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Embedding Dimensions of Simplicial
Complexes on Few Vertices

Florian Frick , Mirabel Hu, Verity Scheel and Steven Simon

Abstract. We provide a simple characterization of simplicial complexes on
few vertices that embed into the d-sphere. Namely, a simplicial complex
on d+ 3 vertices embeds into the d-sphere if and only if its non-faces do
not form an intersecting family. As immediate consequences, we recover
the classical van Kampen–Flores theorem and provide a topological ex-
tension of the Erdős–Ko–Rado theorem. By analogy with Fáry’s theorem
for planar graphs, we show in addition that such complexes satisfy the
rigidity property that continuous and linear embeddability are equivalent.

1. Introduction and Statement of Results

Planar graphs are characterized as those without a K5- or K3,3-minor [22]. By
a theorem of Fáry [9], a graph can be continuously embedded into the plane
if and only if there is an embedding where every edge is a straight-line seg-
ment. For higher-dimensional simplicial complexes and embeddings into R

d,
the situation is much more intricate: No efficient characterization of complexes
that embed into R

d exists in general, algorithmically deciding the existence
of an embedding can be—depending on the dimensions of the complex and
codomain—difficult or even impossible (see, e.g., [14,15]), and an analogue of
Fáry’s theorem asserting the equivalence of topological and linear embeddabil-
ity fails even in dimension three [4,19].

Here we show that if one restricts attention to simplicial complexes on
few vertices relative to dimension, then both a simple characterization of com-
plexes that embed into R

d as well as the equivalence of topological and linear
embeddability can be salvaged. As a preliminary observation, note that a finite
complex embeds into a d-dimensional sphere Sd but not R

d if and only if it
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is homeomorphic to Sd. As the only simplicial complex on d + 2 vertices that
does not embed into the d-sphere Sd is the (d + 1)-dimensional simplex Δd+1,
we shall, therefore, focus on deciding whether simplicial complexes on d + 3
vertices embed into Sd.

To avoid possible confusion, we note that throughout the paper we shall
adopt the usual convention in topological combinatorics of not distinguish-
ing between an abstract simplicial complex Σ (that is, a family of subsets of
[n] = {1, 2, . . . , n} which is closed under taking subsets) and its geometric re-
alization |Σ| viewed as a subcomplex of the (n−1)-dimensional simplex Δn−1.
In particular, faces of Σ are identified with their corresponding simplices in
Δn−1, and by a continuous map defined on Σ we mean one which is defined
on the complex’s geometric realization.

Fix a positive integer n. For a family F of subsets of [n], let Σ(F) denote
the simplicial complex defined by

Σ(F) = {σ ⊂ [n] τ /∈ F for all τ ⊂ σ}.

Thus Σ(F) is the inclusion-maximal simplicial complex on [n] defined by the
rule that each member of F is a non-face of the complex. Note that every sim-
plicial complex Σ is of this form by letting F be the family of inclusion-minimal
non-faces of Σ. Finally, a family F of subsets of [n] is called intersecting if
σ ∩ τ �= ∅ for any two elements σ and τ of F .

Our characterization of complexes on d + 3 vertices that embed into Sd

is surprisingly simple:

Theorem 1. Let F be a family of subsets of [d + 3]. Then Σ(F) embeds into
Sd if and only if F is not an intersecting family.

We show that Theorem 1 is tight with respect to d. In one direction,
suppose that F = {σ1, σ2} is a partition of [d + 3] into two non-empty sets.
Then Σ(F) = ∂σ1∗∂σ2 is the join of the boundaries of the respective simplices.
Each ∂σi is a sphere of dimension |σi| − 2, so their join is a d-dimensional
sphere. Thus Σ(F) embeds into Sd but not Sd−1. In the other direction, the
family F = {[d+3]} is intersecting and Σ(F) = ∂Δd+2 is a (d+1)-dimensional
sphere. Thus Σ(F) does not embed into Sd but does embed into Sd+1.

As with the Hanani–Tutte theorem [5,20] for non-planar graphs, our proof
of Theorem 1 in the case of non-embeddings shows that there are no almost
embeddings of Σ(F) into Sd, that is for any continuous map f : Σ(F) → Sd

there are disjoint simplices of Σ(F) whose images overlap (see Lemma 5).
For example, suppose that F consists of all the (d + 2)-subsets of [2d + 3],
in which case Σ(F) is the d-skeleton Δ(d)

2d+2 of the (2d + 2)-simplex. As F is
intersecting by the pigeonhole principle, Theorem 1 recovers the classical van
Kampen–Flores theorem [10,21] as an immediate corollary:

Theorem 2. (Van Kampen–Flores theorem) For any continuous map f : Δ(d)
2d+2 →

R
2d, there exist disjoint simplices σ and τ of Δ(d)

2d+2 such that f(σ)∩f(τ) �= ∅.
In a different direction, we show that Theorem 1 implies an extremal

criterion for embeddability of simplicial complexes on a few vertices. Recall
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that the celebrated Erdős–Ko–Rado theorem [8] states that any intersecting
family of k-element subsets of [n] has size at most

(
n−1
k−1

)
provided n ≥ 2k. As

we will see, combining this with Theorem 1 quickly gives the following:

Theorem 3. Let Σ be a simplicial complex on d + 3 vertices with fewer than(
d+2

k

)
faces of dimension k − 1, where k ≤ �d+3

2 �. Then Σ embeds into Sd.

We observe that Theorem 3, together with Theorem 1, is sufficient to
recover the Erdős–Ko–Rado theorem itself. Thus Theorem 3 can be seen as a
topological generalization of the latter. To see this, suppose that d + 3 ≥ 2k
and that F is a family of k-element subsets of [d+3]. If F contains more than(

d+2
k−1

)
subsets, then the complex Σ(F) has fewer than

(
d+3

k

) − (
d+2
k−1

)
=

(
d+2

k

)

faces of dimension k − 1. Thus Σ(F) embeds into Sd by Theorem 3, and so
by Theorem 1 F cannot be an intersecting family. Let us also note that the
lower bound of Theorem 3 is sharp, precisely because the upper bound of the
Erdős–Ko–Rado theorem is.

Our final result shows that the analogue of Fáry’s theorem holds for
simplicial complexes on a few vertices. To state this formally, we say that an
embedding of a simplicial complex Σ into R

d is linear if the image of each
face of Σ is the convex hull of the image of its vertices, and likewise that an
embedding of Σ into Sd is geodesic if the image of each face is geodesically
convex in Sd, that is, for any two points in the image any shortest path (in the
isotropic round metric) connecting them is also in the image. We then have
the following rigidity theorem:

Theorem 4. Let Σ be a simplicial complex on d + 3 vertices. Then Σ embeds
into R

d (respectively, Sd) if and only if it embeds linearly into R
d (respectively,

geodesically into Sd).

In fact, it will follow from Lemma 8 that any simplicial complex on d+3
vertices which embeds into Sd is actually a subcomplex of the boundary of a
convex (d+1)-polytope on d+3 vertices inscribed into Sd, that is, with all ver-
tices lying on the unit sphere. While Mani [12] showed that any triangulation
of Sd on at most d + 4 vertices is the boundary complex of a convex polytope,
our construction in Lemma 8 is nonetheless optimal in that there exist com-
plexes on d + 4 vertices that embed into Sd but which are not contained in
any simplicial (d + 1)-polytope; see Remark 11 for an example when d = 3.
It remains open whether Theorem 4 holds for simplicial complexes on d + 4
or d + 5 vertices; see Problem 10. Moreover, we note that our result does not
extend to linear embeddings of polyhedra. For instance, Barnette [3] gives a
simple example of a polyhedral 2-complex on six vertices that embeds into R

3

but for which no linear embedding exists.
We refer the reader to Matoušek [13] for the basics about simplicial com-

plexes and to Ziegler [23] for the basics about polytopes.
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2. Proofs

2.1. Proof of Theorem 1

To prove Theorem 1, we first show that any simplicial complex on d+3 vertices
with intersecting non-faces cannot embed into a d-sphere.

Lemma 5. Let F be an intersecting family of subsets of [d + 3]. For any con-
tinuous map f : Σ(F) → Sd, there exist disjoint faces σ and τ of Σ(F) such
that f(σ) ∩ f(τ) �= ∅.

We shall provide two proofs of Lemma 5. The first proof gives Lemma 5
as an easy corollary of Sarkaria’s lower bound for dimensions of Euclidean
embeddings via chromatic numbers of Kneser graphs [13,17,18] (stated as
Theorem 6), while the second yields Lemma 5 as a direct consequence of the
more elementary Topological Radon theorem [1] (Theorem 7 below).

For the first proof, we set some preliminary notation. Given any family F
of subsets of [n], we let KG(F) denote its Kneser graph. Thus the vertices of
KG(F) are the elements of F , with an edge connecting each pair of disjoint sets.
As usual, we let χ(KG(F)) denote the chromatic number of this graph. Thus
χ(KG(F)) ≤ k means that the sets of F = ∪k

i=1Fi is the union of k families
F1, . . . ,Fk, each of which is intersecting, and in particular χ(KG(F)) = 1 if
and only if F is an intersecting family.

Theorem 6. (Sarkaria) Let F be a family of subsets of [d+k +2], and suppose
that χ(KG(F)) ≤ k. For any continuous map Σ(F) → R

d, there exist disjoint
simplices σ and τ of Σ(F) such that f(σ) ∩ f(τ) �= ∅.
First proof of Lemma 5. Suppose that F is an intersecting family of subsets of
[d+3] and let f : Σ(F) → Sd. To apply Theorem 6, let F ′ = {σ ⊂ [d+4] : σ ∈
F}, that is, consider the family F on ground set [d + 4]. Thus χ(KG(F ′)) =
χ(KG(F)) = 1 and Σ(F ′) = Σ(F) ∗ {d + 4}. Viewing Sd as the unit sphere
in R

d+1, we define f ′ = f ∗ c : Σ(F ′) = Σ(F) ∗ {d + 4} → Sd ∗ {0} ⊂ R
d+1 as

the join of f and the map c sending the vertex d + 4 to the origin. Explicitly,
f ′((1 − t)x + t(d + 4)) = t · f(x) for any x ∈ Σ(F) and any t ∈ [0, 1]. By
Theorem 6, there exist disjoint faces σ and τ in Σ(F ′) with f ′(σ) ∩ f ′(τ) �= ∅.
Since σ and τ are disjoint, only one of them can contain d + 4, say d + 4 /∈ σ.
Thus f ′(σ) = f(σ) ⊂ Sd and so f ′(σ) ∩ f ′(τ) ⊂ Sd. If τ contains the vertex
d+4, let τ ′ = τ\{d+4}. As (f ′)−1(Sd) = Σ(F), we must have f ′(σ)∩f ′(τ ′) �= ∅,
and so it is no loss of generality to assume that τ is a face of Σ(F). Now both
σ and τ are faces of Σ(F) and therefore f(σ) ∩ f(τ) �= ∅. �

Our second proof derives Lemma 5 as a result of the following.

Theorem 7. (Topological Radon theorem) For any continuous map f : Δd+1 →
R

d, there exist disjoint simplices σ and τ of Δd+1 such that f(σ) ∩ f(τ) �= ∅.
Second proof of Lemma 5. Given a continuous map f : Σ(F) → Sd, we extend
it to a continuous map f ′ : Δd+2 → R

d+1 and apply Theorem 7. First, let
Δ′

d+2 denote the barycentric subdivision of Δd+2. Recall that the vertices of
Δ′

d+2 are the barycenters of all faces of Δd+2, and the subdivision decomposes
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Δd+2 into interior disjoint (d + 2)-dimensional simplices, each of whose vertex
set consists of a barycenter from an i-dimensional face of Δd+2 for each 0 ≤
i ≤ d + 2. It follows that any x in Δd+2 can be uniquely expressed as a
convex sum x = (1 − t)s + tc where s lies in Σ(F), c is a convex combination
of barycenters of pairwise incident non-faces of Σ(F), and 0 ≤ t ≤ 1. We
now define f ′ : Δd+2 → R

d+1 by letting f ′(s) = f(s) for each s ∈ Σ(F),
f ′(b) = 0 for each barycenter of a non-face of Σ(F), and extending linearly.
Thus f ′(x) = (1 − t)f(s) for each x = (1 − t)s + tc as above. Here we again
view Sd as the unit sphere in R

d+1, and as before all that is needed is that F
continuously extends f with (f ′)−1(Sd) = Σ(F).

By Theorem 7, there exist disjoint faces σ and τ of Δd+2 for which
f ′(σ) ∩ f ′(τ) �= ∅. As in the first proof of Lemma 5, we may assume that σ
and τ are inclusion-minimal faces with the property f ′(σ) ∩ f ′(τ) �= ∅. If F is
intersecting, then it is again easy to see that both σ and τ must lie in Σ(F).
Indeed, σ ∩ τ �= ∅ for any two non-faces σ and τ of Σ(F), while on the other
hand f ′(σ) ∩ f ′(τ) = ∅ if σ lies in Σ(F) and τ does not. Thus σ and τ are in
Σ(F), so f(σ) ∩ f(τ) �= ∅. �

To conclude the proof of Theorem 1, we show that Σ(F) embeds in Sd

whenever F is not intersecting, and moreover that this embedding is geodesic.
To that end, recall that the matching number ν(F) of an arbitrary family of
subsets F of [d] = {1, . . . , d} is the maximum number of pairwise disjoint sets
of F . In particular, ν(F) = 1 means that F is intersecting. Thus the following
lemma completes the proof of Theorem 1.

Lemma 8. Let F be a family of subsets of [d]. Then Σ(F) embeds geodesically
into Sd−ν(F)−1. In fact, Σ(F) is a subcomplex of the boundary of a convex
(d − ν(F))-polytope with all d vertices inscribed on the unit sphere.

Before giving the proof of Lemma 8, we recall the following. First, the
boundary ∂Δk of any k-simplex Δk is a triangulation of the (k−1)-dimensional
sphere and can be realized with geodesically convex faces, for example, by
radially projecting a regular k-simplex inscribed into the sphere. Secondly,
if Σ1 and Σ2 are complexes which geodesically embed into spheres Sd1 and
Sd2 , respectively, then their join Σ1 ∗ Σ2 geodesically embeds in the sphere
Sd1+d2+1. This follows by considering the natural homeomorphism h : Sd1 ∗
Sd2 → Sd1+d2+1 which sends each formal convex sum (1−t)x1⊕tx2 of the join
to (cos(π

2 t)x1, sin(π
2 t)x2) ∈ R

d1+1 × R
d2+1 on the sphere. Here x1 ∈ Sd1 , x2 ∈

Sd2 , and 0 ≤ t ≤ 1. The image of the segment connecting x1 and x2 in Sd1 ∗Sd2

is a (distance-minimizing) arc connecting x1 and x2 in Sd1+d2+1 along a great
circle, so composing the join f1 ∗ f2 : Σ1 ∗ Σ2 → Sd1 ∗ Sd2 of two geodesic
embeddings f1 : Σ1 → Sd1 and f2 : Σ2 → Sd2 together with h gives a geodesic
embedding of Σ1 ∗ Σ2 into Sd1+d2+1.

Proof of Lemma 8. Let ν = ν(F), let M = {S1, . . . , Sν} be a maximal collec-
tion of pairwise disjoint sets of F , and let mi = |Si| for each i ∈ [ν]. Noting
that Σ(F) is a subcomplex of Σ(M), we first show that Σ(M) embeds into
the (d − ν − 1)-sphere. To that end, let Δmi−1 denote the simplex determined
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by Si. Thus each ∂Δmi−1 is a (mi − 2)-sphere, where ∂Δmi−1 = ∅ if mi = 1.
Now let r = d − (m1 + . . . + mν), and denote by Δr−1 the simplex determined
by those vertices of [d] (if any) which are not covered by M. In particular,
Δr−1 = ∅ if r = 0. As the Si are pairwise disjoint, it is easily seen that

Σ(M) = ∂Δm1−1 ∗ · · · ∗ ∂Δmν−1 ∗ Δr−1

is the join of the boundaries of the Δmi−1 together with the join of Δr−1. Now,
∂Δm1−1∗· · ·∗∂Δmν−1 is a triangulated sphere of dimension

∑
i(mi−2)+ν−1 =

d−r−ν−1, the boundary of a (d−r−ν)-convex polytope P0 on d−r vertices.
Thus Σ(M) and therefore Σ(F) is a subcomplex of the boundary of the join
P = P0 ∗ Δr−1, which is a convex (d − ν)-polytope on d vertices.

We now show that Σ(M) geodesically embeds into Sd−ν−1. As observed
in the remarks prior to the proof of Lemma 8, each sphere ∂Δmi−1 geodesically
embeds into Smi−2 with its vertices inscribed on Smi−2. It follows that ∂P0 also
geodesically embeds into Sd−r−ν−1, and, moreover, with its vertices inscribed.
If r > 0, view Δr−1 as a face of ∂Δr. Thus Δr−1 also geodesically embeds into
the sphere Sr−1 with its vertices inscribed, and therefore Σ(M) = ∂P0 ∗Δr−1

geodesically embeds into Sd−ν−1 with its vertices (which are the vertices of
the polytope P = P0∗Δr−1) inscribed on the sphere. As Σ(F) is a subcomplex
of Σ(M), this completes the proof. �

2.2. Proof of Theorem 3

Using Theorem 1, we now prove our topological generalization of the Erdős–
Ko–Rado theorem [8].

Theorem 9. (Erdős–Ko–Rado theorem) Let k ≥ 2 and n ≥ 2k be integers. If
F is an intersecting family of k-element subsets of [n], then |F| ≤ (

n−1
k−1

)
.

Proof of Theorem 3. Assume that d+3 ≥ 2k and suppose that Σ is a simplicial
complex on d + 3 vertices with fewer than

(
d+2

k

)
faces of dimension k − 1. We

have that Σ = Σ(F), where F is the inclusion-minimal family of non-faces
of Σ. As Σ has fewer than

(
d+2

k

)
faces of dimension k − 1, F has more than(

d+3
k

) − (
d+2

k

)
=

(
d+2
k−1

)
subsets of order k. It follows from Theorem 3 that F

cannot be intersecting, and therefore Σ must embed into Sd by Theorem 1.
�

2.3. Proof of Theorem 4

The proof of our Fáry-type result is again a direct consequence of the lemmas
above.

Proof of Theorem 4. Let f : Σ → Sd be a continuous embedding. Again, we
have that Σ = Σ(F) where F is the inclusion-minimal set of non-faces of Σ.
By Theorem 1, F is not intersecting, and thus Σ geodesically embeds into Sd

by Lemma 8. To finish the proof, suppose that f : Σ → R
d is an embedding.

Composing with the inverse of the stereographic projection gives a continuous
embedding of Σ into the punctured d-sphere. By Lemma 8, Σ is a (necessarily
proper) subcomplex of the boundary of a convex (d+1)-polytope P and there-
fore linearly embeds into R

d, for example by considering the Schlegel diagram



Embedding Dimensions of Simplicial Complexes 999

of P with respect to a facet not contained in Σ and projecting through this
facet. �

3. Open Problems and Concluding Remarks

We conclude with a problem and some comments concerning the optimality of
Theorem 4 and Lemma 8.

Problem 10. Brehm [4] constructed a triangulation of the Möbius strip on nine
vertices that does not linearly embed into R

3. Thus, embeddability and linear
embeddability into R

d differ for complexes on d+6 vertices. As far as we know,
it remains open whether these notions of embeddability coincide for simplicial
complexes on d + 4 or even d + 5 vertices.

It is tempting to think that the two triangulations of S3 on eight vertices
that are not boundary complexes of convex polytopes [2,11] are good candi-
dates to show that Theorem 4 cannot be extended to complexes on d + 5 ver-
tices. As shown by Mihalisin and Williams [16], however, these non-polytopal
3-spheres do linearly embed into R

4. As an application of Theorem 4, we pro-
vide a quick alternative proof of this fact in Corollary 12 below. Nonetheless,
in Remark 11 below we show that one of these two exceptional spheres can
be used to show that our construction in Lemma 8 cannot be extended to
complexes on d+4 vertices. We note in passing that similar difficulties arise in
extending other topological properties of d-dimensional simplicial complexes
from those on d + 3 vertices to those on d + 4 vertices; see [6,7] for examples
involving shellability.

Remark 11. We construct a simplicial complex Σ on seven vertices that em-
beds into R

3 but which is not contained in any convex 4-polytope. Denoting
the vertex set of Σ by {v, 1, 2, 3, 4, 5, 6}, the facet list of Σ is given by

[1, 2, 3, 4], [3, 4, 5, 6], [5, 6, 1, 2],

[v, 1, 2, 3], [v, 2, 3, 4], [v, 3, 4, 5], [v, 4, 5, 6], [v, 5, 6, 1], [v, 6, 1, 2],

[v, 1, 3, 5], [v, 2, 4, 6].

The eight tetrahedra around the special vertex v glue to an octahedron with
v in the center. The three tetrahedra in the first line attach to an annulus of
six triangles around this octahedron, namely those triangles in the octahedron
around v that appear in the second line above. Thus Σ is a triangulation of
a 3-ball whose boundary is an octahedron. Moreover, every possible edge is
present in Σ. Supposing that Σ is a subcomplex of a convex 4-polytope P ,
consider the seven vertices of P that are vertices of Σ. Since Σ is simplicial, we
may assume that these seven vertices are in general position in R

4 and that
their convex hull Q contains Σ as a subcomplex. Since the boundary of Σ is
an octahedron, the facets of Q not contained in Σ form a triangulation of an
octahedron without additional vertices. Any triangulation of an octahedron
without additional vertices must introduce one of the diagonals of the octa-
hedron. Thus there is an edge in Q which is not in Σ. This is a contradiction
since all edges among the seven vertices are present in Σ.
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The complex Σ in Remark 11 is a subcomplex of “Barnette’s sphere” B
(see [2]), one of two triangulations of the 3-sphere on eight vertices that is not
the boundary complex of a convex 4-polytope. The triangulation B is obtained
from Σ by coning off its boundary, that is, add a new vertex w, and declaring
any triangle on the boundary of the 3-ball Σ together with the vertex w to be
a new tetrahedron of B. The other nonpolytopal 3-sphere on eight vertices is
the “Grünbaum–Sreedharan sphere” GS; see [11]. Mihalisin and Williams [16]
show1 that B and GS linearly embed into R

4. In the case of GS this already
follows from the original paper [11] since there a diagram of GS is given, that
is, GS minus a facet is linearly embedded into R

3.
As a direct consequence of Theorem 4 we derive the following corollary,

which generalizes the result of Mihalisin and Williams to all dimensions:

Corollary 12. Let Σ be a simplicial complex homeomorphic to Sd on d + 5
vertices with at least one missing edge. Then Σ admits a linear embedding
into R

d+1.

Proof. Let v and w be two vertices of Σ that are not connected by an edge.
By removing all faces incident to v or w from Σ, we obtain a complex Σ′ on
d + 3 vertices. Since Σ is a d-sphere, Σ′ embeds into R

d. By Theorem 4, there
is therefore a linear embedding of Σ′ into R

d. Viewing R
d as a hyperplane

in R
d+1, we reinsert v and w by placing v above this hyperplane and w below

it. This results in a linear embedding of Σ into R
d+1, thereby completing the

proof. �

In particular, since v and w are not connected by an edge in B, this
provides a linear embedding of B into R

4. The complex GS has no missing
edges, so Corollary 12 does not apply directly. Nevertheless, we may use The-
orem 4 to construct a linear embedding of GS into R

4. In the notation of [11],
where GS is denoted by M, the edge (1, 3) is surrounded by three tetrahe-
dra: [1, 2, 3, 4], [1, 2, 3, 7], [1, 3, 4, 7]. The triangle (2, 4, 7) is not present. Thus
we may perform the PL-move that replaces the three tetrahedra above by
[1, 2, 4, 7], [2, 3, 4, 7]. This removes the edge (1, 3), and deleting vertices 1 and 3
yields a complex that embeds linearly into R

3 by Theorem 4. As in the proof
of Corollary 12 add back these two vertices in such a way that the line con-
necting them intersects the triangle (2, 4, 7). We can thus revert the PL-move
to obtain a linear embedding of GS.
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89(3): 519–522, 1983.
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