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Abstract: During the past few years, unexpected developments have driven studies in the field of
clinical immunology. One driver of immense impact was the outbreak of a pandemic caused by the
novel virus SARS-CoV-2. Excellent recent reviews address diverse aspects of immunological re-search
into cardiovascular diseases. Here, we specifically focus on selected studies taking advantage of
advanced state-of-the-art molecular genetic methods ranging from genome-wide epi/transcriptome
mapping and variant scanning to optogenetics and chemogenetics. First, we discuss the emerging
clinical relevance of advanced diagnostics for cardiovascular diseases, including those associated
with COVID-19—with a focus on the role of inflammation in cardiomyopathies and arrhythmias.
Second, we consider newly identified immunological interactions at organ and system levels which
affect cardiovascular pathogenesis. Thus, studies into immune influences arising from the intestinal
system are moving towards therapeutic exploitation. Further, powerful new research tools have
enabled novel insight into brain–immune system interactions at unprecedented resolution. This latter
line of investigation emphasizes the strength of influence of emotional stress—acting through defined
brain regions—upon viral and cardiovascular disorders. Several challenges need to be overcome
before the full impact of these far-reaching new findings will hit the clinical arena.

Keywords: cardiovascular diseases; immunology; innate immunity; immunogenetics; noncoding
genome; RNA interference; antisense therapeutics; gut microbiome; neuroimmunology

1. Introduction

Multiple excellent reviews have addressed diverse important aspects of immuno-
logical research into cardiovascular diseases during the past few years. In this review,
we specifically focus on preclinical and clinical studies which have provided unexpected
insights by taking advantage of recent state-of-the-art molecular genetic and virological
technologies, ranging from clinical genome-wide transcriptome mapping and variant scan-
ning to optogenetics and chemogenetics. Due to intense worldwide efforts in these fields
during the past years, the present review cannot be comprehensive, but instead tries to
convey an up-to-date perspective on promising developments which may shape research
at the crossroads of cardiology–immunology-neurology (Figure 1). Whereas advanced
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technologies are often confined to applications in basic research, we focus here on those
with already proven or upcoming use in the clinical arena.
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Figure 1. New research areas for cardiovascular disease immunity. Several rapidly expanding re-
search fields investigating cardiovascular innate immunity require logistic and advanced techno-
logical cooperation between the disciplines of genetics, neurology, microbiology, and immunology. 
Interdisciplinary use of powerful new research tools should lead to deeper understanding of the 
processes governing cardiovascular immunopathogenesis. We try to convey a perspective on prom-
ising developments at the crossroads of cardiology–immunology–neurology. Whatever the ultimate 
clinical impact of research in these fields, an obvious overarching aspect is the interdisciplinary 
character of work to come. 

2. Molecular Immunogenetics of Cardiovascular Diseases 
While molecular genetic methods have been extensively employed in cardiovascular 

research for decades, only the rather recent advent of comprehensive and still affordable 
mutation/variant scanning tools ready for day-to-day clinical practice have significantly 
enhanced their clinical impact. As with all other topics discussed in this review, availabil-
ity of practice-ready analytical tools is not simply a gradual step forward, but the critical 
threshold before widespread relevance for clinical medicine may be achieved. This degree 
of technological evolution may well take decades, as highlighted in recent reviews [1,2] 
covering therapeutics based on noncoding RNAs (ncRNAs) and related nucleic acids. 
Once achieved, however, this defines the quantum leap from a “promising” to a “revolu-
tionary” medical development. 

Figure 1. New research areas for cardiovascular disease immunity. Several rapidly expanding
research fields investigating cardiovascular innate immunity require logistic and advanced techno-
logical cooperation between the disciplines of genetics, neurology, microbiology, and immunology.
Interdisciplinary use of powerful new research tools should lead to deeper understanding of the
processes governing cardiovascular immunopathogenesis. We try to convey a perspective on promis-
ing developments at the crossroads of cardiology–immunology–neurology. Whatever the ultimate
clinical impact of research in these fields, an obvious overarching aspect is the interdisciplinary
character of work to come.

2. Molecular Immunogenetics of Cardiovascular Diseases

While molecular genetic methods have been extensively employed in cardiovascular
research for decades, only the rather recent advent of comprehensive and still affordable
mutation/variant scanning tools ready for day-to-day clinical practice have significantly
enhanced their clinical impact. As with all other topics discussed in this review, availability
of practice-ready analytical tools is not simply a gradual step forward, but the critical
threshold before widespread relevance for clinical medicine may be achieved. This degree
of technological evolution may well take decades, as highlighted in recent reviews [1,2]
covering therapeutics based on noncoding RNAs (ncRNAs) and related nucleic acids. Once
achieved, however, this defines the quantum leap from a “promising” to a “revolutionary”
medical development.
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2.1. Novel Insights into the Role of Inflammation in Human Cardiomyopathies

Despite multiple obstacles to unequivocal detection of myocardial inflammation, it has
been long known that myocardial inflammation [3–12] occurs in association with multiple
types of ‘genetic‘ [13–17] and ‘non-genetic‘ [18,19] cardiomyopathies. Figure 2 provides
an overview of currently known cellular receptors and signaling pathways linking innate
immunity with cardiovascular diseases (CVD). Pattern recognition receptors (PRRs) may
be associated with the cell membrane (Toll-like receptors, C-type lectin receptors), located
within the cytosol (NOD-like receptors, RIG-like receptors), or in specialized intracellular
compartments (endosomes) particularly relevant during viral infections (TLRs 3, 7, 8, and
9). Our mechanistic understanding of the highly complex multiscale signaling network of
innate immunity is still incomplete. Figure 2 displays well-established classical players
of the innate immune system to which, however, multiple novel components, such as
immunomodulating miRs or lncRNAs, need to be added (Figure 3). For an in-depth
analysis of current knowledge on classical players of cardiovascular immunity, we refer the
reader to Jaen et al. 2020 [20], and for an overview on CVD inflammation in general, to a
comprehensive review series [21].
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response to invading pathogens, e.g., viruses (see chapter 3 below) or mutant or otherwise modified
endogenous structures. PRRs enable recognition of pathogen-associated molecular patterns (PAMPs),
or of endogenous molecules released from injured cells and tissue, designated damage-associated
molecular patterns (DAMPs), acting as PRR ligands. Ligand–PRR interaction then triggers intracellu-
lar signaling pathways, ultimately inducing expression and release of a multitude of pro-inflammatory
or antiviral cytokines. PRRs may be associated with the cell membrane (e.g., 10 Toll-like receptors—
TLRs; C-type lectin receptors—CLRs), located within the cytosol (23 NOD-like receptors—NLRs; 3
three RIG-like receptors—RLRs), or in specialized intracellular compartments such as endosomes
particularly relevant in viral infections (TLRs 3, 7, 8, 9). These PPRs are characterized by a variable
number of ligand-sensing receptors (LRR) at their N-terminal (TLRs) or C-terminal (NLRs) ends, and
one or more protein–protein interaction (TIR, CARD, PYR) or oligomerization (NACHT) domains.
NLRs are also involved in the formation of inflammasomes, a molecular machine activating inflam-
matory processes including programmed cell death. While our understanding of the highly complex
multiscale signaling network of innate immunity [22] is incomplete, a number of components have
been elucidated in considerable detail. Here we may refer to excellent reviews addressing PRRs of
particular interest for cardiovascular medicine [20,23] (TLRs, NLRP3–inflammasome pathway, IL-1
to IL-6 pathway).

Recent clinical studies employing highly advanced but clinical practice-ready genetic
diagnostics [4,24–26] have revealed a significant direct impact of myocardial inflammation
upon the induction of life-threatening arrhythmias. These studies investigated patients
with well-defined genetic anomalies identified by large-scale mutation scanning. This
research has so far led to the identification of a novel innate immune sensor (SCN5A
sodium channel), and of hitherto unknown innate immune triggers (mutant desmosomal
proteins) with significant implications for the clinical management of affected patients.

Thus, a missense variant E1295K of the sodium channel gene SCN5A was found to be
associated with recurrent ventricular fibrillation and myocardial inflammation [25]. In that
study, an immunosuppressive therapy course with prednisolone led to stabilization of car-
diac rhythm and marked clinical improvement. SCN5A encodes sodium channel α-subunit
responsible for action potential initiation and conduction of electrical stimuli through the
heart. SCN5A was initially assumed to be exclusively expressed in the myocardium, but re-
cently a SCN5A splice variant was found to activate antiviral innate immune signaling [27].
Pioneering work revealed that SCN5A modulates myelin degradation by macrophages in
multiple sclerosis (MS) and that overexpression of the macrophage SCN5A variant in mice
protects against murine experimental MS [28]. Endosome-associated SCN5A variants thus
emerged as novel innate immune sensors, indicating that patients so far classified as ‘pure‘
myocardial ion-channel disease cases may carry independent ‘immunologic‘ risk through
hitherto-neglected anomalous function of their mutant ion channels. Another study taking
advantage of high throughput mutation scanning found familial recurrent myocarditis to
be triggered by exercise in patients with a truncating variant of the desmoplakin gene [24].
This work illustrates the potential of advanced genetics in combination with state-of-the-art
clinical myocardial diagnostics not only to improve clinical practice, but also to reveal unex-
pected pathogenetic processes. A third paper [4] investigating acute myocarditis associated
with desmosomal gene variants (DGVs) found a strong adverse impact of DGV-associated
inflammation upon ventricular arrhythmogenesis and survival.

Unfortunately, there are multiple obstacles to unequivocal clinical recognition of
myocardial inflammation as a precipitating factor for life-threatening arrhythmias or the
development of terminal heart failure. Even in narrowly focused patient cohorts for
whom genetic predisposition is suspected, e.g., by family history or direct detection of
pathogenic variants [4,24,25], recognition of myocardial inflammation requires in-depth
diagnostic work-up (cardiac magnetic resonance imaging—cMRI; endomyocardial biopsy—
EMB; positron emission tomography-computed tomography—PET/CT), which may be
unfeasible in many cases. Many of these patients may carry implantable cardioverter-
defibrillators (ICDs), often preventing reliable cardiac MRI diagnostics, and diagnostic
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accuracy of EMB may be limited by sampling error. Even post mortem examination would
be unable to detect transient bouts of inflammation during the sometimes decades-long
course of cardiomyopathies, unless inflammation persists until the time of death.

It is most likely that only a minute fraction of all inflammation-triggered arrhythmic
events or critical heart failure progression is currently detected in routine clinical practice,
generating a blind spot regarding the potential value of anti-inflammatory treatments in
these contexts. The above studies employing state-of-the-art genetic tools strongly suggest
to further evaluate the hypothesis of independent immunologic risk in major cohorts of
patients carrying SCN5A or desmosomal gene variants. Conduction of such studies is
challenging indeed and requires multicentric cooperation between experienced centers, but
given the often young age of affected patients and possible life-saving impact, the effort
appears warranted. For an in-depth discussion regarding design and key problems of
immunomodulating treatment trials in human cardiomyopathies, we may refer the reader
to a comprehensive recent review [29].

2.2. Common Gene Variants Affecting Antiviral Response and Myocardial Disease

To illustrate that not only rare genetics variants, but also rather common genetic poly-
morphisms may significantly influence the immune response and associated cardiovascular
diseases, we briefly discuss here a number of studies on the forkhead transcription factor
Foxo3 [30,31]. Foxo3 is involved in cell cycle regulation, apoptosis, oxidative stress, angio-
genesis, and immunity. The immune-modulatory function of Foxo3 in adaptive immune
responses has been elucidated to some extent. Foxo3 contributes to maintenance of T cell
tolerance and quiescence, and the differentiation of regulatory T cells is regulated by the
transcription factor [32–34]. Moreover, Foxo3 maintains neutrophil vitality in models of
neutrophil inflammation [35]; plays an important role in cardiac hypertrophy [36], car-
diomyocyte survival [37], cell differentiation, and remodeling [38]; and provokes resistance
to oxidative stress in cardiac fibroblasts [39].

Remarkably, single nucleotide polymorphisms (SNPs) of the FOXO3 gene are asso-
ciated with longevity [40,41] and low prevalence of cardiovascular diseases in diverse
populations. These impressive initial studies have triggered a broad spectrum of research
into translational aspects of Foxo3. Regarding the immune response, a human SNP in
FOXO3 is associated with increased risk for malaria, but a milder course in patients with
autoimmune disease [42]. Within the cardiovascular field, FOXO3 has gained interest with
regard to virus-triggered myocarditis [43] which is associated with high mortality and
is an important cause for the need for heart transplantation. It is not well understood
how the immune system recognizes and controls myocardial coxsackievirus B3 (CVB3)
infections [44,45], but murine studies suggest NK cells play a critical role in viral clearance
and host survival. Consistent with this, a translational experimental and clinical study
by Loebel et al. [43] found an association of the FOXO3 SNP rs12212067 with human NK
cell function, and also the clinical outcome in patients with virus-positive inflammatory
cardiomyopathy. These findings thus corroborate prior evidence from animal studies.
Importantly, this study suggests a dual role of FOXO3 genetic variants. While enhanced
FOXO3 activity associated with rs12212067 may be protective in chronic inflammation,
e.g., cancer and cardiovascular disease, it appears to be disadvantageous to control acute
viral infection.

2.3. Novel Immune Players from the Human Noncoding Genome

Similar to the above-considered evolution of molecular genetic diagnostics, decades
passed from the discovery that about 99% of the human genome does not encode proteins,
but instead generates a broad spectrum of noncoding RNAs (ncRNAs), many of whom are
involved in the immune response [46–62], until finally successful clinical exploitation of
ncRNAs and of novel drugs developed using them as blueprints was achieved [1,2]. Across
the entire spectrum of medical disciplines, it has been ascertained that the noncoding
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genome plays a key role in genetic programming and gene regulation during development,
as well as in health and disease.

Figure 3 displays the general structure and some key features of the human noncoding
genome and epigenome, as well as suggested novel therapeutic targets therein. About 99%
of the human genome does not encode proteins, but instead give rise to a broad spectrum
of ncRNAs with regulatory and structural functions. While most questions regarding the
overall clinical impact of the noncoding genome are still unanswered, experimental and
first clinical data suggests a number of microRNAs (miR-17-92 cluster, miR-21, miR-142,
miRNA-146a, miR-155, miR-181, miR-223) and long noncoding RNAs (lncRNAs) may
constitute therapeutic targets in cardiovascular diseases. Experimental studies also shed
first light upon therapeutic targeting of the epigenome in heart failure, but it should be
emphasized [2] that epigenetic modifications likely result in pleiotropic actions, making
clinical translation particularly challenging.

In order to provide a fully balanced state-of-the-art assessment of the technically highly
demanding and rapidly evolving field of human genome research, we briefly address some
current fundamental knowledge gaps regarding the molecular workings of diverse ncRNA
species within intact fully functional cells. While the biosynthetic pathways and interactions
of many miRs and RNAi-inducing siRNAs have been extensively characterized, this is
not the case for the highly diverse species summarized under the rather unspecific term
‘long noncoding’. This huge pool encompassing many thousands of transcripts is in fact
essentially unexplored with regard to mechanisms, as well as biological relevance in health
and disease. Different lncRNAs may modulate nuclear ultrastructure (e.g., MALAT1,
NEAT1), create RNA–protein interaction surfaces, or target RNA–protein complexes to
specific genomic regions, making obvious that a more straightforward classification is
needed in the future. While reductionist analysis in cell-free or other simple systems
may reveal molecular insights, this does not yet reveal biological function in an intact
differentiated cell or in vivo. Recent critical reviews [63,64] have pointed out that essentially
each lncRNA needs to be analyzed per se because of their diversity, and they therefore
suggest to focus research upon species fulfilling diverse criteria of biological relevance
in humans.

Thus, Ponting and Haerty [64] propose research prioritization of human lncRNAs
which (1) display sequence conservation and are transcribed in other mammals; (2) are
abundant in at least one type of primary cells (although some bona fide lncRNA are ex-
pressed at low levels); (3) show specific subcellular localization suggesting functional
hypotheses; (4) interact with defined other molecules (although lncRNA with ascertained
function, e.g., NEAT1, are functionally dependent on proper formation of multi-component
(RNAs, proteins) complexes. With caution, one may also incorporate evolutionary perspec-
tives into these considerations. It would appear that evolutionary spread across divergent
animal species suggests a greater likelihood that it plays a role in human biology. Never-
theless, lncRNAs of very recent evolutionary origin (primates) may well convey significant
functional advantage and pathogenetic relevance.
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(A) Noncoding RNAs are therapeutic targets and blueprints for therapeutic tools. (B) Inflammation-
associated miR targets. (C) Epigenome structures and modifiers. Panel A: About 99% of the human
genome does not encode proteins, but are transcriptionally highly active and give rise to a broad
spectrum of ncRNAs with regulatory and structural functions. The observation of a steeply increasing
fraction of noncoding RNAs (ncRNAs), in contrast to the modest increase in the number of protein-
coding genes during evolution from simple organisms to humans, suggests a major role of ncRNAs
in humans. ncRNAs, including microRNAs (miRs), small interference RNAs (siRNAs), or long
noncoding RNAs (lncRNAs), are involved in the maintenance of cellular homeostasis and the innate
immune response to tissue injury or infection. Panel B: While many questions regarding the overall
impact of the noncoding genome upon human health and disease are still unanswered [63–65],
available experimental and clinical evidence so far suggests a limited number of miRs (miR-17-92
cluster, miR-21, miR-142, miRNA-146a, miR-155, miR-181, and miR-223) [66] and lncRNAs [1,2,67]
may constitute therapeutic targets in cardiovascular diseases. For each individual target, however,
this depends on ensuring efficient drug targeting and clinical safety [68]. Panel C: Experimental
studies [69] shed first light upon therapeutic targeting of the epigenome epigenetics in the context
of heart failure. While epigenetic modification is a highly interesting field of research, it should be
emphasized [2] that epigenetic modifications are likely to result in pleiotropic actions, making clinical
translation particularly challenging (modified from [1,2] by permission of Eur. Heart J.).
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2.4. Novel Nucleic Acid Therapeutics Targeting Conventional Protein-Coding Genes and
Noncoding RNA Targets

Within the cardiovascular field, multiple early experimental studies [70–79] showed
that certain ncRNAs (miRNAs) are regulators of cardiovascular pathogenesis in animal
models. This of course immediately suggested they might have potential to improve diag-
nostics and could possibly even be developed into novel therapeutics. The road to in-depth
understanding of the molecular workings of at least a few of the numerous ncRNA classes,
and the development of sophisticated bioengineered nucleic acid drugs [70,80–90] safe and
efficacious for clinical applications, took two decades, counting from early experimental
work to the first clinically successful trials.

Figure 4 provides an overview on novel nucleic acid therapeutics targeting conven-
tional protein-coding genes or noncoding RNA targets with relevance in cardiovascular
disorders. Particularly advanced is the development of RNA interference (RNAi) drugs,
which use recently discovered pathways of endogenous short interfering RNAs and are
becoming versatile tools for efficient silencing of protein expression. Cardiovascular RNA
drugs may address multiple organ systems. Of note, they need not address heart or
vasculature directly, but instead, primarily liver-targeted RNA drugs are the currently
most successful development in the cardiovascular field. Thus, pioneering clinical studies
include RNAi drugs targeting liver synthesis of PCSK9, resulting in highly significant
lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of
cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs
may arise from exploitation of molecular interactions not accessible to conventional phar-
macology. For a more in-depth coverage of the enormously challenging bioengineering,
safety, and regulatory hurdles to be overcome towards clinical therapy during the past
decades, we may refer the reader to comprehensive recent reviews [1,2,91].

Whereas a series of ground-breaking clinical trials [68,84,88,89,92–112] has provided
definite evidence of the therapeutic potential of RNA interference and antisense drugs for
cardiovascular disorders, the inclusion of ncRNA profiling into the clinical diagnostic pro-
cess and prognosis assessment is less conclusive so far. Still, it may significantly contribute
to optimizing patient care in selected complex or otherwise equivocal cases. Thus, rapid
diagnosis of life-threatening idiopathic giant cell myocarditis and cardiac sarcoidosis is
significantly improved by myocardial gene expression profiling [113]. In another disease
with highly variable clinical course and outcome, human enterovirus cardiomyopathy,
differential cardiac microRNA profiling helps to predict the clinical course and the need for
antiviral therapy [114]. As another example, circulating exosomal microRNAs predict func-
tional recovery after interventional repair of severe mitral regurgitation [115]. Of course,
it needs to be emphasized that the definitive establishment of predictive or differential
diagnostic expression profiles requires confirmation by several independent clinical studies.
This has been rarely achieved so far [1,2], but the available evidence does suggest significant
clinical potential for selected clinical settings [1,2,116–119].

2.5. Continuously Emerging New Levels of Complexity of the Human Genome

The more recent history of human genetics is characterized by several revolutionary
discoveries [1,2]. After the very important sequencing of the entire genome of humans
(and meanwhile of a vast number of other species), it became apparent that 99% of the
ascertained sequence does not encode proteins. This already suggested that this huge
noncoding fraction plays truly critical and so far only very incompletely understood roles
for the proper functioning and environmental adaptations of individuals, but for evolution
itself through advanced species. Furthermore, prenatal influences, as well as environmental
factors, are known to alter the genome through epigenetic mechanisms or imprinting.
An individual’s genome is on the one hand rather fixed at DNA level (except somatic
mutations/recombinations), but its functional status may still be significantly and durably
altered by the environment via epigenetics. One may safely assume these complexities
of evolutionary advanced genomes convey a distinct survival benefit; otherwise, they
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would not have become commonplace in higher species. In the following, we consider
further data suggesting that certain genomic regions give rise to multiple immunomod-
ulatory transcripts interacting with each other in a way reminiscent of integrated elec-
tronic circuits to generate an optimized responses to complex inputs. All hitherto known
functional levels of the genome—from DNA editing [88,105,106] to epigenome-targeting
“epi-drugs“ [107,120–126]—have already been investigated with regard to possible thera-
peutic potential.
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Figure 4. Novel nucleic acid therapeutics targeting conventional protein-coding genes or noncoding
RNA targets (reprinted from Poller et al. Eur. Heart. J. 2018 [1] by permission). Cardiovascular RNA
drugs address multiple organ systems. RNA drugs do not need to address heart (A) or vasculature
(B) directly. Instead, primarily liver-targeted RNA drugs (C) are the currently most successful
development in the cardiovascular field. Another group of strategies addresses the immune system
(D), in particular monocytes-macrophages. ’Carrier’ denotes a synthetic nanoparticle and/or receptor
ligand employed to deliver an RNA drug to its tissue target. ‘Carrier’ is bound to and serves to
stabilize the RNA drug within the circulation, and to endow it with at least partial selectivity for
the target cells, in order to minimize side effects. ‘AAV9’ denotes a cardiac-targeting recombinant
adeno-associated viral vector containing a genome from which the therapeu-tic RNA sequence is
continuously transcribed. Molecular targets: apo(a), apolipoprotein (a); CCR2, chemokine C-C
motif receptor 2; CHAST, Cardiac hypertrophy associated transcript; PCSK9, proprotein convertase
subtilisin/kexin type 9; PLB, phospholamban. (modified from [1] by permission of Eur. Heart J.).

To illustrate the multi-level functional integration of major strands of the human
genome, we invoke the evolutionarily conserved NEAT1-MALAT1 cluster encountering
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a high level of interest in both cardiovascular medicine and oncology. In the cardiovas-
cular field, suppression of lncRNA NEAT1 was observed in circulating immune cells of
post-myocardial infarction (MI) patients. Mice lacking the lncRNAs NEAT1 or MALAT1
displayed immune disturbances affecting monocyte-macrophage, as well as T cell differenti-
ation, rendering the immune system highly vulnerable to stress stimuli, thereby promoting
the development of atherosclerosis. Uncontrolled inflammation is also a key driver of
multiple other diseases.

The human NEAT1-MALAT1 gene cluster generates large noncoding transcripts re-
maining nuclear, while tRNA-like transcripts (mascRNA, menRNA), enzymatically gener-
ated from these precursors, translocate to the cytosol (Figure 5). NEAT1-/- and MALAT1-/-

mice display massive atherosclerosis and vascular inflammation [127–130]. A recent study
found that these tRNA-like molecules are critical components of innate immunity. They
appear as prototypes of a new class of noncoding RNAs distinct from others (miRNAs,
siRNAs) by biosynthetic pathway (enzymatic excision from lncRNA precursors) and intra-
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Figure 5. The NEAT1-MALAT1 genomic region encodes a biological integrated circuit controlling
innate immune sensing and cell–cell interactions (reprinted from Gast et al. Cells 2022 [131] by
permission). From an evolutionary perspective, the NEAT1-MALAT1 genomic region appears as
a highly integrated RNA processing circuitry critically contributing to immune homeostasis. Its
components MEN-β, MEN-ε, menRNA, MALAT1, TALAM1, and mascRNA are obviously set for
well-balanced interactions with each other. Genetic ablation of any element therefore leads to major
dysfunction. Beyond prior work in NEAT1 and MALAT1 knockout mice, a recent cell biological study
identified menRNA and mascRNA as novel components of innate immunity with deep impact upon
cytokine regulation, immune cell–endothelium interactions, angiogenesis, and macrophage formation
and functions. These tRNA-like transcripts appear to be prototypes of a class of ncRNAs distinct from
other small transcripts (miRNAs, siRNAs) by biosynthetic pathway (enzymatic excision from lncRNAs)
and intracellular kinetics, suggesting a novel link for the apparent relevance of the NEAT1-MALAT1
cluster in cardiovascular and neoplastic diseases. (Modified from [131] by permission from Cells).

CRISPR-generated human ∆mascRNA and ∆menRNA monocytes/macrophages display
defective innate immune sensing, loss of cytokine control, imbalance of growth/angiogenic
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factor expression impacting upon angiogenesis, and altered cell–cell interaction systems.
Antiviral response, foam cell formation/oxLDL uptake, and M1/M2 polarization, are
defective in ∆mascRNA and ∆menRNA macrophages, defining the tRNA-like molecules’
first described biological functions [131]. This CRISPR-Cas9-based cell biological study
revealed that menRNA and mascRNA represent novel components of innate immunity
arising from the noncoding genome.

For future translational studies, the approach to investigate menRNA and mascRNA
directly suggests new avenues, since their highly dynamic levels may be more closely
related to clinical parameters and clinical course than those of their nuclear precursors. The
observed foam cell formation/oxLDL uptake defects of ∆menRNA macrophages suggest
menRNA and mascRNA to be involved in atheropathogenesis. They may have value as
therapeutic targets for pharmacological intervention, as they are more easily accessible than
their complex nuclear-located precursor molecules. A prior observation that recombinant
mascRNA [130] abolishes virus replication in cardiomyocytes in fact suggests therapeutic
potential of mascRNA and menRNA-targeting interventions.

From a more general point of view, the NEAT1-MALAT1 region appears as archetype
of a functionally highly integrated RNA processing system [131]. Figure 5 summarizes
knowledge from a number of ground-breaking studies from several research groups and
illustrates the surprising complexity and many unknowns of this genomic region. We
propose to view the NEAT1-MALAT1 region as a biological type of highly integrated circuit
deeply involved in the control of innate immune sensing and cell–cell interactions.

Two other recent studies illustrate the power of state-of-the-art genetics to reveal
fundamentally new insights into immune system evolution [132] and large-scale human
evolution in general [133]. Thus, a protective HLA extended haplotype was found to
outweigh the major COVID-19 risk factor inherited from Neanderthals in the Sardinian
population [132]. Another large study [134] conducted multilocus genotyping of SARS-
CoV-2 genomes sampled globally and found evidence of the majority of SARS-CoV-2
infections in 2020 and 2021 caused by genetically distinct variants that likely adapted to local
populations. For further information on novel insights into genome structure and function,
we may refer the reader to a series of recent landmark papers and websites [64,135–150].

Beyond the developments as reviewed in Section 2.3, a further level of complex-
ity, i.e., the human epigenome and its lifetime dynamics in health and cardiovascu-
lar disease [91,151–160], emerged as holding promise for possible therapeutic exploita-
tion [120–126,161,162]. At the present time, however, the impact of epigenetic drugs upon
clinical medicine is still limited as compared to the nucleic acid drugs discussed above.

3. Current Expansion of Virological Research in the Cardiovascular Field
3.1. Impact of Viral Infections upon the Cardiovascular System

Infection of the myocardium with cardiotropic viruses is one of the main causes of
myocarditis and acute and chronic inflammatory cardiomyopathy (DCMi). However, viral
myocarditis and subsequent dilated cardiomyopathy is still a challenging disease to diag-
nose and to treat and is therefore a significant public health issue globally [163]. Advances
in clinical phenotyping and thorough molecular genetic analysis of intramyocardial viruses
and their activation status have incrementally improved our understanding of molecular
pathogenesis and pathophysiology of viral infections of the heart muscle. To date, several
cardiotropic viruses have been implicated as causes of myocarditis and DCMi. These
include, among others, classical cardiotropic enteroviruses (Coxsackieviruses B) [44,164],
the most commonly detected parvovirus B19 [165], human herpes virus 6 [166,167], and
hepatitis C virus (HCV) [168,169]. An entirely unwelcome newcomer is the respiratory
virus which has triggered the worst pandemic since a century ago, SARS-CoV-2, whose
involvement and impact in viral cardiovascular disease is under scrutiny [170–175]. Despite
extensive research into the pathomechanisms of viral infections of the cardiovascular sys-
tem, our knowledge regarding their treatment and management is still incomplete. Figure 6
displays some key features of cardiotropic viral infections, including the critical molecular
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structures by which viruses may possibly gain access to their cellular targets. Unless a
cell is expressing ‘suitable’ cell surface receptors, cellular entry of the virus will not occur.
Importantly, different viruses engage distinct receptors and this determines which specific
cells within a tissue they are able to reach, i.e., their tropism within the host. Consecutively,
tropism determines the development and progression of the disease. Accordingly, much
effort is devoted to the elucidation of tropism. Thus, SARS-CoV-2 cellular entry involves
binding to ACE2 receptor and cleavage by host cell surface protease TMPRSS2. Once entry
occurs through the endo-lysosomal pathway, TLR- and RLR-dependent innate immune
signaling is initiated, which subsequently triggers infiltration by diverse inflammatory
cell populations. For further details, we refer the reader to excellent recent reviews sum-
marizing current knowledge on viral infections of the heart, focused on pathophysiology,
diagnostics, clinical relevance, and cardiovascular consequences, as well as current and
emerging treatment strategies [163].
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Figure 6. Cellular receptor-mediated entry and innate immune activation mechanisms of human-
pathogenic viruses (modified from Cardiovasc. Res. 2022 [163] by permission). Depicted are the most
abundant cardiotropic viruses, as well as SARS-CoV-2, and their molecular entry mechanism into car-
diovascular cells in the heart. CVB-3 and ADV enter cardiomyocytes via binding the transmembrane
CAR. In addition, decay-accelerating factor serves as CVB-3 receptor. Integrins (αvβ3 and αvβ5)
promote ADV internalization. B19V targets endothelial cells by binding to erythrocyte P antigen
and integrin αvβ1 as co-receptor. EBV efficiently infects resting human B lymphocytes, whereas
HHV6 primarily targets CD4+ T lymphocytes. Using CD46 as cellular receptor, HHV6 can directly
infect endothelial cells and subsequently enter adjacent tissues. SARS-CoV-2 cellular entry involves
specific binding to the ACE2 receptor, as well as proteolytic cleavage by the host cell surface serine
protease TMPRSS2. For SARS-CoV-2, several cardiac targets including vascular endothelial cells and
cardiomyocytes are proposed. Moreover, pulmonary-derived macrophages are suggested, carrying
the virus into the myocardium. As a consequence of receptor-dependent cellular entry through the
endo-lysosomal pathway, a TLR innate immune signaling cascade is initiated, followed by infiltration
by inflammatory cells (T and B lymphocytes, natural killer cells, bone-marrow derived monocytes)
which differentiate into M1 and M2 macrophages. ds, double stranded; ss, single-stranded. (Modified
from [163] by permission of Cardiovasc. Res.).

Prophylaxis and vaccination: Whereas conventional antiviral vaccine development meth-
ods have proven efficient against SARS-CoV-2, the most recent virus inducing the COVID
19 pandemic, novel RNA-based vaccines have yielded exceptionally good results against
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this pathogen. The revolutionary method successfully used to develop the BioNTecVC and
ModernaVC vaccine was never before employed at scale, and indeed, the RNA modifica-
tion/stabilization/purification methods, as well as the associated nanoparticle delivery
tools, are of recent origin. Importantly, as emphasized by the authors of the landmark
paper reporting the results of the BioNTecVC vaccine trial, development of the vaccination
RNA sequence started immediately after publication of the novel virus genome sequence,
which was derived soon after the recognition of COVID-19 as a new disease entity. Speed
of development and adaptability to entirely new or variant viruses, which unfortunately
are most likely to emerge in the future, bring significant advantages lasting beyond the
current pandemic.

Need for highly versatile antiviral tools: The current pandemic, originating from trans-
mission of a mutated animal virus to men, has heightened concerns and awareness that
amongst the vast number of animal viruses, others may cross the species barrier to humans.
Therefore, foresighted expansion of our antiviral arsenal appears warranted. Fortunately,
novel therapeutic approaches as reviewed in Section 2.3 offer high versatility, enabling
rapid adaption to essentially any coding or noncoding, viral or host cell, molecular tar-
get [176–184]. Further, their large-scale production will follow similar (i.e., RNA, DNA,
and XNA) synthetic pathways, enabling massive up-scaling of therapeutics production
if required.

Advanced molecular virological tools: While several human-pathogenic cardiotropic
viruses are identified, there is good reason to believe that traditional molecular virological
tools (e.g., PCR, RT-PCR) will fail to recognize novel viruses with any of those currently
in focus. Thus, the etiology of giant cell myocarditis (GCM), most fulminant and life-
threatening of the inflammatory cardiomyopathies, is unknown. GCM presents with
extensive myocardial inflammation that only responds to high-dose immunosuppression.
GCM has been associated with other autoimmune diseases, suggesting a relevant au-
toimmune component in its pathogenesis. However, the phenomenon of giant cells has
been observed during viral infections such as herpes, suggesting a contribution of viral
pathogens. In a recent paper, a study of plasma, peripheral blood mononuclear cells,
endomyocardial biopsies (EMBs), and cardiac tissue samples from explanted hearts of
patients with GCM and other subtypes of myocarditis [185], Virome Capture Sequencing for
Vertebrate Viruses (VirCapSeq-VERT) was employed, a novel method that simultaneously
screens for all known vertebrate viruses with sensitivity similar to real-time PCR [185,186].
The entire field of basic and clinical virology took great advantage from broad application
of novel technologies and large—sometimes global—research consortia [187,188]. Within
the cardiovascular field, extended use of these novel, more comprehensive virological
tools may well lead to important insights into the pathogenesis of long-known but still
etiologically enigmatic human diseases (cardiac sarcoidosis, eosinophilic cardiomyopathy,
GCM, and others.)

3.2. The Human Genetic Architecture of SARS-CoV-2

The current COVID-19 pandemic, caused by infection with SARS-CoV-2, resulted in
enormous health and economic burden worldwide [189–192]. One of the most remarkable
features of SARS-CoV-2 infections is the extremely high variability of clinical sequelae,
ranging from asymptomatic patients to life-threatening pneumonia and acute respiratory
distress syndrome [163,170–173,193–200]. Since the rise of the COVID-19 pandemic, there
has been an urgent need to identify pathophysiological characteristics leading to a severe
clinical course in patients infected with SARS-CoV-2 [163].

Although established host factors correlate with disease severity (e.g., increasing
age, male sex, higher body-mass index), these risk factors alone do not explain all of the
variability in disease severity observed across individuals. Genetic factors contributing
to COVID-19 susceptibility and severity may provide new biological insights into dis-
ease pathogenesis and identify mechanistic targets for therapeutic development or drug
repurposing, as treating the disease remains a highly important goal despite the recent
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development of vaccines. A large number of genome-wide association studies (GWAS) ad-
dressing the contribution of common genetic variation to COVID-19 in different populations
worldwide have provided support for the involvement of several genomic loci associated
with COVID-19 severity and susceptibility [134,184,193–196,201–207]. The global COVID-
19 Host Genetics Initiative (COVID-19 HGI) (on https://www.covid19hg.org/) (accessed
on 31 October 2022) [208] recently reported the results of meta-analyses of 46 studies from
19 countries for host genetic effects [196]. Smaller studies analyzed, e.g., the association
between COVID-19 severity and HLAs in 435 individuals from Germany (n = 135), Spain
(n = 133), Switzerland (n = 20), and the United States (n = 147). This study described a
biologically plausible potential association of HLA-C*04:01 with severe clinical course of
COVID-19, as HLA-C*04:01 has fewer predicted binding sites for relevant SARS-CoV-2
peptides compared to other HLA alleles.

For an excellent overview and discussion of invoked loci and their clinical implications,
we refer the reader to van der Made et al. [201], who provide comprehensive tables with
significant large-scale genome-wide associations in patients with severe or critical COVID-
19. Importantly, they also review and discuss the reported outcomes of SARS-CoV-2
infection in patients with known inborn errors of immunity (IEI). One recent study [202]
important for the assessment of GWAS emphasizes the impact of COVID-19 phenotype
definitions, and revealed distinct patterns of genetic association and protective effects
upon their replication analysis of 12 previously reported COVID-19 genetic associations.
From a clinical practice perspective, GWAS have not identified a single gene locus with
overwhelming impact upon disease course suggesting population-wide screening for high-
risk individuals. On the other hand, for severely affected patients, genetic screening for
IEI as suggested by van der Made et al. [201] may reveal individual clinical insights with
possible therapeutic use.

Another type of contribution of large-scale molecular genetic analyses to better under-
stand the variable clinical expression of SARS-CoV-2 infections, and the global dynamics of
virus evolution, has been published by Chan et al. [134]. They have described the contrast-
ing epidemiology and population genetics of COVID-19 infections defined by multilocus
genotyping of the SARS-CoV-2 genomes. Their analysis of 22,164 SARS-CoV-2 genomes
sampled worldwide suggests that the majority of SARS-CoV-2 infections in 2020 and 2021
were caused by genetically distinct variants that likely adapted to local populations.

3.3. Cardiovascular Immunobiology of COVID-19 and Long COVID Syndromes

With regard to cardiovascular medicine, it is desirable to know specific genetic risk fac-
tors for the development of myocarditis during COVID-19 or upon
vaccination [118,170–175,209–214], or for development of long COVID
syndromes [195,215–218].

Fortunately, SARS-CoV-2 is rather rarely directly causing severe myocarditis or car-
diomyopathies [170–175]. While SARS-CoV-2 may infect human engineered heart tissues
and models of COVID-19 myocarditis [174], the observed effects in COVID-19 patients
are rather induced by secondary immune phenomena than by the virus itself [171]. Since
there is continuous molecular evolution of the SARS-CoV-2 virus, however, it is important
to note that human endothelial cells have shown increased susceptibility to infections by
SARS-CoV-2 variants [198]. In COVID-19 patients developing any myocardial involve-
ment, the molecular virological and immunological tools outlined in Section 3.1 should
be employed to characterize the myocardial disease, since this may enable individualized
measures beyond standard heart failure and antiarrhythmic therapy.

4. Novel Immune Pathomechanisms at Organ and Systemic Level

The individual response of the innate immune system to environmental (e.g., vi-
ral or other microbial infections) as well as to endogenous stimuli (e.g., tissue injury
of any kind) is partially determined by genetic factors, but subject to modulation by
non-genetic factors (e.g., stress of various types). While this has been well known for
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decades [219–221], recent research employing novel research tools [222–232] has uncovered
interactions between brain and immune system at unprecedented resolution. Similarly,
advanced molecular genetic methods [187,233–238] contributed to elucidate mechanistic
pathways linking the GIT microbiome to the systemic innate immune response with its
impact upon cardiovascular [239,240] and neurological diseases [241,242]. Below, we try
to assess the clinical translational status of these research fields, focusing on therapeutic
modulation of stress-induced disturbed brain–immune system interactions (Section 4.1),
and of the GIT microbiome and its products (Section 4.2).

4.1. Brain–Immune System Interactions

The adverse effect of psychological stress upon various human diseases has been well
known since decades [219–221] and several stress-induced brain–immune system inter-
actions have been elucidated at cellular and molecular levels [220,243]. It is also obvious
that stress reduction is highly desirable with regard to cardiovascular diseases [244–247],
although often difficult to achieve in everyday life or the clinical setting. Any new avenue
arising from recent neuroimmune research would be most welcome, of course. Clinically,
neuromodulation strategies have been evaluated to reduce inflammation and lung compli-
cations of COVID-19 patients [248], and cardiovascular sequelae in posttraumatic stress
disorders [249]. In experimental animal models, other approaches have been addressed:
brain control of humoral immune responses by behavioural modulation [250]; modulation
of the gut microbiome regulating psychological stress-induced inflammation [251,252];
IL-17A blockade or depletion of Th17 cell-inducing gut microbiota to reduce stress-induced
vaso-occlusive episodes (VOEs) of sickle cell disease as a vascular disease model [251].

Folk wisdom has long suggested that emotional stress takes a toll on health. In the
cardiovascular field, classical examples are acute myocardial infarction and Takotsubo
syndrome [253]. The field of psychoneuroimmunology is now providing novel mechanistic
insight into the pathways through which psychological stress and negative emotions
are translated into physiological changes [221]. Neuroimmunology in general is one
of the fastest-growing fields in the life sciences aiming to stepwise elucidate the highly
complex interactions between nervous system and immune system at the molecular and
cellular level [232,253–256]. It has been long known that acute and short-term stress induce
rapid and significant redistributions of immune cells among different body regions. The
underlying mechanisms are under close scrutiny, as stress-induced leukocyte redistribution
appears to be of fundamental importance for survival. It appears critical to direct suitable
immune cells to defined target organs in response to diverse external or internal challenges,
thus significantly enhancing speed and efficacy of the immune response [232,254–256].

Despite this secured general knowledge, the details of the mechanistic pathways
linking stress networks in the brain to peripheral leukocytes remain poorly understood. A
recent experimental study has, for the first time, demonstrated that distinct brain regions
shape leukocyte distribution and function throughout the body upon different types of
acute stress in mice. Employing optogenetics and chemogenetics, this work revealed that
motor circuits induce rapid neutrophil mobilization from the bone marrow to peripheral
tissues via skeletal-muscle-derived neutrophil-attracting chemokines. Conversely, the
paraventricular hypothalamus controlled monocyte and lymphocyte egress from secondary
lymphoid organs and blood to the bone marrow through direct, cell-intrinsic glucocorticoid
signaling. These stress-induced, counter-directional, population-wide leukocyte shifts were
associated with altered disease susceptibility. On the one hand, acute stress changed innate
immunity by reprogramming neutrophils and directing their recruitment to sites of injury.
On the other hand, corticotropin-releasing hormone neuron-mediated immune cell shifts
protected against the acquisition of autoimmunity, but impaired immunity against SARS-
CoV-2 and influenza infection. These data identified distinct brain regions differentially and
rapidly tailoring the immune cell landscape during psychological stress, thereby calibrating
the ability of the immune system to respond to physical threats [232].
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A recent study in mice and humans [256] revealed that sleep exerts lasting effects on
hematopoietic stem cell function and diversity. In mice, sleep fragmentation altered the
hematopoietic stem and progenitor cells (HSPCs) epigenome, priming cells for exagger-
ated inflammatory bursts. In humans, sleep restriction altered the HSPC epigenome and
activated hematopoiesis. This work provides, for the first time, mechanistic insight into the
prolonged effects of sleep disruption, another well-known stress factor.

A third neuro-immune study investigated whether brain activities may directly control
adaptive immune responses in lymphoid organs [250]. It was found that splenic denervation
in mice specifically compromised plasma cell formation during a T cell-dependent, but not T
cell-independent, immune response. Neurons in the central nucleus of the amygdala (CeA)
and the paraventricular nucleus (PVN) expressing corticotropin-releasing hormone (CRH)
connected to the splenic nerve. Ablation or pharmacogenetic inhibition of these neurons
reduced plasma cell formation, while pharmacogenetic activation of these neurons increased
plasma cell abundance. A behaviour regimen, with mice made to stand on an elevated
platform, led to activation of CeA and PVN CRH neurons and increased plasma cell formation.
In immunized mice, the elevated platform regimen induces an increase in antigen-specific IgG
antibodies. By identifying a specific brain–spleen neural connection autonomically enhancing
humoral responses, and by demonstrating immune stimulation by behaviour modification,
this experimental study revealed brain control of adaptive immunity, suggesting possible
enhancement of immunocompetency by behavioural intervention.

Another study, employing retrograde tracing, and chemical as well as surgical and
chemogenetic manipulations, identified a sympathetic aorticorenal circuit that modulates
ILC2s in gonadal fat and connects to higher-order brain areas, including the paraventricular
nucleus of the hypothalamus [257]. Similar to the other work, these results identify a neuro-
mesenchymal unit translating signals from long-range neuronal circuitry into adipose-
resident ILC2 function, thereby modulating host metabolism and obesity.

4.2. Immune Impact and Therapeutic Perspectives of the Intestinal Microbiome

The gastrointestinal tract (GIT) hosts a pool of immune cells representing 70% of
the entire immune system, and the largest population of macrophages in the human
body [250]. Through its local immune system, the GIT detects and responds to the local
microbiome [242], but also impacts upon remote immune processes [258–273]. During the
past years, multiple experimental studies have revealed that the microbiome and local
immune system of the GIT may modulate distant inflammation within the cardiovascular
system and brain [221,223,241,242,251,274–282]. However, whereas experimental models
incriminate disturbed gut microbiota in a number of diseases (CNS disorders, atherosclero-
sis), data from human studies are sparse [257,276,277,283]. A theoretical basis for the use
of microbiota-directed therapies in these disorders has been developed, but support from
stringent clinical trials is missing and clinical confirmation is not yet received.

Regarding the cardiovascular system, a recent combined experimental and clinical
study identified a novel regulatory circuit that links the gut microbiota metabolite propi-
onic acid (PA), a short-chain fatty acid, with the gut immune system to control intestinal
cholesterol homeostasis. The mechanism involves PA-mediated increase in regulatory T cell
numbers and IL-10 levels in the intestinal microenvironment, subsequently suppressing the
expression of NPC1L1, a major intestinal cholesterol transporter. In a proof-of-concept clin-
ical study, it was demonstrated that oral supplementation of PA over the course of 8 weeks
significantly reduced LDL and non-HDL cholesterol levels in hypercholesterolaemic sub-
jects. The data suggest PA supplementation may improve cholesterol homeostasis and
contribute to cardiovascular health. Another translational perspective is modulation of the
gut microbiome by dietary approaches, or by prebiotics to sustainably increase the intestinal
abundance of PA-producing species as an “intrinsic“ concept of atheroprotection [239,240].
An experimental study in mice found that a subset of integrin β7+ gut intraepithelial T
lymphocytes within the small intestine enterocyte layer modulates systemic metabolism in
a manner advantageous when food is scarce, but detrimental upon consumption of high
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fat and sugar diets [284]. This metabolic checkpoint might be therapeutically addressed by
modulation of the GIT microbiome, e.g., through dietary approaches or prebiotics.

Critical impact of GIT microbiota upon the host immune system had previously
been discovered in mice. Murine studies are paramount for the elucidation of basic
biological phenomena, but have several limitations. These include conflicting results caused
by divergent microbiota, and limited translational research value. Rosshart et al. [285]
transferred C57BL/6 embryos into wild-type mice, thus creating "wildlings”. These had
natural microbiota and pathogens at all body sites while retaining the well-defined and
tractable genetics of the parent inbred strain. The bacterial microbiome, mycobiome,
and virome [187,233–238] of “wildlings“ affected their immune landscape in multiple
organs. Their gut microbiota outcompeted lab strain microbiota and proved resilient to
environmental challenge. “Wildlings“, but not the lab mice, phenocopied human immune
responses in two preclinical investigations. This landmark study demonstrated that a
combined natural microbiota- and pathogen-based model holds promise to enhance the
reproducibility of experimental biomedical research and to improve translational success
of immunological studies.

Regarding the brain, a series of important experimental studies uncovered hitherto
unsuspected bidirectional relationships between gut and brain, challenging the classical
view of the central nervous system as an immune-privileged site. These studies identified
new specialized immune cell subtypes located to distinct anatomical sites: skull and
vertebral bone marrow are myeloid cell reservoirs for meninges and CNS parenchyma [286];
the meninges contain diverse immune cells populations: macrophages, T cells, B cells [287],
plasma cells producing IgA essential for defense of the central nervous system [288], and
gut-licensed NK cells driving anti-inflammatory astrocytes [289]. Furthermore, host GIT
microbiota constantly control maturation and function of microglia in the CNS [290–294].
They are also capable of reversibly modulating behavioural and physiological anomalies
associated with neuroinflammation [285,295–297].

Figure 7 provides a synopsis of the novel players in CVD innate immunity discussed
so far (noncoding genome/epigenome, cardiotropic viruses, brain–immune system and
gut–brain–immunity axis).J. Clin. Med. 2023, 12, 335 19 of 35 
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under intense scrutiny, taking advantage of advanced research tools. (1) Novel molecular components
of the human noncoding genome and epigenome emerged as modulators of immunity acting through
non-canonical pathways. (2) The intestinal immune system and microbiome exert a far-reaching
impact upon distant tissues (cardiovascular system, brain). (3) Brain–immune system interaction
networks are becoming revealed at unprecedented resolution. (4) Classical environmental risk factors,
e.g., psychosocial stress or viral infections, are under intense investigation, again triggered by the
SARS-CoV-2 pandemic with major direct and indirect impact upon cardiovascular health. In all of
these fields, recent insights into human molecular genetics, as well as advanced genetic research tools,
made major contributions.

5. Clinical Perspectives of Recent Studies into Novel Immune Mechanisms
5.1. Recognition of High Genetic Risk for Severe COVID-19 or Cardiovascular Involvement

One of the most vexing features of SARS-CoV-2 infections [298] is the extraordinary
variability of clinical consequences, ranging from asymptomatic to pneumonia and acute
respiratory distress syndrome. Of course, variable clinical course is common in diverse
viral diseases, but rarely to such an extent as observed with SARS-CoV-2. Established
host factors such as high age or body-mass index or concomitant diseases correlate with
disease severity, but do not explain all of the variability observed across individuals. These
observations have driven most extensive research into genetic factors contributing to
COVID-19 susceptibility and severity [163,170–173,193–200], and the wish to identify oth-
erwise healthy individuals at high genetic risk for severe COVID-19 will persist, whatever
progress regarding prophylaxis or treatment options is made.

From the perspective of individualized medicine, recognition of particularly high
individual risk may enable tailor-made approaches towards these individuals, even when
the disease is already ongoing. In that regard, van der Made et al. [201] have emphasized
the often critical outcomes of SARS-CoV-2 infection in patients with defined inborn errors
of immunity which confer specifically addressable weaknesses of the immune defense.

5.2. Inflammation as Therapeutic Target in Life-Threatening Arrhythmias and Heart Failure

Anomalous immune activation and macrophages are involved in multiple types of
cardiomyopathies. From a clinical perspective, there are multiple obstacles to unequiv-
ocal detection of myocardial inflammation as a precipitating factor for life-threatening
arrhythmias or cardiac remodeling and failure. Even in narrowly focused patient co-
horts for whom genetic predisposition is suspected—such as by detection of pathogenic
variants— this requires significant additional diagnostic work-up (cardiac MRI, EMB, PET-
CT), which may not be feasible in all cases. It is highly likely that only a small fraction of
all inflammation-triggered arrhythmic events or progressive heart failures will be clinically
detected, generating a blind spot regarding the potential of anti-inflammatory treatments
in this context. This deficiency strongly suggests consistent interdisciplinary translational
work taking advantage of state-of-the-art genetics, immunology, and clinical cardiology, in
particular in younger patients presenting with unexplained symptoms and signs. These are
most likely to benefit from thorough examination to enable delay of disease progression or
even cure.

Notably, anti-arrhythmic potential of immunosuppression does not rely on genetic
SCN5A variants because inflammation per se may cause dysfunction of normal SCN5A
channels, generating a broader clinical incentive to follow this line of research. In view of
possible therapeutic relevance, it appears recommendable to further evaluate the hypothesis
of independent immunologic risk in major SCN5A variant-carrier cohorts [25]. For further
in-depth discussion of recent approaches towards the potential of immunomodulating
therapies in human cardiomyopathies, we may refer the reader to a recent review covering
the field from classical inflammatory cardiomyopathies to immune-checkpoint inhibitor-
associated and SARS-CoV-2-associated myocardial inflammation [29].
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5.3. Remaining Clinical Challenges in Gastrointestinal Microbiome and Neuroimmune
Stress Research

The novel immune pathomechanisms at organ and systemic level discussed in Section 4
have certainly opened new avenues for clinical research. Experimental studies have docu-
mented significant impact of the gut microbiome and gut–brain–axis upon remote inflam-
mation in cardiovascular system and brain. The rationale for the use of microbiota-directed
therapies in these disorders is obvious; a clinical pilot trial was recently published [240] but
final support from stringent clinical trials is not yet available.

Within the field of psychoneuroimmunology, recent landmark experimental studies
employing advanced genetic and neurosurgical methods have provided novel mechanistic
insights into adverse immune impact resulting from different types of stress. Remarkable is
their elucidation of differential impact arising from defined brain areas and neuroimmune
pathways. These recent methodological developments are likely to enable significantly
deeper insight into long-known classical clinical phenomena, such as stress-induced acute
myocardial infarction or Takotsubo syndrome [253]. Interdisciplinary work involving
neurology, immunology, and cardiology will increasingly exploit the new analytical tools.
Translational evaluation of their possible relevance in clinical cardiovascular medicine is
eagerly awaited.

Figure 8 critically summarizes the clinical translational status of insights from the
novel research fields, classified from experimental animal studies, through clinical research
and pilot trials, to large-scale clinical trials. Among the research fields, molecular genetics
has made considerable contributions to improve clinical diagnostics and therapy within
and beyond cardiovascular medicine.
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6. Future Directions for Interdisciplinary Translational and Clinical Research

While multiple excellent recent reviews have addressed diverse important aspects
of immunological research into cardiovascular disorders, we have deliberately focused
on selected studies characterized by their use of particularly advanced methodology in
preclinical or clinical settings. Due to the immense worldwide efforts in the field during
the past years, the present review cannot be comprehensive, but instead tries to convey
an up-to-date perspective on promising developments which may shape research at the
crossroads of cardiology–immunology–neurology.

During the next few years, extensive use of the new research tools should lead to a
deeper understanding of the processes at these crossroads, long recognized, but still far from
being fully exploited in clinical medicine. Although several challenges need to be overcome
before the full impact of these far-reaching new findings will hit the clinical arena, the
above-reviewed studies already exemplify an overarching aspect, i.e., the interdisciplinary
character of work to come.

Key Messages

• Practice-ready affordable advanced genetic diagnostics has entered clinical practice
and is continuously providing important insights, not only into an individual’s genetic
risk, but perhaps also in uncovering new pathomechanisms suitable for individualiz-
ing therapy.

• After decades of experimental and translational work, progress from traditional phar-
macological towards nucleic acid-based therapies for cardiovascular diseases has been
achieved. Insights from basic genetic research (RNA interference, antisense drugs,
CRISPR-Cas) are emerging as fruitful for clinical medicine.

• Fundamentally improved understanding of the intestinal immune system and mi-
crobiome with experimental evidence for far-reaching immune impact upon cardio-
vascular system and brain has triggered clinical trials evaluating the potential of
microbiome modulation.

• The rapidly evolving field of neuroimmunology has identified novel brain–immune
system interaction networks revealed at unprecedented resolution, and documented
grave adverse impact of stress upon cardiovascular and virological diseases.
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