with associated source-detector combination i and angular frequency component ωq. Subsequently, all
image elements j ∈ J are updated by

bl+1
j = bl

j + rrlx(i, ωq)
Ailj∆yil∑

m

A2
ilm

, (6.17)

where m = 1, ..., 2N for absorption and diffusion reconstructions, m = 1, ..., N for fluorescence recon-
structions, and rrlx being a weighting factor. The ART algorithm uses each source-detector combination,
each frequency component and real and imaginary part of the measurement data once, hence resulting
in 2kp total iterations. For this, the iteration process is initialized at l = 0 with b = 0.

To handle the variations in measurement noise that are associated with transmission and reflection
measurements, with different source-detector combinations (source-detector offsets), and frequency com-
ponents ωq, a noise weighted back projection is introduced [165]. Each ART back projection [164]

xk+1
j = xj + rrlx(i, ωq)

Aij∆yi∑
l A

2
il

(6.18)

is scaled with a noise-dependent relaxation factor

rrlx(i, ωq) =
σerr

0

σerr
i (ωq)

, (6.19)

where σerr
i (ωq) is the noise of angular frequency component ωq at the source-detector combination i.

Since the reconstruction inputs are the real and imaginary parts of

ln

(
Φ(xdi

, xsi
, λ, ωq)Φ

sim
0 (xdi

, xsi
, λ, ωq)

Φ0(xdi
, xsi

, λ, ωq)Φsim(xdi
, xsi

, λ, ωq)

)
(6.20)

and
Φf(xdi

, xsi
, λ, ωq)

Φ(xdi
, xsi

, λ, ωq)
, (6.21)

we estimate the corresponding noise σerr
i (ωq) by analyzing data from a homogeneous region of the object

scan and put it in relation to the lowest signal noise σerr
0 at ω = 0.
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Rather than solving y = Ab we searched for the minimum of

y = argmin
y′

{‖A′b′ − y′‖2 + ‖L(λreg)b
′‖2} (6.22)

to achieve regularization by the parameter λreg. The new matrix A′ = (A′
ij)i∈I,j∈J and the new vector

b′ = (b′j)j∈J are calculated by
A′

ij = Aijγj , (6.23)

and
b′j = bj/γj , (6.24)

with γj = ∆µ⋆
a +µ0

a for j ≤ N and γj = ∆D⋆ +D0 for j > N for absorption and diffusion reconstruction
and γj = 1 for fluorescence reconstruction. The normalization of the vector b makes the image vector b′

dimensionless and effectuates that updates of the image during each ART back projection are distributed
equally for the absorption and the scattering image. Since the norm of b′ for j ≤ N and j > N are of
comparable size, the regularization term λreg has comparable effects on the absorption and scattering
images.

The values ∆µ⋆
a and ∆D⋆ are the estimated (a priori known) absorption and scattering coefficient

deviations of the heterogeneity compared with the homogeneous medium and accelerate the convergence
of the nonlinear reconstruction algorithm.

The regularization matrix L(λreg) has been chosen as a diagonal matrix throughout this thesis with

diag(L) =
(√

λreg(µa), ...,
√

λreg(µa)
︸ ︷︷ ︸

N times

,
√

λreg(D), ...,
√

λreg(D)
︸ ︷︷ ︸

N times

)
, (6.25)

defining a different regularization parameter for the absorption and diffusion coefficients, i.e. λreg(µa)
and λreg(D) respectively. In case of spatial priors being used during the reconstruction (e.g. segmenting
the volume into regions of similar optical properties by analyzing MR images acquired from the patient’s
breast), the regularization matrix L is not diagonal but off-diagonal elements connect coxels which belong
to the same region [166]. However, such spatial priors gained from multimodal approaches were not aim
of this thesis.

Values of the Green’s functions and its gradients are calculated on the FE grid numerically and stored
in a table. The rows of A are calculated on-the-fly from the Green’s function table by the reconstruction
algorithm. A schematic view of the nonlinear reconstruction algorithm is given in Fig. 6.3. The complete
algorithm can be summarized in the following pseudocode:

Algorithm 1: nonlinear reconstruction

Step 1: Collection of measurement data for the object scan, Φ̃(xdi
, xsi

, λ, t), i.e. with the hetero-

geneity in place, and for the reference scan (homogeneous medium), Φ̃0(xdi
, xsi

, λ, t) of
all source-detector combinations i. Fourier-transformation, and additional preprocessing of
measurement data, if needed (see Sec. 6.2.1).

Step 2: Simulation of the reference scan data, Φsim
0 (xdi

, xsi
, λ, ωq), for all source-detector combina-

tions i and all angular frequency components ωq (q = 1, ..., p) used in the reconstruction, by
solving Eq. (5.11) for a homogeneous medium with the absorption coefficient µ0

a(λ) and the
diffusion coefficient D0(λ) of the reference scan.

Step 3: Calculation of the Green’s functions Gκ(xdi
, x, λ, ωq), respectively Gκ(x, xsi

, λ, ωq) for all
detector positions xdi

, all source positions xsi
, and all angular frequency components ωq.

Simulated data Φsim
κ (xdi

, xsi
, λ, ωq) are calculated by the forward model with the recon-

structed spatial distributions µκ
a (x, λ) and Dκ(x, λ) for each source-detector combination i
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and angular frequency ωq. This calculation can be omitted for κ = 0, because in this case
the result is equal to Φsim

0 (xdi
, xsi

, λ, ωq) corresponding to the reference scan.

Step 4: The results obtained in the previous steps (Gκ(x, xsi
, λ, ωq), Gκ(xdi

, x, λ, ωq), Φsim
0 (xdi

, xsi
, λ, ωq),

and Φsim
κ (xdi

, xsi
, λ, ωq)), and the experimental data (Φ0(xdi

, xsi
, λ, ωq), and Φ(xdi

, xsi
, λ, ωq))

are used to solve Eq. (6.3) via ART to reconstruct the difference of optical properties
δµκ

a (x, λ) and δDκ(x, λ) (see Eq. (6.5) to (6.8)).

Step 5: When a given stopping criterion is reached (e.g. the norm of the reconstructed image update
vector b is lower than a given limit), fluorescence reconstruction is started in step 7, and
κc = κ+1. If the stopping criterion has not been reached, the spatial distribution of optical
properties inside the reconstructed volume is updated according to Eq. (6.4). The iteration
number is increased and calculations are continued at step 3.

Step 6: Using the reconstructed absorption, µκc
a (x, λ), and diffusion coefficient Dκc(x, λ), the Green’s

functions Gκc
(xdi

, x, λf , ωq) and Gκc
(x, xsi

, λ, ωq) are calculated for each source and detec-
tor position. The fluorescent dye concentration is reconstructed according to Eq. (6.9) via
ART (see Eq. (6.12), (6.13), and (6.14)).

6.2 Results

6.2.1 Data preprocessing

Before experimental data can be used for reconstructions, instrumental factors have to be
taken into account. This section describes how such factors can be obtained from a raw data
analysis. Furthermore, we explain how to subtract the homogeneous background fluorescence
signal from raw data to improve dye concentration reconstructions.

Before experimental data can be used for image reconstructions, several steps of data preprocessing
are needed. A large amount of data is collected by time-domain measurements. Using the complete data
set of all collected TPSFs is not practical during the reconstruction process, because the resulting linear
system of equations is too large and can not be solved on todays hardware. To reduce the amount of
data, one can either use temporal filters [167] or carry out the reconstruction in frequency domain, as
will be performed in the following. For this purpose, time-domain data have to be Fourier transformed
and frequency components with sufficiently high signal-to-noise ratios have to be selected.

Furthermore, as was mentioned in Sec. 4.3, measurements in slab geometry were carried out sequen-
tially using different filter combinations for the reference scan and object scan as well as for different
source-detector offsets. As was shown in [168] an optode calibration can be performed by the reconstruc-
tion itself, but needs an additional free parameter that has to be chosen by hand. In contrast, throughout
this thesis, a calibration is performed on raw data thus avoiding a free parameter. To this end, an area
in the transmittance or reflectance image of the object scan taken at a particular source-detector offset
∆xdi,si

= xdi
−xsi

is selected that is presumably not affected (NA) by the presence of the heterogeneity
and the data recorded are averaged over this area. Likewise, an area of the reference scan taken at the
same source-detector offset is selected, and the corresponding data are averaged. The scaling factor Tdi,si

is given by

Tdi,si
=

(Φmeas(xdi
, xsi

, λ, ωq))ave,NA

(Φmeas
0 (xdi

, xsi
, λ, ωq))ave

, (6.26)

and takes e.g. filter transmittance or detector efficiency into account. It follows that the corrected data

(Φ(xdi
, xsi

, λ, ωq))

(Φ0(xdi
, xsi

, λ, ωq))
=

1

Tdi,si

Φmeas(xdi
, xsi

, λ, ω)

Φmeas
0 (xdi

, xsi
, λ, ω)

(6.27)
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enter Eq. (6.3) and (6.5).
For the fluorescence contrast reconstruction, instrumental factors are be taken into account by a similar

approach. Before reconstruction of the measured fluorescence data was started, four preprocessing steps
were applied to the raw fluorescence data:

i) At each angular frequency ωq and source-detector combination i selected, the data measured at
the fluorescence wavelength was normalized by the corresponding measured data at the laser wave-
length yielding Φmeas

f (xdi
, xsi

, λ, ωq)/Φmeas(xdi
, xsi

, λ, ωq), eliminating the corresponding Fourier
component of the instrumental response function.

ii) For the angular frequencies and source-detector combinations selected, simulated data were gener-
ated in frequency domain at the laser (Φsim

0 (xdi
, xsi

, λ, ωq)) and fluorescence (Φsim
f0 (xdi

, xsi
, λ, ωq))

wavelengths by solving Eq. (5.11) and (5.13) in 3D for a homogeneous slab.

iii) To correct fluorescence scan data for experimental factors, we set

(
Φmeas

f (xdi
, xsi

, λ, ωq)

Φmeas(xdi
, xsi

, λ, ωq)

)

ave,NA

= T f
di,si

Φsim
f0 (xdi

, xsi
, λ, ωq)

Φsim
0 (xdi

, xsi
, λ, ωq)

, (6.28)

where T f
di,si

is a scaling factor taking experimental factors into account, in particular transmit-
tance of long pass and band pass filters used and detector efficiencies at the laser and fluorescence
wavelength. Again, the average on the LHS is taken over a subset of measured data (area) that
is unaffected by the presence of the heterogeneity and Φsim

f0 (xdi
, xsi

, λ, ωq), Φsim
0 (xdi

, xsi
, λ, ωq) re-

fer to simulated data of the homogeneous medium without the heterogeneity being present. The
corrected data

Φf(xdi
, xsi

, λ, ωq)

Φ(xdi
, xsi

, λ, ωq)
=

1

T f
di,si

Φmeas
f (xdi

, xsi
, λ, ωq)

Φmeas(xdi
, xsi

, λ, ωq)
(6.29)

enter into Eq. (6.9) and Eq. (6.14).

iv) In order to improve image quality [169], the mean homogeneous background value

Φsim
f0 (xdi

, xsi
, λ, ωq)

Φsim
0 (xdi

, xsi
, λ, ωq)

(6.30)

is subtracted from the corrected data, yielding

Φf(xdi
, xsi

, λ, ωq)

Φ(xdi
, xsi

, λ, ωq)
− Φsim

f0 (xdi
, xsi

, λ, ωq)

Φsim
0 (xdi

, xsi
, λ, ωq)

=
1

T f
di,si

(
Φmeas

f (xdi
, xsi

, λ, ωq)

Φmeas(xdi
, xsi

, λ, ωq)
−
(

Φmeas
f (xdi

, xsi
, λ, ωq)

Φmeas(xdi
, xsi

, λ, ωq)

)

avg,NA

)

=
vηǫ(λ)dye ln 10

1 + iωqτ

∫
δc(x)

Gκc
(xdi

, x, λf , ωq)Gκc
(x, xsi

, λ, ωq)

Gκc
(xdi

, xsi
, λ, ωq)

dΩ,

(6.31)

where δc(x) = c(x)−c0 is the difference between the dye concentration and the background concen-
tration value. To present absolute values c(x) rather than only differences δc(x) between the object
and the reference fluid, the optical properties of the background scattering liquid, in particular the
homogeneous background dye concentration c0, were considered to be a priori knowledge. These
optical properties can be deduced by an analysis of the reference scan data.

Reconstruction of δc(x) using Eq. (6.31) is carried out analogously as described for the reconstruc-
tion of c(x) using Eq. (6.9).
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6.2.2 Localization and spatial resolution

The axial definition achieved by various detection schemes based on the parallel-plate geom-
etry was investigated to show that remittance measurements increase the depth resolution
significantly.

Measurements were carried out to reconstruct the absorption coefficient and fluorescent dye concen-
tration contrast of a heterogeneity simulating a lesion within a rectangular cuvette containing a tissue-like
scattering and fluorescent fluid, and reconstruction results of time-domain phantom scans in slab geom-
etry are presented. The spatial distribution of the concentration of the fluorescent contrast agent was
obtained by solving the forward-model diffusion equation for the propagation of the laser and fluorescence
radiation using the Born approximation [139, 170] of the fluorescence diffusion equation. To this end,
the density of laser photons within the tissue was reconstructed in a nonlinear fashion using the Rytov
approximation.

Results of nonlinear three-dimensional reconstruction of the phantom scans are presented in this
section and their spatial resolution is discussed. Reconstruction of the dye concentration was performed
by Fourier-transforming time-resolved data to frequency domain and by using the frequency data up
to several hundred MHz, provided signal-to-noise ratios were sufficiently high. Using this data, it is
shown that additional time-resolved remittance measurements taken at the entrance face of the phantom
increase depth resolution compared with reconstructions using transmittance data only.

Due to the large variations in noise for the different frequency components and source-detector com-
binations, an ART-based reconstruction [164] of DOT data was chosen that uses a noise weighted back
projection. By this method, noisy data can be incorporated into the reconstruction scheme without the
necessity to increase the regularization term. Hence, rather high cut-off frequencies can be chosen since
significant distortions of the reconstructed image are avoided by noisy high-frequency data. A further
improvement over existing reconstruction algorithms concerns the use of a normalized image vector dur-
ing the ART iterations, allowing to improve the separation of absorption and scattering by rescaling to
a dimensionless image vector with comparable size of the norm for both images.

The measurements were accomplished with the laboratory setup shown in Fig. 4.1, which is explained
in Sec. 4.3.

As phantom simulating a compressed tumor bearing breast, a rectangular cuvette (25 × 25 × 6 cm3)
filled with a scattering, absorbing, and fluorescent liquid and containing a small scattering, absorbing,
and fluorescent object, simulating a lesion was used.

The laser beam was scanned across the incoming face of the cuvette (z = 0) from x = −4 cm to
x = 4 cm, y = −4 cm to y = 4 cm sampling 289 equidistant positions. Several offsets of the detector
fiber with respect to the source fiber were selected resulting in a total of 17 source-detector combinations.
The phantoms were scanned at a step size of 5 mm. At each source position, time-domain transmittance
measurements were carried out within 100 ms using detectors placed at the opposite (exit) face (z = 6 cm)
of the cuvette with lateral (horizontal) source-detector offsets of ∆x = ±4 cm,±3 cm,±2 cm,±1 cm,
0 cm. Offsets in y direction were not included here, ∆y = 0 cm. For remittance measurements detectors
were placed on the entrance face at offsets ∆y = 0 cm and ∆x = ±4 cm,±3 cm,±2 cm, and ±1 cm.
Only data collected at detector positions inside the range −4 cm ≤ x ≤ 4 cm were used for image
reconstruction.

Breast tissue was simulated by a scattering and absorbing liquid prepared by Philips Research Europe
– Eindhoven. Optical properties of this scattering solution were deduced from time-resolved diffuse
transmittance measurements. At 730 nm, the diffusion coefficient D0 = 1/(3µ′

s,0) amounted to about

D0 = 0.0032 cm, the absorption coefficient µchrom
a,0 to about 0.023 cm−1. A concentration of c0 = 10

nM of the Omocyanine [122] fluorescent dye was added to the scattering fluid to simulate background
fluorescence as expected from measurements in tissue.

A lesion-simulating object was made from hollow thin-walled delrin twin cones (Fig. 5.15 left) filled
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Figure 6.4: Schematic top view of phantom indicating the three selected lesion positions A, B, and C
inside the cuvette at x = y = 0 and z = 1.5 cm, z = 2.2 cm, and z = 3 cm, respectively. The plane z = 0
corresponds to the entrance face of the phantom.

with background scattering fluid and additional Omocyanine fluorescent dye. The fluorescence decay
time and quantum efficiency of the Omocyanine dye amount to τ ≈ 500 ps and η ≈ 0.1, respectively.

The equatorial diameters of the delrin twin cones amounted to 2 cm, corresponding to an outer lesion
volume of 2.1 ml. The delrin twin cones were filled with background scattering fluid with the fluorescent
dye concentration increased to 50 nM, i.e. µsph

a = µchrom
a + 5µdye

a,0 = 0.031 cm−1. This lesion-simulating
heterogeneity was immersed in the scattering fluid and placed at three different positions labeled A, B,
and C at x = y = 0, z = 1.5 cm, 2.2 cm, and 3 cm, respectively (Fig. 6.4). The double cone was
suspended from a thin thread and was loaded by an additional weight suspended from its lower tip by
means of a thin thread to avoid buoyancy.

Gain of spatial resolution from improved angular sampling (transmittance and reflectance

To investigate to what extent the inclusion of offset measurements taken in transmission and reflection
geometry will improve results, reconstructions that use different restricted sets of source-detector com-
binations are compared. In each case, the pulsed source scanned across the lesion at 5 mm increments.
From these measurements, reconstructions are performed using data sets representing three different
setups [134], each sketched in Fig. 6.5: (left) projection-shadow geometry corresponding to zero offset
data taken in transmission, (middle) slab fan-beam geometry, where detectors measure in transmission
(∆y = 0, ∆z = 6 cm) at offsets ∆x = ±4 cm,±3 cm, ..., 0 cm, and (right) slab reflection and trans-
mission geometry, where additionally the remission is measured at the entrance face (z = 0) within
the y = 0 plane at offsets ∆x = ±4 cm,±3 cm, ..., 1 cm. Assuming no prior knowledge of the lesion
contrast, ∆µ⋆

a = ∆D⋆ = 0 was used for the ART-based reconstructions. Images were obtained by
three-dimensional reconstruction from time-domain transmittance and remittance data, selecting three
equidistant angular frequencies ω1 = 0, ω2 = 2π · 117 MHz, and ω3 = 2π · 234 MHz. Nonlinear re-
constructions up to iteration σ = 5 were carried out on the volume of interest Ω = 18 × 12 × 6 cm3.
The FE grid consisted of approximately 51500 vertices, the Voronoi cell volume amounted to approx-
imately w(x) = 0.125 cm3 throughout the volume of interest, but was chosen smaller at source and
detector positions, i.e. w(xsi

) = w(xdi
) = 0.005 cm3. The regularization parameter was chosen as

λreg(µa) = λreg(D) = 0.02 for reconstructions of the absorption and reduced scattering coefficients, and
as λreg = 0 for reconstructions of fluorescent dye concentrations, while in all cases ∆D⋆ = ∆µ⋆

a = 0.

The resulting dye concentrations δc(x) of the three different reconstructions are illustrated in Fig. 6.6
using the belonging source-detector combinations as shown in Fig. 6.5. In all three cases the slice for
y = 0 is given, and images are presented in min/max scaling. The outer hull of the twin-cone which was
positioned at z = 2.2 cm is outlined as a circle in these images. As was predicted previously [143], using
only zero offset transmittance data does not provide any axial definition of the heterogeneity. Hence,
in the resulting image (Fig. 6.6 left) the lesion position can not be reconstructed. Using transmittance
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Figure 6.5: Schematic view of different source-detector geometries with a lesion near the entrance face of
the slab, i.e. at position x = y = 0, z = 2.2 cm (position B in Fig. 6.4). The source and the detector fibers
are scanned in tandem keeping source-detector offsets fixed. The step size amounted to 5 mm sampling
a total of 17 source positions across the front face. (a) Projection-shadow geometry. (b) Slab fan-beam
geometry. (c) Slab reflection and transmission geometry.

x / cm

z 
/ c

m

−6 −4 −2 0 2 4 6

0

2

4

6

x / cm

z 
/ c

m

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

6

x / cm
z 

/ c
m

−6 −4 −2 0 2 4 6

0

2

4

6

Figure 6.6: Reconstruction of three dimensional dye concentration reconstruction δc(x) = c(x) − c0 of
fluorescent dye of the delrin twin cone indicated by circle and located at position B (x = y = 0, z =
2.2 cm). Dye concentration δc(x) is given in min/max scaling in the x–z plane through the center of the
lesion (y = 0). Three images corresponding to the source-detector combinations shown in Fig. 6.5: (left)
projection-shadow geometry, (middle) slab fan-beam geometry, and (right) reflection and transmission
geometry. Line profiles through the images (middle and right) for x = 0 are shown in Fig. 6.7.

data with offsets along the x direction improves the axial definition (Fig. 6.6 middle), although the
lesion position is not reconstructed correctly but shifted towards the entrance face. Including additional
remittance measurements into the reconstruction enhances axial definition of the lesion and its center is
reconstructed at the correct position (see Fig. 6.6 right).

These results are supported by profiles of the absorption coefficient and the fluorescent dye concen-
tration along the horizontal z-axis through the center of the delrin cone (x = y = 0) positioned at the
three positions A, B, and C (see Fig. 6.4).

Reconstructed absorption coefficients and fluorescent dye concentrations are shown in Fig. 6.7 left
and right, respectively. Line profiles along z are given for all three positions A (no symbol), B (stars),
and C (triangles). Full lines correspond to reconstructed transmittance and reflectance data, dashed
lines were obtained from transmittance data only. As can be seen from Fig. 6.7, inclusion of remittance
data besides transmittance data generally narrows line profiles (solid lines) of the absorption coefficient
and fluorescent dye concentration compared to profiles (dashed lines) obtained from transmittance data
alone, thus improving axial resolution. Furthermore, all line profiles based on transmittance data alone
exhibit maxima that are further shifted from the true lesion position towards the entrance face compared
to the maxima of the line profiles based on both, remittance and transmittance data. In particular,
the maxima of the fluorescent dye concentrations reconstructed from remittance and transmittance data
(solid line, solid line with stars) coincide with the true lesion position A and B while for position C the
corresponding maximum is shifted only slightly from the true position towards the entrance face. The line
profiles (solid lines in Fig. 6.7 right) allow to separate all three lesion positions. In contrast, corresponding
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Figure 6.7: Line profiles of three dimensional reconstruction of µa(x = 0, y = 0, z) (left) and of fluorescent
dye concentration c(x = 0, y = 0, z) for the three different twin cone positions A (no symbol), B (star), and
C (triangle). Full lines correspond to reconstructions using both, remittance (z = 0) and transmittance
(z = 6 cm) data, dashed lines obtained from transmittance data only. The horizontal dash-dot line shows
the background value µ0

a of the absorption coefficient (left) and the background dye concentration c0

(left), respectively. The vertical arrows indicate the three positions (A, B, C) of the heterogeneity.

line profiles (solid lines) of the absorption coefficient (Fig. 6.7 left) do not allow to separate positions A
and B. The normalized Born approximation used to reconstruct fluorescent dye concentrations involves
transmittance and remittance measurements at the excitation and fluorescence wavelength and hence
contains more information than measurements at the laser wavelength only.

Generally, line profiles are skewed, exhibiting a rapid drop towards the entrance face (source plane) and
a gradual decline towards the exit face (detector plane), although symmetric profiles of the reconstructed
absorption coefficients and fluorescent dye concentrations are to be expected. Furthermore, some of the
line profiles illustrated in Fig. 6.7 exhibit minima towards the exit face even falling below the reference
values µ0

a and c0 respectively, as can be seen most clearly for position A in Fig. 6.7 left. Besides the
ill-posedness of the inverse problem, such artefacts probably demonstrate limitations in the data sets
used for reconstructions, in particular the limited angular sampling and deficiencies in the forward model
used, neglecting for example the spectral dependance of the absorption and diffusion coefficients.

The reconstructed maximal absorption coefficient and the maximal dye concentration are dependent
on lesion position, as is the reconstructed axial extension of the object. In each case, the maximum
decreases towards the center of the cuvette, while the reconstructed volume increases due to the lower
spatial resolution at larger depth of the object. At positions A and B, the absolute value of the recon-
structed dye concentrations is too large. Due to uncertainties in the quantum yield η and the Omocyanine
dye lifetime τ , such errors are to be expected. Furthermore, while improving the overall image quality,
the chosen values of r(i, ωq) have some effect on the reconstructed values. It is certainly challenging to
achieve the correct absolute dye concentration from phantom experiments, let alone from in vivo data.

Conclusions

Several phantom measurements relevant for fluorescence optical mammography were carried out and
nonlinearly reconstructed absorption and fluorescence contrast of lesion-simulating heterogeneities using
the Rytov approximation (absorption contrast) and the normalized Born approximation (fluorescence
contrast) was presented. A rectangular cuvette filled with a fluorescent scattering solution having tissue
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like optical properties simulated an average-sized female breast gently compressed between two plates.
A small object (2.1 ml) was placed at selected positions inside the phantom. The lesion-simulating
object contained the same background scattering solution, yet the concentration of the fluorescent dye
was 5 times higher compared to the background medium. Time-domain transmission and remittance
measurements were carried out at the excitation and fluorescence wavelength for a large number of source
positions sampled across the cuvette’s entrance face and at each source position a small number of lateral
source-detector offsets. Using the algebraic reconstruction technique, reconstructions of the absorption
and fluorescence contrast were performed in Fourier domain for a small number of angular frequencies
using data, normalized to the homogeneous (background) part of the phantom. The ART algorithm was
extended by a noise-weighted relaxation term to incorporate noisy data into the reconstruction. This
way, high frequency components of the measured temporal point spread functions can be used during the
reconstruction without distorting the image. Additionally, the image vector was normalized to achieve a
comparable regularization effect for the scattering and absorption image. Transmittance measurements
taken at selected source-detector offsets improve axial resolution of the reconstructed absorption and
fluorescence contrast to a certain degree. By including reflectance data at the excitation and fluorescence
wavelength into the reconstruction besides transmittance data, depth resolution is significantly improved.
Optimal results will be achieved when transmittance and reflectance measurements are carried out on
either side of the compressed breast.

6.2.3 Sub-volume reconstruction

Nonlinear reconstructions of large volumes are computation-intensive. A new method is pre-
sented to perform nonlinear reconstructions in diffuse optical tomography including fluores-
cence mammography on large grids with a larger number of measurement data and more grid
nodes than conventional reconstruction schemes. For this purpose, the volume of reconstruc-
tion is split into sub-volumes.

To speed up calculations or, in case of large volumes of interest (VOI) Ω, to make calculation feasible
at all, the full reconstruction volume is broken down into multiple smaller volumes, on which image
reconstruction can be processed independently. For this purpose, the VOI is split into several sub-
volumes that altogether contain Ω. For each sub-volume a subset of the experimental or simulated data
is used, because not all of the sources and detectors are positioned inside the selected sub-volume.

Throughout this section, the same notation as introduced in Sec. 6.1.2 is used but slightly extended.
We denote the set of source-detector combinations i that refer to the entire volume Ω as Ξ. In the
following section, we decompose the VOI Ω down to multiple smaller volumes vj with associated sets
ξj of source-detector combinations. In order to distinguish the parameters that enter the reconstruc-
tion of the entire volume Ω from the analogous quantities that are used in the reconstruction associated
with a sub-volume vj , the notation is augmented by the set of source-detector combinations. For ex-
ample, the measurement data Φ(xdi

, xsi
, ωq) used in Sec. 6.1.2 is replaced by Φ(xdi(Ξ), xsi(Ξ), ωq) and

Φ(xdi(ξj), xsi(ξj), ωq), respectively.

The volumes are chosen in such a way, that for each source-detector combination of the given data
subset the integrals over the entire volume Ω of Eq. (6.3) are approximated by integrals over the sub-
volume vj . For this approximation to be valid, the main part of the weighting functions aκ

i (x, λ, ωq), and
âκ

i (x, λ, ωq) should lie inside the sub-volume. More explicitly, the volume Ω which is probed by the set
of source-detector combinations Ξ is split into nv non-disjunct, convex sub-volumes vj with

Ω ⊆
⋃

j∈nv

vj , (6.32)
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where nv = {1, . . . , nv}, so that for each sub-volume vj there exists a non-empty subset of source-detector
combinations ξj ⊆ Ξ with

xdi
⊂ vj ∀i ∈ ξj , (6.33)

and
xsi

⊂ vj ∀i ∈ ξj . (6.34)

Nonlinear reconstruction of arbitrary large regions

The separation into sub-volumes allows one to perform at each iteration step κ a linear reconstruction
via ART on each vj independently and in parallel in the same way as explained in Sec. 6.1.2. Therefore,
Green’s functions Gκ(x, xsi(ξj), ωq) used in reconstructions at iteration step κ defined on the subvolume
corresponding to subset ξj are obtained by solving the frequency domain diffusion equation for the
background medium with absorption and diffusion coefficient calculated iteratively by

µκ
a (x, ξj) = µ0

a +
∑

0≤i<κ

δµi
a(x, ξj),

Dκ(x, ξj) = D0 +
∑

0≤i<κ

δDi(x, ξj),
(6.35)

where µ0
a and D0 are the optical properties of the homogeneous medium used in the reference scan.

Considering a spatial and temporal δ-like source, the simulated data is given by Φsim
κ (xdi(ξj), xsi(ξj), ωq) =

Gκ(xdi(ξj), xsi(ξj), ωq).
Analogous to the method presented in Sec. 6.1.2, a system of linear equations y = Ab can be set up

for each sub-volume, with the image vector

b = (δµκ
a (x1, ξj), ..., δµ

κ
a (xN(ξ), ξj), δD

κ(x1, ξj), ..., δD
κ(xN(ξ), ξj))

T , (6.36)

and the 2 ·k(ξj) ·p component signal vector y corresponding to source-detector combinations of subset ξj ,
and the (2 ·k(ξj)·p)×2N(ξj) system matrix A, where k(ξj) is the number of source-detector combinations
corresponding to ξj , p is the number of frequency components used during reconstructions on an FE grid
of N(ξj) vertices discretizing the sub-volume.

In contrast to the reconstruction carried out in Sec. 6.2.2 , the relaxation parameter rrlx was chosen
to be rrlx = 0.9, hence having no dependence on measurement noise and the chosen sub-volume.

At the end of each iteration, additional calculations have to be carried out before a new iteration cycle
is started as explained in the following pseudocode and visualized in Fig. 6.8. In principle, arbitrary large
VOIs can be reconstructed by this technique, because the volume of the VOI is not correlated to the size
of the system matrix A, but only to the number of system matrices, which is given by nv. Increasing
the number of sub-volumes allows to decrease the dimension of the system matrices, resulting in multiple
reconstruction tasks that can be processed in parallel or sequentially, each requiring less resources to
solve for the image vector b compared with a single reconstruction of the entire VOI Ω.

Algorithm 2: nonlinear reconstruction using sub-volumes

Step 1: Collection of experimental time-domain data for the object scan, Φ̃(xdi(Ξ), xsi(Ξ), λ, t), and

for the reference scan, Φ̃0(xdi(Ξ), xsi(Ξ), λ, t), of all source-detector combinations Ξ. Fourier-
transformation, and additional preprocessing of measurement data as described in Sec. 6.2.1.

Step 2: The volume Ω is separated into nv sub-volumes vj (see Eq. (6.32)). For each sub-volume vj ,
there exists an associated subset of source-detector combinations, ξj . The measurement data,
Φ(xdi(Ξ), xsi(Ξ), λ, ωq), and reference data, Φ0(xdi(Ξ), xsi(Ξ), λ, ωq), are split into nv subsets
of measurement data, Φ(xdi(ξj), xsi(ξj), λ, ωq), and reference data, Φ0(xdi(ξj), xsi(ξj), λ, ωq),
respectively.
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Figure 6.8: Schematic view of nonlinear reconstruction algorithm using sub-volumes. The reconstruction
is initialized with a homogeneous distribution at iteration κ = 0.
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Step 3: For each subset of source-detector combinations ξj , simulated reference data
Φsim

0 (xdi(ξj), xsi(ξj), λ, ωq) are calculated for all source-detector combinations of the subset ξj

and the p angular frequency components ωq (q = 1, ..., p) that are used in the reconstruction.
To this end, Eq. (5.11) is solved for a homogeneous medium with the absorption coefficient
µ0

a(λ) and the diffusion coefficient D0(λ) of the reference scan.

Step 4: Calculations of the Green’s functions Gκ(xdi(ξj), x, λ, ωq), Gκ(x, xsi(ξj), λ, ωq), and
Gκ(xdi(ξj), xsi(ξj), λ, ωq) are carried out for all detector positions xdi(ξj) and all source po-
sitions xsi(ξj) of each subset ξj , and p angular frequency components ωq on an FE grid

containing vj . Simulated data Φsim
κ (xdi(ξj), xsi(ξj), λ, ωq) are calculated by solving the in-

homogeneous diffusion equation with the reconstructed spatial distribution of absorption
coefficients µκ

a (x, λ, ξj) and diffusion coefficients Dκ(x, λ, ξj) for each source-detector com-
bination i and angular frequency ωq. We initialize the nonlinear iterations with κ = 0. The
calculation of Gκ=0(xdi(ξj), xsi(ξj), λ, ωq) can be omitted in this case (κ = 0) since in this

case the result is equal to the reference data Φsim
0 (xdi(ξj), xsi(ξj), λ, ωq). Calculations for all

sub-volumes can be carried out in parallel.

Step 5: The former results (Green’s functions Gκ(x, xsi(ξj), λ, ωq) and Gκ(xdi(ξj), x, λ, ωq), sim-

ulated data Φsim
0 (xdi(ξj), xsi(ξj), λ, ωq), Φsim

κ (xdi(ξj), xsi(ξj), λ, ωq), and experimental data
Φ0(xdi(ξj), xsi(ξj), λ, ωq), Φ(xdi(ξj), xsi(ξj), λ, ωq)) obtained for each sub-volume vj with its
associated subset of source-detector combinations ξj are used to solve Eq. (6.3) by ART to
reconstruct the contributions of the iterative step κ to optical properties, i.e. components
δµκ

a (x, λ, ξj) and δDκ(x, λ, ξj) of the update vector b.

Step 6: The spatial distribution of the absorption coefficient µκ
a (x, λ, Ξ) in the entire VOI Ω is

approximated by the contributions of each sub-volume vj according to the following equation

µκ
a (x, λ, Ξ) ≈


∑

j∈nv

µκ
a (x, λ, ξj)a

κ(x, λ, ξj)
2




∑

j∈nv

aκ(x, λ, ξj)
2



−1

∀x ∈ Ω, (6.37)

and similarly

Dκ(x, λ, Ξ) ≈


∑

j∈nv

Dκ(x, λ, ξj)â
κ(x, λ, ξj)

2




∑

j∈nv

âκ(x, λ, ξj)
2



−1

∀x ∈ Ω, (6.38)

with the weighting factors aκ(x, λ, ξj), âκ(x, λ, ξj) obtained by summing all sensitivity fac-
tors over all source-detector combinations and angular frequency components,

aκ(x, λ, ξj) =

2kp∑

q=1

∑

i∈ξj

‖aκ
i (x, λ, ωq, ξj)‖, (6.39)

âκ(x, λ, ξj) =

2kp∑

q=1

∑

i∈ξj

‖âκ
i (x, λ, ωq, ξj)‖. (6.40)

Step 7: When the stopping criterion is reached (e.g. the norm of the reconstructed image update
vector b is lower than a given limit), we set κc = κ + 1 and the fluorescence reconstruction
is started in step 9. If the stopping criterion has not been reached, further iterations are
needed.
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Step 8: The updated absorption coefficients and diffusion coefficients relating to the sub-volume vj

are obtained from Eq. (6.37) by setting µκ
a (x, ξj) = µκ

a (x, Ξ) for all x ∈ vj , and analogously
for Dκ(x, ξj) = Dκ(x, Ξ), see Eq. (6.38).

Step 9: Using the reconstructed absorption, µκc
a (x, λ, Ξ), and diffusion coefficient, Dκc(x, λ, Ξ),

the Green’s functions Gκc

f (xdi(ξj), x, λ, ωq) and Gκc(x, xsi(ξj), λ, ωq) are calculated for each
source and detector position on each subvolume vj . Fluorescent dye concentrations, c(x, ξj),
are reconstructed by Eq. (6.9) using ART.

Step 10: The reconstructed dye concentration c(x, Ξ) in the entire volume Ω is obtained from the
reconstructed dye concentrations c(x, ξj) relating to the sub-volumes vj according to

c(x, Ξ) ≈


∑

j∈nv

cκc(x, ξj)a
f(x, λ, ξj)

2




∑

j∈nv

af(x, λ, ξj)
2



−1

∀x ∈ Ω, (6.41)

using the weighting factors

af(x, λ, ξj) =

2kp∑

q=1

∑

i∈ξj

‖af
i(x, λ, ωq, ξj)‖. (6.42)

It can be seen easily that algorithm 2 is equivalent to algorithm 1 for nv = 1 and ξ1 = Ξ.

Comparison of results of standard nonlinear reconstruction technique and of sub-volume
method using simulated and experimental data

The convergence of the standard nonlinear technique and of the sub-volume method is in-
vestigated by calculating residua between simulated or experimental phantom data (target
values) and actual data calculated after each iteration step. Alternatively, reconstruction er-
rors of the absorption and reduced scattering coefficients are determined after each iteration
step. Results obtained by the sub-volume method agree with those of the standard technique
provided the separation of the entire volume of interest into a small number of sub-volumes
does not restrict further the range of angular sampling of the entire data sets, otherwise,
reconstruction errors increase.

Standard nonlinear reconstruction of simulated phantom data (no volume decomposition)

In this section convergence of the standard nonlinear reconstruction technique as well as the reconstruction
error of the resulting absorption and reduced scattering coefficients are investigated. To this end, a
nonlinear reconstruction of absorption and reduced scattering coefficients was performed on a cuboid
of volume Ω = 8 × 8 × 6 cm3, with the origin of the coordinate system defined at the center of the
entrance face (source plane) of the cuboid. Simulations using nsrc = 25 fixed sources at z = 0 cm,
x = ±2,±1, 0 cm, y = ±2,±1, 0 cm with σsrc = 6 mm (see Eq. (5.62)), and ndet = 98 fixed detectors
at z = 6 cm, 0 cm, x = ±3,±2,±1, 0 cm, y = ±3,±2,±1, 0 cm were carried out. The source (Asrc) and
detector (Adet) arrangements are symmetrical with respect to the in-plane (x, y) position of the center
(xv = yv = 0, zv = 3 cm) of the volume Ω. For each source position data from 97 detector positions
enter the reconstruction, except for the detector which is exactly at the source position.

The (homogeneous) background optical properties of the numerical phantom are µ0
a = 0.0042 mm−1,

and D0 = 1/(3µ′
s,0) = 0.33 mm. A spherical heterogeneity of 1 cm radius is located at x = y = 0, z = 2

cm, i.e. shifted from the center position of the phantom towards the source plane. The optical properties
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Figure 6.9: Line profiles (x = y = 0) of absorption (left) and reduced scattering (right) coefficients
nonlinearly reconstructed from noise-free simulated phantom data. The full lines interpolate the results
of all ten iteration steps κ of the nonlinear reconstruction with increasing iteration number κ for increasing
values at the center of the volume Ω (z = 3 cm). The dashed-dotted lines represent the expected profiles
of the absorption coefficients µa(z) (left) and reduced scattering coefficients µ′

s(z) (right).

of the spherical heterogeneity are µsph
a = 0.0062 mm−1, Dsph = 0.28 mm. The reflectivity at the volume

surface was chosen to be K = 0.5. Since the optical properties are chosen to be independent of the
laser wavelength, the wavelength dependence will be neglected in the following of this section. Therefore,
we denote the absorption coefficient and the diffusion coefficient of the phantom as µa(x) and D(x),
respectively.

Ten iterations κ of nonlinear reconstruction were carried out using a coarse FE grid of cubic cells
of (0.25 cm)3 volume together with prior knowledge on the absorption and diffusion contrast of the
heterogeneity, i.e. the values ∆µ⋆

a = 0.004 mm−1 and ∆D⋆ = 1.67 mm were used. The ART regulariza-
tion parameter was chosen as λreg(D) = λreg(µa) = 0.3 and 7 ART iterations were performed at each
reconstruction cycle κ. Only the angular frequency ω = 2π ·100 MHz was used during the reconstruction.

The line profiles (x = y = 0) of the reconstructed (full lines) absorption coefficient (Fig. 6.9 left)
and reduced scattering coefficient (Fig. 6.9 right) were obtained by interpolating the results calculated
after each reconstruction cycle, while the dashed-dotted lines indicate the absorption µa(x) and reduced
scattering coefficient D(x) of the numerical phantom, respectively. As was discussed in Sec. 6.2.2, the
maximum of the reconstructed absorption coefficient and reduced scattering coefficient is shifted from the
true axial position of the spherical heterogeneity at z = 2 cm towards the source plane (entrance face) of
the numerical phantom (cuvette). As can bee seen in Fig. 6.9 right, the maximum of the reconstructed
scattering coefficient at iteration number σ = 10 is similar to the value of the spherical heterogeneity,
while the maximum of the reconstructed absorption coefficient (Fig. 6.9, right) at the same iteration
number is considerably underestimated, due to the chosen regularization parameter.

The relative reconstruction error for absorption (1−Ea(κ)) and for scattering (1−Es(κ)) is calculated
by

Ea(κ) =

(∫

Ω

(
µκ

a (x) − µ0
a

)2
dΩ

)1/2(∫

Ω

(
µa(x) − µ0

a

)2
dΩ

)−1/2

,

Es(κ) =

(∫

Ω

(
1

Dκ(x)
− 1

D0

)2

dΩ

)1/2(∫

Ω

(
1

D(x)
− 1

D0

)2

dΩ

)−1/2

.

(6.43)
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Figure 6.10: (left) Reconstruction error 1−E(κ) for absorption and reduced scattering coefficient versus
iteration number κ. (right) Normalized residuum e(κ) versus iteration number κ.

The result is shown in Fig. 6.10 (left), where the dashed line represents the error of the scattering
reconstruction, 1−Es(κ), and the full line is the relative error of the absorption reconstruction, 1−Ea(κ).
Convergence of the absorption coefficient is achieved at κ ≈ 8, while the scattering reconstruction error
still decreases. It should be noted that the reconstruction converges to a wrong image (limκ→∞ E(κ) 6= 1)
in both cases which is to be expected, when the heterogeneity is smaller than the resolution of the
measurement system taking the optical properties of the phantom into account. The normalized residuum
e(κ) is given by the ratio of the norm of the signal vector y at iteration κ to that at κ = 0,

e(κ) =

(
2kp∑

l=1

[yl(κ)]2
)1/2/(

2kp∑

l=1

[yl(κ = 0)]2
)1/2

, (6.44)

and is shown in Fig. 6.10 (right). For the first ten iterations the residuum decreases approximately
exponentially with each iteration step.

Nonlinear reconstruction of simulated phantom data using sub-volumes and optimal angular
sampling

In this section we compare the results, in particular reconstruction errors of absorption coefficients and
reduced scattering coefficients as well as convergence, of our sub-volume reconstruction technique with
those of the standard nonlinear procedure that reconstructs the entire volume of interest at once. The
numerical phantom used corresponds to that of the previous paragraph, with the same size, location, and
optical properties of the heterogeneity, and the same background optical properties. However, in order
to allow for a sufficient number of sub-volume decompositions, the size of the phantom was increased
(Ω = 16 × 16 × 6 cm3), and the number of sources and detectors raised to nsrc = 81 and ndet = 242,
respectively. The fixed sources (z = 0 cm) were placed at x = ±4,±3,±2,±1, 0 cm, y = ±4,±3,±2,±1, 0
cm, the fixed detectors (z = 6 cm, 0 cm) at x = ±5,±4,±3,±2,±1, 0 cm, y = ±5,±4,±3,±2,±1, 0 cm,
symmetrically arranged with respect to the center of the phantom. Sources were simulated for σsrc = 6
mm (see Eq. (5.62)) and noise-free simulated data was calculated for all detector positions. Table 6.2.3
summarizes the sub-volume decompositions. The first three columns list the number of sub-volumes (nv),
the number of sources (nsrc) and detectors (ndet) associated with each sub-volume. The next two columns
indicate the arrangement of sources (Asrc) and detectors (Adet), with each source/detector separated from
its nearest neighbor by 1 cm, and each source and detector arrangement, centered with respect to the
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in-plane coordinates (xv, yv) of the center of the corresponding sub-volume, listed in the last column. In
addition, the sizes of each sub-volume are given in Table 1. When reconstruction was carried out on a
selected sub-volume vj for each source position of the associated source arrangement Asrc, data from all
detectors of the associated detector arrangement Adet entered the reconstruction apart from the detector
located at the source position. All sub-volumes were assumed to have a reflectivity of K = 0.5 at their
surface.

Reconstruction of optical properties using sub-volume decompositions will lead to additional recon-
struction errors compared to the standard single-volume nonlinear reconstruction procedure. With each
sub-volume, fictitious boundaries with a reflectivity of K = 0.5 are introduced leading to edge effects,
i.e. modified photon trajectories. Equation (6.37) and (6.38) used to estimate reconstructed absorption
and diffusion coefficients (reduced scattering coefficients) from results obtained by sub-volume recon-
structions, are approximations only. Furthermore, the smaller a particular sub-volume vj is chosen, the
smaller is the size of its associate source (Asrc) and detector (Adet) arrangements, and hence angular
coverage is reduced, leading to increased reconstruction errors. For example, source-detector combina-
tions (i) corresponding to large source-detector offsets ∆x, ∆y, ∆z, and hence large projection angles
that are contained in the data set of the entire volume Ω (i ∈ Ξ), might not be consistent with smaller
sub-volumes vj (i 6∈ ξj) leading to a smaller angular coverage. It follows that the entire data sets used in
sub-volume reconstruction is smaller than the data set used to reconstruct the absorption and reduced
scattering coefficients by the standard nonlinear technique on the entire volume Ω, i.e.

⋃
j∈nv

ξj ⊂ Ξ.
In order to identify reconstruction errors associated with decompositions into sub-volumes, reconstruc-

tions were carried out for four different decompositions of Ω (see Table 6.2.3). In addition, a reconstruction
of the entire volume Ω was performed (nv = 1) for comparison.

The results of the reconstruction are shown in Fig. 6.11 with the reconstruction error of the absorption
coefficient 1−Ea(κ) on the left, and the reconstruction error of the reduced scattering coefficient 1−Es(κ)
on the right, for each of the various decompositions of the entire volume into sub-volumes (see Table
6.2.3). For the absorption coefficient, the error decreases quite rapidly up to κ ≈ 5 followed by a slower
decrease. As expected, the error depends quite markedly on the number of sub-volumes used, increasing
with the number of sub-volumes, i.e. with decreasing sub-volume size. In the case nv = 4, the in-plane
(x,y) position of the heterogeneity is shifted towards the border of the source (Asrc) and detector (Adet)
arrangements for all sub-volumes, while in the case nv = 5 there is an additional sub-volume, where
the in-plane (x,y) position of the heterogeneity is at the center of the associated source and detector
arrangements. It can be seen from Fig. 6.11 that the error of both sub-volume decompositions is nearly
identical for all iterations. It follows that the reconstruction error does not strongly depend on the in-
plane position of the heterogeneity, but on the decomposition of source-detector combinations ξj included
in the reconstruction.

As can be seen from Fig. 6.11 (left) the reconstruction error 1 − Ea(κ = 10) is about 0.42 for
nv = 4, while the standard nonlinear technique nv = 1 yields a value close to 1 − Ea(κ = 10) =
0.37. The lower reconstruction error in the last case is (at least partially) caused by the better angular
coverage compared to the result obtained by the sub-volume method nv = 4. Likewise, the smaller
source (Asrc = 3 × 3) and detector (Adet = 7 × 7) arrangements considered in the previous paragraph
lead to larger reconstruction errors 1 − Ea(κ = 10) ≈ 0.5 by the standard nonlinear reconstruction
scheme compared to the larger source (Asrc = 9 × 9) and detector (Adet = 11 × 11) arrangements that
entered the standard reconstruction in the present section. The dependence of the reconstruction error
of the reduced scattering coefficient 1 − Es(κ) on iteration number κ is similar to that of the absorption
coefficient. The scattering reconstruction error decreases with increasing iteration number κ and drops
even below zero at higher iteration numbers and for sub-volume decompositions nv ≤ 5. It follows
from Eq. (6.43) that scattering contrast is overestimated in these cases. Similar to absorption, the
reconstruction error of the reduced scattering coefficient increases with decreasing size of the sub-volume
vj , and decompositions into nv = 4 and nv = 5 sub-volumes (see Table 6.2.3) result in essentially the
same scattering reconstruction errors. Furthermore, comparing Fig. 6.10 (dashed line) and Fig. 6.11 right
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Table 6.1: Sub-volume decomposition with optimal angular sampling.

nv nsrc ndet Asrc Adet vj/cm3 sub-vol. center pos./cm

1 81 242 9 × 9 11 × 11 16 × 16 × 6 xv = yv = 0

4 49 162 7 × 7 9 × 9 9 × 9 × 6 xv, yv = ±1

5 49 162 7 × 7 9 × 9 9 × 9 × 6 xv, yv = ±1 and xv = yv = 0

9 25 98 5 × 5 7 × 7 8 × 8 × 6 xv, yv = ±2, 0

49 9 50 3 × 3 5 × 5 7 × 7 × 6 xv, yv = ±3,±2, . . . , 0
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Figure 6.11: Reconstruction error of absorption (1 − Ea(κ)) coefficient (left) and reduced scattering
(1−Es(κ)) coefficient (right), of the nonlinear reconstruction of noise-free simulated phantom data versus
iteration number κ from five different sub-volume decompositions (see Table 6.2.3). All source-detector
combinations consistent with sub-volume decompositions were included in the reconstruction (optimal
angular sampling).

(dashed line), one concludes that the scattering reconstruction error (1 −Es(κ = 10)) obtained from the
standard nonlinear reconstruction procedure nv = 1 decreases with better angular sampling as was the
case with the absorption reconstruction error (1 − Ea(κ = 10)).

The normalized residuum of the iterations is shown in Fig. 6.12 and decreases for all sub-volume
decompositions approximately exponentially until κ = 10 is reached. From this step on, the residuum
of reconstructions using sub-volumes decreases more slowly, while the residuum for the entire volume
(nv = 1) continues to decrease approximately exponentially.

Nonlinear reconstruction of simulated phantom data using sub-volumes and restricted an-
gular sampling

In the previous two paragraphs all source detector combinations that are consistent with the source (Asrc)
and detector (Adet) arrangements of a particular (sub-)volume entered the reconstruction. As mentioned
above for the entire volume Ω or sufficiently large sub-volumes vj , this situation is rather unrealistic,
since data from source-detector combinations with large source-detector offsets (∆x, ∆y, ∆z) and hence
large source-detector distances might not provide additional information because of poor signal-to-noise
ratios. In this section we consider a more realistic situation by restricting source-detector offsets to e.g. -
3 cm ≤ ∆x ≤ 3 cm, −3 cm ≤ ∆y ≤ 3 cm, and ∆z = 0,±6 cm for all sub-volumes considered. Again,
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Figure 6.12: Normalized residuum e(κ) (see Eq. (6.44)) versus iteration number κ for the five different
sub-volume decompositions of the entire volume Ω (see Table 6.2.3).

the same phantom is used as in the previous section with the same size (Ω = 16× 16× 6 cm3), the same
background optical properties, the same size and optical properties of the spherical heterogeneity, but
with the heterogeneity located at the center x = y = 0, z = 3 cm of the phantom. The entire volume Ω is
sub-divided (see Table 6.2) into the same number nv of sub-volumes, centered at the same positions xv, yv

as in the previous paragraph. However, the size of the sub-volumes vj and the size of the associated source
(Asrc) and detector (Adet) arrangements have been enlarged considerably resulting in higher numbers of
sources and detectors, with each source/detector separated from its nearest neighbor by 1 cm. Again, the
source and detector arrangements associated with a particular sub-volume vj are centered with respect
to the in-plane (xv, yv) coordinates of the center of the sub-volume. All source (Asrc) and detector
(Adet) arrangements, even those associated with the smallest sub-volumes (nv = 49, see Table 6.2), are
consistent with the (restricted) source-detector offsets |∆xmax| = 3 cm, |∆ymax| = 3 cm. More precisely,
for each sub-volume decomposition of Table 6.2, all source-detector combinations entering reconstruction
entirely sample the restricted set of source-detector combinations Ξ of the entire volume Ω, i.e.

Ξ =
⋃

j∈nv

ξj . (6.45)

In the present example, sources are placed on both faces (z = 0 and z = 6 cm) of the phantom, and
for each source position noise-free simulated data were calculated at all detectors in transmission and
reflection, apart from the detector that coincides with the particular source. As before, sources were
simulated with σsrc = 6 mm and reflectivity of sub-volume surfaces was set to K = 0.5.

The results of the reconstruction are illustrated in Fig. 6.13 for the five sub-volume decompositions
listed in Table 6.2. Reconstruction errors of the absorption (1 − Ra(κ)) coefficient (left) and reduced
scattering (1 − Rs(κ)) coefficient (right) coincide for sub-volume decompositions with nv = 1, 4, 5 within
1%, whereas decompositions into larger numbers of sub-volumes (nv = 9, 49) lead to additional recon-
struction errors. As can be seen by comparing Fig. 6.13 left and Fig. 6.11 left, the restricted angular
sampling generally raises the absorption reconstruction error, this increase being most significant for the
standard reconstruction results (nv = 1), i.e. from 0.37 (κ = 10) up to 0.54 (κ = 10). In other words, by
excluding large source-detector offsets with |∆x| > 3 cm, |∆y| > 3 cm, nearly the same reconstruction
errors result from the standard (nv = 1) and sub-volume reconstructions for nv = 4 and nv = 5. In
contrast to Fig. 6.11 (left), scattering reconstruction errors no longer turn negative at higher iteration
number κ (see Fig. 6.13 right) when using data sets with restricted source-detector offsets (restricted
angular sampling).
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Figure 6.13: Reconstruction error of absorption (1 − Ea(κ)) coefficient (left) reduced scattering (1 −
Es(κ)) coefficient (right) of nonlinear reconstruction of noise-free simulated phantom data versus iteration
number κ for five different sub-volume decompositions (see Table 6.2). All source-detector combinations
consistent with restricted source-detector offsets (|∆x| ≤ 3 cm, |∆y| ≤ 3 cm) were included in the
reconstruction (restricted angular sampling).

Table 6.2: Sub-volume decompositions with restricted angular sampling.

nv nsrc ndet Asrc Adet vj/cm3 sub-vol. center pos./cm

1 162 450 9 × 9 15 × 15 16 × 16 × 6 xv = yv = 0

4 98 338 7 × 7 13 × 13 16 × 16 × 6 xv, yv = ±1

5 98 338 7 × 7 13 × 13 16 × 16 × 6 xv, yv = ±1 and xv = yv = 0

9 50 242 5 × 5 11 × 11 14 × 14 × 6 xv, yv = ±2, 0

49 18 162 3 × 3 9 × 9 12 × 12 × 6 xv, yv = ±3,±2, . . . , 0

The normalized residuum of the various reconstructions is shown in Fig. 6.14. Again, an exponential
decrease of the normalized residuum is observed initially, up to iteration number κ = 6 with a slower
decrease at higher iterations. A comparison of Fig. 6.12 and Fig. 6.14 suggests that the slow decrease of
the residuum at higher iteration numbers (see Fig. 6.12, κ > 10) observed for sub-volume decompositions
(nv > 1) is caused by further restrictions on angular sampling due to the absence of large source-
detector offsets in source (Asrc) and detector (Adet) arrangements associated with the various sub-volume
decompositions. The same argument can be put forward to explain the early onset of slow decrease of
the residuum at κ > 6 in Fig. 6.14.

Nonlinear sub-volume reconstruction of experimental phantom data with restricted angular
sampling

In this section we use our sub-volume method to reconstruct absorption and reduced scattering coefficients
from the same experimental phantom data that were reconstructed by the standard nonlinear technique
in Sec. 6.2.2. A rectangular phantom (25×25×6 cm3) simulating a tumor bearing compressed breast and
was filled with scattering and absorbing liquid (D0 = 0.032 cm, µ0

a = 0.025 cm−1) and contained a twin
delrin cone (2.1 ml, in-plane diameter of 2 cm) filled with scattering and absorbing liquid (Dsph = D0,
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Figure 6.14: Normalized residuum e(κ) versus iteration number κ for five different sub-volume decompo-
sitions (see Table 6.2). Source-detector combinations consistent with the restricted source-detector offsets
|∆x| ≤ 3 cm, |∆y| ≤ 3 cm entered the reconstruction.

µsph
a = 0.031 cm−1) simulating a lesion. The twin cone was located at x = y = 0, z = 2.2 cm (position

B, see Fig. 6.4). The laser beam (z-direction) was scanned along the horizontal x-direction at increments
of 5 mm sampling the entrance face (z = 0) of the cuvette in a meander pattern at a total of 298 source
positions (−4 cm ≤ x ≤ 4 cm, −4 cm ≤ y ≤ 4 cm). Transmittance and reflectance were recorded at
source-detector offsets ∆x = ±4,±3, ..., 0 cm (z = 6 cm), ∆y = 0, and ∆x = ±4,±3, ...,±1 cm (z = 0 cm),
∆y = 0, respectively. Table 6.3 lists the number of sources and detectors that enter the reconstruction
together with the source (Asrc) and detector (Adet) arrangements, the sizes and centers of the sub-volumes
used, with sources/detectors separated from their nearest neighbors by 0.5 cm. The standard nonlinear
reconstruction (see Sec. 6.1.2) was carried out using square source and detector arrangements, whereas
the nv = 21 sub-volume reconstruction reported on in the present section included data from only one
line-scan taken along the x-axis through the in-plane position (xv = 0, yv) of the center of the sub-
volume vj considered, amounting to 17 source positions and 34 detector positions in total. Each cuboid
sub-volume vj = 18× 6× 6 cm3 covered the entire width (18 cm) and depth (6 cm), but only half of the
height (6 cm) of the volume of interest Ω = 18 × 12 × 6 cm3.

The standard nonlinear and sub-volume reconstructions differed in numerical details. Whereas a 3D
Gaussian blurred source was used in the standard nonlinear reconstruction presented in Sec. 6.2.2, the 2D
Gaussian blurred and exponentially damped source given in Eq. (5.62) was simulated in the sub-volume
reconstructions.

Furthermore, the Voronoi [131] cell volume w(x) differed slightly for the standard (w(x) ≈ (1/2)3 cm3)
and sub-volume reconstructions (w(x) ≈ (1/3)3 cm3). ART reconstructions were carried out with stan-
dard nonlinear technique and without (sub-volume method) noise-weighted back-projection and some-
what different regularization schemes with only one common regularization parameter λreg = 0.02 (see
Sec. 6.2.2) or different regularization parameters (λreg(µa) = 0.30, λreg(D) = 0.55) of absorption and
diffusion reconstruction (see Eq. (6.22) and (6.25)) were applied. On the other hand, in each case a

priori estimates of the lesion contrast were set to ∆D⋆ = ∆µ⋆
a = 0 and angular frequencies of ω1 = 0,

ω2 = 2π · 117 MHz and ω3 = 2π · 234 MHz entered the reconstructions.

In Fig. 6.15 (left), we present line profiles (x = y = 0) of the absorption coefficients, in Fig. 6.15
(right), profiles of the reduced scattering coefficient reconstructed by the sub-volume method (nv = 21).
Dashed lines correspond to the first iteration (κ = 1), solid lines to subsequent iterations (κ = 2, ..., 7).
Higher iteration cycles increase the maximum of the profiles of the reconstructed absorption and reduced
scattering coefficients, while at the same time reducing artefacts of the absorption coefficient close (z > 5
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Figure 6.15: Line profiles (x = y = 0) of absorption (left) and reduced scattering (right) coefficient for
iterations 1 through 7. The dashed lines correspond to the first iteration (κ = 1), full lines to subsequent
(κ = 2, ..., 7)) iterations. The horizontal dashed-dotted lines correspond to the background absorption
coefficient µ0

a (left) and reduced scattering coefficient µ′
s,0 (right). The line profile of the absorption

coefficient obtained from the standard (nv = 1) nonlinear (σ = 5) reconstruction is included (left) for
comparison. The position of the twin cone is indicated by the arrows (z = 2.2 cm).

Table 6.3: Standard (see Sec. 6.1.2) and sub-volume reconstructions of experimental phantom data with
restricted angular sampling (|∆x| ≤ 4 cm, |∆y| = 0).

nv nsrc ndet Asrc Adet vj/cm3 sub-vol. center pos./cm

1 289 578 17 × 17 17 × 17 18 × 12 × 6 xv = yv = 0

21 17 34 17 × 1 17 × 1 18 × 6 × 6 xv = 0, yv = ±5,±4.5, ..., 0

cm) to the exit face of the cuvette. In contrast, profiles of the reconstructed reduced scattering coefficient
suffer from severe artefacts close to the entrance as well as the exit face. The maximum of the profiles of
the absorption and reduced scattering coefficients are shifted towards the entrance face with respect to
the true position of the twin cone, indicated by arrows. In Fig. 6.15 (left, dotted line) we show the results
of the standard (nv = 1) nonlinear (κ = 5) reconstruction (see Fig. 6.7 left, solid line with stars) for
the absorption coefficient. Although both results differ quantitatively, the profiles exhibit approximately
same shape. It should be noted, however, that different regularization schemes were followed for the
standard and sub-volume reconstructions, making a quantitative comparison difficult.

The convergence of the normalized residuum of the sub-volume reconstructions is shown in Fig. 6.16 for
iterations 0 ≤ κ ≤ 7. Compared with reconstructions based on noise-free simulated data (see Fig. 6.10
(right), Fig. 6.12, and Fig. 6.14), in the present case the nonlinear iteration steps do not reduce the
residuum exponentially. Instead, the first iteration reduces the residuum by 30%, while the following 5
iteration steps lower the residuum further by only 15% of its initial value. At this point, convergence of
the nonlinear sub-volume reconstruction has already been reached.

Conclusions

Non-linear time-resolved three dimensional DOT reconstruction suffers from severe performance prob-
lems. Due to the large number of FE grid nodes, and the enormous amount of Green’s function data of
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Figure 6.16: Normalized residuum e(κ) versus iteration number κ for sub-volume reconstructions of
experimental data.

all sources, detectors, angular frequency components, and optical wavelengths, calculations easily reach
the limits of todays standard computers. While taking more source-detector combinations into account
is beneficial for the reconstruction process and may produce images with improved spatial resolution and
higher signal-to-noise ratios, it also causes severe problems in processing the associated amount of data
with common computational techniques.

To reduce computational problems associated with large data sets we propose a decomposition of
the simulated or experimental data into subsets and reconstructions on sub-volumes associated with each
subset. This new method allows to reconstruct volumes of interest of arbitrary size on a fine grid, because
the dimension of a sub-volume system matrix is not correlated to the entire volume that is reconstructed.
Instead, the large system matrix of the entire volume is split into several smaller system matrices that
can be inverted in parallel to gain speed and to lessen memory requirements.

We showed that the error is small when using sub-volume reconstructions compared with a full re-
construction of all source-detector combinations on a single FE grid, provided the source and detector
arrangements allow a reconstruction via sub-volumes without omitting source-detector combinations im-
portant for e.g. angular sampling, i.e. scans with limited offsets. If this condition is met, examples
discussed in the previous paragraphs illustrate that the reconstruction error using multiple grids is com-
parable with the error of the reconstruction using a single grid. Deviations between both results were
smaller than 2%, depending on the number of sub-volumes used. However, when carrying out sub-volume
reconstructions that require simulated or experimental data to be omitted thus restricting angular sam-
pling significantly, considerable reconstruction errors are introduced. It follows that the decomposition
of the entire volume into sub-volumes must be adapted to the source and detector positions sampled and
to the information content including signal-to-noise ratio of the corresponding data.

Our method is limited to reasonable small numbers of sub-volumes. For a larger number of sub-
volumes the benefits are offset by calculation overhead (e.g. caused by setting up the system equations),
the slower convergence of the non-linear reconstruction, and the higher reconstruction errors.

To prove the feasibility of the proposed method we reconstructed experimental phantom data collected
in a slab-like geometry using a cuvette, taking data in transmission and reflection with several offsets in
x direction only. The nonlinear reconstruction of these data sets was carried out on 21 sub-volumes, each
containing a subset of data belonging to a single line scan. We showed that the nonlinear sub-volume
reconstruction converges and the nonlinear steps of higher order result in reduced artifacts and better
spatial resolution.
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6.2.4 Adaptive reconstruction initialization: handling large mismatches

A method is described to estimate the approximate shape of a patient’s breast immersed into
the cup filled with scattering liquid. A two compartment model, consisting of the homogeneous
breast of estimated shape and the surrounding liquid, improves reconstruction results over a
homogeneous one compartment model as was shown reconstructing optical properties of two
corresponding phantoms.

Since Eq. (6.3) that is used for the reconstruction uses an perturbative approach which is only valid for
small deviations δµa(x, λ) and δD(x, λ), convergence problems can be expected if the investigated breast
is large and has a large mismatch in its optical properties compared with the scattering fluid used for the
reference measurement.

To illustrate this effect, phantom scans and the corresponding reference scans were simulated using
a 80D cup and optical properties of the (MF4.0) scattering fluid at λ = 690 nm as background values,
i.e. µ0

a = 0.0032 mm−1, D0 = 0.39 mm. For the two simulations of object scans, a spherical heterogeneity
was placed at the height of the top detector ring, having a radius of rsph = 15 mm and rsph = 50 mm,
respectively, simulating a patient’s breast in the latter case. The absorption coefficient of both spheres
was increased moderately to µsph

a = 0.005 mm−1 while the scattering coefficient stayed unchanged. The
absorption coefficients of both phantoms are given for the y = 0 slice in Fig. 6.17, top row.

The standard (linear) reconstruction of these scenarios is shown in Fig. 6.17, middle row. As can be
seen, the small sphere is reconstructed correctly, while the large object shows a strong variation of its
absorption coefficient inside the reconstructed sphere, resulting in a high absorption coefficients close to
the sphere’s surface, but nearly background value at its center.

The reconstruction results can be improved, if a so-called breast shape estimation is introduced, which
approximately locates the border of breast from raw data analysis without the need of reconstruction.
Details of the algorithm used for the breast shape estimation are given in [160]. The algorithm calculates
a scalar field β(x), where β(x) = 0 indicates that fluid is present at x and 0 < β(x) ≤ 1 indicates
that breast tissue can be expected at x. Since only a blurred breast rim can be estimated from diffuse
optical measurements, values between zero and 1 are allowed for the breast shape function. Therefore, the
resulting breast shape depends on the chosen threshold, but as β(x) has a steep slope at the fluid-tissue
interface, the resulting breast shape depends only slightly on this threshold.

Fig. 6.17 (bottom row) shows reconstruction results with prior breast shape estimation, the large
sphere is reconstructed having a more homogeneous distribution of the absorption coefficient, and the
small object can still be reconstructed. Both spheres show an expansion towards the top of the cup as an
artifact, i.e. an increased absorption coefficient above the sphere, which is a result of an optimization of
the breast shape estimation algorithm which expects objects (breasts) to have conical geometry instead
of being a spherical object.

6.2.5 Fitting of optical properties from spectral cw data

To preserve or improve convergence of reconstructions by initializing them with a homogeneous
breast of estimated shape, a fit of averaged optical properties is presented and tested on
numerical phantoms and patient data. Averaged absorption and scattering coefficients of the
breast are deduced from multi-wavelength cw measurements by applying a spectral model.

Fitting the optical properties of breast tissue is a challenging task, especially if only cw data are
available. In such a case, the attenuation k can be fitted quite well, but the separation of the scattering
and absorption coefficient is cumbersome, i.e. may depend on the fitting procedure.

The results of the fit can be improved, when a spectral model is included. Using this method on simu-
lated data or on experimental data acquired from the Philips fluorescence mammograph, four parameters
of the spectral model are fitted to describe the optical properties of the breast, i.e. the spatially constant
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Figure 6.17: Convergence of absorption reconstruction in the presence of a large objects: µa(x, λ) of
phantom (top row). Reconstruction without breast shape estimation (middle row), reconstruction with
breast shape estimation (bottom row). All images are given in min/max scale.
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Figure 6.18: Numerical breast phantoms (left to right: dense small, medium attenuation and size, fatty
large) and corresponding calculated breast shapes (red lines) for β(x) = 0.5. The absorption coefficient
of the sagittal slices through the center of each phantom is presented in gray scale (from µa = 0 to
µbreast

a (λ = 730 nm) = 0.004 mm−1, 0.0035 mm−1, and 0.0023 mm−1, respectively). The orientation of
the numerical phantom is indicated by P (posterior), A (anterior), F (feed), H (head).
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scattering amplitude (a), the concentration of water (cH2O), the concentration of oxygenated-hemoglobin
(cHbO), and reduced hemoglobin (cHbR). The scattering power was not fitted, for only four wavelengths
are available, therefore we set b = 1, which is in the range of typical values found in literature [11] to
reduce the number of parameters to the number of available wavelengths.

Reconstruction of spatial variations of spectral model parameters has been carried out before [96, 171,
172, 173]. Formalisms presented in those works will be adapted in this section for fitting averaged breast
tissue properties without any reconstruction. Furthermore, the breast shape estimated for each patient
is included into the fitting procedure as a spatial prior.

For a chosen source-detector combination i, the ratio of the photon density Φ(xdi
, xsi

, λ) for a patient
scan and the photon density Φ0(xdi

, xsi
, λ) for a reference scan measured in cw at wavelength λ can be

expressed by the Rytov approximation as given in Eq. (6.1) for ω = 0. The patient breast is approximated

as homogeneous tissue having averaged optical properties µbreast
a (λ) = δµa(λ) + µ0

a(λ) and D0(λ) =
δD(λ) + Dfluid(λ) throughout the complete breast. By using the estimated breast shape 0 ≤ β(x) ≤ 1
the Rytov approximation can be rewritten as

− ln
Φ(xdi

, xsi
, λ)

Φ0(xdi
, xsi

, λ)︸ ︷︷ ︸
pλ

i

= vδµa(λ)

∫

Ω

β(x)
G0(xdi

, x, λ)G0(x, xsi
, λ)

G0(xdi
, xsi

, λ)
dΩ

︸ ︷︷ ︸
wλ

a,i

+ vδD(λ)

∫

Ω

β(x)
∇G0(xdi

, x, λ)∇G0(x, xsi
, λ)

G0(xdi
, xsi

, λ)
dΩ

︸ ︷︷ ︸
wλ

D,i

,

(6.46)

introducing the coefficients pλ
i , wλ

a,i, and wλ
D,i for each source-detector combination i and wavelength λ.

For each selected source-detector combination, measurements are carried out at nl different wave-
lengths. Therefore, for each wavelength an averaged difference in optical properties between breast tissue
and fluid can be determined, resulting in a matrix equation

Pi =




wλ1

a,i 0

. . .

0 w
λnl

a,i


 δma +




wλ1

D,i 0

. . .

0 w
λnl

D,i


 δmD, (6.47)

with Pi = 1
v (pλ1

i , ..., p
λnl

i )T being the nl component signal vector combining all measured wavelengths,

δmD = (δD(λ1), ..., δD(λnl
))T , and δma = (δµa(λ1), ..., δµa(λnl

))T the nl component vector composed
of the differences in optical properties (scattering and absorption coefficient, respectively) at each wave-
length.

Equation (6.47) can be rewritten by using Beer’s law and the molar absorption coefficient matrix

ǫ =




ǫλ1

H20
ǫλ1

Hb0 ǫλ1

HbR

...
...

...

ǫ
λnl

H20
ǫ
λnl

Hb0 ǫ
λnl

HbR


 , (6.48)

where ǫλ
X is the molar absorption coefficient of substance X at wavelength λ (see Sec. 5.1.3), and

hj = −1/(3a2)(λj/λ0)
b (6.49)

with j ∈ {1, ..., nl}, where λ0 is the reference wavelength chosen as 1000 nm, δma = ǫδc ln 10, and
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δmD = (h1, ..., hnl
)T δa as

Pi =




wλ1

a,i 0

. . .

0 w
λnl

a,i


 ǫδc ln 10 +




wλ1

D,i 0

. . .

0 w
λnl

D,i







h1

...

hnl


 δa. (6.50)

Here, δc = (δcH20, δcHbO, δcHbR)
T

consists of the averaged chromophore concentrations of the breast.
For our fit, we use k source-detector combinations simultaneously by defining the (k · nl) × 4 matrix

W =



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, (6.51)

and thus can define

P :=




P1

...

Pk


 = W




δcH2O

δcHbO

δcHbR

δa



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msol

. (6.52)

The minimum of the overdetermined system of equations is searched for by requiring

(P − Wmsol)
T

(P − Wmsol)
!
= min. (6.53)

We solve Eq. (6.53) by using the pseudo-inverse of W

msol =
(
WT W

)−1
WT P . (6.54)

The fit was tested using three numerical phantoms simulating a homogeneous breast immersed in
scattering fluid filling a 80D cup. These three numerical phantoms mimic a small dense breast, a medium
size breast of average attenuation, and a fatty large breast, respectively. All three simulated breasts
have a water fraction of 47% and the same reduced scattering coefficient throughout the complete breast
(a = 0.9 mm−1, b = 0.56). The complete list of constituents can be found in appendix A.6. A sagittal
slice through the center of the breast showing the absorption value of all three phantoms can be found
in Fig. 6.18. There, the white area indicates the breast having a homogeneous absorption coefficient, the
gray area the scattering fluid surrounding the breast, and black the outside of the cup.

The scattering fluid was modeled with the spectral dependence of the MF2.1, with optical properties
of the scattering fluid (a = 0.9 mm−1, b = 1.7) as given in appendix A.5. Data for each breast scan
and the reference scan was simulated at four different wavelengths (λ = 690 nm, 730 nm, 780 nm, and
850 nm). In a next step, the breast shape was estimated from these data, giving results as depicted in
Fig. 6.18 as red lines, showing the estimated breast contour for a threshold of β(x) = 0.5. As can bee
seen, the breast shape estimation works quite well, especially for the small breast at lower ring positions,
but slightly underestimates the breast shape in this area for the large breast. At the top ring position
and above, the breast shape algorithm slightly overestimates the breast size, because the sharp edge of



6.2. RESULTS 123

the numerical phantom at the simulated breast-chest transition can not be estimated correctly from DOT
data.

Absorption and scattering coefficients for each numerical breast phantom and each wavelength were
fitted by calculating wλ

a,i, wλ
D,i for all four wavelengths and by using the corresponding estimated breast

shapes β(x). In contrast to in vivo measurements, the scattering power was fixed at the exact value
(b = 0.56) for the fit. The fitted values of the averaged absorption and reduced scattering coefficients
depend on the source-detector combinations that were used during the fit, resulting in errors varying
between 2% to 30%. Fitting results are improved if source-detector combinations of positions are used,
where the corresponding breast shape estimation gave correct results. Therefore, parameter estimation
was more stable (i.e. independent of chosen source-detector combinations) for the smallest breast. If the
breast shape is located near to source or detector positions used for the fitting procedure, small variations
in the shape can give large variations in wλ

a,i and wλ
D,i, and hence severely influence the results of the

fit. Additionally, modeling the source term in the diffusion approximation as fiber source (see Sec. 5.1.7)
results in unphysical values of wλ

D,i at grid vertices located between the fiber tip and the shifted source
position. If the breast touches the cup rim, i.e. β(x) > 0 at such grid vertices, these values degrade the
precision of the scattering coefficient fit. Hence, using only source-detector combinations with fluid at
the source and detector positions improves the fit.

To test the fitting procedure on experimental data, averaged absorption and scattering coefficients for
each breast of two patients were fitted from 15 scans that have been carried out consecutively. Both pa-
tients bore a tumor in one breast (ipsilateral breast). During the examination, nine scans were performed
investigating the ipsilateral and six scans investigating the contralateral (healthy) breast, while each scan
was carried out at nl = 4 wavelengths (λ = 690 nm, 730 nm, 780 nm, and 850 nm). For fitting of con-
centrations of tissue chromophores and scatter amplitude, source-detector combinations mainly from the
three top rings were used, corresponding to a total of approximately 9800 source-detector combinations.
The scattering power was fixed to b = 1.

Results for µbreast
a (λ) and µ′ breast

s (λ) are presented for λ = 690 nm in Fig. 6.19 left and right, respec-
tively, where fit results of the ipsilateral breast are shown as plusses (circles) and as crosses (dots) for
the contralateral breast of patient A (B). The average value of the ipsilateral breast is plotted as full line
and for the contralateral breast as dashed line.

The fitted optical properties show some variations around the average value, mainly resulting from
varying positioning of the breast inside the cup between consecutive measurements. This effect can
be compensated only partly by the use of the estimated breast shape β(x). Nontheless, variations are
small enough to distinguish the two patients, and even show for patient A that the averaged absorption
coefficient of both breasts from the same patient can be quite different.
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Figure 6.19: Spectral fit using clinical data of two patients with a total of 15 scans performed with
each patient on both breasts. Fitted optical properties µbreast
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corresponding to the ipsi- and contralateral breast, respectively.



Chapter 7

Reconstruction of patient data

Optical mammograms were generated by nonlinear reconstructions of the absorption coeffi-
cient from tomographic data taken by the Philips mammograph on three patients, one car-
rying a cyst, and two carrying a carcinoma. Fluorescence mammograms were obtained from
a fourth patient after administration of an unspecific fluorescent dye (Omocyanine). In each
case, the lesion could be detected and optical and fluorescence mammograms were success-
fully correlated with MR mammograms, whenever available. No variations in scattering were
considered, leading to artifacts (negative absorption coefficients or negative concentrations)
in selected areas.

A phase I clinical study was carried out at the University Medical Center (UMC) Utrecht by Prof. Dr. Willem
P. Th. M. Mali and Stephanie van de Veen involving a small number of patients to evaluate the unspe-
cific fluorescent contrast agent Omocyanine provided by Bayer Schering Pharma. Both, absorption and
fluorescence scans were performed prior and after injection of the contrast agent using the cw Philips
tomographic fluorescence mammograph.

Within the framework of this thesis, linear and nonlinear reconstructions of patient data were carried
out to determine intrinsic contrast based on absorption, whereas fluorescent dye concentrations were
reconstructed using linear approaches.

The primary aim of this exploratory study was to determine the optimal dose of the Omocyanine dye
and the optimal time at which measurements should be taken after injection of the contrast agent to
achieve highest contrast between lesion and background. It was not the aim of the study to differentiate
malignant from benign lesions.

Informed consent was approved by the institutional review board, and investigations were in full com-
pliance with the accepted standards for research involving humans. For comparison of optical mammog-
raphy with other established imaging modalities, in most cases mammograms were recorded additionally
using X-ray, US, and MRI, followed by biopsy and histopathology.

Medical results of this study including cases with a cyst (absorption mammograms) and several tumor
cases (absorption and fluorescence mammograms) can be found in [65, 174, 175].

For illustration of linear and nonlinear reconstruction of patient data, three selected cases will be
discussed in the following.

125
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7.1 Nonlinear absorption reconstruction of patient cw data in

cup geometry

Reconstruction algorithms were optimized to reconstruct absorption coefficients since tumors are known
to be predominantly absorbing because of the increase in blood volume. Therefore, scattering (diffusion)
coefficients were assumed to be constant throughout the breast volume and were not changed during
the reconstruction. While this approximation is appropriate for tumors, cysts are known to scatter light
considerably less compared to the surrounding tissue, making this approximation less suitable. However,
cysts do not present problems clinically and the cyst case only serves to illustrate nonlinear reconstruction
of patient data.

Cyst case

Coronal slices of the left breast of a 54 year old patient illustrating linearly and nonlinearly reconstructed
absorption coefficients are shown in Fig. 7.1. US and X-ray mammograms showed one large cyst (ap-
proximately 2 cm diameter) and many small cysts in this breast (BI-RADS 2). The coronal MR slice1

through the center of the large cyst is shown in Fig. 7.1 (right), where glandular tissue and fat can be
distinguished clearly and the cyst has been indicated. In the optical images the cyst shows up as a black
area, whereas glandular and fatty tissue are associated with bright areas (enhanced absorption). The
nonlinear reconstruction (middle) leads to fewer artefacts and allows a separation between glandular and
fatty tissue that is hardly possibly in the linear reconstruction image (left).

The breast filled the 80D cup insert nearly completely (5% of the volume were filled by the scattering
fluid). The linear (κ = 0) and nonlinear (κ = 4) reconstruction was started by dividing the cup volume
into two parts, one containing the scattering fluid with its known optical parameters, the other one con-
taining the breast. Prior to reconstruction, averaged absorption and diffusion coefficients were obtained
by fitting measured and simulated transmitted light intensities assuming the breast to be homogeneous.

The absorption coefficients for λ = 690 nm displayed in the left image were obtained by assuming
Dbreast = Dfluid during the reconstruction, whereas the absorption coefficients in the middle image were
deduced using the fixed values of the diffusion coefficients Dbreast = 0.67 mm and Dfluid = 0.20 mm.
Both, the right and middle image are given in separate min/max gray scales (from µa = −0.009 mm−1

(black) to µa = 0.011 mm−1 (white) and from µa = −0.013 mm−1 to µa = 0.030 mm−1, respectively).
Without using the estimated breast shape to deduce averaged optical properties of breast tissue, neither
the linear nor the nonlinear reconstruction converged to a meaningful image.

As can be seen from Fig. 7.1, the cyst corresponds to negative absorption coefficients. Negative ab-
sorption coefficients are unphysical and represent artefacts due to shortcomings of the model used. Cysts
are filled with opaque weakly absorbing fluid, and sometimes additionally with blood. It is commonly
accepted that the reduced scattering coefficient of cysts are considerably smaller than that of (breast)
tissue. However, as was mentioned above, in this thesis the fluid filled cyst is modelled as absorber rather
than as scatterer, causing negative absorption coefficients. This result can be understood in the following
way. Since the cyst was assumed to have the same scattering coefficient as the surrounding breast tissue,
attenuation of light traversing the cyst due to scattering is grossly overestimated. This effect is compen-
sated for by negative values of the absorption coefficient of the cyst. In addition, it is not clear whether
the condition µa ≪ µ′

s necessary to approximate photon transport by the diffusion equation holds true
within the volume of the cyst. Despite the unphysical absorption coefficients deduced for cysts and the
questionable model, cysts often can be detected easily in this way.

Generally, artefacts occur in linear reconstruction images at positions where the breast touches the cup
surface. Furthermore, in case of a large mismatch between the scattering coefficients of the breast tissue

1T1 3D SENSE scan protocol (TE/TR 3.0/6.2 ms, acquired voxel size 0.74 × 0.74 × 1.8 mm3)
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glandular tissue fat

cyst

Figure 7.1: Linear (left) and nonlinear (middle) reconstruction of a cyst case. (right) Coronal MR image
through cyst center. The nonlinear reconstruction with corrected scattering coefficient enhances the
spatial resolution and hence allows a separation of cyst, glandular, and fatty tissue as can be seen in the
MR image.

and the scattering fluid, artefacts appear at the tissue-fluid interface. These artefacts can be reduced by
nonlinear reconstructions and by using realistic (average) optical properties of breast tissue.

Tumor case A

Fig. 7.2 illustrates the convergence of the nonlinear reconstruction using measured data from a patient’s
breast bearing a tumor (assessed as BI-RADS 4 after X-ray and US investigation). The patient’s breast
filled the 80D cup insert only partly, i.e. approximately 40% of the cup volume was filled with the
scattering fluid. US mammograms show a 11 mm × 16 mm lesion surrounded by fatty tissue in the left
breast of a 67 year old patient. Histopathology unveiled the lesion as a malignancy (plasmacytoma).

In Fig. 7.2 we plot the frequency of occurrence of values Rκ=0
i derived from raw data and of Rκ

i

(κ = 1, ..., 3) representing weighted raw data for λ = 690 nm, where

Rκ
i = − ln

(
Φ(xdi

, xsi
, λ)

Φ0(xdi
, xsi

, λ)

Φsim
0 (xdi

, xsi
, λ)

Φsim
κ (xdi

, xsi
, λ)

)
. (7.1)

Rκ=0
i corresponds to the LHS of the Rytov approximation (see Sec. 6.1.2) and the weights in Rκ≥1

i are
obtained by nonlinear reconstruction. Fig. 7.2 contains results of all source-detector combinations.

The large peak in Fig. 7.2a at values Rκ=0
i close to zero corresponds to source-detector combinations

for which the light travels through scattering fluid only and was only slightly influenced by the presence of
the breast. In contrast, the broad distribution of values Rκ=0

i centered around 1.5 corresponds to source-
detector combinations joined by photon trajectories sampling the breast. The larger values of Rκ=0

i can
be explained by the stronger attenuation of diffusely transmitted light by breast tissue compared to the
scattering fluid.

When using as model the cup filled with scattering fluid and with the breast of realistic shape together
with average fitted absorption and diffusion coefficients of the breast tissue, the width of the distribution
Rκ=1

i is considerably reduced. However, as a result of improperly fitted optical properties that were
determined at a single wavelength without using a spectral model for the given example, the distribution
Rκ=1

i is not centered around Rκ=1
i = 0. Simulated photon densities Φsim

κ (xdi
, xsi

, λ) derived from inho-
mogeneous distributions of absorption coefficients in breast tissue obtained by nonlinear iteration steps
properly weight the raw data, i.e. making the RHS term of Eq. (7.1) close to zero. Fig. 7.2b to Fig. 7.2d
illustrate the corresponding narrowing of the Rκ

i distribution and its shift towards zero.
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Figure 7.2: Histogram of raw data (Rκ=0
i (λ = 690 nm)) and weighted raw data (Rκ

i (λ = 690 nm) for
various iteration steps (κ = 1, ..., 3) of nonlinear reconstruction of measured data of a tumour patient.

Additional nonlinear steps improve the distribution only marginally and convergence has been reached.

Tumor case B

As a third example of a nonlinear absorption reconstruction we present measurements of a 47 year old
patient, who according to histology bore a ductal invasive carcinoma with a diameter of approximately
2 cm in her right breast. The tumor showed a high contrast in Gd-enhanced MRI (assessed as BI-
RADS 5), as can be seen in Fig. 7.3. The tumor, indicated by a yellow arrow, is located in the upper
outer quadrant of the right (ipsilateral) breast at the boundary of the glandular tissue. No suspicious
lesions were found in the left (contralateral) breast. The optical properties of the patient’s breasts were

fitted as µbreast
a = 0.0039 mm−1 and Dbreast = 0.28 mm with the breasts filling the 80D cup insert

only partly (30% of the cup filled with scattering fluid). Absorption reconstruction results for iteration
κ = 3 are presented in Fig. 7.4 showing coronal slices (same scan protocol as given in Sec. 3.2) in
the top row (left and middle) and axial slices in the bottom row (left and middle) for the ipsilateral
and contralateral breast, respectively. Fig. 7.4 uses the same orientation of slices as the MR images
in Fig. 7.3. Absorption coefficients are given in gray scale values using the same min/max scaling for
all reconstruction images. All slices shown intersect the reconstructed tumor position. The maximum
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contralateral breast
(left)

ipsilateral breast
(right)

Figure 7.3: Coronal (top) and axial (bottom) Gd-enhanced MR images through tumor center. The tumor
(ductal invasive carcinoma) is located in the right (ipsilateral) breast (indicated by yellow arrow) and has
an estimated diameter of 2 cm. No suspicious lesion was found in the left (contralateral) breast.

absorption coefficient (white) of the reconstructed volume is found at the reconstructed tumor position
(indicated by a yellow arrow) with a value of µa = 0.017 mm−1 being higher than the initial homogeneous
absorption coefficient (µa = 0.0039 mm−1) by a factor of four. This result is consistent with published
ratios of absorption coefficients of tumors and average (homogeneous) absorption coefficients of breast
tissue [11]. The mammilla, not present in the given slices, shows a comparable high absorption coefficient
(µa = 0.016 mm−1) as the tumor. Between tumor and mammilla, negative absorption values are observed,
and such values are also present in Fig. 7.4 indicated by black areas. These negative absorption values
are unphysical and, as mentioned above, indicate shortcomings of the model used. However, in the
present case the lowest absorption coefficient (µa = −0.0021 mm−1) is considerably less negative than
that found for the cyst. The negative absorption values may be explained in the same way as for the
cyst case. Variations in scattering within breast tissue are not taken into account by our breast model
and areas with a lower diffusion coefficient compared to the average value Dbreast will result in lower or
even negative absorption coefficients.

One might be tempted to restrict reconstructed absorption coefficients to positive values only, but
keeping the constraint Dbreast = const. In this case the deficiency of the model, i.e. scattering assumed
to be spatially constant, is not corrected for and instead of small volumes with negative absorption
coefficients, large volumes with positive absorption coefficients close to zero appear after reconstruction.

The images representing reconstructed absorption coefficients of the contralateral breast (middle col-
umn) clearly show the interface between breast and scattering fluid as well as the glandular tissue at
the center of the breast (middle top image). Apart from the mammilla, in the entire volume of the
contralateral breast no large reconstructed absorption values were found that would indicate the presence
of a lesion.

The two images of the right column show schematically the orientation of the slices and the location
of the tumor deduced from palpation.
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Figure 7.4: Images displaying reconstructed (κ = 3) absorption coefficients of the right and left breast
of the same patient as in Fig. 7.3. The arrangement of the panels corresponds to the images shown in
this figure, i.e. the diseased right breast appears in the column on the LHS, the healthy breast in the
middle column and the column on the RHS shows schematically the orientation of the breast and tumor
position expected from palpation. The top and bottom panels display coronal and axial slices respectively
through the reconstructed tumor center (indicated by yellow arrow). Identical min/max scaling (from
µa = −0.0021 mm−1 (black) to µa = 0.017 mm−1 (white)) is used for all four DOT images and contra-
and ipsilateral breasts are presented using the same slices. (right column) Orientation of images and
tumor position: head (H), feet (F), right (R), left (L), anterior (A), posterior (P).
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7.2 Optical mammograms based on reconstructed dye concen-

trations

We present one selected example of fluorescence mammograms obtained with the fluorescent dye Omo-
cyanine. Details of the entire clinical study on fluorescence mammography are published in [175].

X-ray and MR mammograms of a 74 year old patient revealed a tumor in her right breast (BI-RADS
5), and histopathology diagnosed it to be an invasive ductal carcinoma. Fig. 7.5 (top) shows the Gd-
enhanced MR image (same scan protocol as given in Sec. 3.2) of both breasts in a top to bottom view.
The slightly tilted axial slice contained the clearly visible tumor in the right breast and the mammilla of
the left breast.

After injection of the Omocyanine dye and positioning of the breast in the 80D cup insert (30%
of the volume was filled with scattering fluid), fluorescence scans were performed. The fluorescence
mammograms of the right and left breast show reconstructed dye concentrations (bottom panels of
Fig. 7.5). The axial slice illustrated by the lower left panel intersects the tumor, while the slice of the
panel on the RHS intersects the mammilla. The arrangement of both panels corresponds to the upper
MR image. Reconstructed dye concentrations are normalized to the dye concentration in the mammilla of
each breast and relative concentrations are given as gray scale values corresponding to separate min/max
scaling.

Maximum dye concentration is reconstructed at the expected tumor position but the mammilla and
the skin show an increased dye contrast in both breasts, too. Additional fluorescent dye accumulates in
the remaining glandular tissue.

There are conspicuous ring shaped black areas in both fluorescence mammograms corresponding to
negative normalized reconstructed dye concentrations or negative normalized reconstructed dye absorp-
tion coefficients. As was discussed for the previous cases, variations of the diffusion coefficient within
the breast volume that are not taken into account by our breast model are compensated by variations
in the absorption coefficient, leading even to negative (dye) absorption coefficients. It is, therefore, not
surprising that negative relative dye concentrations appear in the reconstructed mammograms.
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Figure 7.5: (top) MR slice (nearly axial but slightly tilted) through tumor position in right (ipsilateral)
patient breast and through mammilla of left (contralateral) breast. Both breasts of the 74 year old
patient mainly consist of fatty tissue and only a to small amount of glandular tissue. (bottom left, right)
Fluorescence dye contrast reconstructions of ipsi- and contralateral breast. Slices through tumor and
mammilla are shown with maximum dye concentration in the tumor and around the nipple for ipsi- and
contralateral breast, respectively.



Chapter 8

Summary, outlook and conclusions

8.1 Summary

It was the aim of the present thesis to develop and validate statistical and numerical methods as well
as software tools necessary to quantitatively assess various instrumental concepts, measurement schemes
and methods of data analysis for optical and fluorescence mammography, including analysis of clinical
data.

To this end, a software suite was developed based on the finite element method (FEM) to simulate
propagation of NIR (laser) light and fluorescence radiation through inhomogeneous turbid media based
on the diffusion approximation of the radiative transfer equation and to carry out linear and nonlinear
reconstructions of the absorption and scattering properties of the medium from simulated or experimental
data taken in frequency domain or time-domain. Simulations of photon densities of diffusely transmitted
or remitted laser radiation and fluorescence radiation from an exogenous fluorescent contrast agent are
supported by the software package for arbitrary object (breast) geometries and arrangements of sources
and detectors.

In this thesis, a statistical method was developed to quantitatively assess detection limits for a le-
sion achieved by the two instrumental concepts implemented in optical mammographs that are presently
used in clinical trials of laser and fluorescence mammography. Tomographic instrumentation require the
patient to lie in prone position with one of her breasts immersed in a cup-shaped measurement chamber
filled with scattering liquid (tomographic geometry) and equipped with a large number of light sources
and photon detectors at its surface. Transmittance of laser and fluorescence radiation is measured for a
large number of source-detector combinations amounting to essentially complete angular sampling. Scan-
ning mammographs, on the other hand, slightly compress the breast between two parallel glass plates
(slab geometry) and scan the source across one compression plate, taking transmittance measurements
at a large number of source positions yet at only a limited number of source-detector offsets (limited
angular sampling). The statistical analysis of noisy simulated photon densities of diffusely transmitted
laser and fluorescence radiation is based on a chi-square test (test of null hypothesis) and allows to quan-
titatively determine the minimal size (radius) of a single (spherical) heterogeneity for it to be detectable
at assumed absorption and fluorescence contrast with respect to the (homogeneous) background medium.
For this purpose, numerical breast models were developed with estimated breast shapes consistent with
the particular measurement geometry and covering a realistic range of tissue absorption and scattering
properties, i.e. of light attenuation. From measurements carried out with existing tomographic instru-
mentation, a realistic noise model was derived to determine absolute and relative noise contributions to
simulated photon densities of transmitted laser and fluorescence radiation. From the statistical analysis,
the minimal detectable size of a (spherical) lesion was determined at each position inside the breast,
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depending on breast (cup) size (tomographic geometry) and thickness of the compressed breast (slab
geometry) as well as on background tissue optical properties. In addition, it was studied how lesion
detectability depends on breast compression (slab geometry), on absolute and relative noise of simulated
photon densities, on lesion size and on fluorescence contrast of the lesion. Because of the generally smaller
source-detector distances associated with the compressed breast geometry, and hence higher transmitted
laser and fluorescence intensities, lesion detection sensitivities are generally higher for scanning compared
to tomographic mammographs and are less affected by the absolute noise floor. A minimal fluorescence
contrast of 2.5 : 1 of the lesion above a homogeneous background was estimated for it to be detectable
in fluorescence mammograms. Although such investigations could also be carried out by reconstruct-
ing absorption coefficients and the concentration of the exogenous fluorescent dye to generate optical
mammograms, the excessive computational efforts required would prevent such systematic studies.

Interpretation of time-domain projection optical mammograms (slab geometry) is feasible even with-
out the need for reconstruction of tissue optical properties. For this purpose, a time-window analysis
of temporal point spread functions of transmitted laser pulses is used as standard technique to generate
projection mammograms displaying predominantly absorption and scattering properties of breast tissue.
By using a numerical phantom for a tumor bearing compressed breast (slab geometry) and by simulating
noisy temporal point spread functions, an improved method of data analysis of time-domain transmis-
sion mammograms was developed in this thesis that allows to reduce cross talk between absorption and
scattering images compared with the standard time-window analysis.

Whereas the results summarized in the preceding paragraphs were obtained from simulated data,
other findings of the present thesis are based on linear and nonlinear reconstructions of tissue absorption
coefficients, reduced scattering coefficients, and the concentration of an exogenous fluorescent dye. Several
improvements were made on the reconstruction algorithms, e.g. introduction of a noise-weighted back pro-
jection for the algebraic reconstruction technique (ART) used to calculate the image vector, and separate
regularization parameters for absorption and scattering reconstruction. Furthermore, in order to handle
the amount of time-domain data that were collected by scanning mammographs (slab geometry) and to
accelerate reconstructions, the standard nonlinear reconstruction technique was extended by introducing
a sub-volume method. To this end, the entire (cuboid) volume of interest, where reconstructions are to
be carried out, is split up into several (overlapping) cuboid sub-volumes. Likewise, the entire data set
entering the reconstruction, and hence set of source-detector combinations associated with the entire vol-
ume, is divided into sub-sets of source-detector combinations adapted to each sub-volume. Subsequently,
reconstructions of optical properties on the various sub-volumes are carried out in parallel, resulting in
a considerable acceleration compared to the standard one-volume reconstruction method. Convergence
of the standard method and of nonlinear sub-volume reconstructions was studied using simulated and
experimental phantom data. Furthermore, errors and limitations introduced by the decomposition of
the volume of interest into sub-volumes were investigated. Such errors can be tolerated as long as the
number of sub-volumes is small and the entire data set entering the standard reconstruction is also used
by the sub-volume method. In other words, the sizes of the sub-volumes must be consistent with all
source-detector offsets, i.e. the data of which enter the standard nonlinear method so that no additional
reduction takes place of the (limited) angular sampling range of the initial data set. The feasibility of
sub-volume reconstructions using experimental phantom data was shown.

The compressed breast geometry allows to record transmittance of laser and fluorescence radiation
over only a restricted range of projection angles, leading to an axial resolution in reconstructed images
of tissue optical properties that is even worse compared to the poor spatial resolution of tomographic
mammographs. It was shown in this thesis that axial resolution of time-domain scanning mammographs
(slab geometry) can be improved by using diffuse reflectance besides transmittance data. To this end,
reconstructions were carried out and spatial localization was compared using simulated and experimental
data including and excluding time-domain diffuse reflectance measurements. To account for the different
noise levels of experimental data taken at various source-detector offsets and of data corresponding to
different angular frequency components used in the reconstruction, the noise-weighted back-projection
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was applied, and quantitative reconstructions of fluorescent dye concentrations were carried out.

Linear and nonlinear absorption reconstructions as well as (linear) fluorescence reconstructions were
carried out using clinical data of four patients involved in a clinical trial on tomographic fluorescence
mammography. In all cases, the lesion could be detected in absorption (reconstructed absorption coef-
ficients, first three cases) or fluorescence (reconstructed dye concentration, forth patient) mammograms
and successfully correlated with MR mammograms, whenever available. An improved initialization model
was introduced for linear and nonlinear reconstructions of the clinical data, by dividing the reconstructed
cup volume into two compartments, one consisting of the matching scattering liquid surrounding the im-
mersed breast, the other compartment representing a homogeneous breast with an estimated shape and
absorption and scattering optical properties that were fitted in a preprocessing step to the in vivo data
taken at several optical wavelengths. Reconstructed absorption coefficients and reconstructed concentra-
tions of the exogenous fluorescent dye used exhibited artifacts compensating for changes in scattering
properties of breast tissue including lesions whereas all lesions were assumed to be pure absorbers and
no variations in the reduced scattering coefficient of the tissue were taken into account.

8.2 Outlook: topics for further investigation

This paragraph points out several areas, where improvements are possible beyond the results of this
thesis. Investigations of detection sensitivities presented in this thesis were carried out for an ideal
but highly unrealistic situation, where a single heterogeneity is located in an otherwise homogeneous
numerical breast phantom, thus predicting fundamental detection limits of the instrumental setup. The
assessment of detection sensitivity would be more relevant by using more realistic, i.e. inhomogeneous
numerical breast phantoms that better mimic patient measurements [176, 177, 178]. Furthermore, the
statistical method could be employed or a set of reconstructions could be carried out to quantitatively
assess and compare the spatial resolution achieved by different source-detector arrangements, employing
numerical phantoms with two neighboring heterogeneities. Rather than determining a minimal detection
radius for a single lesion, the smallest distance required to resolve both lesions could be determined as a
measure of spatial resolution.

Presently, despite parallelization, nonlinear reconstructions of absorption coefficients and fluorescent
dye concentrations from continuous wave clinical data require up to several hours of computer time.
However, with hardware improvements (e.g. calculations executed on graphics cards with high memory
bandwidth [179]), accelerations are conceivable that will allow near real time reconstructions without
impeding clinical workflow.

8.3 Conclusions

Due to superior angular sampling, tomographic optical mammography based on ring or cup shaped source-
detector arrangements yields better spatial resolution along source-detector lines of sight compared to
scanning mammography employing a compressed breast geometry. However, statistical analyses on sim-
ulated data showed that the compressed breast geometry provides superior detection sensitivity because
of shorter average photon trajectories, and greatly reduces requirements on dynamic range of detection
and acceptable noise floor. Furthermore, reconstructions of simulated and experimental phantom data
showed that axial definition of lesions in slab geometry is improved by recording transmittance and re-
flectance data, preferably from either side of the compressed breast. Nonetheless, due to light scattering,
optical mammography generally suffers from poor spatial resolution compared to X-ray mammography,
MRI, and US mammography.

Reconstructions of clinical data carried out in this thesis revealed that fitted absorption and scattering
coefficients averaged over the entire breast are needed for each patient to improve image quality rather
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than assuming typical optical properties of breast tissue. Therefore, continuous wave measurements alone
are not ideal to achieve this goal. Rather, a fluorescence mammograph should include a limited number of
additional time-domain or frequency domain channels to measure these optical properties reliably besides
a large number of continuous wave channels used for angular sampling.

Future clinical trials on fluorescence mammography should be carried out using such hybrid instru-
mentation together with nonlinear reconstruction of absorption and fluorescence contrast. Clinically, dif-
ferential diagnosis, i.e. the distinction of benign and malignant tumors, although not being investigated in
this thesis, is equally important as is the detection of lesions. Distinction of benign and malignant lesions
cannot be achieved based on intrinsic (absorption and scattering) contrast alone, but may be possible by
using a fluorescent contrast agent.

The results of this thesis suggest that scanning fluorescence mammography is feasible and may have
clinical applications in detection and differentiation of breast tumors, provided suitable fluorescent con-
trast agents become available. However, despite many conceivable technical improvements, the clinical
study on tomographic fluorescence mammography showed that clinical usefulness, application and impact
of fluorescence mammography will largely depend on the fluorescent contrast agent used rather than on
technical details, even if taking financial constraints on commercial instrumentation into account.



Appendix A
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A.1 Philips tomographic fluorescence mammograph

In the 1990’s, Philips Research built a tomographic optical mammography system [15] that was able to
perform absorption measurements of breast tissue at three wavelengths and was used in a clinical trial in
Leiden 1999 – 2000. The system consists of a patient couch in which a cup-shaped measurement chamber
is mounted. During examination, the patient lies in a prone position having one breast hanging freely
(uncompressed) in the measurement cup. To ensure good optical contact between cup and breast, the
remaining volume of the cup is filled with a scattering fluid having optical properties similar to breast
tissue.

In 2005 Philips Medical Systems decided to build a clinical prototype of an improved optical mam-
mograph, which bases on the prior system but was designed to additionally detect fluorescence light
to enable imaging of fluorescent contrast agents. Furthermore, the number of source wavelengths was
increased to four and the size of the measurement cup was adaptable to the size of the breast by the
concept of exchangeable cup inserts. The fluorescence tomographic mammograph was used in 2006 – 2007
in two clinical trials, one for investigating intrinsic properties of breast tissue and one for characterizing
the fluorescent dye Omocyanine (phase I clinical trial) that was provided by Bayer Schering Pharma.

A photo of the Philips tomographic fluorescence mammograph is shown in Fig. A.1. Cup inserts of
three sizes (75B, 80D, 80F) can be attached to the base plate (shown in Fig. A.2). Light guides are
mounted into the wall of the cup insert to illuminate the breast and allow detection of the transmitted
laser light and emitted fluorescence light at attached photodiode detectors. The base contains 510 fiber
ends that fit to the same number of fibers inside each cup insert. 255 fiber positions are connected to
four steady-state lasers (λ = 690 nm, 730 nm, 780 nm, and 850 nm) via a fiber switch to illuminate the
breast sequentially from various positions. Each of the remaining 255 fibers is connected via light guides
to a photodiode detector, to allow detection at all 255 detector positions synchronously. To perform
measurements of fluorescence photon densities, band filters are moved mechanically into the front of the
photodiodes to suppress transmitted laser light. Before a measurement is performed, the scattering liquid
(see Sec. A.5) is pumped into the cup insert via a valve placed at the bottom of the base plate and the
cup inserts.

The 80D cup insert is rotationally symmetric with respect to the vertical y axis, its axial cross section
an ellipse with a semi-major axis of 97 mm and a semi-minor axis of 67.5 mm (see Fig. 5.14). The prolate
ellipsoid is cut perpendicularly to its major axis at a position (y = 0), 25 mm below its center. The first
ring of optical fibers is located 10◦ below the y = 0 plane, with the remaining 11 fiber rings each separated
by 6◦ from their neighbors. Starting from the fiber ring at the top, there are 30, 29, 28, 27, 26, 24, 22,
19, 17, 14, 11, and 8 equidistant source and detector fibers mounted into the cup wall resulting in a
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total of 255 source fibers and 255 detection fibers. The source fibers are illuminated sequentially using
cw diode laser radiation, and the signals of all detectors are recorded simultaneously. The setup of the
cup-tomographic system is described in more detail in [180].

Figure A.1: Photo of Philips tomographic fluorescence mammograph. The patient is lying in prone
position with one breast immersed in the fluid filled detection chamber which is mounted at the top
center of the couch. The mammograph can be controlled via two identical displays attached at both
front sides.

A.2 Boundary conditions

The air-tissue boundary ∂Ω is modeled by an index-mismatched Robin-type condition, i.e. by Eq. (5.15),
where the flux leaving the boundary is proportional to the fluence rate at the boundary. The propor-
tionality factor A(λ) accounts for internal reflection of light back into the tissue, where the value of A(λ)
depends on the relative refractive index mismatch nrel at the boundary. The approximate solution of
A(λ) is given in Eq. (5.16) and was derived in [114] using the reflectivity K(λ) that can be approximated
by [181]

K(λ) = −1.4399nrel(λ)−2 + 0.7099nrel(λ)−1 + 0.6681 + 0.0636nrel(λ). (A.1)

For a tissue-air boundary, and at a wavelength λ in the NIR spectral range, a typical value of nrel = 1.33
results in A = 2.82.
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Figure A.2: Photo of base plate (without cup insert) with mounted (510) fiber tips. 255 fibers are
connected to four steady-state lasers via a fiber switch, the remaining 255 fibers are connected to 255
photo diodes. The vent at the bottom of the base plate (and cup insert) allows pumping of scattering
fluid into the detection chamber.

A different approach giving slightly different results for A and being derived from Fresnel’s law has
been proposed in [182] as

A(λ) =
2

1−R0
− 1 + | cos θc|3

1 − | cos θc|2
, (A.2)

where the critical angle θc is given by

θc = arcsin (1/nrel) , (A.3)

and

R0 =
(nrel − 1)

2

(nrel + 1)2
. (A.4)

For a matched boundary, i.e. nrel = 1, Eq. (5.16) and Eq. (A.2) yield A = 1.

Although the Dirac boundary condition (DBC), i.e.

Φ(x, xs, λ, ω) = 0 ∀x ∈ ∂Ω, (A.5)

describes the physical situation less accurately than the RBC, it leads to a simpler mathematical model.
Hence, one approximates the RBC by extrapolated boundary conditions in analytical calculations, i.e. us-
ing a DBC fullfilled on a border ∂Ω′ shifted outwards along the surface normals n of ∂Ω [115].

A.3 FEM implementation

Numerical forward model calculations and reconstructions were carried out by two separate
computer programs, whose typical simulation times and details on the implementation of the
algorithms, e.g. stopping criteria and grid triangulation, are given.
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A.3.1 Forward model simulations

Numerical forward model calculations are performed by an in-house software using the deal.II library
[183] for grid generation (triangulation) and inversion of system matrices. This software calculates and
stores Green’s functions for given source positions and can simulate data for all defined source-detector
combinations. The numerical solution of the frequency domain diffusion equation by this software has
been implemented throughout this thesis.

For calculations in slab geometry, the grid was triangulated by cuboids having an edge length between
1 mm to 2 mm. For cup geometry, the grid was generated by using ANSYS [184] and the basic elements
of the grid were chosen to be hexahedrals, allowing an improved sampling of the curved surface compared
with cuboids. Grids are refined at source and detector positions, which depend on the optical properties of
the medium simulated. The number of vertices of the refined grids corresponding to the different cup sizes
varies between approximately 100.000 to 280.000. For a refined slab, the number of vertices varies strongly
depending on the slab thickness and the number of source and detector positions simulated, and can
exceed 400.000 vertices for simulations of large volumes and many sources and detectors (scanning source
and CCD detector). Therefore, all vertex numbers were resorted by the Cuthill-McKee renumbering
algorithm [185] subsequently to the setup of the grid, to reduce the bandwith needed for the sparse
system matrix.

The finite element method associates a shape function ϕi(x) with each vertex i of the grid. During all
forward model calculations, these shape function were chosen as being linear functions, i.e. being 1 s m−3

at vertex i, decreasing linearly to 0 towards adjacent neighbor vertices, and being 0 at all other vertices.
Such choice results in a sparse system matrix being only nonzero if column and row numbers correspond
to adjacent vertices or the same vertex.

The quadrature formula given in Eq. (5.42) approximates the integration needed for solving the
diffusion equation via Galerkin’s method by a finite sum. The 2-point-Gauss quadrature formula was
chosen throughout this thesis, which is exact for polynomials of degree 3 [186].

With those settings, the solution of the cw diffusion equation at laser wavelength (fluorescence wave-
length) via FEM corresponds to an inversions of a symmetric and positive definite system matrix that
is carried out by a conjugate gradient solver having a stopping criterion of a maximum of 10000 (5000)
steps or the Euclidian norm of the residual of the corresponding nodal solution vectors being smaller
than approximately 0.3 · 10−23 s/m3. To speed up convergence of the inversion, the symmetric successive
overrelaxation method (SSOR) has been chosen as a preconditioner with a relaxation factor of 1.2 [128].
To carry out frequency domain calculations, the complex valued elements of the system matrix have been
split into real and imaginary part, resulting in an asymmetric sparse matrix, that was inverted by a
biconjugate gradient method (BI-CGSTAB) with a Jacobian preconditioner having an relaxation factor
of 1.2 for laser wavelength simulations and 1.4 for fluorescence wavelength simulations. The stopping cri-
terion chosen for the laser (fluorescence) wavelength simulations was a maximum of 50000 (10000) steps
or the weighted Euclidian norm of the photon density being smaller than approximately 1.7 · 10−23 s/m3

(0.3 · 10−23 s/m3). All stopping criteria were selected by hand.

To improve the speed of numerical simulations, parallelization of calculations was implemented. A
similar approach but limited to simultaneous calculation of different source positions has been proposed
before [187]. The in-house software was extended to perform numerical calculations corresponding to
different sources, frequency components, and wavelengths as separate processes. For this purpose, the
simulation software was extended to support forward model simulations on many computers in parallel,
so that simulations were carried out in parallel on 20-30 computers simultaneously (depending on the
availability of resources) using a heterogeneous cluster. PCs available for calculations ranged from single
core P4 (32 bit), dual core K8 (64 bit), to quad core P5 (64 bit) machines. However, splitting simulations
into too many processes can be unfavorable, as the speed gain does not increase linearly due to additional
calculation overhead, e.g. creation of the FE grid and renumbering of vertices.

Calculation time strongly depends on the situation that is simulated (i.e. solving the cw or frequency
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domain diffusion equation, using a coarse or fine grid, simulating a small or large number of sources) an
can range from minutes to several hours. Performed on a single computer, calculation time can exceed
several days in worst cases.

A.3.2 Reconstruction

Nonlinear reconstructions are carried out by a suite of in-house software on the same grid that was used
for the corresponding forward model calculations. This approach is not optimal regarding calculation
time, because the grid is finer than the expected resolution of DOT. Nevertheless, using the same grid
for forward model simulations and reconstructions avoids transformation of Green’s functions between
different grids. State-of-the-art methods like the implementation of adaptive meshes [188, 189] that can
reduce the number of voxels between iterations have not been implemented in the reconstruction software.

To suppress artefacts during the reconstruction, Green’s functions have been smeared out at their
corresponding source positions by using a Gaussian blurred or an exponentially attenuated source term
instead of a delta peak. Therefore, a source width of σsrc = 6 mm has been used in all calculations
throughout this thesis for both types of source term, motivated by multicore fibers that have been used
in experiments carried out in slab geometry. The scanning source used during these experiments radiated
light out of a fiber bundle of 2 mm diameter consisting of 100 µm fibers having a numerical aperture of
NA = 0.22. Depending on the distance between fiber tip and tissue, and the medium used in between
(air or glass plates for compression), the laser source illuminates a spot on the tissue of several millimeter
in diameter. Therefore, the chosen value of σsrc = 6 mm is in a realistic range.

Preprocessing of experimental data before reconstruction (see Sec. 6.2.1), i.e. discrete Fourier transfor-
mation of time-domain data, subtracting background fluorescence, and calculating instrumental factors
for source-detector combinations, is carried out using several MATLAB [190] scripts that have been
programmed during this thesis.

Depending on the geometry (e.g. slab thickness, cup size, number of grid vertices) and from the type
of input data (cw or frequency domain data) that is used, reconstructions can take from several minutes
(e.g. linear reconstruction in 75B cup geometry using cw data) to several days (e.g. nonlinear reconstruc-
tion in slab geometry using frequency domain data). Nonlinear reconstruction using experimental cw
data and linear and nonlinear reconstruction using frequency domain data has been implemented within
this thesis. Additionally, a parallelization of nonlinear reconstruction was integrated into the software
for acceleration of calculations. For this purpose, calculations of inhomogeneous Green’s functions corre-
sponding to the various sources and detectors of the simulated geometry can be carried out in parallel on
the cluster mentioned above. In slab geometry, the volume of interest can be separated into sub-volumes
and reconstructions on each sub-volume can be calculated independently on a separate core. Using this
method, nonlinear reconstructions in slab geometry were carried out on up to 20-30 computers, reduc-
ing calculation time to hours instead of days, or even making reconstruction possible at all because of
reduced memory requirements for each sub-volume reconstruction compared with a reconstruction of the
corresponding complete volume of interest due to the reduced size of the system matrix.

A.3.3 Discrete Fourier transformation of TPSFs

This paragraph illustrates how temporal point spread functions are transformed into frequency
domain prior to reconstructions and how time-domain solutions of the diffusion equation are
obtained from frequency domain solutions by inverse discrete Fourier transformation.

Temporal point spread functions measured via TCSPC are discrete functions, usually having about
600 sampling points and a sampling interval of ∆t ≈ 16 ps. Hence, the discrete TPSF is given by
Φ̃(xd, xs, λ, tk) with tk = t0 + k∆t, where t0 is the start time of detection and k is the sampling point
number. In case of an even number N of time steps k = 0, ..., N − 1, we define the discrete Fourier
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transformation of the TPSF by

Φ(xd, xs, λ, ωq) =

N−1∑

k=0

Φ̃(xd, xs, λ, tk) exp (−2πikq/N)∆t, (A.6)

for q = −N/2, ..., N/2. Therefore, calculations provide N + 1 (complex) values of the TPSF in frequency
domain, corresponding to frequencies limited by the Nyquist frequency, i.e. ωmin = −π/∆t to ωmax =
π/∆t. Due to the periodicity of Eq. (A.6) given by

Φ(xd, xs, λ, ω−q) = Φ(xd, xs, λ, ωN−q), (A.7)

only N values are independent after the discrete Fourier transformation. Usually, the values in frequency
domain are resorted, i.e. angular frequency components 0 ≤ ω ≤ ωmax correspond to the index q =
0, ..., N/2, while angular frequency component ωmin < ω < 0 correspond to the index q = N/2+1, ..., N−1,
now giving a total of N components. Using this numeration, the inverse discrete Fourier transformation
is given by

Φ̃(xd, xs, λ, tk) =
1

N∆t

N−1∑

q=0

Φ(xd, xs, λ, ωq) exp (2πikq/N) , (A.8)

for k = 0, ..., N − 1.
To circumvent numerical instabilities during calculations of TPSFs (see Sec. 5.1.6), the diffusion

equation is solved in frequency domain instead of time-domain. Hence, Eq. (5.11) is solved for several
frequency components ωq, followed by an inverse Fourier transformation of the corresponding photon
densities Φ(xd, xs, λ, ωq), yielding a TPSF in time-domain.

To achieve a simulation of a TPSF corresponding to a measurement interval tm ≈ 8 ns and sampling
interval ∆t ≈ 16 ps (i.e. having N = tm/∆t ≈ 500 time steps), the maximal angular (Nyquist) frequency
component that has to be chosen is given by ωmax = π/∆t ≈ 200 GHz. Due to the symmetry of the
diffusion equation, the complex conjugated photon densities corresponding to negative angular frequencies
fullfill the relation

Φ(x,−ωq) = Φ(x, ωq)
∗
. (A.9)

Therefore, only 1 + N/2 non-negative frequency components have to be computed ranging from ωq = 0
to ωq = ωmax, reducing computation time approximately by a factor of two.

As a side-note, the constraint given in Eq. (5.56) does not vanish simply by performing calculations
in frequency domain. Instead, it enforces high frequency components to be calculated on fine grids.
Nonetheless, compared with time-domain calculation, the frequency domain relation has two major ben-
efits:

1) Each frequency component can be calculated independently, i.e. numerical errors of one calculation
do not disturb results corresponding to other frequency components, unlike the iterative calculations
in time-domain, where the numerical errors emerging in an iterative solution Φ̃nodal(xs, λ, t = k∆t)

reappear in the next iteration step via the source term F−Φ̃nodal(xs, λ, t = k∆t), as can be seen in
Eq. (5.55).

2) The diffusion equation in frequency domain can be solved in parallel for each frequency component.
By carrying out the computations of selected frequency components on several computers (CPU
cores) simultaneously, a tremendous speed gain in forward model calculations is achievable.

3) Since the maximum frequency component that can be transmitted through a compressed breast is
ω ≈ 6 GHz, high frequency components can be neglected, reducing the computation time.
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Figure A.3: Scan head for transmission and reflectance measurement with positions of source and detec-
tors in the scanning (xsys) coordinate system. The red plus sign indicates the source position, the blue
circles indicate the cw detector positions.

A.4 Sensitivity simulation parameters

Details on the performance analysis of instrumentation in optical mammography (see Sec. 5.2.2)
are given in this section. Lesion positions that have been investigated in slab geometry dur-
ing this analysis, the source and detector positions that were used to simulate data, and the
geometries of the numerical (compressed) breast phantoms are described.

A.4.1 Lesion positions sampled in slab geometry

Several positions (xl, yl, zl) of the lesion within the yz plane (xl = 0) where selected to probe lesion
detectability throughout this slice of the (compressed) breast phantom (see Fig. 5.20). In slab geometry,
the yl and zl coordinates were varied at increments of 1 cm within the limits −2 cm ≤ yl ≤ 6 cm,
0 ≤ zl ≤ 2 cm (d = 6 cm, d = 7 cm) and 0 ≤ zl ≤ 3 cm (d = 9 cm). Results for coordinates zl < 0 where
obtained from those at zl > 0 exploiting symmetry.

A.4.2 Scan geometry

In slab geometry, the source at xs = (xs, ys, zs) is scanned at the top and bottom faces of the phantom
with −4 cm ≤ xs ≤ 4 cm, 0 ≤ ys ≤ 9 cm, and zs = ±d/2. Each scan head contains one source and
ten photodiode detectors positioned at various source-detector offsets (∆y = 0 cm, 4 cm with ∆x =
±5 cm,±2.5 cm, and ∆y = 1 cm, 4 cm with ∆x = 0) as illustrated in Fig. A.3.

A.4.3 Phantom geometry

Spheres, cylinders, and cuboids were used as basic geometric elements to construct the numerical breast
phantoms. Complex objects can be generated from these elements by joining selected parts that were
properly cut.

The construction scheme of the numerical breast phantom in slab geometry used in Sec. 5.2.2 is given
in Fig. A.4, where a projection onto the z = 0 plane is shown. Cuboids, cylinders, and spheres are
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Table A.1: Postions P with coordinates (x, y), lines L and radii R of the phantom geometry as illustrated
in Fig. A.4

thickness d 6 cm 7 cm 9 cm

P1 / mm (-40, -44) (-46.7, -52.5) (-60, -69.5)

P2 / mm (-40, 46) (-46.7, 52.5) (-60, 65.5)

P3 / mm (0, 10) (0, 0) (0, -20)

P4 / mm (-70, -44) (-81.7, -52.5) (-105, -69.5)

P5 / mm (-70, 46) (-81.7, 52.5) (-105, 65.5)

P6 / mm (0, -44) (0, -52.5) (0, -69.5)

L1 / mm 90 105 135

R1 / mm 98.5 114.9 147.7

R2 / mm 60.2 70.3 90.3

depicted by full lines, dashed lines, and dotted lines, respectively. Radius vectors are shown for the
spheres starting at their centers. All three phantoms, corresponding to the three slab thicknesses, consist
of four elements:

1) The breast bulk is built up by the cuboid (P1, P1’, P2’, P2) of thickness d and depth L1, centered
at position P3, i.e. (x, y) = (0, 1 cm), (0, 0), and (0,−2 cm) for the three breast thicknesses d =
6 cm, 7 cm, and 9 cm, respectively.

2) Each of the two elements representing the left and right segments of the breast is built from the
half cylinders (P4, P1, P2, P5) and (P4’, P5’, P2’, P1’) of radius d/2. A large sphere of radius R1
centered at position P6 intersects with the half cylinders to create rounded surfaces.

3) The tip of the breast is simulated by adding a spherical calotte to the front face of the cuboid. The
spherical calotte corresponds to a sphere of radius R2 centered at P3. The circular base plane of
the calotte has a diameter of P2P2’ but is truncated along the z direction to d.

The numerical breast phantoms constructed in this way do not have an entirely smooth surface,
however remaining vertices and edges are far enough from assumed lesion positions to neglect their
influence. Although the breast wall with optical properties considerably different from breast tissue does
not enter into our simulations, the approximate position of the breast wall is indicated in Fig. A.4 for
clarity. The coordinates of points (P), lines (L), and sphere radii (R) of the 3 phantoms are given in
Tab. A.1. Primed points P’ are obtained from points P by symmetry.

The forward model calculations are performed on a finite element grid (for more details see [145]).
Most cells of the FE grid have a volume of (0.25 cm)3, but the cells at source and detector positions are
refined additionally and have a volume of (0.125 cm)3. For the phantom with thickness d = 6 cm a total
of approximately 250000 grid nodes is used, and the entire grid encloses a volume of 25 × 18 × 6 cm3.
The grid was chosen large enough to span a volume that includes all source positions, lesion positions
and detector positions. The resulting grid dimensions for the three different phantoms are listed in Table
A.2.

A total of 2442 source positions and 7738 detector positions for each phantom scan are sampled using
measurements in transmission and reflection geometry taken on both compression plates. For each source
position 20 detectors collect data, which results in a total of 48840 simulated data for an absorption and
fluorescence scan.
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Figure A.4: Breast phantoms generated from cuboids (solid line), half cylinders (dashed line), and spher-
ical calottes (solid line). Projections of these elements on the z = 0 plane are shown. In addition a large
sphere (radius R1) is indicated intersecting and limiting the half cylinders. Positions P, lines L and radii
R are given in Table A.1. Although the breast wall is not included in the simulations its approximate
location is indicated to facilitate 3D perception.

Table A.2: Minimal and maximal grid node coordinates (xg, yg, zg) of the three different grids used for
phantom simulations.

Grid size d = 6 cm d = 7 cm d = 9 cm

max(xg) / cm 12.5 12.5 12.5

min(xg) / cm -12.5 -12.5 -12.5

max(yg) / cm 14 14 16

min(yg) / cm -4 -4 -6

max(zg) / cm 3 3.5 4

min(zg) / cm -3 -3.5 -4

number of nodes 248871 278461 405229
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Table A.3: Approximated optical properties of scattering liquid MF2.1 at the four laser wavelengths used
in the Philips tomographic fluorescence mammograph.

λ = 690 nm λ = 730 nm λ = 780 nm λ = 850 nm

k/m 95 115 110 115

µ′
s/mm−1 1.7 1.5 1.3 1.2

µa/mm−1 0.0018 0.0029 0.0031 0.0037

The solution of one forward model simulation for a single phantom scan with a lesion at one position
needs approximately 9h to 12h on a standard PC, mainly depending on the thickness of the slab. Simu-
lations are carried out at the excitation and fluorescence wavelength for the breast phantom containing a
single lesion and for all five lesion radii. In addition, one simulation is performed for each breast phantom
without a lesion, and a single simulation for the reference measurement, where the slab is completely
filled with scattering fluid. For lesion diameters smaller than 1 cm, the grid is additionally refined and the
same holds true for simulations involving the homogeneous breast phantom used for comparison. In this
way, a total of 816 simulations were carried out, comprising 326 simulations for the d = 9 cm phantom
and 245 simulations for each of the two smaller phantoms.

A.5 Optical properties of scattering liquid MF2.1

The scattering liquid called Matching Fluid 2.1 (MF2.1) that has been used in several phantom and
patient scans was provided by Philips Research Europe – Eindhoven. Its optical properties at the four
laser wavelengths λ = 690 nm, 730 nm, 780 nm, and 850 nm have been determined by measurements
and are given in Table A.3. The reduced scattering coefficient µ′

s(λ) can be modeled by a Mie model
(see Sec. 5.1.3) having a scattering amplitude of a = 0.9 mm−1 (normalized to λ0 = 1000 nm), and a
scattering power of b = 1.7.

A.6 Numerical breast phantoms used for spectral fits

To test the spectral fit derived in Sec. 6.2.5, three numerical breast phantoms were simulated, modeling
three different breasts (strong attenuation (dense) and small size, medium attenuation and medium size,
small attenuation (fatty) and large size), with each filling the 80D cup only partly while scattering liquid
(MF2.1) fills the remaining gap. All three numerical breast phantoms used the same Mie scattering model
with scattering amplitude a = 1.17 mm−1 (normalized to λ0 = 1000 nm) and scattering power b = 0.56.
The spectral model of the intrinsic absorption coefficient µchrom

a (λ) of the three breasts was given by
the three major constituents, i.e. water (H2O), deoxyhemoglobin (HbR), and oxyhemoglobin (HbO),
and their corresponding concentrations, given in Table A.4. In all three numerical breast phantoms, a
concentration of 10 nM of the Omocyanine dye was simulated.

The corresponding total absorption coefficient µa (chromophore absorption µchrom
a plus the additional

absorption caused by the fluorescent dye µdye
a ) is given in Table A.5 for the four simulated laser wave-

lengths, i.e. λ = 690 nm, 730 nm, 780 nm, and 850 nm.
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Table A.4: Constituents of three numerical 80D breast phantoms, scattering amplitude a (normalized by
λ0 = 1000 nm), and scattering power b shown in Fig. 6.18.

cH2O/µM cHbR/µM cHbO/µM dye conc. c/nM a/ mm−1 b

dense small 47% 6 13 10 1.17 0.56

medium 47% 5 12 10 1.17 0.56

fatty large 47% 3 8 10 1.17 0.56

Table A.5: Absorption and scattering coefficient of three 80D breast phantoms used for breast shape
estimation and spectral fit.

λ = 690 nm λ = 730 nm λ = 780 nm λ = 850 nm

µa/mm−1 (dense small) 0.0040 0.0038 0.0049 0.0061

µa/mm−1 (medium) 0.0035 0.0035 0.0045 0.0058

µa/mm−1 (fatty large) 0.0023 0.0029 0.0033 0.0045

µ′
s/mm−1 1.435 1.391 1.340 1.277

A.7 BI-RADS assessment categories

The Breast Imaging Reporting and Data System (BI-RADS) assessment categories are formulated by the
American-College of Radiology (ACR) [191]. This subjective classification stages benign and malignant
findings in mammograms into six categories.

• Category 0 – Assessment incomplete, additional image evaluation needed.

• Category 1 – Negative finding.

• Category 2 – Benign finding.

• Category 3 – Probably benign finding. Short interval follow-up suggested.

• Category 4 – Finding of suspicious abnormality. Biopsy should be considered.

• Category 5 – Highly suggestive of malignancy. Appropriate follow-up action should be taken.
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Ronny Ziegler, Andy Ziegler, Lueder Fels, Martin Pessel, Stephanie van de Ven, Sjoerd Elias,
Willem Mali, Peter Luijten, Frontiers in Optics 2008, invited talk



152 APPENDIX B. PUBLICATIONS AND OUTPUT



Appendix C

Derivations

C.1 Homogeneous medium with spherical heterogeneity

Diffuse photon density waves (DPDW) give analytical solutions for homogeneous and partially homoge-
neous turbid media for simple geometries [25], provided the heterogeneity is a sphere. In the following,
we present the derivation of fluorescence DPDW for the homogeneous infinite medium and of attenuation
DPDW for the infinite medium with a spherical heterogeneity embedded. We follow [26, 27], but adapted
formulas to the Fourier transformation and source term normalization as was chosen in Sec. 5.1.1.

C.1.1 Homogeneous infinite medium: fluorescence DPDW

For a laser pulse represented by temporal and spatial delta functions at xs the Fourier amplitude of the
source term is given by

q0(x, xs, λ, ω) = δ(x − xs)/v , (C.1)

for all angular modulation frequencies (see Sec. 5.1.2), yielding for the laser photon density per unit
angular frequency interval Φinf

0 (x, xs, λ, ω) the expression given in Eq. (5.24). It should be noted that the
absorption coefficient entering the complex wave number k(λ, ω) contains the background chromophore

contribution and the contribution of the fluorescent dye, i.e. µ0
a(λ) = µchrom

a,0 (λ) + µdye
a,0 (λ).

The excited fluorophores, distributed over the entire medium are the source term of the fluorescence
DPDW,

qf
0(x, xs, λ, ω) =

ηµdye
a (λ)

1 + iωτ
Φinf

0 (x, xs, λ, ω). (C.2)

Integrating over all fluorescence DPDWs of the distributed fluorescence sources qf
0(x1, xs, λ, ω) results in

the detected fluorescence DPDW

Φinf
0,f (x, xs, λ, ω) =

∫

Ω

dx1q
f
0(x1, xs, λ, ω)

1

D0(λf)

exp (−ik(λf , ω) |x − x1|)
4π |x − x1|

. (C.3)

The diffusion coefficient and the complex wave number at the fluorescence wavelength λf are denoted by
D0(λf) and k(λf , ω), respectively. The integral in equation (C.3) can be solved analytically for an infinite
homogeneous medium as shown in [26] and results in

Φinf
0,f (x, xs, λ, ω) =

ηµdye
a (λ)

vD0(λ)D0(λf)

1

1 + iωτ

1

k2(λ, ω) − k2(λf , ω)[
exp (−ik(λ, ω) |x − xs|)

4π |x − xs|
− exp (−ik(λf , ω) |x − xs|)

4π |x − xs|

]
,

(C.4)
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which is a superposition of two spherical waves with different wave numbers, k(λ, ω) at the laser wave-
length, and k(λf , ω) at the fluorescence wavelength. In the limit λf → λ equation (C.4) simplifies to

lim
λf→λ

Φinf
0,f (x, xs, λ, ω) =

ηµdye
a (λ)

4πv (D0(λ))
2

1

1 + iωτ

1

2k(λ, ω)
exp

(
−ik(λ, ω) |x − xs| −

iπ

2

)
. (C.5)

Eq. (C.5) is no longer a diffusive spherical wave. This can be explained by the absorption of laser photons
after the free absorption length 1/µdye

a and isotropic re-emission of photons rather than elastic forward
scattering.

C.1.2 Homogeneous infinite medium with spherical heterogeneity

Attenuation DPDW

For the infinite homogeneous medium with an additional spherical object and a point source of laser
photons at xs outside the sphere, the solution of the diffusion equation (Eq. (5.11)) is provided by the
diffraction of the attenuation DPDW Φinf

0 (x, xs, λ, ω). In the following, the subscript 1 always denotes
quantities outside the sphere, subscript 2 quantities inside the sphere. The origin of the coordinate system
coincides with the center of the sphere, and for simplicity, the refraction indices outside and inside the
sphere are assumed to be equal, i.e. n1 = n2.

Shown in Fig. C.1a is the attenuation DPDW at the laser wavelength, which consists of the homo-
geneous component Φinf

10 and the scattered component Φ1sc expanded into partial waves and built up by

spherical Hankel functions of the first kind h
(1)
l and spherical harmonics Ylm(Ω) :

Φ1(x, xs, λ, ω) = Φinf
10 (x, xs, λ, ω) + Φ1sc(x, xs, λ, ω) (C.6)

= Φinf
10 (x, xs, λ, ω) +

∑

l,m

Alm(xs, λ, ω, rsph)h
(1)
l (k1(λ, ω) |x|)Ylm(Ω), (C.7)

with the homogeneous medium solution

Φinf
10 (x, xs, λ, ω) =

1

vD1(λ)

exp (−ik1(λ, ω) |x − xs|)
4π |x − xs|

, (C.8)

and coefficients Alm, which can be calculated from the boundary conditions at the surface of the sphere
B [25, 27]. Alm(xs, λ, ω, rsph) is shorthand for

Alm(xs, λ, ω, rsph) = Alm(xs, k1(λ, ω), k2(λ, ω), D1(λ), D2(λ), rsph). (C.9)

The attenuation DPDW inside the sphere is given by

Φ2(x2, xs, λ, ω) =
∑

l,m

Blm(xs, λ, ω, rsph)jl(k2(λ, ω) |x2|)Ylm(Ω2), (C.10)

where jl(k2(λ, ω) |x2|) are spherical Bessel functions and Blm(xs, λ, ω, rsph) stands for Blm(xs, λ, ω, rsph) =
Blm(xs, k1(λ, ω), k2(λ, ω), D1(λ), D2(λ), rsph). These coefficients are given in [26, 27].

Fluorescence DPDW

The fluorescence DPDW

Φ1,f(x, xs, λ, ω) = Φ′
1,f(x, xs, λ, ω) + Φ′′

1,f(x, xs, λ, ω) (C.11)

is separated in two contributions, one (Φ′′
1,f(x, xs, λ, ω)) originating from excited fluorophores inside

the sphere, another one (Φ′
1,f(x, xs, λ, ω)) generated by excited fluorophores outside the sphere. The
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Figure C.1: (a) Attenuation DPDW with a component Φinf
10 running straight from source position xs to

detector position xd and a component Φ1sc scattered by the sphere B. (b) Detected fluorescence DPDW
Φ′′

1,f emitted from fluorophores inside the sphere (”lesion fluorescence”) and excited by the attenuation
DPDW Φ2 inside the sphere.
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Figure C.2: Various contributions to fluorescence DPDW from fluorophores outside the sphere (”back-
ground fluorescence”). (a) Fluorescence DPDW at detector position xd without scattering excited by
unscattered attenuation DPDW, (b) scattered fluorescence DPDW excited by unscattered attenuation
DPDW, (c) unscattered fluorescence DPDW excited by scattered attenuation DPDW, (d) scattered flu-
orescence DPDW excited by scattered attenuation DPDW.
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attenuation DPDW Φ2(x2, xs, λ, ω) penetrating the sphere excites fluorophores inside the sphere, e.g. at
position x2, generating fluorescence sources

qf
2(x2, xs, λ, ω) =

ηµdye
a (x2, λ)

1 + iωτ
Φ2(x2, xs, λ, ω) (C.12)

that in turn generate the fluorescence DPDW Φ′′
1,f(x, xs, λ, ω). Generally, a δ-like source of photons of

wavelength λ′ at position x2 inside the sphere generates a DPDW in the outside medium that can be
expressed as

Φ(x, x2, λ
′, ω) =

∑

l,m

Clm(x2, λ
′, ω, rsph)h

(1)
l (k1(λ

′, ω) |x|)Ylm(Ω), (C.13)

where the coefficients stand for Clm(x2, λf , ω, rsph) = Clm(x2, k1(λf , ω), k2(λf , ω), D1(λf ), D2(λf), rsph)
and are given in [26, 27]. Therefore, the fluorescence DPDW from fluorophores inside the sphere (”lesion
fluorescence”) is given by

Φ′′
1,f(x, xs, λ, ω) =

∫

B

dx2vqf
2(x2, xs, λ, ω)

∑

l,m

Clm(x2, λf , ω, rsph)h
(1)
l (k1(λf , ω) |x|)Ylm(Ω). (C.14)

The integral can be evaluated analytically and the result is given in [26, 27]. Besides fluorophores inside
the sphere, those outside the sphere contribute to the fluorescence DPDW. The attenuation DPDW
excites fluorophores at position x1 outside the sphere generating a source of fluorescence photons

qf
1(x1, xs, λ, ω) =

ηµdye
a (x1, λ)

1 + iωτ
Φ1(x1, xs, λ, ω). (C.15)

According to Eq. (C.6, C.7) the photon density Φ1(x1, xs, λ, ω) consists of a direct part and of a scattered
part, as illustrated in Fig. C.1a and Fig. C.2a,c. Furthermore, a δ-like source (1/v)δ(x−xs) of fluorescence
photons at location x1 generates a fluorescence DPDW that can be written analogously to Eq. (C.7),
consisting of the direct part

Φinf
10,f(x, x1, λf , ω) =

1

vD1(λf)

exp (−ik1(λf , ω)|x − x1|)
4π|x − x1|

, (C.16)

and a scattered part

Φ′
1sc,f(x, x1, λf , ω) =

∑

l,m

Alm(x1, λf , ω, rsph)h
(1)
l (k1(λf , ω) |x|)Ylm(Ω), (C.17)

where the coefficients Alm(x1, λf , ω, rsph) = Alm(x1, k1(λf , ω), k2(λf , ω), D1(λf), D2(λf), rsph) are given
in [26, 27]. The scattered part Φ′

1sc,f(x, x1, λf , ω) is illustrated in Fig. C.2b+d. Therefore, the entire
fluorescence DPDW from fluorophores outside the sphere (”background fluorescence”) is obtained as

Φ′
1,f(x, xs, λ, ω) =

∫

Ω\B

dx1vqf
1(x1, xs, λ, ω)Φinf

10,f(x, x1, λf , ω)

+

∫

Ω\B

dx1vqf
1(x1, xs, λ, ω)Φ′

1sc,f(x, x1, λf , ω).

(C.18)

The first integral corresponds to the unscattered, the second to the scattered fluorescence DPDW. Both
integrals can be evaluated analytically and the result is given in [26, 27]. The entire fluorescence DPDW
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is given by

Φ1,f(x, xs, λ, ω) =

∫

B

dx2vqf
2(x2, xs, λ, ω)

∑

l,m

Clm(x2, λf , ω, rsph)h
(1)
l (k1(λf , ω) |x|)Ylm(Ω)

+

∫

Ω\B

dx1q
f
1(x1, xs, λ, ω)

1

D1(λf)

exp (−ik1(λf , ω)|x − x1|)
4π|x − x1|

+

∫

Ω\B

dx1q
f
1(x1, xs, λ, ω)

∑

l,m

Alm(x1, λf , ω, rsph)h
(1)
l (k1(λf , ω) |x|)Ylm(Ω),

(C.19)

where the first integral corresponds to the ”lesion fluorescence” and the remaining two integrals to the
”background fluorescence”.

A solution such as (C.19) for infinite homogeneous slab with a spherical heterogeneity can be re-
formulated from the infinite medium solution similarly to the derivation given in Sec. 5.1.4 by using
extrapolated boundaries and mirrored sources and sinks. But this solution is only valid approximately,
for it does not incorporate the diffraction of diffracted DPDW on mirrored spheres.

Due to the analytical representation of the solution, the DPDW at fluorescence and absorption wave-
length can be computed quite fast on a modern PC compared with numerical FEM implementations.

C.2 The Rytov approximation

C.2.1 The Rytov approximation using homogeneous Green’s functions

If D0(λ) and µ0
a(λ) are the optical properties of an unperturbed (homogeneous) medium, and D(x, λ),

µa(x, λ) are the optical properties of a perturbed medium with an additional inhomogeneity, the definition
of the diffusion equation in frequency domain is given by

∇ · D(x, λ)∇Φ(x, xs, λ, ω) − µa(x, λ)Φ(x, xs, λ, ω) − iω

v
Φ(x, xs, λ, ω) = −q0(x, xs, λ, ω). (C.20)

The perturbation of the absorption and scattering coefficient can be written as

δµa(x, λ) = µa(x, λ) − µ0
a(λ), (C.21)

δD(x, λ) = D(x, λ) − D0(λ), (C.22)

resulting in

∇ ·
(
D0(λ) + δD(x, λ)

)
∇Φ(x, xs, λ, ω)

−
(
µ0

a(λ) + δµa(x, λ)
)
Φ(x, xs, λ, ω) − iω

v
Φ(x, xs, λ, ω) = −q0(x, xs, λ, ω).

(C.23)

We rewrite this equation, having the LHS correspond to the homogeneous diffusion equation, and inter-
pret the RHS as a source term consisting of the physical source term and additional terms due to the
perturbation of the optical properties

∇ · D0(λ)∇Φ(x, xs, λ, ω) − µ0
a(λ)Φ(x, xs, λ, ω) − iω

v
Φ(x, xs, λ, ω) =

− q0(x, xs, λ, ω) −∇ · δD(x, λ)∇Φ(x, xs, λ, ω) + δµa(x, λ)Φ(x, xs, λ, ω).
(C.24)

Every solution of Eq. (5.11) for an arbitrary source term −q0(x, xs, λ, ω) and a homogeneous medium can
be constructed from the fundamental solution G0(x, x′, λ, ω), which is a solution of Eq. (5.11) replacing
the source term by −δ(x − x′)/v, i.e.

Φ0(x, xs, λ, ω) = v

∫

Ω

G0(x, x′, λ, ω)q0(x
′, xs, λ, ω)dx′. (C.25)
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The complete RHS of Eq. (C.24) then acts as a source in Eq. (C.25) and we get the solution of the
diffusion equation as

δΦ(x, xs, λ, ω) = Φ(x, xs, λ, ω) − Φ0(x, xs, λ, ω) =

− v

∫

Ω

G0(x, x′, λ, ω)δµa(x
′, λ)Φ(x′, xs, λ, ω)dx′

+ v

∫

Ω

G0(x, x′, λ, ω)∇ · δD(x′, λ)∇Φ(x′, xs, λ, ω)dx′,

(C.26)

where the term containing δD(x′, λ) simplifies by partial integration to

∫

Ω

G0(x, x′, λ, ω)∇ · (δD(x′, λ)∇Φ(x′, xs, λ, ω)) dx′

=

∫

Ω

G0(x, x′, λ, ω)∇Φ(x′, xs, λ, ω) · ∇δD(x′, λ)dx′ +

∫

Ω

G0(x, x′, λ, ω)δD(x′, λ) △ Φ(x′, xs, λ, ω)dx′

=

∫

Ω

G0(x, x′, λ, ω)∇Φ(x, xs, λ, ω) · ∇δD(x′, λ)dx′ −
∫

Ω

∇(G0(x, x′, λ, ω)δD(x′, λ)) · ∇Φ(x′, xs, λ, ω)dx′

+

∫

∂Ω

G0(x, x′, ω)δD(x′, λ)∂nΦ(x′, xs, λ, ω)dω

= −
∫

Ω

δD(x′, λ)∇G0(x, x′, λ, ω) · ∇Φ(x′, xs, λ, ω),

(C.27)
where we used ∇ · a∇b = ∇a · ∇b + a △ b in line one, Green’s formula I in line two and ∇U1U2 =
U1∇U2 + U2∇U1 in line three. The surface term vanishes, because we have no variation in optical
properties at the surface, i.e. δD(x, λ) = 0 for x ∈ ∂Ω.

The photon density Φ0(xd, xs, λ, ω) at the detector position xd following injection of a spatial δ-like
pulse at position xs into the homogeneous medium is given by Φ0(xd, xs, λ, ω) = G0(xd, xs, λ, ω). In
the linear approximation we use Φ(xd, xs, λ, ω) ≈ G0(xd, xs, λ, ω) on the RHS of Eq. (C.26). Using
Eq. (C.27), the well known (normalized) Born approximation is obtained from Eq. (C.26) yielding

δΦ(xd, xs, λ, ω)

Φ0(xd, xs, λ, ω)
= − v

∫

Ω

δµa(x
′, λ)

G0(xd, x
′, λ, ω)G0(x

′, xs, λ, ω)

G0(xd, xs, λ, ω)
dx′

− v

∫

Ω

δD(x′, λ)
∇G0(xd, x

′, λ, ω) · ∇G0(x
′, xs, λ, ω)

G0(xd, xs, λ, ω)
dx′.

(C.28)

In contrast to the Born approximation, the Rytov approximation assumes that the perturbations δµa(x, λ)
and δD(x, λ) cause changes in a complex (Rytov) phase ϕRytov(x, xs, λ, ω), rather than in the amplitude
Φ0(x, xs, λ, ω), setting

Φ(x, xs, λ, ω) = Φ0(x, xs, λ, ω) exp (ϕRytov(x, xs, λ, ω)) , (C.29)

or in first order

ϕRytov(x, xs, λ, ω) =
δΦ(x, xs, λ, ω)

Φ0(x, xs, λ, ω)
, (C.30)

yielding the Rytov approximation

ln

(
Φ(xd, xs, λ, ω)

Φ0(xd, xs, λ, ω)

)
= − v

∫

Ω

δµa(x
′, λ)

G0(xd, x
′, λ, ω)G0(x

′, xs, λ, ω)

G0(xd, xs, λ, ω)
dx′

− v

∫

Ω

δD(x′, λ)
∇G0(xd, x

′, λ, ω) · ∇G0(x
′, xs, λ, ω)

G0(xd, xs, λ, ω)
dx′.

(C.31)
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The first integral in Eq. (C.31) related to absorption changes generalizes the well known result of
the attenuation of X-rays, traveling on the straight line s from the source at position xs to the detector
at position xd through a homogeneous medium with absorption coefficient µ0

Xray, and through a (inho-

mogeneous) medium with absorption coefficient µXray(x) = µ0
Xray + δµXray(x). It follows readily from

Eq. (3.3) that

ln

(
IXray(xd, xs, µXray(x))

IXray(xd, xs, µ0
Xray)

)
= −

∫

s

δµXray(x)ds, (C.32)

where the integral has to be taken over the line s.
The normalized Born approximation given in Eq. (C.28) can be rewritten to calculate the contribution

to the fluorescent photon density at the detector position, when a laser photon is absorbed at position
x′ and a fluorescence photon is emitted. In this case the transmitted laser photon density Φ(xd, xs, λ, ω)
at the detector position serves as reference. We denote the fundamental solution of the (inhomogeneous)
diffusion equation at the laser wavelength (see Eq. (5.11)) as G(x, x′, λ, ω), obtained by replacing its RHS
by −δ(x − x′)/v. Likewise, G(x, x′, λf , ω) stands for the fundamental solution of the inhomogeneous
diffusion equation at the fluorescence wavelength, calculated from Eq. (5.13) with the term on the RHS
replaced by −δ(x − x′)/v. The first order normalized Born approximation for the fluorescence photon
density Φf(xd, xs, λ, ω) at the detector is then obtained from Eq. (C.28) replacing δΦ(xd, xs, λ, ω) by
Φf(xd, xs, λ, ω), i.e. neglecting tissue autofluorescence, and substituting in the denominator the reference
Φ0(xd, xs, λ, ω) by the attenuation measurement at the laser wavelength Φ(xd, xs, λ, ω). On the RHS, the
second term is set to zero, and in the first term we replace −µa(x, λ) by +ηµdye

a (x, λ)/(1+ iωτ), and the
Green’s functions G0(xd, x′, λ, ω), G0f(x

′, xs, λ, ω), G0(xd, xs, λ, ω) by G(xd, x′, λf , ω), G(x′, xs, λf , ω)
and G(xd, xs, λf , ω), respectively, yielding

δΦf(xd, xs, λ, ω)

Φ(xd, xs, λ, ω)
= +

ηv

1 + iωτ

∫

Ω

µdye
a (x′, λ)

G(xd, x′, λ, ω)G(x′, xs, λ, ω)

G(xd, xs, λ, ω)
dx′. (C.33)

However, the exact Green’s functions are not known initially and are replaced by the homogeneous Green’s
functions, yielding

δΦf(xd, xs, λ, ω)

Φ(xd, xs, λ, ω)
= +

ηv

1 + iωτ

∫

Ω

µdye
a (x′, λ)

G0(xd, x′, λ, ω)G0(x
′, xs, λ, ω)

G0(xd, xs, λ, ω)
dx′. (C.34)

Eq. (C.34) corresponds to the result given in Eq. (6.2). Alternatively, the Green’s functions at the laser
wavelength G(x′, xs, λ, ω), G(xd, x′, λ, ω) can be calculated iteratively by nonlinear reconstruction and,
G(xd, x′, λf , ω) is approximated by G(xd, x′, λf , ω) ≈ G(xd, x′, λ, ω), thus calculating fluorescence photon
densities by first order Born approximation, using Green’s functions at the laser wavelength obtained by
iterative nonlinear reconstructions.

C.2.2 The iterative Rytov approximation

In a nonlinear reconstruction the optical properties are approximated iteratively in several iteration steps
κ beginning at κ = 0

µ0
a(x, λ) = µ0

a(λ),

µ1
a(x, λ) = µ0

a(x, λ) + δµ0
a(x, λ),

...

µκ+1
a (x, λ) = µκ

a (x, λ) + δµκ
a (x, λ).

(C.35)

Analogous relations apply to the diffusion coefficient Dκ(x, λ). The optical properties Dκ(x, λ) and
µκ

a (x, λ) are reconstructed at iteration κ − 1. These optical properties solve the diffusion equation

∇·Dκ(x, λ)∇Φsim
κ (x, xs, λ, ω)−µκ

a (x, λ)Φsim
κ (x, xs, λ, ω)− iω

v
Φsim

κ (x, xs, λ, ω) = −q0(x, xs, λ, ω). (C.36)
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The fundamental solution of the diffusion equation with optical properties reconstructed in iteration
step κ is given by Gκ(x, xs, λ, ω), and the solution for an arbitrary source term −q0(x, xs, λ, ω) can be
reconstructed by

Φsim
κ (x, xs, λ, ω) = v

∫

Ω

Gκ(x, x′, λ, ω)q0(x
′, xs, λ, ω)dx′. (C.37)

If we want to improve the solution (µκ
a (x, λ), Dκ(x, λ)) in the next iteration, we have to solve the equation

∇ · Dκ(x, λ)∇Φsim
κ+1(x, xs, λ, ω) − µκ

a (x, λ)Φsim
κ+1(x, xs, λ, ω) − iω

v
Φsim

κ+1(x, xs, λ, ω) =

− q0(x, xs, λ, ω) −∇ · δDκ(x, λ)∇Φsim
κ+1(x, xs, λ, ω) + δµκ

a (x, λ)Φsim
κ+1(x, xs, λ, ω).

(C.38)

Since we do not know the Green’s function Gκ+1(x, xs, λ, ω) at this iteration step, we use the following
approximation,

Φsim
κ+1(x, xs, λ, ω) ≈ Φsim

κ (x, xs, λ, ω). (C.39)

Since a spatial δ-like pulse is injected at xs, we have

Φsim
κ (x, xs, λ, ω) = Gκ(x, xs, λ, ω). (C.40)

Analogously to Eq. (C.31) the Rytov approximation is obtained by

ln

(
Φsim

κ+1(xd, xs, λ, ω)

Φsim
κ (xd, xs, λ, ω)

)
= − v

∫

Ω

δµκ
a (x′, λ)

Gκ(xd, x′, λ, ω)Gκ(x′, xs, λ, ω)

Gκ(xd, xs, λ, ω)
dx′

− v

∫

Ω

δDκ(x′, λ)
∇Gκ(xd, x′, λ, ω) · ∇Gκ(x′, xs, λ, ω)

Gκ(xd, xs, λ, ω)
dx′.

(C.41)

Experimental data Φ(xd, xs, λ, ω) contain instrumental factors that are eliminated by scaling with the
ration Φsim

0 (xd, xs, λ, ω)/Φ0(xd, xs, λ, ω), where Φ0(xd, xs, λ, ω) corresponds to the experimental data
obtained from the reference experiment on the homogeneous medium. We then set

Φsim
κ+1(xd, xs, λ, ω) ≈ Φ(xd, xs, λ, ω)Φsim

0 (xd, xs, λ, ω)

Φ0(xd, xs, λ, ω)
. (C.42)

This approximation should improve with every iteration. Using Eq. (C.42) and Eq. (C.41) finally results
in the nonlinear reconstruction relation as presented in Eq. (6.3).

C.2.3 Amplitude and phase of the attenuation coefficient

The attenuation coefficient
k(λ, ω) = kre(λ, ω) − ikim(λ, ω) (C.43)

in a homogeneous medium is given by

k2(λ, ω) = −µ0
a(λ) + iω

v

D0(λ)
. (C.44)

The sign of the imaginary part has been chosen to make the DPDW of the homogeneous medium

Φinf
0 (x, xs, λ, ω) =

1

4πvD0(λ)

exp (−ik(λ, ω) |x − xs|)
|x − xs|

. (C.45)

a damped spherical wave as expected. Using Eq. (C.43) and Eq. (C.44) one can show that

kre(λ, ω)kim(λ, ω) =
ω

2vD0(λ)
, (C.46)
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and

k4
im(λ, ω) − µ0

a(λ)

D0(λ)
k2
im(λ, ω) − ω2

4v2 (D0(λ))
2 = 0. (C.47)

It follows that

k2
im(λ, ω) =

µ0
a(λ)

2D0(λ)


1 ±

√

1 +

(
ω

vµ0
a(λ)

)2

 . (C.48)

As kim has to be real, only the solution

kim(λ, ω) =

√
µ0

a(λ)

2D0(λ)

√√√√
1 +

√

1 +

(
ω

vµ0
a(λ)

)2

(C.49)

is valid. Analogous calculations for the real part of the attenuation show that

kre(λ, ω) =

√
µ0

a(λ)

2D0(λ)

√√√√
√

1 +

(
ω

vµ0
a(λ)

)2

− 1. (C.50)

For the cw situation (ω = 0) we get kre(λ, ω = 0) = 0 and

kim(λ, ω = 0) =

√
µ0

a(λ)

D0(λ)
=
√

3µ0
a(λ)µ′

s,0(λ). (C.51)

The diffuse photon density wave Φinf
0 (x, xs, λ, ω), i.e. the solution of the diffusion equation (5.11) for an

infinite homogeneous medium with a source located at xs is given in Eq. (5.24). This solution simplifies
for ω = 0 by using Eq. (C.51) to

Φinf
0 (x, xs, λ, ω = 0) =

1

4πvD0(λ)

exp
(
−
√

µ0
a(λ)

D0(λ) |x − xs|
)

|x − xs|
. (C.52)

The amplitude of k(λ, ω) is calculated by

|k(λ, ω)| =
√

k2
re(λ, ω) + k2

im(λ, ω)

=

((
µ0

a(λ)
)2

+ ω2/v2

(D0(λ))2

)1/4

,

(C.53)

and its phase ϕ by

tan ϕ = −kim

kre

= −vµ0
a(λ)

ω



√

1 +

(
ω

vµ0
a(λ)

)2

+ 1


 .

(C.54)

For ω = 0, the phase is

ϕ = −π

2
, (C.55)

which is expected from Eq. (C.43).
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C.3 Derivation of diffusion equation from radiative transfer equa-

tion

This section follows closely the derivations presented in [192]. By inserting the (dipole) expansion for

the source term S̃(x, xs, λ, n, t) and for the radiance Ĩ(x, xs, λ, n, t) given in Eq. (5.5) and Eq. (5.6),
respectively, into the RTE (Eq. (5.1)) and by using the expression in Eq. (5.7) and Eq. (5.8) for the

photon density Φ̃(x, xs, λ, t) and for the (net) photon current density J̃(x, xs, λ, t), respectively, one
obtains

∂

∂t
Φ̃(x, xs, λ, t) +

3

v

∂

∂t
J̃(x, xs, λ, t) · n = − v (n · ∇ + µa(x, λ)) Φ̃(x, xs, λ, t)

− 3 (n · ∇ + µa(x, λ) + µ′
s(x, λ)) J̃(x, xs, λ, t) · n

+ vq̃0(x, xs, λ, t) + 3S̃1(x, xs, λ, t) · n.

(C.56)

Integrating Eq. (C.56) over all directions n yields

∂

∂t
Φ̃(x, xs, λ, t) = −vµa(x, λ)Φ̃(x, xs, λ, t) −∇ · J̃(x, xs, λ, t) + vq̃0(x, xs, λ, t). (C.57)

Similarly, by multiplying Eq. (C.56) by n and subsequently integrating over all directions n, one obtains

1

v2

∂

∂t
J̃(x, xs, λ, t) = −1

3
∇Φ̃(x, xs, λ, t) − µa(x, λ) + µ′

s(x, λ)

v
J̃(x, xs, λ, t) +

1

v
S̃1(x, xs, λ, t). (C.58)

The following expressions were used to derive the latter two equations
∫

4π

(a · n) dn = 0,

∫

4π

(a · n) (b · n) dn =
4π

3
a · b,

∫

4π

(a · n)ndn =
4π

3
a,

∫

4π

(a · n) (b · n)ndn = 0,

(C.59)

where a = a(x) and b = b(x) are vectors, such as J̃(x, xs, λ, t) that may depend on position x, but not
explicitly on direction n, and dn is shorthand for the surface element (sinϑ)dϑdϕ of the unit sphere.

On the conditions
µa(x, λ) ≪ µ′

s(x, λ),

S̃1(x, xs, λ, t) = 0,

1

vµ′
s(x, λ)

∣∣∣∣
∂

∂t
J̃(x, xs, λ, t)

∣∣∣∣≪
∣∣∣J̃(x, xs, λ, t)

∣∣∣ ,
(C.60)

i.e. that the free absorption length la is much longer than the free transport scattering length l′s, that
the source can be assumed to be isotropic and that the change which the net photon current density
experiences during the time a photon needs to travel one free transport scattering length l′s is much
smaller than the net photon current density itself, Eq. (C.58) can be written as

J̃(x, xs, λ, t) = −vD(x, λ)∇Φ̃(x, xs, λ, t), (C.61)

where D(x, λ) = 1/(3µ′
s(x, λ)). Equation (C.61) corresponds to the Fick law. Inserting Eq. (C.61) into

Eq. (C.57) yields the time-domain diffusion equation

∇ · D(x, λ)∇Φ̃(x, xs, λ, t) − µa(x, λ)Φ̃(x, xs, λ, t) − 1

v

∂

∂t
Φ̃(x, xs, λ, t) = −q̃0(x, xs, λ, t). (C.62)
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C.4 Integration by parts

It can be shown by using the Gauss’s theorem on the product v(x)a(x) of the scalar field v(x) and the
vector field a(x) that

∫

Ω

dΩ∇v(x) · a(x) =

∫

∂Ω

dω v(x)a(x) · n −
∫

Ω

dΩv(x) (∇ · a(x)) . (C.63)
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[14] L. Göetz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold. Optical mammography on pre-
operative patients (optische mammographie an präoperativen patientinnen). Aktuelle Radiologie,
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Zusammenfassung, Ausblick und

Schlussfolgerungen

Zusammenfassung

Ziel der vorliegenden Doktorarbeit war die Entwicklung und Validierung statistischer und numerischer
Methoden, sowie die Entwicklung von benötigten Computerprogrammen zur quantitativen Bewertung
verschiedener Messkonzepte, Messsysteme und Methoden der Datenanlyse der optischen und Fluoreszenz-
mammographie, einschließlich der Analyse von klinischen Daten.

Zu diesem Zweck wurde ein Softwarepaket entwickelt, das auf Basis der Finite-Elemente-Methode
(FEM) die Ausbreitung von Nahinfrarotlicht (Laserlicht) und Fluoreszenzlicht durch inhomogenes dif-
fus streuendes Gewebe mittels der Diffusionsnäherung der Strahlungstransportgleichung simuliert, und
lineare sowie nichtlineare Rekonstruktionen der Absorptions- und Streueigenschaften des Mediums unter
Verwendung von simulierten oder experimentellen Daten ausführt, die im Frequenz- oder Zeitraum gewon-
nen wurden. Für beliebige Objektgeometrien (Brust) und Anordnungen von Quellen und Detektoren
werden Simulationen der Photonendichte von diffusiv transmittiertem oder remittiertem Laserlicht und
Fluoreszenzlicht eines exogenen Fluoreszenzkontrastmittels vom Softwarepaket unterstützt.

In dieser Doktorarbeit wurde eine statistische Methode entwickelt, um Nachweisgrenzen von Läsi-
onen für zwei verschiedene, momentan in klinischen Studien zur Laser- und Fluoreszenzmammographie
eingesetzte instrumentelle Konzepte der optischen Mammographie zu bestimmen. Bei tomographischen
Mammographen liegt die Patientin auf dem Bauch, während eine der beiden Brüste in eine Streuflüssigkeit
eintaucht, die sich in einer schalenförmigen Messkammer (tomographische Geometrie) befindet, welche
an ihrer Oberfläche mit einer Vielzahl von Lichtquellen und Detektoren ausgestattet ist. Die Trans-
mittanz des Laser- und Fluoreszenzlichts wird für eine große Anzahl von Quell-Detektor-Kombinationen
gemessen und erlaubt somit eine nahezu komplette Winkelabdeckung der Brust. Raster-Mammographen
hingegen komprimieren die Brust leicht zwischen zwei parallelen Glassplatten (planparallele Geometrie)
und rastern die Quelle über eine der Kompressionsplatten. Dabei wird die Transmittanz an einer großen
Zahl von Quellpositionen (Rasterpositionen), jedoch nur für eine kleine Anzahl von seitlichen Versätzen
zwischen Quelle und Detektor gemessen (eingeschränkte Winkelabdeckung). Die statistische Analyse von
verrauschten simulierten Photonendichten diffusiv transmittierten Laser- und Fluoreszenzlichts basiert
auf einem Chi-Quadrat-Test (Test der Nullhypothese) und erlaubt es, die minimale Größe (Radius) einer
einzelnen (sphärischen) Heterogenität quantitativ zu bestimmen, damit sie bei einem im Vergleich zum
(homogenen) Hintergrundmedium angenommen Absorptions- und Fluoreszenzkontrast noch detektierbar
ist. Für diese Simulationen wurden numerische Brustmodelle mit einer zur Messgeometrie angepassten
Brustform entwickelt, welche einen realistischen Bereich der Gewebeabsorption und -streuung, d.h. der
Lichtschwächung, abdecken. Aus Messungen an einem existierenden optischem Mammographen wurde
ein realistisches Rauschmodell bestimmt, um den Anteil von absolutem und relativem Rauschen zur
simulierten Photonendichte der transmittierten Laser- und Fluoreszenzstrahlung zu bestimmen. Aus der
statistischen Analyse simulierter Daten wurde die minimale noch detektierbare Größe einer (sphärischen)
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Läsion an verschiendenen Positionen innerhalb der Brust berechnet, und deren Abhängigkeit von der
Brustgröße (tomographische Geometrie), der Dicke der komprimierten Brust (planparallele Geometrie),
sowie den optischen Eigenschaften des Hintergrundgewebes (normales Brustgewebe) simuliert. Zusätzlich
wurde untersucht, wie die Detektierbarkeit einer Läsion von der Brustkompression (planparallele Geome-
trie), vom absoluten und relativen Rauschen der simulierten Photonendichten, der Läsionsgröße und
vom Fluoreszenzkontrast der Läsion abhängt. Aufgrund der im allgemeinen kleineren Quell-Detektor-
Abstände der planparallelen Geometrie und der daraus folgenden größeren transmittierten Laser- und
Fluoreszenzintensitäten, ist die Empfindlichkeit bezüglich einer Detektierbarkeit einer Läsion höher für
Raster-Mammographen als bei tomographischen Mammographen und wird weniger durch das absolute
Rauschen beeinflusst. Ein minimaler in Fluoreszenzmammogrammen noch detektierbarer Fluoreszenz-
kontrast der Läsion gegenüber dem homogenen Hintergrund wurde zu 2.5 : 1 abgeschätzt. Zwar könnten
derartige Untersuchungen auch durch Rekonstruktionen der Absorptionskoeffizienten und der Konzen-
tration des exogenen Fluoreszenzfarbstoffs ohne statistische Analyse erreicht werden, jedoch verhindert
der hierfür enorme Rechenaufwand derartige Studien.

In planparalleler Geometrie ist eine Interpretation von Projektionen optischer Mammogramme auch
ohne vorhergehende Rekonstruktion der optischen Eigenschaften des Gewebes möglich. Bei zeitaufgelösten
Messungen werden dazu standardmäßig Zeitfenster der Impusantwortfunktion der transmittierten Laser-
pulse analysiert, um Projektionsmammogramme zu erhalten, welche hauptsächlich die Absorptions- und
Streueigenschaften des Brustgewebes aufzeigen. Mittels eines numerischen Phantoms für eine kompri-
mierte Brust mit Läsion (planparallele Geometrie) und Simulationen von verrauschten Zeitverteilungskur-
ven, wurde die Datenanalyse von Transmissionsmammogrammen im Zeitraum verbessert, indem das
Übersprechen zwischen Absorptions- und Streubildern im Vergleich zur Standardmethode reduziert wer-
den konnte.

Während die bisherigen Resultate mittels simulierter Daten erreicht wurden, basieren weitere Ergeb-
nisse dieser Doktorarbeit auf linearen und nichtlinearen Rekonstruktionen von Absorptionskoeffizien-
ten und reduzierten Streukoeffizienten von Gewebe und der Konzentration eines exogenen Fluoreszenz-
farbstoffs. Dazu wurden verschiedene Verbesserungen an Rekonstruktionsalgorithmen entwickelt, wie
z.B. eine rauschgewichtete Rückprojektion der zur Berechnung des Bildvektors eingesetzten algebra-
ischen Rekonstruktionstechnik (ART) sowie separate Regularisierungsparameter für Absorptions- und
Streurekonstruktionen eingeführt. Weiterhin wurde die standardmäßige nichtlineare Rekonstruktion um
eine Partialvolumen-Methode erweitert, um die bei Raster-Mammographie (planparallele Geometrie) an-
fallende Datenmenge bearbeiten zu können, und um die Rekonstruktionen zu beschleunigen. Bei dieser
Rekonstruktionsmethode wird das gesamte Rekonstruktionsvolumen (Quader) in mehrere (überlappende)
Partialvolumina aufgeteilt. Zusätzlich werden auch die gesamten Messdaten einer Standardrekonstruk-
tion in zu den jeweiligen Partialvolumina zugehörige Untermengen von Quell-Detektor-Kombinationen
aufgeteilt. Danach wird die Rekonstruktion der optischen Eigenschaften auf den verschiedenen Partial-
volumina auf Rechner-Cluster parallel ausgeführt, wodurch eine deutliche Beschleunigung der Rekon-
struktion im Vergleich zur Standardmethode erreicht wird. Mittels simulierter und experimenteller
Phantom-Daten eines Brust-Phantoms wurde die Konvergenz der Standardmethode und der Methode der
nichtlinearen Partialvolumina-Rekonstruktion untersucht. Zusätzlich wurden die durch die Zerlegung des
Rekonstruktionsvolumens in Untervolumen entstehenden Fehler und Einschränkungen analysiert. Derar-
tige Fehler sind tolerierbar so lange die Anzahl an Partialvolumina klein ist, und der gesamte Datensatz,
der in der Standardrekonstruktion verwendet wird, auch von der Partialvolumina-Methode genutzt wer-
den kann. Mit anderen Worten, die Größen der Partialvolumina müssen konsistent mit allen seitlichen
Quell-Detektor Versätzen sein, so dass der Winkelbereich der Daten, die von der Partialvolumina-Methode
verwendet werden im Vergleich zur (bereits beschränkten) Winkelabdeckung des anfänglichen Datensatzes
nicht weiter eingeschränkt wird. Der Einsatz der Partialvolumina-Rekonstruktionsmethode wurde unter
Verwendung von experimentellen Daten erfolgreich geprüft.

In planparalleler Geometrie ist eine Messung der Transmittanz von Laser- und Fluoreszenzlicht nur
über einen eingeschränkten Bereich von Projektionswinkeln möglich, was zu einer weiteren Reduzierung
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der axialen Auflösung der rekonstruierten Bilder von optischen Eigenschaften im Vergleich mit der Orts-
auflösung von tomographischen Mammographen führt. In dieser Arbeit wurde gezeigt, dass die axiale
Auflösung von zeitaufgelösten Raster-Mammographen (planparallele Geometrie) durch Hinzunahme der
Messung der diffusen Remission zusätzlich zur Transmission verbessert werden kann. Dazu wurden
Rekonstruktionen von simulierten und experimentellen Daten mit und ohne zeitaufgelöster diffuser Re-
mittanzmessung ausgeführt, und die dabei erhaltene Ortsauflösung verglichen. Um das unterschiedlich
starke Rauschen der experimentellen Daten bei verschiedenen seitlichen Quell-Detektor Versätzen und
verschiedenen Modulations-Frequenzen zu berücksichtigen, wurde eine rauschgewichtete Rückprojektion
angewendet, um quantitative Fluoreszenzfarbstoffkonzentration zu rekonstruieren.

Mit den bei einer klinischen Studie vom tomographischen Fluoreszenzmammographen gesammelten
Daten von vier Patientinnen wurden sowohl lineare und nichtlineare Absorptionsrekonstruktionen als
auch (lineare) Fluoreszenzfarbstoffrekonstruktionen ausgeführt. In allen Fällen konnte die Läsion in den
Absorptions- (erste drei Patientinnen) und im Fluoreszenzmammogramm (vierte Patientin) entdeckt wer-
den, und auch eine Korrelation mit den zugehörigen MR-Mammogrammen war erfolgreich, sofern diese
vorhanden. Ein verbessertes Initialisierungsmodell für eine lineare und nichtlineare Rekonstruktion der
klinischen Daten wurde eingeführt. Hierbei wurde das zu rekonstruierende Volumen der schalenförmigen
Messkammer in zwei Bereiche aufgeteilt, wobei einer dem Volumen der Streuflüssigkeit entspricht, welche
die eingetauchte Brust umgibt, und der andere eine homogene Brust mit einer abgeschätzten Form und
gefitteten Absorptions- und Streu-Eigenschaften repräsentiert, welche in einem Vorverarbeitungsschritt
unter Einbeziehung der bei verschiedenen Wellenlängen gemessenen in vivo Daten abgeschätzt wurden.
Rekonstruierte Absorptionskoeffizienten und rekonstruierte Konzentrationen des benutzten Fluoreszenz-
farbstoffs zeigten Artefakte, die Änderungen in den Streu-Eigenschaften des Brustgewebes ausgleichen,
da alle Läsionen als reine Absorber angenommen wurden und keine Änderungen des reduzierten Streuko-
effizienten im Brustgewebe berücksichtigt wurden.

Ausblick: Themen für weitere Untersuchungen

Dieser Abschnitt zeigt Möglichkeiten für weitere Untersuchungen auf, die über die in dieser Doktorar-
beit vorgestellten Resultate hinaus gehen. Die hier präsentierten Untersuchungen zu Nachweisgrenzen
sind für eine idealisierte und damit unrealistische Situation ausgeführt worden, bei der sich eine einzelne
Heterogenität in einem ansonsten homogenen numerischen Brust-Phantom befand. Hiermit konnten in-
strumentelle Nachweisgrenzen der untersuchten Mammographen analysiert werden. Für die Bestimmung
von klinischen Nachweisgrenzen wäre es relevanter, realistischere Phantome zu benutzen, d.h. inhomogene
numerische Brust-Phantome, die Messungen an Patientinnen besser nachbilden [176, 177, 178]. Weiterhin
könnte die aufgezeigte statistische Methode oder auch Rekonstruktionen dazu benutzt werden, um mit-
tels der Trennung zweier nebeneinander liegender Heterogenitäten die Ortsauflösung verschiedener Quell-
Detektor Aufbauten quantitativ zu bestimmen. Anstatt den minimalen Detektionsradius einer einzelnen
Läsion zu berechnen, würde der kleinste benötigte Abstand zum Trennen zweier Heterogenitäten als Maß
der Ortsauflösung dienen.

Trotz einer Parallelisierung der Rechnungen benötigen nichtlineare Rekonstruktionen von Absorp-
tionskoeffizienten und der Fluoreszenzfarbstoffkonzentration ausgehend von klinischen Daten, die mit
kontinuierlichem Laserlicht gemessen wurden, bis zu mehreren Stunden an Rechenzeit. Durch Hardware-
Verbesserungen (z.B. durch Auslagern der Rechnungen auf Grafikkarten die Prozessoren mit hohem
Datendurchsatz enthalten [179]) könnten deutliche Beschleunigungen erreicht werden. Dies würde nahzu
Echtzeit-Berechnungen erlauben, und dem Arbeitsablauf in der Klink entgegenkommen.
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Schlussfolgerungen

Aufgrund der besseren Winkelabtastung von tomographischen Mammographen mit ring- oder schalen-
förmiger Anordnung werden bessere Ortsauflösungen in Quell-Detektor Richtung erreicht, als für Raster-
Mammographen mit komprimierter Brust. Trotzdem zeigte die statistische Analyse simulierter Daten,
dass die planparallele Geometrie aufgrund der kürzeren Trajektorien der Photonen, dem kleineren abso-
luten Rauschen und dem deutlich kleineren benötigten Dynamikbereich der Detektoren eine niedrigere
Detektionsgrenze besitzt. Zusätzlich zeigten Rekonstruktionen von simulierten und experimentellen
Phantom-Daten, dass die axiale Auflösung von Läsionen in planparalleler Geometrie durch Messung der
Transmittanz und der zeitaufgelösten Reflektanz, am besten auf beiden Seiten der komprimierten Brust,
verbessert werden kann. Aufgrund der starken Streuung leidet die diffuse optische Tomographie unter der
schlechten Ortsauflösung verglichen mit Röntgenmammographie, Kernspintomographie und Ultraschall-
Mammographie. Die innerhalb dieser Arbeit ausgeführten Rekonstruktionen klinischer Daten zeigen,
dass für jede einzelne Patientin die über die gesamte Brust gemittelten und gefitteten Absorptions- und
Streukoeffizienten benötigt werden, um die Bildqualität im Vergleich zu einem Ansatz unter Benutzung
typischer optischer Eigenschaften von Brustgewebe zu verbessern. Experimentelle Daten, die mit kon-
tinuierlichem Laserlicht aufgenommen wurden, erlauben alleine dies jedoch nicht. Stattdessen sollte ein
Fluoreszenzmammograph einige Kanäle für Messungen im Frequenz- oder Zeit-Raum besitzen, um mit
diesen die optischen Eigenschaften zuverlässig zu bestimmen, während durch eine größere Anzahl von
zusätzlichen Kanälen mit kontinuierlichem Laserlicht eine gute Winkelabdeckung erreicht werden sollte.
Zukünftige klinische Versuche zur Fluoreszenzmammographie sollten mit einem derartigen Hybridsystem
zusammen mit einer nichtlinearen Rekonstruktion des Absorptions- und Fluoreszenzkontrastes ausgeführt
werden.

Obwohl in dieser Arbeit nicht behandelt, ist aus klinischer Sicht eine Untersuchung der differentiellen
Diagnose, d.h. der Unterscheidbarkeit von malignen und benignen Tumoren, genauso wichtig, wie die
Detektionsfähigkeit von Läsionen an sich. Unterscheidung von benignen und malignen Läsionen kann aber
nicht alleine durch intrinsische Eigenschaften (Absorption und Streuung) erreicht werden, dies könnte aber
durch Benutzung eines Fluoreszenzfarbstoffs möglich sein. Resultate dieser Arbeit legen es nahe, dass
eine Raster-Fluoreszenz-Mammographie technisch möglich ist und Detektion und Unterscheidung von
Brust-Tumoren ein Anwendungsszenario sein könnte, wenn ein klinisch geeigneter Farbstoff erhältlich
wird. Trotz vieler möglicher technischer Verbesserungen zeigte die klinische Studie des Fluoreszenz-
mammographen, dass ein klinischer Nutzen, ein Anwendungsszenario und ein Erfolg der Fluoreszenz-
mammographie stark vom benutzten Fluoreszenzkontrastmittel und weniger von den technischen Details
abhängen, selbst unter dem Gesichtspunkt der finanziellen Beschränkungen eines kommerziellen Gerätes.
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