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Campylobacter (C.) jejuni is a zoonotic bacterium of public health significance.

The present investigation was designed to assess the epidemiology and genetic

heterogeneity of C. jejuni recovered from commercial turkey farms in Germany using

whole-genome sequencing. The Illumina MiSeq® technology was used to sequence

66 C. jejuni isolates obtained between 2010 and 2011 from commercial meat turkey

flocks located in ten German federal states. Phenotypic antimicrobial resistance

was determined. Phylogeny, resistome, plasmidome and virulome profiles were

analyzed using whole-genome sequencing data. Genetic resistance markers were

identified with bioinformatics tools (AMRFinder, ResFinder, NCBI and ABRicate) and

compared with the phenotypic antimicrobial resistance. The isolates were assigned

to 28 di�erent sequence types and 11 clonal complexes. The average pairwise single

nucleotide-polymorphisms distance of 14,585 SNPs (range: 0–26,540 SNPs) revealed

a high genetic distinction between the isolates. Thirteen virulence-associated genes

were identified in C. jejuni isolates. Most of the isolates harbored the genes flaA

(83.3%) and flaB (78.8%). ThewlaN gene associated with the Guillain–Barré syndrome

was detected in nine (13.6%) isolates. The genes for resistance to ampicillin (blaOXA),

tetracycline [tet(O)], neomycin [aph(3’)-IIIa], streptomycin (aadE) and streptothricin

(sat4) were detected in isolated C. jejuni using WGS. A gene cluster comprising the

genes sat4, aph(3′)-IIIa and aadE was present in six isolates. The single point mutation

T86I in the housekeeping gene gyrA conferring resistance to quinolones was retrieved

in 93.6% of phenotypically fluoroquinolone-resistant isolates. Five phenotypically

erythromycin-susceptible isolates carried the mutation A103V in the gene for the

ribosomal protein L22 inferring macrolide resistance. An assortment of 13 β-lactam

resistance genes (blaOXA variants) was detected in 58 C. jejuni isolates. Out of 66

sequenced isolates, 28 (42.4%) carried plasmid-borne contigs. Six isolates harbored a

pTet-like plasmid-borne contig which carries the tet(O) gene. This study emphasized

the potential of whole-genome sequencing to ameliorate the routine surveillance of

C. jejuni. Whole-genome sequencing can predict antimicrobial resistance with a high

degree of accuracy. However, resistance gene databases need curation and updates

to revoke inaccuracy when using WGS-based analysis pipelines for AMR detection.
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1. Introduction

Campylobacter (C.) is recognized as the leading cause of bacterial
gastroenteritis in humans and several animal species (poultry, cattle,
pigs, sheep and goats) worldwide. C. jejuni is a commensal bacterium
of animal species and, therefore, exposed to antimicrobial agents
that are administered to animals for various reasons. Moreover,
the environment can be contaminated with Campylobacter by litter
and/or soil at farm premises (1). Poultry and their products are
considered the most significant source of human campylobacteriosis
(2, 3). As a consequence, antimicrobial resistance in C. jejuni is a
growing problem (4, 5). Some clones of C. jejuni endure genetically
stable over long periods of time, but C. jejuni can adapt to different
environmental conditions by means of variation in the isolate’s
virulence (6).

In Germany, the prevalence of Campylobacter in poultry meat
and chickens from 2001 through 2010 ranged from 14 to 34% and
6 to 64% per year, respectively (7). A voluntary monitoring program
was conducted between 2004 and 2007 in broiler farms and the
reported human incidence in Germany in order to identify the
prevalence patterns of thermotolerant Campylobacter spp. showed
that the peak in human campylobacteriosis preceded the peak in
broiler prevalence in Lower Saxony (8). C. jejuni was isolated from
different poultry species in Germany and showed a higher prevalence
than C. coli (9).

It is necessary to understand virulence factors and molecular
mechanisms contributing to pathogenesis of Campylobacter. Whole-
genome sequences can be used for high-resolution genotyping and
automatized detection of genetic markers for virulence, antimicrobial
resistance and mobile genetic elements (10–12). Since the costs for
WGS are decreasing, it has replaced traditional typing methods,
such as pulsed-field gel electrophoresis (PFGE), multi-locus sequence
typing (MLST) and serotyping for surveillance of bacterial infectious
diseases by public health authorities (11–19). Consequently, WGS
was also demonstrated for the investigation of virulence, clonality
and antimicrobial resistance in Campylobacter isolated from poultry
farms (20–23).

The WGS led to the creation of the core genome multi-
locus sequence typing (cgMLST), a typing method encompassing
hundreds of loci from the traditional seven loci of MLST (24).
Additionally, studies using single nucleotide polymorphism (SNP)
allow the establishment of the best phylogenetic relationship among
different pathogens (25). The WGS is used for various purposes
including novel antibiotic and diagnostic test development, studying
the emergence of antibiotic resistance, disease surveillance, and
direct infection control measures in both clinical settings and
communities (26). The next-generation sequencing (NGS) systems
available include Illumina Genome Analyzer (HiSeq, MiSeq), Life
Technologies Ion Torrent, and the PacBio RX system (27).

The used WGS data revealed a high genetic diversity amongst C.
jejuni isolated from broilers and definite types and virulence genes are
implicated with the development of more severe human illness (28).

In Europe, the antimicrobial resistance of C. jejuni isolated
from chickens and turkeys had to be reported every 2 years
based on European Union Commission Implementing Decision
2013/652/EU (29). In Germany, the antimicrobial resistance of
Campylobacter spp. isolated from broilers and turkeys was highest
to ciprofloxacin, nalidixic acid and tetracycline whereas C. coli were
more often resistant than C. jejuni and resistance was observed more

frequently in turkeys than in broilers (30). The emergence of a high
antimicrobial resistance and multidrug resistance was identified in C.

jejuni isolated from commercial turkey farms in Germany (31).
The objective of this study was to analyze C. jejuni isolated

from turkey flocks using WGS for high-resolution genotyping and to
investigate their complete genomic potential concerning resistance to
antimicrobial agents, plasmids and virulence-associated factors.

2. Materials and methods

2.1. Bacterial isolates and growth conditions

Sixty-six C. jejuni were isolated from 66 turkey flocks reared
in different turkey farms in ten federal states in Germany, namely
Baden-Wuerttemberg, Bavaria, Brandenburg, Mecklenburg-Western
Pomerania, Lower-Saxony, North Rhine-Westphalia, Rhineland-
Palatinate, Saxony, Saxony-Anhalt and Thuringia. The samples were
collected from apparently healthy turkey flocks aged between the
12th and the 18th weeks (Table S1). The isolation was carried out
according to ISO 10272 (32). All isolates were identified using
MALDI-TOF MS and multiplex PCR assay as described previously
by El-Adawy et al. (31).

2.2. Antimicrobial susceptibility testing

The broth microdilution test was performed using commercially
available microtitre plates TREK

R©
Sensititre NLDMV2 (Trek

Diagnostic Systems, Ltd., East Grinstead, UK) for the determination
of the antimicrobial susceptibility of the 66 C. jejuni isolates
to gentamicin, chloramphenicol, streptomycin, erythromycin,
neomycin, amoxicillin, tetracycline, nalidixic acid, ciprofloxacin
and metronidazole. The susceptibility test was performed according
to CLSI recommendations and the plates were incubated under
microaerophilic condition (CampyGenTM, Oxoid Deutschland
GmbH, Schwerte, Germany) at 37◦C for 48 h (33). The results
were read either visually or photometrically (Tecan Deutschland
GmbH, Crailsheim, Germany) using the computer program
easyWIN fitting (version V6.1, 2000; Tecan Deutschland GmbH,
Crailsheim, Germany). C. jejuni ATCC 33560 (American Type
Culture Collection, LGC Standards GmbH, Wesel, Germany) was
used as reference strain for quality control in each batch of the
broth microdilution tests. The resistance breakpoints for gentamicin,
chloramphenicol, erythromycin, amoxicillin, tetracycline, nalidixic
acid and ciprofloxacin were those recommended by the Clinical and
Laboratory Standards Institute (33, 34) and in previously published
literature (31, 35). The resistance breakpoint used for streptomycin
was ≥ 64µg/ml, as described previously (35). Since there were no
CLSI breakpoints for neomycin, we used a tentative breakpoint for
Escherichia coli of 32µg/mL (36, 37). C. jejuni isolates were tested for
resistance to metronidazole and the breakpoint for resistance at 16
mg/ml (38) was used.

2.3. DNA extraction for WGS analysis

Genomic DNA was extracted and purified from a 48 h bacterial
culture on Mueller-Hinton blood agar plates (Oxoid Deutschland
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GmbH, Wesel, Germany) using QIAGEN
R©

Genomic-tip 20/G Kit
(QIAGEN

R©
, Hilden, Germany) according to the manufacturer’s

instructions. The DNA was eluted in 200 µl elution buffer. DNA
was quantified spectrophotometrically using a Nanodrop

R©
ND-

1000 (Fisher Scientific GmbH, Schwerte, Germany). The quality of
the DNA was determined using the Qubit dsDNA BR Assay Kit
(Invitrogen, Carlsbad CA, USA).

2.4. Whole-genome sequencing

Sequencing libraries were created using the Nextera XT DNA
Library Preparation Kit (Illumina Inc., San Diego, CA). Paired-
end sequencing was performed on an Illumina MiSeq instrument
according to the manufacturer’s instructions (Illumina Inc., San
Diego, CA) producing 300 bp long reads. Raw sequencing data
were deposited by the European Nucleotide Archive (ENA) under
the BioProject PRJEB55640. The bioinformatic analysis started with
quality control of the raw paired-end reads from Illumina. The Linux-
based bioinformatics pipeline WGSBAC v. 2.0.0 (https://gitlab.com/
FLI_Bioinfo/WGSBAC) uses FastQC v. 0.11.7 (39) and calculates
coverage of raw reads. Second, WGSBAC performs assembly using
Shovill v. 1.0.4 (https://github.com/tseemann/shovill). To check the
quality of the assembled genomes, WGSBAC uses QUAST v. 5.0.2
(40) and to identify potential contamination on both reads and
assemblies, the pipeline uses Kraken 2 v. 1.1 (41) and the database
Kraken2DB. For the investigation of antimicrobial resistance genes
and virulence determinants, WGSBAC uses the software ABRicate
(v. 0.8.10) (https://github.com/tseemann/abricate) and the databases:
ResFinder (42), NCBI (43) and Virulence Factor Database (VFDB)
(44). In addition, WGSBAC uses AMRFinderPlus (v. 3.6.10) (45) for
the detection of chromosomal point mutations leading to AMR and
organism-specific acquired resistance genes. For plasmid detection,
Platon was used (46). BLAST search was performed with plasmid-
borne contigs against NCBI’s nucleotide database and hits were
compared to recently published pTet-like plasmids (47, 48).

Annotation of the assembled genomes was performed by the
software Bakta v. 1.6.1 (https://github.com/oschwengers/bakta) (49).
Annotated features of interest were visualized using the software
Geneious Prime v. 2021.0.1 (https://www.geneious.com).

For genotyping, WGSBAC uses classical multilocus sequence
typing (MLST) on assembled genomes using the software mlst
v. 2.16.1 that incorporates the PubMLST database for the seven
gene C. jejuni/coli MLST scheme (https://pubmlst.org/organisms/
campylobacter-jejunicoli). Core genome multilocus sequence typing
was performed using the external software Ridom Seqsphere+ v.
5.1.0 with default settings and the specific core genome scheme
(cgMLST v2). In addition, WGSBAC performs mapping-based
genotyping using core-genome single nucleotide polymorphisms
(cgSNPs) identified by Snippy v. 4.3.6 (https://github.com/tseemann/
snippy) with standard settings. As reference the genome of C. jejuni
NCTC 11168 (accession NC_002163.1) was used. For phylogenetic
tree construction based on cgSNP analysis, WGSBAC uses the SNPs
alignmentmatrix generated by Snippy and reconstructs the tree using
RAxML (Randomized Axelerated Maximum Likelihood) v. 8 (50).
The tree was rooted to the reference genome and visualized using
the interactive Tree of Life (iTOL) v. 4 web tool (https://itol.embl.
de/login.cgi).

3. Results

3.1. Phylogenetic analysis and MLST/cgMLST
analysis

Sequencing of the 66 C. jejuni isolates, yielded an average of
807,061 total reads (range: 156,702–2,263,714) per sample, with an
average read length of 219 bp (Table S1) leading to an average
read-coverage of 104-fold (range: 37–139). The assembled genomes
consisted on average of 29 contigs (range: 20–256). The GC content
was 30.43% and the genome size of the isolates was 1,700,350 bp on
average (range: 1,410,342–1,883,846 bp).

The phylogentic and genotyping analysis displaying relatedness
between the 66 C. jejuni isolates using cgMSLT based on cgSNP
distances rooted to the reference genome revealed nine different
groups according to how closely related the isolates were (Figure 1).

The origin and distribution of the 66 C. jejuni and their colonal
complexes in 11 federal states in Germany were shown in Figure 2.

The MLST analysis based on WGS revealed a high genetic
diversity with 28 different sequence types (STs). For four isolates, a so
far unknownMLST type was detected. The most prevalent STs found
were ST 45 (9%), ST 50 (8%), ST 1073 (8%), ST 2274 (8%), and ST
464 (6%) (Table S1, Figure 1). The high genetic diversity was further
indicated by an average core-gene Single Nucleotide-Polymorphisms
distance of 14,585 cgSNPs (range 0–26,540 cgSNPs). Hierarchical
clustering with a cut-off of 100 cgSNPs grouped 29 isolates into
nine clusters, while the majority of isolates did not cluster. Finally,
cgMLST analysis supported the finding of high genetic diversity, as 11
different clonal complexes (CCs) were detected among the 66 isolates
(Figure 1, Table S1). For four isolates, an unknown clonal complex
was identified. Both the SNP-based phylogeny and the cgMLST
analysis indicated the genetic relatedness of isolates partly following
the geographical origins from where they were isolated (Figures 1, 2).
While the genetic diversity was generally high, some isolates were
closely related (Figure 1, Table S1). For example, isolates 11CS0055
and 11CS0044 from Bavaria were indistinguishable (0 cgSNPs).

The two isolates 11CS0036 and 11CS0161 from samples obtained
in Baden-Wuerttemberg were closely related and revealed only one
cgSNP (Table S1), while other isolates (11CS0043 and 11CS0159)
collected from two different federal states (Saxony and Lower Saxony)
had two SNPs difference. Three SNPs difference was found in
two isolates (11CS0042 and 11CS0151) from Baden-Wuerttemberg.
Four isolates from Bavaria (11CS0061, 11CS0171, 11CS0062, and
11CS0155) seemed to be closely related with six SNPs difference
(Table S1).

3.2. Determination of virulence-associated
genes

The genomic analysis of 66 C. jejuni isolates revealed in total 30
virulence-associated genes related to motility, chemotaxis, adhesion
and invasion (Table 1, Table S1). Most of the isolates harbored the
genes flaA (83.3%) and flaB (78.8%) coding for flagellin protein A
and B, respectively. Among other virulence determinants, the gene
cj1135 coding for the putative two-domain glucosyltransferase was
present in 56% of the isolates. The gene rfbC coding for dTDP-
4-dehydrorhamnose 35-epimerase was detected in 42.4% and the
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FIGURE 1

Phylogentic and genotyping analysis using cgMSLT (Phylogenetic trees based on cgSNP distances) rooted by the most distant isolate. Comparison

between phenotypic and genotypic antimicrobial resistance of the tested 66 C. jejuni isolates with regard to the place of isolation and sequence types:

correlation of susceptibility phenotypes and genotypes.

motility accessory factor PseD/Maf2 in 28.8% of the C. jejuni isolates.
Genes for sialic acid synthase (neuB1) andUDP-N-acetylglucosamine
2-epimerase (neuC1) were detected in 16.6% of the isolates. In minor
proportion, the combination of cj1136-138, neuA and cstIII genes
was found in 15.2% of the C. jejuni isolates. Out of the 66 C. jejuni

isolates, eight (12.1%) isolates harbored type IV secretion system
genes (virB10, virB11, virB4, virB8, virB9, virD4 and cjp54). Seven
isolates (10.6%) harbored cj421c, cj426c, cj1432c, cj1435c, cj1436c,
cj1437c, cj1440c, virB10, virB11, virB4, virB8, virB9, virD4, and cjp54

genes (Table 1). The wlaN gene associated with the Guillain–Barré
syndrome was identified in nine (13.6%) isolates.

3.3. Phenotypic antimicrobial resistance

The results of antimicrobial susceptibility testing showed
that all isolates were susceptible to gentamicin, erythromycin

and chloramphenicol. Resistance to streptomycin, neomycin,
tetracycline, nalidixic acid, ciprofloxacin and metronidazole was
detected in 10 (15.2%), 18 (27.3%), 36 (54.5%), 44 (66.7%), 47
(71.2%), and 49 (74.2%) isolates, respectively (Table S1).

3.4. Genotypic antimicrobial resistance

WGS analyses identified 18 acquired AMR genes that code
for resistance to antimicrobials representing three different classes
(tetracyclines, aminoglycosides and β-lactams) and point mutations
in the gyrA gene coding for resistance to (fluoro) quinolones. The
mutation associated with macrolide resistance was located in the
gene for the ribosomal protein L22 (A103V) (Table 2, Table S1). The
antimicrobial resistance gene associated with tetracycline resistance
tet(O) was identified in 34 of the 66 C. jejuni isolates (51.5%) (Table 2,
Table S1). Genes coding for aminoglycoside-modifying enzymes of
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FIGURE 2

Origin of the 66 C. jejuni and their clonal complexes in 11 federal states in Germany.

two distinct families, aminoglycoside phosphotransferases (APHs)
and aminoglycoside nucleotidyl transferases (ANTs) were detected.
streptomycin resistance is encoded by aadE gene which was
found in six out of ten (60.0%) phenotypically streptomycin-
resistant C. jejuni. Out of 18 C. jejuni isolates resistant to
neomycin, the aph(3′)-IIIa gene was detected in six (33.3%) isolates
(Table 2). The sat4 gene encoding streptothricin resistance was
detected in six (9.1%) C. jejuni isolated in this study. A gene
cluster comprising the genes sat4, aph(3′)-IIIa and aadE was

present in six isolates (Figure 3). Upstream the gene cluster, all
the isolates have two ORFs, one codes for the HTH domain-
containing protein and the other for a hypothetical protein. They
are followed by the IS6-like element IS1216 family transposase.
Downstream, variations within the isolates were detected: isolate
11CS0035 has the gene moeA1 that codifies for the product
molybdopterin molybdenumtransferase MoeA and an unnamed
gene that codes for the AraC family transcriptional regulator.
Downstream of the gene cluster, in isolates 11CS0042, 11CS0149
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TABLE 1 Frequency of most significant virulence-associated genes found in

in 66 Campylobacter jejuni isolates.

Virulence
gene

Name of protein No. isolates
positive (%)

flaA Flagellin 55 (83.3)

flaB Flagellin 52 (78.8)

cj1135 Putative two-domain glucosyltransferase 37 (56.0)

rfbC dTDP-4-dehydrorhamnose 35-epimerase 28 (42.4)

maf 4 Motility accessory factor 19 (28.8)

pseD-maf 2 Motility accessory factor PseD 19 (28.8)

fcl GDP-L-fucose synthetase 12 (18.2)

neuB1 Sialic acid synthase 11 (16.7)

neuC1 UDP-N-acetylglucosamine 2-epimerase 11 (16.7)

cj1136 Putative glucosyltransferase 10 (15.2)

cj1137c Putative glucosyltransferase 10 (15.2)

cj1138 Putative glucosyltransferase 10 (15.2)

neuA1 Bifunctional beta-14-N-
acetylgalactosaminyltransferase/CMP-
Neu5Ac
synthase

10 (15.2)

cstIII Alpha-23 sialyltransferas 10 (15.2)

wlaN Beta-13 galactosyltransferase 9 (13.6)

virB10 Type IV secretion system protein VirB10 8 (12.1)

virB11 Type IV secretion system protein VirB11 8 (12.1)

virB4 Type IV secretion system protein VirB4 8 (12.1)

virB8 Type IV secretion system protein VirB8 8 (12.1)

virB9 Type IV secretion system protein VirB9 8 (12.1)

virD4 Type IV secretion system protein VirD4 8 (12.1)

cjp54 Type IV secretion system protein VirB7 8 (12.1)

kfiD UDP-glucose 6-dehydrogenase 7 (10.6)

cj421c Sugar transferase 7 (10.6)

cj426c Methyltransferase family protein 7 (10.6)

cj1432c Sugar transferase 7 (10.6)

cj1435c Phosphatase 7 (10.6)

cj1436c Aminotransferase 7 (10.6)

cj1437c Aminotransferase 7 (10.6)

and 11CS0151, an unnamed gene was found that codes for the
putative motility protein and the gene nhaA2 that codes for
the Na+/H+ antiporter NhaA. Isolates 11CS0162 and 11CS0048
have downstream an unnamed gene that codes for an ABC
transporter substrate-binding protein and the gene skfB for the
radical SAM protein.

Twelve known variants of blaOXA genes involved in β-lactam
resistance were detected in this study using the results of different
bioinformatic tools (AMRFinder, ResFinder, NCBI and ABRicate)
(Table 2). Fifty-eight isolates harbored blaOXA genes (52 resistant,
five susceptible and one intermediate against ampicillin) (Table S2).
Out of 61 phenotypically ampicillin-resistant C. jejuni isolates, 57

(93.4%) carried at least one gene coding for β-lactamases of the
OXA-like family.

The distribution of detected 13 blaOXA genes in 66 C. jejuni

isolates is shown in Table S2 and Figure 1. In brief, blaOXA−184,
blaOXA−185, blaOXA−193, blaOXA−447, blaOXA−449, blaOXA−450,
blaOXA−460, blaOXA−465, blaOXA−580, blaOXA−605, blaOXA−632,
blaOXA−633 and blaOXA−658-like genes were detected in 16 (24.2%), 6
(9.1%), 31 (47.0%), 3 (4.5%), 1 (1.5%), 31 (47.0%), 5 (7.6%), 2 (3.0%),
5 (7.6%), 31 (47.0%), 5 (7.6%), 2 (3.0%), 2 (3.0%), and 1 (1.5%) of 66
C. jejuni isolates, respectively (Table S2, Figure 1). Nineteen isolates
harbored one gene coding for β-lactams of the OXA-like family (16
blaOXA−184, 1 blaOXA−465, 1 blaOXA−447 and 1 blaOXA−449. Twenty
isolates carried three blaOXA genes together (blaOXA−193, blaOXA−450

and blaOXA−605) while seven and 11 isolates harbored two and four
blaOXA genes, respectively (Table S2).

The accordance between phenotypic and genotypic antimicrobial
resistance is shown in Table 2, Figure 1, and Table S1. Thirty-
four (94.4%) out of 36 phenotypically tetracycline-resistant isolates
harbored the tet(O) gene which confers tetracycline resistance
(Table 2). Forty-seven (71.2%) C. jejuni isolates were phenotypically
resistant to ciprofloxacin, 44 (93.6%) of them contained a
chromosomal single point mutation in the gyrA gene which resulted
in the amino acid substitutions C257T or 786I. All isolates carrying
this mutation were resistant to (fluoro) quinolones (ciprofloxacin
and nalidixic acid). Six isolates that were phenotypically intermediate
to ciprofloxacin did not have any point mutation in the gyrA gene
(Table 2). The cmeABCR multidrug efflux complex was present in
all isolates.

Twenty-eight out of the 66 (42.4%) C. jejuni isolates contained
at least one contig classified as plasmid-borne (Table S1). While the
majority of those isolates (n = 18) contained one contig classified as
plasmid-borne, isolates 11CS0052 and 11CS0059 contained five and
four plasmid contigs, respectively, and another six isolates harbored
two plasmids. The sizes of the plasmid-borne contigs detected by
Platon ranged from 1,600 bp to 44,793 bp. Six isolates harbored
a pTet-like plasmid-borne contig which carried the tet(O) gene
and were phenotypically tetracycline-resistant. In the assembled
genomes from six phenotypically tetracycline-resistant isolates,
Platon identified a pTet-like plasmid-borne contig within a contig
in which the tet(O) gene was also identified. BLAST search of the
plasmid sequences in GenBank revealed that similar plasmids have
been previously found in Campylobacter spp. Thirty-eight plasmid-
borne contigs had a BLAST hit in C. jejuni, while for six, a hit in C.

coli was found (Table S1).
The origin of the isolates, their phylogenetic relatedness, STs

and association with antimicrobial resistance patterns are depicted
in Figure 1. There is little correlation between genotypes and the
numbers of AMR genes in the investigated isolates. Isolates assigned
to STs 1073, 2274, 122, 5019, 4754, and 50 showed highly similar AMR
gene profiles.

4. Discussion

Whole-genome sequencing is a promising tool in public health
as it is able to identify sources and routes of infections, to
investigate outbreaks with the highest resolution and thus to
improve surveillance of C. jejuni (51). This investigation presents
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TABLE 2 Distribution of antimicrobial resistance genes/mutations in the tested 66 Campylobacter jejuni isolated using di�erent tools of analysis and

compatibility with phenotypic resistance.

Antimicrobial class Antimicrobial
agent

Phenotypic
AMR

AMR gene
or mutation

No. of positive isolates by WGS∗

AMR-Finder ResFinder NCBI CARD

Tetracyclines Tetracycline 36 tet(O) 34 28 34 34

Fluoroquinolones Ciprofloxacin 47 gyrA T86I 44 – – –

ß-Lactams blaOXA−184 14 16 – –

blaOXA−185 6 6 6

blaOXA−193 21 31

blaOXA−447 2 3 3 3

blaOXA−449 1 1 1 1

blaOXA−450 31

blaOXA−460 5 – – –

blaOXA−465 1 2 1 2

blaOXA−580 5 – – –

blaOXA−605 – 31 –

blaOXA−632 3 – 5 –

blaOXA−633 – 2 –

blaOXA−658 1 – - –

Streptothricins Streptothricin – sat4 6 – 6 6

Aminoglycosides Streptomycin 10 aadE – 6 – 6

Neomycin 18 aph(3′)-IIIa 6 6 6 6

∗The green highlighted data showed the agreement between different tools.

FIGURE 3

Distribution of aadE, sat4 and aph(3’)-IIIa gene cluster found in six Campylobacter jejuni isolates. ORFs in white indicate unnamed genes.

an application of WGS for assessing the epidemiology of C. jejuni,
isolated from turkey farms in Germany.

In the current investigation, 30 virulence-associated genes
were identified in C. jejuni isolates. Interestingly, nine (13.6%)
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of the isolates carried the wlaN gene implicated in the Guillain–
Barré syndrome (GBS), a polyneuropathic disorder damaging the
peripheral nervous system and causing muscle weakness (52). In
north-eastern Spain wlaN was detected in two (16.6%) C. jejuni

isolates from broilers (20). The gene wlaN was also detected in 10.7%
of the tested C. jejuni isolated from slaughterhouses for broilers in
Southern Brazil (53) and in 4.7% and 23.8% of isolates from broiler
feces and poultry meat in Japan, respectively (54). Isolates harboring
thewlaN genemay have a higher pathogenic potential and can induce
autoimmune disease in their hosts (53). A previous study showed that
the presence of the wlaN gene increased the capacity of cell invasion
(in vitro and in vivo) (55).

This study revealed on the one hand a high genetic diversity
of the analyzed 66 C. jejuni isolates indicated by 28 STs, 11 CCs
and an average pairwise cgSNP distance of 14,585. On the other
hand, closely related isolates were found. In fact, six pairs of
isolates with a cgSNP distance below 10 were found suggesting
both regional persistence and spread of clones. In a recent study,
high genetic diversity was found in C. jejuni collected during
processing of caeca and neck skin samples of broilers. These isolates
were assigned to ten sequence types, which belonged to seven
clonal complexes, based on MLST. ST 257 was prevalent with 58
isolates assigned to it, followed by ST 51 with 25 isolates, ST
10089 with 16 isolates, ST 48 with 13 isolates and ST 50 with 12
isolates (56).

Campylobacter jejuni classified by the WHO as a “high
priority pathogen” which gives it great concerns due to
the emergence of antimicrobial resistance to multiple drugs
including fluoroquinolones, macrolides and other clinically
relevant classes which limits the alternative treatment for human
campylobacteriosis (57).

WGS was used in this study to characterize and predict AMR
in this collection of C. jejuni isolated of turkey farms from different
federal states in Germany. The predicted antimicrobial resistance
based on WGS data was concordant with the phenotypic resistance
profiles in most cases.

Tetracycline resistance in Campylobacter is associated specifically
with genes encoding ribosome protection proteins (RPPs) (58). In
Campylobacter, tetracycline resistance genes can be located both in
the chromosomal DNA and on plasmids (59). A clear trend toward
an increase in the occurrence of tetracycline and (fluoro)quinolone
resistance determinants among C. jejuni, linked to the spread of the
co-occurring blaOXA−61 and tet(O)-tet(O/W/O) genes and the gyrA
SNP, resulting in the amino acid substitution T86I, was found in the
time span from 2001 to date in Europe (60).

The OXA-type β-lactamases confer resistance to the penicillins,
although some are also able to cause resistance to cephalosporins
and carbapenems. In 2007 European Food Safety Authority (EFSA)
considered β-lactams as optional for monitoring at the European
union (EU) level (61). A large proportion of C. jejuni produce β-
lactamases. However, the β-lactamase of C. jejuni seems to play a role
only in resistance to amoxicillin, ampicillin and ticarcillin (62). In
the present investigation, a variety of 13 known β-lactam resistance
genes (all blaOXA variants) were detected in 58 (87.9%) of the
C. jejuni isolates, the most prevalent being blaOXA−193, blaOXA−450

and blaOXA−605 (n = 31; 47% of each) followed by blaOXA−184 (n =

16; 24.2%). These results were in accordance with a previous study
in which two major β-lactamase genes, designated blaOXA−61 and
blaOXA−184, were prevalent at 62.93 and 82.08% in C. jejuni from the
poultry and other bird groups, respectively (63).

The finding of this study highlighted that C. jejuni is a reservoir
for β-lactamase genes that might be transferred to other clinical or
environmental bacteria. Thus, screening of C. jejuni for such genes
may contribute to AMR surveillance in general.

Although point mutations at multiple positions in the gyrA gene
associated with the resistance to fluoroquinolones in Campylobacter

have been described (64), the gyrA mutation, that results in the
amino acid substitution T86I, has been reported as themost prevalent
mechanism in Campylobacter isolated from animals and humans
(64–67). In the present investigation, 93.6% of C. jejuni isolates which
were phenotypically resistant to both, ciprofloxacin and nalidixic
acid, carried this point mutation in gyrA. This agrees with previous
studies in which this mutation was identified in fluoroquinolone-
resistant C. jejuni isolated from ruminants and poultry in Spain
and Germany by SNP-PCR (68–70). These studies showed that this
mutation is present for a long time in C. jejuni and still poses concern
in isolates from farm animals.

The monitoring of the antimicrobial use in broilers in Germany
between 2010 and 2016 showed the highest usage for aminoglycosides
followed by fluoroquinolones and a substantial decrease for
macrolides and tetracyclines. In turkey flocks, fluoroquinolones were
used most frequently, followed by tetracyclines and macrolides.
However, in contrast to broilers, the use of aminoglycosides was
low in turkeys (30). Mechanisms of aminoglycoside resistance in
Campylobacter were attributed to enzymatic drug modification (71)
and mutations at the ribosomal binding sites (72). Aminoglycoside
phosphotransferases (APHs) in Campylobacter are mainly encoded
by the aph(3′)-III, which confers resistance to neomycin and
amikacin whereas the aph(2′′)-Ic gene confers resistance to
gentamicin. Aminoglycoside O-nucleotidyltransferases (ANTs) in
Campylobacter include ANT 6 and ANT 9, which confer resistance
to streptomycin and spectinomycin, respectively (71, 73). The
ant6-I genes encoding aminoglycoside O-nucleotidyl-transferases
are widely spread among streptomycin-resistant C. jejuni (74). In
this study, genes coding for aminoglycoside-modifying enzymes
(APHs and ANTs) which confer resistance to amikacin, neomycin,
gentamicin, streptomycin and spectinomycin were identified.

PCR was used previously for the determination of streptomycin
resistance genes and to recognize ant[6]-Ia, ant[6]-Ib and other ant-
like genes (74). Out of 10 phenotypically streptomycin-resistant C.
jejuni, a gene cluster comprising the genes sat4, aph(3′)-IIIa and aadE
was present in six (60%) connected with aminoglycoside resistance
using WGS analysis.

In this study all isolates were phenotypically susceptible to
erythromycin despite that five isolates carried a mutation in the
gene for the ribosomal protein L22 that resulted in the amino acid
substitution A103V, associated with macrolide resistance. A recent
study conducted to investigate the genetic basis of antimicrobial
resistance in C. coli and C. jejuni isolated from food animals, poultry
processing and retail meat showed that the 23S rRNA (A2075G)
mutation was identified only in C. coli isolates, while C. jejuni were
more likely to harbor the aforementioned mutation in the gene for
the L22 protein (23).

As Campylobacter are commensal bacteria that are exposed to
various antimicrobial agents used in veterinary medicine, additional
resistance mechanisms evolved in Campylobacter (5). The genes
coding for aminoglycosides resistance are usually plasmid-borne
(5). A mutation in the rpsL gene encoding the ribosomal protein
S12 associated with streptomycin resistance was reported only
in C. coli (72). The contribution of efflux to aminoglycoside
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resistance in Campylobacter is not completely proved, but is likely
to be less important than the plasmid-borne genes coding for
drug-modifying enzymes (5). Lack of knowledge may explain
why resistance-associated genes have not been detected by WGS
in four phenotypically streptomycin-resistant C. jejuni in the
current investigation.

Here, the detection of genetic factors for AMR was performed
using different tools and databases (AMRFinder, ResFinder, NCBI) in
order not to miss any loci, as there is no single method that might be
sufficient for the purpose alone (Table 2). Feldgarden et al. (45) found
that AMRFinder appears to be a highly accurate AMR gene detection
system (45).

In agreement with the results of this study, other previously
published WGS-based studies demonstrated an overall very
good concordance between genomic prediction and phenotypic
determination of AMR (59, 67, 75, 76). Comparable results
were reported by Feldgarden et al. for C. jejuni, using the NCBI
AMRFinder tool, e.g., with a 98.9% correlation rate (45). A high
correlation rate of 97.5% was also found in a recent study from
England and Wales (76). There are multiple explanations for
possible discrepancies between genotype and phenotype. There
might be technical issues, such as low assembly quality (77–79).
In this study, high quality of Illumina sequencing was achieved
while long read sequencing might improve assembly contiguity (77)
which may be helpful especially for plasmid detection and analysis
(80). Another technical factor might be incomplete databases,
which was counteracted by utilizing several tools. Microbiological
factors influencing AMR genotype-phenotype correlation include
transcriptional regulation, over-expression and under-expression of
genes (e.g., efflux pumps), protein activation or modification or as
well as novel resistance genes and mutations may be missed by the
currently available databases and search tools (45, 77, 79).

Plasmids played an essential role in the ability of pathogenic
bacteria to particularly overcome a new environment and are
frequently associated with their virulence. Knowledge of plasmid
genetics is significant for the understanding of the evolution and the
origin of drug resistance genes (81). In the current investigation, 28
plasmid-borne contigs were detected in sequenced isolates using the
Illumina MiSeq. The pTet-like plasmid-borne contig, which carries
a tet(O) gene, was detected in six phenotypically resistant isolates.
It has been reported previously that the tetracycline resistance is
not always associated with the presence of pTet-like and in some
isolates the gene is located on the chromosome (82). High prevalence
of tetracycline resistant Campylobacter in chicken was explained in
a previous study showed that horizontal transfer of tet(O) occurs
rapidly and spontaneously without antimicrobial selection pressure
between C. jejuni isolates in their intestine (83).

5. Conclusion

The results of this study emphasize the impact of WGS for in-
depth genotyping, screening of virulence, clonality and antimicrobial
resistance determinants in C. jejuni. In the present study, the
antimicrobial resistance genes were mostly identified on the bacterial
chromosome, while pTet-like plasmid-borne contigs that harbored
the tet(O) gene were identified in six C. jejuni isolates from
different regions (Bavaria and Thuringia) and ST types (122 and 50),
suggesting intra-species dissemination of these types of plasmids.
Combination of AMR databases are helpful for improving AMR
detection in the absence of phenotypic data. Despite the high degree

of correlation between phenotypic resistance and genotypes, the
phenotypic susceptibility testing is still necessary.

This study revealed a relatively high genetic diversity of C. jejuni
isolated from turkeys in German flocks while also genetically highly
similar isolates were detected. This indicates persistence as well as
spread of some C. jejuni clones. This finding has to be explored in
the future in more detail.
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