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Abstrakt 
Die Magnetresonanztomographie (MRT) ist eine der am häufigsten verwendeten klinischen nicht-

invasiven und nicht-ionisierenden diagnostischen Bildgebungsmodalitäten, die hervorragende anato-

mische Details liefert. Die kontinuierlichen technologischen Fortschritte und die Einführung von exo-

genen Kontrastmitteln (CA) ermöglichen diagnostische und therapeutische Anwendungen mit exzel-

lenter räumlicher Auflösung sowie zusätzlichen funktionellen und metabolischen Informationen. 

Kontrastmittel für die T1-gewichtete MRT enthalten paramagnetische Metallionen mit ungepaarten 

Elektronen und verkürzen die longitudinale und transversale Relaxationszeit von Protonen in benach-

barten Wassermolekülen, wodurch hyperintense Signale in der T1-gewichteten MRT entstehen. Die 

meisten T1-Kontrastmittel im klinischen Einsatz basieren auf dem Gadolinium-Ion, Gd(III). Trotz des 

Erfolgs dieser gadoliniumbasierten Kontrastmittel (GBCA) regten Bedenken über Ablagerungen von 

Gadolinium, insbesondere bei Patienten mit eingeschränkter Nierenfunktion, die Forschung über die 

Langzeitsicherheit von GBCA und das Interesse an neuen CA mit weiter verbesserter Sicherheit an. 

Als biologisch essentielles Element mit hoher Bedeutung in zahllosen physiologischen Prozessen 

ist Eisen(III) ein vielversprechender Kandidat für Gd-freie MRT-Kontrastmittel, da es mit 5 unge-

paarten Elektronen starken Paramagnetismus bietet und möglicherweise langfristig sicherer für kli-

nische Anwendungen ist. Bisher konnten wir zeigen, dass Eisen(III)-Komplex-basierte Kontrastmit-

tel (IBCA), insbesondere [Fe(tCDTA)]-, vielversprechende Alternativen zu GBCAs für die kontrast-

verstärkte, T1-gewichtete MR-Bildgebung sind. 

Das Ziel dieser Arbeit war es, neue IBCA auf Basis von [Fe(tCDTA)]- mit weiter verbesserten 

Eigenschaften für die MRT zu entwickeln. Zu diesem Zweck konnten Chelatoren für fünf neue Ei-

sen(III)-Komplexe in zwei Schritten synthetisiert werden: zunächst wurde das Monoanhydrid von 

tCDTA erzeugt, das im zweiten Schritt an Amine gekoppelt wurde. Die neuen IBCA zeigen höhere 

Relaxivitätswerte und eine auf den pH-Wert ansprechende Eigenschaft sowie eine auf die Leber ge-

richtete Funktion.  

Die neuen [Fe(tCDTA)]- Derivate hatten ähnliche Stabilitäten im Vergleich zu [Fe(tCDTA)]- Die 

Relaxivitäten der trans-1,4-Diaminocyclohexan-Derivat-Chelate nahmen mit zunehmender Magnet-

feldstärke zu, wobei die Spitze bei 3,4 L·mmol-1·s-1 pro Eisen und 6,8 L·mmol-1·s-1 pro Molekül für 

das trans-1,4-Diaminocyclohexan-tCDTA-Dimer im gleichen Bereich wie GBCAs bei 3 T lag. Der 

[Fe(en-tCDTA)]+ Komplex zeigt eine pH-abhängige Relaxivität im biologisch relevanten pH-Be-

reich, insbesondere bei schwach sauren pH-Werten, wie sie für verschiedene Krebsarten typisch sind.  

Das [Fe(4-ethoxyanilin-tCDTA)] wurde schnell vom hepatobiliären System aufgenommen und über 

die Nieren und das biliäre System ausgeschieden. Somit kann [Fe(4-Ethoxyanilin-tCDTA)] als MRT-

Kontrastmittel für die Leber verwendet werden.  
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Abstract 
Magnetic resonance imaging (MRI) is one of the most commonly used clinical noninvasive and 

non-ionising diagnostic imaging modalities, providing exquisite anatomical details. The continuous 

technological advances and the introduction of exogenous contrast agents (CAs) enable diagnostic 

and therapeutic applications with excellent spatial resolution as well as additionally functional and 

metabolical information. Contrast agents for T1-weighted MRI contain paramagnetic metal ions with 

unpaired electrons and shorten the longitudinal and transversal relaxation time of protons in adjacent 

water molecules, producing hyperintense signals in T1-weighted MRI. Most T1 contrast agents in 

clinical use are based on the gadolinium ion, Gd (III). Despite the success of these gadolinium-based 

contrast agents (GBCAs), concerns about depositions of gadolinium, especially in patients with im-

paired renal function, stimulated research about the long-term safety of GBCAs and the interest in 

new CAs with further improved safety. 

As a biologically essential element with high importance in countless physiological processes, 

iron(III) is a promising candidate for Gd-free MRI contrast agents, since it provides with 5 unpaired 

electrons strong paramagnetism and is possibly safer for clinical applications in the long term. Previ-

ously we could demonstrate that iron (III) complex-based contrast agents (IBCAs), especially 

[Fe(tCDTA)], are promising alternatives for GBCAs for contrast enhanced, T1-weighted MR imag-

ing. 

The goal of this project was to develop new IBCAs based on [Fe(tCDTA)]-with further improved 

properties for MRI. To this end, chelators for five new iron(III) complexes could be synthesised in 

two steps: first, the mono-anhydride of tCDTA was generated, which was coupled to amines in the 

second step. New IBCAs displaying higher relaxivity values and pH sensing responsive property as 

well as liver-targeting functional images.  

The new [Fe(tCDTA)] derivatives had similar stabilities in comparison to [Fe(tCDTA)]. The re-

laxivities of trans-1,4-diaminocyclohexane derivatives chelates were increased with increasing mag-

netic field strengths topping at 3.4 L·mmol-1·s-1 per iron and 6.8 L·mmol-1·s-1 per molecule for the 

trans-1,4-Diaminocyclohexane-tCDTA-Dimer and thus in the same range as GBCAs at 3 T. The 

[Fe(en-tCDTA)]+ complex exhibits pH-responsive relaxivity in the biology relevant pH range, par-

ticularly at weakly acidic pH values, which are typical for various cancers. The [Fe(4-ethoxyaniline-

tCDTA)] was rapidly taken up by hepatobiliary system and excreted by the kidneys and the biliary 

system. Thus, [Fe(4-ethoxyaniline-tCDTA)] may be used as a liver-targeting MRI contrast agent.
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1. Introduction 

1.1. Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is a powerful diagnostic imaging modality on the basis of its 

flexibility and sensitivity to a broad range of tissue properties, such as with avoidance of invasion and 

ionizing radiation characters, high spatial and temporal resolution. With recent advances in technol-

ogy, MRI is considered as one of the essential techniques of modern medicine owing to its high spatial 

resolution, tomographic 3-dimensional presentation and monitoring of dynamic physiological 

changes. 

MR imaging is based on the analysis of water protons. The principle of clinical MRI scanning is a 

combination of a two-step process. At the first phase, 1H spin orientation in water atomic nuclei is 

manipulated through the assortment of applied magnetic fields. At the second phase, realignments 

would be measured by the interaction of protons magnetic field with conductive coils. This 1H nuclear 

magnetic resonance (NMR) signals of inherent water are reconstructed into MR imaging via computer 

programs.2 

 

1.2. Relaxation Mechanism 

Relaxation is the process in which spins release the energy absorbed from a radio frequency (RF) 

pulse. MRI signal is influenced, among other factors, by two types of relaxation according to the time 

constant, T1 (spin-lattice, longitudinal relaxation), T2 (spin-spin or transverse relaxation) and T2* (re-

flecting both T2 relaxation and magnetic field inhomogeneities).3 The differences in relaxation of 

variable water mobility molecules in different tissues and fluids form the basis of image contrast in 

MRI. Thereby, T1- or T2-weighted images are acquired and entitle medical diagnosis. 

To enhance image contrast effect, exogenous contrast agents with the ability to shorten the relax-

ation times of surrounding water protons are often implied prior to imaging. To date, clinical contrast 

agents’ usage is dominated by non-specific gadolinium based chelates with T1 relaxation properties. 

In a single year, exceed 10 million MRI procedures are performed with gadolinium in total.4 Gd-

based chelates accumulate in certain tissues, reducing T1 relaxation times relative to adjacent tissues 

without targeted contrast agents. Given the signal intensity increase by T1 agents lowering effect, 

these compounds are referred as positive contrast agents. 
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Paramagnetic relaxation enhancement relies on the dipole-dipole interactions between magnetic 

moment of proton nucleus (water in living tissues) and electron spins at the metallic centre. The effi-

ciency of T1 MR contrast probes is termed as relaxivity (r1 for T1 relaxation). It defined as the modi-

fication in the relaxation rate of water protons per molar concentration of paramagnetic contrast 

agents. The conventional unit for relaxivity is mM-1s-1 (per millimolar per second, and sometimes 

L·mmol-1s-1). Primarily, the relaxivity is contributed by directly bounded water molecules (inner 

sphere, IS), by water bound to metal complex and possibly counter ions (second sphere, SS) and by 

water diffusing in the vicinity of  paramagnetic centre (outer sphere, OS)5-7 (equ 1). 

𝑟1 = 𝑟1$% + 𝑟1%% + 𝑟1'%     (1) 

The inner sphere, which represents the most valuable contribution to r1 and the efforts towards to 

contrast agents of improved efficacy have been directed mainly for optimisation. This could be owing 

to the free coordination site and is easily identified by the geometry analysis and the number of bound 

Figure 1. Schematic representation of factors influencing solvent water relaxation. The Gd-based complex has 
an inner sphere of a coordinated water molecule (inner sphere water, its oxygen is coloured light cyan) in solvent wa-
ter (bulk water, oxygen is red). Second sphere water molecules (water oxygens are blue) are close to the carboxylate 
groups with their hydrogens. Abbreviations: see main text. (Based on (Kuźnik, Wyskocka et al, 2005) 
 



 Iron(III)-tCDTA Derivatives as MRI Contrast Agents 

 3 

water molecules could be confirmed with luminescence spectroscopy.8 A detailed interpretation was 

presented in Caravan et. al. review.9 

𝑟1 = 𝐶𝑞𝜇𝑒𝑓𝑓
2 𝜏𝑐𝑟−6               (2) 

C: constant, q: number of inner sphere water molecules, 𝜇eff: effective magnetic moment, 𝜏c: mo-

lecular correlation time, 𝑟: metal-H distance. 

2
34
= 2

35
+ 2
36
+ 2
37

           (3) 

𝜏s: electronic correlation time, 𝜏m: bound water protons residency time, 𝜏R: metal ion electronic 

relaxation time. 

 

1.3. Gadolinium - based MRI Contrast Agents  

The rapid development of magnetic resonance imaging (MRI) technique and the application of 

paramagnetic metal complexes as contrast agents (CAs) have provided substantial enhancement of 

image quality and contrast between normal and pathologic tissues and organ function.10 During the 

last three decades, due to the high magnetic moment caused by seven unpaired electrons, Gadolinium-

based contrast agents (GBCAs) with a strong influence on T1 relaxation of water protons, are routinely 

used in the clinics for positive enhancement in T1-weighted MRI and were considered as very safe 

drugs.11 In comparison with other pharmaceuticals, GBCAs are in favor of an excellent safety profile 

with a very low rate of  severe adverse events (only 1 in 40,000 injections).12 Consequently,  approx-

imately 40 % of all clinical MRI exams employ GBCAs for diagnostic and prognostic information. 

To date, nearly 50 tons of doses of gadolinium have been administered worldwide every year.13 

 Free gadolinium ions are highly toxic to biological systems; therefore, chelating agents or ligands 

must be incorporated to reduce toxicity and the risk of complex dissociation in vivo. The application 

of GBCAs was widely believed to be safely administered intravenously and excreted in the early 

2000s.14 However, recently nephrogenic systemic fibrosis (NSF) was identified as a severe late ad-

verse reaction associated with exposure to gadolinium originated from linear GBCAs in patients with 

impaired renal function. Additionally, emerging studies demonstrated traces of gadolinium have been 

found in several organs including skin, bone and certain brain regions, which seem to occur dose-

dependently while no dependence on age, weight, sex, renal function status and blood-brain barrier 

integrity.15-22. These findings resulted in restrictions and suspensions for some intravenous linear 

GBCAs, which have higher rates of Gd dechelation than macrocyclic GBCAs according to the Euro-

pean Medicine Agency’s  (EMA), Pharmacovigilance Risk Assessment Committee in 2017.23 In Ja-

pan, the usage of GBCAs as a percentage of both types (linear and macrocyclic) has reduced strikingly 
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from 64.7% in 2014 to 24.7% in 2016.24 Similarly, Health Canada announces that the use of macro-

cyclic GBCAs may be preferable in certain patients, in particular, those for whom repetitive MRI 

exams with CAs could be necessary, and vulnerable patients including pregnant women.25 Further-

more, there is an ongoing discussion about the chronic tissue-related chronic symptoms from GBCAs 

exposure, termed as gadolinium deposition disease (GDD).26-29 Thus, taking long term into consider-

ation, other cells and organs, and immune system in particular, should be investigated concerning the 

potential gadolinium adverse effects which are not described or recognized currently. These critical 

complications as well as the low but accumulated contamination of rivers and drinking water by gad-

olinium 30-33 have motivated us to investigate low molecular weight iron(III) complexes, iron-based 

contrast agents (IBCAs) as alternatives for MRI, even though macrocyclic GBCAs are advocated for 

imaging and are continued to be considered as safe administrations.  

Also worthy of note is that for Gd-based CAs, commercial ones applied compounds in clinical 

MRI practice, r1 relaxivities typically decrease with increasing magnetic field strength (above 3 T) 

while r2 effects become more predominate. In a consequence of fast rotational correlation rates at 

ultra-high fields.34,35 In the study of Pietsch et. al, three macrocyclic GBCAs relaxivities decreased 

with increasing applied field strength by approximately -15% to -20% from 1.5 T to 7 T in human 

plasma and blood.36 However, with the rapid development of techniques, ultra-high field strength 

MRI systems beyond 3 T have becoming clinically relevant. Higher fields result in greater signal to 

noise ratio and higher spatial resolution. In the Neurospin centre at CEA Saclay of France, a whole 

body 11.7 T MRI magnet was installed for neurological disease imaging.37 Nevertheless, currently 

approved CAs are less effectively to meet the need at ultra-high field strengths. 

Thus, despite the diagnostic benefit accomplished by GBCA-enhanced MR imaging, for rising 

safety concerns, there is a pressing urgency for clinical necessities to develop alternative MR imaging 

contrast agents, which are gadolinium-free and provide similar T1-shortening effects for a substantial 

diagnostic need. In addition, contrast agents that could provide competent contrast enhancement to 

fulfil a broad spectrum of field strengths and particular in ultra-high magnetic field strengths will 

have to be developed. 

 

1.4. Iron-based MRI Contrast Agents 

Since early years, Gd(III) ion has been the primary focus for MR imaging contrast agents devel-

opment, followed by Mn(II) and to a less extent by iron(III).38  
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Iron is a vital component for numerous fundamental biologic processes.39 It is the most abundant 

transition metal in human body, involves oxidation-reduction reactions and metabolism related pro-

teins, lipids carbohydrates and nucleic acids, which are essential for cellular and organ functions. 

Humans have mechanisms to keep free iron ions within limits. It is estimated that almost 4.0-5.0 g 

iron are present in a 70 kg healthy individual.40,41 Accordingly, iron could be an outstanding option 

as non-gadolinium probe for MRI.  

Besides having only five unpaired electrons instead of seven in gadolinium, conceivable ad-

vantages of iron(III) complexes for their application as T1 contrast agents are the short distance be-

tween the ion metal centre and water protons, as well as the highly polarising nature of trivalent iron 

ion. The short metal-to-water proton distance will favour high T1 relaxation with a 1/𝑟6  according to 

equation (2). Moreover, according to NMRD profiles, the dispersion of iron(III) could shift to higher 

magnetic fields because of it the faster electron spin relaxation, while the relaxivity of classic Gd-

based contrast agents show a modest to sharp decrease with increasing field strength.34,42 It is note-

worthy that for clinical imaging, 3 T imagers instead of 1.5 T show improved signal-to-noise ratio by 

30-50% and contrast-to-noise up to 96%.43,44 Therefore, new iron(III)-based T1 contrast agents could 

work efficiently at high field scanners and provide high relaxivity over a range of field strengths given 

the increasing magnetic fields used in modern MRI scanners. 

Iron (III) complexes with several coordinated organic molecules have been preclinically investi-

gated since the availability of initial NMR imaging in 1980s.45 Marotti et. al demonstrated iron (III)-

based contrast agents (IBCAs) including Fe(EDTA), Fe(DTPA), Fe(CDTA) for urinary system MR 

imaging in rats in 1987.46 After very limited attention during the past three decades, IBCAs have 

sparked considerable attention again in MRI contrast agents research due to their ubiquity in organ-

isms and endogenous character with a well understood biochemistry and physiology.  

Davies et al. generated iron(III)-catecholate derivative complexes and administered them to rats 

for T1-weighted MR imaging and the IBCA showed substantially accumulation in the kidney.47 Sim-

ilarly, Miao et. al. reported IBCAs completed with polyDOPA-b-polysarcosine (PDOPA-b-PSar) co-

polymers with a longitudinal relaxivity comparable to GBCAs. A drawback in this study is peak 

enhancement after injection was 25 minutes in comparison with 5 mins for the standard GBCAs.48 

Recently, innovative iron (III) macrocyclic chelators coordinated with yeast-derived β-glucan parti-

cles (GPs) were recently reported as effective MRI contrast agents by the Morrow group. GPs could 

serve as an immune cells-targeted delivery vehicle and can be delivered to macrophages. These in-

corporated iron(III)-GPs produced enhanced T1 relaxivity at mildly acidic conditions. But the uptake 

and release of iron(III)-based particles in macrophages needed to be determined.49 Wang and co-
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workers presented that biochemically responsive MRI can be achieved by introducing redox-activat-

able Fe3+/2+-PyC3A complexes. However, the oxidation efficacy between Fe3+-PyC3A and Fe2+-

PyC3A in complex biological systems required further investigation.50 Research from Morrow group 

focused on iron(III)-based triazacyclononane (TACN) macrocyclic complexes and tested coordinat-

ing sultanate or hydroxyl groups. These analysed as [Fe(L)X]X chelates showed stable solubility in 

acid solutions (pH<1) or in the blood. Noticeably, even with the increasing magnetic field strengths 

from 4.7 T to 9.4 T, Fe(L1)(OH)2 r1 relaxivity value remained nearly the same at 2.0 mM-1·s-1. In 

comparison, the increase in field strengths significantly induced a decrease in the r1 relaxivity value 

of Gd(DTPA) to 2.5 mM-1·s-1 from 3.1 mM-1·s-1.  51,52 

 

1.5. pH-responsive MRI Contrast Agents 

Nowadays, thrust of preclinical research for MR imaging has shifted towards functional detection 

areas, including activatable and targeted contrast agents. Activatable GBCAs elicits relaxivity change 

in response to physiological events, triggered by an acidic pH, enzyme activities, temperature change, 

metal ion binding or redox environment, for instance. A common strategy is to alter the MR param-

eters: rotational correlation time in particular (such as q and 𝜏R), thereby switching the activatable 

contrast agents from the “off state” to the “on state”.53 Compared with the clinical utility of GBCAs 

that are referred as extracellular fluid (ECF) agents since they freely distribute through extravascular, 

all tissue extracellular space and have little specificity, the responsive CAs present advantages of 

visualizing dynamic biological processes and obtain pathology information as biomarkers for the 

early diagnosis and therapy evaluation. 

A decreased extracellular pH value is a common characteristic of the microenvironment of various 

cancers as well as of chronic inflammatory diseases.54 Accordingly, driving force from detecting can-

cer at early stage to reduce morbidity and mortality is propelling researchers to pursue the design of 

pH-responsive CAs to determine acidic tissue pH, particular in the approximate range between 5.5 

and 6.8, since it is considered as a cancer biomarker. The strategy is focused on magnetization transfer 

by either endogenous or exogenous hydrogen donors. An early and effective pH-responsive MRI 

contrast agent, Gd-DOTA-4AmP5- was proposed by Sherry and colleagues with following extensive 

investigations.55-58 The derivative of DOTA (1,4,7,10-tetraazacyclo-dodecane-N,N′,N′′,N′′′-tetraace-

tate ) with a non-coordinating amido-phosphonate moiety exhibited a 1.5 fold r1 increase over the pH 

between 6 and 9.5. As a result of protonation of phosphonate groups provide catalytic exchange of 

Gd(III) bound water protons with those of bulk water. 
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1.6. Hepatobiliary MRI Contrast Agents 

MRI is the most versatile non-invasive imaging modality for comprehensive assessment of focal 

liver lesions and diffuse liver diseases in clinical practice. Liver-specific GBCAs play a pivotal role 

in non-invasive imaging techniques to detect, characterize and stage hepatocellular lesions by im-

proving the lesion-to-liver contrast. Studies of hepatocyte specific GBCAs showed satisfying perfor-

mances in predicting postoperative early recurrence in hepatocellular carcinoma as well as in the 

evaluation of paediatric liver lesions.59-63 To date, the only approved and worldwide vastly used T1-

enhancing contrast agents are gadobenate dimeglumine (Gd-BOPTA, MultihanceTM) and gadoxetic 

acid (Gd-EOB-DTPA, Primovist, Eovist). However, these two CAs are linear GBCAs and thus less 

stable than macrocyclic GBCAs, potentially causing a higher risk of toxic adverse reactions. 

Brady and co-workers developed a series iron(III)-N,N′-ethylenebis[(2-hydroxyphenyl)gly-

cine][Fe(EHPG)]- derivatives as paramagnetic hepatobiliary contrast probes for MRI.38 The com-

plexes displayed lipophilicity and high binging affinities to human serum albumin (HSA). Biodistri-

bution and tissue relaxation time studies showed enhanced liver-to-blood ratio and excreted via bili-

ary pathway in rats.38,64 N,N′-bis(2-hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED) 

could form highly stable iron(III) chelates with a high binding coefficient (logK) of 39. Based on this 

character, HBED was under investigations as an iron chelator for the treatment of alcoholic liver 

disease.65,66 Iron(III)-HBED is taken up and cleared primarily via liver which raised the interest of its 

evaluation as a liver-specific MRI CAs in preclinical studies.67,68 Iron(III)-HBED complexes with a 

hydrogen bond in the outer coordination sphere as well as phenyl substituted ligand to increase nu-

cleophilicity were designed and synthesized by Domagala group, which are expected as MRI contrast 

agents.69 To further improve Iron(III)-HBED complexes relaxivity performance, Roberts and 

coworkers modified and proposed Iron(III)-HBED analogs. Improved MRI signal was achieved by 

increasing second sphere hydration with phosphoric acid moiety integration and incorporated hydro-

philic substituents to reduce protein association. The biodistribution was evaluated in mice imaging 

studies of the kidney and liver. However, the r1 of Fe-HBEDP-(CH2OH)3 is 1.5 mM−1·s−1 at 1.5 T, 

which is the highest relaxivity among Fe-HEBD analogs, presumably because of the intermediate 

level of protein binding.70 These studies spur extensive research to develop iron(III)-based hepatobil-

iary-specific contrast agents which are taken up by functional hepatocytes and then excreted through 

the biliary system for liver evaluation.
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2. Motivation, Hypotheses and Objectives 

2.1. Motivation   

 Despite the overwhelming success of Gd-based contrast agents, concerns of  potential toxicity and 

long-term retention make the development of alternatives to Gd(III) desirable. Iron(III) is an out-

standing metal for the generation of Gd-free MRI contrast agents based on its paramagnetic properties 

and biologic characters. Unlike in Gd(III), where the unpaired spins originate from inner electrons, 

the magnetic properties of iron(III) stem are from outer unpaired electrons.42 Under this circumstance, 

the magnetic property of iron(III) is substantially determined by its coordination sphere with ligands. 

Our group has reported, IBCAs at slightly higher concentrations in comparison with GBCAs perform 

similar contrast effects in typical applications as dynamic contrast-enhanced MRI (DCE-MRI) and 

magnetic resonance angiography (MRA) with the same pulse sequence parameters for T1-weighted 

imaging.71 Notably, in the iron(III) complex of trans-cyclohexane diamine tetraacetic acid 

[Fe(tCDTA)]- manifested comparable enhancement by only doubling the typically administrated dose 

of Magnevist®  (Bayer Healthcare, gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA)) and 

showed similar pharmacokinetics and eliminations. Furthermore, in contrast to Fe(DTPA), where all 

coordination sides are fully saturated, in terms of  [Fe(tCDTA)]- complex, one coordination side of 

tCDTA remains available for exchangeable coordination of water molecules, contributing to its rela-

tively high T1 effect.71,72 

 

2.2. Hypotheses 

Based on the encouraging results previously achieved with the [Fe(tCDTA)]- complex, the hypoth-

eses for this thesis were: 

• tCDTA can be chemically modified by coupling amine compounds to generate [Fe(tCDTA)]-  

complex derivatives. 

• The new [Fe(tCDTA)]- derivatives will have improved or modified contrast properties, espe-

cially higher relaxivities.  

• The [Fe(tCDTA)]- derivatives will retain the high iron(III) complex stabilities. 

• Due to the structural similarity to Gd-EOB-DTPA (Primovist, Bayer Pharma AG), coupling of 

4-Ethoxyaniline to tCDTA will result in a liver-specific [Fe(tCDTA)]- derivative. 
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2.3.      Objectives 

• tCDTA derivatives will be synthesised in two steps: 

• Mono-anhydride of tCDTA will be prepared by acetic anhydride with the presence of pyr-

idine as proton acceptor. 

• tCDTA mono-anhydride will be coupled in different ratios with the amine-containing com-

pounds ethylenediamine, trans-1,4-Diaminoclyclohexane and 4-Ethoxyaniline. 

• After purification, the tCDTA derivatives will be validated and characterized by HPLC, IR and 

externally by MS and NMR. 

• Iron(III) complexes will be prepared by reaction with iron(III) chloride. 

• Stability of the new iron(III) complexes will be compared with [Fe(tCDTA)]- by absorption  

spectrometry under acid challenge.    

• The r1 and r2 relaxivity of 5 iron(III) complexes in water and serum will be assessed on relax-

ometer and MRI scanners at currently relevant magnetic field strengths (1.5, 3 and 7 T). 

• Effectiveness of [Fe(4-Ethoxyaniline-tCDTA)] as a hepatobiliary-specific contrast agent will 

be evaluated in vivo. 
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3. Methods 
Unless stated otherwise, all regents and chemicals were obtained from Merck KGaA (Darmstadt, 

Germany). 

 

3.1. Synthesis of trans-1,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid 

mono anhydride (tCDTA-MA) 

To a solution of acetic anhydride (12.87 mL, 136.2 mmol) and pyridine (2.75 mL, 34.0 mmol) was 

added trans-1,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid (6.53 g, 17.9 mmol)  (tCDTA; Carl 

Roth GmbH, Karlsruhe, Germany). The reaction mixture was stirred for 24 hours under an argon 

insert atmosphere at room temperature, then was filtered and washed by acetic anhydride followed 

by excess ethyl acetate. The residue was collected and dried in vacuo to give 5.30 g (81.2%) of the 

white solid tCDTA-MA.73 

 

3.2. Synthesis and Characterization of Ligands 

3.2.1. Synthesis of ethylenediamine-tCDTA monomer (en-tCDTA) 

Small portions of solid tCDTA-MA (14.4 mmol, 5 g) were slowly added to a mixture solution of  

ethylenediamine (19.31 mL , 289 mmol) and DMSO (23.75 mL) over a period of six hours under 

argon atmosphere and then the mixture was stirred overnight at room temperature. After that, the 

reaction was evaporated to dryness under reduced pressure (8 mbar) to a thick orange oil which so-

lidified upon standing. Purified 3.98 g (80%) of white powers were obtained by recrystallization in 

methanol at ambient temperature. A significant signal of 388.42/389.18 [M+H]+ in MALDI mass 

spectrometry (MALDI-TOF/TOF 4700 Proteomics Analyzer, Applied Biosystems, Canada) confirms 

molecular anion of en-tCDTA (Figure 4). 1H-NMR (400 MHz, D2O): 3.57 (s, 3H), 3.53 (s, 3H), 3.48 

(s, 1H), 3.44 (s, 1H), 3.03 (t, 2H), 2.92 (m, 4H), 2.16 (m, 2H), 1.82 (m, 2H), 1.26 (m, 4H). 13C-NMR 

(D2O): 170.88, 60.26, 50.86, 39.58, 24.17, 23.29. Elemental C,H,N-analysis [%]: C 43.94, H 8.12, N 

15.07; calculated for C16H27N4O7(NH4) x 2 H2O: C 43.98, H 7.84, N 15.23; max. deviation: 0.28. 
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3.2.2. Synthesis of ethylenediamine-tCDTA dimer (en-Di-tCDTA) 

Small portions of solid tCDTA-MA (13.5 mmol, 4.66 g) were slowly added to a mixture solution 

of ethylenediamine (0.45 mL, 6.7 mmol), DMSO(22.15 mL) and pyridine (4.36 mL, 53.9 mmol) over 

a period of six hours under argon atmosphere and then the mixture was stirred overnight at room 

temperature. Extraction with excess ethanol, washing, drying and purified by semi-preparative HPLC 

(5 mM ammonium bicarbonate buffer with pH 7.78, 2-66% acetonitrile gradient over 20 min). The 

fractions containing en-Di-tCDTA were identified by HPLC and lyophilized. MALDI mass spec-

trometry measurements (MALDI-TOF/TOF 4700 Proteomics Analyzer, Applied Biosystems, Can-

ada) confirmed the expected/measured signal of 716.74/699.11 [M+H]+ -18 (dehydration, see results 

and Figure 4). 1H-NMR (400 MHz, D2O): 3.65-3.85 (16H), 3.35 (m, 4H), 3.08 (m, 4H), 2.17 (m, 

4H), 1.84 (m, 4H), 1.29 (m, 8H).). Elemental C,H,N-analysis [%]: C 46.72, H 7.02, N 10.96; calcu-

lated for C30H47N6O14Na x 2.15 H2O: C 46.35, H 6.65, N 10.81; max.  

 

3.2.3.  Synthesis of trans-1,4-diaminocyclohexane-tCDTA monomer (trans-tCDTA) 

Small portions of solid tCDTA-MA (6.93 mmol, 2.4 g) were slowly added to a solution of DMSO 

(18.24 mL) in the presence of  trans-1,4-Diaminoclyclohexane (3.17 g, 27.7 mmol) under argon at 

approx. 90 °C in 6 hours and stirred for another 4 hours. The mixture was stirred continuedly over-

night. After evaporation under reduced pressure (8 mbar) to give an ashen solid. Completely dissolved 

in methanol, then a precipitate formed after approx. 48 hours at ambient temperature. The precipitate 

was further washed by methanol several times to yield a white solid 1.89 g (79%). MALDI mass 

spectrometry measurements (MALDI-TOF/TOF 4700 Proteomics Analyzer, Applied Biosystems, 

Canada) confirmed the expected/measured signal of 442.51/443.26 [M+H]+ (Figure 4). 1H-NMR (400 

MHz, D2O): 3.55 (m, 8H), 2.93 (m, 2H), 2.16 (m, 2H), 2.07 (m, 2H), 1.83 (m, 2H), 1.50 (m, 8H), 

1.25 (m, 4H). 13C-NMR (D2O): 172.94, 170.24, 63.16, 60.10, 54.75, 49.08, 48.41, 29.11, 27.98, 

24.12, 24.04. Elemental C,H,N-analysis [%]: C 51.09, H 8.3, N 13.19; calculated for C20H34N4O7 x 

0.5 NH3 x 1.15 H2O: C 50.92, H 8.08, N 13.36; max. deviation: 0.22. 

 

3.2.4. Synthesis of trans-1,4-diaminocyclohexane-tCDTA dimer (trans-Di-tCDTA) 

Small portions of solid tCDTA-MA (17.9 mmol, 5.16 g) were slowly added to a solution of trans-

1,4-diaminocyclohexane (7.4 mmol, 0.85 g) in pyridine (4.82 mL, 59.6 mmol and DMSO(58.80 mL) 

within 6 hours. The reaction mixture was stirred overnight under argon at ambient temperature. After 

solvent evaporation, a whitish solid was obtained. Then the residue was filtrated with ethanol, the 

filtrate was collected and lyophilized to give the pure white powder. The MALDI mass spectrometry 
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measurements (Mikroflex MALDI mass spectrometer, Bruker, Germany) confirmed the ex-

pected/measured signal of 770.83/771.18 [M+H]+ (Figure 4). 1H-NMR (400 MHz, D2O): 3.36 (m, 

4H), 3.13 (m, 12H), 2.95 (m, 4H), 2.32 (m, 4H), 1.94 (m, 4H), 1.87 (m, 2H), 1.68 (m, 8H), 1.30 (m, 

8H). 13C-NMR (D2O): 172.68, 60.34, 52.57, 47.73, 38.77, 25.12, 23.47. Elemental C,H,N-analysis 

[%]: C 47.62, H 7.15, N 9.01; calculated for C34H55N6O14(HCO3) x 3.2 H2O: C 47.21, H 7.06, N 9.44; 

max.  

 

3.2.5. Synthesis of 4-Ethoxyaniline-tCDTA monomer (4-ethoxyaniline-tCDTA) 

Small portions of solid tCDTA-MA (9.12 mmol, 3.16g) were slowly added to 4-ethoxyaniline 

(23.49 mL, 182 mmol) under argon atmosphere within 6 hours, and the stirring was continued at 

ambient temperature. After reaction, the mixture was completely dissolving in absolute diethyl ether. 

Afterwards, precipitation was formed at the ambient temperature, washing with diethyl ether to yield 

a white solid of 4-ethoxyaniline-tCDTA , which was purified by DionexTM OnGuardTM II H Car-

tridges, 2.5 mL (Thermo ScientificTM, Germany) to remove the excess of 4-ethoxyaniline starting 

component. The effluent was then collected and lyophilized to give a white powder. The MALDI 

mass spectrometry measurements (Mikroflex MALDI mass spectrometer, Bruker, Germany) con-

firmed the expected/measured signal of 466.2/466.108 [M+H]+ (Figure 4). 

 

3.3. Preparation of Iron(III) Complexes 

Trivalent metal complexes were generated by addition of the tCDTA chelating agents (see above) 

to a stoichiometric equivalent of FeCl3 solution to bound with the metal centers (1:1 ratio as mono-

mers versus 2:1 ratio as dimers). The pH of the solution was adjusted to 7.4 slowly with the saturated 

meglumine. After 24 hours, the excess insoluble iron(III) hydroxide was removed by centrifuging 

resulting iron complexes solutions over 20 mins at 13,800 g, and after which they were passed through 

0.45 µm syringe filters.  

 

3.4. HPLC Analysis 

After purification, the chelators were analyzed by reverse-phase high-performance liquid chroma-

tography (HPLC) via a DIONEX UltiMate 3000 system. The performed conditions and results are 

given in the following results chapter. Samples were accessed by absorption detection at 210 nm 

through a diode array detector (DIONEX UltiMate 3000). 
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3.5. Mass Spectrometry Analysis of Ligands 

In addition to HPLC evaluation, these tCDTA derivatives were determined by MALDI-TOF mass 

spectrometry on the reflector mode at 4700 Proteomics Analyzer (Applied Biosystems) and Microflex 

LRF (Bruker Daltonics) instruments. Analyses were performed by the Shared Facility of Mass Spec-

trometry of the Institute of Biochemistry, Charité - Universitätsmedizin Berlin. The measurement 

results are reported in the following results chapter. 

 

3.6. Infrared Spectroscopy 

IR spectra of lyophilized substances were obtained by a Bruker Compact FT-IR spectrometer AL-

PHA-P with the OPUS software (OPUS 6.5, Bruker Optik GmbH, Germany). 

 

3.7. NMR 

NMR spectra were acquired using a Bruker AV 400 NMR spectrometer (1H and 13C 400 MHz) 

with D2O as solvent at room temperature. Chemical shifts are presented in ppm referenced to residual 

proton signals of D2O (4.8 ppm). For trans-Di-tCDTA performance, the sodium salt was added, by 

the cause of low solubility of the free acid.  

 

3.8. Stability Determination 

In order to determine the stability of the iron compounds, the changes of absorption spectra in the 

range of 220 and 500 nm over time with challenge of 100 mM HCl according to Snyder et al. {Snyder 

et al., 2019, #33283} were compared. In addition, the absorption spectra of FeCl3 in 100 mM HCl, 

tCDTA in 100 mM HCl, and Fe-tCDTA in 1 M HCl were paralleled as well. 

 

3.9. Cyclic Voltammogram Analysis 

Electrochemical experiment was recorded by a PalmSens EmStat Blue potentiostat in a practical 

one-compartment three electrodes cell: a glassy carbon electrode (ID 1.6 mm) for the working elec-

trode, a platinum bead (5 x 5 mm) for the counter electrode, and a silver wire in aqueous AgCl solution 

for the pseudo-reference electrode. All procedures were implemented in demonized and degassed 
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H2O solutions with the presence of  0.1 M KCl at pH 5.9 under argon condition at room temperature. 

The voltammograms scan rate was 0.1 V/s.  

 

3.10. Relaxivity Measurement by Relaxometer 

For relaxivity measurement, all iron complexes were diluted in water or fetal calf serum (FCS, 

Gibco, Thermo Fisher Scientific, Rockford, IL) at concentrations of 0.125, 0.25, 0.5, and 1.0 mmol/L, 

at pH 7.4, and loaded into glass NMR tubes (5 mm outside diameter; Wilmad-Lab Glass company). 

Measurements at 0.94 T measurements were performed using an NMR relaxometer (Bruker Minispec 

mq 40, Karlsruhe, Germany) according to the manufacturer’s instructions. For measurements of the 

pH dependence, samples of  Fe3+-en-tCDTA in the concentrations above were dissolved in water or 

FCS and adjusted to the different pH values. 

 

3.11. Relaxivity Measurement by MR imaging Scanners 

The relaxivities of newly generated complexes were determined at 1.5 T, 3 T, and 7 T MR imaging 

scanners. Up to 7 samples were prepared and placed in a circular phantom holder at ambient temper-

ature. For relaxivity measurements at 37 ℃, the phantom holder and prepared samples were kept at 

37 ℃± 1℃ during the MR measurements by water heating supply, temperature was monitored using 

a fiber optic temperature probe. At 1.5 T (MAGNETOM Sonata, SIEMENS, Erlangen, Germany) 

and 3 T (MAGNETOM Lumina SIEMENS, Erlangen, Germany) scanners, T1-weighted images were 

acquired by a standard 2D spin echo sequence. Different repetition times (TRs) of 100, 150, 300, 600, 

and 1000 milliseconds were applied to obtain T1 times and to calculate r1 relaxivities. Echo time (TE) 

was 11 milliseconds for 1.5 T and 13 milliseconds for 3 T, respectively. Left imaging parameters 

were: an imaging matrix of 256 × 256 was employed with a field of view of 75 × 75 mm2, slice 

thickness was 5 mm. The T1-weighted maps were analyzed by the acquired image datasets using 

ImageJ software (National Institutes of Health NIH, USA) with the MRI Analysis Calculator plug-in 

from Karl Schmidt (kfschmidt@bwh.harvard.edu, 2002/06/19).  

For 7 T MR imaging experiment, a BioSpec small animal MRI scanner (Bruker, Ettlingen, Ger-

many) with a built-in dedicated multi-TR spin echo sequence (TRs : 25, 72, 125, 186, 258, 346, 459, 

617, 882, and 2000 milliseconds; TE 9.0 milliseconds; matrix 256 × 256; FOV 50 mm; slice thickness 

1 mm) was introduced to generate T1 map. The T1 times of the investigated compounds were acquired 

by circular regions of interest (ROI) of constant size placed in the center of the cross sections of each 

phantom in the T1-weighted images.  
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The values of T1 and T2 were acquired based on linear regression calculation from 1/T vs. metal 

ion concentration of the iron complexes using Prism software in GraphPad (Version 5.0a).  

 

3.12. Molecular Modeling 

Perspective molecular structures of the new generated complexes was illustrated on the basis of  

reported Fe3+-tCDTA72 X-ray crystal structure using Marvin software (version 19.17, 2019, Che-

mAxon (www.chemaxon.com)) and PyMOL Molecular Graphics System (version 1.8.2.1. Open 

Source, on Apple Quartz 2.7.11 X Window System). 
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4. Results 

4.1. Generation of tCDTA derivatives  

In this work, I deploy a two-steps synthetic route, developed by Gestin et.al 73 to obtain tCDTA 

derivatives (Figure 2). Commencing from commercially available tCDTA, acetic anhydride and in-

volving pyridine as proton acceptor, followed by filtration by acetic anhydride and excess of ethyl 

acetate to remove dianhydrides, was the first step to prepare a mono anhydride of tCDTA (tCDTA-

MA). Reaction of the carboxylic acid anhydride moiety on tCDTA-MA either with an excess of or 

with less than half-molar amount of the diamine compounds resulted in amide bond formation, gen-

erating monomers (named as the 1:1 addition target obtains) or dimers (named as the 2:1 addition 

target obtain). By this means, the reaction with ethylenediamine brought out the monomer ethylene-

diamine-tCDTA (en-tCDTA, Figure 2B, MW 388.42) and the dimer ethylenediamine-Di-tCDTA (en-

Di-tCDTA, Figure 2C, MW 716.74). In the same manner, reacting tCDTA-MA with exceeding trans-

1,4-diaminocyclohexane generated the monomer trans-1,4-diaminocyclohexane-tCDTA (trans-

tCDTA, Figure 2D, MW 442.51) whereas reaction with a half-molar amount of trans-1,4-diamino-

cyclohexane ended in the dimer trans-1,4-diaminocyclohexane-Di-tCDTA (trans-Di-tCDTA, Figure 

2E, MW 770.83). Reaction with of 4-ethoxyaniline in excess generated the monomer ethoxyaniline-

tCDTA (Figure 2F, MW 465.21).  
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4.2. Validation and Performance Analysis 

4.2.1. Purity and Validation Analysis  

The purities of the resulting amides were determined from reverse phase HPLC measurements 

(Figure 3) with the following peak area percentages: en-tCDTA: 98.1%, en-Di-tCDTA: 96.6%, trans-

tCDTA: 99.0%, trans-Di-tCDTA: 98.4% and ethoxyaniline-tCDTA 98.0%. 

The absence of relevant residuals of the tCDTA precursor in the products, was an important pre-

condition for further characterisation, in particular for relaxivity measurements to leave out contribu-

tions from the corresponding iron compound. The successful synthesis and isolation of the products 

was confirmed by MALDI mass spectrometry (Figure 4), along with 1H and 13C NMR (Figure 5) and 

elemental analysis. The prime mass peaks of en-Di-tCDTA (and to a very small extent also those of 

en-tCDTA) were reduced by 18 Da, which can be attributed to dehydration in the MALDI mass 

Figure 2. (A) Two-step synthesis of tCDTA chelator derivatives. (B-F) Chemical structures and conceivable molecu-

lar models of 5 different carboxamide derivatives of tCDTA.1 
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spectrometry analyzasion.74 For verification, infrared spectrometry (Figure 6) was conducted to val-

idate the IR spectra of tCDTA, tCDTA-MA, en-tCDTA, en-Di-tCDTA, and ethoxyaniline-tCDTA in 

comparison. As expected, the distinctive bands for anhydrides was exclusively for the tCDTA-MA 

probe. 
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Figure 3. HPLC analysis of purified compounds. (A) Ethylenediamine-tCDTA (en-tCDTA), (B) Ethylenediamine-

tCDTA dimer (en-Di-tCDTA), (C) Trans-1,4-Diaminocyclohexane-tCDTA (trans-tCDTA), (D) Trans-1,4-Diamino-

cyclohexane-tCDTA dimer (trans-Di-tCDTA), (E) 4-Ethoxyaniline-tCDTA (ethoxyaniline-tCDTA). All HPLC anal-

yses were performed using a reverse phase Nucleosil® 120-5C18 column (5 µm particle, 25 cm length, 4.6 mm diam-

eter). Samples were detected by absorption measurement using a diode array detector at 210 nm. 
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Figure 4. Nuclear magnetic resonance analysis. (A) 1H NMR of en-tCDTA in D2O. (B) 13C NMR of en-tCDTA in 

D2O. (C) 1H NMR of en-Di-tCDTA in D2O. (D) 1H NMR of trans-tCDTA in D2O. (E) 13C NMR of trans-tCDTA in 

D2O. (F) 1H NMR of trans-Di-tCDTA neutralized with NaOH in D2O. (G) 13C NMR of trans-Di-tCDTA neutralized 

with NaOH in D2O. (Provided by Prof. Dr. Christian Limberg, Department of Chemistry, Humboldt - Universität zu 

Berlin) 

A B 

C D 

E F 

G 
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Figure 5. Mass spectrometry. (A) en-tCDTA, MW 388.42. (B) en-Di-tCDTA, MW 716.74. (C) trans-tCDTA, MW 

422.51. (D) trans-Di-tCDTA, MW 770.83. (E) ethoxyaniline-tCDTA, MW 465.21. MALDI matrix: α-cyano-4-hy-

droxycinnamic acid. (Provided by Dr. Katharina Janek, Institut für Biochemie, Charité - Universitätsmedizin Berlin) 

Figure 6. Infrared spectroscopy analysis of iron(III) complexes of tCDTA and new derivatives. The black ar-

rows illustrate that for tCDTA-MA contains anhydrides groups exclusively. 
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4.2.2. Complex Stability Measurements 

To prepare the iron(III) complexes, the chelators was stirred with iron(III) chloride and neutralized 

with meglumine. The new iron complexes stabilities were compared with that of [Fe(tCDTA)]-, tak-

ing published high complex stability constant Log K of [Fe(tCDTA)]- , 27.575 or 29.376 as references. 

Figure 7 shows the dissociation of [Fe(tCDTA)]- (A), [Fe(en-tCDTA)]+ (B), [Fe(trans-tCDTA)]+ (C), 

Figure 7. Comparison of kinetic stabilities of the iron(III) complexes of tCDTA and new derivatives over time un-

der acid challenge. (A-E) Solutions contained iron complexes (1.0 mM Fe) dissolved in 100 mM HCl. Observing the 

reduction of absorbance at 300 nm according to Snyder st at.24  (E) Minimum absorption of free FeCl3 is at 300 nm 

and below 250 nm is for tCDTA (both in 100mM HCl). (F) [Fe(tCDTA)]−shows a time-depending dissociation in 

stark treatment with 1 M HCl. All Fe(tCDTA)]− derivatives were stable at 100 mM HCl. [Fe(tCDTA)]−, iron(III) 

complex of trans-cyclohexane diamine tetraacetic acid; [Fe(en-tCDTA)]+, iron(III) complex of ethylenediamine-

tCDTA; [Fe(trans-tCDTA)]+, iron(III) complex of trans-1,4-diaminocyclohexane-tCDTA; [Fe(trans-Di-tCDTA)], 

iron(III) complex of trans-1,4-diaminocyclohexane-Di-tCDTA.  [Fe(ethoxyaniline-tCDTA)], iron(III) complex of 4-

Ethoxyaniline. 
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[Fe(trans-Di-tCDTA)] (D) and [Fe(4-ethoxyaniline-tCDTA)] (E), which was monitored by absorp-

tion spectra measurement (0.1 mM Fe) over time during a challenge with 100 mM HCl and observing 

the absorbance decrease at 300 nm on the report of  Snyder et al.52 (F) as reference, free FeCl3 and 

tCDTA has an absorption minimum at 300 nm, and below 250 nm, separately (both in 100 mM HCl). 

Since the complexes remained stable in 100 mM HCl,  a time-dependent dissociation of [Fe(tCDTA)]-  

with stark treatment in 1M HCl was further studied to demonstrate dissociation (F), all tested iron(III) 

complexes showed merely slight initial absorbance changes in 100 mM HCl and thus differed from 

iron(III) chloride in 100 mM HCl and to [Fe(tCDTA)]- in 1 M HCl, indicating the notable stabilities 

for all [Fe(tCDTA)]- derivatives in 100 mM HCl.  

 

4.2.3. Cyclic Voltammograms 

The redox properties of  new [Fe(tCDTA)]- derivatives were analysed by cyclic voltammetry with 

a glassy carbon-based electrode and KCl as a supporting electrolyte as shown in Figure 8. All three 

complexes produced one reversible redox wave in the anodic scan (Ea ≈ +0.06 V for [Fe(tCDTA)]- 

and around + 0.1 V for the other complexes). In comparison of reversible cathodic waves of 

[Fe(tCDTA)]- and [Fe(trans-tCDTA)]+, the other two compounds displayed two small cathodic peak 

potentials, implying two distinctive species presence. The peak potentials detected for the oxida-

tion/reduction reactions were yielded (referenced to an Ag/AgCl electrode) and Half-wave potentials 

E1/2 between - 0.05 and 0.06 V were shown in Table 1. 

 

Figure 8. Cyclic voltammograms of [Fe(tCDTA)]- and its derivatives at neutral pH. Solutions contained 1.0 mM of 

the compounds and 100 mM KCl as the supporting electrolyte. Scan rate is 100 mV/s.1 (Provided by Prof. Dr. Chris-

tian Limberg, Department of Chemistry, Humboldt - Universität zu Berlin) 
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4.3. Evaluation of Contrast Properties by Relaxometer and MRI Measure-

ments 

4.3.1. IBCAs with Enhanced Properties : Increased T1 Relaxivities at Higher Mag-

netic Field Strength and pH Sensing 

To characterise the magnetic properties in comparison to we performed relaxometry and MRI 

measurements of the complexes in the range of clinically available magnetic field strengths from 1.5 

to 7 T (Table 2). The iron(III)-based compounds of the chelators en-tCDTA (Figure 2B) and en-Di-

tCDTA (Figure 2C), that were produced with ethylenediamine, showed relatively low relaxivities at 

0.94 T and neutral pH versus [Fe(trans-tCDTA)]+ (Figure 2D) and [Fe(trans-Di-tCDTA)] (Figure 

2E) had similar relaxivities as [Fe(tCDTA)]- at the same field strength. But which worth the whistle 

is that the r1 values increased substantially within the increasing field strengths and were highest at 7 

T for the [Fe(trans-Di-tCDTA)] (Figure 2E) gave 4.71  ±0.37 L·mmol-1·s-1 per iron and 9.42  ±0.74 

L·mmol-1·s-1 per dimeric molecule in serum and 3.80  ±0.04 L·mmol-1·s-1 / 7.60 ±0.08 L·mmol-1·s-1 

in water (Table 2). MRI phantoms images of [Fe(trans-tCDTA)]+ (Figure 9A, B), [Fe(trans-Di-

tCDTA)] (Figure 9C, D) and [Fe(4-ethoxyaniline-tCDTA)] (Figure 9E, F) illustrate the contrast ef-

fects at different concentrations at neutral pH in water and in serum, separately. 

 

Table 1.  Cyclic voltammograms. Cathodic, anodic and half-wave potentials of iron-complexes. Half-wave po-

tential (E1/2) was determined according to the following equation: E1/2 = (Ec+Ea)/2. Ec: cathodic peal potential, Ea: 

anodic peak potential. All peak potentials are reported vs. Ag/AgCl reference electrode.1 (Provided by Prof. Dr. 

Christian Limberg, Department of Chemistry, Humboldt - Universität zu Berlin) 
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Surprisingly, in water (Figure 10A), the T1 relaxivity of [Fe(en-tCDTA)]+ was 0.82 L·mmol-1·s-1 

at pH 7.4, and of which was 1.77 L·mmol-1·s-1 at pH 5.1, indicating pH-dependent property. Addi-

tionally, in serum (Figure 10B),  there was a three-fold increasement in T1 between the lowest 

0.72 L·mmol-1·s-1 at pH 7.4 and highest 2.24 L·mmol-1·s-1 at pH 5.0. The sigmoidal dose response 

plots demonstrated a 50% pH of 6.79 ± 0.07 in water and a 50% pH of 6.17 ± 0.11 (T1) in serum. 

Accordingly, Figure 11 presented MR profiles of [Fe(en-tCDTA)]+  pH-responsive relaxivities at 1.5 

T and 7 T in serum, which were verified by MR imaging with TR variation at a clinical 1.5 T SIE-

MENS Sonata and a experimental 7 T Bruker small animal scanner.  

 

 

 

 

 

Figure 9.  T1-weighted MR phantom imaging. [Fe(trans-tCDTA)]+ (A, B) , [Fe(trans-Di-tCDTA)] (C, D) and 

Fe(4-ethoxyaniline-tCDTA)]+ (E, F) in 3 Fe concentrations (1: 125 µM, 2: 250 µM, and 3: 500 µM) at 3 T in water or 

100% FBS at neutral pH, 37°C. 1 
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Figure 10. pH related relativity changes of [Fe(en-tCDTA)]+. pH-responsive relaxivities of [Fe(en-tCDTA)]+ in 

water (A) and in serum (B) at 0.94 T. (C) pH-responsive relaxivities of [Fe(en-tCDTA)]+ in serum at 7 T. Curves il-

lustrated the sigmoidal dose-response fited with 95% confidence bands (dotted lines). 1 
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Given the distant amine groups to the iron(III) ion coordination, or alternatively, hydroxide iron 

coordination may be responsible for the unexpected low relaxivities of iron complexes of chelators 

en-tCDTA and en-Di-tCDTA in comparison to trans-tCDTA and trans-Di-tCDTA at neutral pH (Fig-

ure 14).   

It is curious that at higher pH conditions, the relaxivity of  the trans-1,4-diaminocyclohexane con-

taining complexes [Fe(trans-tCDTA)]+ and [Fe(trans-Di-tCDTA)] with rigid diamine decreased as 

well (Figure 12). This relativity drop at high pH could be attributed to increased presence hydroxide 

and the formation of hydroxide-iron complexes that block fast exchange of coordinated water.  

 

  

Figure 11. T1-weighted MR images of pH-responsive property of [Fe(en-tCDTA)]+ at 1.5 T and 7 T. Seven 

phantoms of [Fe(en-tCDTA)]+ at 1 mM (A-D) or 3 mM (E-F) in serum with prepared pHs between 5.8 and 7.4 were 

imaged at 1.5 and 7 T. (A, E) Signal intensity images (spin echo sequence, TR 150 ms, TE 11 ms) and (B, F) corre-

sponding T1 maps obtained at 1.5 T MRI. (C, G) Signal intensity images (spin echo sequence, TR 71.8 ms, TE 9 ms) 

and corresponding T1 maps (D, H) procured at a 7 T small animal MRI scanner. 1  
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4.3.2. Novel IBCA for MR imaging of Hepatobiliary  

In Europe, linear GBCAs are restrained due to gadolinium disposition and delayed toxicity con-

cerns, but intravenous linear GBCAs remain available for liver diagnostics, since there is an important 

diagnostic need and no macrocyclic replacement available at this time. Nonetheless, appreciably less 

research to date has focused on developing Gd-free liver-targeting contrast agents. This study reports 

Figure 12: Comparison of the pH-responsive relaxivities of the [Fe(en-tCDTA)]+ derivates chelated with flexi-

ble ethylenediamine (en) versus rigid trans-1,4-diaminoclyclohexane (trans). (A) [Fe(en-tCDTA)]+, (B) [Fe(en-

Di-tCDTA)], (C) [Fe(trans-tCDTA)]+, and (D) [Fe(trans-Di-tCDTA)]. The relaxivity decrease occurred for the en 

derivates below pH 7.4 and for the trans derivatives above pH 7.4. Relaxivities were acquired on a relaxometer in 

water at 0.94, 37°C. 1  

A B 

D C 
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the development of a iron(III)-based contrast agent with the aim to provide safer alternatives for 

hepatobiliary MR imaging.  

The synthesis and validation are described in chapter 3.2.5 and 4.2.1. To study the contrast effect 

of [Fe(4-ethoxyaniline-tCDTA)], we performed relaxometry and MRI measurements at different filed 

strengths. The relaxivity values of [Fe(4-ethoxyaniline-tCDTA)] are summarised in Table 2. We also 

measured relaxivity in FCS. Despite slightly lower relaxivities than trans-tCDTA and trans-Di-

tCDTA, the T1 values of [Fe(4-ethoxyaniline-tCDTA)] increased with the higher field strengths. Con-

versely, gadoxetic acid disodium (Gd-EOB-DTPA, Primovist/Eovist) and gadobenate dimeglumine 

(Gd-BOPTA, MultiHance), the two typical clinical hepatobiliary specific MRI contrast agents used 

for evaluation of liver function, decreases their T1 relaxivities with increasing field strength by ap-

proximately -32% to -25% from 1.5 to 7 T. Measured r1 values at 1.5 T (3 T/7 T) were 7.2 ± 0.2 (5.5 

± 0.3/4.9 ± 0.1) for Gd-EOB-DTPA, and 6.2 ± 0.5 (5.4 ± 0.3/4.7 ± 0.1) for Gd-BOPTA respectively, 

indicating the relaxivities of GBCAs are higher, but decrease with increasing field strengths.77 

 

 

4.4. Exemplary in vivo MRI with [Fe(4-ethoxyaniline-tCDTA)] 

To demonstrate liver targeting property of  [Fe(4-ethoxyaniline-tCDTA)], T1-weighted MR imag-

ing was performed with 12-week-old female Balb/c mice after tail vein bolus injection (dose: 0.2 

mmol/kg body weight). The most characteristic MR feature of [Fe(4-ethoxyaniline-tCDTA)] is the 

contrast enhancement of the liver that remains high even after 22 mins post injection. Subsequently, 

the contrast of gallbladder, intestines and urinary bladder is clearly visible, strongly indicating the 

excretion of [Fe(4-ethoxyaniline-tCDTA)] via hepatobiliary and renal pathways (Figure 13). The dual 

elimination property of [Fe(4-ethoxyaniline-tCDTA)] is similar to the clinically approved liver-tar-

geted contrast agents Gd-EOB-DTPA and Gd-BOPTA. 
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Figure 13. MIP  image shows [Fe(4-ethoxyaniline-tCDTA)] dual elimination in vivo T1 contrast effects. Rec-

orded 22 min post injection reveals a strong enhancement of the gall bladder, the urinary bladder and the 

small intestines, proving the excretion of [Fe(4-ethoxyaniline-tCDTA)] via the hepatobiliary and renal path-

ways. MIP : maximum intensity projection. (provided by Fei Ni, Institute of Radiology, Charité – Universi-

tätsmedizin Berlin). 
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5. Discussion  
IBCAs, especially [Fe(tCDTA)]- showed promising potential as replacements of GBCAs in con-

trast-enhanced T1-weighted MRI.78 Hence, we modified tCDTA for the purpose to generate iron che-

lates with further improved relaxivities and modified contrast agent properties for various clinical 

applications. By employing the straightforward two steps synthesis strategy as shown in Figure 2 and 

three amine-containing compounds ethylenediamine, trans-1,4-Diaminoclyclohexane and 4-Etoxy-

aniline,  we could generate 5 new tCDTA derivatives. After confirming purity of the derivatives and 

the absence of the initiating component, tCDTA,  MALDI mass spectrometry, elemental analyses and 

NMR were performed to obtain proofs of identity and to avoid the contribution from [Fe(tCDTA)]− 

for the following relaxivities evaluations. 

6‐coordinated [Fe(tCDTA)]− complex leaves one coordination site open for water or for other lig-

ands, allowing inner sphere relaxation, which contributes to relatively high relaxivity.71,72 In contrast, 

the relatively low relaxivities of [Fe(en-tCDTA)]+ and [Fe(en-Di-tCDTA)] at neutral pH could re-

sulted from the occupancy of all seven coordination sites of iron(III) by coordination with the terminal 

amine (Fig. 2). Figure 14 gives a hypothetic mechanism for the pH-dependent of Fe(en-tCDTA)]+: at 

low pH, the terminal amine could be protonated, which would forbid the coordination of the iron and 

thus remains one accessible iron(III) coordination site for water coordination (Figure 14A). As the 

same analogize, the relatively low relaxivity and pH dependency of the [Fe(en-Di-tCDTA)] can be 

explained by that the two added amides of the ethylenediamine bridge possibly coordinate with the 

two trivalent metal ion centers, and thus restrain the coordination of inner-sphere water and relaxa-

tion. Alternatively, the low relaxivities at neutral and higher pHs could be the consequences of central 

iron(III) obstruction by coordinatively hydroxide ions at higher concentrations, which could inhibit 

inner sphere relaxation simultaneously (Figure 14C, E). This mechanism seems to become relevant 

only at higher pHs as shown for the rigid iron complexes as shown in Figure 12C and D, which in 

contrast extends over a wide pH range.  

The pH-responsive T1 relaxivity property of [Fe(en-tCDTA)]+ could be exploited in the future for 

the detection or characterisation of cancer by MRI and the designation of salvable tissues in stroke 

that typically have lower pH than normal tissues.79-82 In comparison to pH nano-sensors, the low 

molecular weight iron (III)-based complexes should be superior as regards quicker and more exten-

sive bio-distribution, as well as a more efficient excretion.83,84 
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As shown through relaxivity measurements, at neutral pH, the iron (III)-based complexes of trans-

1,4-diaminocyclohexane derivatives showed considerably higher relaxivities than their ethylenedia-

mine analogues. Notably, T1 relaxivities of the iron complexes demonstrated an increasement with 

Figure 14. Hypothetical mechanisms of the observed pH-dependent relaxivity changes of [Fe(en-tCDTA)]+ and 

[Fe(trans-tCDTA)]+. (A) At slightly acidic pH, the terminal free amine group could be protonated, which in turn 

would prevent the iron coordination. Consequently, one coordination site would be available for water coordination 

allowing efficient inner sphere relaxation. (B) At neutral and high pH, the terminal amine group becomes deproto-

nated and thus could coordinate to central iron, block water coordination, and prevent efficient inner sphere relaxa-

tion. (C) At neutral and higher pH, higher concentrations of hydroxide ions can coordinate the central iron and thus 

block water coordination and inner sphere relaxation. (B) and (C) could coexist, but (C) seems more likely to occur at 

higher pHs. (D) The terminal free amine group of the rigid trans-1,4-diaminocyclohexane cannot coordinate the iron, 

which would explain the relatively high relaxivity at neutral and low pH (Figure 12). (E) At higher pH, high concen-

trations of hydroxide ions can coordinate to iron and thus block water access and reduce relaxivity. The pH dependent 

relaxivities of the dimers [Fe(en-Di-tCDTA)] and [Fe(trans-Di-tCDTA)] could be explained accordingly to the corre-

spondent monomers. 1 
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increasing magnetic field strengths. [Fe(trans-tCDTA)]+ and [Fe(trans-Di-tCDTA)] showed particu-

larly high relaxivities at clinically available field strengths of 1.5 T and 3 T and continued to be higher 

relaxivities at 7 T. In contrast, two of the three macrocyclic GBCAs products, the most frequently 

applied compounds in clinical MRI in Europe, T1 relaxivities decrease with increasing field 

strengths.36 At 3 T, [Fe(trans-Di-tCDTA)] dimer in serum even had slightly higher T1 relaxivity per 

metal ion than that of gadoteridol (ProHance®, Bracco Diagnostic Inc) and gadoterate (Dotarem®, 

Guerbet LLC) and vaguely lower T1 relaxivity in comparison to gadobutrol (Gadovist®, Bayer AG) 

in blood plasma, while its T1 relaxivity per molecule is higher than that of all above three contrast 

agents. In the presence of serum, the T1 relaxivity increasement versus in water were slightly lower 

than the mentioned macrocyclic GBCAs in plasma. These data suggesting their similar low plasma 

protein adsorption.34 As a consequence, [Fe(trans-tCDTA)]+ and [Fe(trans-Di-tCDTA)] could be as 

promising alternatives to GBCAs for MR imaging. In addition, through the terminal amino group as 

linker, [Fe(trans-tCDTA)]+ might serve as an MRI-detectable label by applying the terminal amino 

group as linker, e.g., coupled to targeted and/or functional imaging probes.  

It is noteworthy that, tCDTA and new generated tCDTA derivatives remained remarkably intact 

in  100 mM HCl over  a period of 72 h, which was not the character for the iron(III)-based macrocy-

clic complexes reported by Snyder and co-workers51. Their stability could be explained by the four 

left over coordinated oxygens. The two exhibited cathodic peak potentials for [Fe(trans-Di-tCDTA)] 

complex and for [Fe(en-tCDTA)]+ complex might originate from two different explanations: the ex-

istence of different metal-bound species in solution, such as Fe-OH2 and Fe-OH (the aqua form is 

reduced more promptly than the hydroxide form72 and/or, in the event of the [Fe(trans-Di-tCDTA)], 

slightly different potentials for the two trivalent metal ion centers. For now, the extent of redox cy-

cling will occur in blood and other fluids comprising the extracellular spaces is remaining unclear. 

Studies in the future will be necessary to better understand biological redox activity. 

[Fe(4-ethoxyaniline-tCDTA)] shares a very similar relaxivity profile with [Fe(tCDTA)]- at in-

creasing field strength (Table 2). Results of our in vitro phantom experiment and in vivo imaging 

study in a mouse model reveal similar liver-specificity of [Fe(4-ethoxyaniline-tCDTA)] as Gado-

benate and gadoxetate, the two exceptions of suspended linear GBCAs by the Commission of the 

European Community for liver imaging.23 When conducted with a clinical 3 T MRI system, [Fe(4-

ethoxyaniline-tCDTA)] generated sufficient T1 contrast after injection. The effective accumulation in 

the liver, gall, and urinary bladder demonstrates the hepatobiliary and renal elimination of [Fe(4-

ethoxyaniline-tCDTA)], showing a promising potential as a diagnostic agent for liver imaging as well 

as for other organs that are reached by the blood vessels and for the urinary system due to the partial 

kidney excretion. Although [Fe(4-ethoxyaniline-tCDTA)] was used at a dose of 0.2 mmol/kg of body 
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weight, which is roughly four times the clinically recommended dose of Gd-EOB-DTPA (0.025 

mmol/kg of body weight), it is worth noting that the signal of the IBCAs could be further increased 

by higher dosing, owing to the potentially lower long-term risk caused by depositions in comparison 

to GBCAs. In future research, the hepatocyte targeting mechanism and tumor imaging properties of 

[Fe(4-ethoxyaniline-tCDTA)] enhancement remains to be investigated. 
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6. Conclusions 
In conclusion, the presented convenient approach to modify tCDTA by an efficient two steps syn-

thesis prompted the development of two[Fe(tCDTA)]- derivatives, [Fe(trans-tCDTA)]+ monomer and 

[Fe(trans-Di-tCDTA)] dimer with preferable T1 relaxivities, while retaining highly steady inertness 

to dissociation compared with [Fe(tCDTA)]- in acid. The five new iron (III)-based complexes show 

favorable T1 relaxivities throughout the range of clinically available MR imaging scanners at 1.5, 3, 

and 7 T. A third iron complex [Fe(en-tCDTA)]+, provides a pH-responsive relaxivity increase at 

weakly acidic pH and could facilitate visualisation of  biologic changes of pH and fined MRI-based 

characterisation of cancer diagnosis and/or salvageable tissues in stroke. The study in vivo confirmed 

[Fe(4-ethoxyaniline-tCDTA)] as a potential non-Gd-based liver-specific MRI contrast agent that may 

serve for comprehensive assessment of liver function and liver diseases.  
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