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Kurzfassung

Diese Arbeit befasst sich mit der Nutzung von Subgap- und Randmoden für die Quantenkon-
struktion neuartiger Phasen, Bauelemente und Antwortsmerkmale. Sie umfasst vier separate
Themen: Quantenmagnetismus in Yu-Shiba-Rusinov-Ketten, einatomige Josephson-Dioden,
Majorana-Qubits und photogalvanische Oberflächenantwort in Weyl-Halbmetallen.

Ketten aus magnetischen Adatomen auf Supraleitern wurden als vielversprechende Syste-
me zur Realisierung von Majorana-Endzuständen diskutiert. Hier zeigen wir, dass Yu-Shiba-
Rusinov (YSR)-Ketten auch eine vielseitige Plattform für Quantenmagnetismus und korre-
lierte Elektronendynamik sind. Mit dem Schwerpunkt auf Subgap-Anregungen leiten wir ein
erweitertes t− J -Modell für Quanten-YSR-Ketten ab und untersuchen damit das Phasendia-
gramm und die Tunnelspektren. Wir untersuchen die Implikationen des Quantenmagnetis-
mus für die Bildung einer topologischen supraleitenden Phase und kontrastieren mit bestehen-
den Modellen, die von klassischen Spinstrukturen ausgehen.

Stromgetriebene Josephson-Kontakte zeigen Hysterese zwischen dissipativem und supralei-
tendem Zustand. Übergänge treten auf sobald der angelegte Strom den Umschalt- oder Ein-
fangstrom erreicht. Wir betrachten diodenähnliche Effekte in den Umschalt- oder Einfangströ-
men von schwach gedämpften Josephson-Kontakten. Wir demonstrieren, dass das diodenarti-
ge Verhalten der Umschaltströme auf asymmetrischen Strom-Phasen-Relationen beruht, wäh-
rend nicht-reziproke Einfangströme von asymmetrischer Dissipation herrühren. Dies impliziert
deutlich unterschiedliche Symmetrieanforderungen. Wir veranschaulichen unsere Ergebnisse
anhand eines mikroskopischen Modells für Kontakte mit YSR-Subgap-Zuständen.

Vorraussetzung für topologische Quantencomputer basierend auf lokalisierten Majorana-
Zuständen ist die Fähigkeit, Produkte von Majorana-Operatoren projektiv zu messen. Wir mo-
dellieren den Messprozess von Majorana-Qubits mithilfe der Technik der Quantentrajektorien.
Insbesondere konzentrieren wir uns auf das Auslesen von Majorana-Qubits durch einen tun-
nelgekoppelten Quantenpunkt welcher wiederum kapazitiv an einen Quantenpunktkontakt
gekoppelt ist. Wir zeigen, dass projektive Messungen von Majorana-Produkten durch kontinu-
ierliche Ladungsabtastung unter recht allgemeinen Bedingungen durchgeführt werden kön-
nen. Wesentliche Voraussetzungen sind, dass eine kombinierte lokale Parität π̂, die die Quan-
tenpunktladung zusammen mit dem relevanten Majoranaprodukt umfasst, erhalten bleibt und
dass die beiden Eigenräume der kombinierten Parität π̂ unterscheidbare Messsignale erzeugen.

Abschließend untersuchen wir, wie der photogalvanische Effekt in Weyl-Halbmetallen durch
die Manipulation von Fermi-Arc-Zuständen an der Materialoberfläche ermöglicht und kon-
trolliert werden kann. Konkret entwickeln wir eine Theorie des ballistischen photogalvanischen
Stroms in einer Weyl-Halbmetall-Platte. Wir zeigen, dass die Oberflächenantwort durch die
Konfiguration der Fermi-Arc-Oberflächenzustände festgelegt ist. Dies ermöglicht im Prinzip
die Steuerung des photogalvanischen Stroms durch Oberflächenpotentiale.





Abstract

This thesis discusses the use of subgap and boundary modes for quantum engineering of
novel phases, devices and response characteristics. It is comprised of four separate topics: quan-
tum magnetism in Yu-Shiba-Rusinov chains, single-atom Josephson diodes, readout of Majo-
rana qubits, and surface photogalvanic response in Weyl semimetals.

Chains of magnetic adatoms on superconductors have been discussed as promising systems
for realizing Majorana end states. Here, we show that dilute Yu-Shiba-Rusinov (YSR) chains are
also a versatile platform for quantum magnetism and correlated electron dynamics, with widely
adjustable spin values and couplings. Focusing on subgap excitations, we derive an extended
t − J model for dilute quantum YSR chains and use it to study the phase diagram as well as
tunneling spectra. We explore the implications of quantum magnetism for the formation of
a topological superconducting phase, contrasting it to existing models assuming classical spin
textures.

Current-biased Josephson junctions exhibit hysteretic transitions between dissipative and su-
perconducting states as characterized by switching and retrapping currents. Here, we develop a
theory for diode-like effects in the switching and retrapping currents of weakly-damped Joseph-
son junctions. We find that while the diode-like behavior of switching currents is rooted in
asymmetric current-phase relations, nonreciprocal retrapping currents originate in asymmetric
quasiparticle currents. These different origins also imply distinctly different symmetry require-
ments. We illustrate our results by a microscopic model for junctions involving YSR subgap
states. Our theory provides significant guidance in identifying the microscopic origin of non-
reciprocities in Josephson junctions.

Schemes for topological quantum computation with Majorana bound states rely heavily on
the ability to measure products of Majorana operators projectively. Here, we employ Markovian
quantum measurement theory, including the readout device, to analyze such measurements.
Specifically, we focus on the readout of Majorana qubits via continuous charge sensing of a
tunnel-coupled quantum dot by a quantum point contact. We show that projective measure-
ments of Majorana products can be implemented by continuous charge sensing under quite
general circumstances. Essential requirements are that a combined local parity π̂, involving the
quantum dot charge along with the Majorana product of interest, be conserved, and that the
two eigenspaces of the combined parity π̂ generate distinguishable measurement signals.

The photogalvanic effect requires the intrinsic symmetry of the medium to be sufficiently
low, which strongly limits candidate materials for this effect. We explore how in Weyl semimet-
als the photogalvanic effect can be enabled and controlled by design of Fermi arc states at the
material surface. Specifically, we provide a theory of ballistic photogalvanic current in a Weyl
semimetal slab. We show that the confinement-induced response is tightly linked to the con-
figuration of Fermi-arc surface states, thus inheriting the same directionality and sensitivity
to boundary conditions. In principle this enables the control of the photogalvanic response
through manipulation at the surface only.
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1 Introduction

Inspired by the quantum information revolution [1] as well as the advent of topology as a guid-
ing principle [2–4], the focus of solid-state and many-body research has shifted away from its
traditional scientific program of observation and explanation towards a new paradigm of quan-
tum engineering: many of the most fascinating and exotic phenomena associated with quantum
many-body physics do not arise in naturally occurring materials and ambiance but require the
precise and thoughtful design of constituents and environment.

This thesis is concerned with the design and control of quantum matter and quantum devices
engineered from spatially localized and energetically isolated subgap and boundary modes, as well
as engineered response characteristics enabled and controlled by subgap and boundary modes.
A common feature of these devices and their response is the lack of a classical counterpart.1

Assemblies of magnetic adatoms on a superconducting substrate are prime examples of quan-
tum matter designed in a bottom-up fashion. The Hilbert space of the engineered quantum
system is spanned by YSR subgap states induced by the low energy spin degree of freedom of
magnetic adatoms [5–7]. Due to their overlapping wave-functions and substrate-mediated in-
teractions the YSR states combine into complex quantum systems within and protected by the
host superconductor’s energy gap [8–10]. The choice of adatom species and substrate supercon-
ductor, and most importantly, the precise placement of the adatoms leave a great amount of
freedom to engineer the properties of the subgap quantum system [11–14]: atomic scale manip-
ulations in the scanning tunneling microscope (STM) environment enable the design of almost
arbitrary adatom structures [15]. This freedom has been widely explored in the case of metallic
and semiconducting substrates [16], but for superconducting substrates the field is still in its
infancy. While STM experiments which probe the subgap structure of individual adatoms or
molecules are well-established [11, 17–20], Yu-Shiba-Rusinov dimers [8, 9, 21–25] and chains [II,
10, 26–29] are subject of very recent experimental studies (the latter should not be confused with
densely packed chains, where overlapping d-orbitals directly form bands and pairing is intro-
duced by proximity [30, 31]). The objectives of these YSR assembly designs are multifold. It
has recently been proposed that YSR dimers may serve as qubits [32]. Furthermore, YSR spec-
troscopy provides insight into the nature of the substrate’s order parameter and into the sub-
strate’s band topology [33–37]. Finally, YSR assemblies are believed to realize novel correlation-
driven phases [I, II] and topological superconductivity [38, 39].

1Note that our understanding of quantum engineering is broad and involves also systems which do not rely on coherence or
entanglement as long as their phenomenology relies on quantum effects without classical counterpart, such as the chiral
anomaly or superfluidity. This is in contrast to the understanding of, e.g., MacFarlane et al. [1]
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1 Introduction

One-dimensional topological superconductors have attracted extensive attention in recent
years due to their "Majorana" boundary modes [40]. These Majorana boundary modes are dis-
tinctly different from regular subgap states in superconductors such as Andreev or YSR states
due to their topological nature. First, their excitation energies vanish exponentially in the sys-
tem size, giving rise to a topological ground state degeneracy. Second, local perturbations leave
the quantum information encoded in the ground state manifold unaffected [41]. This is because
Majorana zero modes are guaranteed to occur in pairs which reveal their quantum information
content only when brought together and fused. Finally, braiding of Majorana bound states pro-
vides protected operations acting on their quantum information content [42, 43]. These exotic
properties make Majorana zero modes attractive for quantum computing applications [41, 44,
45]. Moreover, the nonlocal nature of spatially separated Majorana bound states enable novel
schemes of engineering quantum matter [46–48]. However, one-dimensional topological super-
conductors require pairing of effectively spinless fermions. In realistic systems, this translates to
a combination of spin-orbit coupling, time reversal symmetry breaking through magnetic fields
or magnetic order, and superconductivity. These ingredients do not occur together naturally,2

making this a quantum engineering task [49]. Next to the aforementioned YSR chains, semi-
conductor nanowires proximitized by an s-wave superconductor and placed into a magnetic
field [50, 51] represent the major proposal towards realizing a one-dimensional topological su-
perconductor. So far, evidence for Majorana edge modes is purely spectroscopic [30, 52, 53] and
can in principle be mimicked by trivial subgap states. Braiding or coherent manipulation of the
ground state manifold has not been demonstrated at the time of writing.

Majorana zero modes are but one example of a boundary signature mandated by a topolog-
ical bulk [54, 55]. Another example are Fermi arc surface states in topological semimetals, the
most well known example being Weyl semimetals [56]. These three-dimensional materials are
characterized by touching points of non-degenerate bands at the Fermi energy where Bloch elec-
trons are described by the chiral Weyl equation [57]. The Adler-Bell-Jackiw anomaly demands
that these "Weyl points" come in pairs of opposite chirality [58, 59]. This implies that they are
topological objects which can only annihilate pairwise [60]. The Adler-Bell-Jackiw anomaly has
important ramifications for the bulk electromagnetic response in Weyl semimetals [61, 62]. It
gives rise to a semi-quantized intrinsic anomalous Hall conductivity [63] and the chiral magnetic
effect [64] manifesting as negative magnetoresistance in Weyl semimetals [65, 66]. The chiral na-
ture of Weyl fermions is further linked to a plethora of optical phenomena related to chiral, i.e.
elliptically polarized, light [IX, 67–75]. The Fermi arc surface states may be understood as an-
other consequence of the chiral anomaly: in the presence of a magnetic field chiral fermions at
one of the Weyl points move in parallel to the field. This would lead to charge build up at the
sample edges which is clearly not physical as constant magnetic fields do not do work. Fermi arc

2Majorana zero modes also arise in the ν = 5
2

fractional quantum Hall state of a two-dimensional electron gas in a large
magnetic field. While two-dimensional electron gases are engineering feats on their own, one might argue that these cir-
cumstances are somewhat natural. However, this platform for Majorana zero modes has its own challenges and, frankly,
the experimental results on competing one-dimensional quantum-engineered platforms are more promising.
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states offer a resolution of this quandary by connecting the Weyl points of opposite chirality at
the surface, providing a passage for the fermions between the Weyl points and allowing them
to move back towards the opposing surface [76]. Such closed orbits may be observed as pecu-
liar quantum oscillations [77]. The Fermi arcs are chiral themselves, having an average velocity
perpendicular to the line connecting their end points. Fermi arcs and their chirality again have
fascinating consequences for charge transport [78–89]. Indeed, spectroscopic evidence of Fermi
arcs is how Weyl semimetals were first discovered in the noncentrosymmetric materials TaAs
and NbAs [90–92] and later in magnetic materials such as the Heusler compounds Co3Sn2S2

and GdPtBi [93, 94], and the chiral crystal RhSi [95]. Unfortunately, these materials feature a
large number of Weyl points or non-Weyl Fermi pockets which wash out the unique response
features associated with Weyl fermions. From a theoretical as well as from an engineering per-
spective, it is therefore highly desirable to find a platform featuring a single pair of Weyl points.
There are proposals to engineer such a system using Josephson junctions [96] or by splitting
Dirac nodes using magnetic fields [97]. There are furthermore numerous proposals to engineer
the position of the Weyl points and thereby the response properties of the Weyl semimetal [98–
102].

Quantum matter engineered from assemblies of YSR states (Chapter 3), quantum devices
involving YSR states (Chapter 4) and Majorana zero modes (Chapter 5), and photoresponse
due to engineered Fermi arc (Chapter 6) take center stage in this thesis. Each chapter addresses
and answers specific open questions within these overlapping but distinct fields of research.
These are introduced at the beginning of each chapter. We still summarize the main points
below. This is preceded by a chapter on the theoretical foundations of the content chapters to
make this thesis more self-contained (Chapter 2).
QuantumYu-Shiba-Rusinov assembliesThus far, theoretical modeling of YSR chains has

focused on classical adatom spins [38, 39, 103–110]. This presumes that the magnetic anisotropy as
well as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction give rise to ordered magnetic
textures. However, measurements of discrete spin excitations [111–114] as well as the Kondo
effect, both on normal metal [115, 116] and on superconducting substrates [10, 11, 14, 117–120],
demonstrate that individual adatom spins behave quantum mechanically. There is now also ev-
idence for quantum spin physics in YSR assemblies: in collaboration with the group of Profes-
sor Katharina Franke we could show that unscreening transitions observed during adatom-by-
adatom construction of a dilute chain of Fe atoms on a NbSe2 substrate can only be explained
if the quantum nature of the adatom spins is taken into account [II]. Motivated by these find-
ings we developed a phenomenological theory of YSR assemblies that treats the adatom spin as
a quantum degree of freedom [I, III, 121]. Starting with the simplest adatom assembly, a dimer,
we demonstrated that the quantum nature of the adatom spin S has enormous ramifications
for the phase diagram and excitation spectrum which are robust against moderate single-ion
anisotropy and persist even in the large-S limit [III]. Moreover, in contrast to classical models
[32] our approach correctly reproduces the low energy Hilbert space structure of quantum YSR
dimers as can be inferred by comparing to Numerical Renormalization Group (NRG) results
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1 Introduction

[122], while lacking the stringent numerical overhead of NRG calculations. Such correct and
cheap insight is necessary for the construction of YSR dimer qubits. Proceeding to chains of
magnetic adatoms, and focusing on the quantum-limit S = 1

2
, we showed that quantum YSR

chains are described by an effective t−J model [I], implying the intricate coupling of charge and
spin degrees of freedom inherent to quantum magnetism. We then studied the phase diagram
and tunneling spectra of the effective t − J model through numerical exact-diagonalization
and mean field analysis, revealing mechanisms for trivial edge-features at low bias in the tunnel-
ing spectrum as well as a drastically suppressed topological phase as compared to classical YSR
chains. These results provide new guidance in designing and interpreting experiments aiming
to engineer topological superconductivity in chains of magnetic adatoms. Finally, the physics
of quantum spin chains and strongly correlated electrons is a rich field in of itself [123, 124],
and it would be of great scientific interest to observe associated phenomena such as spin-charge
separation on this new platform.
Josephson diode control by Yu-Shiba-Rusinov states Josephson junctions are key ele-

ments of quantum engineering [125], as well as technologies ranging from sensing [126] to su-
perconducting quantum computers [127]. In advancing these technologies, nonreciprocity is
seen as an essential ingredient [128]. Recently, breakthrough experiments demonstrated for the
first time nonreciprocal critical currents in bulk superconductors [129–135] and in Josephson
junctions [136–144]. In underdamped Josephson junctions, which are characterized not only by
their critical or switching currents, but also by their retrapping current, observed nonreciproci-
ties were dominant in the switching currents [136, 140, 142, 144]. Theoretical attempts to describe
these experiments have focused mostly on mechanisms leading to nonreciprocal equilibrium
critical current [145–152], establishing that the latter can only arise if time-reversal symmetry is
broken in addition to inversion symmetry. In stark contrast to these findings, measurements on
atomic Josephson junctions performed by our collaborators in the group of Professor Franke re-
vealed strong nonreciprocity in the retrapping currents while the switching currents were nearly
symmetric [V]. Strikingly, the observed nonreciprocity was completely controlled by the species
of adatom placed in the junction: while non-magnetic Pb atoms did not lead to any observ-
able nonreciprocity, magnetic adatoms such as Cr and Mn gave rise to oppositely asymmetric
retrapping currents. Importantly, this situation is time-reversal symmetric, and thus, this behav-
ior clearly does not fit with the aforementioned theories.3 Through Monte-Carlo simulations
of a generalized RCSJ model we could trace back the observed nonreciprocity in the retrap-
ping currents to nonreciprocity in the quasi-particle current induced by particle-hole symmetry
breaking YSR states [V]. Building on the insights gained from this theory-experiment collabo-
ration, we developed a general analytic theory of noise-affected Josephson diodes building on
rate equations and the Fokker-Planck equation associated with our generalized RCSJ model
[IV]. In particular, we established a general correspondence principle between nonreciproci-

3Note that Misaki and Nagaosa do not assume broken time-reversal symmetry to find a Josephson diode effect [153]. How-
ever, their assumption of asymmetric charging energy is warranted only if the Josephson electrodes consist of different
materials. This is not the case in any of the experiments on the Josephson diode effect to date.
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ties in the current-phase relation and asymmetric switching currents, as well as nonreciproc-
ities in the dissipative current and asymmetric retrapping currents. Importantly, this implies
different symmetry requirements for the Josephson diode effect in the switching versus the re-
trapping currents, inherited from the symmetry requirements for asymmetric current-phase
relations and asymmetric current-voltage characteristics. Finally, in order to substantiate our
phenomenological approach we microscopically derived the generalized RCSJ model within a
Keldysh-functional-integral approach [VI]. Our results allow identification of the origin of non-
reciprocity and hence characterization and categorization of Josephson diodes. This provides
important guidance to the current experimental efforts in this subject.
Readout of Majorana qubits A Majorana Box Qubit [154] combines four Majorana zero

modes on an electrostatically floating island, forming the simplest example of a topological
qubit [44]. Quantum computing based on Majorana Box Qubits relies heavily on quantum-
non-demolition measurements to implement Clifford gates [45, 155, 156]. A fast and robust read-
out protocol is therefore paramount to this quantum computing architecture. We developed
a comprehensive theory of readout for Majorana Box Qubits based on the quantum trajectory
approach [VII]. The theory explains in detail not only the measurement-induced decoherence
but also the readout signal, and thus provides strategies for fast readout. Our theory allowed us
to identify the optimal qubit-readout device coupling strength provided that readout relies on
time-averaged charge sensing. Interestingly, stronger coupling leads to faster decoherence but
may make it harder to detect the measurement outcome. The underlying mechanism of our
readout scheme relies on nothing more than a conserved fermion parity and is hence generally
applicable. We term this mechanism symmetry-protected readout. In particular, our general
analysis implies that decoherence occurs in the eigenbasis of the true zero modes, even if the
local Majorana zero modes are coupled to a finite number of environmental fermionic modes
[157].
Fermi arc-controlled photoresponse in Weyl semimetals Response to light is one of the

most promising aspects of Weyl semimetal response towards technological applications [158]. Of
particular interest are nonlinear effects such as second harmonic generation [159] and the pho-
togalvanic effect [160]. The latter represents the dc current response to light and was shown to
be strongly enhanced in the infrared range in Weyl semimetals [71, 73, 74, 161–165]. It is notewor-
thy that under certain circumstances the photogalvanic response to circularly polarized light is
believed to be quantized in Weyl semimetals [72], although experiments failed to exhibit quan-
tization as of now [95]. Recently, experiments and first-principles calculations have indicated
that the Fermi arc surface states are relevant to the photogalvanic response [166, 167]. To develop
a deeper understanding of this contribution, we developed a semiclassical analytical theory of
photogalvanic response in Weyl semimetal slabs corroborated by lattice simulations. Focusing
on the role of Fermi arc surface states, we showed that the surface contribution to the ballistic
photogalvanic current is crucially determined by the Fermi arc orientations. Importantly, this
surface contribution remains finite even in bulk-centrosymmetric crystals were the bulk pho-
togalvanic current vanishes by symmetry. In these systems, the photogalvanic response is thus
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controlled by the Fermi arc orientations, which may be affected through application of external
surface potentials [168, 169]. This may make possible the design of the photoresponse of Weyl
semimetals, a prospect that is certainly attractive, e.g., for applications in optoelectronics.
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2 Foundations

In this chapter we will review the theoretical foundations relevant to this thesis. In particu-
lar, we will review how subgap and boundary modes arise in superconductors and topological
semimetals.

2.1 Superconductivity

If metals are cooled to sufficiently low temperatures they may undergo a phase transition to the
superconducting state, characterized by the expulsion of magnetic fields and the vanishing of
electrical resistance. Microscopically, this instability is due to the formation and condensation
of electron pairs at the Fermi surface.

In this thesis we will be concerned only with superconductivity that may be described within
the Bardeen-Cooper-Schrieffer (BCS) theory. In these systems, phonons mediate an attractive
interaction between electrons sufficiently close to the Fermi energy EF . The attraction leads
to the formation of electron-electron bound states, so called Cooper pairs. The essentials are
well-captured by a simple contact interaction [170]

V = −g
∫

d3x ψ†↑(x)ψ
†
↓(x)ψ↓(x)ψ↑(x), (2.1)

together with the prescription that only a shell of energiesEF ± ωD contributes. Here, ψ†σ(x)
[ψσ(x)] creates [annihilates] an electron at position x with spin σ, g denotes the strength of
the coupling, and ωD ≪ EF is the Debye frequency. We also specified to spin-singlet pairing.
Below a critical temperatureTc ∼ ωD exp{− 1

ν0g
}, where ν0 is the normal state density of states

per unit volume at EF , the attractive interaction leads to an instability of the Fermi surface,
marked by the development of a finite expectation value

∆(x) exp{iθ(x)} = g⟨ψ↓(x)ψ↑(x)⟩. (2.2)

Here, ∆ is the superconducting order parameter. Its value is determined by a mean field equa-
tion and constant in a homogeneous system.
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The order parameter phase θ is intricately tied to the electromagnetic response. In particular,
it is related to the density deviation δϱ as well as the current density j through1

δϱ = 2eν0

[
ℏ
2
θ̇ − eΦ

]
, j = −ens

m

[
ℏ
2
∇θ + eA

]
, (2.3)

in terms of the electric potential Φ, the condensate density ns, the vector potential A and the
effective massm. Due to the coupling to the electromagnetic field, the fluctuations of θ have a
gapped spectrum, with propagating solutions only at frequencies of the order of the plasma fre-
quency. Similarly, the (gauge invariant) transverse part of the vector potential becomes gapped.
This leads to the expulsion of magnetic fields from the superconducting bulk, the Meissner
effect.

Thus, one may often ignore fluctuations of the phase and treat it as an externally controlled
parameter. This allows for working with a BCS mean field Hamiltonian of the type

HBCS =

∫
d3x

{∑

σ

ψ†σ(x)ξ(−i∇)ψσ(x) + ∆e−iθψ↓(x)ψ↑(x) + h.c.

}
, (2.4)

giving rise to the single-particle excitation spectrum Ek =
√
ξ(k)2 +∆2. In consequence,

there are no low lying single-particle or collective excitations (with the exception of the lattice
phonons, of course).

The term∝ ∆ mixes electron and hole states due to scattering off the superconducting con-
densate, which absorbs or emits Cooper pairs in order for the total charge to be conserved.
Such processes are referred to as Andreev scattering. They are captured by the anomalous (off-
diagonal) terms of the (Gorkov) Green function

G0(x, x′; t, t′) = −i
〈
TΨ(x, t)Ψ†(x′, t′)

〉
, (2.5)

where T is the time-ordering symbol and we defined the two-component Nambu spinor Ψ(x)

= [ψ↑(x), ψ
†
↓(x)]

T . This describes the system in terms of spin up electrons and spin down
holes [i.e. Ψ†(x) creates a spin up excitation] and hence does not involve doubling of the single-
particle Hilbert space. The associated retarded Green function can be expressed in terms of the
single-particle Bogoliubov-de Gennes Hamiltonian, Gr

0 = [ω + iη − HBdG]
−1. Here, we set

ℏ = 1, and defined η > 0 infinitesimal, as well as

HBdG =


ξ(−i∇) ∆eiθ

∆e−iθ −ξ(−i∇T )


 = ξ(−i∇)τz +∆(eiθτ+ + h.c.). (2.6)

1We define the electron charge as q = −e. This gives the minimal coupling prescription p → p+ eA.
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2.2 Josephson junctions and the RCSJ model

Figure 2.1: Schematic representations of a Josephson junction. (a) Two superconductors (blue and red) are sepa-
rated by a tunneling barrier. Current across the junction is carried by the coherent transfer of Cooper
pairs (green), the dissipative quasiparticle current (orange), and a capacitive current (light blue). (b)
Equivalent circuit of the RCSJ model, involving a Josephson component representing the supercur-
rent shunted by a capacitor and a resistor. Element labels are colored according to equivalent process in
(a). In both (a) and (b) the external circuit biases the current across the junction to be Ib.

In the second equality we assumed ξ(k) = ξ(−k) and introduced a set of Pauli matrices τi
acting in Nambu space. The two component Nambu description can be used as long as the
system has a U(1) spin rotation symmetry. If U(1) symmetry is absent (e.g. in the presence of
spiralling magnetic moments, see Sec. 2.3.3 below) one instead has to use a four-component
Nambu spinor which introduces redundancy into the single-particle spectrum. A convenient
choice is Ψ(x) = [ψ↑(x), ψ↓(x), ψ

†
↓(x),−ψ†↑(x)]T . Finally, note that spinless fermions can be

described via two-component Nambu spinor [ψ(x), ψ†(x)]. This again introduces redundancy
[c.f. Eq. (2.36) below].

2.2 Josephson junctions and the RCSJ model

The workhorse of superconducting devices is the so called Josephson junction. It consists of two
superconductors, referred to as left (L) and right (R), which are weakly coupled such that they
can exchange electrons. Such a situation is sketched in Fig. 2.1(a). The charge densities δϱL/R
and order parameter phases θL/R (and equivalently electric potentialsΦL/R) within the individ-
ual superconductors relax at time scales given by the inverse plasma frequency. Conversely, due
to the weak coupling between the two superconductors the charge imbalance Q = QL − QR

and phase difference φ = θL − θR are slow degrees of freedom. (In fact, they are the only
low-lying degrees of freedom.) From Eq. (2.3) we thus have

Q =
1

2
(QL −QR) =

1

2

∫
d3x (δϱL − δϱR) = eν0

(
ℏ
2
φ̇− eV

)
× Vol., (2.7)

where we defined the volume of the bulk superconductors Vol., as well as the voltage drop V =

ΦL −ΦR. Because the superconductors are weakly coupled, large charge imbalancesQ cannot
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be expected. On the other hand, the right-hand side of Eq. (2.7) involves the (macroscopic)
factor of volume. It follows that the time evolution of the phase difference gets pinned to the
voltage drop between the superconductors, i.e.

φ̇ =
2e

ℏ
V. (2.8)

This argument obviously holds even if the two superconductors are completely decoupled.
We now include the tunneling of electrons between the superconductors. Due to the single-
particle gap, at low energies and temperatures only Cooper pairs can traverse the junction so
that both superconductors always hold an even number of electrons. Importantly, the tunnel-
ing of Cooper pairs is a coherent process, as the low energy spectra of the individual supercon-
ductors are discrete (by virtue of the single-particle gap and the absence of low-lying collective
modes). The coherent transfer of charges is linked to a supercurrent Is ∼

∫
dS · j, which by

Eq. (2.3) implies a phase gradient ∇θ ∼ φδ(x) across the junction (setting A = 0, i.e. no
magnetic fields and fixed gauge). This current should be periodic in φ → φ + 2π and vanish
for φ = 0.2 The simplest such current-phase relation is given by

Is(φ) = Ic sinφ. (2.9)

Ic is the maximum supercurrent that can be supported by the Josephson junction, and referred
to as critical current. Eqs. (2.8) and (2.9) are the Josephson relations. If a phase difference is
applied to the junction externally, a constant current flows. This is the dc Josephson effect. If a
voltage is applied, the current will oscillate with frequency 2eV/ℏ due to the time dependence
of the phase difference implied by Eq. (2.8). This is the ac Josephson effect.

In the tunneling regime, a microscopic picture of the Josephson current is due to pair tun-
neling. A single-electron tunneling term of the (schematic) form δH = ψ†LψR + h.c. leads to
a shift in free energy

F ∼
〈
ψ†LψR

1

−HBCS
ψ†LψR + h.c.

〉
∼ − cosφ. (2.10)

A straightforward calculation gives the prefactor asEJ = ℏIc/2e = (GN/8G0)∆, whereGN

is the normal state conductance and G0 = e2/h is the quantum of conductance [171]. EJ is
referred to as the Josephson energy. The current across the junction is obtained via3

Is(φ) =
2e

ℏ
∂F

∂φ
, (2.11)

2Upon a gauge transformation ψL(x) → ψL(x) exp{iα}, the phase difference transforms as φ → φ+ 2α. If parity flips
can be ruled out, α = π suffices to restore the original situation. This implies 2π-periodicity inφ.

3This general relationship follows from the minimal coupling term δHmc =
∫
d3x j · ( ℏ

2e
∇θ + A) = ℏ

2e
Isφ, where we

again assumed absence of magnetic fields and fixed the gauge such that A = 0.
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reproducing Eq. (2.9).

More generally, the Josephson current arises fromφ-dependent energies of so called Andreev
bound states. These correspond to bound electron-hole orbits in the junction region: For ener-
gies below the single-particle gap, an electron (a hole) can only reflect off the superconductors.
The Andreev scattering contribution to this process reflects a hole (an electron), which can
then again be Andreev reflected as an electron (a hole) off the other superconductor, starting
the process anew. By the Bohr-Sommerfeld quantization condition, this gives rise to a bound
state if the phases accumulated during this evolution interfere constructively, i.e. for energiesEn
which satisfy 2πn = φ−f(En). Here, f(E) encompasses the dynamical phases of the electron
and hole trajectories as well as the energy dependent part of the Andreev reflection. The phase
difference φ enters as the Andreev reflection amplitudes involve a phase shift ±θL/R (sign de-
pending on electron to hole scattering or vice versa). In the simple case of an SNS junction one
can evaluate f(E) = 2(ℏL

vF
E + arccos E

∆
), where L is the length of the normal region. In the

spin-SU(2) symmetric case, the Bogoliubov-de Gennes Hamiltonian is particle hole symmetric,
implying corresponding states with energy−En. As each orbit transfers a Cooper pair between
the superconductors, the occupation of negative energy states implies a supercurrent. This can
again be obtained from Eq. (2.11) withF = −2T∑′n ln[2 cosh

(
En

2T

)
] (with the sum only over

positive energies). For φ = 0, each Andreev bound state is doubly degenerate (Kramers de-
generacy) with opposite contributions to the current, hence Is(0) = 0. In a magnetic system,
there is no Kramers degeneracy and Is(0) ̸= 0 generically. Including explicitly the dependence
on the symmetry breaking field, one obtains the general symmetry constraints under inversion
(I) and time-reversal (TR),

Is(φ,B) =IS − Is(−φ,B), (2.12a)
Is(φ,B) =TRS − Is(−φ,−B). (2.12b)

We note here that Andreev bound states are another example of subgap states used for quantum
engineering purposes [172–174]. They do not however play a major role in this thesis.

So far we have ignored the energy cost associated with the Coulomb repulsion of the extra
charges added to the superconductors: a charge mismatch Q causes a voltage drop V . In the
simplest case, the superconducting electrodes may be modeled as a capacitor such that the volt-
age drop is V = Q/C and the associated current is IC = CV̇ . Here, C is the junction ca-
pacitance. Furthermore, at finite temperatures there will also be a dissipative contribution to
the current due to quasiparticle tunneling, which in the simplest case takes an Ohmic form,
Id(V ) = V/R. By the fluctuation-dissipation thoerem, the dissipative current is associated
with Johnson-Nyquist noise δI with ⟨δI(t)δI(t′)⟩ = 2T

R
δ(t− t′). Fig. 2.1(a) shows these con-

tributions together with the supercurrent. Current conservation implies that all these currents
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sum to the bias current Ib. Putting all these ingredients together gives the so called Resistively
Capacitance Shunted Junction (RCSJ) model

IC + Id + Is + δI = CV̇ +
V

R
+ Ic sinφ = Ib. (2.13)

The equivalent circuit is shown in Fig. 2.1(b). By virtue of Eq. (2.8), Eq. (2.13) becomes a
Langevin equation for the phase difference φ. It describes the stochastic motion of a classical
"phase particle" in the tilted washboard potential

U(φ) = −ℏIb
2e
φ− EJ cosφ. (2.14)

It was mentioned already that the chargeQ and the phase differenceφ are the only low-lying
degrees of freedom of the Josephson junction. If the temperature is sufficiently low so that
dissipation due to coupling to the quasiparticle continuum is negligible, it is thus sensible to
ask under what circumstances their dynamics are governed by quantum mechanics. To this
end, we find the Hamiltonian of the phase particle by Legendre transformH = Πφ̇− Lwith
Lagrangian L = 1

2
CV 2 − U(φ) and canonical momentum Π = (∂L/∂φ̇) = (ℏ/2e)Q.

Canonical quantization gives

Ĥ =
1

2C
Q̂2 + U(φ̂), (2.15)

with the commutation relation [φ̂, Q̂] = 2ei. The exponentials exp{±iφ̂} thus shift the
charge imbalance by ±2e, i.e. they move one Cooper pair across the junction. We can thus
interpret the cos φ̂ term as low energy remnant of the electron tunneling Hamiltonian. The
characteristic frequency at the minima of the washboard potentials is referred to as plasma fre-
quency of the Josephson junction. For small bias Ib ≪ Ic, the height of the potential barriers
isEJ . A classical approximation such as the RCSJ model is permissible if the plasma frequency
is much smaller than the barrier height. This translates toEJ ≫ EC = e2/C , whereEC is the
charging energy. Note that dissipation improves on the validity of the classical approximation
[175].

2.3 Yu-Shiba-Rusinov states

Scalar disorder does not affect the magnitude of the gap in a time-reversal symmetric s-wave
superconductor [176]. Conversely, magnetic disorder is detrimental to a superconductor. Mi-
croscopically, this is due to the proliferation of subgap states induced by magnetic impurities,
which, when sufficiently many of them overlap, lead to a breakdown of the gap. These states
are known as Yu-Shiba-Rusinov or YSR states [5–7]. However, from the perspective of quan-
tum engineering YSR states are a blessing in disguise. Under certain circumstances, magnetic
adatoms on superconducting substrates behave as pure spin degrees of freedom and as such
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Figure 2.2: Magnetic adatoms on a superconducting Pb surface and their associated YSR states. (a) STM to-
pography showing Cr, Mn and Pb adatoms. (b) and (c) STM dI/dV at normal state conductance
GN = 0.125µS above Cr and Mn adatom, respectively. STM dI/dV above Pb adatom is shown
in grey in both panels. Cr and Mn are magnetic and induce YSR states visible as subgap peaks in the
dI/dV spectrum. Pb is nonmagnetic and does not exhibit subgap structure. Figure adapted from
[V].

induce YSR bound states in the substrate. Fig. 2.2 shows the subgap structure induced by
magnetic adatoms in STM data. Atomic scale manipulations of individual magnetic adatoms
within the STM setup allow for the design of few-body quantum systems inside the supercon-
ducting gap. The coupling of the individual adatoms is provided by the overlap of their YSR
states, as well as the RKKY interaction between the adatom spins [177–179].

In this section we will investigate a single magnetic impurity located at the origin, as described
by the Hamiltonian

H = HBCS +

∫
d3x

∑

σσ′

ψ†σ(x)Uσσ′(x)ψσ′(x), (2.16a)

where the impurity potential

Uσσ′(x) = [V δσσ′ +KS · sσσ′ ]δ(x) (2.16b)

includes both scalar (V ) and antiferromagnetic exchange scattering (K > 0). Here, we defined
the impurity spin S as well as the single-particle spin operator s = 1

2
σ, with Pauli matrices σi.

In real systems,S is a quantum degree of freedom. We will refer to the bound states induced by a
quantum spin as quantum YSR states. Their phenomenology will be discussed in the following
Sec. 2.3.1, and in Chapter 3. It is sometimes permissible to treatS as a classical degree of freedom
instead and we will refer to the associated bound state as a classical YSR state. Classical YSR
states are subject of Secs. 2.3.2 and 2.3.3.

2.3.1 The Kondo effect and quantum Yu-Shiba-Rusinov states

Consider first the normal metal case, ∆→ 0, with S = 1
2

and no potential scattering, V = 0.
In this case, Eq. (2.16) is simply the Kondo Hamiltonian [180]. The coupling to the impurity
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2 Foundations

Figure 2.3: Sketch of the many body spectrum of Eq. (2.16). All energies are measured from the ground state
energy.

spin S induces interactions which make a full solution of the problem difficult.4 In particular,
at sufficiently low temperatures, the Kondo problem becomes non-perturbative, no matter the
magnitude of the bare coupling K . To see this, we employ the perturbative renormalization
group which gives the running exchange coupling as [181]

K(E) =

(
1

K
− 2ν0 ln

D

E

)−1
, (2.17)

whereD is the bandwidth. This indeed diverges at the Kondo temperatureE = TK , where

TK = D exp

{
− 1

2ν0K

}
, (2.18)

signaling the breakdown of perturbation theory. Wilson developed the numerical renormaliza-
tion group to demonstrate explicitly that there is a smooth crossover from weak coupling to
strong coupling at temperatures well below TK [182], where the diverging Keff = K(E → 0)

leads to the formation of a sharp resonance: an infinitely strong exchange impurity locally binds
an electron of opposite spin despite the gapless continuum of states in which it is embedded
[183].

In a superconductor, due to the presence of the particle-hole excitation gap, the renormaliza-
tion group flow will be stopped at energiesE ∼ ∆. For TK > ∆, the impurity will already be
screened when this point is reached, and thus only act as a potential scatterer. Here, the ground
state is an odd parity singlet, i.e. |gs⟩ ≡ |o⟩, with S2

tot = [S +
∫
d3xψ†(x)sψ(x)]2 = 0. Due

to the single-particle gap what was the Kondo resonance now is a bound state - the quantum
4The interacting nature of this Hamiltonian becomes immediately apparent when replacing the Kondo impurity model by the

strictly more general Anderson impurity model which includes a manifest quartic term in the impurity fermion operators.
Alternatively, elimination of the spin in the large-K limit leads to a local quartic term in the substrate fermion operators.
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2.3 Yu-Shiba-Rusinov states

YSR state. For∆ > TK the effective coupling stays finite, albeit renormalized toKeff ∼ K(∆).
In this case one expects the impurity to remain unscreened even in the ground state. The latter
forms an even parity doublet, or explicitly, |gs⟩ ≡ |e, Sz⟩ and S2

tot =
3
4

. A complete picture
can be obtained via numerical renormalization group (NRG) considerations [184, 185]: At any
(intermediate) ratio TK/∆ > 0 there are three many body states separated from the quasi-
particle continuum. They correspond to the unscreened doublet with even fermion parity and
energy Ee (YSR state unoccupied), and the screened singlet with odd fermion parity and en-
ergy Eo (YSR state occupied). For TK/∆ ≪ 1 the doublet forms the ground state, while for
TK/∆≫ 1 the singlet is the ground state. These regimes are separated by a first order quantum
phase transition at TK/∆ ∼ 0.3. This is sketched in Fig. 2.3.

In tunneling spectroscopy a transition between these states becomes resonant at energies
|EYSR| < ∆ where we defined the Yu-Shiba-Rusinov excitation energy

EYSR = Eo − Ee. (2.19)

In particular, tunneling spectroscopy probes the local spectral function

A(E) =
∑

λ,σ

{
|⟨λ|ψ†σ(0)|gs⟩|2δ(E − Eλ + Egs)

+ |⟨λ|ψσ(0)|gs⟩|2δ(E + Eλ − Egs)
}
. (2.20)

This expression assumes vanishing temperature5 and localized tunneling at the impurity site.
The latter assumption is appropriate to describe STM data. For EYSR > 0 the ground state
is unscreened, |gs⟩ = |e;Sz⟩. In this case an electron that is spin-antialigned with the impu-
rity can tunnel into the system and screen the impurity, giving rise to a spectral peak at energy
E = EYSR and with weight u2(0) = |⟨o|ψ†σ=−Sz(0)|e;Sz⟩|2. Conversely, an electron that
is spin-aligned with the impurity can tunnel out of the system, leaving behind an unpaired
spin-antialigned electron which screens the impurity. This gives rise to a spectral peak at en-
ergy E = −EYSR with weight v2(0) = |⟨o|ψσ=Sz(0)|e;Sz⟩|2. These subgap features in the
tunneling spectrum are the hallmark of YSR states, as visible in Fig. 2.2(b) and (c). If instead
EYSR < 0 and the ground state is screened, |gs⟩ = |o⟩, the weights are reversed. This implies
that, as the quantum phase transition is traversed, the electron and hole peaks can be viewed as
passing through each other. This can be seen exceptionally well in Fig. 2 of [11].

While the NRG approach yields exact results for a single impurity spin its numerical cost
becomes prohibitive once assemblies of impurities or higher spins are considered, with spin-1

2

and spin-1 dimers representing the frontier at the time of writing [122, 186]. To make analyti-
cal progress one has to make approximations. In the literature [38, 39] most often the impurity
spin is approximated as a classical spin or, equivalently, as a local Zeeman field. This approach

5See App. B.7 for the finite temperature expression and its relationship to the BCS Green function.
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will be reviewed in the remainder of this section. While it reproduces the YSR quantum phase
transition as well as the YSR tunneling spectrum, the classical impurity spin implies a drasti-
cally different Hilbert space structure. In particular, it fails to capture the singlet nature of the
screened state. This failure will have strong ramifications when considering assemblies of mag-
netic adatoms. We will explore this in detail in Chapter 3 using a converse approach: instead of
simplifying the impurity spin, we will simplify the superconductor by considering the limit of
zero bandwidth [121].

2.3.2 Classical Yu-Shiba-Rusinov states

We will now treat the impurity spin as a classical degree of freedom and further assume that it
is frozen in some direction. This is a good approximation if there is strong easy-axis anisotropy
(implying S > 1

2
). The resulting problem is non-interacting and can be treated by standard

methods. Without loss of generality, we setS = −Sẑ and define the rescaled exchange coupling
K0 = KS/2 such that the impurity potential involves the term−K0σz . Due to the classical
nature of the adatom spin we refer to the subgap states obtained within this model as classical
YSR states.

The magnetic impurity breaks the SU(2) spin rotation symmetry of the substrate fermions
down to U(1) (assuming absence of spin orbit coupling). We may still employ a two-component
Nambu representation, but now the corresponding Bogoliubov-de Gennes theory does not
have the usual particle-hole symmetric spectrum. The Bogoliubov-de Gennes Hamiltonian is
then H′BdG = HBdG + U(x), where U(x) = [V τz −K0]δ(x) and HBdG was given in Eq.
(2.6). We find the bound state spectrum by identifying the poles of the Green function G =

[ω −H′BdG]
−1 in the presence of the impurity. In the following, we suppress the retarded label

as well as the associated imaginary shift, and set the order parameter phase to zero. The full
single-particle Green function of Hamiltonian Eq. (2.16), G, satisfies the Dyson equation

G = G0 + G0UG = G0 + G0T G0. (2.21)

Here, the T -matrix is given by T = U(1− G0U)−1. Due to the δ-scatterer this involves only
the bare local Green function

G0(0;ω) =
∫

dξν(ξ)
ω + ξτz +∆τx
ω2 − ξ2 −∆2

≃ − πν0√
∆2 − ω2

(ω +∆τx). (2.22)

It may be evaluated straightforwardly as

T (x, x′;ω) = δ(x)δ(x′)

πν0

√
∆2 − ω2(−α + βτz) + (α2 − β2)(ω −∆τx)

2αω + (1− α2 + β2)
√
∆2 − ω2

. (2.23)
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Here, we defined the dimensionless potential and exchange scattering strengths,

α = πν0K0, β = πν0V. (2.24)

As G0 is regular inside the gap it suffices to look for poles in the T -matrix in order to identify
bound states. Indeed, we find a single pole at the Yu-Shiba-Rusinov energy

EYSR = ∆
1− α2 + β2

√
(1− α2 + β2)2 + 4α2

, (2.25)

where the denominator is always positive. For α = β = 0 the YSR bound state sits at the
upper gap edge,EYSR = ∆. Here, the many-body ground state has Sztot = 0 and even fermion
parity. Upon increasing αEYSR passes through zero. At this point the parity and Sztot change as
the YSR bound state becomes occupied in the ground state. This is the YSR quantum phase
transition. In particular, in the two component Nambu framework single-particle excitations
carry Sz = 1

2
.6 Hence, the YSR state is spin-polarized and antialigned with the impurity spin.

It will prove useful to express the YSR quantum phase transition in second quantized form.
At small α the (even parity) BCS ground state may be written as |e⟩ = γYSR

∏
a,b γaγ

†
b |vac⟩.

Here, γYSR empties the YSR bound state, the γa empty states with positive Bogoliubov-de
Gennes energiesEa > ∆ ofHBdG, and γ†b fill those with energiesEb < −∆. ForEYSR < 0 the
(odd parity) ground state is |o⟩ = γ†YSR|e⟩. Generalizing to arbitrary S = −Sn̂ and impurity
location x0, γYSR may be expanded as

γYSR =

∫
d3x
[
u(x− x0)ψn̂(x) + v(x− x0)ψ†−n̂(x)

]
, (2.26)

where ψn̂(x) annihilates an electron with spin projection s · n̂ = 1/2 at position x. The
electron and hole wave-functions u, v may be obtained from the residue of the Green function
at the YSR energy. At the impurity location they may be obtained in closed form. They are

G(0, 0;ω)
πν0

= − ω +∆τx + (α + βτz)
√
∆2 − ω2

(1− α2 + β2)
√
∆2 − ω2 − 2αω

≃ ϕ(0)⊗ ϕ∗(0)
ω − EYSR

, (2.27)

where ϕ(0) = [u(0), v(0)]T in terms of the electron and hole wave weights

u(0), v(0) = 2∆

√
α[1 + (α∓ β)2]

[(1− α2 + β2)2 + 4α2]3
. (2.28)

6To see this, note that in the two-component Nambu-Bogoliubov-de Gennes the z-component of the total spin operator takes
the formSz

tot =
1
2
[
∫
dxΨ†(x)Ψ(x)−N0], whereN0 = Vol.× δ(0) is the number of fermion levels not accounting for

spin. Applied to the BCS ground state, the first term simply counts the number of negative energy states of HBdG. Thus
⟨Sz

tot⟩ = 1
2
(NBdG −N0). Forα = 0, it is clearlyNBdG = N0 and ⟨Sz

tot⟩ = 0. Forα > 1+β2, there is one extra negative
energy state and thusNBdG = N0 + 1 and ⟨Sz

tot⟩ = 1
2

.
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Importantly, for β ̸= 0, the electron and hole amplitudes differ, resulting in a asymmetric
subgap spectral functionA(ω) ≃ u2(0)δ(ω − EYSR) + v2(0)δ(ω + EYSR).

2.3.3 Yu-Shiba-Rusinov chains

Consider now a chain of magnetic adatoms on the superconducting substrate. If the adatoms
are spaced closely their orbitals overlap and form bands, with superconductivity entering by
proximity. YSR states do not play a big role in such dense chains [30, 31]. Here, we consider
dilute chains,such that the adatoms may still be considered spin degrees of freedom and inter-
adatom coupling is mediated by the continuum through their induced YSR states, as well as the
RKKY interaction. This is of particular interest in quasi-two-dimensional materials, where the
YSR wavefunctions decay only as one over square-root of distance [II].

We will still assume that the impurity spins behave classically. In particular, we assume that
they are frozen into a configuration Si = −Sn̂i, where i labels the adatom. The spin texture is
determined through minimization of the RKKY interaction energy. The impurity potential is
now a sum over delta scatterers,

U(x) =
∑

i

[V −K0n̂i · σ]δ(x− xi), (2.29)

where xi is the location of the i-th adatom. For simplicity we assume evenly spaced adatoms,
|xi+1 − xi|= a. AsSztot is no longer a good quantum number, we now use the four-component
Nambu spinor. The T -matrix reads

T (x, x′;ω) = 1

πν0

∑

ij

δ(x− xi)δ(x′ − xj)(βτz − αn̂j · σ)(1−M)−1ij , (2.30)

where the matrix M is defined via πν0Mij = G0(xi − xj;ω)[βτz − αn̂j · σ] in terms of the
bare Green function G−10 = [ω − ξ(−i∇)τz + ∆τx].7 The subgap spectrum can again be
obtained from the poles ofT (ω). In fact, the condition (1−M)ϕ = 0 is just the single-particle
Bogoliubov-de Gennes equation projected onto the impurity sites,8

∑

j

(δij −Mij)ϕ(xj) = 0. (2.32)

7The Fourier transform of the Green function may be obtained for x≫ vF /ωD . It is

G0(x;ω) = − πν0
kFx

exp

{
−
√

∆2 − ω2
x

vF

}[
ω +∆τx√
∆2 − ω2

sin(kFx) + τz cos(kFx)

]
. (2.31)

8The Bogoliubov-de Gennes equation may be written as G−1
0 |ϕ⟩ = U |ϕ⟩. Multiplying both sides by G0 (only defined away

from the unperturbed energies) and rearranging gives U−1T ϕ = 0. Thus, the T -matrix denominator may be seen as an
effective Hamiltonian for bound states induced by the perturbation.
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Following [39], we consider the limit of deep YSR states, |EYSR| ≪ ∆. Expanding for smallE,
and projecting Eq. (2.32) onto the wave-functions of the uncoupled YSR states (which have
spin anti-parallel to the adatom spin) this gives the tight-binding Hamiltonian

Hsubgap =
∑

i

EYSRc
†
ici −

∑

i<j

[
ti−jc

†
icj +∆i−jc

†
ic
†
j + h.c.

]
. (2.33)

Here, we defined the effective hopping and pairing terms

tδ =∆cos(kha|δ|)
sin(kFa|δ|)
kFa|δ|

e
−∆a

vF
|δ|
, ∆δ = ∆sin(kha|δ|)

cos(kFa|δ|)
kFa|δ|

e
−∆a

vF
|δ|
, (2.34)

where we specified to a helical adatom spin cofiguration Si = (cos 2khai, sin 2khai, 0) with
pitch π/kh [39]. Up to a gauge transformation, the operator ci is simply the YSR annihilation
operator defined in Eq. (2.26) corresponding to impurity spin Si = −Sn̂i at position xi.
We have renamed them to ci in order to avoid confusion with the Majorana operators to be
introduced below as the latter are customarily called γ. Eq. (2.33) describes a one-dimensional
spinless fermion chain inside the host superconducting gap, with−EYSR acting as the chemical
potential and a dispersion t(k) =

∑
δ>0 tδ cos(kδ). If the subgap band overlaps with the Fermi

energy (i.e. if there is a solution k0 toEYSR = t(k0)) and if the pitch satisfies 0 < kh < π/2a9

the effective pairing ∆(k) = i
∑

δ>0∆δ sin(kδ) will open a p-wave gap of size ∼ 2∆(k0) in
the subgap dispersion. This puts a constraint on the adatom spacing for any nonzeroEYSR.

2.4 The Kitaev model and topological boundary modes

A spinless one-dimensional superconductor hosts topological zero energy states, so called Ma-
jorana zero modes, at domain walls or, equivalently, at its ends. To simplify the further discus-
sion, from now on we only keep the on-site and nearest neighbour terms with |i− j| ≤ 1. We
specify to a chain ofN adatoms and define teff = tδ=1 as well as ∆eff = ∆δ=1. With these sim-
plifications, the model Eq. (2.33) is known as the Kitaev chain [40]. It is instructive to consider
the somewhat unphysical case of a band centered at the Fermi energy,EYSR = 0, and matching
pairing strength and bandwidth, ∆eff = teff. We decompose theN YSR operators into 2N real
fermionic (Majorana) operators γj,± = γ†j,± which satisfy the algebra {γi,±, γj,±′} = 2δijδ±±′

9For kh = 0, all YSR states are polarized in the same spin direction. This frustrates the singlet pairing in the host supercon-
ductor and hence the effective pairing ∆δ vanishes. Vice versa, if kh = π/2a neighbouring YSR states have antiparallel
spin. This frustrates the kinetic term in the host superconductor (in the absence of spin orbit coupling) and hence the
effective hopping tδ vanishes.
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via cj = (γj,+ + iγj,−)/2 or γj,± = exp
{
iπ
4
(1∓ 1)

}
(c†j ± cj). Expressed in terms of the

Majorana operators the Hamiltonian takes the form

Hsubgap = −iteff

N−1∑

j=1

γj,−γj+1,+. (2.35)

Importantly, γ1,+ and γN,− do not feature in Hsubgap. This implies a nonlocal fermionic zero
mode f = (γ1,+ + iγN,−)/2 with [Hsubgap, f ] = 0. In other words, there are two degenerate
ground states with different occupation of the mode f †f , or equivalently, different fermion
parities p = −iγ1,+γN,−. The next excited states are separated by a gap teff from the ground
state manifold. Thus, the zero mode is again a subgap mode, albeit in the gap of the subgap
dispersion. Note that a spatially isolated Majorana bound state is anomalous. It is in some
sense half a fermion and as such can arise only at a boundary or a domain wall. This further
manifests itself in braiding statistics: the physical exchange of two Majorana fermions results
in a nonabelian rotation within the associated ground state manifold. A scheme implementing
this exchange requires at minimum of four Majorana bound states. A more detailed discussion
can be found in [187].

If one (weakly) relaxes the conditionsEYSR = 0 and ∆eff = teff, the support of the Majorana
operators γ1,+ and γN,− extends further into the bulk of the chain. However, as long as the gap
stays finite the Majorana mode remains at zero energy (up to corrections which are exponentially
suppressed in the system size). To understand this, we now show that the Majorana zero mode
is an example of a topological boundary state. Its existence and vanishing energy is guaranteed
by the topology of the bulk. To this end, we consider periodic boundary conditions and Fourier
transform, giving

Hsubgap =
1

2

∑

k

[
c†k, c−k

]
HBdG(k)


 ck
c†−k


+ const., (2.36)

where ck =
∑

j e
ijkcj/

√
N and we defined the subgap Bogoliubov-de Gennes Hamiltonian

HBdG(k) = [EYSR − 2teff cos(k)]τz + 2∆eff sin(k)τy ≡ d(k) · τ . (2.37)

By construction HBdG(k) obeys the particle-hole symmetry τxH∗BdG(−k)τx = −HBdG(k).10

This implies that the d-vector has to point along ẑ at the invariant momenta k = 0 and k = π.
Defining

C = sign[d(0) · d(π)], (2.38)

10In fact, it also satisfies the spinless time-reversal symmetryH∗
BdG(−k) = HBdG(k) and the chiral symmetry τxHBdG(k)τx =

−HBdG(k). In a more realistic setting, HBdG will include a τx term and we will hence base our arguments only on the built
in particle hole symmetry. In other words, we act as if HBdG were in class D rather than class BDI.
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there are now two inequivalent situations: either the d-vector is parallel at these points, i.e.
C = 1, or antiparallel, i.e. C = −1. At the special point EYSR = 0 and ∆eff = t, we have
d = 2teff(0, sin k,− cos k)T and thus C = −1 (assuming teff > 0 for simplicity). Small
deviations of the parameters from the special point necessarily leave C invariant as its value
cannot be changed smoothly. As the special point exhibits Majorana zero modes we refer to the
parameter region withC = −1 as the topological phase. Conversely, ifEYSR is sufficiently large,
dz(k) ≷ 0 for all k and C = 1. This is the trivial phase. It clearly does not feature Majorana
modes. Transitions betweenC = 1 andC = −1 can only occur if either d(0) or d(π) vanish.
This implies that the excitation gap Eg = mink |d(k)| vanishes. Such a transition between is
called a topological phase transition.

Consider now a domain wall between the C = 1 (e.g. the vacuum) and C = −1 phases.
Assuming the domain wall to be sufficiently smeared out, the spectrum can be obtained adia-
batically as a function of position. At some position the gap has to close such that a transition
from C = 1 to C = −1 can take place, i.e. there is a confined region in space with gapless
spectrum. This is the topological boundary. Such a smooth crossover may seem an unnatural
description for the end points of a chain of adatoms. However, it is straightforward to show that
one also obtains a zero energy bound state in the limit of a hard boundary. Consider the left end
point of a chain in the topological phase, withxdenoting distance from the end point. Without
loss of generality we assume that within the chain (i.e. for x > 0) we have 0 < EYSR < 2teff

while outside the chain (i.e. for x < 0) the YSR energy goes up to the host gap edgeEYSR = ∆

which is much larger than all other energies involved. We thus definem(x) = EYSR−2teff with
m(x < 0) ≃ ∆ and m(x > 0) < 0. Anticipating that the gap closing occurs at k = 0, we
expand for small k and let k → −ia∂x, giving

HBdG ≃ m(x)τz − 2∆effia∂xτy. (2.39)

We seek a bound solution ϕ(x) ∝ exp{−κ(x)|x|}ϕ0 with κ(x < 0) = κ< and κ(x > 0) =

κ>. We find there is a zero energy solution with ϕ0 = (1, 1)T , κ< = ∆/(2a∆eff) ≫ a−1 and
κ> = |EYSR − 2teff|/(2a∆eff). Expressed in terms of the YSR operators cj the corresponding
second quantized operator becomes

γ ≃
∑

j

ϕ†(x = aj) ·


cj
c†j


. (2.40)

As ϕ0 is an eigenfunction of the particle hole operator, τxϕ∗0(x) = ϕ0(x), this indeed satisfies
γ† = γ and thus represents a Majorana bound state. At the special point EYSR = 0 and
teff = ∆eff we can identify it with the left end of the Kitaev chain, i.e. with γ1,+ (however, note
thatκ> = 1/a for these parameters while the continuum limit requiresκa≪ 1). We conclude
that a topological bulk implies a gapless boundary mode. Conversely, an anomalous boundary
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state (i.e. a boundary mode that cannot exist as a standalone system, such as a Majorana zero
mode) implies a topological bulk. This is the bulk-boundary correspondence.

To conclude the discussion note that there are other one-dimensional platforms expected to
host Majorana zero modes. Most famously, a hybrid system of a semiconductor nanowire with
strong spin-orbit coupling proximitized by an s-wave superconductor and placed in a magnetic
field realizes the Kitaev model [50, 51]. This platform is more appropriate for quantum infor-
mation purposes as it should in principle be possible to combine several nanowire-devices onto
a single electrostatically floating island [154]. This is necessary for protection against parity flip-
ping processes, see the next section. However, as opposed to the YSR platform, the nanowire
devices rely on bulk transport experiments to investigate the edge spectrum which is lacking
the spatial resolution of scanning tunneling spectroscopy. This makes distinguishing Majorana
zero modes from trivial bound states more difficult.

2.5 Majorana qubits

Majorana zero modes have a number of advantageous properties that make them attractive can-
didates for quantum information applications. The idea is to use the ground state degeneracy
associated with the Majorana zero mode as a quantum memory. Their nonlocal nature provides
intrinsic protection against sources of decoherence. Furthermore, braiding provides a number
of protected operations on the ground state manifold. This is the essence behind topological
quantum computing [41]. Above we have seen that a pair of Majorana bound states γ1 and γ2
implies one fermionic zero mode f12 = (γ1+ iγ2)/2 and a ground state degeneracy of two. We
can label the ground states by the occupation ofn12 = f †12f12, i.e. |n12⟩ = |0⟩ or |1⟩. However,
a single pair of Majorana bound states does not suffice to make a qubit due to the principle of
fermion parity superselection. In essence, there is simply no way to create a coherent superpo-
sition of states that have different fermion parity. We thus add another pair of Majorana bound
states γ3 and γ4 with associated fermionic mode f34 = (γ3 + iγ4)/2 and n34 = f †34f34 such
that the ground state degeneracy is now four, with states |n12, n34⟩. A qubit can then be defined
in a subspace of fixed parity

p = (−1)
∑2

i=1 n2i−1 2i = (−i)2
4∏

j=1

γj. (2.41)

Specifying to the p = 1 space {|0, 0⟩, |1, 1⟩}we can then define the qubit Pauli operators

Z = −iγ1γ2, X = −iγ2γ3, Y = −iγ3γ1. (2.42)

In defining the fermion modes fjj+1 we could have chosen a different pairing, e.g. f23 = (γ2+

iγ3)/2 and f41 = (γ4 + iγ1)/2. From Eq. (2.42) it is clear that this corresponds to a change
in Pauli basis X → Z , Y → X and Z → Y . The braiding of the Majorana bound states
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implements exactly this type of rotation. For instance, the exchange of γ1 and γ2 corresponds to
the unitary exp

{
−iπ

4
Z
}

, i.e. a rotation by π
2

around the z-axis [43]. Similarly, the exchange ofγ2
and γ3 corresponds to a rotation by π

2
around the x-axis. Thus, in practice the physical exchange

of Majorana bound states is unnecessary as long as it is possible to measure any occupation nij .

In order to measure the Majorana qubit in any of its Pauli bases one needs to couple the two
relevant Majorana bound states, thereby breaking their topological protection. Modeling of the
decoherence as well as the measurement signal requires the explicit inclusion of a measurement
device into the theory. The coupling Hamiltonian has the general form

HM = −iλγiγj ⊗M, (2.43)

whereM is an operator of the measurement device. Indeed, the possibility of measuring Majo-
rana qubits in all Pauli bases is equivalent to the non-abelian statistics of Majorana zero modes.
This is in stark contrast to conventional qubits, and, as a consequence, makes possible a com-
pletely new approach to quantum computing based solely on the measurement of non-local
products of Pauli operators [45, 156]. Robust quantum non-demolishing readout protocols are
paramount to measurement based quantum computing scheme. This is the subject of Chapter
5.

We conclude this section with a discussion of the robustness of Majorana qubits against
local noise [188–194]. Electrostatic fluctuations Φ(x, t) couple to the charge density ϱ(x) =

e
∑

σ ψ
†
σ(x)ψσ(x) [= 1

2
Ψ†(x)τzΨ(x) + const.] through,

δH(t) =

∫
d3xΦ(x, t)ϱ(x). (2.44)

The latter may be expressed in terms of Majorana operators γi and above gap excitations γE via

1

e
ϱ(x) = −i

∑

i>j

fij(x)γiγj−i
∑

i

γi

∫ ∞

Eg

dEN (E)[fiE(x)γE + h.c.]+above gap, (2.45)

where N (E) is the superconducting density of states at energy E, and we defined the form
factor fab = i[ϕ∗aτzϕb− (τxϕ

∗
b)
∗τzϕa]/2 = iϕ∗aτzϕb = −iϕ∗bτzϕa in terms of the Bogoliubov-

de Gennes spinors ϕa = ϕa(x). Terms in the first sum preserve the qubit parity. Note that
diagonal terms in the first sum do not play a role as γ2i = 1: an isolated Majorana fermion is
completely insensitive to parity preserving noise. The off-diagonal terms in the first sum give
rise to a perturbation

δHpp(t) = λX(t)X + λY (t)Y + λZ(t)Z, (2.46)

where "pp" stands for parity preserving. The coefficients λ ∼ f involve the overlap of two
Majorana bound state wavefunctions and are thus exponentially suppressed in the Majorana
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bound state separation.11 Thus, the qubit is indeed exponentially protected against such parity
preserving terms. Finally, consider the second term in Eq. (2.45). The corresponding perturba-
tion Hamiltonian δHfp ("fp" as it flips qubit parity) couples the Majorana bound states to the
quasiparticle continuum through absorption of a boson from or emission of a boson into the
electrostatic environment. A standard derivation (c.f. App. C.3.4) then gives the evolution of
the qubit density matrix ρ due to leakage into the quasiparticle continuum,

ρ̇ =
∑

i

ki(γiργi − ρ), (2.48)

in terms of the rates

ki =

∫ ∞

Eg

dEN (E)

[∫
dx |fiE(x)|2

]
[(1− nF (E))S(−E) + nF (E)S(E)]. (2.49)

We defined the noise power spectrum via

S(ω)δ(x− x′) = e2
∫

dt eiωt⟨Φ(x, t)Φ(x′, 0)⟩, (2.50)

assuming that the spatial correlations of the electrostatic environment decay fast compared to
the distances between the Majorana bound states, and dropped terms fiE(x)f ∗jE(x) as they are
exponentially suppressed in the Majorana bound state separation. Eq. (2.48) drives the qubit
out of the fixed parity subspace and towards the completely mixed state ρ∞ = 1

4

∑
n12,n34

|n12, n34⟩⟨n12, n34|. However, due to the finite energy cost associated with creating an above
gap quasiparticle the rates ki are strongly suppressed: At low temperatures T ≪ Eg, we can
let nF → 0 in Eq. (2.49). Then, only S(−E < −Eg) enters. The noise power at negative
frequencies measures the ability of the electrostatic environment to emit a boson [195]. For a
non-interacting bath it is given byS(ω < 0) = J(|ω|)nB(|ω|)where J(ω) is the bath spectral
density. The Bose functionnB and hence the rateski become exponentially small ifEg/T ≫ 1.
To conclude, protection against qubit parity preserving processes is due to the exponentially
small overlap of Majorana bound states while qubit parity flipping processes are suppressed
only by the gap to the quasiparticle continuum. To further emphasize the different roles of
parity conserving and non-conserving noise, consider coupling the Majorana bound states to
a gapless fermionic reservoir, e.g. a metallic lead. In fact, the corresponding decay rates can
be obtained from Eq. (2.49) by letting Eg → 0 and

∫
dx |fiE(x)|2S(±E) → 2πν0T 2

i (E),
where Ti(E) is the tunnel matrix element. It is clear that any protection is lost in this case.

11If the overlap is finite, fluctuations of the form δH represent depolarizing noise with rates

kZ = lim
ω→0

S(ω)

∫
dx

{
Re[f12(x)]

2 +Re[f34(x)]
2}, (2.47)

and similar forX,Y . S(ω) is defined in Eq. (2.50). We dropped terms Re[fij ] Re[fkl] with i ̸= k, j ̸= l as such terms
are suppressed like exp{−3L/ξ} as opposed to exp{−L/ξ}, whereL denotes the Majorana bound state separation.
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2.6 Topological semimetals

2.6 Topological semimetals

In the previous sections we encountered topological boundary modes, i.e. gapless boundary
modes guaranteed by bulk topology. Topological semimetals have a gapless bulk but still exhibit
a bulk-boundary correspondence. The paradigmatic example is the Weyl semimetal [56], which
is characterized by isolated band touching points close to the Fermi energy. In three dimensions
such points are generic provided the bands are non-degenerate [196]. This is the case in crystals
that break either time-reversal symmetry or inversion symmetry, or both. Consider one such
point, k ≡ K. For crystal momenta close to K, the Bloch Hamiltonian may be expanded as

H(p) =
∑

ij

pivijσj + u · p+O
(
p2
)
, (2.51)

where we defined p = k −K, σ is a set of Pauli matrices corresponding to a spin or pseudo-
spin degree of freedom, the velocity matrix vij determines the Fermi velocity along the principal
axes, and we introduced the tilt velocity u. Eq. (2.51) is just a tilted and anisotropic version of
the Weyl Hamiltonian [57]. This gives Weyl semimetals their name. The band touching points
are referred to as Weyl points or Weyl nodes. For simplicity we will consider isotropic Weyl
points only, i.e. we set vij = χvδij in terms of the Fermi velocity v and the chirality χ = ±1,
and u = 0. The eigenenergies of the isotropic Weyl point are E±(p) = ±vp correspond-
ing to conduction and valence band eigenstates |±,p⟩. Their spinor structure depends on the
chirality, and is given by

|χ,p⟩ =


 cos θ

2

eiϕ sin θ
2


, |−χ,p⟩ =


 − sin θ

2

eiϕ cos θ
2


, (2.52)

where p, θ and ϕ are defined through p = p(sin θ cosϕ, sin θ sinϕ, cos θ). This corresponds
to a linear spectrum, plotted in Fig. 2.4.

Weyl points have a number of peculiar properties which determine the characteristics of Weyl
semimetals. First, the excitations of the Weyl equation are chiral, p̂ ·σ|±,p⟩ = ±χ. However,
the U(1)-symmetry of chiral fermions is anomalous and does not hold at the quantum level. As
a consequence, a combination of parallel electric and magnetic fields can create or annihilate
chiral charge,

Ṅχ ∝ χE ·B. (2.53)

In order for the total charge to be conserved, one therefore needs fermions of opposite chirality,
so that Ṅ = Ṅ++ Ṅ− = 0. Such anomaly cancellation is a cornerstone of the standard model
of particle physics. In the condensed matter realization of chiral fermions, i.e. in Weyl semimet-
als, this implies that Weyl points come in pairs of opposite chirality which may be located at
different points in the Brillouin zone, a statement that is known as Nielsen-Ninomiya theorem
[58, 59]. It is straightforward to see that this result is topological in nature as it demands that Weyl
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Figure 2.4: Spectrum of an isotropic Weyl point, shown here for pz = 0.

points cannot be removed locally. Indeed, there are several ways to understand the stability of
Weyl points. First, consider adding a weak perturbation V = V0 +V · σ toH(p). This will
simply shift the location of the band touching point to K′ = K−V as all Pauli matrices that
could open a gap are already in use. A better argument that reveals the connection to topology
directly is in terms of the Berry curvature. The latter is defined as

B±i (p) = iεijk∂pj⟨±,p|∂pk |±,p⟩. (2.54)

Straightforward evaluation for a Weyl point shows that the latter are monopoles of Berry cur-
vature in momentum space,

B± = ±χ p

2p3
. (2.55)

Importantly, integration of the Berry curvature over a closed two-dimensional surface gives 2π
times an integer, the so called Chern number. Choosing a surface that encloses a Weyl point
gives this integer as χ where we focused on the conduction band for concreteness. But since
integers cannot be changed smoothly this implies that a Weyl point cannot be removed unless
another Weyl point of chirality−χ enters the region enclosed by the surface we consider. Upon
choosing a very small region it becomes clear that Weyl points can only annihilate in pairs.

As usual, the bulk topology manifests itself in anomalous boundary states. Here, this state is a
gapless surface mode with sheetlike chiral dispersion. Its Fermi surface is an open arc beginning
and ending at the projections of Weyl points onto the surface Brillouin zone. This is the so called
Fermi arc. To illustrate this, consider the minimal modelH(k) = (k2x−K2)σx+kyσy+kzσz
and a surface with normal ẑ. The surface states have the spectrum

Earc = vky, −K < kx < K. (2.56)
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Figure 2.5: Spectrum of semi-infinite Weyl semimetal with minimal number of Weyl points in the surface Brillouin
zone. The surface states are localized to the surface in the z-direction but extended states in the direc-
tions parallel to the surface. Their energies thus are functions in the surface Brillouin zone. The sheet of
surface state energies (red) connects the linear spectra of the two Weyl points. Cuts through the (bulk)
Brillouin zone at kx between the two Weyl points are associated with a Chern numberC = 1 implying
a zero energy surface state at that kx, while cuts at kx not between the Weyl points haveC = 0 and no
associated topological zero energy surface state.

and velocity varc = vŷ. This situation is depicted in Fig. 2.5. A topological argument for the
existence of the Fermi arc is as follows. Consider a cut through the Brillouin zone at kx ∈
[−K,K]. This is a two-dimensional closed surface and thus has a Chern number associated
with it. As the Weyl points are monopoles, that is sources and sinks of Berry flux, the periodicity
of the Brillouin zone implies that there needs to be net flux from one Weyl point to the other.
This implies that there is flux through the cut and hence a non-zero Chern number. The two-
dimensional cut is thus a Chern insulator and associated with a chiral zero energy state. This
demands that there is a zero-energy state at some ky localized at the surface with normal ẑ. The
boundary modes of many such slices form the Fermi arc. Here, we assumed the Chern number
to be nonzero for kx ∈ [−K,K]. There is also the possibility of nonzero Chern number for
kx ∈ [−π

a
,−K] and kx ∈ [K, π

a
], where a is the lattice constant. In this case, the Fermi arc

crosses the Brillouin zone boundary.
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3 Quantum Yu-Shiba-Rusinov chains

The results of this chapter have been published in Refs. [I, II, III].
Dilute chains of magnetic adatoms on superconductors have been proposed as a possible set-

ting for topological superconductivity [38, 39, 49, 124, 197, 198], complementing the frequently
studied densely-packed chains [30, 31, 199–202]. While the latter are dominated by direct hy-
bridization of adatom d orbitals [203, 204], the former couple adatoms only indirectly via the
substrate provided that the adatoms are spaced close enough that their YSR states [5–7, 18]
overlap. Theoretical models assume that the RKKY interaction, possibly aided by magnetic
anisotropy, induce ordered magnetic textures, which are then described as chains of classical
spins [38, 39, 103–110].

Contrasting with classical spin models, observations of Kondo resonances and discrete spin
excitations imply that individual adatom spins behave quantum mechanically, both on normal
and on superconducting substrates [11, 111, 115, 116]. Here, we show that the quantum nature
of adatom spins makes dilute chains an intriguing experimental platform beyond Majorana
physics, displaying rich correlated-electron physics as reflected in qualitatively different phase
diagrams and excitation spectra. This is a consequence of quantum phase transitions [121, 205],
which change the effective spin due to screening by bound quasiparticles [11, 12, 206], a phe-
nomenon specific to quantum spins and absent for classical spins.

We find that signatures of the quantum spin nature are directly observable in local excitation
spectra of adatom chains, as probed for instance by scanning tunneling spectroscopy. Moreover,
the topological superconducting phase exhibiting Majorana states can be dramatically reduced
in parameter space compared to classical models. The effective spin as well as magnitude and
sign of the RKKY coupling between impurity spins can in principle be adjusted. In real ma-
terials, magnetic anisotropy, Dzyaloshinskii-Moriya (DM) interactions, and spin-orbit coupled
substrate electrons further enrich the physics of these quantum spin chains.

The correlated-electron physics of dilute adatom chains is due to correlated spin-fermion dy-
namics, which we find to be described by an extension of the t − J model [207], admitting
topological superconductivity for ferromagnetic and spin-charge separation for antiferromag-
netic RKKY coupling. For a theoretical treatment of quantum chains, we project out the quasi-
particle continuum of the superconductor in the limit of a large pairing gap and retain only the
subgap YSR excitations induced by the magnetic adatoms. The resulting zero bandwidth model
includes a single superconducting site per adatom (and conduction-electron channel), so that
Kondo renormalizations must be accounted for separately. Despite its simplicity, the model
qualitatively reproduces [121] phase diagrams and excitation spectra of individual higher-spin

29



3 Quantum Yu-Shiba-Rusinov chains

impurities subject to single-ion anisotropy [186] and spin-1
2

dimers [122, 208] obtained from the
numerical renormalization group.

This chapter is organized as follows. Section 3.1 gives a sketched derivation of the zero band-
width model and discusses how YSR states manifest within this model. In particular, it is shown
that the zero bandwidth model can capture the low energy physics of quantum YSR states, i.e.
those arising from quantum impurity spins. In order to illustrate the difference in screening
behavior of quantum and classical spins, a dimer of two magnetic adatoms with spin-1

2
is dis-

cussed within the zero bandwidth model. In Sec. 3.2 a chain of spin-1
2

adatoms is considered
and analyzed by means of a low energy projection. The phase diagram is obtained via exact
diagonalization, and the phases are analyzed by numerical and analytical techniques. The chap-
ter is concluded in Sec. 3.3. Note that we focus on spin-1

2
adatoms throughout as in their case

quantum effects are most pronounced.

3.1 Yu-Shiba-Rusinov states in the zero bandwidth model

The starting point of our analysis of quantum Yu-Shiba-Rusinov states is again the Hamilto-
nian [c.f. Eq. (2.16)]

H = HBCS +
∑

σσ′

ψ†σ(0)
[
V δσσ′ + S · K̂ · sσσ′

]
ψσ′(0), (3.1)

describing a spinful local scatterer embedded into a superconductor. Here, we generalized to
anisotropic exchange interaction K̂ = diag(K⊥, K⊥, Kz). We assume antiferromagnetic Kz ,
K⊥ > 0 as ferromagnetic exchange is irrelevant in the renormalization sense. In Sec. 2.3.2
we proceeded by treating the impurity spin as classical. Here, we instead aim to simplify the
superconductor by adopting a zero bandwidth approximation. We sketch the derivation of the
zero bandwidth model in the following section.

3.1.1 Motivation of the zero bandwidth model

Consider a lattice model of the BCS superconductor described by fermion operators ci,σ, where
i labels lattice sites and σ spin. The impurity spin with S = 1

2
is coupled only to a single site,

say i = 0. Then one may formally integrate out all sites except for the site i = 0, yielding an
effective action

S = Simp[S] +

∫ β

0

dτ ψ̄(τ)
[
∂τ + V τz +∆τx + S(τ) · K̂ · s

]
ψ(τ)

+

∫ β

0

dτ

∫ β

0

dτ ′ ψ̄(τ)ϑ∗0iGij(τ − τ ′)ϑj0ψ(τ ′), (3.2)
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where ψ is the four dimensional (Grassmann) Nambu spinor associated with ci=0,σ, G is the
Nambu Green function of the lattice after removing site i = 0, and ϑji is the hopping ma-
trix between the site i = 0 and other lattice sites j ̸= 0. The function S(τ) takes values on
the sphere with radiusS, representing the impurity spin within the coherent-state path integral
formulation [170]. It satisfies the boundary condition S(0) = S(β). The classical approxima-
tion would amount to dropping the imaginary time dependence of S. In Fourier space, the
fermionic part of the action reads

− 1

β

∑

mn

ψ̄m

{
[iωm − V τz −∆τx − ϑ∗0iGij(iωm)ϑj0]βδmn − Sm−n · K̂ · s

}
ψn. (3.3)

Here, we will be interested in the subgap spectrum with energiesE ≪ ∆. We can thus neglect
the frequency dependence ofG such that we can reconstruct a Hamiltonian (dropping the label
i = 0)

H = ∆̃
(
c†↑c
†
↓ + h.c.

)
+
∑

σσ′

c†σ

(
Ṽ δσσ′ + S · K̂ · sσσ′

)
cσ′ (3.4)

in terms of renormalized parameters ∆̃ and Ṽ . Upon dropping all frequency dependence of G,
we have implicitly neglected the renormalization of the Kondo interaction K̂ . Thus, K̂ should
be interpreted as the effective low energy exchange coupling K̂eff = K̂(∆). The relationship
between ∆̃, Ṽ and K̂eff and microscopic parameters is in general complicated. Hence we treat
them as phenomenological parameters. To avoid cluttered notation we will drop the tilde and
subscript below. The model Eq. (3.4) is simply an impurity spin coupled to a single site su-
perconductor. In the quantum dot community this is known as a zero bandwidth model [209].
The zero bandwidth model works particularly for subgap excitations with energies much below
∆. We will make this more precise at the end of the following section.

3.1.2 Spectrum of the zero bandwidth model

Before we discuss the spectrum of the zero bandwidth model, we want to briefly recap some
findings on quantum and classical impurity spins in a superconductor (c.f. Secs. 2.3.1 and
2.3.2). For a quantum impurity spin with S = 1

2
, as the exchange coupling (Kondo tem-

perature) is varied the system undergoes a quantum phase transition accompanied by a change
of ground state multiplicity, i.e. a transition between a fully paired even parity doublet and an
odd parity singlet. This can be interpreted as a change in occupation of a local bound state,
the so called Yu-Shiba-Rusinov state, which if occupied, forms a singlet with the impurity spin.
For a classical impurity spin, the system also undergoes a quantum phase transition at which
the occupation of the YSR state changes. However, in this case there is no change in ground
state multiplicity. The change in ground state multiplicity has important ramifications for the
screening properties of the impurity spin as well as the effective theory describing the subgap
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3 Quantum Yu-Shiba-Rusinov chains

fermions. We will explore these ramifications by exploiting the simplicity of the zero bandwidth
model and the fact that it can treat both quantum and classical spins on even footing.

To this end, we discuss the spectrum of Eq. (3.4) in detail. We make use of the conservation
of the fermion parity

p = (−1)
∑

σ c
†
σcσ . (3.5)

as well as conservation of the z-component of the total spin

Stot = S+
∑

σσ′

c†σsσσ′cσ′ . (3.6)

The lowest-energy states for even fermion parity are given by

|±⟩ = |⇑ / ⇓⟩ ⊗ |BCS⟩. (3.7)

They are simply a direct product of a free impurity spin |⇑ / ⇓⟩ and the paired state

|BCS⟩ = (u+ vc†↓c
†
↑)|vac⟩, (3.8)

and have energy
Ee = V −

√
∆2 + V 2, (3.9)

which is independent of the exchange coupling K̂ . Here, |vac⟩ is the vacuum of the cσ fermion
and we defined the amplitudes

u2 =
1

2

(
1 +

V√
∆2 + V 2

)
, v2 =

1

2

(
1− V√

∆2 + V 2

)
. (3.10)

The electron and hole amplitudes are in general different as a result of the potential scatteringV
by the impurity. The discrete excited states |⇑ / ⇓⟩ ⊗

∣∣BCS
〉

with
∣∣BCS

〉
= (v − uc†↓c†↑)|vac⟩

and energy V +
√
∆2 + V 2 replace the quasiparticle continuum of a finite bandwidth model

and are thus unphysical. Excitations involving these states have to be excluded by choosing the
correct hierarchy of energy scales. We will specify this below.

For odd fermion parity, the lowest-energy state binds a quasiparticle and has energy

Eo = V − 1

4
(Kz + 2K⊥) (3.11)

independent of the pairing strength ∆. For purely longitudinal (Ising-like) exchange coupling,
the state is a doublet

|⇑, ↓⟩ = |⇑⟩ ⊗ |↓⟩ and |⇓, ↑⟩ = |⇓⟩ ⊗ |↑⟩. (3.12)
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For nonzero transverse coupling, there is a unique singlet ground state

|s⟩ = 1√
2
(|⇑, ↓⟩ − |⇓, ↑⟩) (3.13)

corresponding to a screened adatom spin. We also define the even superposition

|t⟩ = 1√
2
(|⇑, ↓⟩+ |⇓, ↑⟩), (3.14)

which has energy V − 1
4
(Kz − 2K⊥) and can not be neglected if K⊥ is small. The singly

occupied fermion states

|σ⟩ = c†σ|vac⟩ = γ†σ|BCS⟩, (3.15)

can be either viewed as excited states with one Bogoliubov quasiparticle or as single-electron
states unaffected by pairing. Here, we defined the Bogoliubov quasiparticle operators

γ†↑ = uc†↑ + vc↓, γ†↓ = uc†↓ − vc↑. (3.16)

The ferromagnetic states |⇑, ↑⟩ and |⇓, ↓⟩ have energies V + 1
4
Kz . These will also overlap with

the quasiparticle continuum (as we will be interested in exchange couplings of the order of the
gap, i.e. Kz ∼ ∆) and hence excitations involving these states should be avoided. It will prove
useful to express the Hamiltonian of the zero bandwidth model in terms of the Bogoliubov
quasiparticle operators γσ,

H = V +
√
∆2 + V 2

(∑

σ

γ†σγσ − 1

)
+
∑

σσ′

S · K̂ · sσσ′γ†σγσ′ . (3.17)

In this form it is manifestly the quasiparticle operators by which the impurity spin is screened.
They are the counterparts to the YSR operator defined in Eq. (2.26) of the classical treatment.

The spectrum of the zero bandwidth model is depicted in Fig. 3.1. The YSR excitation energy
is the energy difference between the odd and even parity ground state energies,

EYSR = Eo − Ee =
√
∆2 + V 2 − 1

4
(Kz + 2K⊥). (3.18)

In order to eliminate transitions to the quasiparticle continuum which are not captured in the
zero bandwidth approach, we consider deep YSR states, i.e.

EYSR ≪ ∆ (3.19)

and focus on energiesE ∼ EYSR.
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3 Quantum Yu-Shiba-Rusinov chains

Figure 3.1: Spectrum of the zero bandwidth model given in Eq. (3.4). The zero bandwidth model captures the low
energy spectrum of both quantum and classical impurity spins in superconductors: For K⊥ ∼ ∆ ≫
EYSR, there are only three low energy states as the even superposition |t⟩ lies far from the gap center
(green solid line). This situation corresponds to a quantum impurity spin. However, ifK⊥ ≪ EYSR,
this state (green dashed line) is almost degenerate with the singlet |s⟩ , corresponding to the classical
situation. The zero bandwidth model also has excited states with energiesE ∼ ∆ (orange lines). These
correspond to ferromagnetic spin excitations and an above gap resonance induced by the impurity. In
particular these states should couple resonantly to the quasiparticle continuum which is absent in the
zero bandwidth model.

For small exchange couplingK = max(Kz, K⊥) ≪ ∆ the overall ground state is the dou-
blet |±⟩, regardless of K⊥. This should be interpreted as an unoccupied Yu-Shiba-Rusinov
bound state with unscreened impurity spin. For large K ≫ ∆, the overall ground state is, de-
pending onK⊥, either the odd parity doublet |⇑, ↓⟩, |⇓, ↑⟩, or the singlet |s⟩. This corresponds
to an occupied Yu-Shiba-Rusinov bound state. ForK⊥ ∼ ∆, this bound state screens the im-
purity spin into a singlet and the low energy structure is the same as in the quantum case, as was
described in Sec. 2.3.1. Thus, the K⊥ ∼ ∆ case corresponds to the quantum YSR case. If in-
steadK⊥ becomes comparable to the YSR excitation energyEYSR there are two odd parity low
energy states instead. ForK⊥ ≪ EYSR, these states will be almost degenerate, reproducing the
main features of the classical spin approximation. Note however, that, in contrast to our calcu-
lation in Sec. 2.3, here the classical model encompasses two time reversed copies corresponding
to opposite impurity spin configurations. Furthermore, at finiteK⊥ spin flip processes between
the adatom spin and itinerant electrons lead to a finite lifetime of the impurity spin.

The YSR quantum phase transition occurs atEYSR = 0. Importantly, in the (strictly) classi-
cal caseK⊥ = 0, this transition between the even- and odd-fermion-parity ground states leaves
the impurity-spin state unaffected, e.g.

|⇑⟩ ⊗ |BCS⟩ ←→ |⇑⟩ ⊗ |↓⟩. (3.20)

and similarly for impurity spin |⇓⟩. In other words, the ground state multiplicity is unaffected
by the quantum phase transition. Consequently, there is no screening of the impurity spin
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in the strong-coup-ling phase. Conversely, in the quantum case K⊥ ≫ EYSR, the impurity
spin state changes qualitatively at the quantum phase transition and the ground state multi-
plicity transits between a doublet and a singlet configuration. In particular, the impurity spin is
screened in the strong-coupling phase, where it no longer points in any preferred direction. The
difference in screening behavior will become explicit once the RKKY coupling of two impurity
spins is taken into account. This will be analyzed in greater detail in the next section for the
simple case of an adatom dimer.

The zero-bandwidth approximation fails to account for the quasiparticle continuum and can
thus only be expected to describe deep subgap states. We account for this limitation by assuming
large ∆, K = max(Kz, K⊥), and V in such a way that the YSR energyEYSR (and inter-YSR
couplings, see below) remain small by comparison. In particular, this assures thatEYSR is well
within the gap. We note that these assumptions are consistent with typical experimental situa-
tions. In particular, one expects the dimer couplings to decrease rapidly with adatom distance.
Thus, our considerations apply as long as the adatoms are not too closely spaced. Moreover, in
many cases, a finite value of the gap largely limits the number of excited states, which can still be
resolved as subgap excitations. The elimination of high energy operators can be implemented
formally by projecting onto the low energy subgap states. In the quantum case K⊥ = Kz the
low energy effective theory can then be reformulated in terms of t − J - fermions. This will
prove useful once chains of adatoms are considered.

3.1.3 Quantum Yu-Shiba-Rusinov dimer

Prior to our discussion of quantum YSR chains, we here consider the shortest chain, the dimer.
This serves to illustrate the difference in screening behavior of classical and quantum spins, and
the ramifications for the phase diagram.

Within the zero-bandwidth approach, the YSR dimer is given by the following Hamiltonian,

H =
2∑

j=1

{
∆(c†j,↑c

†
j,↓ + h.c.) +

∑

σσ′

c†j,σ[V δσσ′ + Sj · K̂ · sσσ′ ]cj,σ′

}

− t
∑

σ

[
c†1,σc2,σ + h.c.

]
+ S1 · Ĵ · S2. (3.21)

Here, the adatom spins Sj (j = 1, 2) are coupled to separate superconducting sites (cj,σ). Hy-
bridization of the YSR states due to their orbital overlap is incorporated through intersite hop-
ping of strength t. The effective RKKY interaction Ĵ = diag(J⊥, J⊥, Jz) is incorporated ex-
plicitly as it is mediated by the quasiparticle continuum, which is not accounted for within the
zero-bandwidth model. Due to the oscillatory dependence of the RKKY interaction, strength
and sign of Ĵ depend on the distance between the adatoms.
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3 Quantum Yu-Shiba-Rusinov chains

Figure 3.2: Phase diagrams of a spin- 12 YSR dimer as a function of RKKY coupling Jz and YSR energy EYSR
for different anisotropies of the exchange coupling K⊥/Kz . The anisotropy of the RKKY interac-
tion is chosen to match the exchange anistropy, K⊥/Kz = J⊥/Jz . Phase diagrams are obtained
from the zero-bandwidth Hamiltonian in Eq. (3.21). The color scale (see scale bar) indicates the ex-
pectation value of the number of bound quasiparticles F as defined in Eq. (3.24). Black dashed lines
indicate phase boundaries, at which the spin and/or fermion parity quantum numbers of the ground
state change discontinuously. (a) Ising exchange with nonzero Kz and K⊥ = 0, corresponding to a
classical-spin model of the adatom. Phase boundaries and crossovers essentially depend only on the sign
of the RKKY coupling, reflecting the absence of screening of the adatom spin in the classical model.
(b) Heisenberg exchange K = K⊥ = Kz . Phase boundaries and crossovers depend on the magni-
tude of the RKKY coupling. This phase diagram qualitatively reproduces the results of NRG simula-
tions in Ref. [122]. (c) Dominant longitudinal and (d) dominant transverse anisotropic couplings as
indicated in the panel. The singly-screened phase (white) reduces in extent as K⊥/Kz increases. Pa-
rameters: (Kz,K⊥) = 100t(cos θ, sin θ), (a) θ = 0, (b) θ = π

4 , (c) θ = 0.05, (d) θ = π
2 − 0.1,

V = 0.9(Kz + 2K⊥)/4. Figure from [III].

To characterize the phases of the model in Eq. (3.21), we exploit the symmetries of the system.
The superconducting pairing breaks particle-number conservation, but conserves the overall
fermion parity

ptot = (−1)
∑

σ(c
†
1σc1σ+c

†
2σc2σ). (3.22)

Provided that the model retains spin rotation symmetry about the z-axis, the projectionSztot of
the total spin

Stot = S1 + S2 +
∑

σσ′

∑

j

c†j,σsσσ′cj,σ′ (3.23)

is also a conserved quantity. For the special case of Heisenberg exchange and RKKY interac-
tions, the model has full spin rotation symmetry and we can further classify phases according
to Stot.

The quantum numbersPtot and Sztot can be used to classify the model’s phases. We also find
it useful to consider the expectation value of

F =
∑

j=1,2

(
c†j↑cj↑ − c†j↓cj↓

)2
, (3.24)

which is a proxy for the number of bound quasiparticles. It should be noted, however, that for
nonzero YSR hybridization t, this is not a conserved quantum number due to the presence of
pairing correlations in the model. While ground states with different quantum numbers define

36



3.1 Yu-Shiba-Rusinov states in the zero bandwidth model

Figure 3.3: Illustrative level scheme of spin- 12 dimers with isotropic exchange and ferromagnetic RKKY coupling
(J < 0). The low-energy spectrum of the uncoupled dimer (left) is labeled by the fermion parities Pj

and effective spins Seff,j of the monomers as (P1, Seff,1)(P2, Seff,2). For EYSR < 0 the local singlet
state (F ≃ 2, blue) is the ground state. Nonzero RKKY interaction (center) couples the monomer
states into states of total parity and spin (Ptot, Stot). This affects only the unscreened state (F ≃ 0,
red), which splits into molecular singlet and triplet. For sufficiently large |J |, the molecular triplet
becomes the ground state. Finally, hybridization of the YSR states splits the odd-fermion-parity states
(F = 1, black) into symmetric and antisymmetric states. For sufficiently large hybridization t̃ this leads
to the singly-screened ground state. Figure from [III].

phases of the quantum YSR dimer, we refer to the unscreened (F ≃ 0) or doubly-screened
(F ≃ 2) parts of the phase diagram as regions.

Figure 3.2 (a) and (b) show dimer phase diagrams as a function of the RKKY interaction Jz
and the YSR energy EYSR for Ising coupling (classical spins) and Heisenberg coupling (quan-
tum spins), respectively. The most striking difference is that phase boundaries and crossovers
in the classical phase diagram [Fig. 3.2 (a)] essentially depend only on the sign, but not on the
magnitude of the RKKY interaction J . In contrast, the magnitude of the RKKY coupling is an
important parameter in the quantum phase diagram [Fig. 3.2 (b)].

This difference arises as follows. The phase boundaries correspond to lines in the phase dia-
gram, along which states with different total spin are degenerate. For a classical impurity spin,
the quantum phase transition does not affect the impurity-spin state. Consequently, it leaves
the RKKY energy of the dimer unchanged, which will then cancel from the energy balance gov-
erning phase boundaries and crossovers. In contrast, for quantum spins, the impurity spin is
fully screened in the strong-coupling state. Thus, only the unscreened phases benefit from the
RKKY interaction, while the RKKY interaction energy vanishes for the phases in which one or

37



3 Quantum Yu-Shiba-Rusinov chains

both spins are screened. Now, the RKKY interaction enters into the energy balance governing
phase boundaries and crossovers.

The phase diagram of a quantum spin-1
2

dimer with Heisenberg interactions was also com-
puted in Ref. [122], using the numerical renormalization group (NRG) including the full quasi-
particle continuum of the substrate superconductor. Remarkably, the phase diagram of the
zero-bandwidth model of Eq. (3.21) in Fig. 3.2 (b) qualitatively reproduces the NRG phase di-
agram. We now discuss the phase diagram in Fig. 3.2 (b) for isotropic (Heisenberg) exchange
and RKKY coupling in more detail. For sufficiently large EYSR, both adatom spins are un-
screened (F ≃ 0). For ferromagnetic RKKY coupling (J < 0), the ground state is a molecular
triplet, e.g., |+⟩1 ⊗ |+⟩2, with quantum numbers (Ptot, Stot) = (+, 1). For antiferromag-
netic RKKY interactions (J > 0), the unscreened impurity spins couple into a molecular
singlet |+⟩1 ⊗ |−⟩2 − |−⟩1 ⊗ |+⟩2, so that (Ptot, Stot) = (+, 0). For large and negative
EYSR, the adatom spins are individually screened (F ≃ 2) and the dimer has a local-singlet
ground state, |s⟩1⊗|s⟩2. This state also has (Ptot, Stot) = (+, 0), so that the molecular singlet
evolves continuously into the local singlet phase as EYSR is reduced. The absence of a sharp
phase transition between these ground states reflects that the pairing term in the model in Eq.
(3.21) breaks particle-number conservation. At large and negative RKKY coupling, there is a
direct transition between the molecular triplet and the local-singlet phases, with a correspond-
ing change in Stot. For weak RKKY coupling and small |EYSR|, there is an odd-fermion-parity
phase with half-integer total spin, (Ptot, Stot) = (−, 1

2
). The doublet ground state of this

phase, |s⟩1⊗ |±⟩2 + |±⟩1⊗ |s⟩2, emerges when the hybridization splitting of the dimer states
with one screened adatom is large enough to offset the cost in YSR energy.

Figure 3.3 shows level diagrams for the RKKY and hybridization splittings, illustrating the
mechanisms governing the phase diagram in Fig. 3.2 (b). While the ferromagnetic RKKY cou-
pling favors the molecular triplet, a sufficiently large YSR hybridization t can lower the energy
of the doublet with half-integer spin to become the ground state. Note that we use 2t̃ to denote
the actual energy splitting of the singly-screened states due to the hybridization t.

The phase diagrams in Fig. 3.2 (c) and (d) for, respectively, predominantly longitudinal and
transverse exchange and RKKY couplings deviate qualitatively from the isotropic Heisenberg
case. Here, we take both the exchange coupling K̂ and the RKKY interaction Ĵ to have the same
anisotropy (i.e.,K⊥/Kz = J⊥/Jz). For dominant longitudinal coupling,K⊥ ≪ Kz , Fig. 3.2
(c), the doublet phase continues to form a stripe as in the Ising case, albeit with boundaries that
depend on the RKKY coupling. Beyond a critical value of K⊥, the doublet phase forms an
island as in the Heisenberg case. We note that classical behavior with phase boundaries approx-
imately independent of J is recovered only forK⊥ ≪ J, t. For dominant transverse couplings,
K⊥ ≫ Kz , Fig. 3.2 (d), the doublet phase remains limited to small RKKY couplings as in the
isotropic Heisenberg case.
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3.2 Quantum Yu-Shiba-Rusinov chains in the zero bandwidth model

Figure 3.4: Scanning tunneling micrograph of a chain of Fe adatoms on a NbSe2 substrate. Data courtesy of Eva
Liebhaber.

3.2 Quantum Yu-Shiba-Rusinov chains in the zero bandwidth
model

We now consider chains of magnetic adatoms. Fig. 3.4 shows a scanning tunneling micrograph
of such a system, hosting YSR states at each adatom. In Sec. 2.3.3 we have discussed a chain of
classical YSR impurities and found that the overlapping YSR states form a spin polarized one
dimensional superconductor inside the host gap. Here, we will focus on the changes that arise
if the quantum nature of the adatom spin is taken into account. In the previous section we
have seen that already for a dimer, the quantum nature leads to stark differences in the phase
diagram. This may be traced back to the change in local ground state multiplicity associated
with binding or unbinding a quasiparticle. In particular, this implies that the adatom spin is
completely screened to other spins if a quasiparticle is locally present. We will now show that
this may be rephrased as an extension to the t− J model.

The extension of the zero bandwidth model Eq. (3.21) to many sites is straightforward. The
Hamiltonian is now

H =
∑

j

[
∆
(
c†j,↑c

†
j,↓ + h.c.

)
+
∑

σσ′

c†j,σ

(
V δσσ′ + Sj · K̂ · sσσ′

)
cj,σ′

− t
∑

σ

(
c†j,σcj+1,σ + h.c.

)
+ Sj+1 · Ĵ · Sj+1

]
, (3.25)

where j ∈ {1, ..., N} enumerates the adatoms along the chain. We consider both open and
closed boundary conditions. In Sec. 2.3.3 we had seen that RKKY coupling and hopping is
often long-range. Here, we consider only nearest-neighbor couplings to avoid an excessively
large parameter space. We note that the extension of the model as well as the subsequent discus-
sions to long-range couplings is straightforward. Expressing the fermions in terms of the local
quasiparticle operators γj,σ = ucj,σ + σvc†j,σ̄, the Hamiltonian instead takes the form

H =
∑

j

[
V +
√
∆2 + V 2

∑

σ

(γ†σγσ − 1) +
∑

σσ′

S · K̂ · sσσ′γ†σγσ′ + Sj+1 · Ĵ · Sj+1

− 2t̃
∑

σ

(
γ†j,σγj+1,σ + h.c.

)
+ 2∆̃

(
γ†j,↑γ

†
j+1,↓ − γ†j,↓γ†j+1,↑ + h.c.

)]
, (3.26)
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3 Quantum Yu-Shiba-Rusinov chains

Figure 3.5: Illustration of effective hopping (top row) and pairing processes (bottom row). Impurity spins are in-
dicated by double arrows and sit on adatoms which are represented by blue balls. c-fermion spins are
indicated by single arrows. Dashed ellipses correspond to spin singlet configurations with blue cor-
responding to the fermion-only singlet |BCS⟩, red corresponding to the impurity-fermion singlet |s⟩
and pink corresponding to the impurity-only singlet |⇑⟩j |⇓⟩j+1−|⇓⟩j |⇑⟩j+1. Top row: spin conserv-
ing tunneling tmay move screening electron between adjacent sites, giving rise to an effective hopping
of amplitude t̃ for unscreened sites. Bottom row: similarly, two adjacent screened sites can become
unscreened by tunneling an electron between them. Including the opposite-spin process it may be
seen that the new configuration is again an overall singlet. Hence, this gives rise to an effective nearest-
neighbor singlet pairing of amplitude ∆̃ for unscreened sites.

where we defined the effective hopping and pairing amplitudes

t̃ =
t

2
(u2 − v2) = tV

2
√
∆2 + V 2

, ∆̃ = tuv =
t∆

2
√
∆2 + V 2

. (3.27)

Thus, the screening quasiparticlesγj,σ can hop between neighboring sites, or annihilate in pairs.
The mechanism for these processes is illustrated in Fig. 3.5.

We will focus here on the quantum case K⊥ = Kz . As described in Sec. 3.1.2 the Hamilto-
nian in Eq. (3.25) has three low-energy states for each site: the BCS-paired doublet

|±⟩j = |⇑ / ⇓⟩j ⊗ |BCS⟩j, (3.28)

corresponding to an unscreened impurity spin and the singlet

|s⟩j =
1√
2

(
|⇑⟩j ⊗ |↓⟩j − |⇓⟩j ⊗ |↑⟩j

)
, (3.29)

corresponding to a screened impurity spin, separated by an energyEYSR =
√
∆2 + V 2− 3

4
K .

This resembles the structure of a SU(2) symmetric local fermionic orbital with infinite on-site
repulsion - the singlet has no spin and hence corresponds to the empty orbital whereas the dou-
blet carries spin and hence corresponds to the singly occupied orbital. The infinite onsite po-
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3.2 Quantum Yu-Shiba-Rusinov chains in the zero bandwidth model

tential eliminates the doubly occupied orbital as it does not have a counterpart in the local low
energy spectrum.

The fermionic operators dj,σ for this orbital are introduced as follows. The singlet involves
the singly-occupied states |σ⟩j = c†j,σ|vac⟩j , which can also be obtained from the BCS ground
state using the Bogoliubov operators γσ through |σ⟩j = γ†j,σ|BCS⟩j . The free-spin states (in-
volving |BCS⟩ as the electronic state) are thus obtained from the singlet by annihilating a quasi-
particle, and the new fermion creation operators d†j,σ essentially correspond to the quasiparticle
annihilation operators γj,σ̄. Taking into account the detailed singlet state, we find

γj,σ = ucj,σ + σvc†j,σ̄ ∼ σ
(−1)j√

2
d†j,σ̄. (3.30)

Here, we use∼ rather than an equality since strictly speaking, the two operators are equivalent
only when projecting to the low-energy subspace.

Fermions with forbidden double occupation due to infinite onsite repulsion feature in the
famous t− J model [210] and we hence refer to them as t− J fermions (they do not satisfy the
standard fermionic algebra when the constraint is taken into account). Including the effective
hopping and pairing as well as the RKKY interaction, we obtain an effective t − J model de-
scribing the subgap structure of the quantum YSR chain. In the following section we will make
the mapping to the effective t − J model precise. We will then proceed to present numerical
results for the phase diagram and excitation spectra of this model.

3.2.1 Low energy projection and mapping to effective t− J model

In this section, we present details of the mapping from the original model in Eq. (3.25) to the
extended t− J model. We will first discuss the mapping for a single impurity and then extend
it to a chain of impurities.

To this end consider a single site of the chain and define the projector onto the low-energy
subspace through

Pj = PBCSj + Psj , with PBCSj =
∑

±
|±⟩j⟨±|j, Psj = |s⟩j⟨s|j. (3.31)

The low-energy projected local Hamiltonian is then

PjHjPj = −EYSRPBCSj +

(
V − 3

4
K

)
Pj. (3.32)

We now analyze the action of the projected Bogoliubov operators Pjγj,σPj and Pjγ†j,σPj on
the low-energy subspace. Up to normalization, Pjγj,σPj|s⟩j creates the state |± = σ̄⟩j . Con-
versely, Pjγ†j,σPj|±⟩ gives back the singlet if σ = ± (the triplet component is projected out)
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3 Quantum Yu-Shiba-Rusinov chains

Figure 3.6: Correspondence between the local Hilbert spaces for the original zero bandwidth model (Eq. (3.4),
black) and the t − J model (Eq. (3.35), green). There is a direct correspondence between the low-
energy states and the fermionic operators acting thereon of both models (indicated by blue dashed box),
but no such correspondence between the high-energy states (crossed-out) that are effectively projected
out in the limit considered. The correspondence of the low-energy states is guided by matching spin
multiplicities. While the relation γσ ∼ d†σ̄ has aspects of a particle-hole transformation, the fermion
parities are different in the two models. The singlet state of the original model (odd fermion parity)
corresponds to the vacuum state (even fermion parity) in the t − J representation. Thus, the doubly
occupied states of either model have no corresponding states in the other, see the axes with the respective
fermion numbers.

and 0 if σ = ∓. Similarly, acting with γ†j,σ on |±⟩j gives
∣∣BCS

〉
j

which vanishes upon projec-
tion. This motivates the definition of new quasifermionic creation operators

Γ†j,σ = σ
√
2Pjγj,σ̄Pj, (3.33)

which create the states |± = σ⟩ from |s⟩. They satisfy

Γ†j,σΓ
†
j,σ = 0 = Γj,σΓj,σ. (3.34)

Due to the forbidden double occupation (i.e. the elimination of the
∣∣BCS

〉
state), these are not

proper fermions. In fact, they satisfy the same algebra as the t − J fermions. To see this, con-
sider a local Hamiltonian with forbidden double occupation constraint implemented through
infinite onsite potential U →∞,

Ht−J,j = V − 3

4
K − EYSR

∑

σ

d†j,σdj,σ + Ud†j,↑dj,↑d
†
j,↓dj,↓. (3.35)
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3.2 Quantum Yu-Shiba-Rusinov chains in the zero bandwidth model

Here, the regular fermionic operators di,σ (d†i,σ) annihilate (create) a fermion at site iwith spin
σ. The local low energy spectrum formed by thed-fermions is given by the (spin singlet) vacuum
|vac⟩t−J,j with energy V − 3

4
K = Eo and the doublet |σ⟩t−J,j = d†j,σ|vac⟩t−J,j with energy

V − 3
4
K − EYSR = Ee. The doubly occupied state |↓↑⟩t−J,j is eliminated by the projector

Pt−J,j = |vac⟩t−J,j⟨vac|t−J,j +
∑

σ

|σ⟩t−J,j⟨σ|t−J,j. (3.36)

In Fig. 3.6 we illustrate the correspondence of the low energy Hilbert spaces of the single site
t− J model and the zero bandwidth model. Note that there is no such correspondence for the
high energy states in both models. In App. A.1 we show explicitly that the low energy projected
t− J fermions

D†j,σ = Pt−J,jd
†
j,σPt−J,j (3.37)

satisfy the same local algebra as the low energy quasifermions of the original model,Γ†j,σ. Taking
into account also the flipped local fermion parity, we arrive at the correspondence given in Eq.
(3.30).

So far this discussion may seem abstract and without apparent merit. However, note that the
low energy projected impurity spin operators are now also expressed in terms of d-fermions (c.f.
App. A.1). In particular, we have the correspondence

Sj ∼
∑

σσ′

sσσ′d†j,σdj,σ′ . (3.38)

Here, by the symbol∼we again denote equivalence at the low energy projected level. Thus, the
effective t − J model is expressed in terms of (projected) fermions alone, whereas the original
model had both spins and fermions.

We now implement the local low energy projection at every site by applying the projection

P =
∏

j

Pj, (3.39)

where Pj are the local projectors defined by Eq. (3.31). Applying these operators to the Hamil-
tonian of the chain,PHP , we obtain

P
∑

j

[
− EYSRPj,BCS +

(
V − 3

4
K

)
Pj − t̃

∑

σ

(
Γj,σΓ

†
j+1,σ + h.c.

)

+ ∆̃(−Γj,↓Γj+1,↑ + Γj,↑Γj+1,↓ + h.c.) + PjSjPj · Ĵ · Pj+1Sj+1Pj+1

]
P , (3.40)
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in terms of the projected operators Γj,σ = σ
√
2Pjγ

†
j,σ̄Pj . Expressing the single-site projector

Pj,BCS in terms of the d operators,

Pj,BCS ∼
∑

σ

d†j,σdj,σ ≡
∑

σ

nj,σ, (3.41)

and introducing the shorthand notation

sj ≡
∑

σσ′

sσσ′d†j,σdj,σ′ , (3.42)

to make obvious the spin-spin nature of interactions, we arrive at the effective model,

Ht−J =
∑

j

[
− EYSR

∑

σ

nj,σ + Unj,↑nj,↓ + sj · Ĵ · sj+1

− t̃
∑

σ

(
d†j,σdj+1,σ + h.c.

)
− ∆̃

(
d†j,↑d

†
j+1,↓ − d†j,↓d†j+1,↑ + h.c.

)]
, (3.43)

where U → ∞ and we dropped a constant N
(
V − 3

4
K
)

. The equivalence to the original
model is expressed as

H ∼ Ht−J ⇔ PHP ≡ Pt−JHt−JPt−J , (3.44)

where Pt−J =
∏

j Pt−J,j . Eq. (3.43) is similar to the regular t − J model (no double occu-
pation, nearest-neighbor spin interaction), but explicitly includes a pairing term. Furthermore,
the spin interaction is not necessarily small and may be ferromagnetic. We hence refer to this
model as an effective t − J model. The YSR excitation energy EYSR now acts as a chemical
potential for the d-fermions. We note that periodic boundary conditions in the original model
translate to periodic boundary conditions in the effective t − J model for N even, and to an-
tiperiodic boundary conditions forN odd (for both hopping and pairing terms). This is due to
the factor of (−1)1(−1)N arising from products of γN and γ1 and conjugates and corresponds
to aπ flux threading the infinite-U Hubbard ring for odd-N chains. Finally note that Eq. (3.43)
conserves fermion parity and total spin (for isotropic Ĵ), but not fermion number.

3.2.2 Phase diagram

In the language of the effective t− J model screened impurity spins are holes, characterized by
the hole density

nholes = N −
∑

j,σ

nj,σ, (3.45)
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Figure 3.7: Exact-diagonalization results for a chain of N = 10 impurity spins (V = 2∆; t̃ = 2∆̃). Phase
diagram for a (periodic) chain of quantum spins (with isotropicK) as a function of YSR energyEYSR

and isotropic RKKY interaction J , based on the number of holes (screened spins) nholes (color scale)
and total spinStot. White lines delineate borders of maximal/minimal-spin phases, which are indicated
by horizontal/tilted mesh. Regions without mesh have intermediate Stot. Figure from [I].

moving in the correlated background of a spin chain described by the RKKY coupling Ĵ . In fact,
when coupling individual impurities in the unscreened state (EYSR large and positive, nholes =

0), the system forms a quantum spin-1
2

chain subject to RKKY interactions. In contrast, there
is only a single low-energy state when coupling impurities in the screened state (EYSR large
and negative, nholes = N ). For intermediate values of |EYSR|, the impurity spins may neither
be all free nor all screened, i.e. 0 < nholes < N . Note, however, that the adatom chain gains
RKKY energy only when coupling unscreened adatoms, so that RKKY coupling favors the fully
unscreened phase. This is the same mechanism that led to the differences in the quantum and
classical phase diagrams discussed for the YSR dimer.

In order to substantiate these observations we study the phase diagram of Eq. (3.43) as a func-
tion ofEYSR and isotropic RKKY interaction J = Jz = J⊥. In this case the Hamiltonian has
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3 Quantum Yu-Shiba-Rusinov chains

Figure 3.8: Phase diagram for classical (Ising exchange) zero-bandwidth YSR chain, see Sec. 3.2.4 below for details.
Figure adapted from [I].

full SU(2) spin rotation symmetry and we may label states by their total spin quantum number
Stot, where

Stot =
∑

j

sj. (3.46)

We will further plot nholes to better understand the nature of the phases. Figure 3.7 shows cor-
responding exact diagonalization results for a chain of N = 10 impurity spins with periodic
boundary conditions. For sufficiently largeEYSR > 0, the chain has no holes and realizes a spin-
1
2

Heisenberg chain. AsEYSR is reduced, the number of holes increases and eventually becomes
equal toN . In this state, all impurity spins are screened and the ground state has Stot = 0.

Figure 3.8 shows a corresponding phase diagram for a chain of classical spins for contrast (see
Sec. 3.2.4 below for more details). The classical phase diagram reflects filling of a YSR band.
The YSR bands emerging from the positive- and negative-energy YSR states (band energies
±EYSR − Λ

2
< ϵ < ±EYSR + Λ

2
) and overlap when −Λ

2
< EYSR < Λ

2
. As EYSR de-

creases from Λ
2

to−Λ
2

, the number of holes nholes increases continuously from 0 to N . Here,
the bandwidth Λ depends only on the sign, but not on the magnitude of the RKKY coupling.

This contrasts starkly with the strong J -dependence of the phase boundaries for quantum
spins. For quantum spins, the RKKY energy contributes only for unscreened spins, so that the
Heisenberg phases in which all spins are unscreened are stablized by increasing |J |. The physics
is reminiscent of the classical picture only near J = 0,1 where nholes varies from 0 to N for
|EYSR| ≲ 2t̃ [green region in Fig. 3.7].

1The small isolated regions near J = 0 are due to finite-size effects of infinite-U Hubbard physics. They are discussed in
Appendix A.2. See also [211].
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On the antiferromagnetic side (J > 0), the width of the shifted transition region [green
in Fig. 3.7] narrows, saturating for larger J . While increasing antiferromagnetic correlations
suppress the effect of hopping t̃, the spin-singlet pairing ∆̃ introduces an uncertainty in nholes

which eventually governs the width of the transition region. At the same time, the total spin of
the ground state is Stot = 0, regardless ofEYSR. AsEYSR is reduced, the ground state changes
from a total singlet formed by antiferromagnetically coupled impurity spins to a chain of local
singlets between impurity spins and conduction electrons.

On the ferromagnetic side (J < 0), the transition region rapidly narrows as |J | increases, ulti-
mately giving way to a direct phase boundary between Heisenberg spin chain and fully screened
state. This transition is largely insensitive to the spin-singlet pairing ∆̃ due to the strong spin
polarization. Reducing EYSR at smaller |J | eventually introduces holes into the Heisenberg
ferromagnet, and the system becomes a metallic ferromagnet. A stepwise increase in the num-
ber of holes prompts a corresponding reduction of the total spin Stot from its maximum of
N/2 [inset in Fig. 3.7]. While this is similar to the classical scenario, Stot jumps discontinu-
ously to zero before the number of holes reaches N . Here, the metallic ferromagnet becomes
energetically less favorable than a superconducting phase favored by the spin-singlet pairing ∆̃.
This singlet superconductor has Stot = 0, as do the Heisenberg antiferromagnet and the local-
singlet phase at large and negativeEYSR. The fine structure of the phase boundaries in Fig. 3.7
reflects finite-size effects related to the infinite-U Hubbard model, see Appendix A.2 and [211].

3.2.3 Spectral function

The YSR excitation of one of the adatoms into the screened state, e.g., by tunneling from a
scanning tunneling microscope tip, quenches its spin and breaks the adjacent RKKY bonds.
The quenched spin is mobile along the chain due to the hybridization of YSR states and prop-
agates in a correlated spin background. This leads to pronounced differences from the classical
scenario in the site-resolved single-particle spectral function, c.f. Eq. (2.20). Expressed in terms
of the d-fermions, the spin-resolved single-particle spectral function takes the form

Aj,σ(E) =
1

2

∑

λ

{∣∣∣⟨λ|d†j,σ|gs⟩
∣∣∣
2


v

2

u2


+ |⟨λ|dj,σ̄|gs⟩|2


u

2

v2




+ 2uvRe
[
⟨λ|d†j,σ|gs⟩⟨gs|d†j,σ̄|λ⟩

]

 σ

−σ



}
δ(E ∓ Eλ ± Egs), (3.47)

where the first row corresponds toE > 0 and the second line corresponds toE < 0 (with ac-
cording signs in the delta function). We restrict our discussion toE > 0 for concreteness. The
first and second terms correspond to the electron and hole spectral functions of the extended
t−J model, the last corresponds to the spectral function associated with the anomalous Green
function. To obtain the tunneling spectra in Fig. 3.9, we evaluate the matrix elements using
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3 Quantum Yu-Shiba-Rusinov chains

Figure 3.9: Spin-resolved spectral functions Aj,σ(E) for the parameters indicated by orange markers in Fig. 3.7:
numbers in the panels refer to the corresponding labels in the phase diagram in Fig. 3.7. A small mag-
netic field Bz = −0.001t is included to lift the degeneracy in the ferromagnetically ordered phases,
such that the ground state is polarized in the spin-down direction. (a)-(d) show spectral functions for
σ =↑, (e)-(h) for σ =↓ (see also labels shown in panels). Figure from [I].

the exact-diagonalization wave functions and approximate the δ-function as a Gaussian peak
with width κ = 0.01t (κ = 0.004t). The spectra are normalized with respect to their individ-
ual maximal values Amax = maxE,j Aj,σ(E). Thus, the magnitude should not be compared
between different plots.

Corresponding exact-diagonalization data for a chain of N = 10 impurity spins with open
boundary conditions are shown in Fig. 3.9 (a-h). (Corresponding results for classical spins are
shown in Fig. 3.11.) First note that the spectra differ between up (A↑) and down spins (A↓) only
in the ferromagnetically ordered phases (a) vs. (e) and (d) vs. (h). Note that we include a small
magnetic field to break the SU(2) degeneracy towards polarization in the spin-down direction
in these cases. In contrast, the spectra are identical in the S = 0 phase, see (b) vs. (f), (c) vs. (g).

Probing the Heisenberg spin chain (sufficiently largeEYSR > 0), the YSR excitation of one
of the impurities screens its spin and induces a mobile hole:

In the ferromagnetic phase [Figs. 3.9 (a) and (e)], such an excitation is only possible if the
symmetry broken ground state has opposite spin as the tunneling electron: tunneling into a
spin-down background with a spin-down electron has no overlap with the low energy spectrum,
see Fig. 3.9 (e). In Fig. 3.9 (a) the excited hole perturbs the spin background only weakly and
to a good approximation, its motion is described by a tight-binding chain. Correspondingly, in
the lower (upper) half of the hole band, i.e., 2 ≲ E/t ≲ 3 (3 ≲ E/t ≲ 4), the number of
nodes in the spectral function increases (decreases) with energy. Moreover, there is enhanced
(reduced) intensity at the ends, since a hole on a boundary site breaks only one rather than two
ferromagnetic bonds, inducing a lower site energy. (We note that at finite energy resolution and
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3.2 Quantum Yu-Shiba-Rusinov chains in the zero bandwidth model

a small excitation gap, this effect may lead to similar experimental phenomenology as a Majorana
zero mode.)

In the antiferromagnetic phase [Figs. 3.9 (b) and (f), identical by symmetry], in contrast, the
spectral weight spreads over many more many-body states due to the spin-charge separation in
the antiferromagnetic t − J model. This is in stark contrast to the case of classical spins (see
Secs. 2.3.3 and 3.2.4, where the spectrum always has single-particle nature).

For a chain of fully screened impurity spins [Fig. 3.9 (c) and (g), identical by symmetry], the
YSR excitation unscreens one of the impurity spins. To lowest order, the spectral function can
again be understood in terms of a tight-binding band describing the mobile spin, now with
uniform site energies throughout the chain. However, unlike in the ferromagnetic phase, the
number of spins is no longer a good quantum number due to the effective pairing. The asso-
ciated redistribution of spectral weight to states with additional spins leads to a reduction in
intensity of the single-particle-like spectral peaks with increasing excitation energy.

The metallic ferromagnet has strong similarities with the regime of overlapping YSR bands
for classical ferromagnetic textures in the absence of spin-orbit coupling. In particular, it has a
gapless excitation spectrum [Fig. 3.9 (d) and (h)]. The spectral function exhibits several nodes
even at the lowest energy as holes are already present in the ground state, and becomes dense at
higher energies due to the coupling to the particle-hole continuum.

3.2.4 Classical impurity spins

For contrast, this section discusses chains of classical impurity spins in more detail. We have
already discussed classical YSR chains in Sec. 2.3.3. Here, we consider classical spins within the
zero bandwidth approach to be able to draw more direct comparisons. A chain of classical spin
impurities Sj coupled to a superconducting substrate may be described by the Hamiltonian

H = HBCS +K
∑

j

∑

σσ′

ψ†σ(xj)sσσ′ψσ′(xj) · Sj + E[{Sj}]. (3.48)

Note that unlike in the quantum case, the Sj are not operators but act on the electrons merely
as local Zeeman fields. We assume that the adatom spins couple antiferromagnetically to the
substrate electrons,K > 0. The configuration of the classical spins minimizes the total energy
of the system, and is therefore governed by spin-spin interactions and magnetic anisotropies,
which contribute to the energy functionalE[{Sj}], as well as the exchange couplingK between
adatom spin and substrate electrons.

Figure 3.10 shows representative results for the phase diagram and the spectral functions for
classical spins, assuming the Ising-like RKKY interaction

E[{Sj}] = J
∑

j

SzjS
z
j+1 (3.49)
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3 Quantum Yu-Shiba-Rusinov chains

Figure 3.10: Exact diagonalization data for the model in Eq. (3.52) with classical spin and Ising RKKY cou-
pling (∆ = 2V , N = 10; Fig. 3.8 shows data for V = 2∆). (a) Phase diagram analogous
to Fig. 3.7. For ∆ > V , pairing dominates over kinetic energy, so that the antiferromagnetic
phase extends into the J < 0 region at small |EYSR|. (b - g) Tunneling spectra for (EYSR, Jz) ∈
{(2.5,−4), (0.2,−4), (−2.5,−4), (2.5, 4), (0.2, 4), (−2.5, 4)} [orange diamonds in (a)]. As op-
posed to the spectral functions for quantum spins, all spectra are single-particle like with∼ N con-
tributing states. Again opposed to quantum spins, the spectral functions are symmetric in energy
under EYSR → −EYSR. For ferromagnetic RKKY interaction, (b-d), pairing is ineffective and one
observes simple particle-in-a-box states with band-width 4t̃. In (c) the band is partially filled and thus
the hole and electron spectra overlap. For antiferromagnetic RKKY coupling, (e-g), tunneling is frus-
trated, but there is still dispersion due to the intersite nature of pairing, with bandwidth∼ ∆̃. Figure
from [I].

for definiteness. The superconductor is treated within the zero-bandwidth approximation, as
we do throughout this thesis. Figure 3.10 assumes∆ > V , while Fig. 3.8 includes a correspond-
ing phase diagram with ∆ < V .

The phase diagrams and the spectral functions are strikingly different compared to the results
for quantum spins shown in Figs. 3.7 and 3.9. In the classical phase diagram, the metallic ferro-
magnet with Sz intermediate between N/2 and 0 extends out to arbitrarily large and negative
values of the RKKY coupling J . In contrast, in the case of quantum spins, the metallic ferro-
magnet appears only up to a maximal J , beyond which there is a direct transition between the
ferromagnetic insulator and the fully screened phase. Moreover, while the phase boundaries are
independent of J in the classical phase diagram (except at small J), the phase boundaries are
strongly dependent on J in the quantum spin case.

These qualitative differences are rooted in two essential differences between the classical and
quantum spin models. First, for a given classical spin configuration {Sj}, the adatom chain
induces a chain of YSR states. The formation of subgap bands can then be discussed within a
(single-particle) Bogoliubov-de Gennes approach. There will be partial occupation of the YSR
bands as long as they cross the center of the gap. Since the bandwidth is governed by effective
hopping terms (energy scale t̃) and the effective pairing terms (energy scale ∆̃), while being un-
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3.2 Quantum Yu-Shiba-Rusinov chains in the zero bandwidth model

affected by J , the partial-filling phases such as the ferromagnetic metal extend out to arbitrarily
large values of J in Fig. 3.10 (a), in sharp contrast to the phase diagram for quantum spins in
Fig. 3.7.

Second, classical spins are not screened by the electrons in the superconductor. Although
classical spins Sj bind a local quasiparticle when the YSR energy becomes negative, the adatom
spin and the bound quasiparticle form a product state,

|ψ⟩ = |{Sj}⟩|ψsc({Sj})⟩. (3.50)

This is in stark contrast to quantum spins, where the screening electrons and the quantum im-
purity spin form a non-factorizing singlet state. For classical spins, the interaction with other
adatom spins will thus remain unaffected when binding or unbinding a quasiparticle. In con-
trast, spin-1

2
quantum spins are effectively screened when binding a quasiparticle. (For higher

spins, the adatom spin is reduced by 1/2 with every channel that binds a quasiparticle.) Screen-
ing of the adatom spin is the underlying reason for the dependence of the phase boundary in
the quantum spin case. While the energy of the unscreened state is lowered by the RKKY inter-
action, this is not the case for the screened state.

The single-particle nature of the problem as well as the absence of screening for classical spins
also implies that the spectral functions are single-particle-band like, see Fig. 3.10 (b)-(g). This is
again in sharp contrast to the result for quantum spins as discussed above. In particular, we find
for the case of classical spins that there are no anomalously enhanced or reduced spectral weights
at the ends of the chain for ferromagnetic RKKY coupling, and that there is simple band-like
behavior for antiferromagnetic RKKY coupling.

For the Ising-like RKKY coupling, we can also make some analytical progress. This energy
functional favors spin configurations along the z-axis, so that we can also take the exchange
couplingK to be Ising-like. Then, the YSR-energy is

EYSR =
√
∆2 + V 2 − Kz

4
. (3.51)

Taking the limit ∆, V,K ≫ J, t, the full chain is described by the effective Hamiltonian

Heff = P
∑

j

[
EYSR

∑

σ

γ†j,σγj,σ − 2t̃
∑

σ

(
γ†j,σγj+1,σ + h.c.

)

+ 2∆̃
(
γ†j,↑γ

†
j+1,↓ − γ†j,↓γ†j+1,↑ + h.c.

)
+ E[{Sj}]

]
P , (3.52)

where P projects onto the low-energy subspace spanned by the states |±⟩, |⇑, ↓⟩, and |⇓, ↑⟩.
Figures 3.8 and 3.10 are obtained by exact diagonalization of this model.
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3 Quantum Yu-Shiba-Rusinov chains

3.2.5 Metallic ferromagnet and topological superconductivity

The metallic ferromagnet can become a topological superconductor for spin-orbit coupled su-
perconductors. Spin-orbit coupling makes the YSR hybridization spin dependent and breaks
spin-rotation symmetry. Specifically, we introduce Rashba spin-orbit coupling and anisotropic
(Ising-like) RKKY interactions Ĵ = diag(0, 0, Jz) polarized perpendicular to the spin-orbit
field. Without double-occupation constraint, Ref. [212] studied this model as a paradigm for
the interplay of topological superconductivity and interactions.

We assume that the spin chain is aligned along the x-direction with the normal to the surface
pointing along the z-direction. This gives the Rashba term

HSOC = −itα
∑

j

(
c†jσycj+1 − h.c.

)
. (3.53)

Expressing this in terms of the local Bogoliubov operators given in Eq. (3.16) and performing
the replacement Eq. (3.30), we obtain

HSOC,t−J = α
∑

j

[
−it̃
(
d†jσydj+1 − h.c.

)
+ ∆̃

(
d†jσ0d

†
j+1 + h.c.

)]
. (3.54)

Thus, spin-orbit-coupling induces p-wave pairing in the extended t − J model. Note that in
the absence of spin order, this does not suffice to open a topological gap. To see this, consider
the sum of the hybridization (Ht,t−J ) and spin-orbit terms. This may be written as

Ht,t−J +HSOC,tJ =
∑

j

(
−d†jTt−Jdj+1 + d†j∆t−Jd

†
j+1 + h.c.

)
, (3.55)

withTt−J = t̃(1+ iασy) and∆t−J = ∆̃(1+ iασy)(iσy). The tunneling and pairing matrices
are phase-locked and no gap opens in the absence of the spin interactions.

We choose Ising RKKY interaction to bypass the Mermin-Wagner theorem, according to
which there cannot be spin order for isotropic interactions [212]. Ising RKKY interaction breaks
the SU(2) spin rotation symmetry down to a U(1) symmetry corresponding to rotations about
the z-axis, so that stot is no longer conserved but sztot still is. Conversely, the spin-orbit coupling,
Eq. (3.53), is invariant only under rotations about the y-axis. Thus, for α > 0 the model does
not have any continuous symmetries anymore which allows broken symmetry atT = 0 in prin-
ciple. We specified to the extreme case of an Ising interaction for simplicity, but the arguments
below only require Jz > J⊥. Figure 3.11 (a) shows that the qualitative features of the phase
diagram are robust against breaking the spin rotation symmetry. In particular, the ferromag-
netic metal phase is maintained. With spin-orbit coupling, see Fig. 3.11 (b), this phase becomes
a topological superconductor as we will discuss in more detail below.

We now specify to parameters along the blue cut in Fig. 3.11 (b). Corresponding numer-
ical results are shown in Fig. 3.12 for a chain of N = 12 sites with open boundary condi-
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Figure 3.11: Exact-diagonalization results forN = 10 chains with Ising RKKY coupling [J = diag(0, 0, Jz)] and
periodic boundary conditions, (a) without and (b) with spin-orbit coupling. In (a), the white lines de-
lineate regions of maximum (minimum) sztot. In (b), sztot is no longer a good quantum number due to
spin-orbit coupling. Here, the white lines delineate regions for which sztot is within 0.2 of its extremal
values 0 and 5. For both (a) and (b), the rough features of the phase diagram are qualitatively similar
to the phase diagram for isotropic RKKY interactions shown in Fig. 3.7. On the ferromagnetic side
Jz < 0, (a) exhibits the metallic ferromagnet (enclosed by the white lines). Across this region, the spin
is reduced from its maximal value until the phase boundary to the singlet superconductor is reached
(inset). The most striking difference in (b) is the breaking of particle number conservation in the ferro-
magnetic phases (spin-chain phase and metallic ferromagnet), which reflects the triplet contribution
to the pairing. The light blue cut corresponds to the parameter range shown in Figs. 3.12 (a) and (b).
Parameters: V = 2∆,Bz = −10−3t, (b) α = 0.25. Figure from [I].

tions. Spin-orbit coupling only weakly affects the ferromagnetic insulator at Jz/t ≲ −1.8
or the singlet superconductor at Jz/t ≳ −0.7, but the spectrum of the metallic ferromagnet
(−1.8 ≲ Jz/t ≲ −0.7) develops a p-wave pairing gap [Fig. 3.12 (a)]. The associated for-
mation of Majorana end states leads to four (up to finite-size corrections) degenerate ground
states, a pair of even- and odd- fermion-parity states for each of the two symmetry-broken spin
configurations. In line with a topological degeneracy, even- and odd-parity ground states are
indistinguishable by the local observablesnholes and the total spin projection sztot [Fig. 3.12 (b)].
For sufficiently large |J |, the p-wave gap [Fig. 3.12 (a)] as well asnholes and sztot [Fig. 3.12 (b)] can
be well reproduced analytically, using a variational trial state for the metallic ferromagnet and
including the spin-orbit coupling into the extended t−J model. The corresponding mean field
theory is discussed below. At smaller |J |, the analytical description breaks down as it neglects
the effects of the singlet pairing ∆̃. Tunneling spectra clearly reveal the formation of zero-energy
Majorana end states protected by a gap [Fig. 3.12 (c)].
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Figure 3.12: Exact-diagonalization results for N = 12 chain with Ising RKKY interaction and spin-orbit cou-
pling. (a) Ten lowest-energy eigenstates each vs. RKKY coupling Jz in even- and odd-parity sectors
at EYSR = 0, cutting through the metallic ferromagnet. For −1.8 ≲ Jz/t ≲ −0.7, the four
lowest states (even/odd parity: blue/orange) are separated by a topological gap from a continuum of
excited states. Black dash-dotted line: Approximate analytical gap, see Eqs. (3.67) and (3.69). (b) Cor-
responding nholes (green, diamonds) and total magnetization |Sz

tot| (pink, stars). Dash-dotted lines:
Analytical results based on trial state. Fillings of symbols color coded as in (a). (c) Tunneling spectra at
Jz = −1.25t revealing zero-energy Majorana end states. Parameters: V = 2∆, spin-orbit coupling
α = 0.25; a minute Zeeman field Bz = 10−3t singles out spin-polarized states in numerics and
induces small intra-parity splittings in ground-state manifold. Figure from [I].

Mean-field theory of the metallic ferromagnet

Topological superconductivity appears in the model of Eq. (3.25) in the parameter region of
the metallic ferromagnet. When amending the model by spin-orbit coupling, a p-wave gap can
open in this region. Spin-orbit coupling at the level of the model Eq. (3.25) introduces a p-
wave-pairing term into the extended t− J model, which does not open a gap in the absence of
some form of spin order.

The metallic ferromagnet can be accurately described within a simple Hartree-Fock approach.
We specify to ferromagnetic XXZ coupling (with Jz ≥ J⊥) and focus on states with maximal
spin projection. As double occupation is forbidden, we use a spin-polarized Fermi sea as a vari-
ational Hartree-Fock ground state,

|FS, ↑⟩ =
∏

|k|<kF

d†k,↑|vac⟩, (3.56)

54
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in terms of dj,σ = 1√
N

∑
k dk,σe

ikj with k = 2πn
N
∈ [−π, π] and n ∈ Z (periodic bound-

ary conditions). The Fermi momentum kF can be viewed as a variational parameter and the
number of holes (screened sites) is given by

nholes = N −
∑

|k|<kF

⟨FS, ↑|d†k,↑dk,↑|FS, ↑⟩ = N

(
1− kF

π

)
. (3.57)

Here, the last term on the right hand side takes the thermodynamic limit N → ∞. As the
singlet pairing ∆̃ does not contribute, the Hamiltonian in Eq. (2) implies that this state has
energy

EFS(kF ) = ⟨FS, ↑|H|FS, ↑⟩ (3.58a)

=
∑

|k|<kF

(−EYSR − 2t̃ cos k) + ⟨FS, ↑|
∑

j

Sj · J · Sj+1|FS, ↑⟩. (3.58b)

Only the longitudinal exchange coupling Jz contributes to the RKKY interaction and we ob-
tain (forN →∞)

⟨FS, ↑|
∑

j

Sj · J · Sj+1|FS, ↑⟩ = NJz
4π2

(k2F − sin2 kF ). (3.59)

Altogether, we find the energy

EFS(kF )

N
= − kF

π
EYSR −

2t̃

π
sin kF +

Jz
4π2

(
k2F − sin2 kF

)
(3.60a)

=

∫ kF

−kF

dk
2π

ξ̂(k)− Jz
4π2

(
k2F − sin2 kF

)
, (3.60b)

where we defined the mean-field dispersion

ξ̂(k) = −EYSR − 2t̃ cos k + Jz

(
kF
2π
− sin kF

2π
cos k

)
. (3.61)

Minimizing the energy with respect to kF , we find an implicit expression for kF and hence the
number of holes as a function of the YSR energyEYSR and RKKY interaction Jz ,

0 = ξ̂(kF ). (3.62)

In particular, this expression with kF = π implies that the transition between the Heisenberg
spin chain (nholes = 0) and the metallic ferromagnet occurs for

EYSR = 2t̃+
Jz
2
. (3.63)
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Figure 3.13: Exact-diagonalization data for the deviation from full spin polarizationN −nholes− 2|Sz
tot| in a spin-

orbit-coupled chain withN = 12 sites, with Ising RKKY interactions and open boundary conditions.
Blue and cyan markers correspond to two lowest-energy even-parity states (circle, square; labeled by
e,0/1), orange and red markers correspond to two lowest-energy odd-parity states (diamond, triangle;
labeled by o,0/1). These four states make up the ground-state manifold in Fig. 3.12 (a). The system is
approximately spin polarized (deviation from full spin polarization≃ 0) for sufficiently large Jz and
sufficiently small α. The latter requirement is due to the tendency of spin-orbit coupling to suppress
the spin polarization of the metallic ferromagnet. This delineates the parameter range, for which the
spin polarized variational theory developed in this section is adequate. Parameters: EYSR = 0, (a)
α = 0.25, (b) Jz = −1.25t. As in Fig. 3.12, a small magnetic field Bz = 10−3t along the z-
direction was added for numerical reasons. Figure from [I].

This expression can also be understood by noting that the first hole enters at the top of the
band at energy 2t̃ and breaks two ferromagnetic bonds. Similarly, we find a transition to a fully
screened chain (kF = 0) at

EYSR = −2t̃ (3.64)

for negligible pairing ∆̃. Nonzero pairing preempts the transition from the metallic ferromag-
net into the fully screened chain by the formation of a singlet superconducting phase at a finite
density of d fermions. This is not captured by the ansatz Eq. (3.56).

Topological phase in mean-field theory

The metallic ferromagnet serves as a parent state for topological superconductivity, which can
develop in the presence of spin-orbit coupling. We choose Rashba spin-orbit coupling as de-
fined in Eq. (3.53). To obtain an approximate theory for the topological superconducting phase,
we start from the spin-polarized metallic state introduced in the previous section (with kF de-
termined by ξ̂(kF ) = 0) and add p-wave pairing ∆p. We will discuss the precise form of ∆p

below. This assumes that the ground state remains approximately spin polarized in the presence
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of weak spin-orbit coupling. This is a good approximation for Jz ≲ −t and α ≲ 0.4t as can
be inferred from Fig. 3.13. The ground-state energy density is

ETSC

N
=

1

2

∫ π

−π

dk
2π

[
ξ̂(k; kF )−

√
ξ̂2(k; kF ) + ∆2

p(k; kF )

]
− Jz

4π2

(
k2F − sin2 kF

)
. (3.65)

and the total spin along the z-direction is

sztot =
N

4


1−

∫ π

−π

dk
2π

ξ̂(k; kF )√
ξ̂2(k; kF ) + ∆2

p(k; kF )


. (3.66)

The excitation gap is given by

Egap = min
k

√
ξ̂2(k; kF ) + ∆2

p(k; kF ). (3.67)

It remains to discuss the p-wave pairing. There are two contributions to ∆p(k) in the pres-
ence of Rashba spin-orbit coupling (∝ ασy): a direct contribution due to spin-orbit coupling
and a contribution mediated by virtual spin flips and singlet pairing. The latter is equivalent to
the mechanism by which spin-orbit-coupled nanowires proximity couple to an s-wave super-
conductor and acquire a p-wave gap (in the strong-field limit). To derive this contribution, we
assume a large mean field along the positive z-direction,

Jzs
z
tot

N
≃ JzkF

2π
. (3.68)

Treating the pairing terms in perturbation theory and expanding for smallαt̃/JzkF , we obtain
the effective p-wave pairing

∆p(k; kF ) = 4i∆̃α sin k

[
1 +

2πt̃

JzkF
cos k

]
. (3.69)

The results of this section are illustrated in Fig. 3.12 along with the exact diagonalization data.
Panel (a) includes the p-wave gap as determined from Eqs. (3.67) and (3.69) (black, dot-dashed),
while panel (b) includes |sztot| andnholes (= |sztot|/2within the spin-polarized ansatz) determined
from Eqs. (3.66). kF is determined by minimizing the normal state energy, Eq. (3.62).

3.3 Conclusion

Dilute YSR chains constitute a versatile platform for quantum magnetism. Even for spin-1
2

adatoms, we uncover a rich phase diagram described by an extended t − J model. Unlike the
standard t − J model, there are no restrictions on the sign of J nor on its strength relative to

57



3 Quantum Yu-Shiba-Rusinov chains

t. Tunneling spectra reflect its local spectral function, when accounting for additional pairing
correlations.

Spin-1
2

impurities are directly realized for magnetic adatoms with one unpaired electron in
the valence shell (e.g., Cerium). Importantly, however, the relevant spin is not identical to the
bare spin S0 of the magnetic adatom on the superconducting substrate. Adatoms can bind
a quasiparticle in any of the 2S0 conduction-electron channels [121]. The effective spin is thus
equal toS0−Q/2, whereQdenotes the number of bound quasiparticles, and the extended t−J
model can apply to higher-spin impurities, if all but one channel robustly bind a quasiparticle.

More generally, our results exemplify the importance of treating dilute YSR chains as quan-
tum spin chains. Their effective spin depends on the detailed coupling between adatom and
substrate, and can conceivably be tuned even for a given system, for instance on gate-tunable su-
perconductors [206] and on Moiré [11] or charge-density-modulated [II, 13] structures. The phe-
nomenology of dilute YSR chains with higher spins is further refined by single-ion anisotropy
as well as both intra- and interchannel YSR hybridization.

Unraveling the phenomenology of quantum YSR chains therefore promises important in-
sights into the physics of magnetic adatoms on superconductors. While hybridizing subgap
states form YSR bands in models with classical spin textures, we find that subgap spectra exhibit
a plethora of qualitatively distinct behaviors depending on the magnetic phase. The quantum
magnetism must also inform the search for topological superconductivity and Majorana zero
modes in dilute YSR chains. In particular, we find that the parent metallic ferromagnet is lim-
ited in scope by competing insulating-ferromagnet and singlet-superconductor phases.

Finally, the physics of dilute YSR chains is not limited to magnetic adatoms, but can also be
realized in chains of Coulomb-blockaded quantum dots coupled to a superconductor. Previous
theoretical work focused on classical spins [213–215], but recent experiments on double quantum
dots construct the elementary unit of quantum YSR chains [216, 217]. When the quantum dots
are tuned to odd Coulomb blockade islands, they realize S = 1

2
spins which can be coupled

via a superconducting bulk. This provides a promising complement to recent work [218] on
quantum dot arrays as quantum simulators of quantum magnetism.
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4 Current-biased Josephson diodes

The results of this chapter have been published in Refs. [IV, V]. A further publication is in
preparation [VI].

Nonreciprocity1 is essential for many applications in electronics, not least for logical circuits.
The fundamental nonreciprocal circuit element is the diode [219, 220], characterized by high
resistance for one current direction and low resistance for the other.

Recently nonreciprocal behavior has been demonstrated in a range of experiments on layered
superconductors [128–135]. In particular, it was shown that the bulk critical current may depend
on the direction of the current flow if the system breaks time-reversal and inversion symmetries
[221–225]. This development has potential to boost superconducting electronics applications
[128, 136].

Josephson junctions are of particular interest for applications e.g. in a superconducting quan-
tum computing architecture [127]. Indeed, nonreciprocal behavior was observed in a number
of different current-biased Josephson systems [136–144]. A version of the Josephson diode can
already be understood in terms of the Josephson current-phase relation,

Is(φ) =
2e

ℏ
∂F

∂φ
. (4.1)

We have seen in Sec. 2.2 that inversion or time-reversal symmetry implies an antisymmetric
current-phase relation. If both of these symmetries are absent, the current-phase relation can in
principle have a global maximum Ic,+ ≡ maxφ Is(φ) and minimum Ic,− ≡ −minφ Is(φ) of
different magnitude. These are the maximum equilibrium currents that can be passed through
the junction in positive or negative current direction. For bias currents outside this range equi-
librium breaks down and a voltage develops. Thus, Ic,± are the critical currents of the junction
and generically nonreciprocal, Ic,+ ̸= Ic,−, once inversion and time-reversal symmetry are bro-
ken. This is the simplest manifestation of the Josephson diode effect. Previous theoretical work
has discussed numerous situations in which both of these symmetries are broken, exploring
microscopic mechanisms that lead to a nonreciprocal bulk supercurrent [145–152].

However, junctions in the weak-damping regime are hysteretic as shown in Fig. 4.1: When
increasing (lowering) the bias current Ib from zero, the junction switches from the supercurrent
state into the resistive state at the switching current Isw,+ (Isw,−). The resistive state is charac-

1In this context, by nonreciprocity we understand the dependence of properties of electronic elements on voltage sign or
current direction.
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4 Current-biased Josephson diodes

Figure 4.1: Hysteresis loop in the voltage signal as function of bias current sweep, both in the absence (temperature
T = 0, red trace) and in the presence (T = 0.1Eu, green trace) of current noise. The bias current Ib
is ramped up and down at rate dIb/dt = 10−5Iu/tu and the voltage V is averaged over a period of
600tu. The characteristic currents of the junction, i.e. the critical currents Ic,±, noiseless retrapping
currents I0re,±, switching currents Isw,± and retrapping currents Ire,±, are in general nonreciprocal if the
current-phase relation and dissipative current are asymmetric. Here, we used the asymmetric current-
phase relation and asymmetric dissipative current shown in Fig. 4.2. Note that Isw,± and Ire,± are
stochastic quantities and fluctuate between sweeps. Here, we simply show a typical trajectory.

terized by a finite voltage V ̸= 0, where the bar denotes an appropriate time average. Due
to fluctuation-induced transitions the switching currents are smaller than the critical currents,
Isw,± < Ic,±. Conversely, when decreasing (increasing) the bias level again the junction retraps
into the supercurrent state withV = 0 only at a smaller retrapping current Ire,+ (Ire,−). In such
hysteretic junctions nonreciprocity can appear in both the switching and retrapping currents.

While in the majority of experiments on the Josephson diode effect nonreciprocity is more
pronounced in the switching current [136, 140, 142, 144], a recent experiment of our collaborators
in the Franke group exhibited dominant asymmetry in the retrapping currents of an atomic-
scale Josephson junction [V]. The observed nonreciprocity was shown to be crucially depen-
dent on the species of adatom placed in the junction region. We will discuss this in more detail
in Sec. 4.5 below. Crucially, the single-atom junction is time-reversal symmetric, ruling out a
description in terms of Eq. (4.1) alone. We demonstrate, that it is instead the particle-hole sym-
metry breaking induced by magnetic impurities which gives rise to the nonreciprocity. We note
that Wu et al. [136] also report a Josephson diode effect absent any time-reversal breaking fields.
It is at this point unclear what the origin or mechanism leading to nonreciprocity is in their case.

In order to determine the origin of nonreciprocity in the absence of time-reversal symmetry
breaking, and in order to understand the distinct mechanisms leading to nonreciprocal switch-
ing and retrapping, we developed a general theory of current-biased Josephson diodes, describ-
ing in detail the microscopic origin of nonreciprocities and their effect on the diode behavior of
the characteristic currents of the junction [IV]. In particular, we found that — as expected —
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4.1 RCSJ model for Josephson diodes and numerical results

dominant nonreciprocity in the switching current results from an asymmetric current-phase
relation, requiring broken time-reversal symmetry. Strikingly though, dominant nonreciproc-
ity in the retrapping currents results from an asymmetric dissipative current, which may be
traced back to broken particle-hole symmetry rather than time-reversal symmetry. Conversely,
we show that in the limit of weak damping or low temperatures, asymmetry in the current-
phase relation has only weak effect on the retrapping currents, and asymmetry in the dissipative
current has only weak effects on the switching currents. This is against the common wisdom
that if a symmetry is broken, generically all response is asymmetric. This correspondence is the
main result of this chapter. We summarize it here:

Is(φ) ̸= −Is(−φ) & Id(V ) = −Id(−V ) ←→ Isw,+ ̸= Isw,− & Ire,+ ≃ Ire,−, (4.2a)
Is(φ) = −Is(−φ) & Id(V ) ̸= −Id(−V ) ←→ Isw,+ ≃ Isw,− & Ire,+ ̸= Ire,−. (4.2b)

Here, Id(V ) is the dissipative current. The approximate equalities become exact in the low
damping or low temperature regime.

Our analysis proceeds in several steps: First, we extend the RCSJ model, which was intro-
duced in Sec. 2.2, to nonreciprocal expressions for the supercurrent as well as the dissipative cur-
rent. We then demonstrate the correspondence given in Eq. (4.2) numerically, based on purely
phenomenological expressions for Is and Id. In order to corroborate our numerical findings,
we develop an analytical understanding of the Josephson diode effect in the absence (Sec. 4.2)
and presence of fluctuations (Sec. 4.3), establishing the correspondence between current-phase
asymmetry and nonreciprocal switching currents, as well as between asymmetric dissipation
and nonreciprocal retrapping currents within the framework of the Fokker-Planck equation.
In Sec. 4.4 we then derive the extended RCSJ equation from a microscopic model of a tunnel-
ing junction within a streamlined Ambegaokar-Eckern-Schön approach [226, 227], putting the
previous phenomenological considerations on sound footing. Finally, in Sec. 4.5 we present
in detail a physical example of a Josephson diode with dominant nonreciprocity in the retrap-
ping currents: the single-atom Josephson junction featured in the experiment by Trahms et
al. [V]. In particular, we present phenomenological simulations that, when accounting for fre-
quency dependent damping [228], reproduce the experimental results and thereby demonstrate
the quality of our theoretical considerations. Finally, we stress that, despite the fact that our
considerations are motivated by the experiment on single-atom Josephson junctions, our the-
oretical results have general bearing and should prove useful for interpretation of experiments
on Josephson diodes.

4.1 RCSJ model for Josephson diodes and numerical results

The conventional RCSJ model was introduced in Sec. 2.2. It is completely symmetric with
respect to negation of both currents and voltages and therefore predicts reciprocal character-
istic currents. If the relevant symmetries are absent nonreciprocal behavior can enter through
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4 Current-biased Josephson diodes

Figure 4.2: Dimensionless phenomenological (a) current-phase relations and (b) dissipative currents used in this
section to illustrate effect of nonreciprocities on the behavior of the characteristic currents of a Joseph-
son junction. Green traces correspond to asymmetric currents defined in App. B.2, while black curves
correspond to standard RCSJ expressions [sinusoidal current-phase relation and ohmic dissipative cur-
rent].

all components of the RCSJ model, i.e. through the capacitive Icap, dissipative Id, and super-
current Is terms in Eq. (2.13). Misaki and Nagaosa [153] considered nonlinear contributions
to the quantum capacitance and demonstrated resulting nonreciprocities in the characteristic
currents. However, asymmetric contributions to the quantum capacitance require differing
density of states on the two sides of the junction. In practice it is to be expected that these con-
tributions are dominated by the geometric capacitance (unless the densities of states are very
small). Furthermore, current experimental platforms consider junctions with electrodes formed
from identical materials, ruling out the aforementioned mechanism. Hence, we disregard this
option here and concentrate on nonreciprocities originating in the supercurrent and the dissi-
pative current by allowing for general (possibly asymmetric) current-phase relations Is(φ) and
dissipative currents Id = Id(V ). The dynamics of the phase may then be described by a gener-
alized RCSJ-Langevin equation [228, 229]

ℏ
2e
Cφ̈+ Id(

ℏ
2e
φ̇) + Is(φ) + δI = Ib. (4.3)

The correlator of the current fluctuations

⟨δI(t)δI(t′)⟩ = K( ℏ
2e
φ̇(t))δ(t− t′) (4.4)

is related to the the dissipative current by the fluctuation-dissipation theorem. Provided tem-
peratures are sufficiently low, this implies the nonlinear Johnson-Nyquist noise

K(V ) = 2T
Id(V )

V
. (4.5)

For details, see Sec. 4.3.1 below. As the noise power depends on the voltage, Eq. (4.3) is ambigu-
ous as is [230]. As we obtain the extended RCSJ equation from a stochastic field integral (see
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4.1 RCSJ model for Josephson diodes and numerical results

Sec. 4.4) we have to employ the Ito definition of stochastic differential equations [231]. Eq. (4.3)
describes the dissipative and diffusive motion of a phase particle in a tilted washboard potential

U(φ) = Us(φ)−
ℏ
2e
Ibφ, with Is(φ) =

2e

ℏ
d

dφ
Us(φ). (4.6)

We choose the integration constant such that
∫ 2π

0
dφUs(φ) = 0. Furthermore, to avoid un-

necessary complications, we restrict attention to potentialsUs(φ)with a single minimum (φmin
s )

and maximum (φmax
s ) per period φ ∈ [0, 2π). This implies that also U(φ) has one minimum

(φmin) and maximum (φmax) per period as long as the absolute bias current is below the critical
currents of the junction. More precisely, the minimum and maximum remain for

− Ic,− < Ib < Ic,+, (4.7)

where−Ic,− < 0 is the minimum and Ic,+ > 0 is the maximum of the current-phase relation
Is(φ).

Before we proceed with the discussion of the extended RCSJ model, we introduce dimen-
sionless variables. We will use lower-case letters to denote the dimensionless variables while di-
mensionful variables are denoted by upper-case letters (with the exception of time). We use the
plasma frequency at zero bias as characteristic frequency scale. The plasma frequency is

Ωp =

√
4e2U ′′(φmin)

ℏ2C
= Ωp(Ib). (4.8)

The units of time, energy, voltage and current are thus

tu = Ω−1p (0), Eu = U ′′(φmin
0 ) =

ℏ2C
4e2

Ω2
p(0), Vu =

ℏΩp(0)

2e
, Iu =

ℏC
2e

Ω2
p(0), (4.9)

with corresponding times τ = t/tu, frequenciesω = Ω/Ωp(0), energies ε = E/Eu, potentials
u = U/Eu, temperature θ = T/Eu, voltages (or phase velocities) v = V/Vu and currents
i = I/Iu. In these units, the extended RCSJ model becomes

∂2τφ+ id(∂τφ) + is(φ) + δi = ib, (4.10)

where id(v) = Id(V = Vuv)/Iu, with noise correlator

⟨δi(τ)δ(iτ ′)⟩ = k(v(τ))δ(τ − τ ′), k(v) = 2θ
id(v)

v
. (4.11)

For a sinusoidal current-phase relation Is(φ) = (2eEJ/ℏ) sinφ,Eu = EJ , and hence energies
are measured in terms of the Josephson energyEJ , while currents are measured in terms of the
critical current Iu = Ic = 2eEJ/ℏ. Finally, an ohmic dissipative current has the dimensionless
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4 Current-biased Josephson diodes

Figure 4.3: Histograms of switching and retrapping currents for 1000 bias current sweeps with (a) symmetric
current-phase relation and dissipative current [conventional RCSJ model], (b) asymmetric current-
phase relation, is(φ) ̸= −is(−φ), but symmetric dissipative current, id(v) = −id(−v), and (c)
asymmetric id(v), but symmetric is(φ). We use the ramprate di/dτ = 10−5 and the temperature
θ = 0.1. See Fig. 4.2 for the current-phase relations and dissipative currents used here, or see App. B.2
for an explicit definition of the functions is(φ) and id(v). Figure from [IV].

form id(v) = gv in terms of the dimensionless conductance g = [RCΩp(0)]
−1. See App. B.1

for more details.
First evidence for the correspondence between current-phase asymmetry and switching cur-

rents asymmetry as well as between dissipative current and retrapping currents given in Eq. (4.2)
comes from straightforward numerical integration of the Langevin equation Eq. (4.10). To this
end, we implement bias current sweeps such as the one shown in Fig. 4.1 within the Langevin
equation, and extract the characteristic currents numerically. We perform this for the standard
RCSJ model [is(φ) and id(v) given by black dashed traces in Fig. 4.2 (a) and (b), respectively],
the case of asymmetric current-phase relation [is(φ) given by green trace in Fig. 4.2 (a) and
id(v) given by black dashed trace in Fig. 4.2 (b)] and the case of asymmetric dissipation [is(φ)
given by black dashed trace in Fig. 4.2 (a) and id(v) given by green trace in Fig. 4.2 (b)].

Resulting histograms for the switching and retrapping currents are shown in Fig. 4.3. As
to be expected, the histograms are independent of the direction of the bias current ib for the
conventional RCSJ model [Fig. 4.3 (a)]. When the junction has an asymmetric current-phase
relation but symmetric dissipative current, only the switching currents are nonreciprocal [Fig.
4.3 (b)]. Conversely, for asymmetric dissipative current, but symmetric current-phase relation,
only the retrapping currents are nonreciprocal [Fig. 4.3 (c)].

4.2 Deterministic Josephson diodes

We now aim to develop an analytical understanding of the switching and retrapping process
within the extended RCSJ model. To this end, consider first deterministic motion. The pres-
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4.2 Deterministic Josephson diodes

Figure 4.4: Mechanism of switching in the tilted washboard picture. The positive and negative bias cases are shown
in the left and right columns. In the first line, the absolute bias level is smaller than the critical currents
and the phase particle is trapped in a potential minimum for both bias directions. In the second line,
the absolute bias level has been increased to the point where the minimum has appeared for negative
bias direction, so that the phase particle is no longer trapped and develops an average velocity. In other
words, the junction has switched to the resistive state. Due to asymmetry in the current-phase relation,
the minimum still survives for positive bias direction, and the junction remains superconducting. In
the third line the junction has switched also for positive bias.

ence of a minimum at finite bias implies that the junction can support a supercurrent: in the
absence of noise Eq. (4.10) then has the stable zero-voltage solution

φ(τ) = φmin, v(τ) = 0, (4.12)

with ib = is(φ
min), where we used that id(0) = 0. The steady state solution Eq. (4.12) is also

referred to as the trapped state, as it corresponds to a phase particle trapped in a minimum of
the washboard potential. If the bias level ib is increased adiabatically, the junction remains in
the trapped state, until the bias reaches the critical currents. Here, the phase particle is released,
and develops an average velocity, i.e. the junction switches to the resistive state. Thus in the
noiseless case, the switching currents equal the critical currents. If ic,+ ̸= ic,− at certain bias
levels the junction can support a supercurrent only for one bias direction. This is the simplest
realization of the Josephson diode effect that was discussed already in the introductory text to
this chapter. We illustrate the mechanism within the tilted washboard picture in Fig. 4.4.
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4 Current-biased Josephson diodes

Figure 4.5: Mechanism of retrapping in the tilted washboard picture. Left panel corresponds to positive, right
panel to negative bias level (of different magnitude). The bias levels are tuned to the points where the
potential energy gain 2π|ib| is exactly balanced by the dissipated energy

∫
dtε̇ for the limiting trajectory

that starts on a maximum with zero velocity. These points correspond to the retrapping currents i0re,±.
Here, the dissipative current and hence the dissipation rate is asymmetric such that the limited balanced
situation arises at different bias levels, corresponding to nonreciprocity in the retrapping currents.

For sufficiently large bias currents there is a distinct steady state characterized by nonvanish-
ing average voltage. For |ib| ≫ ic,±, we can neglect the supercurrent, and Eq. (4.3) has the
finite-voltage steady state solution

φ(τ) ≃ φ0 + vdτ, v(τ) ≃ vd, (4.13)

with id(vd) = ib. This is referred to as running state as the phase particle is running down
the washboard potential at a finite average speed. The running state persists also to lower bias
levels but its trajectory deviates from the simple form given in Eq. (4.13). It is characterized by
v(τ + τP ) = v(τ) and φ(τ + τP ) = φ(τ) ± 2π, where τP is the period of the motion and
± = sign ib, and, as a consequence, by the balance of energy gain due to the tilted potential and
the dissipated energy per period,

εd
∣∣

run = −
∫ τP

0

dτ
d

dτ
ε = u(φ)− u(φ± 2π). (4.14)

Here, u(φ)− u(φ± 2π) = 2π|ib|, and the energy of the junction is defined as

ε =
1

2
v2 + u(φ). (4.15)

The first term is simply the dimensionless version of the capacitive term CV 2/2. Explicitly, in
the running state εd takes the form

εd
∣∣

run =

∫ τP

0

dτ vrun(τ)id(vrun(τ)) =

∫ ±2π

0

dφ id(vrun(φ)), (4.16)
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where v(φ) is the unique periodic solution to

dv

dφ
= −u

′(φ) + id(v)

v
. (4.17)

In App. B.3 we solve this equation in the regime of weak damping. The solution may be ex-
panded as

vrun(φ) = vd −
us(φ)

vd
+O

(
v−3d
)
. (4.18)

The retrapping currents i0re,± correspond to the positive/negative bias level at which the running
state disappears. This point is reached when the running state trajectory passes through the
unstable fixed point [φ = φmax, v = 0]. Now, if the phase particle is initialized at φmax it only
reaches φmax ± 2π after infinite time, τP →∞. This gives the criterion

i0re,± =

∫ ±2π

0

dφ

2π
id(v0(φ)), (4.19)

where v0(φ) is the critical running state trajectory with v0(φmax) = 0 and ± = sign ib =

sign v0(φ). Note that also the right side of the equation implicitly depends on i0re,± through the
running state trajectory v0(φ). However, in the limit of weak damping, id(v)/v ≪ 1, we may
approximate

i0re,± ≃
∫ ±2π

0

dφ

2π
id

(
±
√

2[us(φmax
s )− us(φ)]

)
, (4.20)

at leading order in id. Here, we used that to zeroth order in id(v) and ib ∼ id(v), the trajectory
v0(φ) can be obtained through conservation of energy along the separatrix of the undamped
problem at ib = 0. Note that Eqs. (4.19) and (4.20) are manifestly asymmetric if the dissipative
current is asymmetric as the velocity has definite sign. Furthermore, in the low damping regime,
the asymmetry of the current-phase relation enters only through us(φ) and hence is integrated
out in the expression for the retrapping current. This corresponds to the time-reversal invari-
ance of the mechanical equations of motion. The mechanism leading to retrapping is illustrated
in Fig. 4.5.

With this we can establish a criterion for hysteresis. We call the junction overdamped if i0re,± =

ic,±. In this case, there is no hysteresis and switching and retrapping occur at the same point.
Conversely, in underdamped junctions, the running state persists to bias currents lower than
the critical current. Underdamped junctions are bistable in the bias ranges ire,0,+ < ib < ic,+
and−ire,0,− > ib > ic,−: at the same bias level, the junction can either support a supercurrent
without any voltage drop, or it supports a dissipative state, depending on the initialization. This
implies hysteresis as seen for instance in Fig. 4.1.

Furthermore, we have established the correspondence between current-phase asymmetry and
nonreciprocity in the switching currents as well as the correspondence between asymmetry in
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4 Current-biased Josephson diodes

Figure 4.6: Phase space of extended RCSJ model for (a) ib = 0.05, (b) ib = 0.3, (c) ib = 1.5, and asymmetric
current-phase relation and dissipative current from Fig. 4.2.
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4.3 Noise-affected Josephson diodes

the dissipation and nonreciprocity in the retrapping currents in the noiseless case (and provided
the damping is weak). In the following we will show that these results are robust against noise.
Before we consider the noisy dynamics, it is helpful to visualize the deterministic dynamics in
phase space [φ, v]. This is shown in Fig. 4.6 for three positive bias levels, ignoring nonreciproc-
ities for the moment.

For weak bias Ib < I0re [Fig. 4.6 (a)] the only fixed points of the dynamics are the trapped
states [φmin + 2πn, 0], with n integer. Each such point has an associated attractive region in
phase space (colored orange, with lighter and darker shading), wherein any trajectory converges
to the corresponding fixed point. The boundaries between these attractive regions are separatri-
ces passing through the unstable fixed point [φmax, 0] (black traces). Noise-induced transitions
between the attractive regions correspond to phase diffusion.

Once the bias reaches I0re < Ib [Fig. 4.6 (b)], the phase space topology abruptly changes and
a new steady state emerges, the running state, drawn here in dark green. Its attractive region is
shaded accordingly.2 Now, the junction is bistable. If the temperature is sufficiently low, there is
a separation of timescales and we may assume that the system equilibrates within a given attrac-
tive region. Everytime the noise drives the system across the separatrix it equilibrates in another
trapped state. This transition corresponds to switching and retrapping in the noisy case. The
rate is related to the probability current across the separatrix between trapped and running states
(black traces). Note that this shows that phase diffusion is not compatible with hysteresis: Dif-
ferent trapped states are separated by the attractive region of the running state and hence no
direct transition between the trapped states is possible without switching. This changes if the
damping is strongly frequency dependent [228]. Furthermore, note that the separatrices still
pass through the unstable fixed points. The critical trajectory in Eq. (4.19) is along such a sepa-
ratrix at exactly the point when the bias is so low that two neighboring separatrices touch at an
unstable fixed point. Here, the phase space picture resembles that of an undamped pendulum:
damping and driving force exactly balance each other at the separatrix. In particular, in the weak
damping approximation for the retrapping current, Eq. (4.20), the separatrix is thus just that
of the undamped pendulum.

Finally, once Ic < Ib [Fig. 4.6 (c)] the attractive regions of the trapped states have shrunk
away, and the running state is the only steady state of the system.

4.3 Noise-affected Josephson diodes

We focus now on the bistable regime of Fig. 4.6 (b). In the presence of noise, the system transits
between the trapped and running state. In order to extract the transition rates analytically we
employ the Fokker-Planck equation associated to the stochastic dynamics of Eq. (4.10). It is

∂

∂τ
p =

{
−v ∂

∂φ
+

∂

∂v

[
u′(φ) + id(v) +

1

2

∂

∂v
k(v)

]}
p ≡ Lp, (4.21)

2We will use the terms trapped and running state for both the attractive region as well as the attractors, i.e. the steady states.
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wherep = p(τ ;φ, v) is the probability density to find the system at the phase-space point (φ, v)
at time τ , given initial data p(τ0;φ0, v0). We also defined the forward Fokker-Planck operator
L. From the transition rates corresponding to the switching and retrapping process we can then
infer the switching and retrapping current.

Before we get to that, we will briefly show that our choice of noise correlations k(v) =

2θid(v)/v is consistent with detailed balance. This is relevant, as in the literature sometimes
the static nonlinear conductance gs(v) = id(v)/v is replaced by the differential nonlinear con-
ductance gd(v) = did(v)/dv [228].

4.3.1 Equilibrium distribution and detailed balance

Consider ib = 0, such that the washboard potential is untilted, u(φ) = u0(φ). The Fokker-
Planck equation is a continuity equation in phase space,

∂p

∂τ
= −∇ · j, ∇ =

(
∂

∂φ
,
∂

∂v

)T
, (4.22)

with probability current density

jφ = vp, jv = −
[
u′0(φ) + id(v) +

1

2

∂

∂v
k(v)

]
p. (4.23)

One may separate the current density into a reversible and an irreversible contribution, j =

jrev + jirr, with

jrevφ = vp, jrevv = −u′0(φ)p, and jirrφ = 0, jirrv = −
[
id(v) +

1

2

∂

∂v
k(v)

]
p. (4.24)

The stationary solution p0 satisfies∇· js = 0. In equilibrium we expect the stationary solution
to be of the Maxwell-Boltzmann type

p0(φ, v) =
1

N exp

{
−1

θ

[
1

2
v2 + u0(φ)

]}
. (4.25)

(Note that such a global Maxwell-Boltzmann distribution would not be normalizable and hence
not a valid solution for the tilted washboard potential, that is in the presence of a bias current
ib ̸= 0.) This clearly satisfies∇·jrevs = 0. The stationary Fokker-Planck equation then becomes
∇· jirrs = 0. Demanding that current densities vanish at v → ±∞ this translates to jirrs = 0 or

[
id(v) +

1

2

∂

∂v
k(v)

]
p0 = 0, (4.26)
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which is easily integrated to give

p0(φ, v) ∝ exp

{
−
∫ v

0

dv′
[
2id(v

′) + k′(v′)

k(v′)

]}
. (4.27)

Consistency with Eq. (4.25) implies

k′(v)− vk(v)

θ
+ 2id(v) = 0. (4.28)

This is solved by

k(v) = 2ev
2/2θ

∫ ∞

v

dv′e−v
′2/2θid(v

′), (4.29)

where we have already specified an integration variable such that the result reduces to the famil-
iar result for the case of Ohmic friction (see below). In the limit of small θ, the integral may be
evaluated as

k(v) = 2

∫ ∞

v

dv′e−(v
′−v)(v′+v)/2θid(v

′) ≃ 2θ
id(v)

v
. (4.30)

For Ohmic dissipation, id(v) = gv, where g is the dimensionless conductance, this is just the
familiar Johnson-Nyquist noise k = 2θg.

The condition jirrs = 0 corresponds to detailed balance in the Fokker-Planck framework. It
guarantees that the stationary distribution is given by Eq. (4.25). For low-temperatures detailed
balance is satisfied if the noise correlation has the form in Eq. (4.30), while for higher temper-
ature, one would have to use the modified noise correlator in Eq. (4.29). We assume detailed
balance and low temperatures throughout, such that the noise amplitude is given by Eq. (4.30).

4.3.2 Distribution for large bias current

At finite bias current, the Maxwell-Boltzmann distribution is no longer an adequate descrip-
tion of the global steady state: If we take φ to be valued in [0, 2π), the Maxwell-Boltzmann
distribution is not periodic. If we instead to take φ to be valued inR, the Maxwell-Boltzmann
distribution is not normalizable. Furthermore, we expect a finite probability current in the φ
direction, Jφ =

∫
dv jφ, due to phase diffusion, or if ib is sufficiently large, due to the average

velocity in the running state.
To gain intuition for the nonequilibrium running state we consider briefly the limit of large

bias ib ≫ us(φ), so that we can neglect the periodic potential. The corresponding steady state
distribution is independent of φ, such that∇ · j = ∂vjv. Demanding that current densities
vanish at v → ±∞, we obtain the steady state solution

p0(v) ∝ exp

{
−
∫ v

0

dv′
[
2(id(v

′)− ib) + k′(v′)

k(v′)

]}
. (4.31)
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Employing detailed balance, the distribution simplifies to

p0(v) ∝ exp

{
−1

θ
Φ(v)

}
, Φ(v) =

∫ v

0

dv′
[
1− ib

id(v′)

]
v′. (4.32)

The non-equilibrium potential Φ clearly has a minimum at vd with id(vd) = ib. Furthermore,
it diverges for v → ±∞, and therefore the distribution is manifestly normalizable. For small
temperatures the distribution is strongly peaked around this minimum. In particular, this im-
plies the probability flux in φ-direction is

Jφ =

∫
dv jφ =

∫
dv vp0(v) ≃ vd. (4.33)

The mathematics are complicated drastically once a periodic potential is included as the cur-
rent densities are then no longer constant along a given direction. Provided the temperature is
sufficiently low, one can make progress with a WKB approximation. To this end, one uses the
Ansatz

p0(φ, v) ≃ A(φ, v) exp

{
−1

θ
W (φ, v)

}
, (4.34)

whereA(φ, v) is independent of θ. Expanding in powers of θ, the Hamilton-Jacobi-type equa-
tion forW (φ, v) follows at order θ−1. It is3

v∂φW −
[
u′(φ) + id(v)−

k(v)

2θ
∂vW

]
∂vW = 0. (4.36)

Note that along any physical trajectory of the deterministic systemW is decreasing, as

dW (φ(t), v(t))

dt
= −k(v)

2θ
(∂vW )2 < 0. (4.37)

Thus, W is a Lyapunov function. In particular, this implies that W is minimal at the steady
states (and by periodicity constant along the running state trajectory).

4.3.3 Transition rates in the bistable regime

For ib in the bistable regime, the above considerations for the steady state break down. Indeed,
we are not interested in the true steady state but rather in the transition frequency between the
metastable trapped and running states. Determination of the rate of transition events under
general circumstances is a complicated but well-studied topic [232]. Importantly, the definition

3An equation forA is obtained at order 1, given by[
k(v)

θ
∂vW − u′(φ)− id(v)

]
∂vA+ v∂φA+

[
k′(v)

θ
∂vW − i′d(v)−

k(v)

2θ
(∂vW )2

]
A = 0. (4.35)
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of transition rates requires a separation of time scales: the distinction of the metastable states
breaks down if the transition rates are not slow compared to equilibration within the metastable
states. Thus, temperatures need to be small compared to the characteristic energy barriers sep-
arating the metastable states. The foundational theory is due to Kramers [233] who studied the
escape from a metastable well in the presence of ohmic friction and noise. Therefore, in the con-
text of metastable states which have equilibrium nature, this topic is often referred to as Kramers
escape. The switching process falls in this category, and we simply extend Kramers approach in
a the weak damping limit to nonreciprocal dissipation and noise. The problem of escape from a
metastable state with nonequilibrium character, such as the running state, is generically much
harder. We will explain how to avoid these difficulties in the present problem below.

The most common approach to calculate the transition rates is the flux-over-population ap-
proach [232–234]. Here, one endows the Fokker-Planck equation with a (possibly extended)
probability source in the metastable state of interest, or more precisely in the attractive region
associated with that state. If the transition rate is much slower than the typical relaxation within
the attractive region, the precise shape of the sources should not matter as the system relaxes to
quasiequilibrium before a transition can be expected. The transition to another state is modeled
by absorbing boundary conditions along the separatrix. By adjusting the strength of the source
terms a non-equilibrium steady state is reached. The transition rate is then given by the ratio of
the probability flux across the separatrix and the average population in the attractive region.

Specifying to the simpler case of the switching process, we may express this mathematically
as,

Lptr = −Jδ(φ− φmin)δ(v) in Ωtr, (4.38a)
ptr = 0 on ∂Ωtr. (4.38b)

where the subscript tr stands for trapped state, we denote the trapped state attractive region by
Ωtr, and the separatrix by ∂Ωtr. Technically, ptr is the Green function of the steady-state Fokker-
Planck equation. The probability flux introduced by the source in the steady state has to satisfy
J =

∫
∂Ωtr

dS · jtr, with probability current defined through Lptr = −∇ · jtr. The switching
rate is then the ratio of flux over population, or

γsw =

∫
∂Ωtr

dS · jtr∫
Ωtr

dφdv ptr
. (4.39)

This is still a difficult problem as the steady state distribution in presence of the fluxes, ptr, re-
mains to be determined. A solution can be obtained straightforwardly for one-dimensional
Fokker-Planck equations. In the following section, we consider weak damping which allows
one to reduce the two-dimensional Fokker-Planck equation [Eq. (4.21)] to an effective Fokker-
Planck equation in the energy only. It is then a simple task to find switching rate and current.
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Figure 4.7: Switching or escape from the trapped state in the weak-damping regime. The phase particle has energy
ε0 < ε < ε0 and is performing nearly undamped oscillations between φL(ε) and φR(ε). Its spatial
distribution f(φ|ε) is proportional to the inverse velocity and thus diverges at the turning points. Due
to damping and thermal noise the energy of the particle fluctuates, eventually driving it across the bar-
rier.

For general damping, due to the nonequilibrium nature of the running state, the retrapping
rate is more difficult to obtain than the switching rate. The classic result for the retrapping rate
is due to Ben-Jacob et al. [235], who employed a WKB approximation to construct a steady
state solution for the running state. In the weak-damping regime, however, the retrapping rate
can also be obtained within the flux-over-population approach [236]. We note that, as a side
result of our calculation, we reproduce the Ben-Jacob result within the latter approach. To our
knowledge this had not been done. Here, the calculation of the retrapping rate goes along the
exact same line as that of the switching rate. In particular, we may introduce a source at some
large velocity (of the same sign as the current bias, and spread out in φ),

Lprun = −J ′δ(v ∓ vlarge) in Ωrun, (4.40a)
prun = 0 on ∂Ωrun. (4.40b)

Here, J ′ = J/2π is the flux density of the source. The retrapping rate is obtained in analogy
to Eq. (4.39). For completeness, it is

γre =

∫
∂Ωrun

dS · jrun∫
Ωrun

dφdv prun
. (4.41)

4.3.4 Switching in the weak-damping regime

In this section we will find an analytical expression for the switching rate and the resulting
switching current in the weak-damping regime. We specify to the trapped state around a given
minimumφmin of u(φ), say the one within 0 < φmin < 2π for concreteness. The escape is over
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the next-in-energy maximum φmax ≷ φmin for ib ≷ 0. Furthermore, we assume bias current in
the bistable regime, i.e. |ib| larger than i0re,±. The barrier height

∆u = u(φmax)− u(φmin) (4.42)

vanishes (and, naturally, the switching rate diverges) as the bias approaches the critical currents.
We thus, consider only bias currents for which the temperature is small, θ ≪ ∆u. As explained
above, the system will then equilibrate to the Maxwell-Boltzmann distribution in proximity to
the minimum, with occasional escape events over the barrier leading to a decrease in the local
population.

Following to the flux-over-population approach we impose absorbing boundary conditions
along the separatrix. We aim to find the retrapping rate at leading order in the damping. Specif-
ically, we assume that id(v)/v ≪ 1. The domain Ωtr can then be approximated by the domain
of bound or oscillatory motion of the undamped problem. While damping leads to corrections
to the precise shape of the attractive region, this will only lead to higher order corrections in the
final results. The domain of bound motion of the undamped problem can be specified solely
by the (conserved) energy,

ε =
1

2
v2 + u(φ). (4.43)

We thus restrict our attention to energies ε0 ≡ u(φmin) < ε < εB ≡ u(φmax) and φ ∈
[φL(εB), φR(εB)]. Here, we defined the left and right turning points of the motion, φL/R(ε).
This setting is sketched in Fig. 4.7 for positive bias. Of course, for ib > 0 (ib < 0) the right (left)
turning point at εB is φmax. The absorbing boundary condition becomes simply ptr(φ, v) = 0

if ε(φ, v) = εB .

Energy diffusion equation in the trapped state

For weak damping id(v)/v ≪ 1 the energy varies slowly with time,

d

dτ
ε = −v id(v) + noise. (4.44)

Here, we use that v ∼ 1 in the trapped state. In particular, the time scale associated with
the dissipation and noise-induced diffusion of the energy is much longer than the period of
the nearly undamped motion in the potential well. This suggests the following approximation
scheme: treat the periodic motion as undamped, evaluate the dissipated energy (energy drift)
and the noise induced energy gain or loss (energy diffusion) within a period of the undamped
motion, and from this construct a Fokker-Planck equation for the energy alone. We used this
literal construction in our paper [IV]. Here, we will present an equivalent but more formal
derivation of the effective Fokker-Planck equation.

75



4 Current-biased Josephson diodes

To this end, starting from Eq. (4.21), we first change variables from (φ, v) to (φ, ε) and then
proceed to average the resulting equation over φ. Expressed in terms of the energy and phase,
the velocity v ≷ 0 is

v ≡ v±(φ, ε) = ±
√
2(ε− u(φ)). (4.45)

We now write the probability distribution as piecewise defined function for positive and nega-
tive velocities, and express both parts as function of ε, i.e. we define f̃±(φ, ε) = p(φ, v±(φ, ε)).
Note that this is not the new probability distribution yet, as we have not included the Jacobian
factor. In the Fokker-Planck equation we may use the relation

− v±∂φf̃± = −
[
v±∂φ + v±

∂v±
∂φ

∂v

]
p = −v±∂φp+ u′∂vp, (4.46)

to eliminate u′(φ). Taking into account also the Jacobian of the transformation, the new prob-
ability density

f±(φ, ε) =

∣∣∣∣
∂v±(φ, ε)

∂ε

∣∣∣∣f̃±(φ, ε) = ±
f̃±(φ, ε)

v±(φ, ε)
, (4.47)

satisfies the Fokker-Planck equation

∂τf± = −∂φ(v±f±) + ∂ε

{[
id(v±)−

k(v±)

2v±

]
(v±f±) + ∂ε

[
v±k(v±)

2
(v±f±)

]}
, (4.48)

for energies ε0 < ε < εB . Note that F± =
∫
dφdε f± is the probability that the velocity is

positive/negative. The domain of the new Fokker-Planck equation has the boundary (φ, ε) =
(φ, u(φ)) = (φL/R(ε), ε), where it satisfies the boundary condition f̃+ = f̃− and hence
v+f+ = −v−f−. Using the detailed balance condition, Eq. (4.28), we can simplify this to

∂τf± = −∂φ(v±f±) + ∂ε{id(v±)[1 + θ∂ε](v±f±)}. (4.49)

Similarly, the source term in Eq. (4.38) becomes

− Jδ(φ− φmin)δ(v − 0+)→ −Jδ(φ− φmin)δ(ε− ε0 − 0+)δ±,+, (4.50)

where we took the liberty to move the source to slightly positive velocities to avoid ambiguities.

In order to eliminateφ from Eq. (4.49), consider the following. In the undamped and noise-
free case, given an energy ε, the distribution forφ is inversely proportional to the velocity at that
point, or more precisely,

f(φ|ε) = 2

τP (ε)
√

2(ε− u(φ))
, φ ∈ [φL(ε), φR(ε)]. (4.51)
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where we defined the period of the bound and undamped motion

τP (ε) =

∫ φR(ε)

φL(ε)

dφ
2√

2(ε− u(φ))
≡
∮

dφ
1

v(φ, ε)
. (4.52)

This is in fact the steady-state solution to Eq. (4.49) if one sets id = k = 0. The contour
integral is simply along the forward and backward branch of the periodic motion, i.e. we define
∮

dφ g(φ, v(φ, ε)) =

∫ φR(ε)

φL(ε)

dφ g(φ, v(φ, ε)) +

∫ φL(ε)

φR(ε)

dφ g(φ,−v(φ, ε)), (4.53)

for any function g on phase space. We proceed by making the ansatz

f±(φ, ε) = F±f(φ|ε)f(E), (4.54)

i.e. we assume the system behaves as if undamped given its energy, but the energy is distributed
according to f(ε). Here, F± = 1/2, as the undamped system spends the same amount of
time moving forward and backward. This is due to the time-reversal symmetry of Newton’s
equation of motion. We now plug Eq. (4.54) into Eq. (4.49), sum over ± and integrate over
φ ∈ [φL(ε), φR(ε)]. Using the Leibniz rule,

∂ε

∫ φR(ε)

φL(ε)

dφ g(φ, ε) =
∂φR
∂ε

g(φR, ε)−
∂φL
∂ε

g(φL, ε) +

∫ φR(ε)

φL(ε)

dφ∂εg(φ, ε), (4.55)

and the fact that v(φL/R, ε) = 0 as well as id(0) = 0, we obtain the desired Fokker-Planck
equation for f(ε),

∂τf(ε) = ∂ε

{
εd(ε)[1 + θ∂ε]

f(ε)

τP (ε)

}
, (4.56)

where we defined the dissipated energy per period of the oscillatory motion,

εd(ε) =

∮
dφ id(v(φ, ε)) =

∫ τP (ε)

0

dτ vε(τ)id(vε(τ)). (4.57)

As the integral includes forward and backward motion, any asymmetry in the dissipative current
is ineffective and, as a consequence, Eq. (4.56) is completely invariant under ib → −ib if the
potentialus is symmetric. In particular, this implies that the switching rate determined from the
effective Fokker-Planck equation (which determines the switching current) will be asymmetric
only if the potential us is asymmetric, demonstrating the first part of the correspondence given
in Eq. (4.2).
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To make this more explicit, consider symmetricus(φ) = us(−φ). It follows that the velocity
and turning points satisfy

v(φ; ib) = v(−φ;−ib), φL(ib) = −φR(−ib). (4.58)

With this, it is straightforward to show that εd is manifestly symmetric in ib,

εd(ib) =

∫ −φL(−ib)

−φR(−ib)
dφ [id(v(−φ;−ib))− id(−v(−φ;−ib))] (4.59a)

=

∫ φR(−ib)

φL(−ib)
dφ [id(v(φ;−ib))− id(−v(φ;−ib))] = εd(−ib). (4.59b)

We then conclude that to leading order in the weak-damping limit, the Eq. (4.56) and hence
the switching rate and switching current is reciprocal even when the dissipative current is non-
reciprocal.

Switching rate and switching current

We now employ the flux-over-population method to calculate the switching rate, i.e. the rate
of transitions from the potential well. The steady-state effective Fokker-Planck equation for ε
including the source term introduced in Eq. (4.38) now takes the form

− Jδ(ε− ε0 − 0+) = ∂ε

{
εd(ε)[1 + θ∂ε]

f(ε)

τP (ε)

}
≡ −∂εjε, (4.60)

where in the second equality we defined the probability current in ε-direction, jε. Integrating
with respect to ε once gives J = jε(ε)− jε(ε0). We assume that the probability flux originates
from the source only, such that jε(ε0) = 0. Thus, we have the equation

J = −εd(ε)[1 + θ∂ε]
f(ε)

τP (ε)
. (4.61)

Translating the boundary condition ptr = 0 on ∂Ωtr to f(εB) = 0, we can solve this straight-
forwardly. The result is

f(ε) = JτP (ε) exp
{
−ε
θ

}∫ εB

ε

dε′
exp
{
ε′

θ

}

θεd(ε′)
≃ J

τP (ε)

εd(εB)
exp

{
−ε− εB

θ

}
. (4.62)
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In the second step we assumed low temperatures, θ ≪ εB , so that the integral is dominated by
its upper boundary. The inverse transition rate is given by the ratio population/flux [c.f. Eq.
(4.39)], i.e. it is

γ−1sw =
1

J

∫ εB

ε0

dε f(ε) ≃ θτP (ε0)

εd(εB)
exp

{
εB − ε0

θ

}
, (4.63)

where in the second equality we again invoked θ ≪ εB . The period at energy ε0 corresponds
to motion right at the potential minimum and is thus given by the inverse plasma frequency
2π/ωp (here the dimensionless plasma frequency is ωp = Ωp(ib)/Ωp(0), note that ωp ̸= 1 at
finite ib). The switching rate is thus

γsw ≃
εd(εB)ωp

2πθ
exp

{
−∆u

θ

}
, (4.64)

where ωp, ∆u = u(φmax) − u(φmin) and εd(εB) depend on the bias ib. One can further
simplify this by approximating the potential well as quadratic in the expression for the velocity,
v±(φ, εB) ≃ ±

√
2∆u− ω2

pδφ
2 such that

εd(εB) =

∫

v real
dφ [id(v+)− id(v−)] (4.65a)

≃
∫ 1

a

− 1
a

d(δφ)
[
id

(√
2∆u

√
1− a2δφ2

)
− ...

]
, (4.65b)

where we used the shorthand a2 = ω2
p/2∆u. With this the switching rate becomes

γsw ≃
geff∆u

θ
exp

{
−∆u

θ

}
, (4.66)

in terms of the effective dimensionless conductance

geff =

∫ π

0

dx

π
sinx

[
id

(√
2∆u sinx

)
− id

(
−
√
2∆u sinx

)]

√
2∆u

. (4.67)

Both ∆u and hence geff depend on ib. For an Ohmic junction id(v) = gv, it is geff = g.

We now derive an analytical expression for the switching current. When ramping up (or
down) the bias current ib from zero at the ramp rate a > 0,

ib(τ) = ±aτ, (4.68)
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the junction will eventually escape from the trapped state and abruptly switch into the running
state. The bias levels at which this is happening are the switching currents isw,±. The probability
Ptr for the system to remain in the trapped state satisfies the rate equation

dPtr

dτ
= −γsw(τ)Ptr. (4.69)

The escape rate γsw(τ) from the trapped to the running state depends on time, as the barrier
height depends on the bias current. Solving for Ptr(τ) with initial condition Ptr(τ) = 1 gives

Ptr(τ) = exp

{
−
∫ τ

0

dτ ′ γsw(τ
′)

}
. (4.70)

In view of Eq. (4.68), we can replace the time argument by current,

Ptr(ib) = exp

{
∓1

a

∫ ib

0

di′b γsw(i
′
b)

}
= exp

{
−1

a

∫ |ib|

0

di γsw(±i)
}
. (4.71)

This expression can be used to define the average switching currents isw,± > 0 through

Ptr(ib = ±isw,±) =
1

2
. (4.72)

Due to the exponential factor in Eq. (4.64), the integrand increases rapidly with increasing i
due to the decreasing barrier, so that the integral is dominated by bias currents i ∼ isw,±. This
allows us to approximate

a ln 2 ≃ θ

(∣∣∣∣
dib
dεB

∣∣∣∣γsw
)

ib=±isw,±

. (4.73)

Solving for the exponent, this yields

∆u(±isw,±) = θ ln

(
εd(εB)ωp

2πa ln 2|φmax − φmin|

)

ib=±isw,±

. (4.74)

where we used that ∣∣∣∣
d∆u

dib

∣∣∣∣ =
∣∣φmax − φmin

∣∣. (4.75)

To make analytical progress, we approximate the bias-current dependence of the potential bar-
rier as

∆u(ib) ≃ ∆us

(
1∓ ib

ic,±

)µ±
, (4.76)
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where we defined the exponent

µ± =
∣∣φmax

s − φmin
s

∣∣
±
ic,±
∆us

, (4.77)

with |φmax
s − φmin

s |± = limib→0± |φmax − φmin|. This expression interpolates between ∆us at
zero bias and ∆u = 0 at the critical currents, and correctly reproduces the linear term in the
small - ib expansion. It is moreover a rather accurate approximation to set isw,± ≃ 0 under the
logarithm (so that ωp = 1 in particular). We then find

isw,± ≃ ic,±

{
1−

[
θ

∆us
ln

(
εd(us(φ

max
s ))

2πa ln 2|φmax
s − φmin

s |±

)]1/µ±}
. (4.78)

This is the central result of this section (together with the expression for the retrapping cur-
rent, Eq. (4.101) below). We note again that this expression is non-reciprocal only if us and
hence the current-phase relation is asymmetric. In particular, it is completely independent of
the asymmetry of id(v). Indeed, from the definition of εd =

∮
dφ id(v) it follows that only

the anti-symmetric part of id enters in the switching current Eq. (4.78).

We finally comment on the requirements for the validity of the weak damping approxima-
tion. Writing a differential equation for the distribution function f(ε) requires that it must be
smooth on the scale of the dissipated energy εd per period. Provided we consider configurations
sufficiently close to equilibrium, this is guaranteed as long as εd ≪ θ.

4.3.5 Retrapping in the weak-damping regime

We now consider the retrapping process in the weak-damping regime [id/v ≪ 1]. In order
to have a well defined metastable running state we furthermore require the temperature to be
sufficiently low compared to a characteristic energy to be specified below. As above, we im-
pose absorbing boundary conditions along the separatrix. Noting that the typical bias levels
are already first order in the damping (as this is where the retrapping typically occurs) we may
approximate the running domain Ωrun as that of the undamped and undriven system. In par-
ticular, this implies that the domain of the running state is specified only by the energy of the
undriven system,

ϵ =
v2

2
+ u0(φ). (4.79)

Alternatively, one may view ϵ as the true energy of the system and the bias current as an external
force dragging the phase particle along the periodic landscape. This is illustrated in Fig. 4.8.
In this picture, the running state corresponds to rotational motion, i.e. to energies ϵ > ϵB =

us(φ
max
s ). The boundary condition becomes prun(φ, v) = 0 for ϵ(φ, v) = ϵB .
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Figure 4.8: Retrapping process in the weak-damping regime (untilted washboard picture). The phase particle is
dragged along a periodic potential landscape by the constant force ib. Its energy (red-dashed line) is
almost constant as the dissipated energy and the work done on the particle by the external force nearly
cancel each other. The velocity (black line) is a weak function of position, with maximum where the
potential energy is minimal. The energy drifts and diffuses due to the frictional and noise forces. Once
it reaches the barrier ϵB , the particle does not have any kinetic energy at the maxima and becomes
trapped.

Energy diffusion equation in the running state

In the running state the energy ε = 1
2
v2 + u(φ) is no longer a slow variable, as dε/dτ ∼

vdid(vd) ∼ vdib ∼ i2b/g ≫ 1 in the weak-damping regime. However, ϵ is a slowly varying
quantity due to the near cancellation of the frictional and driving forces,

d

dτ
ϵ = v(ib − id(v)) + noise. (4.80)

Here, we derive an effective Fokker-Planck equation for ϵ in the running state, i.e. for energies
ϵ > ϵB = u0(φ

max
0 ). The Fokker-Planck equation is derived as in the previous section, but due

to the altered definition of the energy, a term due to the bias current remains. The transformed
Fokker-Planck equation is

∂τf± = −∂φ[v±f±] + ∂ϵ

{[
id(v±)− ib −

k(v±)

2v±

]
v±f± + ∂ϵ

[
v±k(v±)

2
v±f±

]}
, (4.81)

where the velocity is now a function of φ and ϵ, v±(φ, ϵ) = ±
√

2(ϵ− u0(φ)). We are inter-
ested in the distribution around the (deterministic) running state i.e. we assume the velocity has
the same sign as ib. Furthermore, as the energy varies much slower than φ, we can assume that
the the distribution of the position given the energy is again just the inverse velocity. We hence
make the ansatz

f±(φ, ϵ) = F±f(φ|ϵ)f(ϵ). (4.82)
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4.3 Noise-affected Josephson diodes

We neglect the probability for velocities opposite to the bias, i.e. F± = 1 if sign(ib) = ± and
F± = 0 if not. The normalized conditional distribution for φ is

f(φ|ϵ) = 1

τP (ϵ)
√

2(ϵ− u0(φ))
, τP (ϵ) =

∫ 2π

0

dφ
1√

2(ϵ− u0(φ))
. (4.83)

Note that φ now takes values in [0, 2π): the motion is no longer oscillatory (or bound) but
rotational (or unbound). Integrating Eq. (4.81) with respect to φ and summing over ±, we
obtain

∂τf(ϵ) = ∂ϵ{εd(ϵ)[1 + θ∂ϵ]− 2π|ib|}
f(ϵ)

τP (ϵ)
. (4.84)

Here, we again assumed that the noise satisfies detailed balance and defined the dissipated energy
per period in the running state,

εd(ϵ) =

∫ ±2π

0

dφ id(±v(φ, ϵ)), ± = sign(ib). (4.85)

Note that the dissipated energy is positive and in particular εd(ϵB) = 2πi0re,±. Eq. (4.84) is
now manifestly asymmetric in ib if id(v) ̸= −id(−v) and u0(φ) = u0(−φ). Furthermore, an
anti-symmetric dissipative current id(v) = −id(−v) implies that εd(ib) = εd(−ib). In this
case Eq. (4.84) is invariant under a sign change of the bias current, no matter the shape of the
potential, or in other terms no matter the current-phase asymmetry.

Retrapping rate and retrapping current

In order to find the retrapping rate, we need to solve the effective Fokker-Planck equation (4.84)
in the steady state with probability flux J introduced at a large energy, c.f. Sec. 4.3.3. The
resulting equation is

J = {εd(ϵ)[1 + θ∂ϵ]− 2π|ib|}
f(ϵ)

τP (ϵ)
(4.86)

for ϵ > ϵB subject to absorbing boundary f(ϵB) = 0. This is readily solved as

f(ϵ) = JτP (ϵ) exp

{
−F (ϵ)

θ

}∫ ϵ

ϵB

dϵ′
1

θεd(ϵ′)
exp

{
F (ϵ′)

θ

}
, (4.87)

where the potential function F is defined as

F (ϵ) =

∫ ϵ

ϵ0

dϵ′
[
1− 2π|ib|

εd(ϵ′)

]
. (4.88)

Here, we define the energy ϵ0 via
εd(ϵ0) = 2π|ib|. (4.89)
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Hence, ϵ0 is the energy of the undamped and unforced trajectory for which the dissipation func-
tion balances the external force ib. In other words, it characterizes the steady state in the weak-
damping regime. We make the assumption, that there is only one such energy, i.e. that id(v)
allows only one steady state. This means that F has only one minimum at ϵ0. Furthermore,
this implies thatF is a monotonously decreasing function for ϵB < ϵ < ϵ0 and monotonously
increasing function for ϵ > ϵ0.

The inverse retrapping rate is given by the ratio population/flux =
∫
dϵf/J , i.e. by

γ−1re =

∫ ∞

ϵB

dϵ τP (ϵ) exp

{
−F (ϵ)

θ

}∫ ϵ

ϵB

dϵ′
1

θεd(ϵ′)
exp

{
F (ϵ′)

θ

}
. (4.90)

For low temperatures this can be evaluated straightforwardly. The integral over ϵ receives its
main contribution from the minimum of F , i.e. from ϵ0, while the integral over ϵ′ receives its
main contribution from maxima of F . The the maxima are at the boundary of the integration
domain. As the first integral is dominated by ϵ = ϵ0, the second integral will be dominated by
its lower boundary. This gives the expression

γ−1re ≃ τP (ϵ0)

√
2πθ

F ′′(ϵ0)

exp
{
F (ϵB)
θ

}

εd(ϵB)[−F ′(ϵB)]
. (4.91)

In order to obtain a compact expression for general id(v)we make the following simplifications.
First, we rewrite F (ϵB) as an integral over the current i(ϵ) = εd(ϵ)/2π ∈ [i0re,±, ib] (note that
εd increases monotonically from ϵB to ϵ0). This gives,

F (ϵB) = 2π

∫ i0re,±

ib

di [ε′d(ϵ(i))]
−1
[
1− |ib|

i

]
≃ 2π

ε′d(ϵ0)|ib|
(ib ∓ i0re,±)2

2
. (4.92)

Second, we may find expressions for τP (ϵ0) and ε′d(ϵ0) in terms of the approximate running
state trajectory vrun(φ) ≃ vd − u0(φ)/vd. At leading order in vd = i−1d (ib) this gives

τP (ϵ0) ≃
2π

vd
, ε′d(ϵ0) ≃

2πi′d(vd)

vd
. (4.93)

Altogether we have the closed form expression for the retrapping rate,

γre =

√[
gd

gs

]

vd

(ib ∓ i0re,±)2
2πθ

exp

{
−
[

1

gd gs

]

vd

(ib ∓ i0re,±)2
2θ

}
. (4.94)

Here, we defined the static and differential conductances,

gd(v) =
did
dv

(v), gs(v) =
id(v)

v
. (4.95)
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respectively. Asymmetric damping may enter in several ways. First, it may enter through the
noisefree retrapping current i0re,± which is manifestly asymmetric in damping. Second, it may
enter through the conductances gd(±|vd|) and gs(±|vd|). For ohmic friction id(v) = gv, the
noisefree retrapping current can be approximated as i0re ≃ 4g/π and we reproduce the classic
result [235],

γre =

√
(ib/g − 4/π)2

2πθ
exp

{
−(ib/g − 4/π)2

2g2θ

}
. (4.96)

The retrapping currents ire,± may be defined in a similar manner as the switching currents.
The bias current is now ramped down (up) from a sufficiently large starting value ±i0 with
i0 ≫ ire,±, i.e.

ib(τ) = ±(i0 − aτ). (4.97)

The average retrapping currents are defined as the bias level at which the probability for having
retrapped reaches 1/2. This gives

1

2
= exp

{
1

a

∫ ±ire,±
i0

di γre(±i)
}
, (4.98)

Due to the exponential factor inγre the main contribution to the integral stems from ib ∼ ire,±.
This allows one to approximate [vd = i−1d (±ire,±)]

a ln 2 ≃ 1√
2πθ

√[
gd

gs

]

vd

∫ ∞

ire,±

di (i∓ i0re,±) exp
{
−
[

1

gdgs

]

vd

(i∓ i0re,±)2
2θ

}
(4.99)

=

√
θ

2π
[g3dgs]

vd

exp

{
−
[

1

gdgs

]

vd

(ire,± − i0re,±)2
2θ

}
. (4.100)

Setting ire,± → i0re,± in the preexponential factor and solving for ire,± gives

ire,± = i0re,± +

[√
θgdgs ln

(
θg3dgs

2π(a ln 2)2

)]

vd=i
−1
d (±i0re,±)

. (4.101)

This is the central result of this section (together with the expression for the retrapping current,
Eq. (4.78) above). An asymmetric dissipative current clearly leads to nonreciprocity ire,+ ̸=
ire,− in Eq. (4.101). Conversely, symmetric dissipation gives reciprocal retrapping currents even
if the current-phase relation is asymmetric. This is inherited from the expression for i0re,± in the
weak damping limit, Eq. (4.20).

The weak-damping approximation of the running state Fokker-Planck equation is well con-
trolled provided that (εd − 2π|ib|)2/εd ≪ θ. In the low-damping regime, the relevant bias
levels are also linear in εd, such that the condition of validity again is εd ≪ θ.
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We have thus established analytical evidence that confirms the numerical picture of Sec. 4.1:
in the weak-damping regime the correspondence given in Eq. (4.2) is exact. We also believe that
the correspondence holds also in the regime of low temperatures. In this case, the switching
rate prefactor (the exponential factor remains the same) is controlled by the population near
the trapped state attractor, as well as the phase space flow in the proximity of the unstable fixed
point. If temperature is sufficiently low, this warrants linearization of the frictional forces, ren-
dering nonlinearities irrelevant [232, 233]. We do not have a clear picture of the retrapping pro-
cess though: while it is clear that it will be manifestly asymmetric if the dissipative current is
asymmetric, it is hard to establish the independence of the retrapping rate with respect to the
potential shape.

4.4 Phase action

In the previous sections we have developed a phenomenological theory of Josephson diode ef-
fects in current-biased junctions. In particular, based on the extended RCSJ model we have
established a correspondence between asymmetry in the current-phase relation and nonrecip-
rocal switching currents, and asymmetry in the dissipative current and nonreciprocal retrapping
currents, see Eq. (4.2).

We now develop a microscopic theory of the Josephson diode effect in a tunneling junction,
with the aim of explicitly demonstrating the origin of asymmetry in the current-phase rela-
tion and the dissipative current. While we already established in Sec. 2.2 that an asymmetric
current-phase relation can be obtained in an equilibrium calculation provided broken time re-
versal symmetry, we have not touched upon the microscopic origin of the dissipative current
and the requirements for its asymmetry. Indeed, the dissipative current in a tunneling junction
receives contributions from several sources: First, at finite voltages the superconducting elec-
trodes may exchange individual quasiparticles. This gives rise to a dissipative normal current,
Iqp. We will derive explicitly how this contribution enters the RCSJ equation of motion within a
streamlined Ambegaokar-Eckern-Schön theory [226, 227], including also higher order processes
such as multiple Andreev reflection. Second, the electromagnetic environment contributes to
the dissipative current. We will not explicitly include this into our microscopic theory and in-
stead augment the resulting extended RCSJ equation by a phenomenological environmental
impedanceZ(ω) and its associated current Iem(t) =

∫
dt′ [
∫
dω Z−1(ω)e−i(t−t

′)ω]V (t′).
We may state the central results of this section as follows. The dissipative current that enters

the extended RCSJ equation may be written as

Id(t) = Iqp(
ℏ
2e
φ̇(t)) + Iem(t), (4.102)

where Iqp(V ) is the voltage-biased quasiparticle current, provided that the rate of change of
the voltage is slow compared to the typical time scales of the superconducting electrodes. This
is guaranteed if the capacitance of the junction is sufficiently large. Furthermore, the current-
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phase relation entering the RCSJ equation receives voltage dependent corrections to its equilib-
rium form. We argue that these are unimportant for a qualitative picture. Finally, we establish
the nonlinear fluctuation-dissipation theorem Eq. (4.5) at leading order in the tunnel coupling.
We give explicit expressions for quasiparticle current, the current-phase relation, and the noise
correlator to all orders in the tunneling coupling.

An equation of motion for the dynamics of the phase difference involves voltages and as such
necessitates a nonequilibrium description. For the problem at hand, the Keldysh field integral
technique [170, 231] is appropriate: it allows one to isolate the phase difference as the low energy
degree of freedom describing the dynamics of the tunneling junction, and provides seamless in-
tegration with the Green function formalism necessary to formulate the complicated tunneling
processes in a compact manner. This section is structured as follows. In Sec. 4.4.1 we define
the microscopic Hamiltonian and sketch how the Keldysh field integral is constructed. We pro-
ceed by deriving an effective action for the phase difference, which we then simplify within a
semiclassical expansion, in Secs. 4.4.2-4.4.5. Finally, in Secs. 4.4.6 and 4.4.7 we obtain a time-
local description of the phase dynamics through an adiabatic approximation and in Sec. 4.4.9
evaluate the resulting expressions in the tunneling regime.

4.4.1 Microscopic model and Keldysh formalism

We model a Josephson junction by two tunnel coupled superconductors. The full Hamiltonian
may be decomposed as

H = HL +HR +Htun +Hcap, (4.103)

where the superconducting electrodes are described by (α = L/R)

Hα =

∫
d3x

[∑

σσ′

ψ†α,σ(x)hσσ′(k̂)ψα,σ′(x)− g ψ†α,↑(x)ψ†α,↓(x)ψα,↓(x)ψα,↑(x)
]
, (4.104)

where k̂ = −i∇ and the tunnel coupling is described by

Htun =
∑

σ

[
ϑψ†L,σ(0)ψR,σ(0) + h.c.

]
. (4.105)

We specified to simple s-wave singlet pairing to avoid unnecessary complications. Note that our
results extend straightforwardly to superconductors with single component order parameter. In
contrast to our considerations in Chapter 2, we now explicitly include the spin-orbit coupling of
the superconducting electrodes as this represents an essential ingredient for asymmetric current-
phase relations in the tunneling model. We model the effects of Coulomb repulsion due to
charge imbalances between the electrodes within a capacitive approximation,

Hcap =
1

8C
(QL −QR)

2. (4.106)
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Figure 4.9: Contour C used in Keldysh formalism. We denote the position along C by s. The latter can be taken
apart into a forward branch and a backward branch, each parametrized by time t ∈ {−∞,∞}.

Here, the total charge in electrode α is given by

Qα = e

∫
d3x

∑

σ

ψ†α,σ(x)ψα,σ(x), (4.107)

andC denotes the geometric capacitance of the junction. The operator measuring the current
across the junction is

I = ie
∑

σ

[
ϑψ†L,σ(0)ψR,σ(0)− h.c.

]
. (4.108)

Note that this can be obtained from Htun by differentiating with respect to the phase of ϑ.
Letting ϑ→ ϑe

i
2
a, it is

I = 2e
∂

∂a
Htun(a)

∣∣∣∣
a=0

. (4.109)

The Keldysh field integral formalism extends the functional integral formalism to non-equi-
librium many-body systems. As usual one defines a generating functional from which expec-
tation values and correlation functions of observables can be inferred. Here, the generating
functional is defined as

Z[η] = tr

[
TC exp

{
−i
∫

C
dsHη(s)

}
ρ(ti → −∞)

]
, (4.110)

where the ρ(ti → −∞) is the initial density matrix in Fock space, s parametrizes the Keldysh
contour C shown in Fig. 4.9, and TC is the associated contour ordering symbol. We can decom-
pose the Keldysh contour into a forward and a backward branch parametrized only by time, i.e.
we write s = (±, t). The moments of a (Schrödinger picture) observableO can be obtained
by coupling the Hamiltonian to a source field η with opposite signs on the two branches of the
contour,

Hη(s) = H + η(s)O = H +
1

2
λ(s)η(t)O. (4.111)
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Here, we introduced the function λ(s) which equals to one on the forward branch, and minus
one on the backward branch, λ(s = (±, t)) = ±1. The expectation value of O at time t is
then simply

⟨O(t)⟩ = i
δ

δη(t)
lnZ[η]

∣∣∣∣
η=0

. (4.112)

Note that the generating functional is normalized such that Z[0] = 1. Higher derivatives of
lnZ yield symmetrized connected correlation functions of the observableO (see also App. B.4).

In our case, the Hamiltonian H(t) describes the two coupled superconductors in terms of
fermion fields, ψ ≡ ψL/R,σ(x). It is then possible to write the generating function as a Grass-
mann functional integral [231]

Z[η] =
∫
DψDψ exp

{
iSη[ψ, ψ]

}
(4.113)

with Keldysh action (suppressing the field indices)

Sη[ψ, ψ] =

∫

C
ds

{
ψ(s)i

∂

∂s
ψ(s)−Hη(ψ(s), ψ(s))

}
. (4.114)

Note that we have dropped the dependence on the initial density matrix here. To see why we can
safely do so, consider the following. We expect on physical grounds that the microscopic degrees
of freedom relax on a timescale set by the inverse superconducting gap. In particular, we will
not be interested in the microscopic transients but rather in the slow evolution of the phase
difference, and hence, only the initial value of the phase difference should be of importance.
This can be implemented easily once a classical equation of motion has been derived.

4.4.2 Hubbard-Stratonovich decoupling and effective phase action

In order to proceed, we now decouple those terms in the action which are quartic in the fermion
operators by means of a Hubbard-Stratonovich transformation. Consider first the attractive
interaction in the superconducting leads. It may be decoupled by introducing the fluctuating
complex order parameter field ∆α(x, s) = |∆α|(x, s) exp{iθα(x, s)} for both superconduc-
tors. This gives

exp

{
ig

∫

C
ds

∫
d3xψα,↑(x, s)ψα,↓(x, s)ψα,↓(x, s)ψα,↑(x, s)

}

∝
∫
D∆D∆exp

{
−i
∫

C
ds

∫
d3x

[
|∆α|2
g

+∆αψα,↓ψα,↑ + ψα,↑ψα,↓∆α

]}
. (4.115)
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By gauge invariance, only fluctuations of the phase difference

ϕ(s) = θL(s)− θR(s) (4.116)

are physical. The Jacobian associated with the transformationD∆D∆ → D|∆|Dϕ is trivial.
Following the discussion in Sec. 2.2, we ignore fluctuations of the order parameter magnitude
as well as spatial fluctuations of the order parameter phase, i.e. ∆α(x, s) = ∆exp{iθα(s)},
where we set∆ ≡ |∆| > 0 and constant. Similarly, the capacitive interaction may be decoupled
by introducing a Hubbard-Stratonovich field V (s). WithQ = (QL −QR)/2, it is

exp

{
−i
∫

C
ds
Q2(s)

2C

}
∝
∫
DV exp

{
−i
∫

C
ds

[
−C

2
V 2(s)− V (s)Q(s)

]}
. (4.117)

V (s) describes the voltage fluctuations associated with the charging term.
Now, the action is quadratic in the fermion fields. After performing the associated Grass-

mann integrals the partition function is (see App. B.5 for details on Grassmann Gaussian inte-
grals in the four-component Nambu framework)

Z ∝
∫
Dϕ
∫
DV exp

{
i

∫

C
ds
C

2
V 2(s) +

1

2
Tr ln

[
iG−1

]}
, (4.118)

where the contour-ordered Nambu Green function G includes the coupling between both
leads, and depends on the Hubbard-Stratonovich fields ϕ(s) and V (s). We also define the
Green function diagonal in the leads, G0 = diag(G0L,G0R). Setting θL + θR = 0, we may
write G0 as

G−10 = i
∂

∂s
−
{
h̃(k̂) + ∆eiρz

ϕ(s)
2 τ+ + e−iρz

ϕ(s)
2 τ− −

1

2
eV (s)ρzτz

}
, (4.119)

where we introduce the particle-hole diagonal part of the Bogoliubov-de Gennes Hamiltonian
h̃(k),4 and define a set of Pauli matrices ρi in electrode space (L,R). The trace Tr is over the
Keldysh contour, position, electrode space, particle-hole space and spin. It will prove useful
to eliminate the phase ϕ from the pairing term by means of a unitary transformation G−10 →
UG−10 U † withU(s, s′) = exp{−iρzτzϕ(s)/4}δC(s−s′). The transformedG0 takes the form

G−10 = i
∂

∂s
−
{
hBdG(k̂)−

1

2

[
eV (s)− 1

2

∂

∂s
ϕ(s)

]
ρzτz

}
. (4.120)

The full Green function G is related to G0 via the Dyson equation

G = (1− G0T )−1G0 = G0 + G0T G. (4.121)

4Expanding in spin Pauli matrices σi, the particle-hole diagonal part of the Bogoliubov-de Gennes Hamiltonian is h̃(k) =
h0(τzk)τz + h(τzk) · σ.
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In the transformed frame, the tunneling operator T explicitly depends on the phase difference,

T (x, x′; s− s′) = T (s)δ(x)δ(x′)δC(s− s′), T (s) = ϑe
i
2
ϕ(s)τzτzρ+ + h.c. . (4.122)

Here, we absorbed any complex phase of ϑ into ϕ such that ϑ is real.
Plugging the Dyson equation into the trace-log part of the action gives two terms. The first

term is given by Tr ln[iG−10 ]. This is simply the part of action which describes the two super-
conductors individually. We will only be interested in its dependence on V and ϕ. The leading
order term in an expansion in powers of eV − 1

2
∂sϕ is given by

δS ≃ 1

2
Vol.× ν0

∫

C
ds
[
eV (s)− 1

2

∂

∂s
ϕ(s)

]2
. (4.123)

This essentially pins the voltage V (s) to the phase difference by bulk energies, resulting in the
Josephson relation V = 1

2e
ϕ̇ (mathematically, this corresponds to evaluating theDV integral

in the stationary phase approximation). The second term is Tr ln[1 − G0T ]. This gives rise to
the quasiparticle and supercurrent contributions to the action and will be discussed in detail
below. At this stage the phase-dependent part of the partition function is

Z ∝
∫
Dϕ exp

{
i

∫

C
ds

C

8e2

[
∂

∂s
ϕ(s)

]2
+

1

2
Tr ln[1− G0T ]

}
(4.124a)

≡
∫
Dϕ exp{iS[ϕ]}. (4.124b)

Note that in the absence of source fields, once the normalization has been accounted for, it is
stillZ = 1.

4.4.3 Semiclassical mean-field equations

We will now investigate the mean field behavior of S[ϕ], i.e. we treat the integration over Dϕ
within a stationary phase approximation. We will find that this procedure gives the determin-
istic classical equation of motion for the phase difference across the Josephson junction.5 To
proceed, we split ϕ(s) into even and odd components with respect to the Keldysh contour,

ϕ(s) = φ(t) +
1

2
λ(s)χ(t). (4.125)

Within the classical approximation,φbecomes the degree of freedom associated with the Joseph-
son junction, while χ is a purely quantum object. To see this, note that quantum probabilities

5Indeed, one may show that this corresponds to the classical limit ℏ → 0 upon reintroducing s → s/ℏ and rescaling
χ→ ℏχ, where χ is the quantum component of the phase difference field to be introduced below [170, 231]. Note that
ℏ still enters in the capacitive term, but "disappears" once this is expressed in terms of the voltage V .
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involve products of amplitudes corresponding to differing forward and backward (conjugate)
processes, while classical probabilities involve only the diagonal terms in this expansion. One
therefore refers toφ as the classical component and toχ as the quantum component of ϕ, even
though both fields receive quantum corrections. Expressed in these variables, the capacitive
term in the action becomes

δScap =
C

4e2

∫
dt χ̇(t)φ̇(t). (4.126)

Varying the action with respect to φ and χ gives the mean field equations

C

4e2
χ̈ = − i

2

δ

δφ(t)
Tr ln[1− G0T ] =

1

4
tr [G(t, t)T (t)τzρzλz], (4.127a)

C

4e2
φ̈ = − i

2

δ

δχ(t)
Tr ln[1− G0T ] =

1

8
tr [G(t, t)T (t)τzρz]. (4.127b)

Here, we dropped the spatial arguments of the local Green function G(t, t′) ≡ G(x = 0, x′ =
0; t, t′). We also introduced a set of Pauli matrices λi encoding the Keldysh contour informa-
tion, with λz = 1 corresponding to the forward branch and λz = −1 corresponding to the
backward branch for a given convolution. In particular, Green functions are now a matrix in
Keldysh space,

G(s, s′) ≡


G

T(t, t′) G<(t, t′)
G>(t, t′) GT̃(t, t′)


, (4.128)

in terms of the time-ordered (s, s′ forward), lesser (s forward, s′ backward), greater (sbackward,
s′ forward) and anti-time-ordered Green functions (s, s′ backward) [237]. We note the identities

[AB](s, s′) =

∫

C
ds′′A(s, s′′)B(s′′, s′) ≡

∫
dt A(t, t′′)λzB(t′′, t′), (4.129a)

Tr[A] =

∫

C
ds tr[A(s, s)] ≡

∫
dt tr[A(t, t)λz], (4.129b)

where in the final expressionsA andB are considered matrices in Keldysh space. The tunneling
operator may now be expressed as (dropping the delta functions in real space)

T (t) = ϑe
i
2
τz(φ(t)+

1
2
λzχ(t))τzρ+ + h.c. . (4.130)

The Green function G depends on φ and χ at all times, rendering Eqs. (4.127) highly nonlo-
cal in time. After expanding the trace in Keldysh space, the mean field equations involve the
combinations

GT(t, t)∓ GT̃(t, t). (4.131)

It is a rather general fact that at equal times the time-ordered and anti-time ordered Green func-
tions coincide withG>(t, t) [231]. Employing further the facts thatT is off-diagonal in electrode
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space, and that off-diagonal components of the greater and lesser Green function coincide, the
mean field equations become

χ̈ = 0,
C

4e2
φ̈ =

1

4
tr [G<(t, t)T (t)τzρz]. (4.132)

By construction, the quantum component χ vanishes at the turning point of the Keldysh con-
tour, i.e. χ(T/2) = 0, where for convenience we restricted the Keldysh contour to the inter-
val t ∈ [−T/2, T/2] with T → ∞. However, the phase field can wind along the contour,
ϕfinal = ϕinitial + 2πW , where W ∈ Z is the winding number. With χ̈ = 0 this implies
χ(−T/2) = −2πW or χ(t) = 2πW (t − T/2)/T . The winding of χ encodes the quan-
tization of the transferred charge.6 For T → ∞ it leads to a near constant phase shift in T
and, consequently, in G, which can safely be ignored [170]. The mean field equation for φ cor-
responds to a time-nonlocal version of the noiseless RCSJ equation. This is not what we are
interested in, yet. In order to obtain the Langevin term, we need to expand the action in the
fluctuations of the quantum component χ around its mean field value, zero.

4.4.4 Mean-field current and current-current correlation function

In order to identify the form of physical observables in terms of the phase difference ϕ(s), we
introduce source fields. Consider first the current operator. Naively, we would introduce a
source term δHη(s) = λ(s)η(t)I . Instead, we introduce the source field in the phase of ϑ and
make use of Eq. (4.109). Specifically, we let ϑ → ϑ exp

{
i
4
λ(s)η(t)

}
. In the phase action this

amounts to a shift χ(t) → χ(t) + η(t). Up to contact terms, this leads to the same correla-
tion functions as the source term δHη(s) = λ(s)η(t)I . The corresponding (unnormalized)
generating functional is

Z[η] =
∫
DφDχ exp{iS[φ, χ+ η]}. (4.134)

We now evaluate this within the mean field approximation. The stationary phase approxima-
tion gives

Z[η] ≃ exp{iS[φmf, χmf + η]}, (4.135)

6To motivate this, consider the following. First, note that the partition function Z receives contributions from all windings,
i.e. it involves a sum overW . Next, plug the mean field solution for χ(t) into δScap. This gives

∑
W

exp

{
2πiW

T

∫ T/2

−T/2

dt
Cφ̇

4e2

}
=

∑
W

exp

{
2πiW

CV

2e

}
, (4.133)

where we used the second Josephson relation and denoted the time-averaged voltage V . This sum receives significant con-
tributions only if the mean transferred charge isQ = CV is quantized in units of 2e. This argument may be extended to
the instantaneous chargeQ(t) [170].
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where φmf and χmf are the solutions to the mean field Eqs. (4.132). In particular, χmf ≃ 0, giv-
ing Z[η] ≃ exp{iS[φmf, η]}. Connected correlation functions are obtained from lnZ[η] =
iS[φmf, η]. Expanding in powers of η thus gives the mean, variance and higher cumulants of
the mean field current,

S[φ, η] = − 1

2e

∫
dt I[φ](t)η(t) +

i

8e2

∫
dt

∫
dt′ η(t)K[φ](t, t′)η(t′) + ... . (4.136)

There is no zeroth order in η as the evolution along the forward and backward contours cancel
in the absence of η orχ (this corresponds to the normalization condition of the original Keldysh
generating functional, Eq. (4.110)). The mean field cumulants depend on the full history of,
that is, are functionals of φ(t). Such dependence is denoted by the argument in rectangular
brackets. In order to proceed, we have to expand the tunneling operator T (t) in powers of
χ+ η,

T = T0 + T1(χ+ η) +
1

2
T2(χ+ η)2 + ... = T0

∑

n=0

1

n!

[
− i
4
τzρzλz(χ+ η)

]n
. (4.137)

Here, the leading order tunneling operator T0(t) is obtained from T (t) by setting χ and η to
zero. Correspondingly, the trace-log term in the mean field action becomes

− i
2
Tr ln [1− G0T ] = =

i

2
Tr

[
GT1η +

1

2
GT2η2 −

1

2
GT1ηGT1η

]
+ ... . (4.138)

Here, the full Green function is now redefined via

G = (1− G0T0)−1G0 = G0 + G0T0G. (4.139)

In particular, it no longer depends on χ or η.

We now investigate Eq. (4.138) term by term. The linear order evaluates to

Tr {GT1η} = −
i

2

∫
dt tr {G<(t, t)T0(t)τzρz}η(t). (4.140)

From this the mean field current expectation value may be read off as

I[φ](t) ≡ ⟨I(t)⟩mf =
C

2e
φ̈− e

2
tr {G<(t, t)T0(t)τzρz} = Icap + Iϑ. (4.141)

The mean field equation forφ thus simply corresponds to I[φ](t) = 0. In the second equality,
we have separated the current into a capacitive contribution, Icap, and a tunneling contribution,
Iϑ, for later convenience. The mean field tunneling current Iϑ can be viewed as the expectation
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value of the current operatorI(t)with enforced time dependent phase difference given byφ(t).
To see this, we expand in electrode space,

Iϑ =
eϑ

2
tr
{
G<RL(t, t)e

i
2
φ(t)τz − G<LR(t, t)e−

i
2
φ(t)τz

}
. (4.142)

In the Heisenberg picture, the current operator in the presence of the applied phase difference
φ(t) is given by [238]

Iφ(t) = ieϑ
∑

σ

[
e

i
2
φ(t)ψ†L,σ(0, t)ψR,σ(0, t)− e−

i
2
φ(t)ψ†R,σ(0, t)ψL,σ(0, t)

]
. (4.143)

Noting thatG<ab = i⟨Ψ†bΨa⟩ it becomes clear that the expectation value ofIφ clearly reproduces
Eq. (4.142).

We investigate now the quadratic order terms which give rise to the symmetrized or classical
current-current correlation function

K[φ](t, t′) ≡ 1

2
⟨I(t)I(t′) + I(t′)I(t)⟩mf. (4.144)

Consider first the term i
4
Tr{GT2η2}. Upon evaluating the Keldysh trace, this contains the

equal time combination GT (t, t) − GT̃ (t, t) and thus vanishes. The second quadratic order
term, Tr {GT1ηGT1η}, evaluates to

− 1

16

∫
dt

∫
dt′ η(t) tr {G(t, t′)T0(t′)τzρzG(t′, t)T0(t)τzρz}η(t′). (4.145)

We can simplify this further by expanding in Keldysh indices. Expressing the time-ordered and
anti-time-ordered Green functions in terms of G> and G< and using the cyclicity of the trace,
we obtain

K[φ](t, t′) =
e2

4
tr [G<(t, t′)T0(t′)τzρzG>(t′, t)T0(t)τzρz + t←→ t′ ]. (4.146)

As in the case of Iϑ[φ](t) above, K[φ](t, t′) precisely corresponds to the symmetrized noise
correlator one would obtain in the presence of an externally applied time-dependent phase
difference φ(t) [239]. In other words, the functional K[φ] may be written as K[φ](t, t′) =
1
2
⟨Iφ(t)Iφ(t′) + Iφ(t′)Iφ(t)⟩.

4.4.5 Semiclassical expansion and Langevin equation

The mean field equation I[φ](t) = 0provides an equation governing the evolution of the phase
difference φ but it captures neither quantum nor thermal fluctuations. We would like a classi-
cal (Langevin) equation of motion which includes the fluctuations described by the Gaussian
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current fluctuations, i.e. by K . To this end, we need to expand around the classical mean field
saddle point for the quantum component of the phase difference field, χmf = 0. In the previ-
ous section we have seen that an expansion in χ is equivalent to expanding in the source term
conjugate to the current operator η. Thus, an expansion to second order in δχ = χ−χmf = χ

achieves the desired classical equation including Gaussian fluctuations. Writing the time inte-
grals as matrix multiplication, the action is

S[φ, χ+ η] = − 1

2e
IT [φ](χ+ η) +

i

8e2
(χ+ η)TK[φ](χ+ η) + ... . (4.147)

To proceed, we introduce the Langevin current ξ(t) via the Hubbard-Stratonovich decoupling

exp

{
− 1

8e2
χTK[φ]χ

}
∝
∫
Dξ exp

{
−1

2
ξTK−1[φ]ξ − i

2e
ξTχ

}
. (4.148)

Note that ξ(t) has units of a current. This replaces the χ2-term in the action. Now χ features
only linearly in the action and we would like to perform the associated functional integral. How-
ever, it is of advantage to first simplify the cross terms ηTKχ + χTKη = 2ηTKχ using the
identity

exp

{
− 1

4e2
ηTKχ

}
exp

{
− i

2e
ξTχ

}
= exp

{
− i

2e
ηTK

δ

δξ

}
exp

{
− i

2e
ξTχ

}
. (4.149)

The integration over χ now results in a functional delta function involving no source terms.
With this the (unnormalized) generating functional becomes

Z[η] =
∫
DφDξ δ[I[φ] + ξ] exp{iSsource[η]} exp

{
−1

2
ξTK−1[φ]ξ

}
. (4.150)

The exponential involving the source action is

exp{iSsource[η]} = exp

{
− i

2e

(
I[φ]−K[φ]

δ

δξ

)
η − 1

8e2
ηTK[φ]η

}
, (4.151)

where we integrated by parts once so that the δ/δξ derivative acts on e− 1
2
ξTK−1ξ. Within our

approximation, this has to be expanded to second order in η. Careful evaluation gives

exp{iSsource[η]} = 1− i

2e
(I[φ] + ξ)Tη − 1

8e2
(I[φ] + ξ)Tη(I[φ] + ξ)Tη + ... . (4.152)
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Note that the ηTKη-term has dropped out. The noise correlations are now encoded in the
fluctuating current ξ alone. We finally arrive at the main result of this section,

Z[η] =
∫
Dφ

〈
δ

[
C

2e
φ̈(t) + Iϑ[φ](t) + ξ(t)

]
exp{iSsource[η]}

〉

ξ

. (4.153)

The delta function enforces that partition function receives contributions only from trajectories
φ(t) which obey the classical equation of motion

C

2e
φ̈(t) + Iϑ[φ](t) + ξ(t) = 0. (4.154)

Of course, this is simply the condition that the junction conserves the current. Furthermore,
the trajectories need to be averaged with respect to the fluctuating current ξ(t). Note that the
correlations of ξ depend on the trajectoryφ(t). A bias current can readily included by an addi-
tional source term

Sbias[ϕ] =
1

2e

∫

C
ds Ib(t)ϕ(s) =

1

2e

∫
dt Ib(t)χ(t). (4.155)

In this case the right hand side of Eq. (4.154) is given by Ib. While similar to the extended RCSJ
equations used in the first sections of this chapter, this equation is not yet very useful as it is
highly time-nonlocal due to the dependence on the history ofφ(t). In the next section, we will
perform an adiabatic approximation to remedy this.

4.4.6 Green functions in adiabatic approximation

In order to derive a time-local equation of motion, we assume that φ and φ̇ vary sufficiently
slowly compared to the decay of the uncoupled Green function G0. This assumption will have
to be checked a posteriori.

Before we get to the adiabatic approximation, we define a number of useful expressions. First,
we split G into diagonal and off-diagonal parts in electrode space,

G = Gd + God, Gd =


GLL 0

0 GRR


, God =


 0 GLR
GRL 0


. (4.156)

The diagonal Green function now involves only even powers inT0 and hence satisfies the Dyson
equation

Gd = G0 + G0ΣGd, Σ = T0G0T0. (4.157)
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The self energyΣ renormalizes the motion within a given electrode due to detours into the other
electrode. It is diagonal in electrode space. The off-diagonal Green function can be expressed
in terms of Gd and Σ via

God = G0T0Gd. (4.158)

The mean field current involves the off-diagonal Green function. Exploiting the cyclicity of the
trace it now may be written compactly as

Iϑ[φ](t) =
e

2
tr
{[

ΣGd
]<

(t, t)τzρz

}
. (4.159)

We also introduce a dressed self-energy,

Σ = T0GT0, (4.160)

as this allows to write the noise correlation function in a compact manner, given by

K[φ](t, t′) =
e2

4
tr {Σ<(t, t′)τzρzG>(t′, t)τzρz + t←→ t′ }. (4.161)

We now come to the adiabatic expansion. To this end we transform the Green functions
to the Wigner representation. This amounts to a Fourier transform with respect to the time
difference δ = t − t′ → ω, while the center of mass time τ = (t + t′)/2 is left as is. In the
Wigner representation the self energy is given by

Σ(τ ;ω) =

∫
dδ eiωδ Σ(τ + δ

2
, τ − δ

2
) (4.162a)

=

∫
dδ ei(ω−ϵ)δ T0

(
τ + δ

2

)
G0(ϵ)T0

(
τ − δ

2

)
. (4.162b)

We assume thatG0(δ) decays sufficiently fast compared to the variation ofφ, so that the integral
receives contributions only from small δ. We can therefore approximate

φ(τ ± δ
2
) ≃ φ(τ)± δ

2
φ̇(τ). (4.163)

With this, the Wigner representation self energy becomes

ΣL(τ ;ω) ≃ ϑ2


 Ge

0R(ω+) −F eh
0R(ω)e

iφ(τ)

−F he
0R(ω)e

−iφ(τ) Gh
0R(ω−)


, (4.164)

with ΣR obtained by R → L, ω± → ω∓ and φ → −φ. Here, we defined ω± = ω ± φ̇(τ)
2
≡

ω± eV (τ), and introduced the normal and anomalous componentsG (G0) andF (F0) of the
Nambu Green function G (G0), respectively. Note that they are still matrices in spin-space.
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Importantly the slow τ dependence enters of Σ enters solely through the phase difference
φ(τ), as well as the voltage V (τ) = 1

2e
φ̇(τ)). We emphasize this by writing

Σ(τ ;ω) ≃ Σ(φ(τ), V (τ);ω), (4.165)

where the right hand side is defined by the adiabatic approximation goven in Eq. (4.164). It is
useful to expand the self energy in powers of eiφ, i.e.

Σ(φ, V ;ω) =
∑

m

Σm(V ;ω)eimφ, Σm(V ;ω) =

∫
dφ

2π
Σ(φ, V ;ω)e−imφ. (4.166)

Clearly, the only nonzero terms arem = −1, 0, 1.

We now want to argue that, at the same level of approximation, also the full Green function
depends only on τ through φ and V . We can do so order by order in pertubation theory. To
this end note that the Dyson equation, Eq. (4.157), has the perturbative solution

Gd =
∞∑

n=0

(G0Σ)nG0. (4.167)

To evaluate the convolutions in the Wigner picture we employ the Moyal product

[ab](τ ;ω) = a(τ ;ω)λz exp
{
i
2

←→D
}
b(τ ;ω),

←→D =

←−
∂

∂ω

−→
∂

∂τ
−
←−
∂

∂τ

−→
∂

∂ω
. (4.168)

The τ dependence of Eq. (4.167) originates solely fromφ(τ) and V (τ) in Σ. We systematically
neglect φ̈ and higher derivatives. This translates to

←→D ≃ 2eV (τ)

(←−
∂

∂ω

−→
∂

∂φ(τ)
−
←−
∂

∂φ(τ)

−→
∂

∂ω

)
. (4.169)

Using the definition of the shift operator exp{a ∂
∂x
}f(x) = f(x+a), we then may approximate

the first order term in the expansion Eq. (4.167), [G0ΣG0](τ ;ω), as

∑

m

G0(ω)λz exp
{
ieV

←−
∂
∂ω

−→
∂
∂φ

}
Σm(V ;ω)eimφ exp

{
−ieV

←−
∂
∂φ

−→
∂
∂ω

}
λzG0(ω)

=
∑

m

G0(ω −meV )λzΣm(V ;ω)λzG0(ω +meV )eimφ (4.170)

Again, τ -dependence enters only via φ and V , so that we may write

[G0ΣG0](τ ;ω) ≃ [G0ΣG0](φ(τ), V (τ);ω). (4.171)
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The same arguments go through for higher orders. Eq. (4.167) thus implies that within the
adiabatic approximation also the Wigner picture Gd depends on τ only implicitly through the
phase and the voltage, i.e.

Gd(τ ;ω) ≡ Gd(φ(τ), V (τ);ω). (4.172)

In particular, this implies that it can also be expanded as

Gd(φ, V ;ω) =
∑

m

Gdm(V ;ω)eimφ. (4.173)

By evaluating the current and the noise correlator in terms of the adiabatic Green function, the
equation of motion Eq. (4.154) is rendered time-local. In order to solve the Dyson equation in
the adiabatic approximation at all orders one has to resort to numerics (see App. B.6).

4.4.7 Current and noise in adiabatic approximation

We now derive a time-local expression for the current, i.e. an expression

Iϑ[φ](t) ≡ Iϑ(φ(t), V (t)). (4.174)

From Eq. (4.159) it follows that (suppressing the voltage dependence in the arguments of the
right hand side)

Iϑ(φ, V ) =
e

2

∫
dω

2π

∑

mn

tr
{[

Σm(ω −meV )λzGdn(ω + neV )
]<
τzρz

}
ei(m+n)φ. (4.175)

Importantly, if one setsφ = 2eV t+φ0, this is just the voltage-bias expression for the tunneling
current [238, 240]. We see that in the adiabatic approximation the tunneling current entering
the classical equation of motion for the phase difference φ is the voltage-bias current evaluated
for the instantaneous voltage and phase difference. The tunneling current satisfies the Fourier
expansion (where we shifted ω → ω −meV )

Iϑ(φ, V ) =
∑

m

Im(V )eimφ, (4.176a)

Im(V ) =
e

2

∫
dω

2π

∑

n

tr
{[

Σm−n(ω −meV )λzGdn(ω)
]<
τzρz

}
. (4.176b)

The reality of the tunneling current manifests in Im = I∗−m.
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We treat the noise correlator K in a similar fashion. In the adiabatic approximation, K de-
pends explicitly only on the time difference δ, while all slow τ dependence enters only through
the dependence on φ(τ) and V (τ), i.e.

K[φ](t, t′) ≃ K(φ(τ), V (τ); δ). (4.177)

In the Wigner picture the noise correlator is

K(φ, V ;ω) =
e2

4

∑

±

∫
dϵ

2π
tr {Σ<(φ, V ; ϵ± ω)τzρzG>(φ, V ; ϵ)τzρz}. (4.178)

Note thatK involves only symmetric in frequency noise. Indeed, odd frequency noise is related
to quantum statistics of the environment and thus disappears in the classical approximation
[195]. Here, the Wigner picture dressed self-energy in the adiabatic approximation,Σ(φ, V ;ω),
takes the form

ϑ2




Ge
RR(ω + eV ) −F eh

RR(ω)e
iφ Ge

RL(ω)e
iφ −F eh

RL(ω + eV )

−F he
RR(ω)e

−iφ Gh
RR(ω − eV ) −F he

RL(ω − eV ) Gh
RL(ω)e

−iφ

Ge
LR(ω)e

−iφ −F eh
LR(ω − eV ) Ge

LL(ω − eV ) −F eh
LL(ω)e

−iφ

−F he
LR(ω + eV ) Gh

LR(ω)e
iφ −F he

LL(ω)e
iφ Gh

LL(ω + eV )



. (4.179)

Note that the Fourier expansion of Σ does not truncate like the one of Σ. Furthermore, as G
includes terms with odd powers of T0, the Fourier expansions of G and Ω include half-integer
m. However, due to the trace, the noise correlator is even-powered in T , and its Fourier series
involves only integer terms. It is given by

K(φ, V ;ω) =
∑

m

Km(V ;ω)eimφ, (4.180a)

Km(V ;ω) =
e2

4

∑

±

∫
dϵ

2π

∑

n

tr
{
Σ<
m−n(V ; ϵ± ω)τzρzG>n (V ; ϵ)τzρz

}
. (4.180b)

Finally, in order to obtain a truly time-local equation of motion, the noise needs to be memo-
ryless. This amounts to the Markovian approximation

K(φ, V ; t− t′) ≃ K(φ, V )δ(t− t′), K(φ, V ) = K(φ, V ;ω = 0). (4.181)

This is the white noise approximation to the voltage-bias noise of the tunneling current [239].
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4.4.8 Interim summary

We briefly summarize the result of this extended calculation. We have shown that, within the
adiabatic approximation, the classical equation of motion governing a tunneling Josephson
contact is given by a Langevin-type equation for the phase difference φ,

C

2e
φ̈(t) + Iϑ(φ(t),

1
2e
φ̇(t)) + δI(t) = Ib(t). (4.182)

Here, the fluctuating force is the generalized Johnson-Nyquist noise [we renamed ξ → δI in
order to adapt to the notation of Secs. 4.1]. It satisfies

⟨δI(t)δI(t′)⟩ = K(φ(t), 1
2e
φ̇(t))δ(t− t′). (4.183)

The tunneling current Iϑ = Iϑ(φ, V ) is given by the voltage-bias expectation value of the
tunneling current operator [238],

Iϑ(φ, V ) = ⟨Iφ=2eV t(t)⟩
∣∣∣
t→ φ

2eV

. (4.184)

Similarly, the noise power K(φ, V ) is given by the zero-frequency component of the sym-
metrized current-current correlation function with voltage-bias V [239].

Eq. (4.182) provides a microscopic basis for the phenomenological extended RCSJ model in
Eq. (4.3). To see this, consider the expansion of the tunneling current, Iϑ =

∑
m Im(V )eimφ.

Clearly, the φ independent part of the current gives rise to the dissipative current

Id(V ) = I0(V ) ≡ Iqp(V ). (4.185)

We thus identify I0 with the quasiparticle current across the junction. Similarly, at zero voltage,
the phase dependent part of the current defines the current-phase relation,

Is(φ) ≡
∑

m≥1
Im(0)e

imφ. (4.186)

The question arises what should be made of the mixed, i.e. phase and voltage dependent, con-
tribution ∑

m≥1
[Im(V )− Im(0)]eimφ. (4.187)

Here, we take the radical approach and neglect them. We base this on the following observa-
tions: In the trapped state voltage is absent and the mixed contribution vanishes. In the running
state, exponents involving φ become quickly oscillating terms and their effect is averaged out.
Of course, this is a very coarse picture. In particular, thermal excitations lead to a small oscillat-
ing voltage in the trapped state. Furthermore, the potential landscape at some mean running
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state voltage is affected by the mixed terms. Thus, while they are not expected to affect the phys-
ical mechanisms governing the Josephson tunnel junction the mixed terms should be included
if quantitative predictions are necessary. Note that the current noise needs to be approximated
accordingly, leaving only the phase-independent componentK0(V ).

Our calculation extends the Ambegaokar-Eckern-Schön theory [226, 227] in several essential
ways: First, we derived the tunneling action to all orders in ϑ, thereby capturing higher order
processes such as multiple Andreev reflections which become relevant at larger normal state con-
ductance [238, 240]. Second, we showed that the full voltage-bias nonlinear quasiparticle current
enters the RCSJ equation provided the voltage varies sufficiently slowly. Finally, our consider-
ations show that the nonlinear noise kernel is linked to the nonlinear quasiparticle current. In
the following section we will make this statement more precise.

So far we have not commented on the validity of the adiabatic approximation. It is well-
controlled provided that φ̈δ2 ≪ 1, where the time scale δ is set by the decay of G0. Ignoring
fluctuations, the acceleration of the phase difference satisfies δ2φ̈ = δ2(Iϑ − Ib)/C . Thus,
we can always guarantee that the adiabatic approximation is accurate by demanding sufficiently
large capacitance C . This is consistent with the classical picture as well as the low temperature
expansion of the noise correlator in Sec. 4.3.1.

4.4.9 Tunneling regime

We have not yet investigated how nonreciprocity enters into the quasiparticle current or into
the current-phase relation. To gain further insight into these questions we will now apply our
theory to the tunneling regime: If the dimensionless tunnel coupling

γ = (ν0πϑ)
2 (4.188)

is sufficiently small only processes involving few transfers of electrons and holes contribute sig-
nificantly to the tunneling current. Here, we keep terms only to the leading order γ1, corre-
sponding to the incoherent transfer of a single electron or hole, or the coherent transfer of a
Cooper pair.

In order to find the tunneling current we may thus replaceGd byG0 in Eq. (4.159). Employing
the adiabatic approximation and expanding in Fourier modes this gives

Im(V ) =
e

2

∫
dω

2π
tr
{
[Σm(ω −meV )λzG0(ω)]<τzρz

}
(4.189a)

=
e

2

∫
dω

2π
tr {[Σr

m(ω −meV )G<0 (ω) + Σ<
m(ω −meV )Ga0 (ω)]τzρz}. (4.189b)

Here, m ∈ {−1, 0, 1} as a maximum of two φ/2 factors may be collected by the tunneling
fermions at this order. In the second line we expanded in Keldysh indices using the Langreth
rule. To this end, we defined the retarded and advanced components of the Green function and
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4 Current-biased Josephson diodes

the self energy, which are denoted by r and a, respectively. Before we proceed, it is useful to
define the BCS spectral matrix in dimensionless units as the anti-hermitian part of the Green
function,

Aα(ω) =
i

2πν0

{
Gr0α(ω)− [Gr0α(ω)]†

}
= − i

2πν0

{
Ga0α(ω)− [Ga0α(ω)]†

}
, (4.190)

whereα ∈ {L,R}.A is a hermitian matrix in particle-hole as well as spin space. We assume that
the superconducting electrodes remain in equilibrium. Under this circumstance, the greater
and lesser Green functions are related to the retarded and advanced Green functions via

G>0α(ω) = − 2πν0i [1− nF (ω)]Aα(ω), (4.191a)
G<0α(ω) = 2πν0i nF (ω)Aα(ω). (4.191b)

Here, nF (ω) is the Fermi occupation function. We also define the hermitian part of the Green
function in dimensionless units

Bα(ω) =
1

2πν0

{
Gr0α(ω) + [Gr0α(ω)]†

}
=

1

2πν0

{
Ga0α(ω) + [Ga0α(ω)]†

}
. (4.192)

We aim to express the current in terms ofA and B.
It is now straightforward to find compact expressions for the tunneling current components.

Consider first the quasiparticle current Iqp(V ) = I0(V ). It is

I0(V ) = 2eγ

∫
dω

2π
[nF (ω)− nF (ω + eV )]

× trspin
[
AeL(ω)AeR(ω + eV ) +AhL(ω + eV )AhR(ω)

]
. (4.193)

Importantly, if both inversion symmetry (exchange of L and R) and particle-hole symmetry
(exchange of e and h) are absent, this current may be nonreciprocal, i.e. I0(V ) ̸= −I0(−V ).
Note that this corresponds to particle-hole symmetry in the normal metal sense,7 and not the
constraint on the single-particle Hilbert space related to the Nambu formalism. To illustrate
how broken particle-hole symmetry gives rise to nonreciprocity consider tunneling between
two normal metals [Aα = σ0να(ωτz)]. The quasiparticle current then takes the form

I0(V ) =
4eγ

π

∫
dω [nF (ω)− nF (ω + eV )]

νL(ω)νR(ω + eV )

ν20
. (4.194)

7Indeed, the Nambu constraint relates the particle and hole spectra at opposite energies, Ae
σ(ω) = Ah

σ(−ω). Here, by bro-
ken particle-hole symmetry we understand that the physical spectral function obeys Aσ(ω) ̸= Aσ(−ω). This translates
to the condition Ae

σ(ω) ̸= Ah
σ(ω) given in the main text. [Note the ordering of elements in our convention of Nambu

spinors: diag(A) = (Ae
↑,Ae

↓,Ah
↓ ,Ah

↑).] For nonreciprocal I0(V ) it suffices that particle-hole symmetry is broken in
one of the electrodes. Furthermore, since we are considering spin-independent tunneling, it may also be necessary to have
Aσ(ω) ̸= A−σ(−ω) or Ae

σ(ω) = Ah
−σ(ω). See App. B.7 for details.
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Here, να(ω) is the density of states per unit volume of electrode α as a function of energy mea-
sured from the Fermi level. In the presence of either inversion symmetry [νL(ω) = νR(ω)]
or particle-hole symmetry in the normal metal sense [να(ω) = να(−ω)] the quasiparticle
current satisfies I0(V ) = −I0(−V ). In the absence of both, I0(V ) is nonreciprocal. Of
course, particle-hole symmetry is only ever an approximate symmetry, present only on energy
scales much smaller than the Fermi energy EF . Nonetheless, it is precisely these energy scales,
ω ∼ ∆ ≪ EF , which are relevant in the present problem, and one usually approximates
να(ω) = ν0 = constant. This reproduced the well known Ohmic expression I0(V ) = GV in
terms of the tunneling resistanceR−1 = 4e2γ/π. We shall see below that magnetic impurities
provide a mechanism which leads to broken particle-hole symmetry on energy scales ω ≲ ∆.

As advertised above, we will neglect the mixed terms which depend on both the phase differ-
ence and the voltage. This amounts to setting V = 0 in I±1. We note that the combinations
Is,1 = i(I1 − I−1) and Ic,1 = I1 + I−1 multiply the sinφ and cosφ terms, respectively. We
obtain for these prefactors

Is,1(V = 0) = 2eγ

∫
dω

2π
nF (ω) trspin

[
AheL (ω)BehR (ω) +AehL (ω)BheR (ω)

+ BheL (ω)AehR (ω) + BehL (ω)AheR (ω)
]
, (4.195a)

as well as

Ic,1(V = 0) = −2eγi
∫

dω

2π
nF (ω) trspin

[
AheL (ω)BehR (ω)−AehL (ω)BheR (ω)

+ BheL (ω)AehR (ω)− BehL (ω)AheR (ω)
]
. (4.195b)

In particular, in the presence of time-reversal symmetry σyh∗BdG(−k)σy = hBdG(k) in both
electrodes [and assuming that the pairing is s-wave, i.e. that ∆ is a unit matrix, as we have done
throughout], the electron-hole and hole-electron blocks of Gret are identical and Ic,1 vanishes.
This implies Is(φ) = −Is(−φ). We have already argued in Sec. 2.2 that time-reversal symme-
try leads to antisymmetric current-phase relations as a consequence of the equilibrium expres-
sion Is(φ) = (2e/ℏ)∂F/∂φ. While, in the absence of time-reversal symmetry, the cosφ term
leads to an asymmetric current-phase relation, the tunneling limit does not suffice to achieve
nonreciprocal critical currents as the latter require the contribution of higher harmonics eimφ,
m > 2, in addition.

We can evaluate the noise correlator in a similar fashion. In the tunneling regime, its Fourier
components are

Km(V ;ω) =
e2

4

∑

±

∫
dϵ

2π
tr {Σ<

m(V ; ϵ+ ω)τzG>0 (ϵ)τz}. (4.196)
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Employing the identity (nB is the Bose occupation function)

nF (ϵ± eV + ω)[1− nF (ϵ)] = nB(±eV + ω)[nF (ϵ)− nF (ϵ± eV + ω)], (4.197)

one readily finds for them = 0 component

K0(V ;ω) =
e

2

∑

±
coth

(
eV ± ω
2T

)
I0(V ± ω

e
) (4.198)

To understand the noise associated with the components m = ±1 we make the simplifying
assumption F eh = F he corresponding to time-reversal symmetric leads. TheK ∼ sinφ term
involves the particle-hole antisymmetric combination Σ1(ϵ + ω) − Σ−1(ϵ + ω). Employing
in addition the fact that Σ±1 anticommutes with τz and the symmetry of G0 with respect to
particle-hole space, we see that the sinφ contribution toK exactly vanishes,

Ks,1(V ;ω) = 0. (4.199)

This shows, to leading order in the tunneling, that there is no noise associated with the super-
current. The noise associated with the cosφ current does not vanish at finite frequency. It can
be obtained as

Kc,1(V ;ω) = e coth
( ω
2T

)
Ic,1(ω). (4.200)

Here, Ic,1(V ) is now given by

Ic,1(V ) = 2eγ

∫
dω

2π
[nF (ω)− nF (ω + eV )]

× trspin
[
AehL (ω)AehR (ω + eV ) +AehL (ω + eV )AehR (ω)

]
. (4.201)

This is manifestly antisymmetric in V and thus vanishes at V = 0. Indeed, this is consistent
with Eq. (4.195b), which vanishes for F eh = F he. In particular, this implies that K±c,1 disap-
pears in the white noise approximation.

In summary, the extended RCSJ equation governing the phase dynamics of a junction in the
tunneling regime involves the dissipative current Id(V ) = I0(V ) and the current-phase relation
Is(φ) = Is,1 sinφ + Ic,1 cosφ. Furthermore, the noise power is related to the dissipative
current through the fluctuation-dissipation relation

K(V ) = K+
0 (V ; 0) = e coth

(
eV

2T

)
I0(V ). (4.202)
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At large temperatures8 one may expand the right hand side to reproduce the nonlinear Johnson-
Nyquist noise employed in the phenomenological approach in Secs. 4.2 and 4.3.

4.5 Single-atom Josephson junctions

In the previous section, we have seen that particle-hole symmetry breaking in the normal den-
sity of states ν(E = eV ) leads to nonreciprocity in the quasiparticle current. However, this
nonreciprocity is appreciable only on scales eV ∼ EF . Here, we will consider a tunnel junc-
tion involving a single magnetic adatom. It is well known, that such junctions have asymmetric
tunnel currents for bias voltages eV ∼ ∆ due to the difference in particle and hole weights of
the YSR wavefunction (see Sec. 2.3.2).

Indeed, a Josephson diode effect was recently observed in such single-atom Josephson junc-
tions in an experiment conducted by our collaborators Trahms et al. [V]. Here, adatoms are ma-
nipulated on a superconducting Pb surface. The second electrode of the Josephson junction is
provided by a superconducting Pb scanning tunneling microscope tip. The Josephson diode
effect manifests dominantly in nonreciprocal retrapping currents, while the switching currents
are nearly symmetric. Importantly, nonreciprocity is observed only when magnetic adatoms
(Cr and Mn) are placed in the junction, but not for a nonmagnetic Pb adatom. This behavior
is summarized in Figs. 4.10 and 4.11 with the former figure showing individual traces and the
latter histograms. Note that the traces exhibit a finite slope in the supercurrent branch. The
slope is due to noise induced transitions between neighboring minima, a phenomenon known
as phase diffusion.

In view of the correspondence Eq. (4.2) and the particle-hole symmetry broken quasiparticle
currents associated with magnetic adatoms, we expect an explanation of the nonreciprocity in
terms of the dissipative current. In the following, we will first demonstrate this for a microscopic
model of magnetic adatoms in the tunneling regime. We then present phenomenological simu-
lations, which use experimental I−V curves as input, and accurately reproduce the qualitative
features of the experimental data.

4.5.1 Yu-Shiba-Rusinov tunnel junctions and particle-hole symmetry
breaking due to impurities

As in Sec. 2.3.2, we model the magnetic impurity as a delta-scatterer carrying the classical mag-
netic moment S = −Sẑ. Assuming that the impurity is located precisely at the impurity site,

8In Sec. 4.3.1 we instead assumed low temperatures. There, the temperature was compared to the kinetic energy of the junc-
tion, CV 2/2. Thus, we require that the capacitance is sufficiently large so that the hierarchy CV 2 ≫ T ≫ eV may be
satisfied.
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4 Current-biased Josephson diodes

Figure 4.10: Hysteresis traces of current-biased tunneling junctions including a (a) Pb, (b) Cr, and (c) Mn atom.
The measurements are performed at a normal-state conductance of 50µS. In contrast to Fig. 4.1 the
supercurrent branch has a small slope due to phase diffusion. Figure adapted from [V].
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Figure 4.11: Histograms of absolute values of switching and retrapping currents for the two bias directions, as
extracted from individual hysteresis traces for (a) Pb, (b) Cr, and (c) Mn junctions. The junction
conductances were set at 10 mV to 50 µS. Figure from supplemental material of [V].

but couples only to one of the electrodes (the substrate in an STM setup), the new Hamiltonian
is obtained viaH → H +Himp

Himp =
∑

σ

ψ†R,σ(0)[V −K0σz]ψL,σ(0). (4.203)

We furthermore assume the superconductors to be unstructured in all other regards. With these
assumptions, the local Green functions [which enter the expressions for the quasiparticle cur-
rent and noise correlator] are given by

G0,L(ω) = − πν0σ0
ω +∆τx√
∆2 − ω2

, (4.204a)

G0,R(ω) = − πν0
ω +∆τx + (ασz + βτz)

√
∆2 − ω2

(1− α2 + β2)
√
∆2 − ω2 − 2ασzω

, (4.204b)
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Figure 4.12: Zeroth Fourier component of the tunneling current in the tunneling regime as a function of the
voltage V . For α ̸= 0 ̸= β the current is clearly asymmetric, I0(V ) ̸= −I0(−V ). Parameters:
T = 0.1∆, η = 0.01∆, and α = β ∈ {0, 14 , 12 , 1, 2}.

where we introduced the dimensionless couplings α = πν0K0 and β = πν0V . As was dis-
cussed in Sec. 2.3.2, the substrate Green function G0,R has poles at±EYSR, where

EYSR = ∆
1− α2 + β2

√
(1− α2 + β2)2 + 4α2

. (4.205)

This is the signature of the YSR bound state induced by the magnetic adatom. More precisely,
the (τz, σz) = (+,+) and (−,−) components of G0,R have a pole at +EYSR with weights u2

and v2, respectively. Conversely, the (+,−) and (−,+) components ofG have a pole at−EYSR

with weights v2 and u2, respectively. Here, u and v are given by

u, v = 2∆

√
α[1 + (α∓ β)2]

[(1− α2 + β2)2 + 4α2]3/2
. (4.206)

Noting that only the (+,+) and (+,−) components are physical, we may identify the pole at
EYSR ≷ 0 with the possibility to excite the unoccupied (occupied) YSR bound state by tunnel-
ing in/out of a spin-up electron [weight u2], and the pole at−EYSR ≶ 0 with the possibility to
excite the unoccupied (occupied) YSR bound state by tunneling out/in of a spin-down electron
[weight v2].

Exploiting the simplicity of the tip Green function, which manifests asAL(ω) ≡ AeL(ω) =
AhL(ω) = AL(−ω) = |ω|(ω2 −∆2)

−1/2
Θ(|ω| −∆), the quasiparticle current may be sim-

plified to

I0(V ) = 2eγ

∫
dω

2π
[nF (ω − eV )− nF (ω)]AL(ω − eV ) tr [AR(ωτz)]. (4.207)
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Invoking the Nambu constraint the trace factor becomes tr [AR(ωτz)] = 2
∑

σ A
σ
R(ω) =

AR(ω), where Aσ [A] is the spin-[non]resolved normal spectral function [see Eq. (2.20) and
App. B.7 for the definitions]. The current is asymmetric in V provided that A(ω) ̸= A(−ω)
which, based on the observations in the previous paragraph, is clearly the case for u ̸= v. To be
explicit, we set EYSR > 0 for concreteness, and focus on the subgap current V ≲ 2∆, where
AR(ω) = u2δ(ω − EYSR) + v2δ(ω + EYSR), as well as temperatures T ≪ EYSR. This yields
the expression

I0(V ) ≃ 2eγ

π

[
u2nF (ω − eV )AL(ω − eV )− v2nF (ω + eV )AL(ω + eV )

]
. (4.208)

For u ̸= v this is explicitly nonreciprocal on the small energy scale eV ∼ ∆. The full range of
I0(V ) is shown in Fig. 4.12 for several values of α = β.

Let us investigate how the particle-hole asymmetryA(ω) ̸= A(−ω) arises. To this end, note
that u ̸= v requires finite potential scattering, or β ̸= 0. In order to understand this, consider
the Anderson impurity model,

Himp = ϵ
∑

σ

nσ + Un↑n↓ − t
∑

σ

[
d†σψR,σ(0) + h.c.

]
. (4.209)

Here, dσ annihilates a localized electron with spinσ andnσ = d†σdσ. For large repulsive interac-
tionU and large and negative orbital energy ϵ, the orbital is occupied at all times and only its spin
degree of freedom remains. Virtual deoccupation and double occupation of the orbital leads to
interactions with the substrate. Formally, this can be implemented through a Schrieffer-Wolff
transformation, producing impurity Hamiltonian used in this section (albeit with a quantum
spin degree of freedom, c.f. Sec. 2.3.1 and Chapter 3). In terms of the Anderson model param-
eters, the potential and exchange scattering couplings are

α = πν0t
2

(
1

|ϵ| +
1

ϵ+ U

)
, β = πν0t

2

(
1

|ϵ| −
1

ϵ+ U

)
. (4.210)

In particular, β vanishes for ϵ = −U/2. This corresponds to the situation in which the An-
derson impurity is particle-hole symmetric (in the normal metal sense). Conversely, β ̸= 0

corresponds to broken particle-hole symmetry and thus enablesA(ω) ̸= A(−ω) and I0(V ) ̸=
−I0(−V ).

This begs the question why exchange scattering is necessary to observe nonreciprocal quasi-
particle current between superconductors. The answer lies in Anderson’s theorem [176]: a po-
tential impurity is without effect to the low energy spectrum of the superconductor. While it
may induce a bound state above (below) the upper (lower) band edge [depending on dimen-
sionality as well as the sign and magnitude of β] which indeed leads to A(ω) ̸= A(−ω) at
ω ∼ D, where D is the bandwidth, here we are interested only in energies ω ∼ ∆. For such
energies,A(ω) = A(−ω) in the absence of exchange scattering. We also comment on the clas-

110



4.5 Single-atom Josephson junctions

Figure 4.13: Josephson diode effect in YSR tunnel junction. (a) dissipative quasiparticle current id(v) = i0(v)
for different values of the potential scattering β. Note that, in contrast to Fig. 4.12, the range of the
dimensionless voltage is much reduced [eV = ∆v/4] so that only the subgap dissipation relevant to
the retrapping current [v < 2 in Eq. (4.20) provided the junction is sinusoidal] is shown. Further-
more, note the factor of ten difference in η. (b)-(d) Histograms of switching and retrapping currents
corresponding to i0(v) in (a) (note color-coded box). In the particle-hole asymmetric cases (b) and (c)
the retrapping currents are strongly nonreciprocal. The sign of the asymmetry is determined by the
sign of β. In the particle-hole symmetric case (d) the retrapping currents are symmetric. Parameters:
∆ = 2ℏΩp [this fixes C], T = 0.01∆, α = 1.5, γ = 0.2, η = 0.1∆, and β ∈ {±α, 0}. Figure
from [IV].

sical spin approximation used here. In Chapter 3 we discussed the zero bandwidth model as
complimentary approach to the classical spin approximation, highlighting the quantum nature
of the impurity spin at the cost of the accurate representation of the quasiparticle continuum.
For deep YSR states this should provide an accurate picture. For a S = 1

2
impurity, we can

explicitly find the subgap spectral function in the zero bandwidth model as

A(ω) =
1

4

∑

±

[
1± V√

∆2 + V 2

]
δ(ω ∓ EYSR). (4.211)

In the presence of potential scattering, V ̸= 0, this is manifestly asymmetric. This suggests
that asymmetricA(ω) at ω ∼ ∆ is a general feature of YSR states. Indeed, this is confirmed by
NRG studies [18].

The presence of the magnetic impurity also affects the supercurrent Is(φ). One might expect
an artificial cosφ contribution stemming from the time-reversal breaking associated with the
classical spin approximation. However, this would further require spin-orbit coupling which
we neglect in the present discussion. The prefactor of the sinφ term may be evaluated explicitly.
Restoring ℏ, we obtain Is(φ) = (2eEJ/ℏ) sinφ, where

EJ =
γ∆√

(1− α2 + β2)2 + 4α2
. (4.212)
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Figure 4.14: (a-b) Voltage bias dI/dV at normal conductance of 50µS for junctions including (a) Cr and (b) Cr
adatom. There is significant subgap spectral weight at voltages |eV | < 2∆ stemming from multiple
Andreev reflections as well as processes involving YSR excitations. (c) Corresponding voltage-bias
I−V traces forCr (blue) andMn (red) junctions showing the absolute current at positive (solid) and
negative (dashed) voltages. Figure adapted from [V].

Finally, we consider the phase dynamics of the YSR tunnel junction via numerical integration
of the extended RCSJ equation. We use the dimensionless units introduced in Sec. 4.1. The
plasma frequency of the junction (at zero bias) is now determined by microscopic parameters,

Ωp =

(
π2

(1− α2 + β2)2 + 4α2

)1/4
√

∆

ℏRC
, (4.213)

where R−1 = 4e2γ/π. The free parameters of the model are ∆, T, η, C, γ, α and β. In order
to obtain appreciable subgap structure, which is important for sizeable nonreciprocal retrap-
ping currents, we consider a strongly hybridized YSR impurity characterized by large η. Note,
that the lack of subgap spectral weight is an artefact of the tunneling regime. At higher orders
in the tunneling, multiple Andreev reflections redistribute spectral weight into the tunneling
gap. Histograms of the switching and retrapping currents for the YSR tunneling junction are
presented in Fig. 4.13. As expected, particle-hole symmetry breaking due to β ̸= 0 leads to
nonreciprocal retrapping currents, while switching currents remain unaffected.

4.5.2 Modeling the single-atom Josephson diode

While the histograms in Fig. 4.13 exhibit asymmetry in the retrapping distributions depending
on the impurity parameters, the microscopic theory based on the tunneling regime has several
shortcomings. First, the histograms in Fig. 4.11 are obtained at a normal state conductance of
50µS. This is clearly not in the tunneling regime: Fig. 4.14 (a) and (b) show the dI/dV sig-
nals at this conductance for the Mn and Cr junctions, respectively. There is no well defined
gap in the spectrum, and peaks corresponding to multiple Andreev reflections are observable at
eV = ∆ and less clearly at other voltages. The subgap spectral weight gives rise to the dissipa-
tive current, and therefore leads to sizeable retrapping currents. Achieving retrapping currents
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of similar magnitude as the switching currents in the tunneling regime necessitated unnatural
assumptions such as large η and ℏΩp ∼ ∆. In particular, the classical approximation relies
on EJ ≫ ℏΩp which is inconsistent with the assumptions Ωp ∼ ∆ and γ ≪ 1. Finally,
the traces shown in Fig. 4.10 show phase diffusion in the trapped state. It is well known that
the coexistence of phase diffusion and hysteresis in a Josephson junction implies frequency de-
pendent damping [228]. We will see that the lack of frequency dependent damping can explain
the qualitative differences between the experimental histograms in Fig. 4.11 and the tunneling
regime histograms in Fig. 4.13, such as the narrow shape and small asymmetry of the switching
current distributions, as well as the relative magnitude of the retrapping currents for positive
and negative bias.

In order to amend these issues, instead of relying on a microscopic model, we use the mea-
sured quasiparticle current Iqp(V ) as input to the phenomenological RCSJ equation. Fig. 4.14
(c) shows the measured (voltage-bias) I −V characteristics for Cr and Mn. This includes both
the quasiparticle current as well as a Josephson contribution. Only the latter contributes to the
dissipative current. We isolate the quasiparticle contribution by fitting the Josephson contribu-
tion to its functional form. The procedure is detailed in App. B.8. Moreover, to account for the
observed phase diffusion in the trapped state, we also incorporate frequency-dependent fric-
tion. Following Kautz and Martinis [228], we shunt the junction by an additionalRC element
with Ohmic resistor R̃ and capacitor C̃ to model dissipation induced by the electromagnetic
environment. The total dissipative current is then the sum of the quasiparticle current and the
current flowing via theRC element,

Id(V ) = Iqp(V ) +
V − Ṽ
R̃

, δI = δIqp + δIR̃, (4.214)

where Ṽ is the voltage drop across the capacitor which satisfies the equation

d

dt
Ṽ =

1

R̃C̃

(
V − Ṽ + R̃ δIR̃

)
. (4.215)

The RC element is inconsequential at low frequencies (running state), so that damping is
dominated by the quasiparticle current. In contrast, it dominates friction at high frequencies
(trapped state), allowing for phase diffusion. We assume V/R̃≫ Iqp(V ), so that the quasipar-
ticle current is effectively shorted at high frequencies, Id(V ) ≃ V/R̃. Following the discussion
in Sec. 4.3.1, we assume that the noise associated with the quasiparticle current has correlator〈
δIqp(t)δIqp(t

′)
〉
= 2T [Iqp(V )/V ]δ(t − t′), while the noise associated with the resistor R̃

has correlator ⟨δIR̃(t)δIR̃(t′)⟩ = 2T̃ R̃−1δ(t− t′), where T̃ is the effective temperature of the
shunt circuit. Finally, we comment on the current-phase relation. While the presence of spec-
tral features due to multiple Andreev reflections suggest a significant sin(2φ) contribution, we
will assume a simple sinφ current-phase relationship to keep the number of undetermined pa-
rameters under control.

113



4 Current-biased Josephson diodes

0 5 10 15 20
Ibias [nA]

0.25

0.50

0.75

1.00 Isw, +
Ire, +
Isw,
Ire,

0 5 10 15 20
Ibias [nA]

0.5

1.0

1.5
Isw, +
Ire, +
Isw,
Ire,

0 5 10 15 20
Ibias [nA]

0.00

0.25

0.50

0.75

1.00

Pr
ob
ab
ilit
y
de
ns
ity

Isw, +
Ire, +
Isw,
Ire,

a) Pb b) Cr c) Mn

Figure 4.15: Statistics of switching and retrapping currents (theoretical simulations based on I−V measurements).
(a-c) Histograms of absolute values of switching and retrapping currents for the two bias directions,
as extracted from individual V − I curves from simulation of Eq. (4.216) with Iqp(V ) obtained from
experimental I − V curves of a (a) Pb, (b) Cr, and (c) Mn junction at 50 µS (c.f. App. B.8). Each
histogram includes data extracted from 100 sweeps for each current direction. For parameters, see text
below Eq. (4.216). Figure from supplemental material of [V].

In the dimensionless units which were introduced in Sec. 4.1, the resulting RCSJ equations
become

d

dτ
φ = v, (4.216a)

d

dτ
v = ib − is(φ)−

[
iqp(v) +

v − ṽ
Q̃

]
−
√

2θiqp(v)

v
ξ1 −

√
2θ̃g̃ξ2, (4.216b)

d

dτ
ṽ =

1

τ̃

[
v − ṽ +

√
2θ̃g̃−1ξ2

]
. (4.216c)

Here, in addition to the quantities defined in Sec. 4.1, we introduced the dimensionless voltage
ṽ = 2eṼ /ℏΩp, the dimensionless conductance g̃ = [R̃CΩp]

−1, as well as the reduced temper-
ature θ̃ = T̃ /EJ describing the RC shunt. We also defined dimensionless Langevin currents
ξ1 and ξ2 with normalized correlations ⟨ξi(τ)ξj(τ ′)⟩ = δijδ(τ − τ ′) corresponding to δIqp
and δIR̃, respectively. For the simulation, we estimate the experimental parameters asRN ∼ 20

kΩ, ∆ ∼ 1.5 meV, T ∼ 0.1 meV and C ∼ 10−15 F. This gives Ic ∼ 100 nA, EJ ∼ 0.2

meV and ℏΩp ∼ 0.3 meV. The reduced temperature is thus θ = 0.5. For the RC element
we choose parameters Q̃ = 10, τ̃ = 1000, and θ̃ = θ. We sweep the bias current with a rate
dIbias/dt = 10−7IcΩp ∼ 1 nA/µs. The experimental sweep rate is smaller by about a factor
of 10−3, but this would make the numerical simulations forbidding. Along with the simplified
current-phase relation and the order-of-magnitude estimates of experimental parameters, this
implies that one can only expect qualitative, but not quantitative agreement between simula-
tions and experiment.

The results of the theoretical simulations are summarized in Fig. 4.15, which shows histograms
of the absolute values of switching and retrapping currents extracted from 100 sweeps in each
current direction. Note that the panels only differ in the precise form of Iqp(V ) which is ex-
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Figure 4.16: Simulated statistics of switching and retrapping currents with symmetric quasiparticle current and
asymmetric current-phase relation. Histograms of absolute values of switching and retrapping cur-
rents for the two bias directions, as extracted from individual V − I curves in simulations of Eq.
(4.216). Iqp(V ) is obtained from experimental I − V curves of a Pb junction at GN = 50 µS. The
asymmetric current-phase relation is defined in the final paragraph of Sec. 4.5.2. Each histogram in-
cludes data extracted from 98 sweeps for each current direction. Other parameters as in Fig. 4.15.
Figure from supplemental material of [V].

tracted from the I − V curves of Pb, Cr and Mn, respectively. The simulations based on the
Iqp(V ) of Pb do not show asymmetry in the switching or the retrapping currents. The simula-
tions based on the Iqp(V ) of Cr and Mn exhibit weak asymmetry in the switching currents and
strong asymmetry in the retrapping currents, correctly reproducing the qualitative features of
the experimental histograms in Fig. 4.11.

To rule out the possibility that the observed asymmetry stems from the current-phase re-
lation Is(φ) rather than from the dissipative quasiparticle current, we now demonstrate that
an asymmetric current-phase relation leads to strong asymmetry in the switching currents and
weak asymmetry in the retrapping currents, contrasting with our experimental observations.
To this end, we simulate Eq. (4.216) using Pb I − V data for Iqp(V ) together with an asym-
metric current-phase relation Is(φ) = I0[sin(φ− φ0) +b sin(2φ)]. We chooseφ0 = 0.5 = b

and fix I0 ≃ 54.2 nA by requiring that the current entering the definition of the plasma fre-
quency, i.e., the slope of Is around the stable minimum, is still 100 nA (which we continue to
use as the unit of current). The critical current now depends on direction, with Ic,+ ≃ 53.3 nA
and Ic,− ≃ 80.0 nA. Histograms of switching and retrapping currents obtained by simulating
Eq. (4.216) with the current-phase relation Is(φ) are presented in Fig. 4.16. The asymmetry
of the switching currents is clearly much greater than that of the retrapping currents. Thus,
a symmetric dissipative current together with an asymmetric current-phase relation cannot ex-
plain the phenomenology of strongly asymmetric retrapping currents and weakly asymmetric
switching currents observed for the Cr and Mn Josephson junctions.

4.6 Conclusion

In this chapter, we have developed a phenomenological theory of nonreciprocity in current-
biased Josephson junctions, focusing on the hysteretic behavior of weakly damped junctions.
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4 Current-biased Josephson diodes

The main finding of this chapter is the correspondence given in Eq. (4.2): a nonreciprocal
switching current originates from nonreciprocity of the current-phase relation. In contrast, a
nonreciprocal retrapping current originates from asymmetric dissipation. Moreover, these dif-
ferent sources of nonreciprocity have different symmetry requirements. While nonreciprocal
switching currents require breaking of time reversal symmetry, nonreciprocity of the retrap-
ping currents does not. While these observations are based on a phenomenological extension
to the well known RCSJ model, we have also provided a microscopic derivation of the classical
equation of motion for the phase difference across a tunnel contact. This allowed us to identify
broken particle-hole symmetry (in the normal metal sense) as a requirement for nonreciprocity
in the dissipation and thus also in the retrapping currents. Our theory comes very timely, as it
helps explain and assess recent experiments on weakly damped, time-reversal symmetric Joseph-
son junctions [V, 136]. In particular, it explains the dominant nonreciprocity in the retrapping
currents that was observed in atomic scale Josephson junctions involving magnetic adatoms in
terms of the particle-hole symmetry breaking associated with YSR states.

Our work opens several new avenues for theoretical and applied research. First, within our
streamlined Ambegaokar-Eckern-Schön approach we have focused on the tunneling regime
thus far, where we established intuitive expressions as well as a generalized fluctuation-dissipation
theorem. However, it is precisely the inclusion of higher order processes which sets our ap-
proach apart from the established Ambegaokar-Eckern-Schön framework. It is therefore of im-
mediate importance to extend our analysis to higher orders, or, if it proves possible, to establish
such results at all orders in the tunneling. Second, the Josephson diode effect has been observed
in a range of extended junctions for which the tunnel contact description is not appropriate.
It should be straightforward to extend our approach to such systems. Moreover, explicit in-
tegration with the scattering matrix approach [241] would allow to more directly interpret the
expressions for the current and current-current correlations. Finally, there are now a number
of systems that exhibit a Josephson diode effect. Nonetheless, it is still a question of fundamen-
tal interest how nonreciprocal response in superconductors interfaces with other components,
such as the propagating bosonic modes in superconducting circuits. Our work provides the
foundation upon which such applications can be based.
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This chapter is based on Ref. [VII].
Qubits based on Majorana bound states promise key advantages for quantum computing, in-

cluding long intrinsic lifetimes deriving from the nonlocal encoding of quantum information
[41, 44, 242] and topologically protected single-qubit gates based on braiding or, alternatively, on
exploiting measurements in all Pauli bases. A popular Majorana qubit – known as Majorana
box qubit [154] or tetron and hexon [45] – is based on semiconductor quantum wires proximity
coupled to a superconductor [50, 51, 187]. These qubits are believed to be within experimental
reach [243] and quantum computing architectures have been developed on their basis [45, 46, 156,
244, 245]. Quantum computation with Majorana qubits is expected to rely heavily on projective
qubit measurements, with all Clifford gates implemented using single and two-qubit measure-
ments [45, 156, 246]. Indeed, these schemes can be referred to as measurement-based topological
quantum computing and good readout fidelities are absolutely central to their performance.
This makes it essential to develop a detailed theoretical understanding of the proposed readout
schemes for Majorana-based topological qubits.

While a blessing for their characteristics as a quantum memory, the nonlocal nature of topo-
logical qubits complicates the readout of the encoded quantum information. Readout requires
to make the nonlocally encoded quantum information available locally. This can be achieved by
exploiting interference effects which are sensitive to the Majorana parity operator of interest [45,
154, 247]. A schematic Majorana qubit is shown in Fig. 5.1 and involves four Majorana bound
states located at the ends of two proximity-coupled semiconductor quantum wires. The Pauli
operators associated with the Majorana qubit are parity operators involving products of two
Majorana operators. Here, we focus on a readout procedure which measures these Majorana
parity operators by tunnel coupling a quantum dot to the relevant pair of Majoranas as shown
in Fig. 5.1. Virtual tunneling processes between Majorana qubit and quantum dot shift the en-
ergy levels of the quantum dot in a manner that depends on the Majorana parity. As a result, the
coupled time evolution of Majorana qubit and quantum dot entangles the two, and the charge
state of the quantum dot becomes correlated with the Majorana parity. Measurements of the
quantum dot charge, for instance by a nearby quantum point contact, can thus be used to read
out the Majorana qubit.

In principle, it is possible to design parity-to-charge conversion procedures which allow for a
projective measurement of the Majorana parity based on a single-shot projective measurement
of the charge n̂ of the quantum dot [154]. However, these schemes are not robust and require
fine tuning and rapid manipulation of system parameters. More generically, the charge state
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5 Readout of Majorana qubits

SC QD

e

Figure 5.1: Setup for readout of Majorana qubit. A quantum dot (QD) is tunnel coupled to a Majorana qubit
consisting of two topological superconducting wires (dark blue) with four Majorana bound states
γ̂1, . . . , γ̂4. The wires are connected by a conventional superconducting bridge (SC) allowing charge
to move freely between the wires, so that only the overall charge of the Majorana qubit is fixed by the
charging energy. The Majorana parity Ẑ = −iγ̂1γ̂2 defines the Pauli-Z operator of the Majorana
qubit, and can be read out by tunnel coupling the two Majoranas γ̂1 and γ̂2 to the quantum dot. The
quantum dot charge is measured by capacitively coupling (with strength k ∝ |χ|2) the dot to a quan-
tum point contact. Figure from [VII].

of the quantum dot becomes only weakly correlated with the state of the Majorana qubit, and
qubit readout requires multiple measurements. This can be achieved by repeatedly coupling
and decoupling qubit and quantum dot, with intervening projective measurements of n̂ and
resets of the qubit charge state.

In practice this coupling, decoupling, and resetting is challenging and prone to errors. It
would be preferable and more natural to keep Majorana qubit and quantum dot coupled during
the entire readout procedure and to monitor the charge of the quantum dot continuously. Here,
we show that a projective readout of the Majorana qubit can indeed be robustly implemented
in this manner. In particular, our strategy significantly relaxes the requirements on dynamical
control over system parameters, and obviates the need for resets of the quantum dot charge
state.

To describe the dynamics of the quantum measurement, we include the measurement device
in the theoretical description. The continuous measurement decoheres the system in the ba-
sis of the quantum dot charge and outputs the noisy measurement signal j(t) of the quantum
point contact [248]. The task is then twofold. First, one needs to show that the system of Majo-
rana qubit and quantum dot decoheres in the actual basis of interest associated with the parity
operator of the Majorana qubit. Second, one needs to ascertain that the measurement outcome
can be extracted from the signal j(t). Both criteria must be satisfied to effectively implement a
projective (Born rule) readout of the Majorana qubit which can be employed for measurement-
based topological quantum computation.

This chapter is structured as follows. In section 5.1, we introduce the system under con-
sideration, a Majorana qubit with two of the four Majorana bound states tunnel coupled to a
quantum dot as illustrated in Fig. 5.1, and discuss how under idealized assumptions, quantum
dot charge measurements can be used for single-shot readout of the Majorana qubit. We then
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5.1 Majorana qubits and quantum dot readout

turn to more realistic readout protocols which rely on continuous monitoring of the quan-
tum dot charge, collecting our central results in Sec. 5.2. The basic master-equation formalism
describing weak measurements of the quantum dot charge by a quantum point contact is de-
scribed in Sec. 5.2.1. As a backdrop, we first illustrate the formalism in Sec. 5.2.2 by reviewing
charge monitoring of a quantum dot in the absence of coupling to a Majorana qubit. We then
include the coupling to the Majorana qubit in Sec. 5.2.3 and show how a two-Majorana par-
ity (Pauli operator) of the Majorana qubit can be read out. While it suffices to monitor the
average quantum-point-contact current for charge readout of an uncoupled quantum dot, we
find that in general, readout of the Majorana qubit requires one to measure noise correlations
of the current. Readout based on noise correlations can be avoided by tuning to a sweet spot
in parameter space or, as shown in Sec. 5.2.4, by including additional processes which cause
relaxation of the coupled Majorana qubit-quantum dot system to its ground state. In both of
these cases, it suffices in principle to monitor the average quantum-point-contact current. In
Sec. 5.2.5, we discuss various processes which are detrimental to the readout protocol. Most im-
portantly, the previous sections assume that the residual Majorana hybridizations of the qubit
are negligible, and we show here how these hybridizations affect the measurement protocol. Fi-
nally, Sec. 5.2 closes with a discussion of alternative readout schemes which rely on coupling
the Majorana qubit to double quantum dots, see Sec. 5.2.6. We find that this readout scheme
adds flexibility in designing the coupling between Majorana qubit and quantum dots. We also
discuss readout of Majorana parity operators involving more than two Majoranas, which rep-
resent two-qubit parities or stabilizer operators of topological quantum error correcting codes.
While our results are mostly analytical in nature, we illustrate the various measurement proto-
cols by simulations of the stochastic master equation. In addition to our analytical estimates
throughout Sec. 5.2, these simulations also illustrate the required measurement times. Sec. 5.3
discusses the measurement protocols from a more general point of view. We emphasize that the
underlying mechanism – which we term symmetry-protected readout – is quite general and has
further implications for both, Majorana and non-Majorana systems. We finally summarize and
conclude in Sec. 5.4. We focus on the principal arguments and results here. Explicit calculations
and background material are relegated to a series of appendices.

5.1 Majorana qubits and quantum dot readout

5.1.1 Majorana qubit coupled to quantum dot

Majorana qubits are Coulomb-blockaded islands hosting 2m Majorana bound states γ̂j as de-
scribed by the Hamiltonian

ĤM = EC

(
N̂ −Ng

)2
+ i

2m∑

i<j

εij γ̂iγ̂j. (5.1)
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5 Readout of Majorana qubits

The first term reflects the charging energyEC of the device, which depends on the total charge
N̂ as well as a gate-controlled offsetNg. For a fixed charge and well-separated Majorana bound
states, the ground state of the system is 2m−1-fold degenerate. Residual splittings are included
inHM through the εij . Above-gap excitations of the Majorana wires are ignored by virtue of a
sufficiently large gap. Note that in this chapter we denote operators which act in the Fock space
with a hat.

The minimal number of Majoranas required for a single qubit is four, in which case the Ma-
jorana island realizes a Majorana box qubit or tetron. Figure 5.1 shows such a Majorana qubit
assembled from a pair of topological superconducting quantum wires hosting two Majorana
bound states each. The superconducting bridge between the quantum wires provides a suf-
ficiently large mutual capacitance so that the charging energy depends on the charges of the
individual wires only via the total charge of the device [45]. For definiteness, we chooseNg = 0,
so that the ground-state manifold has even fermion parity, P̂ = (−iγ̂1γ̂2)(−iγ̂3γ̂4) = 1. We
can then define the Pauli operators

Ẑ = −iγ̂1γ̂2 (5.2a)
X̂ = −iγ̂2γ̂3 (5.2b)
Ŷ = −iγ̂3γ̂1 (5.2c)

of the qubit. Fermion parity conservation implies that one can alternatively use the operators
Ẑ ′ = P̂ Ẑ (with X̂ ′ and Ŷ ′ defined analogously).

Readout of the qubit operators (say, Ẑ for definiteness) can be effected by connecting the
Majorana island to a quantum dot via tunnel junctions as depicted in Fig. 5.1 [45, 154]. We
assume that the quantum dot has a single nondegenerate level ϵ, which is spin resolved due to
the magnetic field required for realizing topological superconductivity (see also [249]). Then,
the quantum dot is described by the Hamiltonian

ĤQD = ϵn̂, (5.3)

where the quantum dot occupation n̂ = d̂†d̂ involves the annihilation operator d̂ of the gate-
tunable dot level. We assume that the quantum dot is unoccupied in the ground state, n = 0.

Tunneling between quantum dot and Majorana qubit is described by

ĤT = (t1γ̂1 + t2γ̂2)e
iϕ̂/2d̂+ h.c. (5.4)

Electrons tunneling into or out of the Majorana island affect the state of the system within the
ground-state manifold and change its charge. We describe the first effect through the Majo-
rana operators γj (which leave the charge state of the system unchanged, [γ̂i, N̂ ] = 0), and
the second through a charge shift operator eiϕ̂/2 (with [ϕ̂, N̂ ] = 2i and [γ̂i, ϕ̂] = 0). In this
formulation, physical states must satisfy the total parity constraint (−i)m∏2m

i=1 γ̂i = (−1)N̂ .
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5.1 Majorana qubits and quantum dot readout

For a topological qubit, we assume that the hybridizations εij are negligible, so that the Majo-
rana bound states are true zero-energy modes of the Majorana island. This implies that in addi-
tion to the fermion parity P̂ of the qubit, also all two-Majorana parities iγ̂iγ̂j are good quantum
numbers. In particular, this is the case for the Pauli-Ẑ operator of the Majorana qubit. The re-
sulting degeneracy is partially lifted when tunnel coupling the Majorana qubit to the quantum
dot. It is important to notice, however, that unlike the Pauli-Ẑ operator, the combined fermion
parity operator

π̂ = Ẑ(−1)n̂ (5.5)

remains a conserved quantity [157]. Restricting ourselves to states which have total fermion
parity P (−1)n = 1 and can thus be reached from the ground state with n = N = 0 by
tunneling, the Hamiltonian Ĥ = ĤM + ĤQD + ĤT becomes block diagonal in the subspaces
of the combined fermion parity π̂,

Ĥ =


 h+ 0

0 h−


. (5.6)

Here, we choose the basis {|↑, 0⟩, |↓, 1⟩, |↓, 0⟩, |↑, 1⟩} with the first entry distinguishing the
eigenstates of Ẑ and the second entry denoting the occupation of the quantum dot level, see
App. C.1 for details. We use lower-case letters without hats to denote operators within subspaces
of fixed combined parity π̂. The corresponding 2× 2 blocks take the explicit form

hπ =


 0 t1 − iπt2
t∗1 + iπt∗2 ε


 =

ε

2
+ Ωπhπ · σ, (5.7)

where σ denotes a vector of Pauli matrices and ε = ϵ + EC the detuning (which depends on
both, the level energy ϵof the quantum dot and the charging energyEC of the Majorana island).
We also defined a Bloch vector

hπ = (sin θπ cosϕπ, sin θπ sinϕπ, cos θπ) (5.8)

with cos θπ = −ε/2Ωπ and sin θπe
iϕπ = (t∗1 + iπt∗2)/Ωπ, as well as the Rabi frequency

Ω2
π = ε2/4 + |t∗1 + iπt∗2|2. The eigenenergies and Rabi frequencies of the two subspaces are

different provided that Im (t1t
∗
2) ̸= 0.

5.1.2 Basic measurement protocols

The tunnel couplings entangle the Pauli-Ẑ operator of the Majorana qubit with the charge of
the quantum dot. The entanglement emerges from processes in which an electron virtually
occupies the Majorana island through one Majorana involved in Ẑ and leaves it through the
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5 Readout of Majorana qubits

other. This makes the quantum information stored nonlocally in the Majorana qubit accessible
locally in the quantum dot. We first discuss to which degree a single projective measurement of
the charge of the quantum dot realizes a measurement of Ẑ .

We begin with a protocol in which the tunnel coupling between dot and Majorana qubit is
turned on adiabatically on the scale of the system dynamics. We assume that prior to turning
on the tunnel couplings, the Majorana qubit is in an arbitrary qubit state and the quantum dot
is initialized in the n = 0 state,

|ψ⟩ = (α|↑⟩+ β|↓⟩)|0⟩. (5.9)

Adiabatically turning on the tunnel couplings t1 and t2, this state evolves into the corresponding
eigenstate of the coupled system,

|ψ′⟩ = α|g+⟩+ βeiχ|g−⟩. (5.10)

Here, the relative phase χ depends on details of the protocol, and we defined the exact ground
states

|g+⟩ = sin
θ+
2
|↑, 0⟩ − cos

θ+
2
eiϕ+|↓, 1⟩, (5.11a)

|g−⟩ = sin
θ−
2
|↓, 0⟩ − cos

θ−
2
eiϕ−|↑, 1⟩ (5.11b)

of h±. Notice that θ± = π in the absence of the tunnel couplings. Then, a subsequent projec-
tive measurement of the charge n of the quantum dot either yields n = 0 and the state

|ψ′0⟩ =
1√
p′0

(
α sin

θ+
2
|↑⟩+ βeiχ sin

θ−
2
|↓⟩
)
|0⟩, (5.12)

with probability

p′0 = |α|2 sin2 θ+
2

+ |β|2 sin2 θ−
2
, (5.13)

or n = 1 and

|ψ′1⟩ =
1√
p′1

(
α cos

θ+
2
eiϕ+|↓⟩+ βeiχ cos

θ−
2
eiϕ− |↑⟩

)
|1⟩, (5.14)

with probability p′1 = 1− p′0.
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5.1 Majorana qubits and quantum dot readout

Unfortunately, such charge measurements provide only partial information on the qubit
state. One can arrange perfect correlation between the measurement outcome n = 0 and,
say, the |↑⟩ state of the qubit by fine tuning sin θ−

2
= 0. However, one readily proves that

∣∣∣∣sin2 θ+
2
− sin2 θ−

2

∣∣∣∣ ≤
1

2
. (5.15)

This implies that a measurement outcome of n = 1 remains compatible with both qubit states
even if n = 0 is perfectly correlated with the |↑⟩ state.

In principle, a projective measurement can be implemented when turning on the quantum
dot-Majorana qubit tunneling instantaneously. In this case, the initial state |ψ⟩ is no longer an
eigenstate, and its unitary evolution under the Hamiltonian Ĥ entangles qubit and quantum
dot. Depending on the measurement outcome, a projective charge measurement after a waiting
time T yields the states

|ψ′′0⟩ =
1√
p′′0

[αA+(T )|↑⟩+ βA−(T )|↓⟩]|0⟩, (5.16a)

|ψ′′1⟩ =
1√
p′′1

[αB+(T )|↓⟩+ βB−(T )|↑⟩]|1⟩. (5.16b)

with probabilities p′′0 = |αA+|2 + |βA−|2 and p′′1 = 1− p′′0 , respectively. Here, we defined the
amplitudes A±(T ) = cosΩ±T + i cos θ± sinΩ±T and B±(T ) = −i sin θ±eiϕ± sinΩ±T ,
where |A±|2 + |B±|2 = 1. This scheme implements a projective measurement of Ẑ , when
these coefficients satisfy, say, |A−|2 = |B+|2 = 0, with the remaining two coefficients being
equal to unity. This can be realized for t1 = it2, |t1,2|2 ≫ ε2/4, and T = π/2Ω−. As such,
the qubit is left in the |↑⟩ state for both measurement outcomes. Thus, for the outcomen = 1,
this protocol would need to be followed by another waiting period to rotate the state back to
|↓⟩, before turning off the tunnel couplings.

While in principle this allows for single-shot projective measurements of Ẑ , the protocol relies
on fine-tuned waiting periods and a hierarchy of time scales which would be challenging to
fulfill in experiment. Most importantly, we need to assume that the charge measurement is fast
compared to internal time scales of the coupled Majorana qubit-quantum dot system. This
requirement derives from the fact that the measurement operator n̂ does not commute with
the Hamiltonian of the system. Alternatively, we can abruptly turn off the tunnel couplings
after entangling Majorana qubit and quantum dot state, and measure the quantum dot charge
only subsequently. Then, the charge measurement is quantum nondemolition. Under realistic
circumstances, a single projective charge measurement would presumably provide only partial
information on Ẑ . This can be remedied by repeating the above protocol sufficiently many
times until the measurement outcome is certain (see App. C.2).
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5 Readout of Majorana qubits

Implementing this protocol is clearly challenging and requires detailed and fast control. One
may also worry that the fast switching excites the qubit in unwanted ways. It would be preferable
to implement a projective measurement of Ẑ by monitoring the quantum dot charge while the
quantum dot is coupled to the Majorana qubit. This obviates the need for repeated switching,
ideally without compromising on the achievable measurement times. We now turn to describe
such continuous measurement procedures.

5.2 Majorana-qubit readout via quantum dot charge
monitoring

5.2.1 Continuous charge measurements

To describe the readout dynamics, we need to include a measurement device for the quantum
dot charge in the microscopic description. We assume that the quantum dot is capacitively cou-
pled to a voltage-biased quantum point contact in such a way that the transmission amplitude
T of the quantum point contact depends on the charge state of the quantum dot [250, 251],

T̂ = τ + χn̂. (5.17)

The current through the quantum point contact will then depend on the quantum dot charge,
taking the values I0 ∝ |τ |2 when the quantum dot is empty and I1 ∝ |τ + χ|2 when the quan-
tum dot is occupied. (For simplicity, we assume that τ and χ have relative phase π.) Provided
that the voltage applied to the quantum point contact is sufficiently large, eV ≫ Ωπ, this setup
decoheres the system in the quantum dot charge basis (see App. C.3.1).

When I0 ≫ |δI| = |I1 − I0|, the fluctuating current through the quantum point contact
becomes a Gaussian random process (see App. C.3.3),

I(t) = I0 + δI⟨n̂(t)⟩+
√
I0ξ(t), (5.18)

involving the Langevin current ξ(t) with E[ξ(t)] = 0 and E[ξ(t)ξ(t+ τ)] = δ(τ). Here,
E[.] denotes an ensemble average over many realizations of the measurement procedure. It will
prove useful to work with a dimensionless measurement signal

j(t) =
I(t)− I0

δI
= ⟨n̂(t)⟩+ 1√

4k
ξ(t) (5.19)

relative to the measured background current I0, with k ∝ |χ|2. The first term contains infor-
mation on the quantum dot charge and the second is the noise added by the quantum point
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5.2 Majorana-qubit readout via quantum dot charge monitoring

contact. Within the Born-Markov approximation, the state of the system evolves according to
the stochastic master equation [250, 251] (see App. C.3 for a derivation)

d
dt
ρ̂c(t) = −i

[
Ĥ, ρ̂c(t)

]
+ kD[n̂]ρ̂c(t)

︸ ︷︷ ︸
≡Lρ̂c(t)

+
√
kξ(t)H[n̂]ρ̂c(t). (5.20)

The term involving the superoperatorD[L̂]ρ̂ = L̂ρ̂L̂†−(L̂†L̂ρ̂+ρ̂L̂†L̂)/2 causes decoherence
in the eigenbasis of n̂, and the term with the superoperator H[L̂]ρ̂ = L̂ρ̂ + ρ̂L̂† − ⟨L̂ +

L̂†⟩ρ̂ describes the information gain by the measurement. The latter is a Langevin term due to
the stochastic nature of the measurement. The stochastic master equation (5.20) describes the
state of the system conditioned on the measurement signal j(t), as denoted by the subscript c.
The ensemble-averaged – and thus unconditioned – evolution of the system simply follows by
dropping the stochastic term, dρ̂(t)/dt = Lρ̂(t).

5.2.2 Quantum-dot charge measurement

To recall how this formalism describes standard projective measurements, consider first a simple
quantum dot charge readout with ĤT = 0. The deterministic terms in Eq. (5.20) lead to a de-
cay of the off-diagonal components of the density matrix ρ̂ in the charge basis, but preserve the
diagonal components. The action of the stochastic terms can be understood from the equation
of motion for n(t) ≡ ⟨n̂(t)⟩ = tr[n̂ρ̂c(t)],

d
dt
n(t) =

√
4k[n(t)− n2(t)]ξ(t). (5.21)

Its two fixed points n = 0 and n = 1 correspond to the two possible measurement outcomes.
Conservation of the diagonal components of the ensemble-averaged density matrix ensures that
these outcomes occur with the correct probabilities. At the fixed point n, the quantum-point-
contact current j(t) becomes stationary, jn(t) = n+ ξ(t)/

√
4k, and directly reveals the mea-

surement outcome n after an integration time τm. The latter is determined by the requirement
that the integrated signal dominate over the integrated noise, which happens for τm ≫ (4k)−1.
We note that we use the steady-state measurement signal when estimating measurement times.
While transients may also provide information in principle, we assume that in practice, typical
measurement times will exceed the time scale on which the system decoheres.

This time-resolved description of a projective measurement of n̂ is illustrated in Fig. 5.2 based
on a numerical solution of Eq. (5.20). We show sample trajectories of the expectation value of
the quantum dot charge (experimentally inaccessible) as well as the corresponding measurement
currents through the quantum point contact. While the instantaneous measurement current
fluctuates strongly, its time average reveals the quantum dot charge.
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Figure 5.2: Continuous measurement of the quantum dot charge for HT = 0, with initial state (|↑, 0⟩ +
|↓, 1⟩)/

√
2 corresponding to n(0) = 1/2. (a) Two sample trajectories n1(t) (blue) and n2(t) (or-

ange) corresponding to measurement results n = 0 and n = 1, respectively. The ensemble averaged
evolution of the quantum dot charge (green, obtained from 1000 trajectories) stays near 1/2. The en-
semble average of 4

(
n(t)− n2(t)

)
(red) equals unity for uncertain charge and zero when a fixed point

has been reached, and therefore quantifies the advance of the measurement process. (b) Instantaneous
(green, right y-axis labels) and time-averaged (dark red, left y-axis labels) measurement current for sam-
ple trajectory n1(t) (blue, same as in top panel). Figure from [VII].

5.2.3 Majorana-qubit readout

Including the tunnel coupling ĤT between quantum dot and Majorana qubit, the dot occupa-
tion is no longer a good quantum number. While the measurement tries to project the state of
the system into charge eigenstates, tunneling continuously rotates it out of this basis. This can
be seen explicitly from the equation of motion for the charge expectation value,

dn
dt

= i
〈[
Ĥ, n̂

]〉
+
√
4k[n− n2]ξ. (5.22)

As a result of the nonzero commutator on the right hand side, the evolution of n(t) no longer
tends towards fixed points. Similarly, ⟨Ẑ(t)⟩ also does not evolve towards fixed points as Ẑ
does not commute with Ĥ , as well. At first sight, this seems to imply that quantum dot charge
measurements will not suffice to read out the state of the qubit. Remarkably, we find that one
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5.2 Majorana-qubit readout via quantum dot charge monitoring

may still read out Ẑ from a measurement of the quantum dot charge, but the procedure is more
subtle.

The key observation is that the evolution governed by Eq. (5.20) implements a quantum non-
demolition measurement of the combined local parity π̂, which is in one-to-one correspondence
with Ẑ for the initial state in Eq. (5.9). Under quantum dot charge measurements, the evolu-
tion of π(t) = ⟨π̂(t)⟩ is a bistable process with fixed points π = ±1, which are reached with
the correct probabilities |α|2 and |β|2, respectively. This does not yet guarantee a projective
measurement of Ẑ . First, as a consequence of the tunneling Hamiltonian, the measurement
does not properly project the state of the system, but leaves it in an equal mixture of the two
eigenstates with combined local parity π. However, once the measurement outcome π is deter-
mined, the readout device can be decoupled and the state of the quantum dot-Majorana qubit
system appropriately reset (see App. C.2.2). Second, one needs to specify how to read out π
and thus Z from the measurement current. Unlike for pure quantum dot charge measure-
ments, the average measurement current in general no longer distinguishes between the two
measurement outcomes. Instead, a measurement readout generally requires one to analyze the
frequency-dependent noise of the measurement current.

We now discuss these claims in more detail. We first show that under quantum dot charge
measurements, the unconditioned evolution of the density matrix ρ̂(t) generically tends to-
wards

ρ̂∞ =
1

2
diag(|α|2, |α|2, |β|2, |β|2) (5.23)

for the initial state in Eq. (5.9). This follows because the evolution preserves the weight of the
two π subspaces and the set of steady states of L is spanned by ρ̂∞+ = diag(1, 1, 0, 0)/2 and
ρ̂∞− = diag(0, 0, 1, 1) /2. To see this, we decompose ρ̂ into 2× 2 blocks ρπ,π′ according to the
combined parity eigenvalues. Since π̂ is a good quantum number and commutes with the quan-
tum dot charge operator, the evolution equation for ρ̂ decouples into independent equations

ρ̇π,π = − i[hπ, ρπ,π] + kD[n]ρπ,π = Lπ,πρπ,π, (5.24a)
ρ̇+− = − i(h+ρ+− − ρ+−h−) + kD[n]ρ+− = L+−ρ+−. (5.24b)

for the diagonal and off-diagonal blocks of ρ̂.
The equations for the diagonal blocks have themselves Lindblad form and preserve the trace.

As hπ does not commute with the quantum dot charge n (unless t1 = ±it2 in which case the
tunneling Hamiltonian vanishes for one of the blocks; we will comment on this case below)
and as n is hermitian, their only zero mode is the completely mixed state. Then, preservation
of the trace implies that the diagonal blocks of the density matrix do indeed tend towards the
fixed points

ρ∞++ =
|α|2
2
1 and ρ∞−− =

|β|2
2
1, (5.25)
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Figure 5.3: Continuous readout of Majorana qubit, with initial state (|↑, 0⟩ + |↓, 0⟩)/
√
2 corresponding to

n(0) = 0. Two sample trajectories π1(t) (green) and π2(t) (red) show different measurement out-
comes π = 1 and π = −1, respectively. The ensemble average of π(t) (blue, computed for 100
trajectories) remains close to zero for all times. The ensemble average of 1− π2(t) (orange) quantifies
the distance from the fixed points π = ±1. Parameters: ε = 20k, t1 = e−iφt2 = 2k with φ = π/4.
Figure from [VII].

respectively. (We analyze the complete set of eigenvalues λπ,n and eigenmodes of Lπ,π in App.
C.4.1.) Anticipating that the off-diagonal blocks generically decay to zero, we obtain the correct
Born-rule probabilities for Ẑ . The final state has weight |α|2 in the π = +1 subspace and |β|2
in the π = −1 subspace, which just corresponds to the probabilities of finding Z = +1 or
Z = −1, as required.

The equation for the off-diagonal block deviates from Lindblad form since the first term on
the right hand side involves both Hamiltonians h+ and h−. We analyze the eigenvalues λ̃n of
L+− in App. C.4.2 and find that they generically correspond to decaying modes. Then, the off-
diagonal blocks decay to zero and the two π subspaces decohere, ρ∞+− = 0. The only exception
occurs when Im{t1t∗2} = 0. In this case, the off-diagonal block supports a nondecaying mode
since the characteristic frequencies coincide for the π = +1 and π = −1 eigenspaces and we
find ρ∞+− = α∗β1/2.

Consistent with these results, the conditional evolution of ρ̂ is a bistable process for π(t) and
a projective measurement of π̂. We can readily derive the stochastic evolution equation forπ(t),

π̇ =
√
4kξ(⟨n̂π̂⟩ − nπ). (5.26)

Clearly, π = ±1 are fixed points of this equation. This is illustrated in Fig. 5.3, where we
show two representative sample trajectories of π(t) for measurement outcomes π = +1 and
π = −1. We find numerically that provided Im{t1t∗2} ≠ 0, these are the only fixed points, cp.
E[1− π2(t)]→ 0 in Fig. 5.3. We analyze the stochastic evolution in more detail in App. C.5.
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Figure 5.4: Continuous readout of Majorana qubit, with initial state (|↑, 0⟩ + |↓, 0⟩)/
√
2 corresponding to

n(0) = 0. The panels show the (experimentally accessible) time-averaged measurement currents for
two different combined-parity outcomes π = 1 (index 1) and π = −1 (index 2) and the (experi-
mentally inaccessible) expectation value of the quantum dot charge. (a) Generic parameters as in Fig.
5.3 (φ = π/4). Average measurement currents converge to 1/2 for both π = +1 (dark green) and
π = −1 (dark red), reflecting E[n(t)]→ 1/2 (dash-dotted line), and the measurement outcome can-
not be deduced from the time-averaged measurement current in the long-time limit. The charge expec-
tation value ni(t) remains close to the charge eigenvalues, with occasional transitions occurring more
frequently for outcome π = +1 (blue trace) than for outcome π = −1 (orange trace), reminiscent of
telegraph noise. For suitable parameters, it may be feasible to base readout on extracting the transition
rate between n ≃ 0 and n ≃ 1 from the measurement current. Moreover, the integrated current
relaxes more slowly to 1/2 in the low-frequency sector (here π = −1) which may also help readout in
some instances. (b) Same for the sweet spot t1 = −it2 (φ = π/2), where the system Hamiltonian hπ
commutes with the quantum dot charge n̂ for π = −1. The time-averaged measurement current now
converges to 1/2 for outcome π = +1 (dark green, n̂ not conserved) and to zero for outcome π = −1
(dark red, n̂ conserved), so that π is accessible from the time-averaged measurement current. This is
a limiting case of the readout based on transition rates between n ≃ 0 and n ≃ 1, which become
increasing unequal as parameters approach the sweet spot. The ensemble average of n(t) (dash-dotted
line) now converges to 1/4. The inset shows the coherent charge oscillations at frequency Ω+. Figure
from [VII].

The decay of the off-diagonal block to zero implies that π can be extracted from the mea-
surement current j(t). Once the measurement current becomes stationary, j(t) = jπ(t), the
system explores the full subspace with fixed π in an ergodic manner. This follows from the fact
that the ensemble average over all trajectories with outcome π yields a completely mixed state
on the subspace. Importantly, this implies that the ensemble (or time) average of jπ(t) does not
carry information on π,

E[jπ(t)] = tr[n̂E[ρ̂c(t)|π]] +
E[ξ(t)]√

4k
= n∞π =

1

2
. (5.27)

In agreement with Eq. (5.27) and in contrast to the simple quantum dot charge readout (see Sec.
5.2.2), the integrated measurement currents converge to 1/2 irrespective of the measurement
outcome. This is shown in Fig. 5.4 (left panel).

129



5 Readout of Majorana qubits

Nonetheless, information on π is generically encoded in the noise correlations of the mea-
surement current,

Sπ(τ) = E[jπ(t)jπ(t+ τ)]. (5.28)

In the stationary (long-time) limit, the corresponding power spectrum Sπ(ω) can be readily
computed for the two values of π (see App. C.6). In the limit of weak measurements, k ≪ Ωπ,
we find that in addition to a white-noise background, which is just the shot noise power of the
quantum point contact, the power spectrum exhibits Lorentzian peaks at ω = 0 and ω =

±2Ωπ, which reflect the dynamics of the Majorana qubit-quantum dot system. Explicitly, we
find

Sπ(ω) =
1

4k
+

cos2 θπ
2

κπ
ω2 + κ2π

+
sin2 θπ

4

∑

±

κ̃π
(ω ± 2Ωπ)2 + κ̃2π

, (5.29)

where we introduced the widths

κπ =
sin2 θπ

2
k, κ̃π =

(1 + cos2 θπ)

4
k (5.30)

of the Lorentzians. The measurement result forπ can be read off in particular from the location
of the Lorentzians in frequency. This is illustrated in Fig. 5.5 which shows the power spectrum
for a numerically generated measurement current and compares it to Eq. (5.29).

Physically, the zero-frequency peak in Eq. (5.29) is associated with the telegraph noise of the
charge expectation value shown in Fig. 5.4. In principle, the width of this peak also encodes
the measurement outcome. Indeed, Fig. 5.4 illustrates that the dwell time near n = 0 and
n = 1 depends on the π subspace. For suitable parameters, it may also be possible to monitor
the transition rate directly by means of an appropriately smoothened measurement current, or
to extract information on the measurement outcome from associated transients in the time-
averaged measurement current. The peak at finite frequency originates from Rabi oscillations,
which are seen in Fig. 5.4 as the small deviations of the quantum dot charge from its eigenvalues
n = 0 and n = 1 (see inset of right panel). The measurement pushes the system into a charge
eigenstate and thus a superposition of energy eigenstates, which then leads to oscillations as a
result of the Hamiltonian dynamics.

It is interesting to consider two special parameter choices. First, for Im{t1t∗2} = 0, the off-
diagonal block ρ+− of the density matrix does not decay. Indeed, in this case, not only the
average measurement signal, but also its noise correlations are independent ofπ. More generally,
the failure to decohere in the π̂ basis reflects the fact that the measurement signals for the two
subspaces are indistinguishable.

While the measurement fails for Im{t1t∗2} = 0, it can be simplified at the sweet spot t1 =

−it2 (t1 = it2 is analogous). In this case, the Hamiltonian commutes with n̂ in the π = −1
block and charge conservation in this block makes all density matrices which are diagonal in
the charge basis into zero modes of L−−. In this fine-tuned situation, it is not necessary to
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Figure 5.5: Power spectra of the measurement signal corresponding to outcomes π = +1 and π = −1. Numeri-
cal simulations based on Eq. (5.20) (green and red traces) are in excellent agreement with the analytical
expression in Eq. (5.29) (blue and orange traces). The numerical power spectra were obtained by gen-
erating measurement signals for long time intervals of T ∼ 107k−1. The long integration time is
necessitated by the small weight of the finite-frequency Lorentzians when sin θπ ≪ 1. Other parame-
ters as in Fig. 5.3. The power spectrum for π = −1 is scaled up by a factor of five for better visibility.
Figure from [VII].

measure noise correlations. Instead, the measurement outcome for π̂ and hence Ẑ can be ex-
tracted from the ensemble-averaged charge alone, which yields E[n] = 1/2 for π = +1 and
E[n] = 0 for π = −1. For small deviations from the fine-tuned point, t1 = −it2 + δ with
δ ≪ |t1|, charge is no longer conserved in both blocks and E[n] = 1/2 regardless of π. How-
ever, the relaxation rate to the stationary state will be smaller in the π = −1 block by a factor
|δ|2/|t1|2. For a sufficiently high measurement efficiency, it might then be possible to resolve π
from transient differences in the average charge. Figure 5.4 (right panel) shows corresponding
simulations (with δ = 0), which confirm that in principle, the integrated measurement signals
suffice to identify the measurement outcome in a measurement time τm ∼ k−1.

An important characteristic of the measurement is the measurement-induced decoherence
time (see Refs. [188–194] for discussions of Majorana qubit decoherence unrelated to measure-
ments). The decoherence time is closely related to (and in fact upper bounded by) the inverse
of the real part of the slowest decaying eigenvalue λ̃slow of L+−. Figure 5.6 shows numerical
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Figure 5.6: Decoherence rate as characterized by the real part of the slowest decaying eigenvalue ofL+−,Re{λ̃slow}
as a function of the measurement strength k andφ defined through t1 = e−iφt2 = 0.1ε. Figure from
[VII].

results for Re{λ̃slow}. We focus on weak measurements, k, |t1|, |t2| ≪ ε, and nonzero but
possibly small φ defined through t1 = e−iφt2. We observe that there is no decoherence along
the line φ = 0 where Im{t1t∗2} = 0. At fixed k, Re{λ̃slow} grows quadratically in φ up un-
til discontinuous lines, where λ̃slow and the corresponding eigenmatrix coalesce with another
eigenvalue-eigenmatrix pair. Then, the eigenmatrices of L+− fail to span the space of 2 × 2

complex matrices along these exceptional lines emanating from (φ, k) = (0, 0). At fixed φ and
to leading order in k, we observe a linear decrease as k increases towards the discontinuity. The
measurement is more efficient when tuning to the large-|φ| side of the exceptional lines. In this
region, Re{λ̃slow} depends only weakly on φ, which is why we only display the region of small
φ in Fig. 5.6. Note that the discontinuities are regularized by relaxation terms, such as those
discussed in the following Sec. 5.2.4.

5.2.4 Majorana-qubit readout in the presence of relaxation

The results of the previous section may be surprising in that the quantum point contact does
not detect the dependence of the ground-state expectation value of the quantum dot charge on
the parity sector π. Instead, the information on π can generically only be extracted from noise
correlations of the measurement current j(t). Experimentally, however, it would be preferable
if π could be extracted from the average measurement signal.

The underlying reason for the insensitivity to the quantum dot charge in the ground state is
that under the continuous measurement, the density matrix generically becomes proportional
to the unit matrix within the subspace with fixedπ [see Eq. (5.25)]. Then, the expectation value
of the quantum dot charge is just equal to 1/2, independent of the parity π. The difference
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5.2 Majorana-qubit readout via quantum dot charge monitoring

in quantum dot charge between the ground states is compensated by the opposite difference
between the excited states.

It is then natural to expect that the average measurement current distinguishes between the
two subspaces once one includes additional relaxation processes from the excited state |eπ⟩ to
the ground state |gπ⟩. Unlike the measurement which leads to relaxation in the basis of the
quantum dot charge, this additional relaxation should operate within the eigenbasis of hπ. We
now show that this expectation is indeed correct.

There are various processes which induce relaxation within the eigenstate basis. One relevant
example are effective measurements of the Majorana-qubit charge by the environment. For def-
initeness, we effect relaxation within the eigenstate basis by coupling to the electromagnetic
environment. Within the Born-Markov approximation and focusing on T = 0 for simplicity,
this leads to an additional dissipation term in Eq. (5.20) (see App. C.3.4 for details),

d
dt
ρ̂|relax = Γ−

∑

π

D
[
sin θπ
2

τ̂π−

]
ρ̂ ≡ L′ρ̂. (5.31)

Here, we defined the lowering operator in the energy basis for subspaceπ, τ̂π− = |gπ⟩⟨eπ| and the
zero-temperature relaxation rateΓ− = 2πJ(2Ωπ) governed by the spectral density J(ω) of the
electromagnetic environment. While Γ− may depend on π in principle, we assume J(2Ω+) ≃
J(2Ω−) for simplicity. Note that at finite temperatures, there is an additional dephasing term
Γ0D[cos θπ τ̂πz /2]ρ̂ in the eigenstate basis, where Γ0 = 2π limω→0 J(ω)b(ω) with the Bose
distribution b(ω). However, for k,Γ−,Γ0 ≪ Ωπ, this term does not affect the results, cp.
App. C.4.1.

Importantly, Eq. (5.31) also conserves π̂ and the total unconditioned master equation [ob-
tained by incorporating Eq. (5.31) into Eq. (5.20)] still decouples into blocks. The off-diagonal
block obeys

ρ̇+− =
(
L+− + L′+−

)
ρ+−. (5.32)

Here,L′+− = 1
4
Γ− sin θ+ sin θ−D[τ−] has Lindblad form and a negative semidefinite real part.

Since L+− generically has only decaying eigenvalues, L+− + L′+− is also decaying. The only
exception occurs when Im{t1t∗2} = 0, as in the absence of relaxation. In this special case,L+−
and thus also L+− + L′+− as a whole have Lindblad form and preserve the trace. Thus, the
condition for the measurement to work remains unchanged in the presence of relaxation.

The evolution of the diagonal blocks tends to

ρ∞π,π =
1

2
(τπ0 +Rτπz ) (5.33)
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Figure 5.7: Continuous readout of Majorana qubit in the presence of relaxation with rateΓ− = 5k (other param-
eters as in Fig. 5.3). (a) Ensemble-averaged quantum dot occupations n(t), restricted to the subspaces
π = +1 (green trace) and π = −1 (red trace), as obtained from the unconditioned master equation
(starting in the ground state withn = 0). E[n(t)]π converges to distinct expectation valuesn∞π for the
two subspaces, so that π can be read out from the time-averaged measurement current of a quantum
dot charge measurement. (b) Time averaged measurement signals for trajectories in the π = +1 (cyan
trace) and π = −1 (orange) sectors, converging to n∞π . Readout requires integration times which are
significantly longer than convergence times of the ensemble-averaged quantum dot occupations in the
top panel. From Eq. (5.39), the measurement time can be estimated as τm ∼ 104/k for the given pa-
rameters. This estimate is based on the fluctuations in the π = −1 sector, where fluctuations are larger
since cot θ− ≫ cot θ+. We also show the time average of the charge expectation value (not accessible
in experiment). The similarity of the curves indicates that fluctuations of the measurement current are
dominated by fluctuations of the charge expectation value. Figure from [VII].

in the energy basis to leading order in Ωπ ≫ k,Γ−. Here we defined the ratio

R =
Γ−

Γ− + 2k
(5.34)

characterizing the strength of the additional relaxation. The associated ensemble average of the
quantum dot charge becomes

n∞π =
1

2
(1 +R cos θπ). (5.35)

134



5.2 Majorana-qubit readout via quantum dot charge monitoring

When the measurement is stronger than dissipation, we have R ≪ 1 and the quantum dot
charge is close to 1/2, independent of π. However, in the opposite limit, when dissipation is
stronger than the measurement and R approaches unity, the average charge is approximately
given by the ground-state expectation value of the charge in the respective sector, ⟨gπ|n̂|gπ⟩ =
(1+cos θπ)/2. In this limit, the time-averaged measurement signal depends onπ, in agreement
with the heuristic arguments given above.

We illustrate these considerations by the numerical simulations shown in Fig. 5.7. Including
the relaxation process in Eq. (5.31) in the simulations of the unconditioned master equation, we
compute the time-averaged measurement currents and find that indeed, they converge towards
n∞π , albeit slowly.

The corresponding measurement time is determined by the requirement to resolve the dif-
ference ∣∣n∞+ − n∞−

∣∣ = 4R

∣∣∣∣
Im{t1t∗2}

ε2

∣∣∣∣ (5.36)

in quantum dot occupations. The time-averaged measurement current

jint,π(T ) =
1

T

∫ T

0

dt jπ(t) (5.37)

fluctuates around n∞π , with decreasing magnitude of the fluctuations as T grows. The fluctua-
tions can be estimated via the variance

V[jint,π(T )] =
1

4kT
+ cot2 θπR

2 4k

Γ2
−T

. (5.38)

The first term reflects the white noise background, whereas the second originates from fluctua-
tions ofn(t). The latter depends on the sector π. The measurement time can then be estimated
by comparing the variance with the resolution necessary to distinguish the two possible mea-
surement outcomes. This gives

τm ∼
ε4

16|Im{t1t∗2}|2
(

1

4kR2
+ C

4k

Γ2
−

)
, (5.39)

where we use the variance of the sector with larger fluctuations, defining

C = max
π

cot2 θπ. (5.40)

We observe that a large splitting resulting from a large |Im{t1t∗2}| and a small ε are advanta-
geous for a fast measurement. (Note, however, that there is a tradeoff since a small ε enhances
quasiparticle poisoning rates.) Moreover, the terms in the brackets have interesting structure.
They diverge for both k → 0 and k → ∞. Thus, at a given Γ−, there is an optimal mea-
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Figure 5.8: Effect of Majorana hybridization ϵ23 = 0.2k on Majorana-qubit readout (in the absence of relaxation,
Γ− = 0). Blue and orange traces: Sample trajectories of π(t), clearly not reaching a fixed point. Red
and purple traces: Ensemble-averaged evolution of π(t) for states initialized in the π = +1 (red) and
π = −1 (purple) sectors. Both curves converge towards E[π] = 0, corresponding to an equal mixture
of the two sectors, regardless of initial condition. Similarly, E[1− π2(t)] (green) does not approach 0,
so that π ̸= ±1. Other parameters as in Fig. 5.3. Figure from [VII].

surement strength kopt = Γ−/2
√
1 + 4C to identify the measurement outcome based on the

time-averaged signal. The corresponding optimal measurement time becomes

τm,opt ∼
ε4
(
1 +
√
1 + 4C

)

16Γ−|Im{t1t∗2}|2
. (5.41)

5.2.5 Charge nonconservation and Majorana hybridizations

An essential assumption underlying the readout of the Majorana qubit is that the combined
parity π̂ is a good quantum number. In practice, there can be processes which do not conserve
π̂. First, the combined parity does not commute with the residual Majorana hybridizations εij
in Eq. (5.1) (except for ε12). Second, π̂ is no longer conserved in the presence of leakage of the
quantum dot charge, say into additional reservoirs.

It is natural to expect that these processes spoil the measurement by allowing weight to move
between the π subspaces and thereby scrambling the probabilities associated with the measure-
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Figure 5.9: Effect of a weak Majorana hybridization ϵ23 = 0.02k on Majorana-qubit readout. For this hybridiza-
tion strength, the measurement evolution, which tries to project π onto an eigenvalue of π̂, is stronger
than the evolution due to Ĥ23. Thus, in contrast to Fig. 5.8, individual πi(t) traces (blue and orange)
remain predominantly near the fixed points π = ±1. This is also reflected in the fact that E[1 − π2]
(green trace) reaches a steady state value which is different from but still close to zero. At short times, in-
dividual trajectories reach the fixed points with a probability reflecting the initial weights |α|2 and |β|2
associated with the π̂ eigenspaces. Eventually, hybridization flipsπ(t)between 1 to−1, as illustrated by
trajectory π2(t). These jumps cause a decay of the ensemble average of π(t) over trajectories initialized
within one fixed point, see red trace for E[π]+ (enlarged in inset). Correspondingly, the initial weights
are lost and in the long-time limit, trajectories are close to either fixed point with equal probability (as
quantified by the decay ofE[π]+) . For good readout fidelity, the measurement outcome must be iden-
tifiable as long as E[π]+ ≃ 1. Other parameters as in Fig. 5.3. Figure from [VII].

ment outcomes. We analyze this in more detail for the Majorana hybridizations. For definite-
ness, we focus on ε23 with the corresponding contributions

Ĥ23 = − iε23γ̂2γ̂3 (5.42)

= ε23
∑

n

(|↑, n⟩⟨↓, n|+ |↓, n⟩⟨↑, n|) (5.43)

to the Hamiltonian andL23ρ̂ = −i[Ĥ23, ρ̂] to the Liouvillian. In the absence of relaxation and
for Im{t1t∗2} ≠ 0, the new total Liouvillian L + L23 has ρ̂∞ = diag(1, 1, 1, 1)/4 as the only
zero mode and, consequently, does not preserve information on the weights |α|2 and |β|2 of
the initial Majorana-qubit state in the long-time limit (see App. C.7).

This is illustrated in Fig. 5.8 which showsE[π(t)]±, the ensemble-averaged evolution of π(t)
for initial states π(0) = ±1. For significant values of ϵ23, E[π(t)]± relaxes to 0 faster than the
measurement can project π̂, as indicated by the fact thatE[1−π2(t)] remains large for all times
t. This implies that the system forgets the weights associated with the π eigensectors too fast
to perform a measurement. In contrast, Fig. 5.9 shows data for a much smaller value of ϵ23.
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1

2

Figure 5.10: Majorana qubit readout by means of a double quantum dot (with inter-dot tunneling t0), with charge
monitoring by a quantum point contact of one (as shown) or both quantum dots. Symbols as in Fig.
5.1. Figure from [VII].

Here, ε23 ≪ τ−1m and the information on the weights is retained transiently. Still, in the long-
time limit, this information is lost and Majorana hybridizations set an upper limit for the time
a measurement may take. Including relaxation does not change this qualitatively. In this case,
the steady state will no longer be completely mixed, but importantly, there is only one steady
state and information on the qubit state is lost in the long time limit.

5.2.6 Readout via double quantum dot

Readout of two-Majorana parities

It is interesting to compare the scheme discussed so far with a modified readout setup which
couples the Majorana qubit to a double quantum dot, such that Majoranas γ̂1 and γ̂2 entering
into Ẑ are coupled to one quantum dot each, see Fig. 5.10. In this case, the effective hopping
amplitude between the quantum dots equals

tẐ = t0 +
it1t

∗
2

Ec
Ẑ. (5.44)

Here, t0 denotes direct hopping, while the second term originates from indirect hopping via
the Majorana qubit. We consider the subspace in which a single electron in the double quan-
tum dot can reside in either of the two quantum dots, with basis states |1, 0⟩ and |0, 1⟩. The
Hamiltonian of the system, written in the basis {|1, 0; ↑⟩, |0, 1; ↑⟩, |1, 0; ↓⟩, |0, 1; ↓⟩} becomes
block-diagonal,

Ĥ =


 h↑ 0

0 h↓


, (5.45)
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5.2 Majorana-qubit readout via quantum dot charge monitoring

where the 2× 2 blocks take the form

hZ =


 ϵ/2 tZ

t∗Z −ϵ/2


. (5.46)

Unlike the single-dot case, the block-diagonal structure is now directly related to the operator
of interest, Ẑ . At first sight, this may seem to simplify readout based on monitoring the charge
of one of the quantum dots.

However, this is not the case and our analysis of the readout via a single quantum dot carries
over to the present case with only small changes. In particular, the time-averaged measurement
signal of the quantum point contact does not distinguish between the two Z values, unless
there is relaxation in the energy eigenbasis. This is because the measurement attempts to project
the quantum dot into a charge eigenstate of one of the quantum dots, which is not an eigen-
state, thus causing Rabi oscillations of the charge between the quantum dots. In the stationary
limit, the system explores both charge states, |1, 0⟩ and |0, 1⟩, with equal probability and the
ensemble-averaged charge becomes equal to 1/2, independent of Z . The similarities with the
single-dot setup are, of course, rooted in the fact that the Hamiltonians (5.7) and (5.46) for the
single and double-dot setups, respectively, are closely analogous.

Despite these similarities, the present setup may have some advantages which could compen-
sate for the additional effort. First, the diagonal elements of the Hamiltonian (5.46) can now
be tuned by a gate, making a wider parameter range accessible. Second, the double quantum
dot presumably couples efficiently to the electromagnetic environment, which induces relax-
ation in the energy basis and enables readout of the qubit via the average measurement current.
Third, the setup obviates the need for resetting the qubit as electrons enter the Majorana qubit
only virtually.

Readout of four-Majorana parities

Universal quantum computing requires a gate which entangles qubits such as the controlled
NOT. For Majorana qubits, the entangling gate can be implemented using measurements of
two-qubit Pauli operators [45, 156, 246], say Ẑ1Ẑ2, where Ẑ1 = −iγ̂1γ̂2 and Ẑ2 = −iγ̂3γ̂4, cf.
Fig. 5.11. This requires measurements of products of four Majorana operators. Measurements
of Majorana parities with even more operators are required to read out stabilizer operators of
various topological error correcting codes [242].

Measurements of four-Majorana parities can be implemented using double quantum dots
as in Sec. 5.2.6, replacing the tunneling path through a single Majorana qubit in Fig. 5.10 by a
tunneling path through a sequence of two Majorana qubits, as shown in Fig. 5.11. If the path
involves all four Majoranas included in Ẑ1Ẑ2, the corresponding tunneling amplitude becomes

tẐ1Ẑ2
= t0 +

t1t23t
∗
4

E2
c

Ẑ1Ẑ2. (5.47)
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5 Readout of Majorana qubits

1 2

Figure 5.11: Four-Majorana readout by charge measurements on a double quantum dot. The Majorana bound
states γ̂2 and γ̂3 are tunnel coupled directly via the tunneling link t23. Symbols as in Fig. 1. Figure
from [VII].

By analogy with our discussion in Sec. 5.2.6, the quantum dot charge measurement leads to
decoherence in the eigenbasis of Ẑ1Ẑ2. At the same time, the density matrix remains unaffected
within the diagonal blocks of fixed two-qubit parity Ẑ1Ẑ2, so that no information is gained
on Ẑ1 or Ẑ2. Clearly, this can, at least in principle, be extended to the measurement of larger
products of Majorana operators.

5.3 Symmetry-protected readout

We found in Sec. 5.2.3 that even though Ẑ was not a conserved quantity and the measurement
device was coupled to n̂, we could read out Ẑ by effectively extracting the combined local parity
π̂ which is a symmetry of both the system and the measurement Hamiltonian. This is a spe-
cial case of a more general result (see, e.g., [252, 253]). If an operator Π̂ commutes with both,
the Hamiltonian, [Ĥ, Π̂] = 0, and the full set of jump operators describing the measurement
and decoherence channels, [L̂α, Π̂] = 0, the system generically decoheres in the Π̂ basis. In
particular, decoherence occurs as long as the measurement current distinguishes between the
eigenspaces of Π̂ [254]. Before justifying the validity of this statement, we further illustrate its
usefulness by additional applications to Majorana qubits.

It was shown by Akhmerov [157] that coupling Majorana zero modes γ̂i to other fermionic
quasiparticles α̂i,k localized in their vicinity is not detrimental to topological protection. Due
to their localized nature, the quasiparticles do not couple distant Majoranas and the operators

γ̂′i = γ̂i(−1)N̂i (5.48)

with N̂i =
∑

k α̂
†
i,kα̂i,k are dressed but protected zero modes of the system which commute

with the Hamiltonian. This was recently studied further for a specific model in Ref. [255].
For these dressed zero modes to be useful for topological quantum computation, we need

to be able to use them in Majorana qubits and to perform projective measurements of corre-
sponding qubit operators such as Ẑ ′ = −iγ̂′1γ̂′2 [156]. The general statement mentioned above
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5.3 Symmetry-protected readout

implies that this is indeed possible. Consider a measurement of Ẑ by coupling γ̂1 and γ̂2 to a
quantum dot as before. We can define a modified combined local parity

π̂′ = Ẑ(−1)n̂+N̂1+N̂2 = Ẑ ′(−1)n̂, (5.49)

which includes the localized quasiparticles. Unlike π̂, the modified combined parity π̂′ is a sym-
metry of the system in the absence of processes coupling to other Majorana bound states or
changing the charge n̂ + N̂1 + N̂2. A measurement which distinguishes between the two
eigenspaces of π̂′ will then no longer decohere the system in the eigenbasis of π̂, but in the
eigenbasis of π̂′, as required for a projective readout of a qubit based on the dressed zero modes.
There may, however, be a reduction in the readout speed, as the coupling to other localized
modes reduces the hybridization of the zero mode with the quantum dot.

Our description of the measurement process in terms of the stochastic master equation (5.20)
assumes a large bias applied to the quantum point contact, which might cause unnecessary heat-
ing of the quantum dot-Majorana qubit system as a consequence of the measurement. The
general statement above implies that this assumption, although technically convenient, is un-
necessary. Inspecting the derivation of the stochastic master equation in App. C.3, we see that
relaxing this assumption will change the argument of the decoherence operator D[n̂] in Eq.
(5.20). Nevertheless, π̂ is conserved by all interactions and thus necessarily by the argument of
D, as well. Then, the system still decoheres in the π̂ eigenbasis. It is worthwhile noting, how-
ever, that for smaller bias voltages the argument ofDwill in general no longer be hermitian and
the associated steady state will not be completely mixed within each π subspace.

Now we turn to justifying the general statement. If, for simplicity, the symmetry squares to
one, Π̂2 = 1, the unconditional master equation decouples into blocks labeled by the eigenval-
ues of Π̂ (cp. Sec. 5.2.3),

ρ̇ππ = − i[hπ, ρππ] +
∑

α

kαD[lαπ ]ρππ = Lππρππ, (5.50a)

ρ̇+− = − i(h+ρ+− − ρ+−h−) +
∑

α

D̃
[
lα+, l

α
−
]
ρ+− = L+−ρ+−. (5.50b)

Here, we use the notation D̃[A,B]ρ = AρB† − (A†Aρ + ρB†B)/2 and decompose L̂α =

diag[lα+, lα−] as well as Ĥ = diag[h+, h−]. Just as in Sec. 5.2.3, the diagonal blocks have Lindblad
form and the evolution preserves the weights in the respective blocks.

We then need to understand whenL+− leads to a decay of ρ+−. Baumgartner and Narnhofer
[252] show that nontrivial off-diagonal steady states exist if and only if there is a unitary

Û =


0 u†

u 0


 (5.51)
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5 Readout of Majorana qubits

connecting the two subspaces, Û P̂+ = P̂−Û †, which commutes with the Hamiltonian and all
the L̂α. Here, P̂± denotes the projectors onto the two eigenspaces of Π̂ and u is a unitary acting
on the Π̂ eigenspaces. Then, one has

h− = u†h+u , l
α
− = u†lα+u, (5.52)

so that both the spectra of the Hamiltonians and the algebras formed by
{
h±, lα±

}
are identical.

This implies that the two sectors are unitarily equivalent and the associated measurement cur-
rents are indistinguishable. The existence of such a unitary U requires finetuning. Generically,
the subspaces are not related in this manner and the measurement signals distinguish between
the two sectors. Then, decoherence occurs in the eigenbasis of Π̂.

This holds true regardless of the details of the measurement procedure. For instance, one
could alternatively base the charge measurement on circuit-QED reflectometry, where the cou-
pling to the quantum dot charge takes the form

ĤcQED = g n̂
(
â†0 + â0

)
. (5.53)

Here, â0 annihilates a bosonic resonator mode and g quantifies the coupling strength. Since
the coupling respects the symmetry [ĤcQED, π̂] = 0, this generically decoheres the system in
the eigenbasis of π̂. This emphasizes that it is really the symmetry that counts, not the details
of the measurement, and we refer to this mechanism as symmetry protected decoherence or
symmetry protected readout.

While decoherence generically occurs in the eigenbasis of π̂, the decoherence rates depend
on the specifics of the measurement and can be linked to the rate at which it is possible to dis-
tinguish the measurement signals of the two sectors [254]. In particular, |trρ+−(t)|2 is closely
related to the probability to correctly identify the measurement outcome from the measure-
ment signal up to time t. Since this assumes an ideal measurement, the decay of ρ+− generally
provides only bounds on the measurement time.

5.4 Discussion

Readout of Majorana-based topological qubits is an important problem and has attracted much
attention in the literature for qubit designs based on Coulomb-blockaded superconducting is-
lands [45, 154, 256, 257] or alternative settings [258–264]. Its importance is rooted in the fact that
promising schemes for Majorana-based quantum computation [45, 156, 242] rely on measure-
ments as an integral part of quantum information processing. This implies that the measure-
ments must not only provide the measurement outcome, but also reliably project the qubit into
the corresponding eigenstate.

A variety of techniques have been proposed to read out Majorana qubits, including inter-
ferometry of transport currents passed through the Majorana qubit [154, 257, 264], techniques
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borrowed from circuit quantum electrodynamics [45, 154, 256, 259, 260], or measurements rely-
ing on charge sensing [45, 154, 258, 261, 262, 265]. Techniques borrowed from circuit quantum
electrodynamics can frequently be treated theoretically in close analogy to the description for
(nontopological) superconducting qubits [266]. At the same time, these schemes involve a sub-
stantial hardware overhead and may significantly increase the effective dimensions of each qubit.
Therefore, we focused here on readout of Majorana qubits based on coupling to a quantum dot
whose charge is measured by means of a quantum point contact. This approach combines suit-
ability to the basic design of Majorana qubits with conceptual simplicity, and thus relevance for
near-term devices with accessibility of a thorough theoretical analysis at an analytical level.

Despite its apparent simplicity, this scheme poses nontrivial questions. In particular, we dis-
cuss charge-based readout protocols of parity-protected Majorana qubits which are distinctly
different from charge-based readout protocols of other types of qubits. Spin qubits (by spin-
charge conversion) [267] or Majorana qubits without parity protection [261] (by parity-to-charge
conversion) can also be effected by charge measurements. In these cases, the computational basis
of the qubit is robustly brought into one-to-one correspondence with the charge basis. In con-
trast, the charge-based readout of parity-protected Majorana qubits projects in the charge basis,
while the qubit operator enters through a tunneling Hamiltonian which does not commute
with the charge. Generically, this makes a single projective charge measurement insufficient to
identify the qubit state. Moreover, readout by repeated charge measurements would necessitate
very high levels of control. Instead, the readout process is a weak continuous measurement and
its theoretical description requires a time-resolved description of the measurement.

A systematic measurement theory of this readout scheme for (parity-protected) Majorana
qubits is the central contribution of the work presented in this chapter. Our theory reveals un-
der which conditions a measurement of the quantum dot charge constitutes a projective mea-
surement of the Majorana parity of the qubit, describes the time it takes to decohere the system
in the measurement basis, and includes the noisy measurement signal which can be analyzed to
estimate required measurement times.

Our central insight is that generically, one does not directly measure the Majorana parity but
rather a combined parity which includes the quantum dot charge in addition to the Majorana
parity of the qubit. We find that this is not detrimental to the readout as the combined parity can
eventually be converted into the desired Majorana parity. Importantly, this observation general-
izes and our theory also applies more generally. In particular, this implies that other local charges
which the Majorana might couple to are not a hindrance to topological protection. Topologi-
cal quantum computation, including qubit readout, can be based on dressed zero modes which
include these additional local charges. In its general form, the underlying result states that deco-
herence generically occurs in the eigenbasis of operators which commute with the system and
readout Hamiltonians, which we refer to as symmetry protected decoherence or readout.

The theory also describes how to extract the measurement outcome from the measurement
current through the quantum point contact. We find that generically, the measurement out-
come cannot be reconstructed from the average measurement current, but only from its noise
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5 Readout of Majorana qubits

correlations. This can only be avoided when including additional dissipative processes, or by
exploiting transient signals in fine-tuned situations. This surprising result can be traced back
to the fact that the quantity to be read out enters into a tunneling amplitude which does not
commute with the measured quantity, namely the quantum dot charge. We emphasize that for
readout based on a single quantum dot, the Majorana qubit is in an excited state for a significant
fraction of the measurement time. This may make the procedure susceptible to qubit errors by
uncontrolled electron tunneling. This can be avoided in a measurement setup using a double
quantum dot, which may thus promise better readout fidelities.

Finally, the theory naturally provides estimates of the measurement time. We find that the
measurement times for Majorana qubit readout based on setups with a single quantum dot are
consistently considerably larger than those for a conventional quantum dot charge readout at
the same measurement strength. The reason for this is twofold. First, the decoherence rates
are no longer simply controlled by the measurement strength∼ k but involve the small tunnel
couplings between quantum dot and Majorana qubit, ∼ |t|2k/ε2 ≪ k. Second, one generi-
cally cannot access the entire information contained in the measurement signal. Instead, typical
experiments will only have access to its mean and two-point correlations. Thus, actual measure-
ment times can be large compared to the decoherence time. However, slow readout should not
be a generic feature of Majorana qubit readout. In fact, readout setups with two quantum dots
can access an increased parameter range and should be less restricted. Investigating the double-
dot setup in greater detail represents an interesting direction for future work.

We note also the related paper [268], which was published at a similar time as the work pre-
sented here, and which contains a partly complementary analysis and reaches similar conclu-
sions where overlapping.
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6 Surface photogalvanic effect in Weyl
semimetals

This chapter is based on Ref. [VIII].
In the past decade, Weyl semimetals (WSMs) have attracted great attention, from theoreti-

cal prediction [56] to experimental realization [90–92, 269]. Of particular interest are the pecu-
liar transport phenomena [61, 270] due to the presence of Weyl fermions, the associated chiral
anomaly [59, 271, 272], and topological Fermi-arc surface states [56, 273]. For instance, WSMs
are considered a promising platform for optoelectronic applications [101, 158] because chirality
and the topologically protected linear dispersion of Weyl fermions generally tend to enable and
enhance the response to incident light [274]. The relevant light frequencies lie typically in the
mid- and far-infrared region, bounded from below by the typically small but finite chemical
potential at the Weyl nodes and from above by the onsetting non-linear corrections to the Weyl
dispersion.

Most discussed is the photogalvanic effect (PGE) in non-centrosymmetric WSMs—a dc cur-
rent response to light irradiation [69–71, 73, 74, 161–165]. Generally, the photogalvanic current
density may be expanded as [160, 275]

J =
∑

i,j=x,y,z

ΓijEiE∗j , (6.1)

where E is the polarization vector of the light field and Γ is the photogalvanic response tensor.
One distinguishes between a ballistic current, induced by asymmetric in momentum photogen-
eration (or injection following the terminology of [276]), which is proportional to the relaxation
time and dominates in clean samples, and the shift current, which is finite even in the absence
of relaxation processes. Notably, in non-centrosymmetric WSMs a quantized photogeneration
induced by circularly polarized light was predicted [72]. WSMs that in addition to inversion also
break time-reversal symmetry may further exhibit a ballistic response to linearly polarized light
which may be giant [71, 165, 277–280].

Besides the bulk PGE that can be understood in terms of infinite-system models, the PGE
has been explored at the surfaces of metals [281–283] and topological insulators [284–287], in
which case the surface-normal component of Γ (but not that of E) vanishes. In the field of
WSMs, recently there was evidence from experiments and first principles calculations that Fermi
arc states might play an important role in the photogalvanic response [166, 167], a contribution
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↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

velocities

change due to 
excitation 

arc state 

bulk state

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

(a) (c)

(b)
(initial)
(final)

2

1

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

�1
<latexit sha1_base64="pFWXS+Iii5Q23t0nR1cweqBHPQI=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT3mTI7IOZXiGEfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3twk5xd2//4LB0dNw0SaYFNkSiEt0OuEElY2yQJIXtVCOPAoWtYHQ381tPqI1M4kcap+hHfBDLUApOVmp1AyTe83qlsltx52CrxMtJGXLUe6Wvbj8RWYQxCcWN6XhuSv6Ea5JC4bTYzQymXIz4ADuWxjxC40/m507ZuVX6LEy0rZjYXP09MeGRMeMosJ0Rp6FZ9mbif14no/DGn8g4zQhjsVgUZopRwma/s77UKEiNLeFCS3srE0OuuSCbUNGG4C2/vEqa1Yp3Wak+XJVrt3kcBTiFM7gAD66hBvdQhwYIGMEzvMKbkzovzrvzsWhdc/KZE/gD5/MH7ZyPTA==</latexit>

�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

y

xz

W

Fermi arc

_

Fermi arc

y

x

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

�1
<latexit sha1_base64="pFWXS+Iii5Q23t0nR1cweqBHPQI=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT3mTI7IOZXiGEfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3twk5xd2//4LB0dNw0SaYFNkSiEt0OuEElY2yQJIXtVCOPAoWtYHQ381tPqI1M4kcap+hHfBDLUApOVmp1AyTe83qlsltx52CrxMtJGXLUe6Wvbj8RWYQxCcWN6XhuSv6Ea5JC4bTYzQymXIz4ADuWxjxC40/m507ZuVX6LEy0rZjYXP09MeGRMeMosJ0Rp6FZ9mbif14no/DGn8g4zQhjsVgUZopRwma/s77UKEiNLeFCS3srE0OuuSCbUNGG4C2/vEqa1Yp3Wak+XJVrt3kcBTiFM7gAD66hBvdQhwYIGMEzvMKbkzovzrvzsWhdc/KZE/gD5/MH7ZyPTA==</latexit>

�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

(a) (b)

(c)

�1
<latexit sha1_base64="pFWXS+Iii5Q23t0nR1cweqBHPQI=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT3mTI7IOZXiGEfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3twk5xd2//4LB0dNw0SaYFNkSiEt0OuEElY2yQJIXtVCOPAoWtYHQ381tPqI1M4kcap+hHfBDLUApOVmp1AyTe83qlsltx52CrxMtJGXLUe6Wvbj8RWYQxCcWN6XhuSv6Ea5JC4bTYzQymXIz4ADuWxjxC40/m507ZuVX6LEy0rZjYXP09MeGRMeMosJ0Rp6FZ9mbif14no/DGn8g4zQhjsVgUZopRwma/s77UKEiNLeFCS3srE0OuuSCbUNGG4C2/vEqa1Yp3Wak+XJVrt3kcBTiFM7gAD66hBvdQhwYIGMEzvMKbkzovzrvzsWhdc/KZE/gD5/MH7ZyPTA==</latexit>

0

2

1

2

1

(thick slab)

(thin slab)

�
<latexit sha1_base64="zg355m0htJUkHzpYjrn7EfWuRaM=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m0y7dbMLuRCilP8KLB0W8+nu8+W/ctDlo64OBx3szzMwLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3A2q4FIq3UKDk3VRzGgeSd4LxXe53nrg2IlGPOEm5H9OhEpFgFK3U6YdcIi0PKlW35s5BVolXkCoUaA4qX/0wYVnMFTJJjel5bor+lGoUTPJZuZ8ZnlI2pkPes1TRmBt/Oj93Rs6tEpIo0bYUkrn6e2JKY2MmcWA7Y4ojs+zl4n9eL8Poxp8KlWbIFVssijJJMCH57yQUmjOUE0so08LeStiIasrQJpSH4C2/vEra9Zp3Was/XFUbt0UcJTiFM7gAD66hAffQhBYwGMMzvMKbkzovzrvzsWhdc4qZE/gD5/MHyVaPNA==</latexit>

light intensity

px

�
<latexit sha1_base64="bdAS1DU9pLDwmRSuoG8etVlJoIw=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9FjUg8cK9gPaUDbbSbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsGpVqDg2upNLtgBmQIoYGCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9UdivuDHSZeDkpkxz1Xumr21c8jSBGLpkxHc9N0M+YRsElTIrd1EDC+IgNoGNpzCIwfja7dkJPrdKnodK2YqQz9fdExiJjxlFgOyOGQ7PoTcX/vE6K4ZWfiThJEWI+XxSmkqKi09dpX2jgKMeWMK6FvZXyIdOMow2oaEPwFl9eJs1qxTuvVO8vyrXrPI4COSYn5Ix45JLUyB2pkwbh5JE8k1fy5ijnxXl3PuatK04+c0T+wPn8AWHajwA=</latexit>

py px

py

z

W

�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>
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Figure 6.1: (a) Dispersion (energy vs. in-plane momenta) of Weyl fermions confined to a slab of thicknessW . The
plot shows bulk states (blue) and surface states of bottom surface (red) and top surface (green). The
surface states are tightly glued to the bulk Weyl cone and emanate in the directionα2 (−β2) for bottom
(top) surface. The figure also shows the directions of Fermi-arc motion (α1 and β1), as well as the
photon penetration depth δ. (b) Low-energy band structure at the Weyl node. The Fermi energy µ
and the energy range of the linear-dispersion regime, ωmax, determine the range of considered photon
frequencies 2µ < ω < ωmax. Figure from [VIII].

that was neglected in previous theories. In particular, [167] have shown that the contribution
of surface states to the PGE due to excitations between the surface states of the same surface
are possible in chiral crystals due to high Chern numbers and a non-linear dispersion of those
surface states.

The mere presence of surface states, however, does not capture the full peculiarity of a WSM.
Importantly, the two-dimensional Fermi-arc surface states, constituting in some sense the reac-
tion of a pair of chiral Weyl fermions to confinement, are tightly glued to the three-dimensional
Weyl fermions [288], as illustrated in Fig. 6.1(a). This connectivity distinguishes Fermi arcs from
surface states of metals and topological insulators and was shown to give rise to a number in-
triguing, counter-intuitive linear-response effects [78–80, 82–89]. Understanding its role also for
the photogalvanic response is highly desirable. The theoretical challenge to capture the effect of
the connectivity is the requirement to go beyond an effective surface theory and consider a full
three-dimensional, yet spatially confined model.

Here, we present a theory of ballistic photogalvanic response of Weyl fermions spatially con-
fined in one direction with general boundary conditions, relevant for Weyl-semimetal slabs with
an arbitrary configuration of Weyl nodes and arbitrary orientations of Fermi arcs at the bottom
and top surfaces, which need not be the same.
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Specifically, the orientation of the bottom (top) Fermi arc is defined by the direction of its ve-
locity, α1 (β1), or the perpendicular direction at which the arc emanates from the Weyl node,
α2 (-β2), see Fig. 6.1(a). We show that this symmetry-breaking directionality gives rise to a vastly
richer response behavior compared to an unconfined WSM. In particular, the confinement en-
ables the otherwise vanishing linear and circular PGE in centrosymmetric WSMs. Furthermore,
the response is crucially determined by the orientations of the Fermi arcs. The latter may be ad-
justed by choosing different surface terminations [289, 290] or surface doping [168]. In principle,
this allows control over the photogalvanic response by modification of the surface only.

To focus on Weyl physics, we consider a photon frequency range for which excitations can
take place only close to Weyl nodes where the bulk and arc dispersions are linear, see Fig. 1(b).
The total response is then the sum of the responses of individual Weyl nodes. Further, we focus
on the semimetallic regime, in which the Fermi level µ is close to the Weyl node and smaller
than the photon energy, such that Pauli blocking as well as screening may be neglected. In this
regime, intra-surface (arc-arc) excitations are forbidden,1 but bulk-bulk excitations as well as
arc-bulk excitations exist.

Most strikingly, for a centrosymmetric WSM confined to a slab, the photogalvanic response
is fully determined by the Fermi-arc orientation. Considering the current density in Eq. (6.1) as
the current density averaged over the slab width, the response tensor can be decomposed into
a confinement-independent bulk-bulk contribution Γbb and confinement-induced contribu-
tions, which in turn consist of bulk-bulk δΓbb as well as arc-bulk Γab parts,

Γ = Γbb + δΓbb + Γab. (6.2)

For a centrosymmetric WSM,Γbb vanishes according to general symmetry considerations [160].
The response is thus given by

Γcentrosymm. = δΓbb + Γab, (6.3)

where both contributions are fully determined by the Fermi-arc orientations since the orien-
tation of the arcs and modification of the bulk-state wavefunctions are both defined by the
boundary conditions. Moreover, a centrosymmetric WSM necessarily breaks time-reversal sym-
metry, which implies that Γcentrosymm. will include a ballistic response to linearly polarized light
of the type discussed in [278]. This is directly relevant to magnetic WSMs, such as Co3Sn2S2

[93], RhSi [95], and GdPtBi [94]. Table 6.1 summarizes which types of photogalvanic response
are possible in unconfined and confined WSMs, depending on the mechanism and the presence
of time-reversal and inversion symmetry.

1Arc-arc transitions may play a role in some special situations. For instance, large Chern numbers |C| > 1 imply the pres-
ence of several arc sheets and thus energy and momentum conserving arc-arc transitions become a possibility. Similarly,
unscreened surface potentials may lead to strongly dispersing Fermi arcs [168] which may in principle enable intra-arc
transitions. We preclude these issues by assumingC = ±1 and linear arc dispersion.
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6 Surface photogalvanic effect in Weyl semimetals

symmetry time reversal inversion neither

(broken inversion) (broken timereversal)

ballistic current bCPGE, sCPGE sCPGE, sLPGE bCPGE, bLPGE,

(injection) sCPGE, sLPGE

shift current bLPGE, sLPGE (sCPGE, sLPGE) (bCPGE, bLPGE,

sCPGE, sLPGE)

Table 6.1: Allowed types of photogalvanic response in WSMs, bCPGE, sCPGE, bLPGE, and sLPGE, distin-
guished by light polarization, circular (CPGE) and linear (LPGE), and origin (b for bulk) and (s for
surface). Setups are categorized by mechanism (ballistic/shift current) and presence/absence of time-
reversal and inversion symmetry of the WSM material. Terms in parentheses give subdominant response
in clean systems. Italic text marks contributions first discussed in this work. In the presence of inversion
symmetry, the bulk photogalvanic response vanishes and only surface contributions remain. In this case,
the response is fully determined by the directionality of the Fermi arcs. In particular, there is a surface
induced ballistic LPGE enabled by broken time-reversal symmetry.

Finally, the confinement-induced PGE is categorized depending on the slab thickness. For a
sufficiently thick slab or sufficiently high frequency the light field does not penetrate the whole
slab. This is the case when the penetration depth δ, which for photon energies ℏω ∼ 1meV to
1 eV lies in the range 1 µm to 1mm, is much smaller than the slab thicknessW . For light inci-
dent at the bottom surface, see Fig. 6.1(a), the top surface no longer contributes to the response.
This changes the symmetry of the response tensor. We refer to this limit as the thick slab. In the
opposite limit, referred to as the thin slab, δ ≫ W , both surfaces contribute. Technically, the
two limits require substantially different calculations, we will thus mostly consider the thick-
and thin-slab regimes separately, using different analytical and numerical techniques.

This chapter is organized as follows. In Sec. 6.1 we introduce the model of a WSM in the
slab geometry for which we perform our calculations. We also briefly discuss the decay of light
waves in WSMs. Finally, we present the semiclassical formulae for the photogalvanic current
that we employ. In Sec. 6.2 we classify the different contributions to the photogalvanic response
tensor and estimate their magnitude. Further, we comment on the irrelevance of finite light
momentum. In Sec. 6.3 we discuss the symmetry constraints on the response tensor. Finally, in
Sec. 6.4 we present analytical results for the different contributions to the response tensor for
a single Weyl cone in the different regimes. We further present a lattice simulation in the thin
limit which confirms the analytical results. At the end of this section we apply our results to
WSMs with several Weyl cones by considering a centrosymmetric WSM with two nodes. We
conclude in Sec. 6.5. Technical details are delegated to the appendices.
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6.1 Model

6.1.1 Weyl semimetal

We consider a WSM slab with a set of Weyl nodes which are close to the Fermi level. We also
assume that the projections of the Weyl points to the surface Brillouin zone are well-separated.
Since we consider the response to excitations occurring close to the Weyl nodes only, it suffices
to consider the response of a single Weyl node, from which the response of a WSM with sev-
eral Weyl nodes will follow by combining the single-Weyl-node response tensors, transformed
according to the specific Weyl-node arrangement.

In order to evaluate the matrix elements relevant for the photogalvanic response tensors we
seek explicit expressions for the wave-functions in the slab geometry (see Appendix A for a de-
tailed derivation). To this end, we model a single Weyl fermion confined to 0 < z < W with
the Hamiltonian (we set ℏ = 1)

H = χ v p · σ, (6.4)

where p is the momentum (with pz = −i∂z), σ the spin, χ = ± the chirality, and v the ve-
locity. For better transparency of the following calculations we here assume isotropic velocity
of the Weyl fermion; in Appendix D.2 we generalize the results to an anisotropic Weyl node,
which leads to a simple transformation of the response tensor. In the absence of a tilt, the Weyl
Hamiltonian Eq. 6.4 commutes with the operator T = iσyK , where K is complex conjuga-
tion. By analogy with relativistic theory we refer to this intra-node symmetry as time reversal
(TR) symmetry. Note that it does not correspond to the time reversal operation acting on the
whole crystal, as this connects different Weyl nodes. Thus the intra-node TR symmetry allows
to constrain the response due to a single Weyl node only. A WSM with several Weyl nodes at
generic points in momentum space clearly does not need to satisfy TR symmetry.

Using translation invariance parallel to the surface we seek energy eigenstates in the form
of plane waves in the xy plane with the continuous in-plane momenta p∥ = (px, py) ≡
p∥(cosϕ, sinϕ). Their dependence onz is given by the solutions to the Weyl equationHψ(z) =
Eψ(z), which may be written as

ψ(z) ∝ exp{iPzz}ψ(0) ∝ [pz cos(pzz) + i sin(pzz)Pz]ψ(0), (6.5)

where pz =
√
E2 − p2∥ and the generalized momentum operator reads

Pz =
(
ipy,−ipx,

χE

v

)
· σ. (6.6)

The discrete energy eigenvalues of the slab (at fixed p∥) are to be determined by boundary con-
ditions. A generic boundary condition on the wavefunction is a vanishing current jz across the

149



6 Surface photogalvanic effect in Weyl semimetals

boundaries. Since jz ∝ ∂pzH ∝ σz this corresponds to ψ†σzψ = 0. Accounting for the pos-
sibility of differing boundary conditions for the bottom and top surfaces, a general boundary
condition thus reads

ψ(0) ∝


 1

eiα


, ψ(W ) ∝


 1

eiβ


, (6.7)

parametrized by two independent angles α and β. Surface inhomogeneities would correspond
to a spatial dependence of α and β. Here we assume translation invariance at the surface (up to
a relaxation mean free path that will be introduced perturbatively below) and thus consider α
and β to be constant.

The boundary conditions lead to the equation

sin
β − α
2

=
tan(pzW )

pz

[
p∥ cos

(
ϕ− β + α

2

)
∓ χp cos β − α

2

]
, (6.8)

which determines the quantized eigenvalues pz . Solutions with real pz correspond to bulk
states, imaginary solutions correspond to surface “arc" states. For details and explicit expres-
sions of the arc and bulk states see App. D.1. Note thatα and β define the velocity of the Fermi
arcs localized at the bottom (b) and top (t) surfaces,

vb
arc = χvα1, v

t
arc = χvβ1. (6.9)

as well as the direction at which they emanate from the Weyl node, given by the constraint

p ·α2 ≡ κb > 0, p · (−β2) ≡ κt > 0, (6.10)

for bottom and top arc, respectively, where we defined the vectors

α1 =




cosα

sinα

0


, α2 =




− sinα

cosα

0


, β1 =




cos β

sin β

0


, β2 =




− sin β

cos β

0


. (6.11)

The quantities κt and κb introduced in Eq. (6.10) have the meaning of inverse decay lengths of
the evanescent wave functions of arc states at the top and bottom surfaces, respectively.

In order to analyze symmetries in the presence of the boundary conditions, it proves help-
ful to define an equivalent multilayer setup, which reproduces the same spectrum and wave-
functions as the boundary conditions Eq. (6.7). Note that this is a fictitious system only intro-
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�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

(a) (b)

(c)

�1
<latexit sha1_base64="pFWXS+Iii5Q23t0nR1cweqBHPQI=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT3mTI7IOZXiGEfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3twk5xd2//4LB0dNw0SaYFNkSiEt0OuEElY2yQJIXtVCOPAoWtYHQ381tPqI1M4kcap+hHfBDLUApOVmp1AyTe83qlsltx52CrxMtJGXLUe6Wvbj8RWYQxCcWN6XhuSv6Ea5JC4bTYzQymXIz4ADuWxjxC40/m507ZuVX6LEy0rZjYXP09MeGRMeMosJ0Rp6FZ9mbif14no/DGn8g4zQhjsVgUZopRwma/s77UKEiNLeFCS3srE0OuuSCbUNGG4C2/vEqa1Yp3Wak+XJVrt3kcBTiFM7gAD66hBvdQhwYIGMEzvMKbkzovzrvzsWhdc/KZE/gD5/MH7ZyPTA==</latexit>

0

2

1

2

1

(thick slab)

(thin slab)

�
<latexit sha1_base64="zg355m0htJUkHzpYjrn7EfWuRaM=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m0y7dbMLuRCilP8KLB0W8+nu8+W/ctDlo64OBx3szzMwLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3A2q4FIq3UKDk3VRzGgeSd4LxXe53nrg2IlGPOEm5H9OhEpFgFK3U6YdcIi0PKlW35s5BVolXkCoUaA4qX/0wYVnMFTJJjel5bor+lGoUTPJZuZ8ZnlI2pkPes1TRmBt/Oj93Rs6tEpIo0bYUkrn6e2JKY2MmcWA7Y4ojs+zl4n9eL8Poxp8KlWbIFVssijJJMCH57yQUmjOUE0so08LeStiIasrQJpSH4C2/vEra9Zp3Was/XFUbt0UcJTiFM7gAD66hAffQhBYwGMMzvMKbkzovzrvzsWhdc4qZE/gD5/MHyVaPNA==</latexit>

light intensity

px

�
<latexit sha1_base64="bdAS1DU9pLDwmRSuoG8etVlJoIw=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9FjUg8cK9gPaUDbbSbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsGpVqDg2upNLtgBmQIoYGCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9UdivuDHSZeDkpkxz1Xumr21c8jSBGLpkxHc9N0M+YRsElTIrd1EDC+IgNoGNpzCIwfja7dkJPrdKnodK2YqQz9fdExiJjxlFgOyOGQ7PoTcX/vE6K4ZWfiThJEWI+XxSmkqKi09dpX2jgKMeWMK6FvZXyIdOMow2oaEPwFl9eJs1qxTuvVO8vyrXrPI4COSYn5Ix45JLUyB2pkwbh5JE8k1fy5ijnxXl3PuatK04+c0T+wPn8AWHajwA=</latexit>

py px

py

z

W

�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

(a) �1
<latexit sha1_base64="pFWXS+Iii5Q23t0nR1cweqBHPQI=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT3mTI7IOZXiGEfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3twk5xd2//4LB0dNw0SaYFNkSiEt0OuEElY2yQJIXtVCOPAoWtYHQ381tPqI1M4kcap+hHfBDLUApOVmp1AyTe83qlsltx52CrxMtJGXLUe6Wvbj8RWYQxCcWN6XhuSv6Ea5JC4bTYzQymXIz4ADuWxjxC40/m507ZuVX6LEy0rZjYXP09MeGRMeMosJ0Rp6FZ9mbif14no/DGn8g4zQhjsVgUZopRwma/s77UKEiNLeFCS3srE0OuuSCbUNGG4C2/vEqa1Yp3Wak+XJVrt3kcBTiFM7gAD66hBvdQhwYIGMEzvMKbkzovzrvzsWhdc/KZE/gD5/MH7ZyPTA==</latexit>

�
<latexit sha1_base64="zg355m0htJUkHzpYjrn7EfWuRaM=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m0y7dbMLuRCilP8KLB0W8+nu8+W/ctDlo64OBx3szzMwLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3A2q4FIq3UKDk3VRzGgeSd4LxXe53nrg2IlGPOEm5H9OhEpFgFK3U6YdcIi0PKlW35s5BVolXkCoUaA4qX/0wYVnMFTJJjel5bor+lGoUTPJZuZ8ZnlI2pkPes1TRmBt/Oj93Rs6tEpIo0bYUkrn6e2JKY2MmcWA7Y4ojs+zl4n9eL8Poxp8KlWbIFVssijJJMCH57yQUmjOUE0so08LeStiIasrQJpSH4C2/vEra9Zp3Was/XFUbt0UcJTiFM7gAD66hAffQhBYwGMMzvMKbkzovzrvzsWhdc4qZE/gD5/MHyVaPNA==</latexit>

light intensity

!
<latexit sha1_base64="tlCosEe7acB15WG/y1yAvFPNxVY=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAckS5id9CZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNoUkVV7oTEQOcSWhaZjl0Eg1ERBza0fh25refQBum5IOdJBAKMpQsZpRYJ7V6SsCQ9MsVv+rPgVdJkJMKytHol796A0VTAdJSTozpBn5iw4xoyyiHaamXGkgIHZMhdB2VRIAJs/m1U3zmlAGOlXYlLZ6rvycyIoyZiMh1CmJHZtmbif953dTG12HGZJJakHSxKE45tgrPXscDpoFaPnGEUM3crZiOiCbUuoBKLoRg+eVV0qpVg4tq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKKHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPkX+PHw==</latexit>

!+
<latexit sha1_base64="i9I2OMbBRrpAQOwrkTYLBBBpy2s=">AAAB73icbVDLSgNBEJz1GeMr6tHLYBAEIexGQY9BLx4jmAckS5id9CZD5rHOzAphyU948aCIV3/Hm3/jJNmDJhY0FFXddHdFCWfG+v63t7K6tr6xWdgqbu/s7u2XDg6bRqWaQoMqrnQ7IgY4k9CwzHJoJxqIiDi0otHt1G89gTZMyQc7TiAUZCBZzCixTmp3lYAB6Z33SmW/4s+Al0mQkzLKUe+Vvrp9RVMB0lJOjOkEfmLDjGjLKIdJsZsaSAgdkQF0HJVEgAmz2b0TfOqUPo6VdiUtnqm/JzIijBmLyHUKYodm0ZuK/3md1MbXYcZkklqQdL4oTjm2Ck+fx32mgVo+doRQzdytmA6JJtS6iIouhGDx5WXSrFaCi0r1/rJcu8njKKBjdILOUICuUA3doTpqIIo4ekav6M179F68d+9j3rri5TNH6A+8zx+xvY+9</latexit>

(b)

µ
<latexit sha1_base64="YUIm7Tsc5b5P2pMGLKWRa4Nw0cU=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2g9ol5JNs21okl2SrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6tJOEBZIMFY84JdZJDz2Z9ssVr+rNgVeJn5MK5Gj0y1+9QUxTyZSlghjT9b3EBhnRllPBpqVealhC6JgMWddRRSQzQTY/dYrPnDLAUaxdKYvn6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10XWQcZWklim6WBSlAtsYz/7GA64ZtWLiCKGau1sxHRFNqHXplFwI/vLLq6RVq/oX1dr9ZaV+k8dRhBM4hXPw4QrqcAcNaAKFITzDK7whgV7QO/pYtBZQPnMMf4A+fwBerI3a</latexit>!

�

<latexit sha1_base64="6Pt/4Yd9kCUq5cPHpwRYDd0NqxM=">AAAB73icbVDLSgNBEJz1GeMr6tHLYBC8GHajoMegF48RzAOSJcxOepMh81hnZoWw5Ce8eFDEq7/jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNoUEVV7odEQOcSWhYZjm0Ew1ERBxa0eh26reeQBum5IMdJxAKMpAsZpRYJ7W7SsCA9M57pbJf8WfAyyTISRnlqPdKX92+oqkAaSknxnQCP7FhRrRllMOk2E0NJISOyAA6jkoiwITZ7N4JPnVKH8dKu5IWz9TfExkRxoxF5DoFsUOz6E3F/7xOauPrMGMySS1IOl8UpxxbhafP4z7TQC0fO0KoZu5WTIdEE2pdREUXQrD48jJpVivBRaV6f1mu3eRxFNAxOkFnKEBXqIbuUB01EEUcPaNX9OY9ei/eu/cxb13x8pkj9Afe5w+0xY+/</latexit>

!
m

a
x

<latexit sha1_base64="A8OpzU8yT0kmNSVFiRca7Chkahs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiRV0GXRjcsK9gFNCJPppB06MwkzEzGE+ituXCji1g9x5984abPQ1gMDh3Pu5Z45YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+/Cop+JUYtLFMYvlIESKMCpIV1PNyCCRBPGQkX44vSn8/gORisbiXmcJ8TkaCxpRjLSRArvuxZyMUeBxpCeS5xw9zgK74TSdOeAqcUvSACU6gf3ljWKcciI0Zkipoesk2s+R1BQzMqt5qSIJwlM0JkNDBeJE+fk8/AyeGmUEo1iaJzScq783csSVynhoJouMatkrxP+8YaqjKz+nIkk1EXhxKEoZ1DEsmoAjKgnWLDMEYUlNVognSCKsTV81U4K7/OVV0ms13fNm6+6i0b4u66iCY3ACzoALLkEb3IIO6AIMMvAMXsGb9WS9WO/Wx2K0YpU7dfAH1ucPgvWVVA==</latexit>

p
<latexit sha1_base64="pE8dn1l4/serqPJduv2maw7+NSA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVhlkz75Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n88RTcmaVAQljZZ80ZK7+3shopPUkCuzkLKFe9mbif143NeG1n3GZpAYlW3wUpoKYmMzOJwOukBkxsYQyxW1WwkZUUWZsSSVbgrd88ipp1areRbV2f1mp3+R1FOEETuEcPLiCOtxBA5rAQMIzvMKbo50X5935WIwWnHznGP7A+fwB8l+RGA==</latexit>

E
<latexit sha1_base64="oW7OyFl8fZOuY5qYrNXg+guGckE=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNCtl76JcqV+WqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZo7jM0=</latexit>

(b)thick slab thin slab

`�1 = !/vF
<latexit sha1_base64="Tw5YwlbDGBfqOXd3+TzBHpQthGE=">AAAB/3icbVDLSgNBEJyNrxhfq4IXL4NB8GLcjYJehKAgHiOYB2TXZXbSSYbMPpiZDYQ1B3/FiwdFvPob3vwbJ8keNLGgoajqprvLjzmTyrK+jdzC4tLySn61sLa+sbllbu/UZZQICjUa8Ug0fSKBsxBqiikOzVgACXwODb9/PfYbAxCSReG9GsbgBqQbsg6jRGnJM/cc4PwhPbZH+BI7UQBdcjLwbjyzaJWsCfA8sTNSRBmqnvnltCOaBBAqyomULduKlZsSoRjlMCo4iYSY0D7pQkvTkAQg3XRy/wgfaqWNO5HQFSo8UX9PpCSQchj4ujMgqidnvbH4n9dKVOfCTVkYJwpCOl3USThWER6HgdtMAFV8qAmhgulbMe0RQajSkRV0CPbsy/OkXi7Zp6Xy3VmxcpXFkUf76AAdIRudowq6RVVUQxQ9omf0it6MJ+PFeDc+pq05I5vZRX9gfP4AVkGVBA==</latexit>

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>
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Figure 6.2: Top view on the slab dispersion (left, see also Fig. 6.1) showing the choice of coordinate axespx andpy to
lie along high-symmetry directions in (a) the thick-slab (W ≫ δ) and (b) the thin-slab case (W ≪ δ).
The slab dispersion features bulk states (blue), surface states of bottom (red) and top (green) surfaces.
In (a) only the bottom surface matters since the light penetrating over the depth δ at the bottom surface
does not reach the top arc. Figure from [VIII].

duced to assist in understanding the response of a single Weyl node. The equivalent multilayer
setup is defined by the Hamiltonian

Hχm = χvp · σ +





−χmσ ·α2 z < 0

0 0 < z < W

χmσ · β2 z > W

, (6.12)

withm→∞ [169, 291]. Under TR the multilayer Hamiltonian transforms like

T −1HχmT = Hχ−m. (6.13)

The mass terms of the boundary conditions thus behave like TR-breaking magnetizations in the
directions−χα2 and χβ2 at the two boundaries. Note that this does not imply TR-breaking
of the WSM with several Weyl nodes.

Furthermore, note that the directions of the boundary spinors can be additionally controlled
by TR-preserving boundary potentials [168]. One can easily check that adding a boundary po-
tential δHb = δ(z)µ0+δ(z−W )µW to the Hamiltonian (6.12), rotates the boundary spinors
likeα→ α+χ2µ0 andβ → β−χ2µW . Boundary potentials are typically disregarded in min-
imal models of Weyl-semimetal slabs, which corresponds to straight arcs connecting the Weyl
cones, i.e., β = α + π. Here we instead consider the general case that the Fermi arcs can em-
anate in any direction, considering the boundary spinors (6.7) to be given by two independent
variables α and β. The resulting curvature of Fermi arcs, which is necessary to connect pairs of
Weyl nodes and is often observed in experiments, is irrelevant in the close vicinity of the Weyl
nodes to which the optical transitions that we consider are bound.
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6 Surface photogalvanic effect in Weyl semimetals

The directionality introduced by the boundary conditions will crucially determine the direc-
tion of the response. It is therefore convenient to define the coordinate axes along the emer-
gent high-symmetry directions. Those depend on whether current is induced at a single surface
(thick-slab case) or in the whole slab (thin-slab case). Figure 6.2 illustrates the geometry and the
high-symmetry axes in these two cases.

6.1.2 Electromagnetic waves in Weyl semimetals

For frequencies ω ≳ µ the conductivity in WSMs is given by [IX, 61]

σ(ω) = N
e2

24πϵ∞v
|ω| = N

ξ

24π
|ω|, (6.14)

Here, N is the total number of Weyl nodes in the system, ϵ∞ ∼ 10 is the permittivity due to
inert bands and we let e2 → e2/ϵ∞ to account for screening. Finally, we defined the dimen-
sionless coupling constant

ξ =
e2

ϵ∞v
=

1

137
× c

v
× 1

ϵ∞
∼ 0.1. (6.15)

Note thatN = Nξ/6 takes values between 1/30 and 1 in a WSM, depending on the number
of nodes. The imaginary part of σ has only weak frequency dependence and has been absorbed
into ϵ∞. The frequency dependent permittivity then reads

ϵ(ω) = ϵ∞

[
1 +

4πi

ω
σ(ω)

]
= ϵ∞

[
1 + i

Nξ

6
sign(ω)

]
. (6.16)

We consider light entering the WSM at the z = 0 surface. The field inside the WSM has the
form,

E(r, t) ∝ exp{i(k · r− ωt)} exp{−z/δ}, (6.17)

where k is the momentum inside the medium and δ is the penetration depth. In terms of the
vacuum wavenumber kv = ω/c and to leading order inN , they are given by

|k| =√ϵ∞kv
(
1 +N 2

)1/4
cos

arctanN
2

≃ √ϵ∞kv, (6.18a)

1

δ
=
√
ϵ∞kv

(
1 +N 2

)1/4
sin

arctanN
2

≃
√
ϵ∞N
2

kv. (6.18b)

With the above estimate ofN , depending on the number of Weyl nodes, we thus obtain kδ ∼
1 . . . 10.
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6.1.3 Photogalvanic response tensor

We consider the response of the Weyl slab to the weak external oscillating electric field

E(r, t) =
[
Eeik·r−iωt + c.c.

]
e−z/δ. (6.19)

In the temporal gauge E = −∂tA, the perturbation to the Hamiltonian reads

δH = j ·A(r, t) = iχeℓE · σe−iωteik·r−z/δ + h.c., (6.20)

where j = −eχvσ is the current operator and ℓ = v/ω is the smallest length scale of our
model. In the following we will use dimensionless length and momenta, denoted with a tilde,

r̃ =
r

ℓ
, p̃ = p ℓ, (6.21)

in units of ℓ and ℓ−1, respectively.
The ballistic PGE can be described within the framework of the Boltzmann kinetic equa-

tion by balancing asymmetric photogeneration and impurity-induced relaxation. Using the
standard perturbation theory and relaxation-time approximation, one can express the photo-
galvanic response in terms of the momentum relaxation time τ in the form [71, 276]

Γij =
8πητ

W̃

∫
d2p̃∥

∑

qzpz

(vp+

v
− vq−

v

)
δ

(
1− Ep

ω
− Eq

ω

)(
Mpq ⊗M∗

pq

)
ij

(6.22)

where⊗ denotes the dyadic product, p = (p∥, pz), q = (p∥ − k∥, qz), d2p̃∥ = ℓ2dp∥, and
we introduced the matrix elements

Mpq = ⟨+,p|σeik·r−z/δ|−,q⟩, (6.23)

and the constant (restoring ℏ, which is set to one)

η =
e3

16π2ℏ2
. (6.24)

Note that 4πη is the quantum of the CPGE trace and may be assumed large compared to or-
dinary PGE magnitudes [72]. These expressions hold for both bulk-bulk and and arc-bulk ex-
citations. To avoid overcounting of states, for bulk states the sum runs only over pz > 0 while
for arc states it runs over Im{pz} > 0. Note that Γz = 0 as vz = 0 for all states due to the
boundary conditions.

The relaxation-time approximation of Eq. (6.22) neglects energy and momentum dependen-
cies, as well as forward-scattering corrections. Especially in the interplay of surface and bulk
states, those can lead to potentially interesting quantitative refinements [89] of the results, which
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6 Surface photogalvanic effect in Weyl semimetals

thick slabW ≫ δ thin slab δ ≫W

Γbb δ
W = δ̃

W̃
1

δΓbb, Γab ℓ
W = 1

W̃
ℓ
W = 1

W̃

Table 6.2: Scaling of the confinement-independent contributionΓbb and the confinement-induced contributions
δΓbb,Γab with relevant length scales of the system (W , ℓ, δ) in the cases of a thin and thick slab.

is left for future work. We also neglect interaction effects, which are known to modify the PGE
quantitatively [292].

Note that the three 3× 3 matrices Γ are hermitian. According to standard terminology, the
imaginary anti-symmetric part is associated with the circular PGE, which is present only if the
incident light is elliptically polarized (the inverse implication is not true: elliptically polarized
light can give rise to photogalvanic response stemming from the real symmetric part). The real
symmetric part is referred to as the linear photogalvanic response, which exists even for linearly
polarized radiation.

6.2 Classification and estimate of response contributions

There are three relevant length scales in the problem,2 the v/c-weighted light wavelength ℓ =
v/ω, the light penetration depth δ, and the slab thicknessW , whereby the weighted light wave-
length is always much smaller than the penetration depth, ℓ/δ ∼ v/c ∼ 10−2. The width W
is considered in two limits, the thick-slab case W ≫ δ and the thin-slab case δ ≫ W . In the
thick-slab case the light completely decays inside the slab and only a single slab surface is excited.
In the thin-slab case the light penetrates nearly homogeneously the whole slab such that both
surfaces are equally excited. In this limit, for simplicity of analytical calculations we introduce
a lower bound for the width, W ≫ ℓ, so that energy quantization of slab modes is small com-
pared to the light frequency. The ultrathin case W ∼ ℓ will be considered numerically on a
lattice model.

Before coming to the detailed calculation, it is useful to classify the response contributions
according to their dependencies on the relevant length scales (ℓ, δ,W ), separating confinement-
independent from confinement-induced contributions and distinguishing contributions due
to arc-bulk and bulk-bulk excitations as given in (6.2). The result is summarized in Table 6.2
and is explained in the following.

To estimate the magnitudes of contributions it suffices to disregard the spin degree of freedom
and consider the bulk wavefunctions to be of the form |q⟩ = exp(iqzz)/

√
W and that of arc

states of the form |q⟩ = exp(−z/ℓ)/
√
l. In the latter, the inverse decay length κ, given in

2Here we neglect one length scale of the problem, which is the mean free path τv given by the relaxation time τ . Within the
semiclassical approach described in Sec. 6.1.3 the mean free path is assumed long compared to essentially all other relevant
scales, which makes the mean free path itself irrelevant for the following discussion.
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6.2 Classification and estimate of response contributions

(6.10), has been approximated by the typical inverse distance from the Weyl node in the active
region of excitations, which is set by ℓ−1 ≡ ω/v. Neglecting the in-plane light momentum k

(will be justified below), the matrix elements (6.23) for the thick-slab case can be estimated as

|M|2 ∼





(
δ
W

)2 1
1+[(qz−pz)δ]2 bulk-bulk

ℓ
W

1
1+(qzℓ)

2 arc-bulk.
(6.25)

The momentum separation of modes is 1/W , hence the number of modes within the active
range around the node isW/ℓ. The summation over pz and qz thus gives

∑

pzqz

|M|2 ∼
{
δ
ℓ

bulk-bulk
1 arc-bulk

(6.26)

and the magnitude of the response tensor will thus scale like

Γbb ∼ δ

W
, Γab ∼ ℓ

W
, (6.27)

for bulk-bulk and arc-bulk excitations, respectively.

Since δ ≫ ℓ, bulk-bulk excitations will give the dominant current contribution, while the
confinement-induced correction due to arc-bulk excitations give the finite-size correction with
the small parameter ℓ/δ. Importantly, there are also contributions due to bulk-bulk excitations
possible that scale like those from arc-bulk excitations,

δΓbb ∼ Γab. (6.28)

To see this, note that the contribution Γbb stems from approximating the peaked behavior of
the bulk-bulk matrix elements in (6.25) at qz = pz by a delta function, the correction to setting
qz = pz is of the order ℓ/δ because the peak width is 1/δ and the effective integration range
1/ℓ. Hence the leading correction scales like the arc-bulk contribution, and needs to be taken
into account.

Upon changing the scales from the thick-slab case, W ≫ δ, to the thin-slab case, δ ≫ W ,
the scaling of the contribution of arc-bulk excitations does not change because the localization
length of most arc states, κ−1 given in (6.10), is set by ℓ and hence much smaller than both W
and δ.

For bulk-bulk excitations, the matrix elements are now the overlaps of wavefunctions over
the whole slab width,

|M|2 ∼ 1− cos [(qm − qn)W ]

[(qm − qn)W ]2
. (6.29)
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6 Surface photogalvanic effect in Weyl semimetals

Summation over pz and qz gives
∑

pzqz
|M|2 ∼ W̃ and the magnitude of the current thus

scales like
Γbb ∼ 1, (6.30)

missing the factor δ/W as compared to the limit W ≫ δ given in (6.27), since transitions are
now produced across the full width of the slab.

As before, the matrix elements are peaked at qm = qn; the correction δΓbb to the qm = qn
contribution Γbb is of order l/W because the peak width is now 1/W , while the integration
range is still 1/ℓ. Thus δΓbb ∼ Γab remains valid also in the thin-slab limit. This concludes the
explaination of the scaling summarized in Table 6.2.

6.2.1 Irrelevance of the light momentum

The momentum transfer due to a finite light momentum has the magnitude k ∼ ω/c. The
small parameter of corrections due to this momentum shift is k/p, where p ∼ 1/ℓ = ω/v is
the typical momentum of excited states, hence k/p ∼ v/c ∼ 0.01. Comparing the smallness
of corrections to the response, those due to a finite k are irrelevant for the thin-slab case but
potentially relevant in the case of a thick slab, where they are on the same order as the finite-size
corrections, cf. Table 6.2. It turns out, however, that corrections to leading order in k/p ∼ v/c

vanish also for the thick-slab case, which we show explicitly for our slab model in Appendix D.5.
An easier way to find the same result is to realize that considering the correction due to a finite
k/p, one can neglect the finite-size corrections, which would give terms that are quadratic in
the small parameter. Neglecting finite-size corrections, the result should thus coincide with that
of an infinite system. In particular, the directionality introduced by the confinement becomes
irrelevant. It is straightforward to verify that for a bulk Weyl cone the first-orderk/p corrections
vanish.

For the response tensor in Eq. (6.22) this means thatk can be set to zero, the matrix elements
become

Mpq = ⟨+,p|σe−z/δ|−,q⟩, (6.31)

and the momenta have the same parallel component, p = (p∥, pz), q = (p∥, qz).
Finally, we comment on the spatial structure of the confinement induced response current.

While our calculation considers only the spatial average of the current, we expect the spatial
profile of the photogalvanic current to be uniform. This can be understood as follows. The
total number of electrons in the surface Fermi arc states is unaffected by the perturbation, as
just as many electrons are excited to positive energy Fermi arc states from the bulk as electrons
are excited from negative energy Fermi arc states to the bulk. Close to the Weyl point all Fermi
arc states have the same velocity. Hence, the net velocity due to Fermi arcs is unchanged. The
non-equilibrium current stems from the asymmetric population of bulk states and hence is
expected to be spatially uniform.
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6.3 Symmetry constraints

6.3 Symmetry constraints

As the last preliminary consideration before coming to the explicit results, we now consider
symmetry constraints on the response tensor. Considering the transition matrix elements (6.31)
we realize that since the band index± enters the wavefunctions in the form±χ, which can be
explicitly seen in Appendix D.1, Eq. (D.9), we obtain the relation

M∗
pq

∣∣
χ
= Mqp

∣∣
−χ. (6.32)

Using this and that other terms in the response expression, Eq. (6.22), are symmetric inp↔ q,
we conclude that (

Γ± ΓT
)
χ
= ±

(
Γ± ΓT

)
−χ, (6.33)

showing that the (anti)symmetric part of the response tensor is even (odd) in the chirality χ.
Moreover, generally the (anti)symmetric part of the response tensor is odd (even) under TR
[160], which, according to the transformation behavior (6.13) is given by m → −m (in the
fictitious multilayer system) and thus

(
Γ± ΓT

)
m
= ∓

(
Γ± ΓT

)
−m. (6.34)

For the thick-slab case, only the bottom surface is involved and m → −m corresponds to
inversion ofα2 ≡ ŷ, i.e., mirror reflectionRy with respect to thexz plane. Taking into account
also symmetry with respect toRx, the response tensor assumes the form

Γthick = x̂




0 Γxxy 0

Γxxy 0 Γxyz

0 −Γxyz 0


+ ŷ




Γyxx 0 −Γyzx
0 Γyyy 0

Γyzx 0 Γyzz


. (6.35)

For the thin-slab case, both surfaces are involved and combinations of two reflections leave
the Hamiltonian invariant or time-reversed. In the thin-slab basis [Fig. 6.2(c)] we obtain

RyRzHχmRzRy =Hχm, (6.36a)
RxRyHχmRyRx =Hχ−m. (6.36b)

The resulting transformation behavior of the response tensor dictates the form

Γthin = x̂




Γxxx 0 0

0 Γxyy Γxyz

0 −Γxyz Γxzz


+ ŷ




0 Γyxy −Γyzx
Γyxy 0 0

Γyzx 0 0


. (6.37)
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<latexit sha1_base64="YUIm7Tsc5b5P2pMGLKWRa4Nw0cU=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2g9ol5JNs21okl2SrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6tJOEBZIMFY84JdZJDz2Z9ssVr+rNgVeJn5MK5Gj0y1+9QUxTyZSlghjT9b3EBhnRllPBpqVealhC6JgMWddRRSQzQTY/dYrPnDLAUaxdKYvn6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10XWQcZWklim6WBSlAtsYz/7GA64ZtWLiCKGau1sxHRFNqHXplFwI/vLLq6RVq/oX1dr9ZaV+k8dRhBM4hXPw4QrqcAcNaAKFITzDK7whgV7QO/pYtBZQPnMMf4A+fwBerI3a</latexit>

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

velocities

change due to 
excitation 

arc state 

bulk state

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

(a) (c)

(b)
(initial)
(final)

2

1

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

�1
<latexit sha1_base64="pFWXS+Iii5Q23t0nR1cweqBHPQI=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT3mTI7IOZXiGEfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3twk5xd2//4LB0dNw0SaYFNkSiEt0OuEElY2yQJIXtVCOPAoWtYHQ381tPqI1M4kcap+hHfBDLUApOVmp1AyTe83qlsltx52CrxMtJGXLUe6Wvbj8RWYQxCcWN6XhuSv6Ea5JC4bTYzQymXIz4ADuWxjxC40/m507ZuVX6LEy0rZjYXP09MeGRMeMosJ0Rp6FZ9mbif14no/DGn8g4zQhjsVgUZopRwma/s77UKEiNLeFCS3srE0OuuSCbUNGG4C2/vEqa1Yp3Wak+XJVrt3kcBTiFM7gAD66hBvdQhwYIGMEzvMKbkzovzrvzsWhdc/KZE/gD5/MH7ZyPTA==</latexit>

�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

y

xz

W

Fermi arc

_

Fermi arc

y

x

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

�1
<latexit sha1_base64="pFWXS+Iii5Q23t0nR1cweqBHPQI=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT3mTI7IOZXiGEfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3twk5xd2//4LB0dNw0SaYFNkSiEt0OuEElY2yQJIXtVCOPAoWtYHQ381tPqI1M4kcap+hHfBDLUApOVmp1AyTe83qlsltx52CrxMtJGXLUe6Wvbj8RWYQxCcWN6XhuSv6Ea5JC4bTYzQymXIz4ADuWxjxC40/m507ZuVX6LEy0rZjYXP09MeGRMeMosJ0Rp6FZ9mbif14no/DGn8g4zQhjsVgUZopRwma/s77UKEiNLeFCS3srE0OuuSCbUNGG4C2/vEqa1Yp3Wak+XJVrt3kcBTiFM7gAD66hBvdQhwYIGMEzvMKbkzovzrvzsWhdc/KZE/gD5/MH7ZyPTA==</latexit>

�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

↵2
<latexit sha1_base64="GbbpWyoE/JRAgiEztdpncYk5rm0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIT9Wr9ccavuHGSVeDmpQI5Gv/zVG8Q0jZg0VKDWXc9NjJ+hMpwKNi31Us0SpGMcsq6lEiOm/Wx+75ScWWVAwljZkobM1d8TGUZaT6LAdkZoRnrZm4n/ed3UhNd+xmWSGibpYlGYCmJiMnueDLhi1IiJJUgVt7cSOkKF1NiISjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIGCgGd4hTfn0Xlx3p2PRWvByWeO4Q+czx+3o4/B</latexit>

↵1
<latexit sha1_base64="FgwWpVFQ8WwtgAVpVA0F0hHZPwE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR9r1+uuFV3DrJKvJxUIEejX/7qDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfja/d0rOrDIgYaxsSUPm6u+JDCOtJ1FgOyM0I73szcT/vG5qwms/4zJJDZN0sShMBTExmT1PBlwxasTEEqSK21sJHaFCamxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmkBBwDO8wpvz6Lw4787HorXg5DPH8AfO5w+2H4/A</latexit>

(a) (b)

(c)

�1
<latexit sha1_base64="pFWXS+Iii5Q23t0nR1cweqBHPQI=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT3mTI7IOZXiGEfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3twk5xd2//4LB0dNw0SaYFNkSiEt0OuEElY2yQJIXtVCOPAoWtYHQ381tPqI1M4kcap+hHfBDLUApOVmp1AyTe83qlsltx52CrxMtJGXLUe6Wvbj8RWYQxCcWN6XhuSv6Ea5JC4bTYzQymXIz4ADuWxjxC40/m507ZuVX6LEy0rZjYXP09MeGRMeMosJ0Rp6FZ9mbif14no/DGn8g4zQhjsVgUZopRwma/s77UKEiNLeFCS3srE0OuuSCbUNGG4C2/vEqa1Yp3Wak+XJVrt3kcBTiFM7gAD66hBvdQhwYIGMEzvMKbkzovzrvzsWhdc/KZE/gD5/MH7ZyPTA==</latexit>

0

2

1

2

1

(thick slab)

(thin slab)

�
<latexit sha1_base64="zg355m0htJUkHzpYjrn7EfWuRaM=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m0y7dbMLuRCilP8KLB0W8+nu8+W/ctDlo64OBx3szzMwLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3A2q4FIq3UKDk3VRzGgeSd4LxXe53nrg2IlGPOEm5H9OhEpFgFK3U6YdcIi0PKlW35s5BVolXkCoUaA4qX/0wYVnMFTJJjel5bor+lGoUTPJZuZ8ZnlI2pkPes1TRmBt/Oj93Rs6tEpIo0bYUkrn6e2JKY2MmcWA7Y4ojs+zl4n9eL8Poxp8KlWbIFVssijJJMCH57yQUmjOUE0so08LeStiIasrQJpSH4C2/vEra9Zp3Was/XFUbt0UcJTiFM7gAD66hAffQhBYwGMMzvMKbkzovzrvzsWhdc4qZE/gD5/MHyVaPNA==</latexit>

light intensity

px

�<latexit sha1_base64="bdAS1DU9pLDwmRSuoG8etVlJoIw=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9FjUg8cK9gPaUDbbSbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsGpVqDg2upNLtgBmQIoYGCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9UdivuDHSZeDkpkxz1Xumr21c8jSBGLpkxHc9N0M+YRsElTIrd1EDC+IgNoGNpzCIwfja7dkJPrdKnodK2YqQz9fdExiJjxlFgOyOGQ7PoTcX/vE6K4ZWfiThJEWI+XxSmkqKi09dpX2jgKMeWMK6FvZXyIdOMow2oaEPwFl9eJs1qxTuvVO8vyrXrPI4COSYn5Ix45JLUyB2pkwbh5JE8k1fy5ijnxXl3PuatK04+c0T+wPn8AWHajwA=</latexit>

py px

py

z

W

�2
<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

↵2
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Figure 6.3: (a) Dispersion of Weyl fermions confined to a slab as function of in-plane momenta in the thick slab
basis. Bulk states are colored blue and the Fermi-arc surface states red (only the bottom surface is
shown). Velocities of initial (dashed arrow) and final state (solid arrow) of a photoexcitation are in-
dicated. (b) Top view on bulk states in (a) showing the velocity change due to a bulk-bulk excitation.
(c) Same as (b) but with indicated velocity change from arc-bulk excitations. Red contours indicate
those states of the surface arc states that satisfy the energy-conservation constraint for arc-bulk excita-
tions ω = χvpx ± vp. Figure from [VIII].

A more detailed derivation of the tensor forms is given in Appendix D.3.

6.4 Results

6.4.1 PGE due to arc-bulk excitations

Arc-bulk excitations give rise to a current that is “automatically” a finite-size effect. Other finite-
size corrections are negligible, which can be used to simplify the expression for the response ten-
sor in Eq. (6.22); we can disregard the quantization of modes and replace the sums by integrals.
The integration over z in the matrix elements of Eq. (6.31) may be extended to infinity since the
decay of surface modes at most momenta is on the order of ℓ ≪ δ,W , in both the thick-slab
and thin-slab limits. Moreover we can neglect confinement-induced corrections of bulk states.
A straightforward calculation (see Appendix D.4 for details) then gives

Γab,thick
ij =

2πητ

W̃

[
iχ

8

3
εxijx̂+ ln(2) δij(1− δxi)ŷ

]
(6.38)

for the bottom arc in the thick-slab basis x̂ = α1, ŷ = α2 [Fig. 6.2(b)]. The antisymmetric
part is expressed using the Levi-Civita symbol εijk. This is the only arc-bulk contribution in the
thick-slab case.
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6.4 Results

In the thin-slab case we add the contribution of the top arc, which is equivalent to the bottom
arc up to the changed directions, α1 → β1, α2 → −β2, see Fig. 6.2. Adding both contribu-
tions after appropriate rotation into the thin-slab basis [Fig. 6.2(c)] we obtain for W̃

4πητ
Γab,thin

x̂




ln 2 s3∆ 0 0

0 ln 2 s∆c
2
∆ i8

3
χc2∆

0 −i8
3
χc2∆ ln 2 s∆


+ ŷ s∆




0 ln 2 c2∆ −i8
3
χs∆

ln 2 c2∆ 0 0

i8
3
χs∆ 0 0


, (6.39)

where we defined
∆ =

β − α
2

, (6.40)

as well as the shorthands sx = sinx, cx = cosx.
To understand this result, it suffices to understand the current production due to arc-bulk

excitations at a single (bottom) surface, illustrated in Fig. 6.3. First we note that arc-bulk excita-
tions vanish for the polarization componentx because such a photon does not act on the spinor
of the arc (which is an eigenspinor of σx) and thus cannot induce a transition to the orthogonal
bulk state. This is circumvented when the linear polarization points in the other directions, y
and z. The induced velocity due to arc-bulk excitations sum up to a total velocity pointing in
the ŷ direction, see Fig. 6.3 (c), which explains the second term of (6.38).

Circular y+iz polarization instead acts like a ladder operator on theσx eigenspinor and thus
enhances the amplitude of spin-flip excitations where the spin is increased (at positive px in Fig.
6.3) and suppresses those where the spin is lowered (at negative px in Fig. 6.3), and vice versa
for the opposite polarization handedness, y− iz, or chiralityχ of the Weyl fermions. As is clear
from Fig. 6.3, this asymmetry can produce velocity in the x direction, which sign depends on
the polarization handedness and the chirality. This explains the first term of Eq. (6.38).

6.4.2 PGE due to bulk-bulk excitations

In contrast to the arc-bulk excitations, the contribution of excitations within the bulk bands
(from the valence bulk band to the conduction bulk band) strongly differ for the thin- and
thick-slab cases. We thus consider the two cases separately.

Thick slab limitW ≫ δ

In this limit the light-induced excitations are produced at a single (bottom) surface in the finite
strip of width δ. For the confinement-independent contribution Γbb we neglect all finite-size
effects and obtain (see Appendix D.5.1 for details)

Γbb,thick
ij = iχ

2πητ

3

δ

W
(εxijx̂+ εyijŷ). (6.41)
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<latexit sha1_base64="XWyjU0+anaF07IlNB7xx8N9rccE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzf5X77CZXmiXw0kxSDmA4ljzijxkp+Lx3xcr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTTClynAmcFbuZRpTysZ0iF1LJY1RB9P5sTNybpUBiRJlSxoyV39PTGms9SQObWdMzUgve7n4n9fNTHQTTLlMM4OSLRZFmSAmIfnnZMAVMiMmllCmuL2VsBFVlBmbTx6Ct/zyKmnVa95lrf5wVW3cFnGU4BTO4AI8uIYG3EMTfGDA4Rle4c2Rzovz7nwsWtecYuYE/sD5/AFKhY5X</latexit> ��
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>

��
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>
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⇥
i�

⇤
<latexit sha1_base64="P4wqCl/6/7dx8jRBEq0JOoE7JJs=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcFWSKuiy6MZlBXuBJJTJdNIOnUzCzEQptY/ixoUibn0Sd76NkzYLbf1h4OM/53DO/GHKmdKO822V1tY3NrfK25Wd3b39A7t62FFJJgltk4QnshdiRTkTtK2Z5rSXSorjkNNuOL7J690HKhVLxL2epDSI8VCwiBGsjdW3q37Ihh5iyCcjlnPQt2tO3ZkLrYJbQA0Ktfr2lz9ISBZToQnHSnmuk+pgiqVmhNNZxc8UTTEZ4yH1DAocUxVM56fP0KlxBihKpHlCo7n7e2KKY6UmcWg6Y6xHarmWm//VvExHV8GUiTTTVJDFoijjSCcozwENmKRE84kBTCQztyIywhITbdKqmBDc5S+vQqdRd8/rjbuLWvO6iKMMx3ACZ+DCJTThFlrQBgKP8Ayv8GY9WS/Wu/WxaC1ZxcwR/JH1+QNUaJNm</latexit>

⇥
i�

⇤
<latexit sha1_base64="P4wqCl/6/7dx8jRBEq0JOoE7JJs=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcFWSKuiy6MZlBXuBJJTJdNIOnUzCzEQptY/ixoUibn0Sd76NkzYLbf1h4OM/53DO/GHKmdKO822V1tY3NrfK25Wd3b39A7t62FFJJgltk4QnshdiRTkTtK2Z5rSXSorjkNNuOL7J690HKhVLxL2epDSI8VCwiBGsjdW3q37Ihh5iyCcjlnPQt2tO3ZkLrYJbQA0Ktfr2lz9ISBZToQnHSnmuk+pgiqVmhNNZxc8UTTEZ4yH1DAocUxVM56fP0KlxBihKpHlCo7n7e2KKY6UmcWg6Y6xHarmWm//VvExHV8GUiTTTVJDFoijjSCcozwENmKRE84kBTCQztyIywhITbdKqmBDc5S+vQqdRd8/rjbuLWvO6iKMMx3ACZ+DCJTThFlrQBgKP8Ayv8GY9WS/Wu/WxaC1ZxcwR/JH1+QNUaJNm</latexit>

(a)

(b)
'

<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>

'
<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>

'
<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>

�
W

S
M

<latexit sha1_base64="Z3YUqVBt7qfHKFfoTHEE16Au98o=">AAAB/HicbVDLSgMxFM34rPU12qWbYBFclZkq6LLoQjdCRfuAzlgyaaYNTTJDkhGGof6KGxeKuPVD3Pk3ZtpZaOuBwOGce7knJ4gZVdpxvq2l5ZXVtfXSRnlza3tn197bb6sokZi0cMQi2Q2QIowK0tJUM9KNJUE8YKQTjC9zv/NIpKKRuNdpTHyOhoKGFCNtpL5d8a4Q5+jB40iPJM86dzeTvl11as4UcJG4BamCAs2+/eUNIpxwIjRmSKme68Taz5DUFDMyKXuJIjHCYzQkPUMF4kT52TT8BB4ZZQDDSJonNJyqvzcyxJVKeWAm84xq3svF/7xeosNzP6MiTjQReHYoTBjUEcybgAMqCdYsNQRhSU1WiEdIIqxNX2VTgjv/5UXSrtfck1r99rTauCjqKIEDcAiOgQvOQANcgyZoAQxS8AxewZv1ZL1Y79bHbHTJKnYq4A+szx/M3ZTe</latexit>

��
b
b
⇥ ⌘

⌧
/W̃

⇤
<latexit sha1_base64="/K9yeWgDNHfE7qGdciqfawDICBA=">AAACInicbVBNb9NAFFyHj6YphQDHXlZESD1UqV2QKLeIHuCYSs2HlHWj5/VLsuqube0+I0VWfgsX/goXDkXQUyV+DOskB2gZaaXRzHt6O5MUWjkKw9ug8eDho8c7zd3W3pP9p8/az18MXV5aiQOZ69yOE3CoVYYDUqRxXFgEk2gcJVdntT/6jNapPLugZYGxgXmmZkoCeWnafi9S1ARcfARj4FIYoIU1VZKsWuKIi0TNJwIJBEF5LEjpFKvRqpbjabsTdsM1+H0SbUmHbdGftn+JNJelwYykBucmUVhQXIElJTX6e6XDAuQVzHHiaQYGXVytI674a6+kfJZb/zLia/XvjQqMc0uT+Mk6grvr1eL/vElJs9O4UllREmZyc2hWak45r/viqbIoSS89AWmV/yuXC7Agybfa8iVEdyPfJ8OTbvSme3L+ttP7sK2jyQ7YK3bIIvaO9dgn1mcDJtkX9o1dsx/B1+B78DO42Yw2gu3OS/YPgt9/AKA1pFs=</latexit>

�
W

S
M

<latexit sha1_base64="Z3YUqVBt7qfHKFfoTHEE16Au98o=">AAAB/HicbVDLSgMxFM34rPU12qWbYBFclZkq6LLoQjdCRfuAzlgyaaYNTTJDkhGGof6KGxeKuPVD3Pk3ZtpZaOuBwOGce7knJ4gZVdpxvq2l5ZXVtfXSRnlza3tn197bb6sokZi0cMQi2Q2QIowK0tJUM9KNJUE8YKQTjC9zv/NIpKKRuNdpTHyOhoKGFCNtpL5d8a4Q5+jB40iPJM86dzeTvl11as4UcJG4BamCAs2+/eUNIpxwIjRmSKme68Taz5DUFDMyKXuJIjHCYzQkPUMF4kT52TT8BB4ZZQDDSJonNJyqvzcyxJVKeWAm84xq3svF/7xeosNzP6MiTjQReHYoTBjUEcybgAMqCdYsNQRhSU1WiEdIIqxNX2VTgjv/5UXSrtfck1r99rTauCjqKIEDcAiOgQvOQANcgyZoAQxS8AxewZv1ZL1Y79bHbHTJKnYq4A+szx/M3ZTe</latexit>

��
b
b
⇥ ⌘

⌧
/W̃

⇤
<latexit sha1_base64="/K9yeWgDNHfE7qGdciqfawDICBA="></latexit>

� =
⇡

2<latexit sha1_base64="Z3YlBjatpvVNAERFWIgV+2Fxxx8=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8FSSKuhFKOrBYwX7AU0pm+2mXbrZhN2JUGIO/hUvHhTx6t/w5r9x2+agrQ8GHu/NMDPPjwXX4DjfVmFpeWV1rbhe2tjc2t6xd/eaOkoUZQ0aiUi1faKZ4JI1gINg7VgxEvqCtfzR9cRvPTCleSTvYRyzbkgGkgecEjBSzz7wbpgAgi+xFyhCUy/mWVrNenbZqThT4EXi5qSMctR79pfXj2gSMglUEK07rhNDNyUKOBUsK3mJZjGhIzJgHUMlCZnuptP7M3xslD4OImVKAp6qvydSEmo9Dn3TGRIY6nlvIv7ndRIILropl3ECTNLZoiARGCI8CQP3uWIUxNgQQhU3t2I6JCYHMJGVTAju/MuLpFmtuKeV6t1ZuXaVx1FEh+gInSAXnaMaukV11EAUPaJn9IrerCfrxXq3PmatBSuf2Ud/YH3+AD7xlZ0=</latexit>
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�2
<latexit sha1_base64="m5nTqIg+LEoClTe/bIFSe5buP0o=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgET6Odgh6HXjxOcB+wlpKm6RaWJiVJhVmG/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlhSmjSjvOt1VZWV1b36hu1ra2d3b37P2DrhKZxKSDBROyHyJFGOWko6lmpJ9KgpKQkV44vin83gORigp+rycp8RM05DSmGGkjBfaRFwoWqUlirtwLiUbToBnYdafhzACXiVuSOijRDuwvLxI4SwjXmCGlBq6Taj9HUlPMyLTmZYqkCI/RkAwM5Sghys9n6afw1CgRjIU0h2s4U39v5ChRRUAzmSA9UoteIf7nDTIdX/k55WmmCcfzh+KMQS1gUQWMqCRYs4khCEtqskI8QhJhbQqrmRLcxS8vk26z4Z43mncX9dZ1WUcVHIMTcAZccAla4Ba0QQdg8AiewSt4s56sF+vd+piPVqxy5xD8gfX5A/XtlYs=</latexit>

�0
2

<latexit sha1_base64="IWPYcAJ5pvef2IKuG2m7Ks3RX7A=">AAAB/nicbVDNS8MwHE3n15xfVfHkJThET6Odgh6HXjxOcB+wlpKm6RaWJiVJhVEG/itePCji1b/Dm/+N6daDbj4Iebz3+5GXF6aMKu0431ZlZXVtfaO6Wdva3tnds/cPukpkEpMOFkzIfogUYZSTjqaakX4qCUpCRnrh+Lbwe49EKir4g56kxE/QkNOYYqSNFNhHXihYpCaJuXIvJBpNg+ZZYNedhjMDXCZuSeqgRDuwv7xI4CwhXGOGlBq4Tqr9HElNMSPTmpcpkiI8RkMyMJSjhCg/n8WfwlOjRDAW0hyu4Uz9vZGjRBUJzWSC9EgteoX4nzfIdHzt55SnmSYczx+KMwa1gEUXMKKSYM0mhiAsqckK8QhJhLVprGZKcBe/vEy6zYZ70WjeX9ZbN2UdVXAMTsA5cMEVaIE70AYdgEEOnsEreLOerBfr3fqYj1ascucQ/IH1+QNeVZW8</latexit>

�
<latexit sha1_base64="bdAS1DU9pLDwmRSuoG8etVlJoIw=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9FjUg8cK9gPaUDbbSbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsGpVqDg2upNLtgBmQIoYGCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9UdivuDHSZeDkpkxz1Xumr21c8jSBGLpkxHc9N0M+YRsElTIrd1EDC+IgNoGNpzCIwfja7dkJPrdKnodK2YqQz9fdExiJjxlFgOyOGQ7PoTcX/vE6K4ZWfiThJEWI+XxSmkqKi09dpX2jgKMeWMK6FvZXyIdOMow2oaEPwFl9eJs1qxTuvVO8vyrXrPI4COSYn5Ix45JLUyB2pkwbh5JE8k1fy5ijnxXl3PuatK04+c0T+wPn8AWHajwA=</latexit>

��
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>

��
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>

↵2
<latexit sha1_base64="ZWzIzlsItPs8iSLZ0B2RYHCj7k4=">AAAB/nicbVDLSsNAFL3xWesrKq7cDBbBVUmqoMuiG5cV7AOaECaTaTt0kgkzE6GEgr/ixoUibv0Od/6NkzYLbT0wzOGce5kzJ0w5U9pxvq2V1bX1jc3KVnV7Z3dv3z447CiRSULbRHAheyFWlLOEtjXTnPZSSXEcctoNx7eF332kUjGRPOhJSv0YDxM2YARrIwX2sRcKHqlJbK7cwzwd4WnQCOyaU3dmQMvELUkNSrQC+8uLBMlimmjCsVJ910m1n2OpGeF0WvUyRVNMxnhI+4YmOKbKz2fxp+jMKBEaCGlOotFM/b2R41gVCc1kjPVILXqF+J/Xz/Tg2s9ZkmaaJmT+0CDjSAtUdIEiJinRfGIIJpKZrIiMsMREm8aqpgR38cvLpNOouxf1xv1lrXlT1lGBEziFc3DhCppwBy1oA4EcnuEV3qwn68V6tz7moytWuXMEf2B9/gDEIZX/</latexit>

↵0
2

<latexit sha1_base64="Svn6jEXFHG72LVTFjQisfIaHNDE=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyip9FOQY9DLx4nuA9YS0nTdAtLk5Kkwqg7+K948aCIV/8Nb/43plsPuvkg5PHe70deXpgyqrTjfFtLyyura+uVjerm1vbOrr2331Eik5i0sWBC9kKkCKOctDXVjPRSSVASMtINRzeF330gUlHB7/U4JX6CBpzGFCNtpMA+9ELBIjVOzJV7iKVDNAkap4Fdc+rOFHCRuCWpgRKtwP7yIoGzhHCNGVKq7zqp9nMkNcWMTKpepkiK8AgNSN9QjhKi/HyafwJPjBLBWEhzuIZT9fdGjhJVRDSTCdJDNe8V4n9eP9PxlZ9TnmaacDx7KM4Y1AIWZcCISoI1GxuCsKQmK8RDJBHWprKqKcGd//Ii6TTq7nm9cXdRa16XdVTAETgGZ8AFl6AJbkELtAEGj+AZvII368l6sd6tj9noklXuHIA/sD5/ACz1ljA=</latexit>
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��
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� = 0

<latexit sha1_base64="QsWw1ijmC3lCVejWT/BlElNw8lU=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9CUA8eI5gHJEuYnUySIbOz60yvEJb8hBcPinj1d7z5N06SPWhiQUNR1U13VxBLYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3Qqo4VIoXkeBkrdizWkYSN4MRjdTv/nEtRGResBxzP2QDpToC0bRSq3OLZdIr9xuseSW3RnIMvEyUoIMtW7xq9OLWBJyhUxSY9qeG6OfUo2CST4pdBLDY8pGdMDblioacuOns3sn5MQqPdKPtC2FZKb+nkhpaMw4DGxnSHFoFr2p+J/XTrB/6adCxQlyxeaL+okkGJHp86QnNGcox5ZQpoW9lbAh1ZShjahgQ/AWX14mjUrZOytX7s9L1essjjwcwTGcggcXUIU7qEEdGEh4hld4cx6dF+fd+Zi35pxs5hD+wPn8AVXEj4E=</latexit>

x x z
⇥
i�

⇤
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Figure 6.4: Characterization of bulk Weyl spinors in a semi-infinite spatial geometry. Spinors at the boundary are
shown as arrows in the gray areas. They point in the x direction for all states. Going away from the
boundary the spinors rotate so that the average spin, indicated as arrows at the cones, are like in an in-
finite system pointing parallel or antiparallel to the momentum, depending on the band and chirality
(here positive). The numbers characterize the angle between the boundary and the average spinor (in
units of π/2), which differ by π for opposite momenta. (a) and (b) show spinors at momenta perpen-
dicular and parallel to the boundary spinor, respectively. Figure from [VIII].

Apart from the absence of current in the direction perpendicular to the boundary and the fac-
tor δ/W , this expression is identical to the circular PGE found in the infinite system model [71],
which here has been re-derived using slab eigenstates. It is manifestly independent of the orien-
tation of the Fermi arc. The prefactor δ/W correctly reflects the fact that excitations occur in
the fraction of the penetration depth of the full sample width.

The leading corrections in the thick-slab limit are of a higher order in ℓ/δ, see Table 6.2.
They stem from the z integration in the matrix elements (6.31), where we can still take the limit
W →∞but keep the finite light penetration depth. Other finite-size corrections are controlled
by the small parameter ℓ/W and can thus be neglected. Expansion to leading order in ℓ/δ and
numerical evaluation of the integral gives (see Appendix D.5.1 for details)

δΓbb,thick

ητ/W̃
≃ x̂




0 4.2 0

4.2 0 −16.8iχ
0 16.8iχ 0


+ ŷ




−4.2 0 9.9iχ

0 −4.2 0

−9.9iχ 0 −8.4


, (6.42)

written in the thick-slab basis,α1 = x̂,α2 = ŷ. We estimate that these expressions are accurate
to below 0.5%. Corrections to the circular PGE (antisymmetric part of the tensor) are in the
same tensor components as the leading terms, as they should according to the symmetry con-
straints. The corrections are of opposite sign as the leading contribution because the tendency
of the boundary to align the initial and final spinor suppresses the transition amplitude (circular
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PGE needs spin-flip processes). A difference between x and y components is a manifestation of
the boundary-condition-broken symmetry between the x and y directions.

The response to linearly polarized light (symmetric part of the tensor) is something that is not
found for an infinite-system Weyl cone in the absence of tilt. This follows from the fact that a
single unconfined tiltless Weyl node is intra-node TR symmetric and hence there is no linear
PGE. The vanishing of the linear PGE in such a system is due to cancellation of the linearly-
polarized-light-induced current from states at opposite momenta parallel to the polarization
[71]. While the symmetry considerations have already shown that linear PGE contributions are
possible in the presence of a boundary, (which breaks intra-node TR symmetry) it is peculiar
that these contributions stem not only from arc-bulk but also from bulk-bulk excitations. To
understand how the boundary breaks the symmetry between opposite momenta of bulk states,
we consider the bulk-state spinor as a function of z, explicitly given in Eq. (D.9). At z = 0 the
boundary condition forces the spinors at all momenta to coincide with ψ(0) ∝ (1, exp[iα]).
Going away from the boundary, the spinors rotate in the in-plane basis: At small z the spinor
can be written as (1, exp[iΦ(z)]), with Φ(z) = −2 arctan[(±χp− px)z]. Since p > |px|, the
rotation handedness is the same for all momenta and is set only by the chirality and the band
(±). The spin averaged over the whole slab width coincides with the spin of an infinite system—
parallel or antiparallel to the momentum, depending on the band and chirality. As illustrated
in Fig. 6.4, the angle between the spinor at z = 0 and the averaged spinor, measured in the
direction of rotation, thus always differs byπ for opposite momenta, which provides the crucial
symmetry breaking and enables the response to linearly polarized radiation. Moreover, as can be
seen from Eq. (D.9) and in Fig. 6.4(b), thex (i.e.,α1) component of the spinor is invariant under
simultaneous band change and p → −p, which explains the vanishing diagonal components
for the response in the x direction.

Thin slab δ ≫W ≫ ℓ

The confinement-independent contribution Γbb is obtained similarly to the thick-slab case by
neglecting all finite-size corrections. The only difference is that the integration over z now ex-
tends over the whole slab width instead of δ. The result,

Γbb,thin
ij = iχ

4πητ

3
(εxijx̂+ εyijŷ), (6.43)

is, up to the missing factor δ/2W , identical to the thick-slab case and, up to the vanishing cur-
rent normal to the slab, identical to the known infinite-system result, as it should.

For the confinement-induced contributions we collect finite-size corrections of the type ℓ/W .
They stem from the quantization of qz and pz as well as from corrections to the wave functions
and the velocity of bulk states. We solve the problem numerically via discretizing the polar an-
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gle ϕ, and finding qz, pz pairs satisfying the energy conservation and Eq. (6.8) using standard
numerical tools (see Appendix D.5.2 for details), yielding

δΓbb,thin
x

ητ/W̃
≃




−14.1s∆ + 4.7s3∆ 0 0

0 −21.5s∆ − 4.7s3∆ −iχ(26.7 + 6.9c2∆)

0 iχ(26.7 + 6.9c2∆) −23.0s∆




(6.44a)
for the x-direction and

δΓbb,thin
y

ητ/W̃
≃




0 3.7s∆ − 4.7s3∆ iχ(26.5− 6.9c2∆)

3.7s∆ − 4.7s3∆ 0 0

−iχ(26.5− 6.9c2∆) 0 0


 (6.44b)

for the y-direction of the PG current. The numerical coefficients are accurate to the first dec-
imal. Together with Eq. (6.38) and Eq. (6.42), Eq. (6.44) represents the central quantitative
result of this work. Due to scale invariance of the Weyl Hamiltonian, these results are generic
for any Weyl semimetal with untilted Weyl cones, up to straight-forward directional rescaling
in case of anisotropic velocity, as discussed in Appendix D.2.

6.4.3 Confinement-induced contributions and lattice simulation

The arc-bulk contribution Γab and the confinement-induced bulk-bulk contribution δΓbb are
intimately linked: They are of the same order of magnitude and they always occur in combina-
tion. Therefore, only the sum δΓbb + Γab is experimentally relevant.

In the thick-slab limit, the confinement-induced response tensor is

δΓbb,thick + Γab,thick

ητ/W̃
≃ x̂




0 4.2 0

4.2 0 0

0 0 0


+ ŷ




−4.2 0 9.9iχ

0 0.2 0

−9.9iχ 0 −4.0


. (6.45)

Note that since Γbb,thick
xyz and Γab,thick

xyz cancel (within numerical accuracy), circularly polarized
light may produce a sizeable current only parallel to the Fermi arc (α2 = ŷ), whereas linearly
polarized light may produce currents perpendicular to the Fermi arc as well.

The thin slab limit result is plotted in Fig. 6.5 as a function of ∆. For β = α (∆ = 0),
the linear PGE vanishes because the second surface restores the symmetry between opposite
momenta: With regard to the corresponding discussion for the thick-slab limit, the sense of ro-
tation of spinors away from the z = W boundary is opposite to z = 0 since z runs “backwards”
there. For β = ±π + α (∆ = ±π/2) the symmetric part of the response tensor is approxi-
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<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

∆
<latexit sha1_base64="bdAS1DU9pLDwmRSuoG8etVlJoIw=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9FjUg8cK9gPaUDbbSbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsGpVqDg2upNLtgBmQIoYGCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9UdivuDHSZeDkpkxz1Xumr21c8jSBGLpkxHc9N0M+YRsElTIrd1EDC+IgNoGNpzCIwfja7dkJPrdKnodK2YqQz9fdExiJjxlFgOyOGQ7PoTcX/vE6K4ZWfiThJEWI+XxSmkqKi09dpX2jgKMeWMK6FvZXyIdOMow2oaEPwFl9eJs1qxTuvVO8vyrXrPI4COSYn5Ix45JLUyB2pkwbh5JE8k1fy5ijnxXl3PuatK04+c0T+wPn8AWHajwA=</latexit>
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]
<latexit sha1_base64="P4wqCl/6/7dx8jRBEq0JOoE7JJs=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcFWSKuiy6MZlBXuBJJTJdNIOnUzCzEQptY/ixoUibn0Sd76NkzYLbf1h4OM/53DO/GHKmdKO822V1tY3NrfK25Wd3b39A7t62FFJJgltk4QnshdiRTkTtK2Z5rSXSorjkNNuOL7J690HKhVLxL2epDSI8VCwiBGsjdW3q37Ihh5iyCcjlnPQt2tO3ZkLrYJbQA0Ktfr2lz9ISBZToQnHSnmuk+pgiqVmhNNZxc8UTTEZ4yH1DAocUxVM56fP0KlxBihKpHlCo7n7e2KKY6UmcWg6Y6xHarmWm//VvExHV8GUiTTTVJDFoijjSCcozwENmKRE84kBTCQztyIywhITbdKqmBDc5S+vQqdRd8/rjbuLWvO6iKMMx3ACZ+DCJTThFlrQBgKP8Ayv8GY9WS/Wu/WxaC1ZxcwR/JH1+QNUaJNm</latexit>

[
iχ

]
<latexit sha1_base64="P4wqCl/6/7dx8jRBEq0JOoE7JJs=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcFWSKuiy6MZlBXuBJJTJdNIOnUzCzEQptY/ixoUibn0Sd76NkzYLbf1h4OM/53DO/GHKmdKO822V1tY3NrfK25Wd3b39A7t62FFJJgltk4QnshdiRTkTtK2Z5rSXSorjkNNuOL7J690HKhVLxL2epDSI8VCwiBGsjdW3q37Ihh5iyCcjlnPQt2tO3ZkLrYJbQA0Ktfr2lz9ISBZToQnHSnmuk+pgiqVmhNNZxc8UTTEZ4yH1DAocUxVM56fP0KlxBihKpHlCo7n7e2KKY6UmcWg6Y6xHarmWm//VvExHV8GUiTTTVJDFoijjSCcozwENmKRE84kBTCQztyIywhITbdKqmBDc5S+vQqdRd8/rjbuLWvO6iKMMx3ACZ+DCJTThFlrQBgKP8Ayv8GY9WS/Wu/WxaC1ZxcwR/JH1+QNUaJNm</latexit>

φ
<latexit sha1_base64="XWyjU0+anaF07IlNB7xx8N9rccE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzf5X77CZXmiXw0kxSDmA4ljzijxkp+Lx3xcr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTTClynAmcFbuZRpTysZ0iF1LJY1RB9P5sTNybpUBiRJlSxoyV39PTGms9SQObWdMzUgve7n4n9fNTHQTTLlMM4OSLRZFmSAmIfnnZMAVMiMmllCmuL2VsBFVlBmbTx6Ct/zyKmnVa95lrf5wVW3cFnGU4BTO4AI8uIYG3EMTfGDA4Rle4c2Rzovz7nwsWtecYuYE/sD5/AFKhY5X</latexit>

y x
 x

y y
 y

x x y

β2
<latexit sha1_base64="m5nTqIg+LEoClTe/bIFSe5buP0o=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgET6Odgh6HXjxOcB+wlpKm6RaWJiVJhVmG/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlhSmjSjvOt1VZWV1b36hu1ra2d3b37P2DrhKZxKSDBROyHyJFGOWko6lmpJ9KgpKQkV44vin83gORigp+rycp8RM05DSmGGkjBfaRFwoWqUlirtwLiUbToBnYdafhzACXiVuSOijRDuwvLxI4SwjXmCGlBq6Taj9HUlPMyLTmZYqkCI/RkAwM5Sghys9n6afw1CgRjIU0h2s4U39v5ChRRUAzmSA9UoteIf7nDTIdX/k55WmmCcfzh+KMQS1gUQWMqCRYs4khCEtqskI8QhJhbQqrmRLcxS8vk26z4Z43mncX9dZ1WUcVHIMTcAZccAla4Ba0QQdg8AiewSt4s56sF+vd+piPVqxy5xD8gfX5A/XtlYs=</latexit>

β′
2

<latexit sha1_base64="IWPYcAJ5pvef2IKuG2m7Ks3RX7A=">AAAB/nicbVDNS8MwHE3n15xfVfHkJThET6Odgh6HXjxOcB+wlpKm6RaWJiVJhVEG/itePCji1b/Dm/+N6daDbj4Iebz3+5GXF6aMKu0431ZlZXVtfaO6Wdva3tnds/cPukpkEpMOFkzIfogUYZSTjqaakX4qCUpCRnrh+Lbwe49EKir4g56kxE/QkNOYYqSNFNhHXihYpCaJuXIvJBpNg+ZZYNedhjMDXCZuSeqgRDuwv7xI4CwhXGOGlBq4Tqr9HElNMSPTmpcpkiI8RkMyMJSjhCg/n8WfwlOjRDAW0hyu4Uz9vZGjRBUJzWSC9EgteoX4nzfIdHzt55SnmSYczx+KMwa1gEUXMKKSYM0mhiAsqckK8QhJhLVprGZKcBe/vEy6zYZ70WjeX9ZbN2UdVXAMTsA5cMEVaIE70AYdgEEOnsEreLOerBfr3fqYj1ascucQ/IH1+QNeVZW8</latexit>

φ
<latexit sha1_base64="XWyjU0+anaF07IlNB7xx8N9rccE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzf5X77CZXmiXw0kxSDmA4ljzijxkp+Lx3xcr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTTClynAmcFbuZRpTysZ0iF1LJY1RB9P5sTNybpUBiRJlSxoyV39PTGms9SQObWdMzUgve7n4n9fNTHQTTLlMM4OSLRZFmSAmIfnnZMAVMiMmllCmuL2VsBFVlBmbTx6Ct/zyKmnVa95lrf5wVW3cFnGU4BTO4AI8uIYG3EMTfGDA4Rle4c2Rzovz7nwsWtecYuYE/sD5/AFKhY5X</latexit>

x
∆

<latexit sha1_base64="bdAS1DU9pLDwmRSuoG8etVlJoIw=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9FjUg8cK9gPaUDbbSbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsGpVqDg2upNLtgBmQIoYGCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9UdivuDHSZeDkpkxz1Xumr21c8jSBGLpkxHc9N0M+YRsElTIrd1EDC+IgNoGNpzCIwfja7dkJPrdKnodK2YqQz9fdExiJjxlFgOyOGQ7PoTcX/vE6K4ZWfiThJEWI+XxSmkqKi09dpX2jgKMeWMK6FvZXyIdOMow2oaEPwFl9eJs1qxTuvVO8vyrXrPI4COSYn5Ix45JLUyB2pkwbh5JE8k1fy5ijnxXl3PuatK04+c0T+wPn8AWHajwA=</latexit>

−χ
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>

−χ
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>

α2
<latexit sha1_base64="ZWzIzlsItPs8iSLZ0B2RYHCj7k4=">AAAB/nicbVDLSsNAFL3xWesrKq7cDBbBVUmqoMuiG5cV7AOaECaTaTt0kgkzE6GEgr/ixoUibv0Od/6NkzYLbT0wzOGce5kzJ0w5U9pxvq2V1bX1jc3KVnV7Z3dv3z447CiRSULbRHAheyFWlLOEtjXTnPZSSXEcctoNx7eF332kUjGRPOhJSv0YDxM2YARrIwX2sRcKHqlJbK7cwzwd4WnQCOyaU3dmQMvELUkNSrQC+8uLBMlimmjCsVJ910m1n2OpGeF0WvUyRVNMxnhI+4YmOKbKz2fxp+jMKBEaCGlOotFM/b2R41gVCc1kjPVILXqF+J/Xz/Tg2s9ZkmaaJmT+0CDjSAtUdIEiJinRfGIIJpKZrIiMsMREm8aqpgR38cvLpNOouxf1xv1lrXlT1lGBEziFc3DhCppwBy1oA4EcnuEV3qwn68V6tz7moytWuXMEf2B9/gDEIZX/</latexit> α′

2
<latexit sha1_base64="Svn6jEXFHG72LVTFjQisfIaHNDE=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyip9FOQY9DLx4nuA9YS0nTdAtLk5Kkwqg7+K948aCIV/8Nb/43plsPuvkg5PHe70deXpgyqrTjfFtLyyura+uVjerm1vbOrr2331Eik5i0sWBC9kKkCKOctDXVjPRSSVASMtINRzeF330gUlHB7/U4JX6CBpzGFCNtpMA+9ELBIjVOzJV7iKVDNAkap4Fdc+rOFHCRuCWpgRKtwP7yIoGzhHCNGVKq7zqp9nMkNcWMTKpepkiK8AgNSN9QjhKi/HyafwJPjBLBWEhzuIZT9fdGjhJVRDSTCdJDNe8V4n9eP9PxlZ9TnmaacDx7KM4Y1AIWZcCISoI1GxuCsKQmK8RDJBHWprKqKcGd//Ii6TTq7nm9cXdRa16XdVTAETgGZ8AFl6AJbkELtAEGj+AZvII368l6sd6tj9noklXuHIA/sD5/ACz1ljA=</latexit>

x
φ

<latexit sha1_base64="XWyjU0+anaF07IlNB7xx8N9rccE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzf5X77CZXmiXw0kxSDmA4ljzijxkp+Lx3xcr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTTClynAmcFbuZRpTysZ0iF1LJY1RB9P5sTNybpUBiRJlSxoyV39PTGms9SQObWdMzUgve7n4n9fNTHQTTLlMM4OSLRZFmSAmIfnnZMAVMiMmllCmuL2VsBFVlBmbTx6Ct/zyKmnVa95lrf5wVW3cFnGU4BTO4AI8uIYG3EMTfGDA4Rle4c2Rzovz7nwsWtecYuYE/sD5/AFKhY5X</latexit> −χ
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>

−χ
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>
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<latexit sha1_base64="P4wqCl/6/7dx8jRBEq0JOoE7JJs=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcFWSKuiy6MZlBXuBJJTJdNIOnUzCzEQptY/ixoUibn0Sd76NkzYLbf1h4OM/53DO/GHKmdKO822V1tY3NrfK25Wd3b39A7t62FFJJgltk4QnshdiRTkTtK2Z5rSXSorjkNNuOL7J690HKhVLxL2epDSI8VCwiBGsjdW3q37Ihh5iyCcjlnPQt2tO3ZkLrYJbQA0Ktfr2lz9ISBZToQnHSnmuk+pgiqVmhNNZxc8UTTEZ4yH1DAocUxVM56fP0KlxBihKpHlCo7n7e2KKY6UmcWg6Y6xHarmWm//VvExHV8GUiTTTVJDFoijjSCcozwENmKRE84kBTCQztyIywhITbdKqmBDc5S+vQqdRd8/rjbuLWvO6iKMMx3ACZ+DCJTThFlrQBgKP8Ayv8GY9WS/Wu/WxaC1ZxcwR/JH1+QNUaJNm</latexit>

[
iχ

]
<latexit sha1_base64="P4wqCl/6/7dx8jRBEq0JOoE7JJs=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcFWSKuiy6MZlBXuBJJTJdNIOnUzCzEQptY/ixoUibn0Sd76NkzYLbf1h4OM/53DO/GHKmdKO822V1tY3NrfK25Wd3b39A7t62FFJJgltk4QnshdiRTkTtK2Z5rSXSorjkNNuOL7J690HKhVLxL2epDSI8VCwiBGsjdW3q37Ihh5iyCcjlnPQt2tO3ZkLrYJbQA0Ktfr2lz9ISBZToQnHSnmuk+pgiqVmhNNZxc8UTTEZ4yH1DAocUxVM56fP0KlxBihKpHlCo7n7e2KKY6UmcWg6Y6xHarmWm//VvExHV8GUiTTTVJDFoijjSCcozwENmKRE84kBTCQztyIywhITbdKqmBDc5S+vQqdRd8/rjbuLWvO6iKMMx3ACZ+DCJTThFlrQBgKP8Ayv8GY9WS/Wu/WxaC1ZxcwR/JH1+QNUaJNm</latexit>

(a)

(b)
ϕ

<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>

ϕ
<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>

ϕ
<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>
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Figure 6.5: Confinement-induced response tensor δΓbb,thin
ijk + Γab,thin

ijk as a function of ∆. Only non-zero compo-
nents are shown, labeled with ijk, the circular-PGE components have an additional prefactor iχ as
indicated. Figure from [VIII].

mately maximized, while the weight of circular response is simply shifted from one component
to the other. The Fermi arc orientations thus change the nature of the response completely.

More generally, one can understand that the (anti)symmetric part of the tensor, i.e., the linear
(circular) PGE, must be odd (even) in∆. In terms of∆, the TR-breaking directions in (6.12) are
given by α2 = (− sin∆, cos∆) and β2 = (sin∆, cos∆). The transformation ∆ → −∆
combined with the reflection Rx and χ → −χ leaves the Hamiltonian invariant. From the
corresponding transformation of the tensor follows that components of the symmetric part are
odd while components of the anti-symmetric part are even in ∆, as seen in Fig. 6.5.

Above we considered the thin-slab case while still assumingW ≫ ℓ. It is possible to relax this
constraint and consider ultrathin slabs withW ∼ ℓ resorting to numerical techniques. In this
regime the confinement-induced and bulk contributions are of the same order. Furthermore,
also transitions between arc states of the different surfaces become important. Here, we used
a one-dimensional lattice realization of a single Weyl node (discretizing the z-direction while
keepingr∥ continuous) to numerically evaluate the photogalvanic response tensor in Eq. (6.22).
To this end we employ the lattice Hamiltonian,

Hij =
v

2
[σxpx + σypy + iσzδi,j+1 + σx(1− δi,j+1)] + h.c., (6.46)

where i, j denote the site index at fixed in-plane momenta px, py. This lattice version of the
original infinite-system Weyl Hamiltonian (lattice constant set to one) has been constructed
replacing

σzpz 7→ σz sin pz + σx(cos pz − 1), (6.47)
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such that the Hamiltonians coincide at small pz (the second term removes a spurious Weyl cone
at pz = ±π). Transformation into the site basis replaces

sin pz 7→ i1
2
(δi,j+1 − δi,j−1), cos pz 7→ 1

2
(δi,j+1 + δi,j−1), (6.48)

which leads to (6.46). The Hamiltonian (6.46) can be considered for a finite site number. The
choice of the Pauli matrixσx for the second term in (6.47) sets the direction of the Fermi arc such
that α2 = x̂ = −β2, corresponding to ∆ = π/2 of the thin-slab case considered above [169].
Numerical results for the PGE response tensor in Eq. (6.22) are obtained via discretizing parallel
momenta, numerically diagonalizing the Hamiltonian (6.46), and summing over all pairs of
states (one below and one above the Fermi level). The numerical discretization spacing and
numerical broadening of the delta-function expressing energy conservation have been decreased
until convergence of the results.

The results are shown in Fig. 6.6, demonstrating that our semi-analytical results can be repro-
duced in a lattice setting, and that the qualitative behaviour, such as sign and magnitude of the
confinement induced contributions, extends down toW ∼ ℓ. ForW ≲ 2ℓ, the finite-size gap
of modes becomes larger than the photon energy and the response vanishes. To provide further
insight in the mechanisms behind the confinement-induced response, in Fig. 6.7 we show the
contributions resolved in the in-plane momentum. One can clearly see the cusp-like lines of the
arc-bulk excitations and the circular lines of bulk-bulk excitations, c.f. Fig. 6.3. The signs of the
contributions and the presence/absence of arc-bulk contributions is as discussed in the main
text.

6.4.4 Surface PGE in centrosymmetric Weyl semimetals

Our results for a single Weyl node allow to infer on the response of a WSM with several nodes by
adding the contributions of each node. Probably the most intersting case is that of centrosym-
metric WSMs, for which the confinement-independent bulk-bulk contributionsΓbb cancel and
only the confinement-induced contributions, δΓbb andΓab, survive. A minimal model of a cen-
trosymmetric bulk WSM consists of a single pair of Weyl nodes with opposite chirality. Con-
sidering the multilayer Hamiltonian Hχm in (6.12) as the Hamiltonian describing one of the
Weyl nodes, for the Hamiltonian describing the second Weyl node of opposite chirality we take
H−χ−m. In this case the Fermi arcs emanate in opposite directions, which happens when the
Weyl nodes are connected in a straight line. However, we have seen in Sec. 6.1 that an additional
boundary potential δHb = δ(z)µ0 + δ(z −W )µW rotates the spinors by α → α + χ2µ0

and β → β − χ2µW . The generic situation is thus that there is a finite angle φ characterizing
the deviation from an anti-parallel alignment, as shown in the inset of Fig. 6.8(a). Note that
between the nodes, the Fermi arcs thus must be curved, as is typically seen in experiments; the
curvature itself plays however no role for our results since excitations occur only close to the
Weyl nodes.
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Figure 6.6: (a) Circular and (b) linear response tensor components in the ultra-thin limit W̃ = W/ℓ ∼ 1 at
∆ = π/2. The data points correspond to the photogalvanic response tensor Eq. (6.22) numerically
evaluated for a lattice realization of a single Weyl point. The dashed lines correspond to the semi-
analytical results Γ = Γbb + δΓbb + Γab in the limit W̃ ≫ 1. For W̃ ≲ 2, the lattice response
vanishes as the frequency drops below the finite size gap. For W̃ ≳ 2, the response converges towards
the semi-analytical W̃ ≫ 1 results. Figure from [VIII].

The total response ΓWSM
abc is obtained from the single-cone result Γijk(χ,m) (now explicitly

denoting the χ,m dependence),

ΓWSM
abc = R(φ)aiR(φ)bjR(φ)ckΓijk(χ,m)

+R(−φ)aiR(−φ)bjR(−φ)ckΓijk(−χ,−m), (6.49)

where R(φ) is the spatial rotation matrix for a rotation around z by φ. The results are plotted
in Fig. 6.8. From the transformation behavior of the response tensor discussed in Sec. 6.3 (sym-
metric part odd inm and even in χ, antisymmetric part odd in χ and even inm), the response
of the two Weyl nodes cancel each other at ϕ = 0. This means that in the thick-slab case the re-
sponse vanishes when the Fermi arcs of the illuminated surface emanate from the Weyl nodes in
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Figure 6.7: Parallel-momentum (px, py) resolved response tensor Γ̂ ( Γ =
∑

px,py
Γ̂) at three widths W =

3, 6, 15 for v = 1 and ℓ = 5 sites. Left column indicates the dispersion at py = 0. Figure from
[VIII].

exactly opposite directions. In the thin-slab case, the same applies but the emanation direction
is replaced by the bisector of the top- and bottom-surface Fermi arcs.

For ϕ = π/2 the directions just discussed (emanation direction for thick slab and bisec-
tor direction for thin slab) are parallel. This is equivalent to taking the contributions of the
two Weyl nodes at the same m (instead of m and −m), while χ are still opposite. Since the
(anti)symmetric part is even (odd) in χ, the antisymmetric parts cancel also here but the sym-
metric parts add up to twice the value of a single cone. This can be seen by comparison of Fig.
6.8(b) with the single-cone results shown in Fig. 6.5 for the thin-slab case and Fig. 6.8(a) with
Γab,thick+δΓbb,thick from Eqs. (6.38) and (6.42) for the thick-slab case. (Note that the coordinate
system is now rotated by π/2, i.e., y → x and x→ −y, compared to the single-cone case).

6.5 Conclusion

In conclusion, we have explored the PGE of a WSM spatially confined to a slab geometry. Sym-
metry breaking on the surfaces via the orientation of the Fermi arcs enables circular and linear
photogalvanic response currents, which would otherwise not be possible, in particular, in cen-
trosymmetric WSMs.

The magnitude of the confinement-enabled PGE inherits the topology-enhancement of un-
confined Weyl fermions, based on the topologically protected band touchings [72, 277]. How-
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<latexit sha1_base64="40M+MJVp9+eaO9pKj0eX81xDSaU=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjBfkAbymY7bZduNmF3IpTQH+HFgyJe/T3e/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpsheO7md96Qm1ErB5pkmAQsaESA8EZWanVDZFYr9orlb2KN4e7SvyclCFHvVf66vZjnkaoiEtmTMf3EgoypklwidNiNzWYMD5mQ+xYqliEJsjm507dc6v03UGsbSly5+rviYxFxkyi0HZGjEZm2ZuJ/3mdlAY3QSZUkhIqvlg0SKVLsTv73e0LjZzkxBLGtbC3unzENONkEyraEPzll1dJs1rxLyvVh6ty7TaPowCncAYX4MM11OAe6tAADmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AO8gj00=</latexit>

�
<latexit sha1_base64="bdAS1DU9pLDwmRSuoG8etVlJoIw=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9FjUg8cK9gPaUDbbSbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsGpVqDg2upNLtgBmQIoYGCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9UdivuDHSZeDkpkxz1Xumr21c8jSBGLpkxHc9N0M+YRsElTIrd1EDC+IgNoGNpzCIwfja7dkJPrdKnodK2YqQz9fdExiJjxlFgOyOGQ7PoTcX/vE6K4ZWfiThJEWI+XxSmkqKi09dpX2jgKMeWMK6FvZXyIdOMow2oaEPwFl9eJs1qxTuvVO8vyrXrPI4COSYn5Ix45JLUyB2pkwbh5JE8k1fy5ijnxXl3PuatK04+c0T+wPn8AWHajwA=</latexit>
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⇥
i�

⇤
<latexit sha1_base64="P4wqCl/6/7dx8jRBEq0JOoE7JJs=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcFWSKuiy6MZlBXuBJJTJdNIOnUzCzEQptY/ixoUibn0Sd76NkzYLbf1h4OM/53DO/GHKmdKO822V1tY3NrfK25Wd3b39A7t62FFJJgltk4QnshdiRTkTtK2Z5rSXSorjkNNuOL7J690HKhVLxL2epDSI8VCwiBGsjdW3q37Ihh5iyCcjlnPQt2tO3ZkLrYJbQA0Ktfr2lz9ISBZToQnHSnmuk+pgiqVmhNNZxc8UTTEZ4yH1DAocUxVM56fP0KlxBihKpHlCo7n7e2KKY6UmcWg6Y6xHarmWm//VvExHV8GUiTTTVJDFoijjSCcozwENmKRE84kBTCQztyIywhITbdKqmBDc5S+vQqdRd8/rjbuLWvO6iKMMx3ACZ+DCJTThFlrQBgKP8Ayv8GY9WS/Wu/WxaC1ZxcwR/JH1+QNUaJNm</latexit>

⇥
i�

⇤
<latexit sha1_base64="P4wqCl/6/7dx8jRBEq0JOoE7JJs=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcFWSKuiy6MZlBXuBJJTJdNIOnUzCzEQptY/ixoUibn0Sd76NkzYLbf1h4OM/53DO/GHKmdKO822V1tY3NrfK25Wd3b39A7t62FFJJgltk4QnshdiRTkTtK2Z5rSXSorjkNNuOL7J690HKhVLxL2epDSI8VCwiBGsjdW3q37Ihh5iyCcjlnPQt2tO3ZkLrYJbQA0Ktfr2lz9ISBZToQnHSnmuk+pgiqVmhNNZxc8UTTEZ4yH1DAocUxVM56fP0KlxBihKpHlCo7n7e2KKY6UmcWg6Y6xHarmWm//VvExHV8GUiTTTVJDFoijjSCcozwENmKRE84kBTCQztyIywhITbdKqmBDc5S+vQqdRd8/rjbuLWvO6iKMMx3ACZ+DCJTThFlrQBgKP8Ayv8GY9WS/Wu/WxaC1ZxcwR/JH1+QNUaJNm</latexit>

�
<latexit sha1_base64="XWyjU0+anaF07IlNB7xx8N9rccE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzf5X77CZXmiXw0kxSDmA4ljzijxkp+Lx3xcr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTTClynAmcFbuZRpTysZ0iF1LJY1RB9P5sTNybpUBiRJlSxoyV39PTGms9SQObWdMzUgve7n4n9fNTHQTTLlMM4OSLRZFmSAmIfnnZMAVMiMmllCmuL2VsBFVlBmbTx6Ct/zyKmnVa95lrf5wVW3cFnGU4BTO4AI8uIYG3EMTfGDA4Rle4c2Rzovz7nwsWtecYuYE/sD5/AFKhY5X</latexit>

y x
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�2
<latexit sha1_base64="m5nTqIg+LEoClTe/bIFSe5buP0o=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgET6Odgh6HXjxOcB+wlpKm6RaWJiVJhVmG/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlhSmjSjvOt1VZWV1b36hu1ra2d3b37P2DrhKZxKSDBROyHyJFGOWko6lmpJ9KgpKQkV44vin83gORigp+rycp8RM05DSmGGkjBfaRFwoWqUlirtwLiUbToBnYdafhzACXiVuSOijRDuwvLxI4SwjXmCGlBq6Taj9HUlPMyLTmZYqkCI/RkAwM5Sghys9n6afw1CgRjIU0h2s4U39v5ChRRUAzmSA9UoteIf7nDTIdX/k55WmmCcfzh+KMQS1gUQWMqCRYs4khCEtqskI8QhJhbQqrmRLcxS8vk26z4Z43mncX9dZ1WUcVHIMTcAZccAla4Ba0QQdg8AiewSt4s56sF+vd+piPVqxy5xD8gfX5A/XtlYs=</latexit>

�0
2

<latexit sha1_base64="IWPYcAJ5pvef2IKuG2m7Ks3RX7A=">AAAB/nicbVDNS8MwHE3n15xfVfHkJThET6Odgh6HXjxOcB+wlpKm6RaWJiVJhVEG/itePCji1b/Dm/+N6daDbj4Iebz3+5GXF6aMKu0431ZlZXVtfaO6Wdva3tnds/cPukpkEpMOFkzIfogUYZSTjqaakX4qCUpCRnrh+Lbwe49EKir4g56kxE/QkNOYYqSNFNhHXihYpCaJuXIvJBpNg+ZZYNedhjMDXCZuSeqgRDuwv7xI4CwhXGOGlBq4Tqr9HElNMSPTmpcpkiI8RkMyMJSjhCg/n8WfwlOjRDAW0hyu4Uz9vZGjRBUJzWSC9EgteoX4nzfIdHzt55SnmSYczx+KMwa1gEUXMKKSYM0mhiAsqckK8QhJhLVprGZKcBe/vEy6zYZ70WjeX9ZbN2UdVXAMTsA5cMEVaIE70AYdgEEOnsEreLOerBfr3fqYj1ascucQ/IH1+QNeVZW8</latexit>

�
<latexit sha1_base64="XWyjU0+anaF07IlNB7xx8N9rccE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzf5X77CZXmiXw0kxSDmA4ljzijxkp+Lx3xcr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTTClynAmcFbuZRpTysZ0iF1LJY1RB9P5sTNybpUBiRJlSxoyV39PTGms9SQObWdMzUgve7n4n9fNTHQTTLlMM4OSLRZFmSAmIfnnZMAVMiMmllCmuL2VsBFVlBmbTx6Ct/zyKmnVa95lrf5wVW3cFnGU4BTO4AI8uIYG3EMTfGDA4Rle4c2Rzovz7nwsWtecYuYE/sD5/AFKhY5X</latexit>

x
�

<latexit sha1_base64="bdAS1DU9pLDwmRSuoG8etVlJoIw=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9FjUg8cK9gPaUDbbSbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsGpVqDg2upNLtgBmQIoYGCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9UdivuDHSZeDkpkxz1Xumr21c8jSBGLpkxHc9N0M+YRsElTIrd1EDC+IgNoGNpzCIwfja7dkJPrdKnodK2YqQz9fdExiJjxlFgOyOGQ7PoTcX/vE6K4ZWfiThJEWI+XxSmkqKi09dpX2jgKMeWMK6FvZXyIdOMow2oaEPwFl9eJs1qxTuvVO8vyrXrPI4COSYn5Ix45JLUyB2pkwbh5JE8k1fy5ijnxXl3PuatK04+c0T+wPn8AWHajwA=</latexit>

��
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>

��
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>

↵2
<latexit sha1_base64="ZWzIzlsItPs8iSLZ0B2RYHCj7k4=">AAAB/nicbVDLSsNAFL3xWesrKq7cDBbBVUmqoMuiG5cV7AOaECaTaTt0kgkzE6GEgr/ixoUibv0Od/6NkzYLbT0wzOGce5kzJ0w5U9pxvq2V1bX1jc3KVnV7Z3dv3z447CiRSULbRHAheyFWlLOEtjXTnPZSSXEcctoNx7eF332kUjGRPOhJSv0YDxM2YARrIwX2sRcKHqlJbK7cwzwd4WnQCOyaU3dmQMvELUkNSrQC+8uLBMlimmjCsVJ910m1n2OpGeF0WvUyRVNMxnhI+4YmOKbKz2fxp+jMKBEaCGlOotFM/b2R41gVCc1kjPVILXqF+J/Xz/Tg2s9ZkmaaJmT+0CDjSAtUdIEiJinRfGIIJpKZrIiMsMREm8aqpgR38cvLpNOouxf1xv1lrXlT1lGBEziFc3DhCppwBy1oA4EcnuEV3qwn68V6tz7moytWuXMEf2B9/gDEIZX/</latexit> ↵0

2
<latexit sha1_base64="Svn6jEXFHG72LVTFjQisfIaHNDE=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyip9FOQY9DLx4nuA9YS0nTdAtLk5Kkwqg7+K948aCIV/8Nb/43plsPuvkg5PHe70deXpgyqrTjfFtLyyura+uVjerm1vbOrr2331Eik5i0sWBC9kKkCKOctDXVjPRSSVASMtINRzeF330gUlHB7/U4JX6CBpzGFCNtpMA+9ELBIjVOzJV7iKVDNAkap4Fdc+rOFHCRuCWpgRKtwP7yIoGzhHCNGVKq7zqp9nMkNcWMTKpepkiK8AgNSN9QjhKi/HyafwJPjBLBWEhzuIZT9fdGjhJVRDSTCdJDNe8V4n9eP9PxlZ9TnmaacDx7KM4Y1AIWZcCISoI1GxuCsKQmK8RDJBHWprKqKcGd//Ii6TTq7nm9cXdRa16XdVTAETgGZ8AFl6AJbkELtAEGj+AZvII368l6sd6tj9noklXuHIA/sD5/ACz1ljA=</latexit>

x
�

<latexit sha1_base64="XWyjU0+anaF07IlNB7xx8N9rccE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBKf4MXD4p49Qd589+4aXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzf5X77CZXmiXw0kxSDmA4ljzijxkp+Lx3xcr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTTClynAmcFbuZRpTysZ0iF1LJY1RB9P5sTNybpUBiRJlSxoyV39PTGms9SQObWdMzUgve7n4n9fNTHQTTLlMM4OSLRZFmSAmIfnnZMAVMiMmllCmuL2VsBFVlBmbTx6Ct/zyKmnVa95lrf5wVW3cFnGU4BTO4AI8uIYG3EMTfGDA4Rle4c2Rzovz7nwsWtecYuYE/sD5/AFKhY5X</latexit> ��
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>

��
<latexit sha1_base64="Seq7lwk+4jQKGzqNhUsFgQ1omm8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpk4yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR3cxvPaHSPJGPZpxiENOB5BFn1FjJv+iyIe+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBBMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6zWHq4q9ds8jiKcwCmcgwfXUId7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fatqObQ==</latexit>
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⇥
i�

⇤
<latexit sha1_base64="P4wqCl/6/7dx8jRBEq0JOoE7JJs=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcFWSKuiy6MZlBXuBJJTJdNIOnUzCzEQptY/ixoUibn0Sd76NkzYLbf1h4OM/53DO/GHKmdKO822V1tY3NrfK25Wd3b39A7t62FFJJgltk4QnshdiRTkTtK2Z5rSXSorjkNNuOL7J690HKhVLxL2epDSI8VCwiBGsjdW3q37Ihh5iyCcjlnPQt2tO3ZkLrYJbQA0Ktfr2lz9ISBZToQnHSnmuk+pgiqVmhNNZxc8UTTEZ4yH1DAocUxVM56fP0KlxBihKpHlCo7n7e2KKY6UmcWg6Y6xHarmWm//VvExHV8GUiTTTVJDFoijjSCcozwENmKRE84kBTCQztyIywhITbdKqmBDc5S+vQqdRd8/rjbuLWvO6iKMMx3ACZ+DCJTThFlrQBgKP8Ayv8GY9WS/Wu/WxaC1ZxcwR/JH1+QNUaJNm</latexit>

⇥
i�

⇤
<latexit sha1_base64="P4wqCl/6/7dx8jRBEq0JOoE7JJs=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcFWSKuiy6MZlBXuBJJTJdNIOnUzCzEQptY/ixoUibn0Sd76NkzYLbf1h4OM/53DO/GHKmdKO822V1tY3NrfK25Wd3b39A7t62FFJJgltk4QnshdiRTkTtK2Z5rSXSorjkNNuOL7J690HKhVLxL2epDSI8VCwiBGsjdW3q37Ihh5iyCcjlnPQt2tO3ZkLrYJbQA0Ktfr2lz9ISBZToQnHSnmuk+pgiqVmhNNZxc8UTTEZ4yH1DAocUxVM56fP0KlxBihKpHlCo7n7e2KKY6UmcWg6Y6xHarmWm//VvExHV8GUiTTTVJDFoijjSCcozwENmKRE84kBTCQztyIywhITbdKqmBDc5S+vQqdRd8/rjbuLWvO6iKMMx3ACZ+DCJTThFlrQBgKP8Ayv8GY9WS/Wu/WxaC1ZxcwR/JH1+QNUaJNm</latexit>

(a)

(b)
'

<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>

'
<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>

'
<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>
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Figure 6.8: Response-tensor components for a centrosymmetric WSM in (a) the thick- and (b) the thin-slab case,
as a function the angleφ. As shown in the lower insets,ϕ sets the deviation from antiparallel alignment
of (a) the direction of bottom-surface Fermi arcs; and (b) the directions of bisectors of bottom- and
top-surface Fermi arcs. In the thin-slab case (b) the angle between top and bottom arcs is chosen as
∆ = π/2; the inset in the right top shows the result for ∆ = 0, for which the linear PGE vanishes.
Figure from [VIII].

ever, while in infinite systems those band touchings include only the chiral pairs of Weyl nodes,
a confined system features topological surface states, which are tightly glued to the Weyl nodes.

The ratio of confinement-induced contributions to bulk contributions scales in case of a thin
slab like (v/c)× (λ/W ) and for the thick slab like v/c, where λ is the light wavelength,W the
slab thickness, and v/c ≈ 0.01 the node- vs. light-velocity. Considering the upper and lower
bounds of λ set by the finite Fermi level and the band width of typical WSM materials, the
confinement-induced PGE is on the order of bulk PGE for widths of orderW ∼ 0.1 . . . 1µm.
Surface-controlled PGE is thus found in such thin slabs even for non-centrosymmetric WSMs,
which makes the experimental realization of thin WSM slabs or even stacks of those especially
interesting.

One of the most remarkable properties of the confinement-induced PGE is that it is con-
trolled by surface boundary conditions. We explicitly discussed the effect of a surface potential,
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6 Surface photogalvanic effect in Weyl semimetals

which rotates the direction of Fermi arcs. Another interesting possibility, known from exper-
iments, are layered WSMs for which the different surface terminations can not only change
the directionality of Fermi arcs but even lead to different connectivities to the Weyl nodes [289,
290]. This Fermi-arc geometry is observable, e.g., via angle-resolved photoemission spectroscopy
[91, 92, 269]; our work links this geometry with the photogalvanic response. In principle, a
confinement-related photogalvanic response may exist also in regular metals due to Tamm sur-
face states. However, such a response does not share the remarkable features of the confinement-
induced PGE in WSMs. The difference is due to topology: while in a regular metal, the surface
state wave-functions depend on microscopic details, in a WSM the Fermi arc wave functions are
uniquely determined by the Fermi arc directionality. This fact enables the sensitivity to bound-
ary conditions and hence the control of the confinement-induced PGE in WSM. Moreover, a
confinement-related PGE in a regular metal would lack the aforementioned enhancement due
to the band touchings in a WSM and should hence be much smaller than the effect discussed
in this chapter.

With regard to the remarkable recent progress in device microstructuring [83, 293–296], our
work might thus play an important role in identifying Weyl physics and shaping the photogal-
vanic response by designing the material surface.
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7 Summary and perspective

This thesis discussed examples of the design and control of quantum matter and quantum de-
vices that are engineered from subgap and boundary modes, as well as quantum response en-
abled and controlled by subgap and boundary modes. It thereby demonstrates the versatility
and utility of subgap and boundary modes as building blocks for quantum engineering. The
objectives of the quantum engineered systems and response characteristics considered in this
work are multifold. They range from purposes of fundamental scientific merit, such as the
design and simulation of novel quantum phases [I, II, III], to application-oriented purposes, rel-
evant e.g. to superconducting electronics [IV, V, VI], topological quantum computing [VII], as
well as optoelectronics [VIII]. In the following the novel aspects and relevance of the works pre-
sented here will be laid out and put into perspective.

Chains of magnetic adatoms on superconducting substrates are one of the primary experi-
mental platforms in the search for one-dimensional topological superconductivity and its asso-
ciated Majorana zero modes. Our results show that, contrary to the assumptions made in most
theoretical works hitherto, the quantum nature of the adatom spin is of crucial importance in
understanding the physics of these systems. Indeed, in the extreme case of spin-1

2
adatoms, the

YSR excitation, which represents the local building block of the quantum engineered system, is
neither a spinless nor a spinful fermion. It is instead an intrinsically strongly interacting degree
of freedom. We arrived at this conclusion by taking an approach that is complimentary to the
established theories of YSR chains: instead of simplifying the adatom spin, we simplify the su-
perconducting substrate by considering the limit of vanishing bandwidth. While the resulting
extended t − J model is strongly interacting, it is one-dimensional and as such can be treated
well with standard techniques such as exact diagonalization and DMRG. Here, we employed
the former as it provides access to the experimentally relevant spectral function. We revealed
rich many-body spectra governed by the interplay of separated spin and charge degrees of free-
dom, the hallmark of strongly correlated electron systems in one dimension. The possibility of
emergent quantum magnetism in YSR chains had thus far eluded the theoretical community
studying these systems. We further showed that a topological superconducting phase persists
also in quantum YSR chains. However, due to competition with phases that do not have a coun-
terpart in the classical picture, the topological region in parameter space is strongly suppressed.
Finally, we identified a new nontopological mechanism unique to quantum YSR chains which
leads to increased spectral weight at the chain ends and low bias. This is relevant to avoid mis-
interpretation of low-bias spectral features in terms of Majorana zero modes.
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7 Summary and perspective

These results suggest several avenues for future studies. Most pressingly, the phase diagram
of spin-1

2
quantum YSR chains needs to be understood more deeply. In particular, it is not yet

clear what the precise phase boundaries within the overall singlet sector are. Preliminary consid-
erations suggest that there is a continuous quantum phase transition which separates the fully
screened phase and the fully unscreened antiferromagnetic chain. It is also not clear, whether
the singlet superconductor is smoothly connected to the latter phase, or whether it forms a stan-
dalone phase. We have also seen in preliminary studies that addition of Dzyaloshinskii-Moriya
interactions to the singlet superconductor phase leads to zero-bias spectral peaks localized at
the chain ends. A possible explanation in terms of power law-localized Majorana zero modes
induced by non-symmetry breaking spiral-like spin-spin correlations remains to be confirmed.
It would also be interesting to apply the zero bandwidth approach to chains of spin-1 adatoms.
Here, departure from t − J physics is expected and single-ion anisotropy is relevant. Under-
standing of the spin-1 case may bridge between quantum and classical YSR chains. Exact di-
agonalization is not suitable to address these questions due to the excessive computational cost
associated with scaling up the system size. Different numerical techniques such as DMRG, or
analytical approaches such as bosonization methods should allow one to bypass these issues. Fi-
nally, their description in terms of t− J fermions suggests that YSR assemblies may be used to
simulate strongly correlated matter in a system that is designed from bottom-up, and that has
lattice structure and couplings which are, at least in principle, under experimental control. As a
first step, two-dimensional YSR assemblies should be considered: here, as opposed to the spin-
charge separation in one dimension, the spin and charge carriers should exhibit confinement.

With single-atom Josephson diodes we have presented another fascinating application of YSR
bound states: Instead of employing YSR states as building blocks for the engineering of novel
quantum phases, here YSR states control the nonreciprocity of a nanoscale Josephson junc-
tion. We could explain this in terms of a novel mechanism leading to the Josephson diode ef-
fect: rather than current-phase asymmetry manifesting in nonreciprocal critical or switching
currents, here asymmetric dissipation gives rise to nonreciprocity in the retrapping currents.
This new mechanism has different symmetry requirements, and thus may be observed in time-
reversal symmetric junctions provided that particle-hole symmetry in the normal metal sense
is absent. We could establish the correspondence between current-phase asymmetry and non-
reciprocity in the switching currents, asymmetric dissipation and nonreciprocity in the retrap-
ping currents under rather general circumstances provided the damping is sufficiently weak.
While these considerations were based on a phenomenological approach, we corroborated our
results by microscopic considerations for a Josephson tunnel junction. Specifically, we stream-
lined and generalized the field-theoretic approach by Ambeaokar, Eckern and Schön, yielding
an extended RCSJ equation that involves the voltage-bias expressions for the quasiparticle cur-
rent as the dissipative contribution, and the voltage-bias expression for the current-current cor-
relation function as noise correlator. In particular, these currents involve contributions at all
orders in the tunneling, including multiple Andreev reflections. We then performed a numer-
ical Monte-Carlo study of this RCSJ equation using experimental quasiparticle currents as in-
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put. With this we could reproduce the main features of the experiment on the magnetic atom
Josephson junctions.

Thus far, the aim of our simulations has been qualitative understanding. However, we have
arrived at a point where the RCSJ simulations could be used to fit and extract experimental pa-
rameters such as the critical current of the junction, or, more ambitiously, higher Fourier com-
ponents of the current-phase relation. There are several issues which need to be addressed. First,
the electromagnetic environment contributes significantly to the dynamics of the junction. By
measuring the environmental impedance independently, e.g. by reflectometry techniques, the
number of parameters needed to model the experiment could be reduced drastically. Similarly,
our current procedure involves fitting and subtracting the voltage-bias Josephson current due
to incoherent transfer of Cooper pairs. This introduces ambiguities in the model parameters
that could be avoided if the quasiparticle current were measured at sufficiently high magnetic
field suppressing the Josephson contribution. Progress is to be made also on the purely theo-
retical side. Our current theory describes only point contacts and therefore fails to describe a
range of experiments on extended junctions [297, 298]. It is straightforward to incorporate this
into our approach. In fact, it may prove useful to phrase the transport through the junction as
a scattering problem and integrate this directly into the field-theoretic approach. This comes
with the advantage that results are expressed in terms of directly measurable quantities such as
transmission and reflection amplitudes, rather than microscopic parameters. As a last point,
it remains to be shown under what circumstances the correspondence between an asymmetric
current-phase relation and nonreciprocal switching currents as well as an asymmetric dissipative
current and nonreciprocal retrapping currents breaks down. We have reason to believe it per-
sists outside the weak-damping regime for sufficiently low temperatures but thorough analysis
remains to be done.

The second example of subgap (and boundary) mode used for quantum engineering pur-
poses in this thesis is the famously elusive Majorana zero mode. Its topological nature protects
Majorana quantum devices against local noise, while also providing certain protected opera-
tions on its associated space of states. These features make Majorana zero modes particularly at-
tractive for quantum computing applications. Here, we considered the simplest qubit formed
from Majorana zero modes, the so called Majorana box qubit, which combines four Majo-
rana zero modes on an electrostatically floating island. While these qubits are expected to be
very long-lived their topological nature makes accessing the information they encode a compli-
cated problem. Indeed, quantum computing based on Majorana Box Qubits relies heavily on
quantum-non-demolition measurements to implement Clifford gates. A fast and robust read-
out protocol is therefore paramount to this quantum computing architecture. We developed
a comprehensive theory of readout for Majorana Box Qubits based on the quantum trajectory
approach. Our theory explains in detail not only decoherence but also the measurement signal,
and thus provides strategies for optimal readout. For Majorana Box readout via charge sensing
of a nearby quantum dot we found that there is an optimum for qubit-readout device coupling
such that stronger coupling makes it harder to detect the measurement outcome. Finally, we
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7 Summary and perspective

show that the mechanism underlying our theory relies only on a conserved parity and as such
should find application in many different platforms. We term this symmetry-protected readout.

The quantum trajectory approach is easily extended to include detrimental processes such
as quasiparticle poisoning or Majorana hybridizations and thus may serve as a starting point
for more sophisticated approaches describing real devices. It remains to be seen whether such
devices will become a physical reality in the near future, though. Nonetheless, the intersection
of decoherence, measurement and (symmetry-protected) topological order is a rich subject from
a theoretical perspective and it should be fruitful to extend our considerations to more exotic
topological excitations such as Fibonacci anyons.

The final example of boundary mode subject of this thesis is the topological Fermi arc that
is associated with a Weyl semimetal bulk. Fermi arcs are responsible for a large number of ex-
otic transport phenomena associated with their chiral and topological nature. Here, we studied
the effect of Fermi arc surface states on the photoresponse. More specifically, we calculated the
ballistic photogalvanic current for a Weyl semimetal slab, employing analytic semiclassical tech-
niques augmented by lattice simulations. We show that the response is crucially determined by
the Fermi arc orientations which may be affected through surface potentials. We argue that this
allows for design of the photoresponse, e.g. for application in optoelectronics.

More broadly speaking, the control of response in Weyl semimetals is a field of active research.
The aim of this program is the design of Weyl materials in which the topological and chiral
anomaly related transport effects are the dominant response. We have provided merely one ex-
ample of photocurrents dominated by the topological Fermi arcs. It would be interesting to
see whether there are ways to extend this to other nonlinear response effects, such as second
harmonic generation.

These examples represent the status quo of quantum engineering with subgap and bound-
ary modes. Their embedding into the continua of condensed matter systems may put them at
a disadvantage compared to atomic platforms such as cold atom quantum simulators and su-
perconducting quantum computers, when it comes to coherence and programmability. But
the scalability and comparable simplicity innate to condensed matter based technologies might
well mean that the quantum simulators and computers of tomorrow are based on subgap and
boundary modes.
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Appendix A

A.1 Algebra of low energy projected operators

In this Appendix we investigate the action of the projected Bogoliubov operatorsPγσP ,Pγ†σP
as well as PSiP on the low-energy subspace. We will find that they satisfy the same algebra as
t− J fermions (i.e., spinful electrons with the constraint that double occupancy is forbidden).
Consider first the action of PγσP on the singlet,

Pγ↓P |s⟩ =
1√
2
|+⟩, Pγ↑P |s⟩ = −

1√
2
|−⟩. (A.1)

Thus, the states |±⟩ are created from |s⟩ by application ofPγ↓/↑P (up to normalization). Sim-
ilarly, we have

Pγ†σP |±⟩ =
{
0 if σ = ±
σ̄√
2
|s⟩ if σ = ∓

, Pγ†σP |s⟩ = 0. (A.2)

Thus, Pγ†σP acts as annihilator for the excitations with± = σ̄, while |s⟩ acts as the vacuum.
Finally, consider the action of PγσP on the already occupied |±⟩,

PγσP |±⟩ = 0. (A.3)

Following these observations, for σ = ∓ this corresponds to adding a second spin-σ electron
into the already occupied state, which should indeed give 0. However, the above also implies
Pγ↑Pγ↓P |s⟩ = 0, which corresponds to forbidden double occupation. This motivates the
definition of new quasi-fermionic creation operators

Γ†σ = σ
√
2Pγσ̄P, (A.4)

which create the states |± = σ⟩ from |s⟩. They satisfy

Γ†σΓ
†
σ = 0 = ΓσΓσ. (A.5)

175



Appendix A

Due to the forbidden double occupation, these are not proper fermions. Their full anticom-
mutation algebra on the low-energy subspace is given by

{
Γ↑,Γ

†
↑

}




|s⟩
|+⟩
|−⟩

=





|s⟩
|+⟩
0

,
{
Γ↓,Γ

†
↓

}




|s⟩
|+⟩
|−⟩

=





|s⟩
0

|−⟩
, (A.6a)

{
Γ↓,Γ

†
↑

}




|s⟩
|+⟩
|−⟩

=





0

0

|+⟩
,
{
Γ↑,Γ

†
↓

}




|s⟩
|+⟩
|−⟩

=





0

|−⟩
0

, (A.6b)

while
{
Γ†↑,Γ

†
↓

}
= 0 = {Γ↑,Γ↓}. (A.6c)

We now show explicitly that these operators satisfy the same algebra as the t− J fermions. To
this end, consider a single site, infinite-U Hubbard model described by fermionic operators dσ,
with states |vacH⟩, |σH⟩ = d†σ|vacH⟩ and the doubly occupied |↓↑H⟩ = d†↓d

†
↑|vacH⟩, as well as

the projector onto the empty and singly-occupied states, PH = 1 − |↓↑H⟩⟨↓↑H|. Note that,
for sake of simplicity, in the main text no distinction is made between the Hilbert space of the
original model and that of the Hubbard model. As above we define the projected quasi-fermion
operators as

Dσ = PHdσPH. (A.7)
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It is straightforward to check the anticommutation relations. As above

{
D↑, D

†
↑

}




|vacH⟩
|↑H⟩
|↓H⟩

=





|vacH⟩
|↑H⟩
−PHd↑PH|↓↑H⟩ = 0

, (A.8a)

{
D↓, D

†
↓

}




|vacH⟩
|↑H⟩
|↓H⟩

=





|vacH⟩
PHd↓PH|↓↑H⟩ = 0

|↓H⟩
, (A.8b)

{
D↓, D

†
↑

}




|vacH⟩
|↑H⟩
|↓H⟩

=





0

0

−PHD↓dH|↓↑H⟩+ |↑H⟩ = |↑H⟩
, (A.8c)

{
D↑, D

†
↓

}




|vacH⟩
|↑H⟩
|↓H⟩

=





0

PHd↑PH|↓↑H⟩+ |↓H⟩ = |↓H⟩
0

, (A.8d)

and
{
D†↑, D

†
↓

}
= 0 = {D↑, D↓}. (A.8e)

Thus, the low-energy projected superconductor may be described using the infinite-U Hub-
bard model instead, with γσ ∼ −σd†σ̄/

√
2. As mentioned above, we introduce the∼-symbol

to mean equivalence at the level of the low-energy projected theory. The corresponding Hamil-
tonian is

HH = −EYSR

∑

σ

d†σdσ + V − 3

4
K + Ud†↑d↑d

†
↓d↓, U →∞. (A.9)

The merits of this identification will become clear when considering chains in the next section.
We have not yet discussed the low-energy projected spin operatorsPSiP . They act like the spin
operators associated with the d fermions,

Sz ∼ 1

2

∑

σ

σd†σdσ, S
+ ∼ d†↑d↓, S

− ∼ d†↓d↑. (A.10)

To see this, we explicitly consider their action on the low-energy states,

PSzP |s⟩ ∝ P (|⇑↓⟩+ |⇓↑⟩) = 0, PSzP |±⟩ = ±1

2
|±⟩, (A.11a)

PS+P |s⟩ ∝ P |⇑↑⟩ = 0, PS±P |±⟩ = 0, PS∓P |±⟩ = |∓⟩. (A.11b)
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TheΓj,σ have the same anticommutation algebra as t−J fermions. The on-site algebra follows
from the previous section. Furthermore, it is clear that{Γj,σ,Γj′,σ′} ∝ PjPj′{γ†j,σ̄, γ†j′,σ̄′}P ′jPj =
0 for j ̸= j′ since [Pj, Pj′ ] = 0 and similarly for the anticommutator of creation and annihi-
lation operators. There is one more issue to account for to make the mapping exact. The new
vacuum is a product of local singlet states, and therefore has odd local fermion parities. Simi-
larly, the single-occupied sites actually have even local fermion parity. Thus, acting with Γ†j on
a basis state, there is an overall minus sign equal to the parity of the number of singlets on sites
i < j, i.e. of the number of “unoccupied" rather than “occupied" states. To make this precise,
consider the action of Γj,σ on the product basis derived from |s⟩ and |±⟩. We write

|y⟩ ≡ |y1⟩ ⊗ ...⊗ |yN⟩ (A.12)

in terms of yj ∈ {−, s,+}. Then, we have

Γj,σ|y⟩ = (−1)
∑

i<n(1+
∑

σ′ ni,σ′ )

|y1⟩ ⊗ ...⊗ Γj,σ|yj⟩ ⊗ ...⊗ |yN⟩. (A.13)

Similarly, for the infinite-U Hubbard model

Dj,σ|x⟩ = (−1)
∑

i<n,σ′ ni,σ′

|x1⟩ ⊗ ...⊗Dj,σ|xj⟩ ⊗ ...⊗ |xN⟩, (A.14)

where xj ∈ {vacH, ↑H, ↓H, ↓↑H} and nj,σ = d†j,σd,jσ. Hence, there is an additional factor of
(−1)n−1 that needs to be taken into account. With this, the equivalence Eq. (3.30) has been
established.

A.2 Finite size effects in the phase diagram

One observes small apparent irregularities in the boundaries of the Stot = 0 phase at small
|J | in the quantum phase diagram in Fig. 3.7 (b). There are sawtooth-like dents between the
ferromagnetic metal and theStot = 0 phase and small regions withStot ̸= 0within theStot = 0

phase. Both of these are due to finite-size effects. The spin structure is depicted in Fig. 3.7 (b)
as follows: The Stot = 0 phase is indicated by a tilted mesh, while the Stot = N/2 phase is
indicated by a vertical/horizontal mesh. Boundaries of these phases are indicated by thick white
lines. The ferromagnetic metal phase has 0 < Stot < N/2 as indicated by the absence of a
mesh.

Consider first the sawtooth-like dents between the ferromagnetic metal and the Stot = 0

phase. These may be understood in terms of the infinite-U Hubbard model, which our model
maps to for J = 0 and ∆̃ = 0. The Bethe-ansatz solution for the infinite-U Hubbard model
has a straightforward interpretation in terms of spin charge separation [211]. The eigenfunctions
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A.2 Finite size effects in the phase diagram

Figure A.1: Infinite-U Hubbard model. Depending on the spin state, the effective free fermion states obey periodic
or antiperiodic boundary conditions. If the chemical potential is such that it is beneficial to host an
even number of electrons (orange shading) antiperiodic boundary conditions are favorable. If an odd
number of electrons is preferred, periodic boundary conditions are favorable. Figure from [I].

are comprised of an effectively spinless Slater determinant of plane-wave states with momenta
{ki} and a spin wave function. The latter carries a spin-crystal momentum Λ, which depends
on the spin configuration: Λ = 0 for Stot = Q/2, and Λ = π for Stot = 0 (here, Q =

∑
i ni

is the total charge). Then, the momenta satisfy the boundary condition

eiNki = eiΛ (A.15)

and the total energy takes the free fermion form

E({ni}) = −2t̃
∑

i

ni cos ki. (A.16)

Hence, for Stot = 0, the allowed momenta correspond to antiperiodic boundary conditions,
whereas for Stot = Q/2, the allowed momenta correspond to periodic boundary conditions.
To minimize the kinetic energy, an even number of fermions favors antiperiodic boundary con-
ditions (for which k = 0 is not an allowed momentum) and hence a singlet-spin configuration,
while an odd number favors periodic boundary conditions (where k = 0 is an allowed momen-
tum) and hence a maximum-spin configuration. This is illustrated in Fig. A.1. For finite system
sizes, a minimal RKKY coupling is needed to overcome this finite-size effect and one observes a
shift of the phase boundary of the Stot = 0 phase towards more negative J , wheneverEYSR is
such that the system favors an even number of fermions. (Remember thatEYSR effectively acts
as a chemical potential for the fermions.)

Importantly, this behavior is also observed in the absence of pairing and hence should not be
confused with the competition between the ferromagnetic metal and singlet superconductor
phases discussed in the main text. The latter is clearly not a finite-size feature. Pairing further
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stabilizes the Stot = 0 phase for any number of fermions. This explains that the Stot = 0

phase preempts the ferromagnetic metal phase at small, but negative J , regardless of the value
ofEYSR.

Finally, consider the small islands of Stot ̸= 0 for J > 0, surrounded by the Stot = 0 phase.
In these regions, the ground state has an odd number of fermions and hence at leastStot = 1/2.
In thermodynamic limit this is irrelevant as the spin-density still vanishes.
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B.1 Dimensionless variables

We will use lower-case letters to denote the dimensionless variables while dimensionful variables
are denoted by upper-case letters (with the exception of time). To this end, we expandU about
its minimum and maximum,

U(φ) = U(φmin) +
1

2
MΩ2

p(φ− φmin)2 + ... , MΩ2
p = U ′′(φmin), (B.1)

where the inertiaM may be read off from the kinetic termCV 2 = Mφ̇2, i.e. M = ℏ2C/4e2.
Thus, the frequency of the motion close to the minimum is given by the plasma frequency

Ωp =

√
4e2U ′′(φmin)

ℏ2C
= Ωp(Ib). (B.2)

With this, we define dimensionless time

τ = Ωp(0)t (B.3)

in units of the inverse plasma frequency at zero bias, and accordingly the dimensionless phase
velocity

v = ∂τφ =
2e

ℏΩp(0)
V ≡ V

Vu
. (B.4)

It is then convenient to measure energies in units ofMΩ2
p(0) = U ′′s (φ

min
s ), such that the energy

of the phase particle,

E =
1

2
CV 2 + U(φ), (B.5)

becomes
ε =

E

MΩ2
p(0)

=
1

2
v2 + u(φ), u(φ) =

U(φ)

MΩ2
p(0)

, (B.6)

where the dimensionless potential u(φ) satisfies the expansion

u(φ) = u(φmin) +
1

2
ω2
p(φ− φmin)2 + ... , ωp(ib) =

Ωp(ib)

Ωp(0)
. (B.7)
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Here, we also introduced dimensionless currents through

ix =
ℏ

2eMΩ2
p(0)

Ix ≡
Ix
Iu
, x ∈ {d, s, b, c, ...}. (B.8)

Note that it may be more convenient to measure microscopic energies in terms of ℏΩp(0) or ∆
and we will do that where appropriate. In these units, the extended RCSJ model becomes

∂τv + id(v) + is(φ) + δi = ib, v = φ̇. (B.9)

where id(v) = id(V = ℏΩp(0)v/2e), with noise correlator

⟨δi(τ)δ(iτ ′)⟩ = k(v(τ))δ(τ − τ ′) (B.10)

and
k(v) = 2θ

id(v)

v
, θ =

T

MΩ2
p(0)

. (B.11)

Finally, for a sinusoidal current-phase relation Is(φ) = (2eEJ/ℏ) sinφ,MΩ2
p(0) = U ′′s (φ

min
s ) =

EJ , and hence energies are measured in terms of the Josephson energy EJ , while currents are
measured in terms of the critical current Ic = 2eEJ/ℏ.

B.2 Phenomenological currents and numerical simulations

In order to illustrate the effect of nonreciprocities in the extended RCSJ model we use phe-
nomenological current-phase relations and current-voltage characteristics. Specifically, we use
the phenomenological current-phase relation

i0(φ) = c1[sin(φ− φ̃)− c2 sin(2φ)], (B.12)

where c1 is fixed such that (∂2u0/∂φ2)|φmin
0

= (∂i0/∂φ)|φmin
0

= 1, see Fig. 4.2 (a). This
type of current-phase relation arises, e.g., in Ref. [152]. For the dissipative current we use the
current-voltage characteristic

id(v) =
v

Q

[
1 + c3

v

δv
exp

{
−1

2

(
v2

δv2
− 1

)}]
, (B.13)

see in Fig. 4.2 (b). The exponential factor in the asymmetric term serves to give Ohmic behavior
at large voltages. As parameters we use Q = 10 and θ = 0.1 throughout. If an asymmetric
current-phase relation is needed we use ϕ̃ = 0.6 and c2/c1 = 0.2. Otherwise we use a sinusoidal
current-phase relation. For the asymmetric current-voltage characteristic we use c3 = 0.3, δv =

5. Otherwise we use an Ohmic current-phase relation.
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All our Langevin simulations employ the Euler-Maruyama algorithm with time step dτ =

0.01. In order to obtain hysteretic behaviour, we sweep the bias current from ib = −0.7 to
ib = 0.7 [ib = −1.5 to ib = 1.5 in Fig. 4.1 and ib = −0.9 to ib = 0.9 in Fig. 4.3 (b)] and back
at a rate r = |di/dτ | = 10−5. The time-averaged voltage is calculated for 500 points in each
direction. Switching and retrapping currents are extracted as maxima of the discrete derivative
of the time-averaged voltage data. For the histograms we run 1000 sweeps.

B.3 Running state trajectory

We want an expression for (φrun, vrun)(t) in the underdamped limit id(v)/v ≪ 1. As φrun is
monotonous in each period we can invert t = t(φ) and consider vrun(φ) instead. This is the
periodic solution to

dvrun
dφ

= − 1

vrun
[u′(φ) + id(vrun)]. (B.14)

From now on we drop the "run"-label. It is clear that a solution is of the order of v0, where
ib = id(v0), with v0 = ib[v0/id(v0)]≫ 1. Defining

v = v0(1 + y), y ≪ 1, (B.15)

we expand to leading order in y. This gives

dy

dφ
≃ − 1

v20
{i0(φ) + [i′d(v0)v0 − i0(x)]y}. (B.16)

Here we assumed that i′d(v0)v0 ∼ 1. From this, we expect y = y2 + y4 + ..., where yn ∼ vn0 .
Thus, altogether we have

vR(φ) ≃ v0 −
u0(φ)

v0
+

1

v30

∫ φ

dφ̃ [i′d(v0)v0 − i0(φ̃)]u0(φ̃). (B.17)

Note that the integration constants are chosen s.t.
∫ 2π

0
dφvR = v0.

B.4 Keldysh contour and generating functional

Consider a system evolving under a time-dependent Hamiltonian H(t). The density matrix
satisfies the von-Neumann equation

ρ̇(t) = −i[H(t), ρ(t)]. (B.18)
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This is formally solved by

ρ(t) = U(t,−∞)ρ(−∞)[U(t,−∞)]† = U(t,−∞)ρ(−∞)U(−∞, t), (B.19)

in terms of the time evolution operator

U(t, t′) = lim
N→∞

exp{−iH(t− δt)δt}... exp{−iH(t−Nδt)δt} (B.20a)

≡Texp

{
−i
∫ t

t′
dt′′H(t′′)

}
, (B.20b)

where (t−t′)/N = δt andT is the time-ordering symbol. The expectation value of a Schrödinger
picture operatorO(t) is obtained via

⟨O(t)⟩ = tr[O(t)ρ(t)] (B.21a)
= tr[U(−∞,∞)U(∞, t)O(t)U(t,−∞)ρ(−∞)] (B.21b)
= tr[U(−∞, t)O(t)U(t,∞)U(∞,−∞)ρ(−∞)]. (B.21c)

In the second and third line we extended the time evolution to+∞ for later convenience. Time
evolution from −∞ to +∞ and back is the Keldysh contour. Whether the operator O(t) is
introduced during the forward or backward propagation does not matter. One may express
⟨O(t)⟩ as functional derivative of an appropriate generating functional. To this end, we define
the Keldysh evolution operator

UC[η+, η−] = Uη−(−∞,∞)Uη+(∞,−∞), (B.22a)

Uη(t, t′) = T exp

{
−i
∫ t

t′
dt′′ [H(t′′) + η(t′′)O(t′′)]

}
, (B.22b)

including the source terms η±(t) on the forward and backward branch, respectively. The gen-
erating functional is

Z[η+, η−] = tr {UC[η+, η−]ρ(−∞)}. (B.23)

The expectation value ⟨O(t)⟩ can be obtained by differentiating with respect to η+(t) or η−(t),

⟨O(t)⟩ = ±i δ

δη±(t)
Z[η+, η−]

∣∣∣∣
η=0

. (B.24)
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Differentiating twice gives the time-ordered, anti-time ordered, lesser and greater correlation
functions,

⟨TO(t1)O(t2)⟩ = i2
δ2

δη+(t1)δη+(t2)
Z[η+, η−]

∣∣∣∣
η=0

, (B.25a)

〈
T̃O(t1)O(t2)

〉
= i2

δ2

δη−(t1)δη−(t2)
Z[η+, η−]

∣∣∣∣
η=0

, (B.25b)

−⟨O(t1)O(t2)⟩ = i2
δ2

δη−(t1)δη+(t2)
Z[η+, η−]

∣∣∣∣
η=0

, (B.25c)

−⟨O(t2)O(t1)⟩ = i2
δ2

δη+(t1)δη−(t2)
Z[η+, η−]

∣∣∣∣
η=0

. (B.25d)

It will prove useful to introduced the symmetrized and anti-symmetrized combinations ηcl =
(η+ + η−)/2 and ηq = η+ − η−. Differentiation with respect to ηq twice gives the sym-
metrized correlation function ⟨O(t1)O(t2) +O(t2)O(t1)⟩/2. This is the Keldysh correlation
function. Differentiation with respect to ηcl twice gives 0. The crossed combinations give the
retarded and advanced correlation functions. Z is the moment generating functional. The as-
sociated cumulants may be obtained by instead taking derivatives with respect to lnZ .

B.5 Grassmann integrals for spin-orbit coupled
superconductors

Complex fermionic field theories require the evaluation of Grassmann integrals such as

∫ N∏

α=1

dψαdψα exp
{
ψAψ

}
= detA. (B.26)

Note that the Grassmann vector ψ and ψ are independently integrated over. Consider now a
fermionic theory in the four-dimensional Nambu representation,

Z =

∫ N∏

α=1

dραdψα exp

{
1

2

[
ρAψ − ψATρ+ ρDρ+ ψD†ψ

]}
. (B.27)

Here, we renamedψ → ρ for clarity. Due to fermionic statistics,D is antisymmetric. Expressed
in terms of "real" or Majorana Grassmann vector ϕ = (ρ, ψ), this gives the standard result

Z =

∫ 2N∏

a=1

dϕa exp

{
1

2
ϕMϕ

}
= PfM, M =


 D A

−AT D†


 = −MT . (B.28)
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The Pfaffian of the matrixM is related to its determinant through [PfM ]2 = detM . We may
thus reexponentiate

PfM = exp

{
1

2
2 ln PfM,

}
= exp

{
1

2
ln detM ± iπ

}
= ± exp

{
1

2
ln detM

}
. (B.29)

The BCS Green function is related to M via M = iu†G−1uτx, where u = diag(1, iσy) in
particle-hole space. Thus, with detAB = detA detB it is

Z ∝ exp

{
1

2
Tr ln[iG−1]

}
. (B.30)

Contour-ordered correlation functions follow from

⟨ϕaϕb⟩ =
1

Z

∫ 2N∏

c=1

dϕc ϕaϕb exp

{
1

2
ϕMϕ

}
= −[M−1]ab. (B.31)

This produces the expected result

G = −iuτx⟨ϕ⊗ ϕ⟩u† = −i
〈
TCΨ⊗Ψ†

〉
. (B.32)

B.6 Solving the Dyson equation

Here, we show how the Dyson equation for the diagonal Green function, Eq. (4.167), can be
solved at all orders within the adiabatic approximation. To this end, we expand in Fourier com-
ponents with respect to the phase difference,

Gd(φ, V ;ω) =
∑

m

Gdm(V ;ω)eimφ, Gdm(V ;ω) =

∫
dφ

2π
Gd(φ, V ;ω)e−imφ. (B.33)

With this, the Dyson equation becomes (suppressing the voltage arguments, and using the
Moyal product to expand the convolutions)

Gdm(ω) = G0(ω)δm,0 + G0(ω −meV )λz
∑

n

Σm−n(ω − neV )λzGdn(ω + (m− n)eV ).

(B.34)

Do not confuse G0 (bare Green function) with Gdm=0 (zeroth Fourier component of full Green
function). Similar expressions hold for the off-diagonal Green function and hence for the full
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Green function. It is useful to shift ω → ω −meV . Defining Gdm(ω −meV ) ≡ vm(ω), the
Dyson equation may be written as a matrix equation

vm(ω) = G0(ω)δm,0 +
∑

n

Mmn(ω)vn(ω), (B.35a)

Mmn(ω) = G0(ω − 2meV )λzΣm−n(ω − (n+m)eV )λz. (B.35b)

This is solved by v = (1 −M)−1(..., 0,G0, 0, ...)T , which can be evaluated numerically for
given ω and V .

B.7 BCS spectral function

The retarded BCS Green function is defined as

Grαβ(t, t′) = −i
〈{

Ψα(t),Ψ
†
β(t
′)
}〉

Θ(t− t′). (B.36)

Its Lehmann representation defines the BCS spectral matrix,

Aαβ(ω) =
i

2π

{
Grαβ(ω)− [Grαβ(ω)]†

}
(B.37a)

=
1

Z

∑

nn′

Mnn′⟨n′|Ψα|n⟩⟨n|Ψ†β|n′⟩δ(ω − Enn′). (B.37b)

Here, Mnn′ = e−En/T + e−En′/T , |n⟩ is a many-body eigenstate of the BCS Hamiltonian
associated with energy En, and Enn′ = En − En′ . Consider its particle-hole diagonal blocks.
In the two-dimensional Nambu representation Ψ = [ψ↑, ψ

†
↓], the diagonal entries of the BCS

spectral matrix satisfies

Aeab(ω) =
1

Z

∑

nn′

Mnn′⟨n′|ψa,↑|n⟩⟨n|ψ†b,↑|n′⟩δ(ω − Enn′) ≡ A↑ab(ω), (B.38a)

Ahba(−ω) =
1

Z

∑

nn′

Mnn′⟨n′|ψa,↓|n⟩⟨n|ψ†b,↓|n′⟩δ(ω − Enn′) ≡ A↑ab(ω), (B.38b)

where Aσab(ω) is the normal spin resolved spectral matrix. Relevant for tunneling from an un-
structured lead are the diagonal elements of the spectral matrix in the position basis,Aσ(x;ω),
where x is the position of the tunneling contact. Aσ(x;ω) is referred to as the (spin-resolved)
spectral function. In the spin indiscriminate case, tunneling instead probes

A(x;ω) =
∑

σ

Aσ(x;ω) = Ae(x;ω) +Ah(x;−ω) = trp-hA(x;ωτz). (B.39)
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Voffset [mV] Ioffset [nA] δV [mV] A [nA] B [nA] C [nA/mV] D [nA/mV2] E [nA/mV3]

Pb 0.0187 0.0292 0.135 16.4 -20.6 7.00 0.121 -21.8

Cr 0.0210 0.00169 0.140 5.96 -7.71 4.01 2.47 -1.01

Mn 0.0129 -0.123 0.138 8.47 -10.7 3.66 -2.52 15.1

Table B.1: Quasiparticle current fitting parameters. Fitting parameters for extracting the quasiparticle current
Iqp(V ) from the measured current Imeas(V ) by subtracting the Josephson peak due to incoherent
Cooper-pair tunneling, see Eq. (B.43) and corresponding text.

See Eq. (2.20) for the zero temperature expression. Note that the two-dimensional Nambu
representation does not capture spin flip correlations such as A↑↓. If such processes play a role
(i.e. if Sztot is not conserved), one has to resort to the four-dimensional Nambu representation
Ψ = [ψ↑, ψ↓, ψ

†
↓,−ψ†↑], with entries denoted by i ∈ {1, 2, 3, 4}. The particle-hole diagonal

part of the BCS spectral matrix satisfies now

A11
ab(ω) =A44

ba(−ω) = A↑ab(ω), (B.40a)

A22
ab(ω) =A33

ba(−ω) = A↓ab(ω), (B.40b)

as well as

A12
ab(ω) = −A34

ba(−ω) = A↑↓ab(ω), (B.40c)

A21
ab(ω) = −A43

ba(−ω) = A↓↑ab(ω). (B.40d)

The spin-indiscriminate spectral function therefore may be expressed as

A(x;ω) =
1

2
triA(x;ωτz) =

1

2
trp-h,spinA(x;ωτz). (B.41)

Similarly, traces over the spin indices of the BCS spectral function may be expressed in terms of
the physical spectral function via

1

2
trspin

[
AeL(x;ω1)AeR(x;ω2) +AhL(x;−ω1)AhR(x;−ω2)

]

=
∑

σσ′

[
Aσσ

′

L (x;ω1)A
σ′σ
R (x;ω2)

]
. (B.42)

B.8 Extraction of quasiparticle current

We extract the quasiparticle contribution to the dissipative current Iqp(V ) from voltage-biased
measurements of Pb, Cr, and Mn junctions at the normal-state conductance of GN = 50 µS.
In addition to the quasiparticle current, these traces include a Josephson peak originating from
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incoherent Cooper-pair tunneling. We remove the Josephson contribution IJ(V ) by fitting to
the phenomenological expressions [299]

Imeas(V ) = IJ(V + Voffset) + Iqp,0(V + Voffset) + Ioffset, (B.43a)

IJ(V ) =A
V δV

V 2 + δV 2
+B

V 3δV

(V 2 + δV 2)2
, (B.43b)

Iqp,0(V ) =CV +DV 2 + EV 3, (B.43c)

over a voltage range e|V | ≪ ∆, which contains the Josephson peak. (We choose e|V | < 0.32

meV.) We account also for offsets in the measured voltage and current through the parameters
Voffset and Ioffset. The fit parameters are collected in Table B.1. We then subtract the Josephson
contribution as well as the offsets from the measured data to isolate the quasiparticle contri-
bution. To reduce the fluctuations at small V associated with the Josephson contribution, a
Gaussian filter (width σ = 5 datapoints ≃ 0.55 mV) is applied to the isolated quasiparticle
current data. Finally, Iqp(V ) is obtained by interpolation using a linear splining procedure, en-
forcing Iqp(0) = 0. The fitting and quasiparticle current extraction procedure is summarized
in Fig. B.1.
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Figure B.1: Extraction of quasiparticle current. (a),(c),(e) Measured I-V traces before (light red curve) and after (red
curve) accounting for voltage and current offsets, as well as I − V trace obtained by correcting offsets
and subtracting the Josephson contribution (orange curve) for (a) Pb, (c) Cr and (e) Mn, respectively.
Also shown are the fit curves Imeas(V ) before (light blue curve) and after accounting (blue curve) for
voltage and current offsets, as well as the final extracted quasiparticle current entering the theoretical
simulations (black curve). (b),(d),(f) Measured |I|−|V | after accounting for voltage and current offsets
(red curves) as well as extracted quasiparticle current (black curves) corresponding to positive (solid
curves) and negative (dashed curves) bias voltages in an extended voltage range for (b) Pb, (d) Cr and (f)
Mn, respectively. The asymmetric part of the quasi-particle current

∣∣Iqp(V ) + Iqp(−V )
∣∣ (grey curve)

is roughly zero for Pb. For Cr and Mn the asymmetric part is clearly nonvanishing.
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C.1 Majorana qubits and quantum dot – notation and
definitions

In this appendix, we summarize details of our definitions and conventions for the quantum
states of the coupled system of Majorana qubit and quantum dot.

C.1.1 Choice of basis states

A set of2mMajorana bound states labeled by i = 1, . . . , 2m is described by hermitian fermionic
operators γ̂i = γ̂†i which satisfy {γ̂i, γ̂j} = 2δij . The associated 2m-dimensional Hilbert space
is spanned by the Fock occupations n̂ij = f̂ †ij f̂ij of complex fermions f̂ij = (γ̂i + iγ̂j)/2.

The total fermion parity of these basis states is given by the operator

P̂ = (−i)m
m∏

j=1

γ̂2j−1γ̂2j (C.1)

As quantum superpositions exist only for states of the same fermion parity, a qubit requires at
least four Majorana bound states. States with even and odd fermion parity can be split energet-
ically by a charging energy, Eq. (5.1), as they have different charge N = 2NC + NM , where
NC is the number of Cooper pairs andNM the charge in the Majorana sector. For definiteness,
we choose the ground (excited) states of the Majorana qubit to have N = 0 (N = −1). The
Hilbert space is spanned by {|N, n12, n34⟩}. Due to the parity constraint

P = (−1)N = (−1)n12+n34 , (C.2)

it is sufficient to specify the state as |N, n12⟩.
In the main text, we choose a slightly different labeling of the basis states. First, instead of

using the label n12, we specify n12 via the eigenvalue z ∈ {1,−1} ≡ {↑, ↓} of the Pauli-Z
operator

Ẑ = −iγ̂1γ̂2 = 1− 2n̂12 = (−1)n̂12 .

Second, the Majorana qubit only exchanges charge with the quantum dot. We always initialize
the system to have even total parity with Majorana-qubit charge N = 0 and quantum dot
charge n = 0, so that these charges are related as n = −N in general. We then label the basis
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states by the quantum dot chargen and the eigenvalue z of the Pauli-Z operator of the Majorana
qubit,

|z, n⟩ ≡
∣∣∣∣N = −n, n12 =

1− z
2

, n34 =
1− z(−1)n

2

〉
. (C.3)

With this definition, the constraint (C.2) is automatically satisfied. Furthermore, with our
choices, all participating states have even total fermion parity Ptot = P (−1)n.

The four basis states |z, n⟩ differ in the local parity π̂ = Ẑ(−1)n̂. We choose a basis {|↑, 0⟩,
|↓, 1⟩ , |↓, 0⟩, |↑, 1⟩}, where the first (last) two states have local parity π = +1 (π = −1). We
can then define Pauli matrices acting in a subspace of fixed local parity,

σπz = |π, 0⟩⟨π, 0| − |−π, 1⟩⟨−π, 1|, (C.4a)
σπx = |π, 0⟩⟨−π, 1|+ |−π, 1⟩⟨π, 0|, (C.4b)
σπy = iσπxσ

π
z . (C.4c)

In the main text, we drop theπ label whenever this does not lead to confusion. In terms of these
Pauli matrices, the quantum dot charge is

n =
1

2
(σ0 − σz). (C.5)

C.1.2 Coupled Majorana qubit-quantum dot system

In addition, we define a set of Pauli matrices using the eigenbasis of the Hamiltonian in Eq. (5.7)
which also act within the subspaces with fixed π,

τπz = |gπ⟩⟨gπ| − |eπ⟩⟨eπ|, (C.6a)
τπx = |eπ⟩⟨gπ|+ |gπ⟩⟨eπ| = τπ+ + τπ−, (C.6b)
τπy = iτπx τ

π
z . (C.6c)

Here, the ground states are given by Eq. (5.11), while the excited states are

|e+⟩ = cos
θ+
2
|↑, 0⟩+ sin

θ+
2
eiϕ+|↓, 1⟩, (C.7a)

|e−⟩ = cos
θ−
2
|↓, 0⟩+ sin

θ−
2
eiϕ−|↑, 1⟩. (C.7b)
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In terms of these Pauli matrices, hπ = Ωπτ
π
z and

n̂ =
∑

z=±1
|z, 1⟩⟨z, 1| (C.8a)

=
∑

π=±1

[
cos2

θπ
2
|gπ⟩⟨gπ|+ sin2 θπ

2
|eπ⟩⟨eπ|

− 2 cos
θπ
2
sin

θπ
2
(|eπ⟩⟨gπ|+ |gπ⟩⟨eπ|)

]
(C.8b)

=
1

2

∑

π=±1
[τπ0 + cos θπτ

π
z − sin θπτ

π
x ]. (C.8c)

In the Heisenberg picture, the quantum dot charge n̂(t) = exp(iĤt) n̂ exp(−iĤt) becomes

n̂(t) =
∑

π=±1

[τπ0 + cos θπτ
π
z

2
− sin θπ

2

(
e2iΩπtτπ+ + e−2iΩπtτπ−

)]
. (C.9)

We find it convenient to define the time-independent part

ĉ =
∑

π=±1

τπ0 + cos θπτ
π
z

2
. (C.10)

Finally, since we are performing our simulations in the charge basis, we need τπ± in the charge
basis. Within a given π-block, it takes the form

τπ− =
1

2


 sin θπ (1− cos θπ)e

−iϕπ

(−1− cos θπ)e
iϕπ − sin θπ,


 (C.11)

with τπ+ given by hermitian conjugation.

C.2 Stroboscopic protocol for Ẑ readout

C.2.1 Measurement protocol

Section 5.1 discusses projective measurements of Ẑ based on a single projective measurement of
n̂. In addition to assuming instantaneous charge readout, this requires fine-tuned parameters.
In subsequent sections of the main text, we relax both of these conditions. Here, we briefly dis-
cuss schemes which assume instantaneous charge readout, but allow for general system parame-
ters ti and ε. For general parameters, the measurement outcome for the charge of the quantum
dot is no longer perfectly correlated with eigenstates of Ẑ . However, unless Im{t1t∗2} = 0, the
charge measurement still provides partial information on the qubit state.
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Once coupled, quantum dot and Majorana qubit evolve unitarily from initial state |ψ⟩ =
(α|↑⟩+ β|↓⟩)|0⟩ into

Û |ψ⟩ = α(c↑,0|↑, 0⟩+ c↓,1|↓, 1⟩) + β(c↓,0|↓, 0⟩+ c↑,1|↑, 1⟩). (C.12)

The unitary time evolution Û , entangling Majorana qubit and quantum dot, satisfies [Û , π̂] =
0, but otherwise depends on details of the protocol. If the charge readout can be effected instan-
taneously (on the time scale of the hybridization between dot and qubit), or more realistically,
qubit and quantum dot are rapidly decoupled following the unitary evolution, the quantum
dot charge becomes a good quantum number during charge readout. Then, the measurement
leaves the system in the state

|ψ′0⟩ =
1√
p0
(αc↑,0|↑⟩+ βc↓,0|↓⟩)|0⟩, (C.13a)

or

|ψ′1⟩ =
1√
p1
(αc↓,1|↓⟩+ βc↑,1|↑⟩)|1⟩, (C.13b)

with probabilities p0 = |αc↑,0|2 + |βc↓,0|2 and p1 = 1− p0, respectively. The partial informa-
tion on Ẑ obtained from the measurement transfers weight between qubit states. This can be
interpreted in terms of Bayesian inference [250],

p(↑ |n) = p(n| ↑)
pn

p(↑), p(↓ |n) = p(n| ↓)
pn

p(↓), (C.14)

where we identify the prior probabilities of the qubit states with p(↑) = |α|2 and p(↓) = |β|2
and p(n|Z) = |cZ,n|2 with the conditional probabilities to observe measurement outcome n.

Repeating this protocol results in a random walk in the space of qubit and quantum dot
states. We find that the random walk has two distinct steady states corresponding to the π̂
eigensectors. This becomes equivalent to the eigenstates of Ẑ , if for simplicity, we reset the
qubit-quantum dot system in between steps, |↓, 1⟩ → |↑, 0⟩ and |↑, 1⟩ → |↓, 0⟩ after every
charge readout that gave n = 1 (for a scheme implementing this reset, see App. C.2.2 below).
With this reset, we effectively obtain a random walk in the space of qubit states, which can be
described by the Kraus operators

M̂0 =


c↑,0 0

0 c↓,0


, M̂1 = X̂


 0 c↑,1

c↓,1 0


 (C.15)
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Figure C.1: Evolution under the stroboscopic measurement protocol for adiabatic coupling with initial state |ψ⟩ =
(|↑⟩+ |↓⟩)|0⟩/

√
2, as function of time (number of iterations). Sample trajectories ofZ = ⟨Ẑ⟩ (green

and red traces) demonstrate the evolution towards the fixed points. The evolution tends slowly towards
the ↓ state (corresponding to likely outcomes), interrupted by jumps (unlikely outcomes) that provide
much more information, favoring the ↑ state and causing greater backaction. The measurement signal
for two trajectories is shown by the blue and orange traces. Jumps in the trajectory are correlated with
n = 1 outcomes. The correct statistics of the measurement is illustrated by the constant ensemble
average ofZ(N) (brown trace), which we computed for the initial state |ψ2⟩ = (|↑⟩+

√
2|↓⟩)|0⟩/

√
3.

Projection onto the fixed points is indicated by the decay of E[1 − Z2(N)] (purple trace) to zero.
Ensemble averages are over 104 trajectories. Parameters: t2 = t1e

iπ/4, ε = 10t1. Figure from [VII].

acting on a qubit state |ϕ⟩, so that the qubit state |ϕ′n⟩ conditioned on the measurement out-
come n is given by

|ϕ′n⟩ =
M̂n|ϕ⟩√
pn

, (C.16)

with pn = ⟨ϕ|M̂ †
nM̂n|ϕ⟩. The Pauli X̂ in the definition of M̂1 makes the reset of the qubit-

quantum dot system explicit.
Figure C.1 shows numerical simulations of this protocol for the adiabatic coupling scheme

discussed in Sec. 5.1.2, so that Û involves the coefficients cZ,n of the state given in Eq. (5.10).
The trajectories reach the fixed points Z = ±1 with the correct probabilities. Moreover, the
measurement outcome can be extracted from the sequence of n outcomes of a single trajectory
by noting thatn averages to the ground-state charge corresponding to the respective fixed point.
Thus, this protocol implements a projective measurement of Ẑ .

We conclude this section with a number of comments. First, resetting the quantum dot
charge is not essential. Without intermediate resetting, the protocol projects π̂ = Ẑ(−1)n̂
(see discussion in the main text) and one may reset once the outcome of the measurement is de-
termined. However, in this case, the average charge no longer equals the ground state charge and
a more involved signal analysis (for instance using the Bayes theorem) is required. Second, qubit
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(i)

(ii)

(iii)

Figure C.2: Spectrum of the quantum dot-Majorana qubit system as a function of the qubit gate chargeNg . The
dashed lines forN = −1 (orange) andN = 0 (blue) correspond to the energies of the system without
coupling to the quantum dot. (The vertical shift of the orange curve reflects the energy of the quantum
dot.) The full lines (red, green) refer to the coupled system and exhibit an avoided crossing. Initially,
the Majorana qubit gate is tuned to Ng = 0 and the system is in the charge ground state |ψ⟩ ∝
|N = 0, n = 0⟩. (i) A measurement outcome of n = 1 transfers the system into the excited charge
state |ψ′⟩ ∝ |N = −1, n = 1⟩. (ii) The charge state is reset by adiabatically changing Ng → −1.
The system state is now∝ |N = 0, n = 0⟩ again. (iii) Suddenly setNg → 0, so that the system state
does not change and the initial situation is restored. Alternatively, one may also decouple the quantum
dot and slide down the dashed green curve adiabatically. Figure from [VII].

and quantum dot can also be entangled through evolution with the Hamiltonian (5.7). In this
case, decoupling qubit and quantum dot in between steps is necessary only if charge readout
is slower than tunneling. The resulting evolution is closely related to the continuous evolution
discussed in the main text, which arises naturally from sequences of repeated measurements
when relaxing more and more assumptions on the strengths of various couplings.

C.2.2 Resetting the qubit-quantum dot system

When the charge measurement yields n = 1, the Majorana qubit is in the excited charge state
N = −1. To avoid uncontrolled charging events, the electron should be swiftly returned from
quantum dot to Majorana qubit.

This can be achieved by adiabatic variations of ε and ti, transforming

|ψ⟩ = (α|↓⟩+ β|↑⟩)|1⟩ (C.17a)

into
|ψreset⟩ = (α|↑⟩+ β|↓⟩)|0⟩ (C.17b)
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for general α and β. We focus on the subspace π = +1 for definiteness.
Without fine tuning of the dynamical phase, |↓, 1⟩ can only be transformed into |↑, 0⟩ if it is

an eigenstate of the initial Hamiltonian. Consider an initial Hamiltonian h+ given by θ+ = θ0
and ϕ+ = ϕ0, and expand the initial state in eigenstates of h+,

|↓, 1⟩ = e−iϕ0
(
sin

θ0
2
|e+⟩0 − cos

θ0
2
|g+⟩0

)
. (C.18)

Adiabatically changing θ0, ϕ0 → θ1, ϕ1, the eigenstates evolve as |e+⟩0 → eiχe|e+⟩1 and
|g+⟩0 → eiχg |g+⟩1, where the subscripts distinguish eigenstates of the initial (θ0, ϕ0) and final
(θ1, ϕ1) Hamiltonians. Then

|↓, 1⟩ → e−iϕ0
(
eiχe sin

θ0
2
|e+⟩1 − eiχg cos

θ0
2
|g+⟩1

)
. (C.19)

Writing |e+⟩1 and |g+⟩1 in the basis |↑ 0⟩, |↓ 1⟩ and setting the coefficient of |↓ 1⟩ to zero yields
the condition

eiχg sin
θ0
2
sin

θ1
2
+ eiχe cos

θ0
2
cos

θ1
2

= 0. (C.20)

Without fine tuning,χg andχe are arbitrary phases and the two terms need to vanish separately.
This implies θ0 = 0 and θ1 = π, or vice versa, so that the state |↓, 1⟩ was an eigenstate of
h+(θ0, ϕ0) to begin with.

The charge state of the quantum dot-Majorana qubit system may then be reset from the
initial state |ψ⟩ as follows:

1. Suddenly decouple quantum dot and Majorana qubit (ti = 0 and ε > 0 or (θ±)0 = π).
Then, |↓, 1⟩ = |e+⟩0 and |↑, 1⟩ = |e−⟩0 are energy eigenstates. The system state |ψ⟩ is
now a superposition

|ψ⟩ = α|e+⟩0 + β|e−⟩0. (C.21)

2. Adiabatically swap |e±⟩ and |g±⟩, rotating the Hamiltonian h± from the south (θ±)0 =
π to the north pole (θ±)1 = 0 of the Bloch sphere,

|ψ⟩ → α|e+⟩1 + βeiχ|e−⟩1 (C.22a)
= α|g+⟩0 + βeiχ|g−⟩0, (C.22b)
=
(
α|↑⟩+ βeiχ|↓⟩

)
|0⟩, (C.22c)

where χ is the relative dynamical phase between the π̂ eigensectors introduced in the adi-
abatic evolution. Although uncontrolled, the relative phase does not affect the readout
evolution as it preserves the weights in the Ẑ eigenbasis. The step requires ti ̸= 0 at
some point during the evolution to avoid gap closing, but eventually quantum dot and
Majorana qubit are again decoupled.
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3. Finally, suddenly reset the gates to their initial values, so that the quantum dot-Majorana
qubit system again resides in a superposition of charge ground states.

This protocol requires a sign flip of ε = EC + ϵ, which can be realized by varying the quantum
dot energy ϵ to compensate for the charging energyEC of the Majorana qubit, or by also varying
the spectrum of Majorana-qubit charge states by the gate offsetNg, see Fig. C.2.

The same procedure can be applied at the end of the continuous readout discussed in the
main text which may also require a charge reset once the measurement outcome is certain.

C.3 Derivation of the stochastic master equation (5.20)

For completeness, we include a derivation of the stochastic master equation (5.20) which de-
scribes the evolution of the Majorana qubit-quantum dot system under continuous monitoring
of the quantum dot charge by a quantum point contact, see, e.g., Ref. [300].

The Hamiltonian
Ĥreadout = Ĥleads + Ĥjct + n̂ δĤjct. (C.23)

of the quantum point contact describes two (left and right) free-fermion leads,

Ĥleads =
∑

α

(
ξLαĉ

†
LαĉLα + ξRαĉ

†
RαĉRα

)
,

and a tunneling Hamiltonian

V̂ = Ĥjct + n̂ δĤjct = (τ + χn̂)ψ̂†Lψ̂Re
ieV t + h.c., (C.24)

which includes the coupling to the quantum dot charge n̂. The chemical potentials of the two
leads differ by the bias voltage V applied across the quantum point contact,

eV = µL − µR (C.25)

The factor eieV t in the tunneling Hamiltonian (C.24) already accounts for a time-dependent
unitary transformation such that the single-particle energies of the left and right leads are mea-
sured from the respective chemical potentials, ξLα = ϵLα−µ−eV and ξRα = ϵRα−µ, withα
labeling the single-particle eigenstates with corresponding electron operators ĉLα and ĉRα. The
electron operators evaluated at the junction position are denoted by ψ̂L and ψ̂R. Importantly,
there is only capacitive coupling, but no charge transfer between quantum dot and quantum
point contact.

At zero temperature, the quantum point contact carries an average current

I0 = 2πνLνR|τ |2eV, (C.26a)
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when the quantum dot is unoccupied, and

I1 = 2πνLνR|τ + χ|2eV, (C.26b)

when the quantum dot is occupied. Here, νL/R denotes the lead density of states. The sensi-
tivity of the detector depends on δI = I1 − I0. We assume that the quantum dot affects the
current weakly, δI ≪ I0.

C.3.1 Unconditional Lindblad master equation

We first derive the unconditional master equation for the quantum dot state following the stan-
dard procedure of tracing over the leads, assuming factorization of the system-lead density ma-
trix at all times (Born approximation), and finally assuming fast decay of the lead correlation
functions to obtain a Markovian equation of motion. We will subsequently use the Lindblad
equation to identify the Kraus operators, which allows one to derive the conditional master
equation which accounts for the monitoring of the quantum-point-contact current.

We start in the interaction picture, with operators and states evolving according to Ĥ0 =

Ĥ + Ĥleads and V̂ = Ĥjct + n̂ δĤjct, respectively. The corresponding density matrix for system
and leads, χ̂, satisfies the equation of motion

d
dt
χ̂(t) = −i

[
V̂(t), χ̂(t0)

]
−
∫ t

t0

dt′
[
V̂(t),

[
V̂(t′), χ̂(t′)

]]
. (C.27)

Weak coupling between system and quantum point contact allows for the Born approximation
χ̂(t) = ρ̂(t)⊗e−βHleads/Z since the effect on the density matrices of the leads remains small at all
times. We can then trace out the leads, which enter the resulting equation for the (interaction-
picture) density matrix ρ̂(t) of the system only through correlation functions. The first term
in (C.27) vanishes since cross-lead correlation functions are assumed zero. The second term
evaluates to

−
∫ t

t0

dt′
{
G<
L(t
′ − t)G>

R(t− t′)eieV (t−t′)[m̂(t)m̂†(t′)ρ̂(t′)− m̂†(t′)ρ̂(t′)m̂(t)
]

−G>
L(t
′ − t)G<

R(t− t′)eieV (t−t′)[m̂(t)ρ̂(t′)m̂†(t′)− ρ̂(t′)m̂†(t′)m̂(t)
]

+G>
L(t− t′)G<

R(t
′ − t)eieV (t′−t)[m̂†(t)m̂(t′)ρ̂(t′)− m̂(t′)ρ̂(t′)m̂†(t)

]

−G<
L(t− t′)G>

R(t
′ − t)eieV (t′−t)[m̂†(t)ρ̂(t′)m̂(t′)− ρ̂(t′)m̂(t′)m̂†(t)

]}
, (C.28)
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where we defined the shorthand m̂(t) = τ + χn̂(t) as well as the greater and lesser lead Green
functions

G>
j (t− t′) = − i

〈
ψ̂j(t)ψ̂

†
j(t
′)
〉
= −νj

π/β

sinh π(t−t′−iη)
β

, (C.29a)

G<
j (t− t′) = i

〈
ψ̂†j(t

′)ψ̂j(t)
〉
= −νj

π/β

sinh π(t−t′+iη)
β

. (C.29b)

Here, β denotes the inverse temperature and η is a positive infinitesimal.

In the limit of a large bias voltage, the prefactors of the square brackets in the integrand on
the right-hand side of Eq. (C.28) effectively become sharply peaked functions in t − t′. Using
the Fourier transform of the function

g(E) = Eb(E) = −
∫

dt

2π
eiEt

(
π/β

sinh π(t+iη)
β

)2

(C.30)

with the Bose distribution b(E), we can thus approximate

G<
L(t
′ − t)G>

R(t− t′)eieV (t−t′) ≃ 2πνLνRg(−eV )δ(t− t′) + imaginary, (C.31a)

G>
L(t
′ − t)G<

R(t− t′)eieV (t−t′) ≃ 2πνLνRg(eV )δ(t− t′) + imaginary, (C.31b)

G>
L(t− t′)G<

R(t
′ − t)eieV (t′−t) ≃ 2πνLνRg(eV )δ(t− t′) + imaginary, (C.31c)

G<
L(t− t′)G>

R(t
′ − t)eieV (t′−t) ≃ 2πνLνRg(−eV )δ(t− t′) + imaginary. (C.31d)

Here, we do not specify the imaginary terms as they correspond to perturbative renormaliza-
tions of the system Hamiltonian. The approximate δ-functions in time have a width of order
1/eV . We assume that both the density matrix ρ(t) and the quantum dot occupation n̂(t) vary
slowly within times of order 1/eV . In particular, this requires that the applied bias is large com-
pared to characteristic system frequencies, eV ≫ Ω±. In this limit, the equation of motion for
ρ̂(t) becomes Markovian, and we obtain

d
dt
ρ̂(t) = −i

[
Ĥ, ρ̂

]
+

k

eV |χ|2
{
g(−eV )D[τ ∗ + χ∗n̂] + g(eV )D[τ + χn̂]

}
ρ̂(t). (C.32)

Here, we reverted from the interaction to the Schrödinger picture and defined the measurement
strength k = 2πνLνR|χ|2eV . The (τ ∗ + χ∗n̂)-term describes a process in which electrons
tunnel from the left to the right lead. For positive eV , this happens even at T = 0. The (τ +
χn̂)-term describes a process in which electrons tunnel from the right to the left lead which
cannot occur at T = 0. Absorbing a shift 2πνLνReV Im [χτ ∗] into the quantum dot energy ϵ
in the Hamiltonian and taking the limit of zero temperature with g(−eV ) = eV and g(eV ) =

0, we obtain the unconditional part of Eq. (5.20)

200



C.3 Derivation of the stochastic master equation (5.20)

C.3.2 Stochastic master equation

Since the tunneling amplitude depends only weakly on the quantum dot occupation, the cur-
rent measurement constitutes a weak measurement of the quantum-dot-qubit system. The
change of the system state

|ψ⟩ → 1√
pi
Mi|ψ⟩, (C.33)

due to these weak measurements is described by Kraus operators M1 and M0 which can be re-
spectively associated with transmission or absence of transmission of electrons by the quantum
point contact (still assuming T = 0 so that tunneling is unidirectional). The change in the
density matrix ρ̂c takes the form

ρ̂c →
1

pi
Miρ̂cM

†
i . (C.34)

In these expressions,
pi = ⟨ψ|M †

iMi|ψ⟩ = tr
[
M †

iMiρ̂c

]
(C.35)

denotes the probability for outcome i.

The tunneling current through the quantum point contact can be described as a point pro-
cess

Ic(t) = e
dNc(t)

dt
, (C.36)

where dNc(t) ∈ {0, 1} is a Poisson element which is not infinitesimal but has an infinitesimal
ensemble average

E[dNc(t)] = tr
[
M †

1M1ρ̂c(t)
]

(C.37)

equal to the probability that an electron is transmitted in time dt. To find the Kraus operator
M1, we note that the ensemble average of the current

E[Ic(t)] =
tr
[
M †

1M1ρ̂c(t)
]

dt
(C.38)

has to equal I0 for n = 0 and I1 for n = 1. This is satisfied for

M1 = (τ ∗ + χ∗n̂)
√

dt, (C.39)

where we rescaled
√
2πνLνReV τ → τ and

√
2πνLνReV χ → χ for notational simplicity (so

that I0 = |τ |2, I1 = |τ + χ|2, and k = |χ|2, setting e = 1).
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To find the Kraus operator M0 = 1 + Âdt, we equate E[ρ̂c(t+ dt)] = M0ρ̂(t)M
†
0 +

M1ρ̂(t)M
†
1 and E[ρ̂c(t+ dt)] = ρ̂(t + dt) = (1 + Ldt)ρ̂(t). Reading off the Liouvillian

from Eq. (C.32), this yields

M0 = 1− idtĤ −
1

2
M †

1M1

and thus Â = −iĤ − (I0 + δIn̂)/2. As mentioned below Eq. (C.32) above, we absorb a shift
of the quantum dot energy into the Hamiltonian,

Â = −i
(
Ĥ + Im [τ ∗χ]n̂

)
− 1

2
[I0 + (2τχ∗ + k)n̂]. (C.40)

Below, we will no longer display this shift of Ĥ explicitly.

The conditional evolution of ρ̂c(t) takes the form

ρ̂c(t+ dt) = (1− dNc(t))
M0ρ̂c(t)M

†
0

tr
[
M0ρ̂c(t)M

†
0

] + dNc(t)
M1ρ̂c(t)M

†
1

tr
[
M1ρ̂c(t)M

†
1

] , (C.41)

where the denominators ensure normalization. Expanding to linear order in dt and neglecting
higher-order terms of the form dt dNc(t), we obtain

dρ̂c = dt
{
− i
[
Ĥ, ρ̂c

]
− 1

2
{I0 + kn̂, ρ̂c}

− (χ∗τ n̂ρ̂c + τ ∗χρ̂cn̂) + (I0 + δI⟨n̂⟩)ρ̂c
}

+ dNc

{
(τ ∗ + χ∗n̂)ρ̂c(τ + χn̂)

I0 + δI⟨n̂⟩ − ρ̂c
}
. (C.42)

This describes the stochastic evolution of ρ̂c as the quantum dot is monitored by the quantum
point contact. The evolution of ρ̂c is conditioned on the stochastic measurement current Ic(t)
of the quantum point contact.

We can alternatively describe the evolution in terms of a stochastic Schrödinger equation
which takes the form

d|ψc⟩ = dt
{
−iĤ − 1

2
[I0 + (2χ∗τ + k)n̂] +

1

2
[I0 + δI⟨n̂⟩]

}
|ψc⟩

+ dNc

{
τ ∗ + χ∗n̂√
I0 + δI ⟨n̂⟩

− 1

}
|ψc⟩. (C.43)
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C.3.3 Diffusive approximation

The assumption that the average current I0 is much larger than the shift δI induced by changes
in the quantum-dot occupation allows one to approximate the point process by a Wiener pro-
cess.

We consider a time interval δtwhich is short enough that the changes in the density matrix ρ̂c
remain small and the quantum expectation value of n̂ remains approximately constant. Then,
the probability distribution of the numberN of tunneling events within the time interval δt is
given by the Poisson distribution

P (N) =
[(I0 + δI⟨n̂⟩)δt]N

N !
e−(I0+δI⟨n̂⟩)δt (C.44)

with ensemble average

E[N ] = [I0 + δI⟨n̂⟩]δt, (C.45)

and variance

V[N ] ≃ I0δt. (C.46)

The expression for the variance uses that δI ≪ I0. Assuming that I0δt is large, one can approx-
imate the Poisson by a Gauss distribution with the same average and variance.

Assuming that δI is sufficiently small and the Hamiltonian dynamics sufficiently slow, we
can approximate both the unitary dynamics and the changes of the density matrix ρ̂c induced
by the weak measurements of the quantum dot charge to linear order in the time interval δt,

δρ̂c = δt

{
− i
[
Ĥ, ρ̂c

]
− 1

2
{I0 + kn̂, ρ̂c}

− (χ∗τ n̂ρ̂+ τ ∗χρ̂n̂) + (I0 + δI⟨n̂⟩)ρ̂c
}

+ δNc

{
(τ ∗ + χ∗n̂)ρ̂c(τ + χn̂)

I0 + δI⟨n̂⟩ − ρ̂c
}
. (C.47)

Here, δNc describes the Wiener process

δNc(t) = [I0 + δI⟨n̂⟩]δt+
√
I0ξ(t)δt (C.48)

with a Gaussian random process ξ(t) with variance 1/δt. Writing this in the continuum limit,
we find

d
dt
ρ̂c = −i

[
Ĥeff, ρ̂c

]
+ kD[n̂]ρ̂c +

√
kξ(t)H

[
n̂eiϕ

]
ρ̂c (C.49)

203



Appendix C

with τ ∗χ = |τχ|eiϕ and the δ-function correlator E[ξ(t)ξ(t′)] = δ(t− t′). This simplifies to
the evolution equation (5.20) in the main text if one fixesϕ = π (corresponding to a decrease in
current through the quantum point contact due to the presence of an electron on the quantum
dot).

The measurement current is obtained by subtracting the background current I0 and normal-
izing. For ϕ = π, this yields

j(t) =
1

δI

(
δNc(t)

δt
− I0

)
= ⟨n̂(t)⟩+ 1√

4k
ξ(t) (C.50)

in agreement with Eq. (5.19) of the main text.

C.3.4 Relaxation by the electromagnetic environment

Coupling to the electromagnetic environment leads to relaxation in the eigenbasis of the Majo-
rana qubit-quantum dot system, as described by Eq. (5.31) in the main text. Here, we sketch its
derivation.

The electrostatic potential of the electromagnetic environment is described as a free bosonic
field

v̂(r) =
∑

q

[
m̃∗qâ

†
qe

iqr + m̃−qâ−qe
−iqr], (C.51)

with Hamiltonian
Ĥv =

∑

q

ωqâ
†
qâq, (C.52)

and is assumed to be in a thermal state ρ̂v ∝ exp(−Ĥv/T ). The potential v̂ is an additional
contribution to the gate voltages of Majorana qubit and quantum dot and varies slowly in space
compared to the spatial extent of the system. Majorana qubit and quantum dot are then subject
to the same potential v̂, and we obtain the interaction

V̂ =− 2ECCg
e

N̂ v̂ − 2ϵCcg
e

n̂v̂ = λn̂v̂ = n̂
∑

q

[
m∗qâ

†
q +m−qâ−q

]
, (C.53)

where we used N̂ = −n̂ due to charge conservation and absorbed

λ =
2ECCg
e

− 2ϵCcg
e

(C.54)

into the coefficientsmq. (Here, ϵC and cg are charging energy and gate capacitance of the quan-
tum dot, andCg is the gate capacitance of the Majorana qubit.)
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We write the charge operator in the interaction picture with respect to the system Hamilto-
nian as given in Eq. (C.9). Then, the coupling Hamiltonian in rotating wave approximation
becomes

V̂ (t) ≃ ĉ[B̂(t) + B̂†(t)]− sin θ

2

(
e2iΩtτ̂+B̂(t) + e−2iΩtτ̂−B̂

†(t)
)
, (C.55)

where we defined the shorthand

B̂(t) =
∑

q

mqe
−iωqtâq. (C.56)

Notice that we suppressed π indices as V̂ (t) conserves π̂ and does not mix the two subspaces.

Following the same steps as above, the master equation for a general system-bath interaction

ĤSB =
∑

i

Ŝi ⊗ B̂i (C.57)

with system operators Ŝi, here associated with the Majorana qubit-quantum dot system, and
bath operators B̂i, here associated with the electromagnetic environment, can be written as

d
dt
ρ̂(t) = −i

[
Ĥ, ρ̂

]
−
∑

i

{
ŜiŜ+

i ρ̂(t)− Ŝ+
i ρ̂(t)Ŝi + ρ̂(t)Ŝ−i Ŝi − Ŝiρ̂(t)Ŝ−i

}
. (C.58)

Here, we defined the (calligraphic) operators

Ŝ+
i =

∑

j

Ŝ+
ij =

∑

j

∫ ∞

0

dτ Cij(τ)Ŝj(−τ), (C.59a)

Ŝ−i =
∑

j

Ŝ−ij =
∑

j

∫ ∞

0

dτ Cji(−τ)Ŝj(−τ), (C.59b)

including the bath correlation functions

Cij(t− t′) =
〈
B̂i(t)B̂j(t

′)
〉
. (C.60)

We note that the Ŝi and B̂i are not necessarily hermitian. If they are, C∗ij(τ) = Cji(−τ) and
thus (Ŝ−i )† = Ŝ+

i ≡ Ŝi.

Applying this to the problem at hand, we identify

Ŝ1 = ĉ, Ŝ2 = − sin θ exp(2iΩt)τ̂+/2, Ŝ3 = − sin θ exp(−2iΩt)τ̂−/2, (C.61)
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and

B̂1 = B̂ + B̂†, B̂2 = B̂, B̂3 = B̂†. (C.62)

One readily evaluates the basic bath correlation functions (with τ = t− t′)

CBB†(τ) = ⟨B̂(t)B̂†(t′)⟩ =
∫ ∞

0

dω J(ω)e−iωτ (1 + b(ω)), (C.63a)

CB†B(τ) = ⟨B̂†(t)B̂(t′)⟩ =
∫ ∞

0

dω J(ω)eiωτb(ω). (C.63b)

Within the rotating wave approximation, we retain only terms which are slowly varying on the
scale of the system dynamics. Moreover, we retain only dissipative terms and drop renormaliza-
tions of the system Hamiltonian. This yields the result

dρ̂
dt

=

{
cos2 θ

4
Γ0D[τ̂z] +

sin2 θ

4
(Γ+D[τ̂+] + Γ−D[τ̂−])

}

︸ ︷︷ ︸
≡L′

ρ̂, (C.64)

where we defined

Γ+ = 2πJ(2Ω)b(2Ω), (C.65a)
Γ− = 2πJ(2Ω)(1 + b(2Ω)), (C.65b)
Γ0 = π lim

ω→0
J(ω)(1 + 2b(ω)). (C.65c)

The Γ0 term causes decoherence in the energy basis, whereas the Γ± terms cause transitions
between ground and excited states. At low temperatures, Γ− ≫ Γ+ with Γ+ vanishing at
T = 0 and Γ− remaining finite. For this reason, we neglect Γ+ relative to Γ− in the main text.

C.4 Spectra and eigenmodes of Liouvillians

C.4.1 Eigenvalues and eigenmatrices of diagonal block Liouvillian
Lπ,π + L′π,π

This appendix gives the eigenvalues and eigenvectors of the diagonal blocks of the full Liou-
villian including both measurement and relaxation dynamics, Lπ,π + L′π,π. To this end, we
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vectorize by columns, ρ → |ρ⟩ = (ρ11, ρ21, ρ12, ρ22)
T . In this notation, tr[AB] =

〈
A†
∣∣B
〉

for square matricesA andB. The Liouvillian matrix is then given by

Lπ,π + L′π,π = − i
(
1⊗ hπ − hTπ ⊗ 1

)
+ kD[n] (C.66a)

+
cos2 θπ

4
Γ0D[τz] +

sin2 θπ
4

Γ−D[τ−] (C.66b)

=
∑

n

λπ,n|ψπ,n⟩⟨ϕπ,n|, (C.66c)

where we defined the vectorized decoherence superoperator

D[L] = L∗ ⊗ L− 1

2

[
1⊗ L†L+

(
L†L

)T ⊗ 1
]
, (C.67)

and expanded in terms of left and right eigenvectors |ψπ,n⟩ and |ϕπ,n⟩ to eigenvalueλπ,n. In the
following, we work to leading order in ti, k,Γ−,Γ0 ≪ Ωπ and will suppress π subscripts of θ
and Ω. The eigenvalues are

λ0 = 0, λslow = −sin2 θ

4
(Γ− + 2k), (C.68a)

λfast,± = ± 2iΩ− 1 + cos2 θ

4
k − sin2 θ

8
Γ− −

cos2 θ

2
Γ0. (C.68b)

The corresponding right eigenvectors, written in the energy basis, are

|ψ0⟩ ≃
1

2
(1 +R, 0, 0, 1−R)T , |ψslow⟩ ≃ (1, 0, 0,−1)T , (C.69a)

|ψfast,+⟩ ≃ (0, 0,−1, 0)T , |ψfast,−⟩ ≃ (0, 1, 0, 0)T , (C.69b)

whereR was defined in Eq. (5.34), and the left eigenvectors are

⟨ϕ0| = (1, 0, 0, 1), ⟨ϕslow| ≃
(

k

Γ− + 2k
, 0, 0,− Γ− + k

Γ− + 2k

)
, (C.70a)

⟨ϕfast,+| ≃ (0, 0,−1, 0), ⟨ϕfast,−| ≃ (0, 1, 0, 0). (C.70b)

Note that |ψ0⟩ = |ρ∞⟩ and ⟨ϕ0| = ⟨12|. We normalized ⟨ϕm|ψn⟩ = δmn to leading order.

C.4.2 Off-diagonal block LiouvillianL+− in Eq. (5.24b)

In this appendix, we analyze the off-diagonal Liouvillian L+− in Eq. (5.24b) with h± in Eq.
(5.7) and one decoherence channel given by the quantum-point-contact coupling (i.e., without
relaxation).

207



Appendix C

Steady state of ρ+−

To understand the long-time behavior of the density matrix, we find the eigenvalues of L+−
and show that generically, the real parts of all eigenvalues are strictly negative. Thus, the only
steady state is ρ+− = 0.

We again write the superoperatorL+− in vectorized form withρ+− → (ρ11+−, ρ
21
+−, ρ

12
+−, ρ

22
+−)

T ,
such that (in the charge basis)

L+− = − i
(
1⊗ h+ − hT− ⊗ 1

)
+ k

[
n⊗ n− 1

2
(1⊗ n+ n⊗ 1)

]
(C.71)

=




0 −it1 − t2 it∗1 + t∗2 0

−it∗1 + t∗2 −iε− k/2 0 it∗1 + t∗2

it1 − t2 0 iε− k/2 −it1 − t2
0 it1 − t2 −it∗1 + t∗2 0



. (C.72)

The characteristic polynomial becomes

χ(λ̃) = λ̃4 + kλ̃3 + (ε2 + 4|t1|2 + 4|t2|2 + k2/4)λ̃2

+ 2k(|t1|2 + |t2|2)λ̃+ 16|t1|2|t2|2 sin2 φ, (C.73)

where φ denotes the phase difference between the tunneling amplitudes t1 and t2.

Evidently, L+− has a zero eigenvalue when sinφ = 0 or, equivalently, Im{t1t∗2} = 0. In
this case, ρ+− does not decay to zero and neither π̂ not Ẑ are projectively measured. Physically,
the Rabi frequencies of the π = +1 and the π = −1 sectors are identical and the steady-state
measurement currents of the two sectors are indistinguishable. Thus, the measurement reveals
no information on the qubit state and does not decohere the system in the measurement basis.

Conversely, if sinφ ̸= 0, there is no zero eigenvalue. We now show that in this case, the
eigenvalues have strictly negative real parts. They are non-positive sinceL+−+L†+− is negative
semi-definite. To show that the real parts of the eigenvalues are strictly negative, consider the
characteristic polynomial. Taking sinφ ̸= 0, we assume that there is an imaginary eigenvalue
λ̃ = iy with y ∈ R. This eigenvalue satisfies

y4− iky3− (ε2 +4|t1|2 +4|t2|2 + k2/4)y2 + i2k(|t1|2 + |t2|2)y+16|t1|2|t2|2 sin2 φ = 0.

(C.74)
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The imaginary part of this equation, y3 = 2(|t1|2 + |t2|2)y has solutions y = 0 and y =

±[2(|t1|2 + |t2|2)]1/2. For y = 0, the real part of Eq. (C.74) implies sin2 φ = 0, contradicting
our assumptions. Similarly, for y = ±[2k(|t1|2 + |t2|2)]1/2, the real part implies

4|t1|2|t2|2
(|t1|2 + |t2|2)2

sin2 φ− 1 =
ϵ2 + k2/4

2(|t1|2 + |t2|2)
. (C.75)

While the left hand side is non-positive, the right-hand side is strictly positive, so that there are
no solutions. We conclude thatL+− has only eigenvalues with a strictly negative real part.

Decoherence rate

The decoherence rate is governed by the eigenvalue λ̃slow ofL+− with the largest real part (cor-
responding to the slowest decay). We perform perturbative analyses for small k as well for small
sin2 φ. Beyond the perturbative regime, we investigate the behavior of the eigenvalues numeri-
cally, see Fig. 5.6 in the main text. For simplicity, we specify to t1 = t2e

−iφ with t1 real. We also
define the shorthand ε̃2 = ε2 + 8t21. Then, the characteristic polynomial takes the form

χ(λ̃) = λ̃4 + kλ̃3 + (ε̃2 +
k2

4
)λ̃2 + 4kt21λ̃+ 16t41 sin

2 φ. (C.76)

Smallk: For weak coupling between quantum dot and quantum point contact, we determine
the roots of the characteristic polynomial (C.73) to first order in k. Expanding λ̃ = λ̃0+kλ̃1+

..., we obtain

0 =λ̃40 + ε̃2λ̃20 + 16t41 sin
2 φ, (C.77a)

0 =4λ̃30λ̃1 + λ̃30 + 2ε̃2λ̃0λ̃1 + 4t21λ̃0 (C.77b)

with the solutions

(λ̃±0 )
2 =− ε̃2

2
±
√(

ε̃2

2

)2

− 16t41 sin
2 φ (C.78a)

λ̃±1 =− 1

4

[
1− ε2

2(λ̃±0 )
2 + ε̃2

]
= −1

4

[
1± ε2√

ε4 + 16ε2t21 + 64t41 cos
2 φ

]
. (C.78b)

While (λ̃±0 )2 ≤ 0, so that the λ̃0 are purely imaginary, the first-order correction kλ̃1 is mani-
festly real and negative. For the slowly decaying eigenvalues, we choose the minus sign in the
above expressions. In the limit t1 ≪ ε, the decay of ρ+− is then controlled by

Re
{
λ̃slow

}
≃ Re

{
λ̃−0 + kλ̃−1

}
= −2k t

2
1

ε2
. (C.79)
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For sin2 φ = 0, λ̃−0 vanishes while λ̃−1 remains finite. Hence, perturbation theory breaks down
close to sin2 φ = 0. Requiring |λ̃−1 | ≪ k|λ̃−2 | yields the condition

k

ε
≪
∣∣∣∣|sinφ| −

1

4|sinφ|

∣∣∣∣
−1
. (C.80)

The right side of this inequality vanishes for φ = 0, i.e. the expansion indeed breaks down.

Small sin2 φ: The slowest decaying eigenvalue λ̃slow evolves from the zero eigenvalue for sin2 φ =

0. For small sin2 φ, we readily find

λ̃slow = −4t21 sin
2 φ

k
+ ... (C.81)

Notice that the expansion breaks down for vanishing k.
The fact that a perturbative expansion is impossible for small k and φ is in accordance with

the numerical observation that exceptional lines emanate from this region, see Fig. 5.6.

C.5 Stochastic evolution of π(t)

It is instructive to analyze the stochastic evolution of the expectation value of the combined
fermion parity π̂. For ĤT = 0, Eq. (5.21) showed that the evolution of n(t) ceases once n = 0

or n = 1. In the presence of tunneling, ĤT ̸= 0, this is no longer the case due to the additional
term ⟨i[ĤT , n̂]⟩ in Eq. (5.22).

To analyze π, we consider the set of coupled stochastic differential equations obtained from
Eq. (5.20). As a result of the transfer of weight between the π subspaces due to measurements,
the stochastic term couples ρ++ and ρ−−. At the same time, these diagonal blocks of ρ̂ remain
uncoupled to ρ+−. (However, the time evolution of ρ+− depends on trρπ,π.) We write the
coupled equations for the diagonal blocks using the Bloch-vector notation

ρπ,π =
pπ
2

+
1

2
(σxxπ + σyyπ + σzzπ), (C.82)

where pπ = trρπ,π = ⟨P̂π⟩ (with the projector P̂π onto theπ subspace). With this parametriza-
tion, Eq. (5.20) yields the stochastic differential equations

ṗπ =−
√
kξ(zπ −Zpπ) (C.83a)

żπ =2Ωπ(h
x
πyπ − hyπxπ)−

√
kξ(pπ −Zzπ), (C.83b)

ẋπ =2Ωπ(h
y
πzπ − hzπyπ)−

k

2
xπ +

√
kξZxπ, (C.83c)

ẏπ =2Ωπ(h
z
πxπ − hxπzπ)−

k

2
yπ +

√
kξZyπ, (C.83d)
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whereZ = z+ + z− introduces the coupling between the diagonal blocks.

Fixed points of π(t) = p+ − p− = 2p+ − 1 require that the right hand side of Eq. (C.83a)
vanish, Mπ = zπ − Zpπ = 0. pπ = 0 implies xπ = yπ = zπ = 0. We then find by
direct evaluation that p+ = 0 (or similarly p− = 0) impliesM+ =M− = 0. We conclude that
p+ = 0 and p+ = 1 are fixed points of the evolution of p+(t). These correspond to fixed points
π = −1 andπ = +1 ofπ(t), respectively. We checked numerically that these are the only fixed
points provided Im{t1t∗2} ≠ 0. (This is indicated, e.g., by the fact thatE[1−π2]→ 0 as shown
in Fig. 5.3).

Now consider the case Im{t1t∗2} = 0. For simplicity we make the stronger assumptionh+ =

h−. To understand this case, it is easiest to consider the evolution in terms of

l⊥π = (hxπyπ − hyπxπ), (C.84a)
l∥π = (hxπxπ + hyπyπ). (C.84b)

Then, the evolution equations are

ṗπ = −
√
kξ(zπ −Zpπ) (C.85a)

żπ = 2Ωπl
⊥
π −
√
kξ(pπ −Zzπ), (C.85b)

l̇⊥π = 2Ωπ

(
hzπl
∥
π − sin2 θπzπ

)
− k

2
l⊥π +

√
kξZl⊥π , (C.85c)

l̇∥π = − 2Ωπh
z
πl
⊥
π −

k

2
l∥π +
√
kξZl∥π. (C.85d)

We also define L⊥ = l⊥+ + l⊥− and L∥ = l
∥
+ + l

∥
−. For h+ = h− = h = Ωh · σ, they satisfy a

decoupled set of equations

Ż = 2ΩL⊥ −
√
kξ
(
1−Z2

)
, (C.86a)

L̇⊥ = 2Ω
(
hzL∥ − sin2 θZ

)
− k

2
L⊥ +

√
kξZL⊥, (C.86b)

L̇∥ = − 2ΩhzL⊥ − k

2
L∥ +

√
kξZL∥. (C.86c)

Importantly, the equations for the l andL have identical form. We now show that the evolution
of p+ becomes frozen if the dynamics of the lower-case variables is locked to that of the upper-
case variables, i.e., if

0 = z+ − p+Z, (C.87a)
0 = l⊥+ − p+L⊥, (C.87b)

0 = l
∥
+ − p+L∥, (C.87c)
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independently of the value of p+. If h+ = uh−u† similar statements hold for linear combina-
tions of these variables. For the above relations to indeed be fixed points, we need to show that
also their Ito differentials vanish. Consider first the two lower lines,

d(l+ − p+L) = dl+ − p+dL− dp+(. . .)

= (. . .)[z+ − p+Z] + (. . .)
[
l⊥+ − p+L⊥

]
+ (. . .)

[
l
∥
+ − p+L∥

]
, (C.88)

where we used that the evolution equations for l andL have identical form. The terms in square
brackets vanish at the fixed point specified by Eq. (C.87), so that the detailed form of the terms
in the parentheses does not matter. Similarly,

d(z+ − p+Z) =
√
kξZ(z+ − p+Z) + 2Ω

(
l⊥+ − p+L⊥

)
. (C.89)

Thus, Eqs. (C.87) indeed describe fixed points with arbitrary p+. If the system is initialized,
the dynamics of the two sectors will then tend to lock. Once this has happened, p+ remains
constant. The ensemble averaged evolution of course has p+(t) = p+(0).

C.6 Noise spectrum of the measurement current

C.6.1 Autocorrelation function of the steady-state measurement signal

The measurement outcomes π = +1 and π = −1 are distinguished by the noise spectrum of
the steady-state measurement current jπ(t) for a given π,

S(τ) =E[j(t)j(t+ τ)]− E[j(t)]E[j(t+ τ)] (C.90a)

=
δ(τ)

4k
+

1√
4k
{E[n(t)ξ(t+ τ)] + E[n(t+ τ)ξ(t)]}

+ E[n(t)n(t+ τ)]− E[n(t)]E[n(t+ τ)], (C.90b)

where we suppress all labels indicating the measurement outcome and used Eq. (5.19). Our
evaluation of S(ω) follows Ref. [301] (see App. B).

First considerE[n(t+ τ)ξ(t)], which requires one to computeE[ρ̂c(t+ τ)ξ(t)]. From Eqs.
(C.47) and (C.50), it is evident that ξ(t) is only correlated with the stochastic contribution to
δρc for the next time step, from t to t+ δt. We then find

E[ρ̂c(t+ δt)ξ(t)] =
√
kE[H[n̂]ρ̂c(t)]

√
4k

({n̂, ρ̂∞}
2

− E[n(t)ρ̂c(t)]
)
, (C.91)
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where we write E[ρ̂c] = ρ̂∞. Using the formal solution ρ̂c(t) = U(t, 0)ρ̂c(0) of the stochastic
master equation (5.20) with

U(t, t′) = T exp

{
L(t− t′) +

√
k

∫ t

t′
dt1ξ(t1)H[n̂]

}
(C.92)

(T is the time ordering operator) and exploiting that ξ(t) is uncorrelated with any of the later
ξ(t1), we conclude that

E[ρ̂c(t+ τ)ξ(t)] =
√
4k θ(τ)

(
eLτ
{n̂, ρ̂∞}

2
− E

[
n(t)eLτ ρ̂c(t)

])
, (C.93)

and thus

1√
4k

E[n(t+ τ)ξ(t)] = θ(τ)
(

tr
[
n̂eLτ

{n̂, ρ̂∞}
2

]
− E

[
n(t)tr

[
n̂eLτ ρ̂c(t)

]])
(C.94a)

= θ(τ)
(

tr
[
n̂eLτ

{n̂, ρ̂∞}
2

]
− E[n(t)n(t+ τ)]

)
. (C.94b)

In the last step, we used that

E
[
n(t)tr

[
n̂eLτ ρ̂c(t)

]]
= E[n(t)tr[n̂U(t+ τ, t)ρ̂c(t)]], (C.95)

since all the additional stochastic terms introduced on the right-hand side average to zero.

Similarly, E[n(t)ξ(t+ τ)] is nonzero for τ < 0 only. Then, time translation invariance of
the stationary state implies

E[n(t)ξ(t+ τ)] = θ(−τ)E[n(t)ξ(t− |τ |)] = θ(−τ)E[n(t+ |τ |)ξ(t)] (C.96)

and we conclude

1√
4k

(
E[n(t+ τ)ξ(t)] + E[n(t)ξ(t+ τ)]

)

= tr
[
n̂eL|τ |

{n̂, ρ̂∞}
2

]
− E[n(t)n(t+ τ)]. (C.97)

Inserting this into Eq. (C.90) gives

S(τ) =
δ(τ)

4k
+ tr

[
n̂eL|τ |

{n̂, ρ̂∞}
2

]
− (n∞)2 (C.98)

with n∞ = tr[n̂ρ̂∞].
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C.6.2 Explicit evaluation

We now evaluate Eq. (C.98) explicitly for the steady states ρ̂∞+ = diag(1 + R, 1 − R, 0, 0)/2
and ρ̂∞− = diag(0, 0, 1 + R, 1 − R)/2 of L + L′ [as given in Eq. (5.20) and Eq. (C.64)]
corresponding to the two measurement outcomes π = +1 and π = −1, respectively. Note
that we wrote the ρ̂∞π in the energy basis here. SinceL+L′ conserves π̂, the trace in Eq. (C.98)
reduces to a trace in one of the π subspaces. We thus have to evaluate

tr
[
ne(Lπ,π+L′π,π)|τ |{n, ρ

∞}
2

]
(C.99)

with ρ∞ = (τ0+Rτz)/2. Clearly, the remaining calculation is identical for the two subspaces.
Suppressing π labels, we evaluate

{n, ρ∞}
2

=
n∞

2

(
τ0 +

R + cos θ

2n∞
τz −

sin θ

2n∞
τx

)
(C.100a)

= n∞
[
ρ∞ +

R + cos θ − 2Rn∞

4n∞
τz −

sin θ

4n∞
τx

]
. (C.100b)

The first term cancels against the −(n∞)2 term in S(τ). We expand the exponential of the
Liouvillian in eigenmodes,

e(Lπ,π+L′π,π)|τ | =
∑

n

eλn|τ ||ψn⟩⟨ϕn|, (C.101)

where |ψn⟩ and |ϕn⟩ are the right and left eigenmodes ofLπ,π +L′π,π to eigenvalue λn, respec-
tively (see App. C.4.1). Note that we can write |τz⟩ ≃ |ψslow⟩ and |τx⟩ ≃ −|ψfast,+⟩+ |ψfast,−⟩.
With this, we can evaluate expression (C.99) to leading order,

⟨n|e(Lπ,π+L′π,π)|τ ||τz⟩ ≃ cos θeλslow|τ |, (C.102a)

⟨n|e(Lπ,π+L′π,π)|τ ||τx⟩ ≃ − sin θ cos(2Ωτ)eRe{λfast}|τ |. (C.102b)

Here, we expanded ⟨n| = (⟨ϕ0|+cos θ⟨τz| − sin θ⟨τx|)/2 and used the overlaps ⟨τz|ψslow⟩ =
2, ⟨τx|ψslow⟩ = 0, ⟨τz|ψfast⟩ ≃ 0 and ⟨τx|ψfast,±⟩ ≃ ∓1. This yields the autocorrelation func-
tion

S(τ) ≃ δ(τ)

4k
+

1

4

[
2k

Γ− + 2k
cos2 θeλslow|τ | + sin2 θ cos (2Ωτ)eRe{λfast}|τ |

]
. (C.103)
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Finally, we compute the noise spectrum

S(ω) =

∫ ∞

−∞
dτeiωτS(τ), (C.104)

which becomes

S(ω) ≃ 1

4k
+

cos2 θk

Γ− + 2k

|λslow|
ω2 + |λslow|2

+
sin2 θ

4

∑

±

|Re{λfast}|
(ω ± 2Ω)2 +

∣∣Re{λfast}2
∣∣ . (C.105)

Thus, the noise spectrum consists of Lorentzians centered at ω = 0 due to λslow and at ±2Ω
due to λfast,±. For |ti| ≪ ε, we have θ ≃ π and the zero-frequency peak is higher than the
finite-frequency peaks by a factor of order (ε/|ti|)4. Without relaxation, i.e., for Γ− = Γ0 = 0

this reduces to the expression (5.29) in the main text.

C.6.3 Fluctuations of time-averaged measurement signal

In the presence of relaxation, readout can be based on the time-averaged measurement signal. To
estimate readout times it is necessary to obtain the variance of the time-averaged measurement
signal, see Sec. 5.2.4. The time-averaged measurement signal is

jint,π(T ) =
1

T

∫ T

0

dt jπ(t) =
1

T

∫ T

0

dt
{
nπ(t) +

X0√
4kT

}
, (C.106)

whereX0 is a Gaussian random variable with zero mean and unit variance. Readout relies on

E[jint,π(T )] = n∞π . (C.107)

Here, we evaluate the variance of this quantity (suppressing π labels),

V[jint,π(T )] =
1

T 2

∫ T

0

dt
∫ T

0

dt′ E[j(t)j(t′)]− (n∞)2 =
2

T 2

∫ T

0

dt
∫ t

0

dτ S(τ).

(C.108)

As |ti| ≪ ε, we can neglect the sin2 θ term in Eq. (C.103). Using

2

T 2

∫ T

0

dt
∫ t

0

dτ eλτ = 2

(
eλT − 1

λ2T 2
− 1

λT

)
≃ − 2

λT
(C.109)

for λT ≪ −1 (checking a posteriori that the measurement times indeed allow for this simpli-
fication), we obtain the final result

V[jint(T )] =
1

T

[
1

4k
+
k cos2 θ

Γ− + 2k

1

|λslow|

]
=

1

T

[
1

4k
+

1

tan2 θ

4k

(Γ− + 2k)2

]
, (C.110)
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from which we find Eq. (5.38).

C.7 Steady state in the presence of Majorana hybridizations

Here, we justify the statement in Sec. 5.2.5 that ρ̂∞ = diag(1, 1, 1, 1)/4 is the only zero mode
ofL+ L23 (in the absence of relaxation). For small ε23, this result may be obtained as follows.
We decompose ρ̂ into the steady states ρ̂∞± ofL plus deviations δρ̂,

ρ̂ = |α|2ρ̂∞+ + |β|2ρ̂∞− + δρ̂. (C.111)

Importantly, δρ̂ is traceless. Note that

L23ρ̂
∞
± = ∓ ε23

2


 0 −i12
i12 0


 ≡ ∓ε23

2
|Y ⟩, (C.112a)

L23|Y ⟩ = 4ε23(ρ̂
∞
+ − ρ̂∞− ). (C.112b)

We also define the projector P̂ onto the non-decaying subspace span(ρ̂∞+ , ρ̂∞− ), as well as its
complement P̂⊥ = 1− P̂ which projects onto the fast decaying subspace. We then project the
eigenvalue equation

(L+ L23)ρ̂ = λρ̂ (C.113)

onto the two subspaces,

λ
(
|α|2ρ̂∞+ + |β|2ρ̂∞−

)
= P̂L23δρ̂, (C.114a)

λδρ̂ =Lδρ̂+ L23

(
|α|2ρ̂∞+ + |β|2ρ̂∞−

)
+ P̂⊥L23δρ̂. (C.114b)

We formally solve the second equation for δρ̂ and insert it into the first equation. Using Eqs.
(C.112) and the fact that only |Y ⟩ is mapped onto span(ρ̂∞+ , ρ̂∞− ), i.e., P̂L23 ... = L23|Y ⟩⟨Y | .../4
(the factor of 1/4 stems from the normalization ⟨Y |Y ⟩ = 4), we find, after tracing tr

(
ρ̂∞+ ...

)

and using |β|2 = 1− |α|2,

λ|α|2 = 1

2
ε223GY (λ)

(
2|α|2 − 1

)
. (C.115)

Here we defined the “propagator”

GY (λ) = ⟨Y |
1

λ− L− P̂⊥L23

|Y ⟩. (C.116)

We are interested in λ = 0. If GY (0) ̸= 0, it follows that a zero mode has |α|2 = 1/2.
Inserting λ = 0 into the eigenvalue equations, we obtain the relations P̂L23δρ̂ = 0 and
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C.7 Steady state in the presence of Majorana hybridizations

(L + P̂⊥L23)δρ̂ = 0. The first equation gives ⟨Y |δρ̂⟩ = 0, i.e., the steady state has no weight
in the span of |Y ⟩. With this, the second equation becomes

(L+ L23)δρ̂ = 0. (C.117)

By assumption, L has no zero mode that is traceless and therefore L acting on δρ̂ does not
vanish. Hence, for weak perturbations ε23 ≪ |Re{λ̃slow}|, |λslow,π|, it follows that δρ̂ = 0.
Finally, it is straightforward to check numerically that GY (0) is indeed non-vanishing within
the relevant parameter range by expanding in left and right eigenvectors ofL+ P̂⊥L23. Thus,
the completely mixed state is indeed the only steady state.
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D.1 Confined Weyl fermion wave functions

In this appendix we derive the explicit form of the eigenfunctions of Eq. (6.4) in the slab geom-
etry 0 < z < W . Writing the momentum operator pz in the spatial basis, pz = −i∂z the Weyl
equationHψ(z) = Eψ(z) can be written as

−i∂zψ(z) = Pzψ(z), (D.1)

where the generalized momentum Pz was defined in Eq. (6.6). The Weyl equation is formally
solved by Eq. (6.5). Defining an orthonormal basis for our model of zero out-of-plane current
states,

|α±⟩ =
1√
2


 1

±eiα


, |β±⟩ =

1√
2


 1

±eiβ


, (D.2)

the generic boundary conditions at the two surfaces can be written as

ψ(0) ∝ |α+⟩, ψ(W ) ∝ |β+⟩. (D.3)

From the boundary conditions, the quantized eigenvalues pz are the solutions of

0 = sin
α− β
2

+
tan(pzW )

pz

[
px ∓ χp cos

α− β
2

]
, (D.4)

where px is in the basis of Fig. 6.2(c). Solutions with real pz correspond to bulk states, imaginary
solutions correspond to surface “arc" states, which we will now discuss in more detail.

D.1.1 Arc states

For an imaginary pz , normalizable wavefunctions are found that are localized at the bottom (b)
and top (t) surfaces,

ψb
arc(z) =

√
2p ·α2 e

−p·α2z|α+⟩ =
〈
z
∣∣arc,b,p∥

〉
, (D.5a)

ψt
arc(z) =

√
−2p · β2 e

p·β2(W−z)|β+⟩ =
〈
z
∣∣arc,t,p∥

〉
. (D.5b)
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(These expressions assume W |x2 · p| ≫ 1 for x ∈ {α, β}). From the criterion of normaliz-
ability, the momenta of Fermi arcs are bound to

p ·α2 > 0, p · β2 < 0. (D.6)

The dispersion relations read

Eb
arc = χvp ·α1, E

t
arc = χvp · β1, (D.7)

and hence the velocity expectation values are

vb
arc = χvα1, v

t
arc = χvβ1. (D.8)

The directionsαi andβi are thus the directions in which the Fermi arcs emanate from the Weyl
node (i = 1) and the directions of their motion (i = 2), both up to the sign, as indicated in
Fig. 6.2.

D.1.2 Bulk states

For real pz , from (6.5) the normalized wavefunctions of the conduction (+) and valence band
(−) read

ψp±(z) =
[pz cos pzz −α2 · p sin pzz]|α+⟩+ i[±χp−α1 · p] sin pzz|α−⟩√

WNp±
(D.9a)

= ⟨z|bulk,±,p⟩, (D.9b)

where the normalization factor, isolating the finite-size correction∼ 1/W , is given by

Np± = p(p∓ χα1 · p) + δNp±, (D.10a)

δNp± = − sin(Wpz)

Wpz

[(
p2∥ ∓ χpα1 · p

)
cos(Wpz) + pzα2 · p sin(Wpz)

]
. (D.10b)

The velocity expectation values read

vp± = ± vp∥
p

+ δvp±, δvp± =
∂Ep±
∂pz

dpz
dp

= ±vpz
p

dpz
dp

, (D.11)

where we again isolated the finite-size correction δvp± ∼ 1/W , which stems from the weak
p∥ dependence of the quantized pz , as implicitly given in (6.8). Note that vz = 0 due to the
boundary conditions for all states.
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D.2 Anisotropic Weyl node

D.2 Anisotropic Weyl node

Here we generalize our calculations to Weyl fermions with anisotropic velocity. We consider the
Hamiltonian

h′(p) = vijσipj ≡ χvp′ · σ = h(p′), (D.12)

where vij = vji and we defined p′i = ṽijpj in terms of

ṽij = χ
vij
v
, v > 0. (D.13)

The chirality of the anisotropic Weyl node is χ = sign(det v). Undashed symbols refer to the
isotropic case discussed in the main text. The current operator is

j′i = −evijσj = ṽijjj. (D.14)

To avoid complications in the boundary condition we specify to

v = diag(v∥, vz), (D.15)

where v∥ is a 2x2 matrix acting only on components parallel to the boundary. Furthermore,
we set v = |vz|. With this we may again employ the boundary conditions of Eq. (6.7). Then,
the arc and bulk wave-functions may be obtained by simply replacing p → p′ in Eqs. (D.5a),
(D.5b) and Eq. (D.9). Similarly, the velocities can be expressed in terms of the isotropic expres-
sions via

(
v′p,n

)
i
=

dE ′p,n
dpi

=
∂p′i
∂pi

dEp′,n

dp′i
= ṽij(vp′,n)j. (D.16)

Altogether, the response tensor of the anisotropic Weyl node is related to the isotropic node via
(c.f. Eq. (6.22))

Γ′ijk =
8πητ

W

∫
d2p∥

∑

qzpz

(
v′p+
v
− v′q−

v

)

i

δ

(
1− E ′p

ω
− E ′q

ω

)[
M′

pq ⊗ (M′
pq)
∗]
jk

(D.17a)

=
ṽilṽjmṽkn
|det ṽ|

8πητ

W

∫
d2p′∥

∑

q′zp
′
z

(vp′+

v
− vq′−

v

)
l

× δ
(
1− Ep′

ω
− Eq′

ω

)[
Mp′q′ ⊗M∗

p′q′

]
mn

(D.17b)

=
ṽilṽjmṽkn
|det ṽ| Γlmn, (D.17c)

where the determinant stems from the change of variables p∥ to p′∥ (using
∣∣det ṽ∥

∣∣ = |det ṽ|
due to our choice of v).
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D.3 Symmetry considerations

D.3.1 Thick slab

We work in the basis of the thick slab α1 = x̂, α2 = ŷ. The heterostructure Hamiltonian Eq.
(6.12) of the semi-infinite system under consideration can be written as

Hχm = χvp · σ +

{
−χmσy z < 0

0 z > 0
. (D.18)

where the vacuum at z < 0 is modeled by a large mass term with m → ∞, which acts like
a magnetization in breaking the intra-node TR symmetry, as discussed in the main text. We
consider spatial mirror-plane reflectionsRi, i = x, y, z, with i = x corresponding to reflection
w.r.t. the yz plane, etc. A single reflection reverses the component of the momentum and the
current that is normal to the mirror plane and the components of the spin that are parallel to
the mirror plane. The action of the reflections on the Hamiltonian thus read

RxHχmRx = H−χm, RyHχmRy = H−χ−m. (D.19)

In words, reflection Rx reverses the chirality and reflection Ry reverses the chirality and the
magnetization.

From this we can infer on the transformation behavior of the response tensor. First, note
that the (anti)symmetric part of the response tensor, Γs (Γa), is generally odd (even) under TR
[160] – the (anti)symmetric part is thus odd (even) under m → −m. Second, in Sec. 6.3 we
have shown that the (anti)symmetric part of the response tensor is even (odd) under χ→ −χ.
Taking also into account the transformation of the current under reflections, we obtain for the
symmetric part,

RxΓ
s
xRx = − Γs

x, RxΓ
s
yRx = Γs

y, (D.20a)
RyΓ

s
xRy = − Γs

x, RyΓ
s
yRy = Γs

y, (D.20b)

while the antisymmetric part satisfies

RxΓ
as
x Rx =Γas

x , RxΓ
as
y Rx = −Γas

y , (D.21a)
RyΓ

as
x Ry = − Γas

x , RyΓ
as
y Ry = Γas

y . (D.21b)
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From this follows

Γthick
x =




0 Γxxy 0

Γxxy 0 Γxyz

0 −Γxyz 0


, Γ

thick
y =




Γyxx 0 −Γyzx
0 Γyyy 0

Γyzx 0 Γyzz


. (D.22)

D.3.2 Thin slab

We now work in the basis of the thin slab, depiceted in Fig. 6.2(c). We now consider the full
heterostructure Hamiltonian (6.12),

Hχm = χvp · σ +





−χmσ ·α2 z < 0

0 0 < z < W

χmσ · β2 z > W

, (D.23)

with m → ∞. The behavior under reflections and TR is as in the previous section but now
with two TR-breaking magnetizations.

We consider two symmetry transformations. First we note that the combined reflection Rz ,
which swaps the top and bottom surfaces, andRy, which interchanges σ ·α2 and σ ·β2, leave
the Hamiltonian invariant. Second, the combination of Rx and Ry inverts both σ · α2 and
σ · β2, which can be compensated bym→ −m. Altogether,

RyRzHχmRzRy = Hχm, RxRyHχmRyRx = Hχ−m. (D.24)

Both the symmetric and the antisymmetric parts of the response tensor thus satisfy

RyRzΓxRzRy =Γx, RyRzΓyRzRy = −Γy, (D.25a)

and, since the symmetric part is odd underm→ −m, it satisfies

RxRyΓ
s
xRyRx =Γs

x, RxRyΓ
s
yRyRx = Γs

y, (D.26a)

while the antisymmetric part satisfies

RxRyΓ
as
x RxRy = − Γas

x , RxRyΓ
as
y RxRy = −Γas

y . (D.27a)
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From this follows,

Γthin
x =




Γxxx 0 0

0 Γxyy Γxyz

0 −Γxyz Γxzz


, Γ

thin
y =




0 Γyxy −Γyzx
Γyxy 0 0

Γyzx 0 0


. (D.28)

Finally, we may also constrain the dependency of the components with respect to the angle
∆ = (β − α)/2 ∈ [−π, π]. In terms of ∆, the magnetization directions are given by α2 =

(− sin∆, cos∆) and β2 = (sin∆, cos∆). First, note that the transformation ∆ → −∆
may be compensated byRx. From this follows that components of the symmetric part of Γ are
odd under ∆ → −∆ while components of the anti-symmetric part are even. Next note, that
∆ → ∆ + π inverts both magnetizations and may be compensated by TR. From this follows
that components of the symmetric part of Γ are odd under ∆→ ∆+ π while components of
the anti-symmetric part are even.

D.4 Photogalvanic current due to arc-bulk excitations

As explained in the main text, the leading-order current contribution due to arc-bulk excitations
is of the same order of magnitude as the subleading contributions from bulk-bulk excitations.
Other types of finite-size corrections that we had to account for when considering bulk-bulk
excitations can now be disregarded, as they would give corrections of higher order. In particular,
we can replace the momentum sum over pz by integrals in both the thick and thin slab regimes.
Furthermore, we can assumeW →∞ and δ →∞ in both regimes and neglect the finite light
momentum k. In the thick slab limit only the bottom arc is relevant, in the thin slab limit both
arcs contribute.

The response tensor due to the bottom arc is

Γab,b
ij =

8ητ

W

∫
d3p

p
Θ(pz)Θ(py)

×
{
Θ(−χpx)δ(1− p+ χpx)

[
p∥
p
− χα1

]
M ab,b,+

i

(
Mab,b,+

j

)∗

+Θ(χpx)δ(1− χpx − p)
[
χα1 +

p∥
p

]
M ab,b,−

i

(
Mab,b,−

j

)∗
}
,

(D.29)

where all momenta are dimensionless (in the appendix we suppress the tilde, which denotes
dimensionless units in the main text). The first line captures transitions between conduction
band and arc sheet, while the second captures transitions between the arc sheet and the valence
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D.4 Photogalvanic current due to arc-bulk excitations

band (the first Heaviside-Θ function enforces normalizability of the arc states, the second al-
lows transitions between empty and occupied states only). We also defined the arc-bulk matrix
elements [p = p(sin θ cosϕ, sin θ sinϕ, cos θ)]

Mab,b,+ =
√
Wp⟨bulk,+,p|σ

∣∣arc,b,p∥
〉
=

√
2 cos2 θ sin θ sinϕ

1− χ sin θ cosϕ
(−α2 − iẑ)
χ+ sin θ cosϕ

,

(D.30a)

Mab,b,− =
√
Wp
〈

arc,b,p∥
∣∣σ|bulk,−,p⟩ =

√
2 cos2 θ sin θ sinϕ

1 + χ sin θ cosϕ

(α2 − iẑ)
χ− sin θ cosϕ

.

(D.30b)

Letting px → −px in the second term of Eq. (D.29) the current may be written as

Γab,b
ij =

16ητ

W̃

∫
d3p

p
Θ(cos θ)Θ(sinϕ)Θ(−χ cosϕ)

× δ(1− p(1− χ sin θ cosϕ)) cos2 θ sin θ sinϕ
(1− χ sin θ cosϕ)(1 + χ sin θ cosϕ)2

×
{
sin θ cosϕ− χ

sin θ sinϕ


(α2 + iẑ)i(α2 − iẑ)j

+


− sin θ cosϕ+ χ

sin θ sinϕ


(α2 − iẑ)i(α2 + iẑ)j

}
. (D.31)

This may be evaluated straightforwardly. The resulting response tensor in the thick slab basis is

Γab,thick
x =

ητ

W




0 0 0

0 0 i16π
3
χ

0 −i16π
3
χ 0


, Γ

ab,thick
y =

ητ

W




0 0 0

0 2π ln 2 0

0 0 2π ln 2


. (D.32)

Note that in the thin slab, the bottom arc contribution is simply Γab,thick = Γab,b. The current
due to the top arc (present only in the thin slab regime) may be obtained analogously. The result
for the top arc in the basis x̂ = β1, ŷ = β2 is

Γab,t
x =

ητ

W




0 0 0

0 0 i16π
3
χ

0 −i16π
3
χ 0


, Γ

ab,t
y = −ητ

W




0 0 0

0 2π ln 2 0

0 0 2π ln 2


. (D.33)
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In the thin-slab case both contributions combine into the total arc-bulk contribution. Intro-
ducing the rotation operator

R(φ) =




cosφ − sinφ 0

sinφ cosφ 0

0 0 1


, (D.34)

the total arc-bulk contribution, in the thin-slab basis [Fig. 6.2(c)], is given by

Γab,thin
abc =R(∆)aiR(∆)bjR(∆)ckΓ

ab,t
ijk +R(−∆)aiR(−∆)bjR(−∆)ckΓ

ab,b
ijk . (D.35)

The resulting expression is given in Eq. (6.39) of the main text.

D.5 Photogalvanic current due to bulk-bulk excitations

This appendix section is structured as follows. First we perform some general manipulations.
Next we discuss the thick and thin slab limits separately. In the thick slab limit, we may let
W → ∞ and ignore the quantization condition Eq. (6.8). Corrections to the infinite system
response arise from the spatial variation of the electromagnetic field corresponding to finite
k, 1/δ. These are of the same order of magnitude as the current due to arc-bulk excitations.
Conversely, in the thin slab limit, the spatial dependence of the electromagnetic field may be
ignored (k = 0, 1/δ = 0), but the quantization condition due to finiteW leads to corrections
of the same order as the arc-bulk current.

We start from Eq. (6.22) and specify to bulk statesm = (p,+) and n = (q,−),

Γbb
ij =

8πητ

W̃ 3

∫
d2p̃∥

∑

p̃z q̃z

(v̂p+ + v̂q−)δ(1− p̃− q̃)
[
M̃bb ⊗

(
M̃bb

)∗]
ij

∣∣∣∣∣
q∥=p∥−k∥

(D.36)

where we defined the dimensionless bulk-bulk matrix elements

M̃bb = W̃ ⟨bulk,+, p̃|σeiz̃k̃z−z̃/δ̃|bulk,−, q̃⟩. (D.37)

Note that as opposed to the main text here we explicitly include the light momentum k. Since
k = ω/c, the light momentum is a factor v/c smaller than the typical momenta of excited states
∼ 1/ℓ = ω/v. We will show below that it does not contribute at the relevant order of magni-
tude, in agreement with the argumentation in the main text. We setk = (k∥ cos γ, k∥ sin γ, kz)
and keep terms to first order in k̃z, k̃∥ ∼ v/c.
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We proceed by performing the integral over p∥ using the conservation of energy. The delta
function gives the condition

g(p∥) = 1−
√
p2∥ + p2z −

√
p2∥ + q2z − 2p∥k∥ cos(ϕ− γ) + k2∥ = 0.

This has a real solution if, to leading order in k∥,

pz + qz < 1 or P < 1/2, (D.38)

where we defined new variables

P =
1

2
(pz + qz), Q =

1

2
(pz − qz) (D.39)

with P > 0, P > Q > −P . The solution to g(p∥) = 0 is given by

p∥ =
1

2

√
(1− 4P 2)(1− 4Q2) +

k∥
2
cos(ϕ− γ)(1 + 4PQ). (D.40)

Performing the integration over p∥ also gives rise to the Jacobian factor

1∣∣g′(p∥)
∣∣ =

[
p∥ + pz(dpz/dp∥)

p
+
p∥ + qz(dqz/dp∥)− k∥ cos(ϕ− γ)

q

]−1
. (D.41)

The derivatives dpz/dp∥ may be obtained from the boundary condition Eq. D.4. They con-
tribute at order 1/W . Altogether, the bulk-bulk response tensor is now

Γbb
ijk =

8πητ

W 3

∫
dϕ
∑

pzqz

p∥∣∣g′(p∥)
∣∣(v̂p+ + v̂q−)i

×M bb
j

(
M bb

k

)∗
Θ[1− pz − qz]

∣∣∣∣∣
p∥=p∥(pz ,qz ,ϕ), q∥=p∥−k∥

. (D.42)

Next, consider the matrix elements,M bb
i . We can split them into a normalization factor that is

common to allMi and a factor that depends on i,

M bb
i = W ⟨bulk,+,p|σieikzz−z/δ|bulk,−,q⟩ = 1√

Np+Nq−
Mi, (D.43)

where theNp± are defined in Eq. (D.10). Using

⟨α+|σ|α+⟩ = − ⟨α−|σ|α−⟩ = α1, ⟨α+|σ|α−⟩ = ⟨α−|σ|α+⟩∗ = iα2 + ẑ, (D.44)
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theMi read

M1 = pzqzI1 + [p2q2 + (p− χp1)(q + χq1)]I2 − (pzq2I3 + p2qzI4), (D.45a)
M2 = [χ(pq2 − p2q)− (p1q2 + p2q1)]I2

+ (pzq1I3 + p1qzI4) + χ(pzqI3 − pqzI4), (D.45b)

Mz = i
{
[χ(pq2 + p2q)− (p1q2 − p2q1)]I2

− (pzq1I3 − p1qzI4)− χ(pzqI3 + pqzI4)
}
, (D.45c)

where we defined xi = αi · x as well as the integrals

I1 =

∫ W

0

dz e(ikz−1/δ)z cos pzz cos qzz, I2 =

∫ W

0

dz e(ikz−1/δ)z sin pzz sin qzz,

(D.46a)

I3 =

∫ W

0

dz e(ikz−1/δ)z cos pzz sin qzz, I4 =

∫ W

0

dz e(ikz−1/δ)z sin pzz cos qzz.

(D.46b)

These lead to conservation of “momentum" perpendicular to the boundary if W or δ become
large. It will prove convenient to also define the combinations

I± = pzI3 ± qzI4 = P (I3 ± I4) +Q(I3 ∓ I4), (D.47)

To leading order in k∥, this gives

pzqI3 ± pqzI4 =
1

2

[
I± −

(
4PQ+ 2k∥ · p∥

)
I∓
]
. (D.48)

D.5.1 Thick slabW ≫ δ

In this regime, the dominant term is of order δ/W , and corrections are of order 1/W . We are
hence expanding in 1/δ ≪ 1. (Note that we still use dimensionless units, not writing the tilde
to avoid clutter.) The corrections stem from the decay of the light field 1/δ and the finite light
momentum k with k ∼ 1/δ. Ignoring the quantization of pz, qz , which give corrections of
order 1/W ≪ 1/δ we replace

∑

pzqz

→
∫ ∞

0

dpz
∫ ∞

0

dqz →
2W 2

π2

∫ ∞

0

dP
∫ P

−P
dQ. (D.49)

We expand the bulk-bulk current in orders of 1/δ and ki.
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Leading order bulk-bulk contribution Γbb,thick

For the leading-order contributions we set k∥ = 0 (i.e., p∥ = q∥) and analyze integrals of the
type

∫ 1/2

0

dP
∫ P

−P
dQ IiI

∗
j f(P,Q), (D.50)

which enter the current formula with a smooth kernel f(P,Q) ∼ ∂P,Qf(P,Q) ∼ 1 (f does
not depend on the small parameter). Considering i = j = 1, we find

|I1|2 ≃
4
(

1
δ2

+ k2z
)
(P 2 +Q2)

2

(
1
δ2

+ (kz − 2P )2
)(

1
δ2

+ (kz + 2P )2
)(

1
δ2

+ (kz − 2Q)2
)(

1
δ2

+ (kz + 2Q)2
) . (D.51)

The leading contribution after integration is the term proportional to P 4. Next, we use that
∫ ∞

−∞
dQ

4(k2z +
1
δ2
)(

1
δ2

+ (kz − 2Q)2
)(

1
δ2

+ (kz + 2Q)2
) = πδ, (D.52)

so that to leading order in kz and 1/δ we can simplify

4(k2z +
1
δ2
)(

1
δ2

+ (kz − 2Q)2
)(

1
δ2

+ (kz + 2Q)2
) → (πδ)δ(Q). (D.53)

|I2|2 and I1I∗2 are similar to |I1|2 with (P 2 +Q2)
2 replaced by (P 2 −Q2)

2 or (P 4 −Q4),
respectively. They clearly give the same leading order behaviour. For P ≫ v/c we have to
leading order

|I1|2 ≃ |I2|2 ≃ I1I
∗
2 ≃

πδ

16
δ(Q). (D.54)

This gives an overall factor of δ and hence contributes at leading order. Sincef(P,Q) is smooth,
corrections from small P ∼ v/c are of higher order in v/c. Consider next |I±|2 and the corre-
sponding cross-term. It is

|I+|2 ≃
4
(

1
δ2

+ k2z
)2
(P 2 +Q2)

2

(
1
δ2

+ (kz − 2P )2
)(

1
δ2

+ (kz + 2P )2
)(

1
δ2

+ (kz − 2Q)2
)(

1
δ2

+ (kz + 2Q)2
) (D.55)
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The latter may be approximated as

|I+|2 ≃
π
(

1
δ2

+ k2z
)
δ

16
δ(Q). (D.56)

Due to the extra factor of 1
δ2

+ k2z this does not contribute at leading order. However,

|I−|2 ≃
64P 2Q2(P 2 −Q2)

2

(
1
δ2

+ (kz − 2P )2
)(

1
δ2

+ (kz + 2P )2
)(

1
δ2

+ (kz − 2Q)2
)(

1
δ2

+ (kz + 2Q)2
) (D.57)

does not come with a small factor in the numerator at all. Naively one might expect a contribu-
tion of order δ3. The factor of Q2 reduces this to a contribution of order δ. The leading order
contribution stems from the lowest power inQ, i.e. the term proportional to P 6Q2. Then,

∫ P

−P
dQ

64Q2f(P,Q)(
1
δ2

+ (kz − 2Q)2
)(

1
δ2

+ (kz + 2Q)2
) (D.58a)

= −4δ

kz

∫ P

−P
dQQf(P,Q)∂Q

[
π

2
− arctan

( 1
δ2
− k2z + 4Q2

2kz/δ

)]
(D.58b)

≃ 4πδf(P, 0) (D.58c)

Here, we integrated by parts and used

1

kz

∫ ∞

−∞
dQ
[
π

2
− arctan

( 1
δ2
− k2z + 4Q2

2kz/δ

)]
= π, (D.59)

s.t. the integrand is again a delta function for kz, 1/δ → 0. Hence, for P ≫ v/c

|I−|2 ≃
πδ

4
P 2δ(Q). (D.60)

Thus, |I−|2 contributes at leading order. For the cross-term we find by a similar argument

I+I
∗
− ≃ −

π(kz + i/δ)2

16
δP∂Qδ(Q), (D.61)

which is subleading. Finally, consider cross-terms of the type I1I∗+, I2I∗+, I1I∗−, I2I∗−. The
former two read to leading order

IiI
∗
+ ≃

4(k2z +
1
δ2
)(δ−1 + ikz)P

4

(
1
δ2

+ (kz − 2P )2
)(

1
δ2

+ (kz + 2P )2
)(

1
δ2

+ (kz − 2Q)2
)(

1
δ2

+ (kz + 2Q)2
) , (D.62)
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which yields

IiI
∗
+ ≃

π(δ−1 + ikz)

16
δ δ(Q), (D.63)

and is thus overall subleading. Similarly, the latter two read

IiI
∗
− ≃

−16(1/δ − ikz)P 5Q(
1
δ2

+ (kz − 2P )2
)(

1
δ2

+ (kz + 2P )2
)(

1
δ2

+ (kz − 2Q)2
)(

1
δ2

+ (kz + 2Q)2
) , (D.64)

evaluating to

IiI
∗
− ≃

π(kzδ − i)
16

P∂Qδ(Q). (D.65)

This is also subleading. Having identified the leading combinations IiI∗j , we can now easily cal-
culate the bulk-bulk current in the thick slab limit at leading order: We simply drop all combi-
nations IiI∗j with i, j ∈ {1, 2,+,−}which do not give a order-δ contribution. The remaining
combinations all give a delta function δ(Q), corresponding to conservation of perpendicular
momentum, pz = qz , and hence p = q = 1/2 and p∥ =

√
1− 4P 2/2 =

√
1− p2z/2. Iden-

tifying the combinations IiI∗j giving rise to order-δ terms motivates the following definition:

M ≃ Σ0I0 +Σ1I1, (D.66)

where I0 ≃ 2p2I1 ≃ 2p2I2 and I1 = p2I−/P . Here Σ0 is (up to normalization) the matrix
element at fixed momentum,

Σ0 ≡
(
1− sin2 θ cos2 ϕ

)
α1 − sin2 θ cosϕ sinϕα2 + iχ sin θ sinϕ ẑ (D.67a)

∝ ⟨+,p|σ|−,p⟩, (D.67b)

in terms of the spherical coordinates pz = p cos θ, p∥ = p sin θ, while

Σ1 ≡ χ cos θα2 − i cos θ sin θ cosϕ ẑ.

This term in the matrix element only arises if one allows for pz ̸= qz . It arises because I3,4 may
become large if pz − qz ∼ 1/δ even though they vanish for pz = qz (or pz − qz ∼ 1/W if the
integral is cut off by the thickness of the slab, see below). The normalization factor evaluates to

1

Np+Np−
=

1

p4(1− sin2 θ cos2 ϕ)
. (D.68)
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Altogether, after transforming P = (cos θ)/2, we have

Γbb,thick
0,ij =

ητδ

W

∫
dΩ

Θ(cos θ)


cosϕ

sinϕ


 sin θ

1− sin2 θ cos2 ϕ

{
Σ0,iΣ

∗
0,j + Σ1,iΣ

∗
1,j

}
. (D.69)

The angular integrals may be evaluated straightforwardly. This gives Eq. (6.41). Note that the
result is symmetric under rotations in the x, y-plane and thus independent of the direction of
the boundary conditions.

Subleading order bulk-bulk contributions δΓbb,thick

We now consider the leading corrections δJbb to Jbb. From the above calculations, one can
expect a correction of order

δΓbb

Γbb ∼
v

c
≪ 1. (D.70)

stemming from two different sources: first, from an in-plane momentum shift due to the finite
light momentumk∥, and second, from the corrections to the integrals IiI∗j of order (1/δ)0, k0z .
Consider first corrections due to finite light momentum. Since these are already of the same
magnitude as the corrections due to finite-size as well as the arc-bulk current, one may ignore
the slab geometry here. It is straightforward to verify that for a bulk Weyl cone these corrections
vanish. We thus expect that the relevant corrections due to a finite k vanish also in the slab. We
first consider finite k∥. The products IiI∗j do not involve k∥ and are thus approximated as in the
leading-order calculation above. In M we can thus again separate out I0 ≃ 2p2I1 ≃ 2p2I2
and I1 = p2I−/P and expand the prefactors up to leading order in k∥,

M ≃ Σ′0I0 +Σ′1I1, where Σ′i = Σi + k∥δΣi +O
(
k2∥
)
, (D.71)

where, introducing the shorthand notation cx = cosx, sx = sinx,

δΣ0 =
1

2

[(
χs2θc

2
ϕ + 2sθcϕs

2
ϕ − χ

)
cγ + cϕsϕ

(
χs2θ − 2sθcϕ

)
sγ
]
α1

+
1

2

[
cϕsϕ

(
χs2θ − 2sθcϕ

)
cγ +

(
χs2θs

2
ϕ − 2sθcϕs

2
ϕ − χ

)
sγ + sθsϕ+γ

]
α2

− i

2
sγ−ϕ[sθ − χcϕ]ẑ, (D.72a)

δΣ1 =
1

2

{
sγα1 − cγα2 + i

[
−
(
s2ϕ + χsθcϕ

)
cγ + (sϕcϕ − χsθsϕ)sγ

]
ẑ
}
. (D.72b)

232



D.5 Photogalvanic current due to bulk-bulk excitations

Other terms entering the current formula may be expanded as (up to linear order in k∥)

p∥(v̂p+ + v̂q−)∣∣g′(p∥)
∣∣ ≃ sθ

2


cϕ
sϕ


+

k∥
2


 cγ−2ϕ

−sγ−2ϕ


, (D.73a)

Np+Np− ≃
(
1− s2θc2ϕ

)

16
+
k∥
8
[(sθcϕ − χ)cγ + (χsθ − cϕ)sθcϕcγ−ϕ]. (D.73b)

We now specify to the basis of the thick slab, x̂ = α1, ŷ = α2. For γ = 0 (i.e., k∥ = k∥x̂) this
combines to the total correction of the response tensor

δΓ
bb,k∥
x ∝

∫ π
2

0

dθ
∫ 2π

0

dϕ



c2θ − 4s2θs
4
ϕ + (5s2θ − 2)s2ϕ 2s2θcϕsϕ

(
2s2ϕ − 1

)
isθsϕ

(
3s2ϕ − 2

)

2s2θcϕsϕ
(
2s2ϕ − 1

)
1 + 4s2θs

4
ϕ + (3c2θ − 5)s2ϕ icϕsθ

(
1− 3s2ϕ

)

−isϕsθ
(
3s2ϕ − 2

)
−icϕsθ

(
1− 3s2ϕ

)
−s2θ

(
2s2ϕ − 1

)


,

(D.74a)

δΓ
bb,k∥
y ∝

∫ π
2

0

dθ
∫ 2π

0

dϕ



cϕsϕ
(
2c2θ + 4s2θs

2
ϕ

)
s2θs

2
ϕ

(
4s2ϕ − 3

)
−3icϕsθs2ϕ

s2θs
2
ϕ

(
4s2ϕ − 3

)
cϕsϕ

(
2− 4s2θs

2
ϕ

)
isθsϕ

(
2− 3s2ϕ

)

3icϕsθs
2
ϕ isθsϕ

(
3s2ϕ − 2

)
2s2θcϕsϕ


. (D.74b)

It is straightforward to confirm that these expressions vanish upon integration over ϕ. Similar
expressions for γ = π/2 (i.e., k∥ = k∥ŷ) also vanish.

The remaining corrections are corrections to the products IiIj , which have been discussed
above, of order (kz ± i/δ)0. We verified numerically, that the correction due to a finite kz
vanishes as expected. Fitting the numerically evaluated response tensor (for δ ∈ {102, 2 ×
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δΓbb
xxy δΓbb

xyz δΓbb
yxx δΓbb

yyy δΓbb
yzz δΓbb

yzx

Error 5× 10−4 3× 10−3 5× 10−5 5× 10−3 1× 10−3 1× 10−5

Table D.1: Estimated inaccuracy of numerical results for the subleading bulk-bulk response tensor δΓbb. The
error corresponds to the statistical relative standard error of a fit with first order polynomial in 1/δ and
δ ∈ {102.8, 103.0, ..., 103.4} (for larger values of δ the integration is no longer stable due to the sharply
peaked nature of the integrals Ii). Use of higher order polynomials or inclusion of smaller δ-points gives
comparable results and deviations.

102, ..., 103}) to an expansion up to second order in 1/δ we find (rounding to the second deci-
mal)

δΓbb,thick
x

ητ/W̃
=




0 4.19 0

4.19 0 −16.75iχ
0 16.75iχ 0


, (D.75a)

δΓbb,thick
y

ητ/W̃
=




−4.19 0 9.87iχ

0 −4.20 0

−9.87iχ 0 −8.40


. (D.75b)

To estimate the accuracy of these results we compare the numerical values given here to those
obtained by fitting expansions to higher order in 1/δ as well as by adding/removing data points
corresponding to the smallest values of δ. These changes in the fitting procedure lead to changes
in the numerical coefficients of≤ 0.5%. The error analysis is summarized in Table D.1.

D.5.2 Thin slab δ ≫ W ≫ ℓ

In this limit, the leading finite-size corrections are∼ 1/W , as discussed in the main text. Cor-
rections due to the spatial variation of the external field, which we found to give corrections of
order∼ 1/δ, are thus negligible and we can set k = 0, δ → ∞. We now work in the basis of
the thin slab.

Leading order Γbb,thin

To calculate the leading order response we disregard the quantization of pz, qz . Considering
leading-order terms of the integral products IiIj , the dominant contributions read

I21 ≃ I22 ≃ I1I2 ≃
πW̃

8
δ(Q), I2− ≃

πW̃P 2

2
δ(Q), (D.76)
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all other combinations contribute only at higher order. Since the difference to the leading con-
tribution of the thick-slab case is in the constant prefactor, the leading-order bulk-bulk contri-
bution in the thin slab limit is given by the thick-slab result replacing δ/2 → W . The final
response tensor reads

Γbb
ijk = iχ

4πητ

3
εijk(1− δi,z). (D.77)

Subleading order δΓbb,thin

The leading corrections to the bulk-bulk contribution in the thin slab limit are of order 1/W .
They can stem from the quantization of pz, qz , the associated corrections to the velocity in Eq.
(D.11), and the corrections δNp± to the wavefunction normalization. The current is given by
Eq. (D.42) with pz, qz solutions of

sin∆ =
tan(pzW )

pz

[
p∥ cosϕ− χp cos∆

]
, (D.78a)

sin∆ =
tan(qzW )

qz

[
p∥ cosϕ+ χq cos∆

]
, (D.78b)

where we defined the characteristic angle

∆ =
β − α
2
∈ [−π, π]. (D.79)

These expressions as well as the tensors below are in the basis of the thin slab. Note that energy
conservation makes p∥ and thus also p and q depend on (pz, qz). To evaluate the expression
for the current for a given value of ∆ we resort to numerics. We then attempt to extract the
functional dependence of the nonzero tensor components by fitting appropriate polynomials
in sin∆ and cos∆.

We briefly outline the numerical strategy employed to extract the response tensor. For ϕ-
integration at fixed W we employ standard numerical techniques relying on evaluation of the
integrand for a discrete set of ϕ-points. For each ϕ-point we numerically determine all solu-
tions to Eqs. (D.78) in the region pz + qz < 1. To determine δΓbb we evaluate Eq. (D.42)
at W ∈ {100, 150, 200, 250} and subtract the leading order term, Eq. (D.77). We then fit to
an expansion up to second order in 1/W and extract the coefficient of the 1/W term. In this
way we determine all symmmetry-allowed elements of δΓbb for 30 values of ∆ ∈ [0, π/2] (the
intervals [−π, 0] and [π/2, π] may be obtained from symmetry considerations, see Sec. D.3).
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Finally, we fit the components of the symmetric part of the response tensor to each element to
an appropriate expansion in Fourier modes,

nmax∑

n odd

as
n sin(n∆),

where we exploit that they are odd under ∆ → −∆ and ∆ → ∆ + π. Similarly, we fit the
components of the anti-symmetric part to

aas
0 +

nmax∑

n even

aas
n cos(n∆),

where we use that they are even under the above transformations. We found thatnmax = 3 gives
sufficiently good results with higher order coefficients satisfying an>3/(max an≤3) ≲ 10−3.
Rounding to 10−2, the nonzero entries of the subleading order response tensor due to bulk-
bulk excitations in the thin slab limit are

δΓbb,thin
xxx

ητ/W
= −14.14 sin∆ + 4.71 sin 3∆, (D.80a)

δΓbb,thin
xyy

ητ/W
= −21.47 sin∆− 4.71 sin 3∆, (D.80b)

δΓbb,thin
xzz

ητ/W
= −23.04 sin∆, (D.80c)

δΓbb,thin
xyz

ητ/W
= −iχ(26.71 + 6.88 cos 2∆), (D.80d)

δΓbb,thin
yxy

ητ/W
= 3.67 sin∆− 4.71 sin 3∆, (D.80e)

δΓbb,thin
yzx

ητ/W
= −iχ(26.50− 6.89 cos 2∆). (D.80f )

These results are accurate to the first decimal: the error estimates of the numerical integration
scheme are on the order of 10−1 to 10−2. Similarly, altering the fitting procedure (e.g. by
fitting to a first order expansion in 1/W or by removing data-points in W ) leads to changes
in the numerical coefficients on the order of roughly 10−2 with the largest changes, at about
1%, observed for the ∆-independent terms in the circular components. Note that averaging
over ∆ ∈ [−π, π] restores rotational symmetry around the z-axis, which implies that the ∆-
independent terms of Γxyz and Γyzx should actually be equal. Here, they differ by roughly
0.5%, consistent with our error estimate.
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