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Relativistic Bohmian trajectories of photons via
weak measurements
Joshua Foo 1✉, Estelle Asmodelle 1, Austin P. Lund 1,2 & Timothy C. Ralph1✉

Bohmian mechanics is a nonlocal hidden-variable interpretation of quantum theory which

predicts that particles follow deterministic trajectories in spacetime. Historically, the study of

Bohmian trajectories has mainly been restricted to nonrelativistic regimes due to the widely

held belief that the theory is incompatible with special relativity. Here, we present an

approach for constructing the relativistic Bohmian-type velocity field of single particles. The

advantage of our proposal is that it is operational in nature, grounded in weak measurements

of the particle’s momentum and energy. We apply our weak measurement formalism to

obtain the relativistic spacetime trajectories of photons in a Michelson–Sagnac inter-

ferometer. The trajectories satisfy quantum-mechanical continuity and the relativistic velocity

addition rule. We propose a modified Alcubierre metric which could give rise to these

trajectories within the paradigm of general relativity.
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Ever since the conception and early development of quantum
mechanics, there have been debates over how to consistently
interpret the mathematical objects it defines. Many of these

debates, such as those concerning the physical meaning of the
wavefunction1–3, continue to this day. The predominant view
among present-day physicists is the Copenhagen interpretation,
which treats the square of the wavefunction,

ρSðx; tÞ ¼ jψðx; tÞj2; ð1Þ

as the probability density of finding a particle at the spacetime
point (x, t), a postulate known as the Born rule. Thus, the
Copenhagen interpretation is, by its very definition, an intrinsi-
cally probabilistic formulation of quantum theory. This inde-
terminacy is also manifest in the Heisenberg uncertainty
principle, which forbids observations that would permit simul-
taneous knowledge of the precise position and momentum of a
particle.

In contrast with standard interpretations of quantum theory,
Bohmian mechanics is a deterministic, nonlocal theory first pro-
posed by de Broglie4 and then formalised by Bohm5,6. As described
in Bell’s famous paper, it is a theory of the nonlocal hidden-variable
type7,8. Specifically, the wavefunction (itself evolving according to the
Schrödinger equation) determines the evolution of a nonlocal
guiding potential which in turn, governs the dynamics of the parti-
cles. Notably, the Bohmian interpretation recovers many of the
standard results of nonrelativistic quantum mechanics such as the
Born rule, where instead of describing the probability distribution of
a particle’s location, ρS(x, t) is now interpreted as the density of
particle trajectories given some initial distribution.

Bohmian mechanics has been applied to a diverse number of
nonrelativistic settings. Early works by Hirschfelder et al.9,10,
Philippidis et al.11, and Dewdney et. al.12 focused on the scat-
tering of massive particles off different kinds of potential barriers.
Bohm, Dewdney et al. and Durr et al. extended the theory to
include spin-1/2 particles and provided a description of EPR
correlations13–15; Leavens applied it to the measurement of
arrival times16, while others have utilised Bohmian mechanics in
the context of quantum chaos and interference17–19.

Interest in Bohmian mechanics was reinvigorated following the
development of a weak measurement model by Wiseman20, from
which an operational definition for the velocity and hence the
spacetime trajectory of nonrelativistic particles can be determined
(by operational, we mean a precise, step-by-step set of instruc-
tions using only fundamental concepts such as measurement and
time-evolution). Weak measurements were first proposed by
Aharanov, Albert, and Vaidman21 as a method of performing
arbitrarily precise measurements of quantum-mechanical obser-
vables with minimal system disturbance. A weak measurement of
an observable â is one which only weakly perturbs the system of
interest, but concomitantly carries a large amount of measure-
ment uncertainty. Performing repeated weak measurements on
an ensemble scales this uncertainty as 1=

ffiffiffiffi
N

p
(where N is the

number of measurements) allowing one to estimate the average
value hâi with arbitrarily high precision.

A ‘weak value’ extends this notion of weak measurement by
introducing a subsequent strong measurement and performing
post-selection on the ensemble based on this strong measurement.
Formally, the weak value of â, denoted hϕjhâwijψi, is the mean value
of â obtained from many weak measurements on an ensemble of
particles each prepared in the state jψi, postselecting only those
particles where a later strong measurement reveals the system to be
in the state jϕi. This results in the following definition1:

hϕjhâwijψðtÞi ¼ Re
hϕjâjψðtÞi
hϕjψðtÞi : ð2Þ

From this starting point, Wiseman was able to connect the non-
relativistic Bohmian velocity field with the notion of weak values20.

Using Wiseman’s weak measurement framework, two land-
mark experiments by Kocsis et al.22 and Mahler et al.23 were able
to infer the Bohmian trajectories of nonrelativistic particles by
constructing a velocity field in terms of a momentum weak value:

Vðx; tÞ ¼ hxjhp̂wijψðtÞi
m

; ð3Þ

where jxi is a position eigenstate, m is the effective mass of the
particle and jψðtÞi is the initial state of the wavefunction. Equa-
tion (3) can itself be deduced from the nonrelativistic definition of
velocity:

Vðx; tÞ ¼ px
m
: ð4Þ

The above mentioned experiments highlight the explanatory power
of Wiseman’s formulation of nonrelativistic Bohmian mechanics; it
is a manifestly operational framework which utilises a measure-
ment formalism to construct the Bohmian velocity field, from
which the resulting particle trajectories can be inferred. Although
the existence of deterministic particle trajectories in Bohmian
mechanics contrasts the more conventional probabilistic inter-
pretation of the wavefunction, the underlying predictions are
consistent between both perspectives.

Despite its successes in the nonrelativistic domain, a formidable
challenge continues to face the proponents of Bohmian mechanics,
namely its apparent conflict with special relativity. Many prior
studies have demonstrated the difficulties and interpretive issues in
constructing a physically meaningful theory for relativistic scalar
particles, particularly when utilising the Klein–Gordon equation as
a starting point6,24. Indeed it is well-known that the time-
component of the conserved four-current density in the
Klein–Gordon theory is not positive-definite, raising concerns
about its ability to be understood as a probability density6,25–29,
and whether particle trajectories in such scenarios are manifestly
causal30–32. In his treatment of electromagnetic scattering, Bohm
asserted that a particle description of photons is fundamentally
inconsistent, insisting that a field description is necessary25. Flack
and Hiley have raised concerns that a relativistic treatment of
photon trajectories is likely unphysical due to the existence of
reference frames in which the photon’s velocity is zero33. Other
works have used the relativistic Dirac equation as the basis for
constructing a Bohmian theory for spin-1/2 particles13,31,34, how-
ever, these studies are not without their own issues. For example,
Nikolic’s formulation requires the postulation of additional hid-
den-variables, whose physical interpretation is not clear.

The interpretive issues common to these studies arise because
they consistently take as a starting point various theories of or
modifications to relativistic, single-particle quantum mechanics,
which already possess the aforementioned pathologies. The missing
link between these studies and a consistent interpretation of rela-
tivistic Bohmian mechanics is the notion of operationalism, that is
the ability to ground phenomena in the measurement of physical
observables. In this sense, a consistent, operationally-based theory
of Bohmian particle trajectories constructed from observed velocity
fields in relativistic regimes has not been developed.

In this article, we propose a method of constructing the Boh-
mian velocity field of relativistic particles, specifically photons
possessing a relativistic energy dispersion. Our proposed velocity
equation is defined operationally through weak measurements of
the particle momentum and energy, and may thus be understood
as a reformulation of Wiseman’s nonrelativistic framework.
Indeed, we show that a naïve application of Wiseman’s weak
measurement definition in the relativistic limit fails due to tacit
nonrelativistic assumptions in his construction, most notably a
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privileged timeslice on which measurements of the particle
position are made. Importantly, our expression for the velocity
field reduces to that predicted by Wiseman’s nonrelativistic the-
ory in the paraxial (low-energy) limit. From our weak measure-
ment definition, we make use of the inherited relativistic
properties of the Klein–Gordon wavefunction in order to evaluate
the Bohmian trajectories of photons in a Michelson–Sagnac-type
interferometer. This point of contact with the Klein–Gordon
theory captures the essential Lorentz relativistic properties of
photons with the understanding that this is a simplification of a
full electrodynamical theory. Crucially, by grounding these tra-
jectories in ensemble measurements, we are able to make a unique
and internally consistent interpretation of the trajectories which
arise. The derived velocity field is Lorentz covariant under boosts,
equivalently satisfying the relativistic velocity addition rule. Our
analysis focuses on the ‘optical’ limit where the distribution of
wavevectors is concentrated well away from zero. This is con-
sistent with our measurement-based framework; if the optical
approximation is not satisfied, one enters the subcycle regime
(where measurement timescales are shorter than a single wave-
length) where particle creation and annihilation processes
become evident. That is, the domain of applicability of our theory
is one in which a single-particle description is valid (hence the
optical approximation implies a single-particle description). We
finally draw a connection between the relativistic wavefunction
and the Alcubierre metric35, proposing this as a relativistic gen-
eralisation to the quantum potential5 which is usually understood
as guiding the particle in the nonrelativistic limit.

Throughout this article, we utilise natural units, ℏ= c= 1 and
the metric signature (−, +, +) in (2+1)-dimensional Minkowski
spacetime.

Results
Physical setup. The physical geometry of our system, represented
as a Michelson–Sagnac interferometer, is depicted in Fig. 1 on a
background of flat spacetime in (2+1)-dimensions. A controllable
beamsplitter diverts the path of the single photon to the top or
bottom branch of the interferometer. Of course within a con-
ventional interpretation of quantum mechanics, the photon tra-
verses both arms of the interferometer in superposition, whereas
in Bohmian mechanics the photon is guided by the pilot wave
along one of the paths.

The adjustable mirrors reflect the photon towards the centre of the
apparatus. In scenario (a), the wavevector in the z-direction is
approximately zero, k≡ kx≫ kz, which we refer to as a head-on
collision. Scenario (b) depicts the general case in which the photon
possesses a non-zero wavevector component in the z-direction, which
we refer to as the relativistic grazing scenario. When kz≫ k, the x-
component of the photon velocities are slow; this nonrelativistic
regime is known as the paraxial limit. In the literature, only the
paraxial limit has been studied in analogous setups.

Relativistic Bohmian velocity field from weak measurements.
Unlike prior studies6,27,30–32, our starting point for the derivation
of a relativistic Bohmian theory is not relativistic single-particle
quantum mechanics (e.g. the Klein–Gordon equation for scalar
particles). Instead, we base our construction on an operational
foundation, beginning with the notion of weak measurements,
reformulating Wiseman’s nonrelativistic framework. Consider first
the relativistic extension to the classical velocity field of Eq. (4):

Vðx; tÞ ¼ dx
dt

¼ dx
dτ

� dτ
dt

¼ px
E

ð5Þ

(upon restoring factors of c, Eq. (5) is a dimensionless velocity). In
our analysis, we focus on the particle dynamics in the x-direction,
in accordance with the setup shown in Fig. 1. Meanwhile, variables
in the z-direction are treated as constants of the problem. Equation
(5) is a relativistic quantity; the coordinate time, t, and position, x,
form a relativistic spacetime two-vector x= (t, x), as do the total
energy of the photon and the x component of the momentum;
p= (E, px). These components transform Lorentz covariantly
under boosts, by construction. Crucially, the velocity field is a
coordinate velocity; we need not make reference to the proper time
τ defined along a given trajectory.

Equipped with the toolkit of weak values and in view of this
relativistic definition of the velocity, we propose the following
definition for the relativistic velocity field of single photons:

Vðx; tÞ ¼ hxjhk̂wijψðtÞi
hxjhĤwijψðtÞi

¼ Rehxjk̂jψðtÞi
RehxjĤjψðtÞi : ð6Þ

Equation (6) is the main result of our paper, namely a Bohmian-
type velocity field for relativistic particles constructed from a purely
operational vantage point. In Eq. (6), k̂ � k̂x is the momentum
operator (modulo a multiplicative factor of ℏ set to unity) while Ĥ
is the Hamiltonian. The weak values of these operators are defined
with respect to an initial preparation for the ensemble of particles in
the state jψi and projected onto the single-particle position
eigenstate jxi (i.e. postselection at the spacetime point (x, t)),

jxi ¼
Z

dk e�ikxjki: ð7Þ

It must be emphasised that the relativistic velocity field in Eq. (6) is
a coordinate velocity constructed from an in-principle measure-
ment in a particular reference frame. When the weak measure-
ments are used to construct trajectories in a given reference frame,
one can consistently apply the Lorentz transformation to obtain the
velocity field in a different reference frame. Conversely, if one
transforms into a different frame and applies this operational
definition, the resulting velocities are related by a standard Lorentz
transformation.

Let us return to our proposed velocity equation.We are interested
in plotting sample particle trajectories in the relativistic regime,
arising from the measurement-based velocity field of Eq. (6).
We consider the particle in the state

jψi ¼
Z

dk f ðkÞjki ð8Þ

Fig. 1 Schematic diagram illustrating the geometry of the setup. The
adjustable mirrors control the path of the photon in the transverse
direction, which can be tuned to produce a head-on collision (a) or a
grazing collision (b).
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where f(k)≡ f(kx) determines the initial distribution of the particle
momenta, and âykj0i ¼ jki � jkxi is a single-particle momentum
eigenstate. In order to evaluate Eq. (6), we utilise the differential
relationships generated from the scalar Klein–Gordon field
momentum and Hamiltonian, and project onto jxi to find that
Eq. (6) reduces to

Vðx; tÞ ¼ 2 Im ψ?ðx; tÞ∂xψðx; tÞ
2 Im ψ?ðx; tÞ∂tψðx; tÞ : ð9Þ

where ψðx; tÞ ¼ hxjψðtÞi is the time-dependent position-space
wavefunction. We have utilised the scalar Klein–Gordon theory to
capture—in the simplest way—the relativistic properties of the
field, however an extension to spin-1/2 or spin-1 particles can be
achieved by using the relevant elements (such as a vector-valued
wavefunction) from the spin-1/2 Dirac or spin-1 Klein–Gordon
theories36.

In Eq. (9), we readily identify the numerator and denominator
of the velocity equation with the conserved probability current
and density obtained from the single-particle Klein–Gordon
equation:

Vðx; tÞ ¼ jK ðx; tÞ
ρK ðx; tÞ

ð10Þ

where

jμK ðx; tÞ ¼ 2 Im ψ?ðx; tÞ∂μψðx; tÞ ð11Þ
are the components of the Klein–Gordon conserved current
vector. These components are relativistic four(two)-vector
quantities, and are thus Lorentz covariant by construction37.
While we have begun with a measurement-based interpretation of
the particle trajectories, our connection between this operational
model and the relativistic components of the Klein–Gordon
conserved current means that the velocity field inherits the
desired relativistic properties of the theory. These components
also satisfy a continuity equation ∂μj

μ
K ðx; tÞ ¼ 0, or explicitly in

terms of components in a chosen coordinate system

∂ρK ðx; tÞ
∂t

¼ � ∂jK ðx; tÞ
∂x

: ð12Þ

The Lorentz covariance of our velocity equation allows us to
consider the particle trajectories from a boosted reference frame.
Consider an observer moving with velocity v relative to the
laboratory frame. According to the relativistic velocity addition
rule, the velocity equation in the Lorentz boosted frame takes the
form

V 0ðx; tÞ ¼ Vðx; tÞ � v
1� vVðx; tÞ : ð13Þ

Recalling that V(x, t)= jK(x, t)/ρK(x, t), we obtain

V 0ðx; tÞ ¼ γð jK ðx; tÞ � vρK ðx; tÞÞ
γðρK ðx; tÞ � vjKðx; tÞÞ

¼ j0K ðx; tÞ
ρ0Kðx; tÞ

ð14Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
is the Lorentz factor. This illustrates how

the velocity equation possesses an identical form in both the lab
and boosted reference frames, signifying the Lorentz covariance
of our theory. The resulting velocity field, Eq. (10) is the
relativistic version of that obtained from the nonrelativistic
Schrödinger equation,

VSðx; tÞ ¼
jSðx; tÞ
ρSðx; tÞ

; ð15Þ

where jKðx; tÞ ¼ ð1=kzÞ Im ψ?
Sðx; tÞ∂xψSðx; tÞ is the nonrelativistic

Schrödinger current and ρS(x, t) is the probability density of Eq.
(1). One can arrive at Eq. (15) using Wiseman’s nonrelativistic
formalism.

Bohmian photon trajectories in the head-on limit. We can now
calculate Bohmian-style particle trajectories in the relativistic,
head-on limit. These trajectories can be obtained by integrating
the velocity equation, Eq. (5), yielding a parametric function of
the spacetime coordinates (x, t). We firstly consider a head-on
collision in which the dispersion relation can be approximated by

EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2z

q
’ jkj, that is kz≪ k. We assume the initial

distribution of the frequencies to be a superposition of left- and
right-moving Gaussian wavepackets

f RðkÞ ¼ NR exp �ðk� k0RÞ2
4σ2R

� �
; ð16Þ

f LðkÞ ¼ NL exp � ðkþ k0LÞ2
4σ2L

� �
; ð17Þ

where N L and N R are normalisation constants, k0L, k0R > 0 are
the centre frequencies of the left- and right-moving parts of the
wave, and σL, σR > 0 are the variances. The wavefunction is thus
given by

ψKðx; tÞ ¼
ffiffiffi
α

p Z
dk f RðkÞe�ijkjtþikx

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p Z
dk f LðkÞe�ijkjtþikx;

ð18Þ

where 0 ≤ α ≤ 1. For simplicity, let us assume that the left- and
right-moving wavepackets are centred at −k0 and +k0 respec-
tively with equal variance σL= σR ≡ σ. We focus our analysis on
a regime known as the optical limit, for which the left- and
right-moving wavepackets only have support on negative and
positive values of k respectively; that is, the frequency of the
light beam is much larger than its spread, k0≫ σ. Finally, we
assume that our photon position detectors, modelled as pro-
jections onto the x-eigenstate jxi, are highly resolved in
position space.

Using Eq. (18), we find the following expressions for the
Klein–Gordon probability current,

jK ðx; tÞ ¼ α

ffiffiffi
2
π

r
σ exp½�2ðt � xÞ2σ2�

� ð1� αÞ
ffiffiffi
2
π

r
σ exp½�2ðt þ xÞ2σ2�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1� αÞ

p ffiffiffi
2
π

r
S0σ exp½�2ðt2 þ x2Þσ2�

ð19Þ

and density,

ρKðx; tÞ ¼ α

ffiffiffi
2
π

r
σ exp½�2ðt � xÞ2σ2�

þ ð1� αÞ
ffiffiffi
2
π

r
σ exp½�2ðt þ xÞ2σ2�

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1� αÞ

p ffiffiffi
2
π

r
T 0 σ exp½�2ðt2 þ x2Þσ2�

ð20Þ

where both equations have been normalised by 2k0, the standard
relativistic normalisation factor of the Klein–Gordon theory, and
we have defined the following functions of (x, t):

S0 ¼ 4
σ2t
k0

sinð2k0xÞ; ð21Þ

T 0 ¼ cosð2k0xÞ � 2
σ2x
k0

sinð2k0xÞ: ð22Þ

Equations (19) and (20) are inserted into Eq. (10) to obtain the
velocity field of the particle. In the limits α= 0 or α= 1, one
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obtains an entirely left- or right-moving wavepacket respectively,
that is, V(x, t)=∓1. Meanwhile for 0 < α < 1, the non-zero cross
terms emerge, introducing interference fringes in the probability
density.

Before analysing the particle trajectories, it must be noted that
Eq. (20) is not positive definite, and thus generally cannot be
interpreted as a probability density. Regions of negative density
emerge when the last term of T 0 becomes non-negligible.
However since our analysis is focused on the optical regime where
k0≫ σ, such that the magnitude of this term is small compared
with the first, ρK(x, t) remains positive definite and can be
interpreted as a true probability density. Indeed, such a regime is
necessitated by the assumptions of our model, which is explicitly
a single-particle theory. When k0 ~ σ, one leaves the domain of
applicability of the single-particle limit, as we elaborate upon in
the discussion. Finally, if one naively takes the density to be the
modulus square of the wavefuncion, ∣ψ(x, t)∣2, one obtains Eq.
(20) without the final term in T 0.

In Fig. 2, we have plotted the Bohmian trajectories for the
particles in the head-on collision scenario for different
weightings of the superposition parameter α. The trajectories
for different initial conditions (spaced in proportion to the
wavepacket density) are shown in white, superimposed on top of
the Klein–Gordon density. In Fig. 2a, the particles are moving
solely in the right-moving direction. As expected for relativistic
massless particles, the trajectories maintain a Gaussian profile
without dispersion. Importantly, the density of trajectories
corresponds exactly with the Klein–Gordon probability density,
and this matching condition holds for all time. This is an
essential consistency requirement of Bohmian mechanics, and
the continuity equation plays a crucial role in ensuring this
condition.

Likewise in the equal superposition case, the density of
trajectories matches exactly with the interference pattern
predicted by ρK(x, t). In regions of constructive interference
the trajectories bunch up, while the opposite occurs for regions
of destructive interference. Notably, some of the trajectories
become superluminal in regions of destructive interference. As
we discuss in section “The photon metric”, this is consistent
with a relativistic generalisation of the Bohmian quantum
potential.

In Fig. 3, we have plotted the Bohmian trajectories in the
boosted coordinates of a moving observer. The regions of
interference are now tilted with respect to these coordinates,
since the observer is moving past the apparatus at a relativistic
velocity. Due to the covariance of the continuity equation under
boosts, the density of trajectories is conserved, matching the
quantum-mechanical prediction.

Bohmian photon trajectories in the relativistic grazing regime.
We can also consider the general case with energy dispersion

given by EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2z

q
. If kz is constant and small but non-

zero, this represents a grazing collision regime shown in Fig. 1b.
Since there is no simple expression in terms of elementary
functions for the wavefunction integrals, we utilise a numerical
analysis for this case.

Figure 4 displays the Bohmian trajectories in the grazing
relativistic regime. A notable feature is the dispersion of the
trajectories as they propagate in time. This is due to the
inclusion of the nonzero effective mass term kz in the particle
energy.

Bohmian photon trajectories in the paraxial limit. To obtain
the nonrelativistic limit of our velocity equation, we consider the
regime kz≫ k, so that the total energy takes the form E(k)≃
kz+ k2/2kz. As in the relativistic grazing regime, kz can be
interpreted as a mass-like term. The velocity equation under this
approximation becomes

Vðx; tÞ ¼ 1
2kz

2 Im ψ?
Sðx; tÞ∂xψSðx; tÞ
jψSðx; tÞj2

ð23Þ

where the wavefunction is explicitly

ψSðx; tÞ ¼
ffiffiffi
α

p
e�ikz t

Z
dk eikx�

ik2 t
2kz fRðkÞ

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p
e�ikz t

Z
dk eikx�

ik2 t
2kz f LðkÞ:

ð24Þ

The numerator and denominator of Eq. (23) reduce to the
nonrelativistic versions of the conserved current and density,

Vðx; tÞ ¼ jSðx; tÞ
ρSðx; tÞ

; ð25Þ

Fig. 2 Plots of the Bohmian trajectories with k0/σ= 15. In the background
of both plots is the quantum-mechanical prediction for the probability
density of the particles, ρK(x, t). In (a), the trajectories are completely right-
moving and maintain a Gaussian distribution, according to the initial
conditions that we have chosen to match the wavefunction density. In (b),
we have considered the superposition case, wherein the photon follows a
path that matches the interference pattern predicted by ρK(x, t).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31608-6 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:4002 | https://doi.org/10.1038/s41467-022-31608-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


producing a velocity field that transforms in the appropriate
nonrelativistic way under Galilean boosts. Notably, Eq. (23) yields
the same result as that derived by Wiseman, who used the fol-
lowing definition for the velocity in the nonrelativistic, paraxial
limit20:

Vðx; tÞ ¼ lim
δt!0

1
δt

½x�hxjhx̂wijψðtÞi�: ð26Þ

Wiseman’s approach in obtaining Eq. (26) was to perform a
weak measurement of the particle position at time t, followed by a
strong measurement of the position a short time δt later. The
velocity is obtained by calculating the rate of change of position
over this small time interval, δt. When extending this equation to
relativistic particles, it ultimately fails due to the introduction of

this Lorentz non-covariant parameter in the evolution between
the weak and strong measurements. If the relativistic limit
E(k)≃ ∣k∣ is naively applied to Eq. (26), it can be shown that the
continuity equation is not satisfied in general.

Nevertheless, Eqs. (23) and (26) are valid expressions for the
Bohmian velocity of nonrelativistic particles. In Fig. 5, we have
plotted these trajectories in the paraxial limit. Like the relativistic
grazing scenario, the particles exhibit dispersion as they
propagate in time. The slow-moving particle velocities cause the
regions of interference to stretch out in time, comparing the
timescales of Figs. 2 and 5.

The photon metric. A key concept introduced in Bohm’s theory
is the quantum potential, Q(x, t), which appears as an additional
term in the so-called ‘quantum Hamilton–Jacobi’ equation
obtained from the Schrödinger equation6. In the paraxial limit for
our single-photon system, the quantum potential takes the form

Qðx; tÞ ¼ � _2

2kz

∇2Rðx; tÞ
Rðx; tÞ ; ð27Þ

Fig. 4 Bohmian trajectories for a generic relativistic dispersion with
k0/σ= 6, kz/σ= 24, and α= 1/2. The effect of kz is to introduce some
dispersion in the trajectory density as the particles propagate in time.

Fig. 5 Plots of the Bohmian trajectories with k0/σ= 5, kz/σ= 500. As in
the relativistic grazing limit, the particles exhibit dispersion as they
propagate in time. Notably, this occurs on a much larger timescale as
compared with the relativistic cases.

Fig. 3 Plot of the Bohmian trajectories with respect to the boosted
coordinates of an observer who is moving at v= 0.125 with respect to
the lab frame. We have used the parameters k0/σ= 15 and α= 1/2 as in
Fig. 2.
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where R2(x, t)= ∣ψ(x, t)∣2. Using Eq. (27), one can obtain the
quantum analogue of a classical force, using the standard
definition FQ(x, t)=−∇Q(x, t), and this ultimately governs the
dynamics of the particle. Evidently, the wavefunction plays a
crucial role in determining Q(x, t). When extending Bohmian
mechanics to relativistic regimes as we have done here, the
‘quantum force’ obtained from the quantum potential may now
be interpreted as being generated by a quantum spacetime
metric. In this way, ψ(x, t) still plays a role in governing the
effective dynamics of the particle, but now by defining the
shortest path through the spacetime in the paradigm of general
relativity.

The problem is that the dynamics generated by such a metric
must allow for trajectories that have both spacelike and timelike
tangents. A candidate for the kinds of head-on particle
trajectories observed in Figs. 2 and 3 is the Alcubierre metric,
given by

ds2 ¼ �ð1� v2s Þdt2 � 2vsdxdt þ dx2 ð28Þ
where we have suppressed the dz component for simplicity.
Equation (28) was proposed by Alcubierre in ref. 35 as a so-called
warp drive solution to Einstein’s field equations. In such a
spacetime, particles can achieve superluminal velocities through a
local expansion of spacetime behind them and a simultaneous
contraction of the spacetime in front of them. As is the case with
other non-hyperbolic metrics like wormholes38,39, exotic matter
(i.e. negative energy density40) is required to produce such effects.
Nevertheless, Eq. (28) is a consistent solution within the
framework of general relativity, and by defining

vs ¼
jKðx; tÞ
ρK ðx; tÞ

����
����� 1

� �
sgn

jKðx; tÞ
ρKðx; tÞ

� �
ð29Þ

where sgn(x) represents the function giving +1 on positive values
and −1 on non-positive values of x, the speed of light according
to a faraway observer in an asymptotically flat spacetime region is
given by

c ¼ vs þ sgn
jK ðx; tÞ
ρKðx; tÞ

� �
¼ jK ðx; tÞ

ρK ðx; tÞ
: ð30Þ

This is exactly the prediction of our proposed relativistic
Bohmian theory, wherein the coordinate velocity of the particle
can exceed the speed of light (i.e. in regions of destructive
interference), but also equal zero; that is, when the photon stops
and changes directions. Of course, such behaviour is permissible
within the paradigm of general relativity, which only requires that
light always travels at the speed of light locally. That such a metric
exists in the presence of our unusual trajectories could be useful
for later work when considering couplings (e.g. conformal
coupling) in a field theory, should such an extension to our
current single-particle theory be considered.

DISCUSSION
In this article, we have extended the theory of single-particle
Bohmian mechanics to include particles with relativistic energies,
via a reformulation of Wiseman’s weak measurement formalism
and shown that such a description is consistent with Lorentz
covariance. This represents an important step in testing the limits
of the Bohmian interpretation, which to date has been believed to
break down in relativistic regimes.

As emphasised throughout this work, we have employed an
optical approximation in our analysis, wherein the frequency of
the incoming wavepackets is much larger than their variance,
k0≫ σ. In this regime, the Klein–Gordon density remains strictly
positive, allowing for its interpretation as a probability density.
However, it is well-known that the scalar Klein–Gordon density

ρK(x, t) can become negative in certain regimes. As noted pre-
viously, the matching condition between the density of Bohmian
trajectories and the probability density of the guiding wave holds
for all time, and this is true even in regions of negative density. In
these regions, the tangent vector to the trajectory becomes
negative, yielding particle trajectories that travel backwards in
time. The negative density of these backward-in-time trajectories
matches the regions of ‘negativity’ in the wavefunction density,
demonstrating the mathematical consistency of our theory in
these regimes.

There are two physically distinct regimes in which nega-
tivity in the density may arise. The first occurs when one
leaves the optics approximation, which is the domain of
applicability for our single-particle theory. When k0 ~ σ, the
low-frequency tail of the wavepacket f(k) impinges sig-
nificantly into the ‘negative-frequency’ region of momentum
space, which is typically associated with the particle creation
operator in quantum field theory41. One can also enter this
regime by performing measurements at timescales shorter
than a single wavelength of light, inducing stimulated particle
production from the vacuum. Obtaining a consistent physical
interpretation of trajectories in the subcycle regime likely
requires an extension of our theory to a full field-theoretic
description of the Bohmian mechanics that can handle states
with non-conserved particle number. In such a theory, one
would require a more complete measurement model which is
valid outside the optics limit and incorporates particle pro-
duction effects. However, the mathematical consistency of our
single-particle relativistic theory may give some guidance in
such an endeavour.

The second regime in which backwards-in-time trajectories
emerge occurs when the particle trajectories are viewed from the
reference frame of a rapidly boosted observer, Fig. 6. Unlike the
prior regime, such trajectories are physically consistent within our
construction, since the redshifted frequency and bandwidth of the
photon wavepackets still satisfy the optics approximation in the
new reference frame (see “Methods” for a further discussion).
When the Klein–Gordon density in the boosted frame equals
zero, Eq. (20), the particle velocity according to an observer in
this frame,

V 0ðx; tÞ ¼ Vðx; tÞ � v
1� vVðx; tÞ ; ð31Þ

diverges. Indeed, this property is inevitable for superluminal
particle velocities satisfying the velocity addition rule. The
divergence of the velocity occurs for pairs of spacetime points; as
shown in Fig. 6, the particle ‘enters’ the region of negative density
at infinite velocity, travels backwards in time for some distance,
before ‘exiting’ this region at another point with infinite velocity.
It is crucial to distinguish the emergence of negatively directed
trajectories due to the non-satisfaction of the optics approxima-
tion, as compared with those arising due to boosts. The latter
case, as alluded to in Eq. (31), is a consequence of the frame-
dependent property of the derived velocity field; in general rela-
tivity, one can always obtain locally (and in this case, e.g. Fig. 6,
globally) a frame where the velocity field is forward directing (a
proof of this is shown in section “Obtaining the reference frame
in which ρ(x, t) is positive definite”). The trajectories shown in
Fig. 6 are thus entirely consistent with our construction of V(x, t)
as a coordinate velocity obtained in a particular reference frame.
Operationally, this is also consistent with the well-known prop-
erty of weak values which can yield ‘anomalous’ results such as
negative energies42–44.

As mentioned, Bohmian trajectories have been inferred
experimentally for photons which are transversely slow (i.e. the
paraxial limit)22,23. In those experiments, the velocity field of the
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photons was reconstructed by performing weak measurements
of momentum, postselected at a particular spacetime position.
This is complementary to Wiseman’s definition, Eq. (26). To
perform the weak measurements, the photon polarisation was
utilised as a pointer which coupled to the momentum22. In our
model, constructing the velocity field of the transversely fast
photons also requires weak measurements of momentum, so the
above-mentioned approach may be applied analogously. Of
course, since the transverse velocities are now relativistic, these
measurements may be technically challenging but nevertheless
possible in principle. Meanwhile, weak measurements of the
particle energy in the case of photons essentially require a
measurement of its frequency. This has been achieved for
example by weakly perturbing the path of a frequency-
modulated beam using an adjustable prism, from which weak
measurements of the induced frequency shift can be
inferred45–47.

The approach we have introduced in this article motivates
numerous pathways for further research. A natural extension of
our model would be to study a system with multiple particles,
for which the nonlocality of Bohmian mechanics in the relati-
vistic regime may be properly understood. As in the single-
particle case, Bohmian-mechanical models for multiple particle
scenarios have been developed in the nonrelativistic regime.
Braverman and Simon48 first proposed a model for path-
entangled photons in a double-slit experiment, wherein the
velocity of the photon entering the apparatus depends on the
value of a phase shift applied to the second photon in a spacelike
separated region. This was then implemented in the experiment
by Mahler et al.23, giving strong empirical verification of the
nature of nonlocal influences in the Bohmian paradigm. How
such entanglement manifests in the relativistic domain remains
an interesting question. Likewise, it would be worthwhile
understanding how our interpretation of the ‘guiding metric’
might be generalised for multiple particles.

Another important question to answer is the consistency of our
model outside the self-imposed optical limit. We studied this
regime to obtain physically interpretable results, in line with the
constraints of our single-particle theory. The possibility of con-
structing a full Bohmian quantum field theory, allowing for the
study of particle production effects and subcycle optical regimes,
remains a tantalising prospect.

Methods
Derivation of the relativistic velocity equation. Recall our proposed form for the
weak value definition of the velocity equation:

Vðx; tÞ ¼ hxjhk̂wijψðtÞi
hxjhĤwijψðtÞi

¼ Rehxjk̂jψðtÞi
RehxjĤjψðtÞi : ð32Þ

We calculate the numerator and denominator individually. To this end, we need to
give values for the hxjÂjψðtÞi expressions in the theory we use. With Â ¼ I the
identity operator, the identification is trivially hxjψðtÞi ¼ ψðx; tÞ, the one particle
Klein–Gordon field solution. The momentum operator k̂ is formed from the
generator of displacements in position. So by the standard definition, we can write

hxjk̂jψðtÞi ¼ �i∂xψðx; tÞ ¼ �i∂xψðx; tÞ;
where the Minkowski metric has been used to raise the derivative index. Similarly,
the generator of temporal displacements in the field are associated with the
Hamiltonian operator, and hence

hxjĤjψðtÞi ¼ i∂tψðx; tÞ ¼ �i∂tψðx; tÞ:
The weak value expressions can be evaluated using these identifications for
momentum

hxjhk̂wijψðtÞi ¼ Re
hxjk̂jψðtÞi
hxjψðtÞi ;

¼ Re
hψðtÞjxi
jhxjψðtÞij2 hxjk̂jψðtÞi;

¼ Re
ð�iÞψ?ðx; tÞ∂xψðx; tÞ

jψðx; tÞj2 ;

ð33Þ

and energy

hxjhĤwijψðtÞi ¼ Re
hxjĤjψðtÞi
hxjψðtÞi ;

¼ Re
hψðtÞjxi
jhxjψðtÞij2 hxjĤjψðtÞi;

¼ Re
ð�iÞψ?ðx; tÞ∂tψðx; tÞ

jψðx; tÞj2 :

ð34Þ

Dividing the two weak values yields,

Vðx; tÞ ¼ Reð�iÞψ?ðx; tÞ∂xψðx; tÞ
Re ð�iÞψ?ðx; tÞ∂tψðx; tÞ ;

¼ 2 Im ψ?ðx; tÞ∂xψðx; tÞ
2 Im ψ?ðx; tÞ∂tψðx; tÞ :

ð35Þ

The numerator and denominator are exactly the Klein–Gordon conserved prob-
ability current and density, as shown in the main text.

Fig. 6 Bohmian trajectories in the head on limit, viewed from a boosted
reference frame with v= 0.4, k0/σ= 15, and α= 1/2. The trajectories are
superimposed over the corresponding Klein–Gordon density, where the
respective legends show the magnitude of the positive and negative density
regions. The backwards-in-time trajectories are consistent with our
interpretation of the Bohmian velocity field as a coordinate velocity
constructed via weak measurements in a particular reference frame. The
lower panel shows a zoomed-in view of the trajectories.
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Position space wavefunction in the head-on limit. In the head-on limit, the
particle energy can be approximated as E(k)= ∣k∣. The position space wavefunction
is given by

ψK ðx; tÞ ¼
ffiffiffi
α

p Z
dk f RðkÞe�ijkjtþikx

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p Z
dk f LðkÞe�ijkjtþikx :

ð36Þ

We make the assumption that the wavepackets fL(k) and fR(k) are only non-negligible
in the regions k < 0 and k > 0 respectively. This is to remain consistent with the
quantum-optical regime that we are restricting our analysis to. One can write

ψK ðx; tÞ ’
ffiffiffi
α

p Z 1

0
dk f RðkÞe�ijkjtþikx

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p Z 0

�1
dk f LðkÞe�ijkjtþikx :

ð37Þ

Using the strictly positive domains of the integral bounds to eliminate the absolute
value signs in the exponents yields,

ψK ðx; tÞ ¼
ffiffiffi
α

p Z 1

0
dk f RðkÞe�ikðt�xÞ

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p Z 1

0
dk f Lð�kÞe�ikðtþxÞ:

ð38Þ

Using the assumptions on fL(k) and fR(k), we can then extend the bounds on the
integrals without significant error:

ψK ðx; tÞ ¼
ffiffiffi
α

p Z 1

�1
dk f RðkÞe�ikðt�xÞ

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p Z 1

�1
dk f Lð�kÞe�ikðtþxÞ:

ð39Þ

Equation (39) can be evaluated analytically. In the simple case where k0R= k0L≡ k0
and σR= σL≡ σ, the wavepacket normalisation constants are simply ð2πσÞ�1=4, giving

ψK ðx; tÞ ¼ J 0½
ffiffiffi
α

p
exp½�ðt � xÞVR�

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p
exp½�ðt þ xÞVL��

ð40Þ

where J 0 ¼ ð2σ2=πÞ1=4 and

VR ¼ ik0 þ ðt � xÞσ2; ð41Þ

VL ¼ ik0 þ ðt þ xÞσ2: ð42Þ
Inserting Eq. (40) into the expressions for the relativistic Klein–Gordon probability
current and density,

jK ðx; tÞ ¼ 2 Im ψ?ðx; tÞ∂xψðx; tÞ; ð43Þ

ρK ðx; tÞ ¼ 2 Im ψ?ðx; tÞ∂tψðx; tÞ; ð44Þ
then we straightforwardly obtain Eq. (19) and Eq. (20) stated in the main text.

Paraxial limit of the relativistic velocity equation. We can obtain the non-
relativistic velocity equation by taking the paraxial limit of our relativistic velocity
equation. Firstly, in the paraxial limit, the energy of the photon is E(k) ≃ kz+ k2/
2kz for k≪ kz. The wavefunction can be written as

ψSðx; tÞ ¼
Z

dk eikxe�ikz t�ik2 t
2kz f ðkÞ ð45Þ

where f ðkÞ ¼ ffiffiffi
α

p
f RðkÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1� α

p
f LðkÞ using fL and fR defined in Eqs. (17) and (16).

We are also assuming that f(k) is not supported outside of the k≪ kz approx-
imation. Inserting ψS(x, t) into the Klein–Gordon expression for the probability
density will give the density appropriate for these approximations, which can be
manipulated to give

ρK ðx; tÞ ¼ 2 Im
Z

dk
Z

dk0f ?ðkÞf ðk0Þ

exp½�ik0x� exp ikzt þ
itk02

2kz

" #

� ∂

∂t

� �
exp½ik0x� exp �ikzt �

itk02

2kz

� �� �
;

¼ 2 Im
Z

dk
Z

dk0f ?ðkÞf ðk0Þ ikz þ
ik02

2kz

� �

exp½�iðk� k0Þx� exp it
2kz

ðk2 � k02Þ
� �

;

Recognising that k02 can be expressed in differential operator form as −∂2/∂x2 and
that the double integral expression is simply ψ?

Sðx; tÞψSðx; tÞ, we obtain the

simplified form

ρK ðx; tÞ ¼ 2 Im ikz jψSðx; tÞj2 �
i

2kz
ψ�
S ðx; tÞ

∂2ψSðx; tÞ
∂2x

� �
;

’ 2kz jψSðx; tÞj2 ¼ 2kzρSðx; tÞ;
ð46Þ

where in the final line the approximation used is that the double spatial derivative
of ψS is negligible compared to k2z . The velocity equation in the paraxial limit thus
becomes

Vðx; tÞ ¼ 1
2kz

2 Im ψ?
Sðx; tÞ∂xψSðx; tÞ
jψSðx; tÞj2

: ð47Þ

This is simply the nonrelativistic definition of the velocity, expressed in terms of
the Schrödinger probability current and density. This is exactly the form obtained
using Wiseman’s nonrelativistic weak value formula in ref. 20.

Analytic expression for the Bohmian velocity in the paraxial limit. Let us derive
the analytic form of the paraxial limit velocity. Again, applying the optical
approximation used in Eq. (37), for an initial superposition of left- and right-
moving wavepacket the wavefunction in the paraxial limit is given by

ψSðx; tÞ ¼
ffiffiffi
α

p
e�ikz t

Z
dk eikx�

ik2 t
2kz f RðkÞ

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p
e�ikz t

Z
dk e�ikx�ik2 t

2kz f Lð�kÞ:
ð48Þ

The integrals can be evaluated analytically. The components of the probability
current can be split into left- and right-moving parts, and an interference term
which mixes these components. These are given by

jLðx; tÞ ¼ �ð1� αÞC0 exp � 2ðk0t þ kzxÞ2σ2
k2z þ 4t2σ4

" #
;

jRðx; tÞ ¼ αD0 exp � 2ðk0t � kzxÞ2σ2
k2z þ 4t2σ4

" #
;

jI ðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1� αÞ

p
L0 exp � 2ktxσ

2

k2z þ 4t2σ4

" #
;

ð49Þ

where we have defined ktx ¼ k20t
2 þ k2z x

2 and

C0 ¼M0ðk0kz � 4txσ4Þ;
D0 ¼M0ðk0kz þ 4txσ4Þ;

M0 ¼
ffiffiffi
2
π

r
kzσ

2

ðk2z þ 4t2σ4Þ3=2
;

ð50Þ

and

L0 ¼ 4σ2tM0

"
2xσ2 cos

2k0k
2
zx

k2z þ 4t2σ4

" #

þ k0 sin
2k0k

2
zx

k2z þ 4t2σ4

" ##
:

ð51Þ

Similarly, the density can likewise be decomposed into left- and right-moving parts,
and an interference term. These are,

ρLðx; tÞ ¼ ð1� αÞK0 exp � 2ðk0t þ kzxÞ2σ2
k2z þ 4t2σ4

" #
;

ρRðx; tÞ ¼ αK0 exp � 2ðk0t � kzxÞ2σ2
k2z þ 4t2σ4

" #
;

ρI ðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1� αÞ

p
Ke exp � 2ktxσ

2

k2z þ 4t2σ4

" #
;

ð52Þ

where we have defined

K0 ¼
ffiffiffi
2
π

r
kzσ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ 4t2σ4

q ;

Ke ¼ 2K0 cos
2k0k

2
zx

k2z þ 4t2σ4

" #
:

ð53Þ

These expressions for the probability and current density are used to construct the
trajectories shown in Fig. 5.

Obtaining the reference frame in which ρ(x, t) is positive definite. It was
argued in the discussion that under the optics approximation, there always exists
a global coordinate transformation which ensures that the probability density
ρ(x, t) is positive-definite for all (x, t). This was shown straightforwardly when the
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left- and right-moving components of ψ(x, t) possessed equally weighted centre
frequencies (k0) and bandwidths (σ). The only other scenario of interest occurs
when the left- and right-moving components are unequal. The probability den-
sity in such a scenario is given by

ρðx; tÞ ¼ μ2 þ ν2 þ 2μνF 0 ð54Þ
where

μ ¼ ffiffiffi
α

p ffiffiffiffiffi
σR

p 2
π

� �1=4

exp �ðt � xÞ2σ2R
� 	

;

ν ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p ffiffiffiffiffi
σL

p 2
π

� �1=4

exp �ðt þ xÞ2σ2L
� 	

;

F 0 ¼
k0R þ k0L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0Rk0L

p cos k0LV � k0RU
� 	� Vσ2L � Uσ2R

� 	
sin k0LV � k0RU

� 	� 	
;

ð55Þ

where we have expressed the spacetime variables in terms of the light-cone
coordinates V= (t+ x) and U= (t− x), (k0R, σR), (k0L, σL) denotes the right-
and left-moving parameters respectively and we have included the relativistic
normalisation factor for the left- and right-moving parts of the wavefunction. A
similar expression exists for j(x, t). Such a scenario mimics one in which the
wavepacket frequencies/bandwidths are Doppler shifted (i.e. undergo a boost),
and thus there may arise points where ρ(x, t) < 0 is true.

Now, consider Eq. (54) from a boosted reference frame with velocity v, yielding

ρ0ðx0; t0Þ ¼ μ02 þ ν02 þ 2μ0ν0F 0
0; ð56Þ

where

μ0 ¼ ffiffiffi
α

p ffiffiffiffiffi
σ 0R

p
exp �ðt0 � x0Þ2σ 02

R

� 	
;

ν0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p ffiffiffiffiffi
σ0L

p
exp �ðt0 þ x0Þ2σ 02

L

� 	
;

F 0
0 ¼

k00R þ k00R
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k00Rk

0
0L

p h
cos

h
k00LV

0 � k00RU
0
i

�
h
V 0σ

02
L � U 0σ

02
R

i
sin

h
k0V 0 � k0U 0

ii
;

ð57Þ

and we have defined

k00R ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� v
1þ v

r
k0R; σ 0R ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� v
1þ v

r
σR; ð58Þ

k00L ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ v
1� v

r
k0L; σ 0L ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ v
1� v

r
σL; ð59Þ

and likewise V 0 ¼ ðt0 þ x0Þ and U 0 ¼ ðt0 � x0Þ. We make two key observations.
Firstly, there is always a choice of v which causes either the k0’s to be equal, or the
σ’s to be equal. For example, by choosing

v ¼ k0R � k0L
k0R þ k0L

ð60Þ

then

k00 � k0 ¼ k00L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0Rk0L

p
: ð61Þ

Secondly, if the optics approximation is satisfied in the original frame, it is satisfied
in all other reference frames since ðk00R; σ 0RÞ and ðk00L; σ 0LÞ for the left- and right-
moving components scale identically, Eqs. (58) and (59). That is, if k0R≫ σR and
k0L≫ σL, then k00R � σ 0R and k00L � σ0L . Let us now consider the density after
having made the aforementioned boost, Eq. (60):

ρ0ðx0; t0Þ ¼ μ02 þ ν02 þ 2μ0ν0Y0 ð62Þ
where

Y0 ¼ cos 2k00x
0
 �� V 0σ

02
L � U 0σ

02
R

k00
sin 2k00x

0
 �
: ð63Þ

In Eq. (62), the regime of interest occurs when

δR :¼ U 0σ 0R ≲ Oð1Þ; ð64Þ

δL :¼ V 0σ 0L ≲ Oð1Þ ð65Þ
otherwise ρ0ðx0; t0Þ will be exponentially suppressed and the particle will have zero
probability of being found at ðx0; t0Þ. In this limit, Eq. (63) reduces to

Y0 ’ cosð2k00x0Þ ð66Þ
where we have invoked the optics approximation, k00 � σ 0R; σ

0
L , making the

coefficient of the sinð2k00x0Þ term negligible. The full probability density in this limit
is thus given by

ρ0ðx0; t0Þ ’ μ02 þ ν02 þ 2μ0ν0 cos 2k00x
0
 �

≥ 0 ð67Þ
which completes the proof.

Data availability
The data presented in the analysis can be reproduced using code which is available from
the corresponding author on reasonable request.

Code availability
The code utilised for the analysis in the current study is available from the corresponding
author on reasonable request.
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