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1. General Introduction

1 General introduction

Neonatal mortality has become a more visible problem in pig husbandry (Huting et al. 2021).
Genetic selection of hyperprolific sows increases the number of physiological and
immunological immature piglets at birth, which are easily detectable by a low birthweight
(LBW), possibly induced by intrauterine growth restriction (IUGR) (Hales et al. 2013). High
neonatal mortality, especially that of male LBW piglets (Baxter et al. 2012), is an ethically
(Marchant et al. 2000) and commercially (Beaulieu et al. 2010) highly debated topic, which
should be regarded with the highest priority. Sow management and nutrition, before and during
gestation, as well as around farrowing, have been shown to affect piglets. Furthermore, early
colostrum intake plays a crucial role in improving piglet survival (Farmer and Edwards 2021).
In sow milk, glutamine (GIn) and glutamate (Glu) have been detected as the most abundant
peptide bound amino acids (AA), whereas free GIn showed an increase during lactation and
becomes the most abundant free AA during lactation (Wu and Knabe 1994). For this reason
GIn supplementation to neonatal suckling piglets might be a new assessment strategy to
reduce neonatal mortality in LBW piglets, who have access to sow milk later after birth and to
teats in general due to the poorer assertiveness caused by their weakness (Edwards and
Baxter 2015). Glutamine is a primary energy source for neonatal porcine enterocytes (Darcy-
Vrillon et al. 1994) and promotes protein synthesis, immune response and antioxidative
defence for mucosa cells of the gastrointestinal tract (GIT) (Jacobi and Odle 2012). However,
most studies supplementing Gin to pigs have been conducted in weaning or weaned piglets
(Wu et al. 1996b; Wang et al. 2008; Cabrera et al. 2013), which must be considered
physiologically different from suckling piglets. Therefore, it is evident that the strategic
assessment to improve the physiological and immunological impairment of LBW piglets by GIn
supplementation needs further research because our current knowledge is inadequate, and a

lot needs to be clarified to reduce neonatal mortality in piglets significantly.

Thus, this study compared gastrointestinal (Gl) development and immunity of LBW and normal
birthweight (NBW) male neonatal piglets. The weight of male littermates was assessed at birth,
and they were assigned to an oral GIn supplementation group or an isonitrogenous alanine
(Ala) supplementation group, serving as a control group. As a possible absorption side of Gin,
the jejunum was investigated for the effects of oral GIn supplementation on gut morphology,
immune cells, AA metabolism, and anti—oxidative defence in neonatal suckling piglets with
different birthweights (BiW). As the fermentative chamber of the pig, the colon was examined
for effects of oral GIn supplementation on suckling piglets with LBW or NBW on morphometry,

immunohistochemistry, bacterial composition, and bacterial metabolites.



1. General Introduction

1.1 Aims and Objective of the Thesis

Glutamine supplementation has shown to comprise a wide variety of beneficial effects on the
host. Among these effects, the benefit of Gln for the health of the host and as an energy
substrate for the GIT, which seems to be impaired in LBW piglets, could reduce the high rate
of neonatal mortality in those piglets. Furthermore, it is unknown exactly where Gin can exhibit
effects in the GIT. As known from studies in vitro or weaned piglets, GIn might affect the Gl
microbiota, morphometry, immunology, antioxidative defence and AA absorption. There is
knowledge about the neonatal development of the listed parameters, but in parts, it seems that
they need further investigations to provide a clear picture. Additionally, this study could be
adapted for the use in human nutrition since the pig is considered an excellent animal model
for humans. Existing literature does not provide sufficient information about the impact of Gin
supplementation on GI development and its influence on bacterial composition in neonatal

piglets in the first two weeks of life. Thus, it was the aim of this thesis to identify if:

I.  GIn beneficially affects the intestinal epithelium in pre-weaning NBW and LBW piglets
but more distinctly in LBW piglets.
II. GIn affects piglet jejunal development, jejunal epithelium characteristics, and
immunological development patterns in suckling piglets.
lll. GIn affects piglet colonic development, colonic epithelium characteristics and

immunological development, microbial composition and bacterial metabolites.

1.2 Hypothesis

It was the hypothesis of this thesis that GIn supplementation improves Gl development,
immune characteristics of the jejunum and colon and furthermore the bacterial composition as

well as bacterial metabolites in the colon digesta of LBW suckling piglets.



2. Literature Review

2 Literature Review

2.1 Low birthweight piglets

The term low birthweight (LBW) piglet can be used irrespective of time of delivery (De Vos et
al. 2014) and can be defined as newborns having a birthweight under 10% of the mean BiW
of the litter, or a BiW less than the mean BiW minus up to two times the standard deviation
(Cooper 1975). The breeding goal of hyperprolific sows leads to increased litter size and an
increased number of LBW piglets (De Boo et al. 2005; De Vos et al. 2014). A study by
Martineau and Badouard (2009) reported that when the litter gets larger, the proportion of LBW
piglets in these litters increases. Pigs have a higher number of LBW offspring compared to
other livestock species (Cooper 1975), an associated consequence of IUGR (De Boo et al.
2005; De Vos et al. 2014). Approximately 10-20% of piglets per litter are underweight or
influenced by IUGR (De Boo et al. 2005) because of placental insufficiency (Wu et al. 2006;
Hales et al. 2013). Sows with high ovulation estimates have an increased risk of giving birth to
piglets influenced by IUGR because of reduced uterine space. Due to the high number of
fetuses, this will lead to reduced fetal size and low body weight (Foxcroft et al. 2006). Low
birthweight or piglets influenced by IUGR piglets are characterised by typical phenotypical
appearances like a long thin shape and a "dolphin like” head shape (Farmer and Edwards
2021). In addition, they have impaired brain, heart, GIT and muscle development, which
impedes the uptake and absorption of colostrum (Farmer and Edwards 2021). Vast numbers
of LBW piglets have a significant influence on the economy of the pig industry, because these
piglets show a high percentage of neonatal mortality and impaired performance, followed by
reduced carcass and meat quality at slaughter (Beaulieu et al. 2010). It was shown that piglets
with a BiW lower than 1 kg have preweaning mortality rates of 40%, whereas for piglets
weighing 1.0 — 1.2 kg preweaning mortality was 15%, and for piglets over 1.6 kg, 7% (Roehe
and Kalm 2000). Previously another study observed an increased mortality rate of piglets with
a weight of less than 0.95 kg during the period from birth to slaughter (Calderén Diaz et al.
2017).

2.1.1 Interventions on sow side to prevent high numbers of LBW piglets

Nutritional interventions during gestation and transition or management strategies
implemented on the sow, to control the number and mortality of LBW piglets, have been
already studied and described in detail (Farmer and Edwards 2021).

Increasing the amount of feed during gestation to gilts or sows has shown different effects on
the BiW of piglets. Either an increase in the BiW of piglets was observed in gilts and sows

(Cromwell et al. 1989) or an increase in the BiW of piglets born to gilts and a decrease in those
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born to sows, was reported (Shelton et al. 2009). At the same time, other studies did not
observe an influence of feeding different amounts of feed during different time points of
gestation (Nissen et al. 2003; Rehfeldt and Kuhn 2006). The effect of low energy intake of
sows on piglet BiW showed no precise results. Buitrago et al. (1974) reported a reduction of
piglet's BiW by low energy intake of sows. Feeding dams with extra energy appears to have
no observable effect on offspring BiW (Gatlin et al. 2002). Supplementing sows with oil during
gestation has been associated with a higher percentage of surviving LBW piglets. However,
the kind of lipid and the time point of supplementation appear to be just as important (Laws et
al. 2009a). Feeding monounsaturated fatty acids (18:1 n-9) throughout the first trimester of
pregnancy has been shown to reduce the number of LBW piglets, potentially due to improved
placental growth (Laws et al. 2009a; Laws et al. 2009b). In contrast supplementation with
polyunsaturated fatty acids has been shown to increase the number of LBW piglets (Laws et
al. 2009b). The optimal supply of protein to gestating sows is more critical for fetal growth than
the energy source. Feeding an adequate amount and a suitable composition of dietary AA’s
improves the live-birth rate and development of the offspring (De Vos et al. 2014).
Supplementing low-protein diets to gestating gilts, has been associated with increased
numbers of LBW piglets and decreased growth performance (Rehfeldt et al. 2011). Also, high
protein diets during pregnancy appear to increase the number of LBW piglets (Rehfeldt et al.
2011; Mickiewicz et al. 2012). Adding functional AA like arginine (Arg) (Wu et al. 2010a) or GIn
(Wu et al. 2011b) to the sows diet can have beneficial effects on the gestating sows and piglets,
such as increased offspring BiW and producing litters with mean BiW that were more equal.
Supplementing carnitine appears to prevent the incidence of LBW piglets as well (Musser et
al. 2007; Ramanau et al. 2008).

2.1.2 Nutritional interventions on piglets to prevent the high mortality of LBW piglets

It is well known that colostrum, which is rich in bioactive molecules, nutrients and energy, is
crucial for neonatal survival (Devillers et al. 2004), especially for LBW piglets, who are less
active, which prevents them from moving towards the udder and competing with heavier
littermates (Tuchscherer et al. 2000). Nutrition interventions such as booster preparations or
colostrum substitutes containing fat, lactose, immunoglobulins and growth factors are widely
used, but peer-reviewed studies regarding their efficacy are scarce (De Vos et al. 2014).
Conflicting results are reported by several authors supplementing neonatal piglets with
medium-chain triglycerides, with either no effect on survival (Lee and Chiang 1994) or positive
effects on survival rates when mixes of medium and long-chain fatty acids were supplemented
orally (Casellas et al. 2005). Additionally, studies with milk replacers and milk-based creep

feed diets have been conducted. The problem with creep feed diets is that their intake before



2. Literature Review

weaning is highly variable, and very low before four weeks of age (Bruininx et al. 2002).
Furthermore, supplementation of liquid milk replacers, typically consisting of bovine milk
products, have been shown to increase growth rates and weaning weights (Wolter et al. 2002).
Nevertheless, liquid milk replacers do not appear to reduce the mortality rate, or weight
variation of LBW compared to average BiW fattening pigs at slaughtering (Wolter et al. 2002).
Liquid milk replacers may not improve LBW piglet survival, as the majority of LBW individuals
die within the first three days of life, a period when voluntary milk replacer intake is minimal.
Forced feeding of liquid feeds did not seem to have beneficial effects on performance and
survival of piglets (Van Tichelen et al. 2022). Therefore, a developmental comparison of LBW

and NBW piglets is necessary to clarify their nutritional needs (De Vos et al. 2014).

2.1.3 Supplementation studies improving the gastrointestinal development of piglets

The small intestine (SI), with its essential role in terminal digestion and absorption of nutrients,
is necessary for the survival and growth of LBW piglets. Intrauterine growth restriction has
been associated with impaired Sl development and reduced feed intake (Wang et al. 2005;
D'inca et al. 2010b; Wang et al. 2010), and a wide-range of supplemental studies have been

investigated to improve Sl development in LBW piglets.

Oral insulin-like-growth factor 1 (IGF-1) supplementation has been shown to stimulate SI
growth and maturation (Burrin et al. 1996; Houle et al. 1997). Additionally, supplementing IGF-
1 to neonatal formula-fed piglets has been shown to increase crypt cell proliferation (Xu et al.
1994a), villus height (Burrin et al. 1996; Houle et al. 1997) and intestinal brush border enzyme
activity (Houle et al. 1997). Administration of exogenous epidermal growth factor showed
elevated intestinal brush border enzyme activity and healing effects on intestinal tissue
damage of rotavirus-infected piglets (Zijlstra et al. 1994). Post-natal supplementation of IGF-1
to piglets influenced by IUGR, with an osmotic minipump, led to growth at normal levels
(Schoknecht et al. 1997). Another supplement used as an additive to the diet of formula-fed
piglets, during the first week of life, is leptin, which was reported to increase Sl length, decrease
villus height and brush border enzyme activity, with no positive effect on weight gain (Wolinski
et al. 2003). Supplementation with AA, including GIn (Wu et al. 1996c¢), in weaning piglets was
reported to increase the mitosis to apoptosis ratio and decrease in villus atrophy in the jejunum.
Arginine is the first limiting AA in sow’s milk and milk replacers, and the endogenous synthesis
in suckling piglets is insufficient (Wu et al. 2004). From sow milk, the piglet is provided < 1.01
g Arg/d, which does not fulfil the reported requirements for growth and metabolic function in 7-

day old piglets (= 2.7 g/day) (Wu et al. 2004). Arginine supplementation to piglets influenced
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by IUGR led to improved Gl development (Wang et al. 2012). Glutamine, a precursor of Arg,
orally supplemented (1g/kg BW/d) to piglets between 0 and 21 days of age, was associated
with increased weight gain and reduced weaning mortality (Wu et al. 2011). Research showed
that substances originating from sow milk, lactose, fat, immunoglobulins, growth factors and
milk oligosaccharides, improve the growth and maturation of the GIT in LBW piglets (De Vos
et al. 2014).

2.2 Aspects of gut development in piglets before weaning

To ensure that newborns have a healthy start in life, the GIT must be able to cope with a
change from parenteral nutrition through the placenta before birth, to oral intake of colostrum
and milk, after birth. For this reason, the GIT, influenced by luminal and humoral factors, grows
and matures very quickly during this phase (Sangild et al. 2000). During the first days of life,
newborn piglets show an increase in Sl weight of 72%, mainly due to a large increase in the
weight of the mucosa, but also due to an increase in length. This weight gain on the first days
is probably due to temporary swelling of epithelial cells caused by an intracellular accumulation
of proteins (Burrin et al. 1992). The swelling of the enterocytes, is accompanied by the growth
of the intestine (Xu et al. 2002). The size of a single enterocyte changes significantly from the
unfed newborn piglet to the 24-hour or seven-day-old piglet. A three to the fourfold difference
in intestinal protein synthesis was observed between piglets fed colostrum or milk replacer and
piglets fed water. Differences in intestinal protein mass appear to result from IgG accumulation
and retention because it was significantly increased in piglets fed colostrum (Burrin et al. 1992).
Likewise, an acceleration of the cell proliferation rate from up to 20 days in fetal intestinal cells

to 2-3 days in the intestinal tissue of the newborn piglets has been observed.
2.2.1 Development of small intestinal morphology of postnatal piglets

It has been shown that jejunal villus height decreases during the suckling period, with the most
significant decrease observed on the third and seventh day after weaning. The jejunal villi of
weaned piglets, compared to those of suckling piglets at the same age were much shorter.
The villi appearance of two and ten-day-old suckling piglets is similar to a long, thin finger and
changes its appearance until the age of 35 days, when the villi become shorter and wider
(Skrzypek et al. 2005). At weaning, the villi show a close juxtaposition, which leads to a
smoother intestinal lining (Cera et al. 1988). In another experiment, the villus height of the SI
did not change with age or BiW, but the villus width and crypt depth gradually increased with
age (Wiyaporn et al. 2013). No significant difference in cell proliferation was observed between
NBW and LBW piglets; the highest proliferation rate was observed in piglets at 28 days of age.

Cell proliferation in the Sl and differs between “mature” and newborn piglets. Differences in the
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number of apoptotic cells have been reported, with newborn piglets having significantly fewer
apoptotic cells than piglets at ten days of life (Godlewski et al. 2005). In LBW piglets, intestinal
barrier function does not appear to be impaired compared to NBW piglets (Huygelen et al.
2015). However age does have a significant impact, with the intestinal barrier becoming tighter,
and increasing crypt depth (40%) and decreasing villus length (35%) (Marion et al. 2002). In
addition to intensive growth, the S| undergoes an essential maturation process at an early
stage after birth. There is increased proliferation in the crypts, which is associated with
significant structural and functional transformation (Baintner 2002), as the "fetal type"
enterocytes, which contain large lysosomal vacuoles, are replaced by "adult-type" enterocytes,
which do not have these vacuoles. Fetal type enterocytes are divided into two categories of
lysosomal vacuoles, the transport and digestive vacuoles. The transport vacuoles are visible
along the entire length of the small intestine, but only in the first two days after birth. They are
responsible for transporting macromolecules from the intestinal lumen, through the
enterocytes, into the bloodstream. The transport vacuoles allow biologically active colostrum
molecules, including immunoglobulins, to pass through the intestinal mucosa without affecting
their activity. On the other hand, the lysosomal vacuoles are located in the distal half of the Sl
and appear to be responsible for the intracellular digestion of nutrients and controlling intestinal
lumen pH (Baintner 1994). A few days after birth there is a functional change where the activity
of brush border lactase, aminopeptidase A and N and dipeptidase IV is significantly reduced
(Zhang et al. 1997), and the open "gut barrier", which is associated with the high absorption

rate of large molecules, disappears (Teichberg et al. 1992).
2.2.2 Development of colonic morphology of postnatal piglets

Immediately after birth, the epithelium of the colon is still immature (Montedonico et al. 2006).
The first day after birth, the weight of the colon increases by 30%, and then doubles by the
third day of life, due to mucosal and non-mucosal tissue growth (Bach and Carey 1994). In
addition, villus-like structures can be seen in the caecum and proximal colon, but only on the
first day after birth (Xu et al. 1992). It is assumed that these structures are also there in late
gestation (Everaert et al. 2017). In another study, no morphological difference was found
between LBW and NBW piglets at the same age, but changes were observed in both BiW
groups as the piglets aged (Wiyaporn et al. 2013). Colonic enterocytes are also capable of
absorbing AA until the second week after birth (Xu et al. 1992). It is assumed that neonatal
colonic enterocytes are part for part replaced by enterocytes lacking in this function (Sepulveda
and Smith 1979). The function to transport AA seems to be affected by neurohormonal status

and food passage (Wooding et al. 1978).
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2.3 Function and immune response of the neonatal pig gut

At birth, the piglet is highly immunocompromised and depends on the supply of specific and
non-specific immune factors from colostrum and milk to protect its health. In between 24 to 48
hours after birth, the piglet can absorb macromolecules from the intestinal lumen in a non-
selective way. Permeability decreases strongly from 24 to 48 hours after birth. The piglets
absorb immunoglobulins, such as IgG, from the sow’s colostrum via the enterocytes
(Rothkotter et al. 1991). The migration of lymphocytes into the mammary gland leads to the
production of secretory immunoglobulin A (IgA), which is released into the sow's milk to
maintain the humoral immunity of the piglets (Van Niel et al. 2001). The so-called functional
immaturity of the newborn piglet's cellular and secretory immune system is limited to the fact,
that they can only carry out limited T and B cell responses when confronted with pathogens.
This contributes to their immunocompromised status (Seiler and Berendonk 2012). The
development of immune competence must be present for optimal growth. Adaption of the
organism towards the exposed wide range of antigens associated with pathogens, commensal
bacteria and food is needed to adjust the responses to antigens accordingly. This refers to
developing tolerance to food and commensal bacterial antigens and active immune responses
to pathogens (Bailey et al. 1994). It is assumed that the immune system needs some
stimulation at specific points in early postnatal development to ensure optimal functioning of
the immune system. (Mclamb et al. 2013). In pigs and other animals, large amounts of protein
are absorbed immunologically intact by the intestinal mucosa (Brown et al. 2013). Immune
responses to harmless feeding components must be regulated to prevent tissue damage and
a deteriorated absorption of macromolecules. A systemic tolerance or "oral tolerance" has
been shown in pigs (Butler et al. 2002). A change in the morphology of the intestinal mucosa
and intestinal immune cells depends on the feed composition and the presence of oral feed
components (Holmgren and Svennerholm 2012; Mowat and Agace 2014). Maintaining the
integrity of the epithelial surface is essential to prevent infections that can develop through the
GIT because a disease will only develop if the microorganisms or its toxins attach themselves
to the epithelial cells and gain access through the epithelium. Therefore, it is not surprising that
the mucosal immunity mechanism tends to be non-inflammatory and is initially designed to
keep potentially harmful antigens in the lumen of the intestine, where they are effectively
removed by peristalsis and continuous flow of the digesta. IgA antibodies, which cannot elicit
a complement reaction, perform this function. In healthy individuals, epithelial cells and mucus,
together with IgA, provide an effective barrier against potentially harmful bacteria. When this
barrier is breached, other protective mechanisms of the innate and acquired immunity start

to work to protect the intestine (Stokes et al. 2004).
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2.3.1  Mucins and their tasks in innate barrier functions in the gastrointestinal tract

Intestinal epithelial cells play a significant role in innate immunity by forming a highly
specialised physical and functional barrier against feeding and microbial antigens. Large,
highly glycosylated glycoproteins called mucins (Sheehan et al. 2000), play a major role in
innate barrier function and immunity. There are two types of mucins, membrane-bound and
secreted mucins. Membrane-bound mucins have a hydrophilic C-terminal transmembrane
domain (Andrianifahanana et al. 2006), are monomeric, apically located on the surface of
mucosal epithelial cells and participate in the protection of the mucosa by processing cellular
signals, thus providing a response to pathogens and intestinal inflammation (Lindén et al.
2008). Secreted mucins, are produced and secreted in the GIT by mucus cells of the glandular
tissue and special epithelial cells called goblet cells (Verdugo 1990). They are involved in the
formation of mucus gel, and are characterised by a high proportion of O-linked glycosylation
patterns (Roussel and Delmotte 2004). The glycosylation patterns depend on the presence of
glycosyltransferases in the cell, which are determined by the genetics and localisation of the
tissue (Rini and Esko 2015). Every individual animal differs in the mucin oligosaccharide
terminal structure and within tissue locations (Lindén et al. 2010; Venkatakrishnan et al. 2017).
Infections and inflammatory factors have been shown to change the glycosylation pattern of
mucins. Therefore, glycosylation is considered a protective mechanism against mucosal
pathogens (Jentoft 1990). The main function of Gl mucins is due to the high level of
glycosylation. It protects and lubricates the cell surface and prevents the degradation of the
protein backbone by proteases (Corfield 2015). Mucins are crucial as the first defence barrier
against physical and chemical attacks by ingested food, microbes and microbial products.
Furthermore, they are involved in epithelial cell renewal and modulation of cell adhesion,
serving as ligands for cell surface receptors, participating in host-pathogen interactions and
acting as energy sources for both commensal and pathogenic microorganisms.
(Andrianifahanana et al. 2006; Skoog et al. 2017)
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2.3.2 Immunological mucosal development of the gastrointestinal tract

Cells and structures involved in the mucosal immune response are initially absent shortly after
birth and then rapidly populate the piglet intestinal tract (Mowat 2003). Four phases of mucosal
immunological architecture development have been determined (Stokes et al. 2004). In the
first phase, the newborn piglet has very few lymphocytes in the epithelium of the intestine and
the lamina propria. Lymphocyte accumulations occur in the areas of the mucosa, which then
develop into Peyer's plates (Salmon et al. 2009). However, these accumulations have no clear
immunological structure. The second phase is initiated when lymphocytes colonise the
intestine during the first two weeks of life that express CD2 surface markers but do not
coexpress CD4 or CD8 surface markers. Peyer's patches begin to organise themselves and
acquire an almost mature structure during this period. At the beginning of the third phase, CD4*
T cells colonise the intestinal mucosa of 2-4 weeks old piglets, primarily the lamina propria.
Most of the CD8" cells are absent, and only a small number of B-cells express mainly IgM. The
fourth phase, which starts at the age of five weeks, is characterised by the appearance of CD8*
cells in the intestinal epithelium and around the epithelial basement membrane. In the areas
of the crypts, many IgA positive B cells show up. By reaching seven weeks, the intestine
structure is comparable to that of an adult pig. As a result, at three weeks of age, the piglet
can exert an active immune response to live viruses and feed components. However, the
quantity and quality of these immune responses differ from those of older pigs, as also shown
in the study of Bailey et al. (2004). More specifically, the three-week-old piglet cannot make
the critical choice between pathogenic and non-dangerous antigens and of developing
tolerance to the non-dangerous ones (Butler et al. 2002). A tolerance to continuously fed

proteins does not seem to be fully achieved by eight weeks (Butler et al. 2002).
2.4 Amino acids characterization and function in young pigs

By forming short polymer chains, peptides or polypeptides, AA are the building blocks of
proteins. There are 20 proteinogenic AA and they are required to maintain an animals' normal
physiological function, nutritional status improve health and growth (Rezaei et al. 2013).
Traditionally, AA have been categorised as nutritionally essential and non-essential. The
essential AA are histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine,
tryptophan and valine (Rezaei et al. 2013), as they must be added to the diet in sufficient
amounts because their carbon skeletons are not synthesised in vivo (Kim et al. 2005). The
non-essential AA (NEAA) are Ala, asparagine, Arg, aspartate, cysteine, Glu, Gin, glycine,
proline, serine and tyrosine, as the inter-organ AA metabolism in the body leads to their de
novo synthesis (Wu 2009). For NEAA and their metabolites, many physiological functions

are described. Glutamine and Glu, for example, get their a—amino nitrogen from carbon
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skeletons of branched-chain AA, which cannot be formed in the body. (Rezaei et al.
2013). Studies have shown that not enough NEAA are synthesised by pig's during
specific developmental phases or under particular feeding circumstances, to sustain
growth, development, lactation and reproduction performance (Kim and Wu 2007). Therefore
Arg, cysteine, Glu, GIn, glycine, proline and tyrosine are considered conditionally essential AA
(Rezaei et al. 2013). Feed proteins, which are the nutrients with the highest costs in pig
production, are transformed into tissue proteins via complex biochemical and physiological
processes (Wu 2009). It is known that Glu, GIn and aspartate are extensively metabolised in
the Sl. At the same time, other AA are primarily used for protein accretion in immature pigs.
The utilisation of dietary proteins remains suboptimal with regard to the pig. A previous study
showed that in young piglets, only 50 to 70% of dietary AA are transformed into tissue protein
(Wu et al. 2010a). The degradation end product of the surplus AA is excreted in urine and
faeces, contributing to environmental pollution. Next to the synthesis of tissue proteins, some
AA function as signalling molecules that adjust mRNA translation. For instance, the essential
AA leucine can ftrigger protein synthesis in cells by ameliorating the phosphorylation of
mammalian target of rapamycin (mTOR) and its downstream target proteins (Anthony et al.
2000). Furthermore, almost all AA affect direct or indirect immune function. Additionally, some
AA work as precursors for synthesizing neurotransmitters (Li et al. 2007) and particular
hormones (Wu 2009).

2.4.1 Glutamine

Glutamine (CsH1oN203) is an a-AA synthesised by diverse tissues in the body, especially by
the skeletal muscle. The enzymatically easily removed side-chain amide group makes GIn
hydrophilic and a favourite substrate for cells requiring a source of Glu or NHs for physiological
functions (Young and Ajami 2001). Many enzymes are connected to GIn metabolism, but the
major ones are GIn synthetase (GS) and glutaminase (GLS). Glutamine synthetase promotes
GIn synthesis out of Glu and NHsin an ATP-dependent process (Meynial-Denis 2017). The
hydrolysis of GIn results through the enzyme GLS, setting NH4* free (Newsholme et al. 2003).
Depending on the factors like metabolic and energy status, various organs show GLS and GS
functions. Liver GIn functions as an essential transporter for nontoxic transport of NHs since
the liver is the major site of nitrogen metabolism in the body and the tissue that shows the
highest capacity for GIn synthesis (Newsholme et al. 2003). Additionally, certain cell types and
tissues, like immune, kidney and intestinal cells, are predominantly GIin consuming tissues
(Van De Poll et al. 2004). Glutamine has been shown to exhibit effects on cell division, function,

and maintenance of intermediary metabolism in Hela cells, lymphocytes, macrophages and
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enterocytes. On the other hand, GIn also promotes NADPH and CO- production. Furthermore,
GIn contributes nitrogen atoms for the macromolecular synthesis of purines, pyrimidines and
amino sugars (Newsholme et al. 2003). Because GIn can be synthesised and released from
various tissues, it is considered to be nutritionally dispensable. Nevertheless, in certain
conditions, such as sepsis, rehabilitation of burns, or surgery, Gln availability can be lowered
due to increased requirements by catabolic or inflammatory processes and oxidative stress in
humans (Rodas et al. 2012) and animals (Cruzat et al. 2010; Stavrou et al. 2018), considering

GIn as a conditionally essential AA (Newsholme et al. 2011).
2.4.2 Functions of glutamine in the pig

It is known that the colostrum and milk of sows are rich in Glu and GIn, whereas the amounts
of ornithine and citrulline are quite low (Wu and Knabe 1994). In the SI, GIn is utilised by the
enterocytes as a major energy substrate (Wu et al. 1994b). For example, GIn provided more
ATP to the enterocytes of pigs than glucose or fatty acids (Wu et al. 1995c¢). Additionally, it has
been described that GIn acts as a substrate for the synthesis of citrulline and Arg in enterocytes
of piglets during the first week of life. This is important because, during the neonatal period,
the requirements for Arg are much higher than its provision from milk, as the endogenous
synthesis of Arg is crucial for optimal growth and development during the first week of life (Wu
et al. 1995c¢). Furthermore, GIn is an important substrate for the production of glucosamine-6-
phosphate, which is used for building amino sugars and glycoproteins. Also the function of
monocytes, macrophages, lymphocytes and neutrophils is dependent on GIn (Alverdy 1990).
High concentrations of GIn in plasma benefit piglets in maintaining the regular activity of
lymphoid organs and the immune system. This is why GIn is considered a nutritionally essential
AA in young pigs (Wu 2010).

2.4.3 Effects of glutamine supplementation on the gastrointestinal tract

The two NEAA GIn and Glu cannot be considered separately due to their partially identical
metabolic pathways in the function and metabolism of the healthy intestine or pathological
events (Blachier et al. 2009). In cells where the enzyme GLS is present, such as the
enterocytes, GIn can be converted to Glu and NH.*. Conversely, cells in which a high GS
activity prevails, as in colonocytes (Andriamihaja et al. 2010), GIn can be produced from Glu
and ammonia (Eklou-Lawson et al. 2009). However, only GIn is used to synthesise purines
and pyrimidines (Newsholme and Carrie 1994), and N-acetylglucosamine and N-
acetylgalactosamine, which are required for intestinal mucin synthesis (Reeds and Burrin
2001). Glutamine is also the preferred energy source for rapidly dividing cells, such as

epithelial cells and immune cells, such as lymphocytes. Almost 60% of the absorbed Gin is
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oxidised in the Sl to provide energy (Windmueller and Spaeth 1978; Blachier et al. 2009). The
epithelial cells of the colon are supplied with GiIn by the basolateral side via the bloodstream.
In addition, colonocytes can use short-chain fatty acids such as acetate, propionate and
butyrate as energy substrates, which are released by bacteria from Glu and other AA (Blachier
et al. 2007). The transport of GIn in the intestine requires sodium as a co-transporter, and GIn
has an additional effect on sodium absorption comparable to that of glucose. Glutamine enters
the enterocytes mainly through the sodium-dependent AA transporters ATBO/ASCT2 (Avissar
et al. 2004). Under hypersecretory conditions, GIn supplementation improves absorption
(Coeffier et al. 2005), suggesting that GIn may positively affect various intestinal diseases
associated with diarrhoea. Glutamine appears to be the preferred fuel for immune cells,
regulating lymphocyte proliferation and cytokine release (Yaqoob and Calder 1998), and a lack
of GIn leads to a deteriorated immune response under various pathophysiological conditions
(Wernerman 2008). Glutamine might improve the intestinal barrier function by acting on cell
proliferation and apoptosis balance, protein synthesis and degradation, and specific signalling
pathways (Rhoads and Wu 2009). It has also been shown to enhance mucosal growth and
improve gut barrier function during certain situations. Windmueller (1982) demonstrated that
GIn provides a major portion of the energy required by the enterocytes, and Ardawi
and Newsholme (1983) showed similar effects in colonocytes. Rhoads et al. (1997)
demonstrated that GIn activates a variety of early response genes, essential to the
proliferative response of the enterocyte (Kandil et al. 1995). In addition, GIn enhances the
effect of growth factors on enterocyte DNA synthesis (Jacobs et al. 1988) and stimulates
ornithine decarboxylase activity in a dose- and time-dependent manner. This latter enzyme
regulates the rate-limiting step in polyamine biosynthesis, which is critical for intestinal cell
generation and repair. Glutamine also improves the protein metabolism of the intestinal
mucosa (Coeffier et al. 2003), via the regulation of mTOR signaling. In contrast, GIn
deficiency stops protein synthesis via the GCN2 signalling pathway (Boukhettala et al.
2012). In vitro studies also show that GIn depletion is associated with increased intestinal
permeability (Boukhettala et al. 2012), potentially via reduced expression of the tight
junction proteins, occludin, claudin-1 and ZO-1. (Li et al. 2004). In addition, GIn also has
cytoprotective effects in the gut, due to its ability to induce heat shock proteins (Meynial-
Denis 2017)

2.4.4 Metabolism of Glutamine in Enterocytes

Two types of Na*-independent transporters are connected to the brush border membranes of
jejunal enterocytes (Fan et al. 1998). The Na*-dependent B° transport system serves as the

primary transporter of luminal GIn. Furthermore, it is essential to emphasise that enterocytes
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can take up GIn from the bloodstream (Meynial-Denis 2017). This supply of Gin through the
bloodstream is especially relevant for epithelial cells of the colon as they transfer very little AA
from the intestinal lumen into the blood, except for a short period directly after birth (Darragh
et al. 1994), and are therefore dependent on the supply of GIn as an oxidative substrate for
energy supply (Darcy-Vrillon et al. 1993). The mitochondrial phosphate-dependent enzyme
GLS degrades GIn from the intestinal lumen or blood to Glu or ammonia (Wu et al. 1994a; Wu
et al. 1995b). Glutamate enters the cytosol and is transaminated with oxaloacetate to form
alpha-ketoglutarate and aspartate (Blachier et al. 2009) or can be transaminated in the
presence of pyruvate to produce Ala and alpha-ketoglutarate (Wu et al. 1995b). Aspartate,
which is endogenously produced by GIn or Glu, derives from the intestinal contents and can
be used by the mitochondria for oxidative metabolism (Windmueller and Spaeth 1978). Since
enterocytes have only a limited capacity to convert Glu via the enzyme glutamate
dehydrogenase into alpha-ketoglutarate and ammonia, most of the conversion occurs via
transamination (Madej et al. 2002). In the mitochondria, alpha-ketoglutarate is then used for
the Krebs cycle (Duee et al. 1995). Glutamine and Glu may also be converted to other AA such
as ornithine (Blachier et al. 1992), citrulline and proline (Wu et al. 1994a). The synthesis of
glutathione from the AA cysteine, glycine and Glu also occur in the enterocytes (Reeds et al.
1997). The metabolism of GIn and Glu in colonocytes is similar to that of enterocytes (Darcy-
Vrillon et al. 1994). The enzyme GLS is also expressed in colonocytes, but the activity of the
enzyme GS appears to be higher in colonocytes than in enterocytes (Eklou-Lawson et al.
2009). The compression of Glu and ammonia to form GIn may depend on the high ammonia
concentration in the colon (Mouille et al. 2004), and the inhibitory effect this high concentration

has on colonocyte respiration (Mouille et al. 2004; Andriamihaja et al. 2010).
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Table 2.1 Distribution of glutamine and general effects of glutamine supplementation

Main findings

References

Physiological

fluids and tissue

Free GIn in porcine milk 1 from 0.1 to 4 mM between 1 and 28 days of lactation

(Wu and Knabe 1994)

GIn and Glu make up to 20% of total
peptide bound AA in the colostrum and milk

(Haynes et al. 2009)

Gln in the plasma of fetal pigs goes from 0.8 to 1.4 mM during gestation

(Wu et al. 1995a; Wu et al.
1996a)

Between 30 and 40 days of gestation GIn concentration in amniotic and allantoic fluids of sows increased from 0.64 to 1.3 and 0.69 to 3.5
mM

Between 30 and 40 days of gestation GIn concentration in amniotic and allantoic fluids of sows increased from 0.64 to 1.3 and 0.69 to 3.5

(Wu et al. 1996a; Wu et al.
1998)
(Gao et al. 2009; Wu et al.

proteins mM 2010a)
GIn in porcine uterine flushing’s 1 at 10 and 15 days of pregnancy
GIn represents ca 5.2% of total AA in body proteins (Wu et al. 1999; Wu et al.
2010a)
Skeletal muscle is quantitatively the most important tissue for GIn storage (Wu et al. 2006; Manso et al.
2007; Li et al. 2009a)
Multiple metabolic pathways, regulating gene expression and signal transduction (Curi et al. 2005; Wang et al.
Major energy substrate for rapidly dividing cells, providing ATP for intracellular protein turnover, nutrient transport through the plasma | 2008)
membrane, cell growth and migration and maintaining the integrity of cells.
Regulation of the acid-base balance (Curthoys and Watford 1995)
Precursor of purines and pyrimidines (Wu 1998)
Major AA for endogenous synthesis of citrulline and Arg via the intestinal renal axis (Wu and Morris 1998)
Physiological Formation of N-acetylglucosamine (Wu et al. 2011b)
functions Antioxidant in cells (Reeds et al. 1997; Stipanuk et

al. 2009)

GIn modulates gene expression of ornithine decarboxylase, heat stock proteins, and nitric oxide synthetase

(Kwon et al. 2004; Rhoads and
Wu 2009)

GlIn 1 intestinal expression of genes that are necessary for cell growth and removal of oxidants, while | expression of genes that promote

oxidative stress and immune activation

(Wang et al. 2008)
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Physiological

functions

GIn activates mTOR

(Curi et al. 2005; Xi et al. 2011)

Stimulation of protein synthesis and protection of skeletal muscle and enterocytes from proteolysis by textracellular concentrations of Gin

(Wu and Thompson 1990; Xi et
al. 2011)

GIn affects adenosine monophosphate-activated protein kinase, extracellular signal-related kinase, Jun kinase and mitogen activated

protein kinase

(Curi et al. 2005; Wu et al.
2007a)

Adjusts the production of NO and CO for gaseous signaling

(Li et al. 2009¢c; Wu 2009)

Digestion and

absorption

Extensively catabolized by the small intestine / also takes up GIn from arterial blood

(Wu et al. 1994c)

Free Gin is stable in the stomach and the duodenum

(Wu et al. 1996b)

Small peptides are hydrolyzed by mucosal peptidases / di- and tripeptides that can be directly taken up into enterocytes via PepT1 to form

free GIn in small intestine

(Daniel 2004; Haynes et
al. 2009)

Via Na*-dependent system N transporters free luminal GIn of the small intestine is absorbed by enterocytes

(Bode 2001)

Small peptides with GIn and free GIn can be absorbed by luminal bacteria via transporters

(Ling and Armstead 1995)

The jejunum takes up most of the dietary GlIn, the ileum and duodenum come after the jejunum in absorption of GIn

(Haynes et al. 2009)

Almost 67% of dietary GIn is exploit by the small intestine in pigs, while the rest enters the portal circulation

(Stoll and Burrin 2006; Wu et al.
2010b)

Usage of dietary
and aterial blood

The organs of pigs in all age groups use GlIn, especially the SI

(Wu et al. 2010b)

In young pigs the flow of GIn in arterial plasma is 3.27 g/kg of BW

(Bertolo and Burrin 2008)

Stomach, spleen, pancreas, kidneys skeletal muscle, lymphoid organs and vascular endothelia use the majority of arterial Gin

(Wu et al. 2011b)

Gin The GIT acquires GIn from feed and blood
Out of arterial blood GIn is the only AA that can be absorbed by the SI of swine (Wu and Knabe 1994)
The majority of the circling GIn is acquired by de novo synthesis from Glu and ammonia by GIn synthetase in serval tissues (Li et al. 2009b; Wu 2009)
like skeletal muscle, mammary gland (lactating) and adipose tissue
Endogenous

synthesis of GIn

in pigs

The GIn in sow milk is synthesized from branch-chained AA and a-ketoglutarate in the lactating teats

(Li et al. 2009a)

Via catabolism of essential AA the Ammonia utilized for GIn synthesis is formed

(Wu et al. 2010b)

Through insignificant action of GIn synthetase in mucosal cells of neonatal, growing, and lactating pigs only a small amount of GIn is

synthesized in the small intestine in contrast to the high usage of GIn by the intestine.

(Haynes et al. 2009; Li et al.
2009a)
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Table 2.2 Basic effects of glutamine supplementation on the sow, piglets before and after weaning

Supplementation

Main findings

Reference

Preweaning piglets

Glutamine concentration
in plasma of 1 day old

suckling piglets

Sow milk

NBW: 0.53 + 0.04 mM
IUGR: 0.36 £ 0.03 mM

(Wu et al. 2011b)

Growth Performance

Sows diet + 2.5%
crystalline GIn

No influence on growth performance of piglets

(Kitt et al. 2004)

1 g GIn/kg BW

| daily weight gain by 19% in 7 to 21 day old piglets

(Haynes et al. 2009)

3.42 mmol/kg BW Gin; Ala-
Gin twice daily

healthy sow-reared piglets intestinal and whole-body growth 1
No effect on milk intake

Growth performance 1 after LPS-challenge

(Haynes et al. 2009)

4.87 g GIn per litre of
whole milk
Intake of 4.45 g GIn per
day

IUGR piglets growth and milk intake 1, preweaning mortality |

(Wu et al. 2010b)

1 g/kg BW of GIn per day

IUGR piglets growth 1,
milk intake 1,

preweaning mortality |

(Wu et al. 2011b)

1 % of GIn as fed basis

1 growth performance

1 increased villus height/villus height : crypt depth ratio in duodenum

(Yang et al. 2018)

Physiological Parameters

3.42 mmol/kg BW Gin; Ala-

Gin twice daily

1 concentration of GIn in plasma, more effective 1 by Ala-GIn

Plasma concentrations of adenyl purines and jejunal tissue concentrations of ATP, AMP,

adenosine and cAMP normalised

Lipopolysaccharide (LPS) - induced increase in rectal temperature was reduced by 0.5°C

(Haynes et al. 2009)
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Preweaning piglets

Physiological Parameters

1 g/kg BW of GIn per day

| ammonia concentration in plasma of IUGR piglets

(Wu et al. 2011b)

1 g/kg BW of GIn

Stimulation of cell proliferation in muscle tissue
Larger muscle fibers

Slightly altered abundance of myosin heavy chain isoforms

(Zhao et al. 2020; Zhao et al.
2021)

Immune response

3.42 mmol/kg BW Gin; Ala-

Glin twice daily

LPS-induced jejunal atrophy, cell death and oxidative stress |

Intestinal expression of Toll-like receptor-4, caspase-3, and NFAB |

(Haynes et al. 2009)

Postweaning piglets

Findings

In early weaned piglets reduced feed intake and intestinal epithelial damage occurs linked to |
intake of GIn by the diet
lsynthesis of GIn from glucose branch-chained AA and other AA

(Wu et al. 1996b; Wang et al.
2008)

Small intestine requirement of GIn in 21-35-day old sow reared piglets (965 mg/kg BW per
day)

Supply of GIn from the diet + arterial blood is only 618 mg/kg of BW per day

Need of GIn supplementation of 347 mg/kg of BW

(Wu et al. 2010b)

Benefits

No additionally protein in the diets — N excretion/incidence of diarrhea |

(Lalles et al. 2007)

GIn supplementation fits to the physiological needs of the S| and can reduce conversion of

essential AA and others for GIn syntheses by extraintestinal tissue

(Wu et al. 2011b)

Growth performance

Diets with 0.2, 0.6 or 1.0%

free GIn

1 feed efficiency by 25%

Prevention of villus atrophy

(Wu et al. 1996b)

Sows diet + 2.5%

crystalline GIn

LPS challenged and unchallenged piglets from sows supplemented with glutamine had lower

weight gain, | feed intake and |small intestine weights

(Kitt et al. 2004)

2% as fed basis GIn

Improvement of growth performance and small intestinal morphology in Escherichia coli or

LPS-challenge

(Yi et al. 2005)

Corn-soybean meal diet
supplemented with 1% free
Gin

| lower incidence of diarrhea and shorter duration
First ten days after weaning | feed:gain ratio

Second ten days 1 daily gain

(Zou et al. 2006)
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Preweaning piglets

Growth performance

1% free GIn in diets

1 BW gain
Prevention of jejunal atrophy

1 small intestine growth

(Wang et al. 2008)

0.8% GIn

1 average daily gain
1 villus height and villus height : crypt depth ratio

(Zhang et al. 2017)

1% GIn or 1% glutamic

acid

No effects on performance

(Amorim et al. 2018)

0.8% GIn

1 expression of jejunal glutathione peroxidase and total superoxide dismutase
| malonaldehyde concentration

1 expression of occluding mRNA

(Zhang et al. 2017)

Physiological parameters

Diets with 0.2, 0.6 or 1.0%

free GIn

1 plasma concentrations of asparagine, Glu and Ala

| drop in plasma taurine

(Wu et al. 1996b)

Diet supplemented with 1%

free GIn

| serum urea nitrogen for the first 10 days

1 total protein in serum

(Zou et al. 2006)

1% GIn in creep feed or
0.88% Aminogut

Best feed:gain ratio

1 villus height and proliferating cells

(Cabrera et al. 2013)

0.8% GIn

1 concentrations of GIn, Glu, Arg, citrulline in plasma and protein

(Zhang et al. 2017)

1% GIn or 1% glutamic

acid

acceleration of carbon turnover

(Amorim et al. 2018)

Gestating Gilts

Findings

60% of fetal growth happens in the last three weeks of gestation — higher need of GIn by the

fetus

Sows plasma concentrations of GIn significantly | in late gestation

(Wu et al. 1999)
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Gestating Gilts

Findings 1% Gin to diets of gilts lamount of IUGR piglets, deviation in BiW and preweaning mortality (Wu et al. 2011b)
during 90 and 114 days 1 mean BiW and litter BiW of alive born piglets
Lactating sows
On day 19 of lactation the mammary gland takes up 16 g of GIn/d from arterial circulation (Trottier et al. 1997)
Mammary gland secretes 36 g of GIn/d in milk
(Haynes et al. 2009)
Supplementation contributes Gin for tRNA-GIn creation and saves BCAA for other metabolic | (Curi et al. 2005)
pathways, like synthesis of milk proteins, by working as substrates and activators of mMTOR
GIn modulates cell signalling via extracellular signal-related kinase, Jun kinase, mitogen- (Wu et al. 2007b)
activated protein kinase, and NO, which in turn regulates milk production in the lactating
Findings mammary gland

Increased requirements for Gin

(Kim and Wu 2009)

Possible triggering of ornithine decarboxylase expression in the lactating mammary tissue

(Rhoads and Wu 2009)

For synthesis of milk proteins there is inadequate uptake of GIn by the mammary gland
Branch - chained AA play an important role in GIn synthesis by the lactating porcine

mammary gland

(Li et al. 2009a)

Physiological Parameters

Corn-soybean meal + 2.5%

crystalline GIn

1 milk and plasma GIn levels

(Kitt et al. 2004)

1% GIn in diets

1 concentrations of GIn in milk

(Manso et al. 2007)

1% GIn in diets 0 to 21

days of lactation

1 concentrations of GIn in plasma, skeletal muscle and milk

(Wu et al. 2011b)

1% GIn in diets 0 to 21

days of lactation

1 milk yield at 14 and 21 days of lactation
1 total protein and urea nitrogen in serum at 14 days of lactation
1 concentration of GIn in plasma and milk

1 Branch — chained AA concentration in plasma

(Yang et al. 2018)
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Safety towards swine

Findings

Gln is abundant in culture medium for all cell types

(Curi et al. 2005)

High concentrations in foetal fluids

(Wu et al. 1995c; Wu et al.
1996b; Kwon et al. 2004; Gao et
al. 2009)

Short half-life in blood of neonatal, gestating and lactating pigs

(Wu et al. 2010b)

Supplementation of 1% GIn in the diet can be regarded safe

(Manso et al. 2007; Wu et al.
2010b)

In connection with other nutrients higher concentrations of Gln may lead to an unwanted side-

effect because of AA imbalances and increased amounts of NH3 in Plasma

(Suryawan et al. 2009; Wu et al.
2010b)

proposed use level (25 mg/kg feed) when used as sensory additive (flavouring compound) is

safe for all animal species

(Bampidis et al. 2020)
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2.5 Development of microbiota during the suckling period in piglets
2.5.1 Development of microbiota in the jejunum and the colon during suckling period

In the first few days after birth, the microbiota changes and becomes more diverse, as bacteria
from the environment enter the GIT. From birth, the Gl microbiota develops in a rapidly evolving
environment where intestinal physiology and innate immunity develop simultaneously (Kim et
al. 2011). At birth, the piglet GIT is mainly oxic, and colonised by aerobic bacteria like lactic
acid bacteria, enterobacteria and streptococci (Lalles et al. 2004). During the first week of life,
the metabolic activity of these early colonizing microbiota leads to oxygen depletion and an
increase in the number of anaerobic microbes (Jost et al. 2012), with other bacteria such as
Bacteroides, Lactobacillus, Bifidobacterium and Clostridium starting to colonise the GIT (Petri
et al. 2010). It has been observed that the microbial composition in pigs is fairly constant during
the first three weeks of life. Mainly consisting of Enterobacteriaceae, Lachnospiraceae,
Bacteroidaceae, Clostridiaceae and Lactobacillaceae (Frese et al. 2015). The environmental
changes lead to an ecosystem with a quick changing structure which shows different age
depended shifts along the whole GIT (Isaacson and Kim 2012). The intake of colostrum / milk
also impacts the development of the gut microbiota in neonatal piglets, and as a result, the
microbiome becomes “milk orientated” (Frese et al. 2015). There is continuing debate about
which are the two main phyla in the GIT of piglets. Several studies show that Firmicutes and
Bacterioidetes are the main phyla (Kim et al. 2011; Gresse et al. 2017), but another study
indicates that Firmicutes and Proteobacteria in the jejunum and ileum are the predominant
phyla (Yang et al. 2016). In the colon, Firmicutes and Bacteroidetes are described as the phyla
with the main abundance during suckling (Arnaud et al. 2020; Qi et al. 2021). The first microbes
to which piglets are exposed during birth come from the sow's vagina. Shortly afterwards,
factors such as hygiene conditions (Montagne et al. 2010), the genotype of the sow, her milk
(Frese et al. 2015), parity (Carney-Hinkle et al. 2013) and the housing environment (Kubasova
et al. 2017), have an impact on microbial composition. Of all these factors age, location of the
gut microbiota and the gut segment seem to have the greatest influence on microbiota
composition (Wang et al. 2019). Since the development of intestinal microbiota depends on
continuous exposure to microbes, exposure to microbes in the early postnatal period should
not be considered harmful (Schmidt et al. 2011).

2.5.2 Function of bacterial metabolites in neonatal piglets

It is assumed that the gut of neonatal piglets prior to birth is not colonised with bacteria. Shortly
after birth, there is a massive shift from an actual germ-free state to a dense microbial

population (Isaacson and Kim 2012). The number and diversity of bacteria increase from the
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stomach and jejunum toward the colon (Shirkey et al. 2006). The primary substrates for
microbial fermentation are carbohydrates. Through the breakdown of easily fermentable
carbohydrates, lactate is produced by lactobacilli, especially in the stomach and small intestine
(Sakata et al. 1999). Fermentation of non-starch polysaccharides and oligosaccharides,
primary in the colon, leads to the production of short-chain fatty acids (SCFA). It is important
to know that sow milk is rich in oligosaccharides, especially at the beginning of lactation. During
the previously described fermentation process, a huge amount of acetic acid, propionic acid
and butyric acid arise from the fermentation of these milk oligosaccharides (James et al. 2003).
With small amounts of fermentable carbohydrates, there is bacterial utilisation of AA in addition
to carbohydrate degradation. As a result, the SCFA iso-butyric acid and iso-valeric acid are
increasingly produced. An increased proportion of these branched fatty acids indicates an
increased bacterial utilisation of proteins (Blaut and Clavel 2007). The SCFA butyrate is
increasingly metabolised in colonic epithelial cells and utilised by them as a major source of
energy. Butyrate also has various health-promoting effects at the cellular level, such as
inducing epithelial cell differentiation. It reduces proliferation, strengthens the epithelial barrier
and suppresses tumorigenesis (James et al. 2003). Sow milk is also an essential source of AA
and biogenic amines produced by AA degradation from gut bacteria. Members of the family of
Enterobacteriaceae are known to produce biogenic amines. Nevertheless, gut-health
promoting effects of biogenic amines are difficult to predict. Both protective and toxic dose-

dependent effects have been described (Schokker et al. 2018)

2.5.3 Influence of the colonic microbiota on the development and intestinal immunity in the
Gl-tract

As the fermenting chamber, the colon plays a vital role in breaking down feed components by
anaerobic bacteria that can be absorbed and used by the piglet, such as SCFA, which serve
as an energy source for pigs (De Vries and Smidt 2019). The transport of water in the colon is
dependent on SCFA originating from colonic bacteria, and the intestinal bacteria also provide
exogenous alkaline phosphatases (Yolton and Savage 1976). The production of vitamin K
(Ramotar et al. 1984) and the recycling of bile salts (Gillland und Speck 1977) impact Gl
health. The first contact line for gut microorganisms are the epithelial cells. Intestinal epithelial
barrier function is activated by commensal gut microorganisms and reacts with tolerance
toward their presence (Sharma et al. 2010). Many mammalian studies observed an essential
effect on immune system development combined with microbial colonisation (Hooper et al.
2012). Also, different bacteria positively influence BW because of their interaction with the
host’s immune system. These taxonomic groups of bacteria are Turicibacter, Clostridiaceae,

Streptococcaceae and Lactobacillaceae. Lactobacillus mucosae is a bacteria suggested to
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help piglet BW gain due to its ability to improve epithelial barrier function and bind mucus
(Wang et al. 2019). As described by Dou et al. (2017), 7-day old piglets with a higher
abundance of Prevotellaceae, Lachnospiraceae, Ruminococcaceae and Lactobacillaceae

showed a lower incidence of post weaning diarrhoea.

2.5.4 The effects of glutamine supplementation on the gastrointestinal development of

microbiota and bacterial metabolites

Currently, there is very little literature describing the potentials effects of GIn supplementation
on Gl microbiota and their metabolites. Some studies suggest that Sl bacteria are involved in
the synthesis and catabolism of the AA lysine, threonine, Arg, Glu and GIn (Metges and Petzke
2005; Dai et al. 2010; Dai et al. 2012b). Glutamine is regulating the bacterial metabolism,
especially the metabolism of nitrogenous compounds. For this reason Gin is regarded as a key
regulator of the survival and growth of bacteria (Forchhammer 2007) and additionally Gin is
quickly utilised and metabolised by bacteria in the intestine. As described by Dai et al. (2012b),
up to 36% of GIn is utilised by Sl bacteria, but only 10% of it is used for protein synthesis. The
exact metabolic routes and the impact of Gln on intestinal bacteria is not clear. One possible
metabolic pathway for AA by bacteria, especially for GIn, could be deamination. Small intestine
bacteria use GIn or Glu, and differences in utilisation was observed to be species and gut
section dependent (Dai et al. 2010; Dai et al. 2011; Dai et al. 2012a). There is also a difference
in utilisation of AA between luminal and mucosa attached bacteria. Luminal bacteria of jejunal
digesta use GIn more intensively than tightly attached bacteria (Yang et al. 2014). In mice, GIn
supplementation leads to decreased abundance of Firmicutes and higher mRNA levels for
antibacterial factors in the gut (Ren et al. 2014). In rats, GIn supplementation increased the
abundance of Lactobacillus, Comamonas, Enterobacter, Peptostreptococcaceae,
Acinetobacter, Enterococcus and Wohlfahrtimonas (Xu et al. 2012). Furthermore, dietary Gin
supplementation to weaned rabbits led to lower mortality and modified the gut microbiota
(Chamorro et al. 2009). In humans, GIn supplementation has been shown to affect the
Firmicutes:Bacteroidetes ratio in the gut of obese patients (Zambom De Souza et al. 2015),
and decreased infectious morbidity with no associated alterations in the prevalence of
Bifidobacteria, Lactobacilli, E.Coli, Streptococci, and Clostridia in LBW infants (Van Den Berg
et al. 2007). Supplementation of Arg or GIn to mice also led to a decreased colonisation of the
Sl by pathogenic E. coli and increased IgA secretion (Liu et al. 2017). Glutamine
supplementation seems to reduce the severity of intestinal infection related to weaning in pigs.
In ex vivo experiments, lower mucosal cytokine response and an increased intestinal barrier
function was observed. However, it is not clear if the observed findings are the effects of GIn

on the microbiota or the host (Ewaschuk et al. 2011). Glutamine affects the microbiota by
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intestinal secretion of immunoglobulin through bacteria by T cell-dependent and independent
pathways (Wu et al. 2016). This is why the effect of Gln supplementation on Gl bacteria might

be a secondary immune- and receptor-mediated process (Husted et al. 2017).
2.6 Gut maturation and colonization in low birthweight piglets

No differences have been reported in intestinal morphology and barrier function between LBW
and NBW piglets during the suckling period (Huygelen et al. 2014; Huygelen et al. 2015).
However, many authors described a lower villus height and crypt depth, indicating a smaller
intestinal absorptive area, in piglets affected by IUGR (D'inca et al. 2010b; D'inca et al. 2011;
Mickiewicz et al. 2012). There seems to be an altered proliferation-apoptosis homeostasis,
possibly associated with a changed gene expression pattern of growth-related proteins in
piglets influenced by IUGR, which leads to a decrease in surface area (Wang et al. 2005;
D'inca et al. 2010b). The smaller intestinal surface area in piglets affected by IUGR leads to
lower activity of brush border enzymes, notably lactase, and affects the gut barrier function,
showing an increased permeability (D'inca et al. 2010b; D'inca et al. 2011; Ferenc et al. 2014).
Another finding in piglets influenced by IUGR is, that transcellular and paracellular permeability
are transiently increased (Wang et al. 2016), indicating an impaired barrier function of the gut.
For example, the higher paracellular permeability might explain the increased translocation of
antigens and microorganisms in neonatal piglets affected by IUGR (D'inca et al. 2011).

Interestingly the structural and functional changes are not visible anymore in piglets influenced
by IUGR that have survived the first days of life (Mickiewicz et al. 2012; Huygelen et al. 2014;
Wang et al. 2016). At the same time, proteomic analysis detected that protein related to
absorption, digestion, transport, apoptosis, metabolism and redox homeostasis are still
impaired during the suckling period (D'inca et al. 2010b; Wang et al. 2010). Since impaired gut
maturation and colonisation are apparent, differences in gut colonisation also occur because
of differences in BiW (D'inca et al. 2010b; Li et al. 2019). In piglets affected by IUGR,
differences in the adherent bacteria flora in the neonatal period are shown (D'inca et al. 2010b).
In contrast, similar to the disappearance of structural and functional changes between piglets
influenced by IUGR and NBW piglets, differences in the gut colonisation and composition are
not present in piglets affected by IUGR, if they are older than one week of age (D'inca et al.
2010b). In contrast, recent studies comparing the microbial composition of LBW and NBW
piglets observed minor changes in microbial composition and microbial genes at 7 and 21 days

during the suckling period (Li et al. 2019).
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Abstract

Background

It has been shown that small intestine development in low birth weight (LBW) piglets is
impaired. Glutamine (GIn) has been reported to improve piglet health and intestinal function in
weaned piglets, but data is scarce in suckling piglets. This study was conducted to investigate
the effects of oral GIn supplementation compared to Alanine (Ala) on jejunal development and
function in 5 and 12 d old male LBW and normal birth weight (NBW) suckling piglets.

Results

Gin had no effect on the jejunal morphology, development, tissue and digesta amino acid
profiles and mMRNA abundance of genes involved in amino acid transport, metabolism, gluta-
thione synthesis in LBW piglets when compared to Ala supplementation and birth weight
controls at 5 and 12 d. Only the concentration of GIn in jejunal tissue was higher in NBW pig-
lets supplemented with Gin compared to Ala at 5 d (P A0.05). A comparison of the birth
weight groups showed no differences between LBW and NBW piglets at 5 and 12 d in any
parameter. Jejunal crypt depth, villus height / width, tunica muscularis thickness, number of
goblet and IgA positive cells, the ratio of jejunal RNA to DNA and the concentration of DNA,
protein and RNA changed (P A0.05) from 5 compared to 12 d. The concentrations of several
free, and protein bound amino acids as well as amino metabolites differed between age
groups in jejunal tissue but the digesta concentrations were affected to a lesser extent.

Conclusions

Oral GIn supplementation to suckling male piglets over the first 12 d of life was not associ-
ated with changes in jejunal parameters measured in this study. The absence of effects may

PLOS ONE | https://doi.org/10.1371/journal.pone.0267357  April 27, 2022

1/24

26


https://doi.org/10.1371/journal.pone.0267357

PLOS ONE

Glutamine in suckling piglets

www.dfg.de/ https://www.fbn-dummerstorf.de/
The funders had no role in the study design, data
collection and analysis, decision to publish or
preparation of the manuscript. There was no
additional external funding received for this study.

Competing interests: The authors have declared
that no competing interests exist.

Abbreviations: AA, Amino Acid; Aad, a-
Aminoadipic acid; Ala, Alanine; BiW, Birth weight;
CD, Crypt depth; FAA, Free amino acids; FPSR,
Fractional protein synthesis rate; GIn, Glutamine;
LBW, Low birth weight; LSM, Least squares
means; NBW, Normal birth weight; PBAA, Protein-
bound amino acids; SE, Standard error; SI, Small
intestine; Suppl, supplementation group; TAA, Total
amino acids; TuM, Tunica muscularis thickness;
VH, Villus height; VW, Villus width.

indicate that GiIn is absorbed as well as metabolized in the upper intestinal tract and thus
could benefit intestinal development at a more proximal location.

Introduction

Increasing litter sizes in modern pig production have led to higher numbers of LBW piglets
[1]. Low birth weight is accompanied by an increased risk of disease, impaired organ develop-
ment, and higher mortality [2-4]. In terms of animal welfare, the high rate of mortality in
LBW piglets, especially in male piglets [5], is ethically debated [6] and results in significant eco-
nomic losses [7]. The pig is additionally interesting because it is considered as an excellent ani-
mal model for human nutrition [8]. Underweight infants often have problems related to
immature development of the intestinal tract [9].

The small intestine (SI) has digestive, absorptive as well as immunological functions and
grows rapidly in the early neonatal period [10]. This rapid growth is fueled by colostrum and
milk intake, which provides not only energy and essential nutrients, but also different bioactive
compounds such as growth hormones [11]. The jejunum is the largest section of SI [12] and
during the neonatal period the morphology, several metabolic pathways and immunological
functions are constantly changing [13-15]. Previous studies in piglets show that jejunal mor-
phology, development and function is impaired in LBW individuals [16-18]. To overcome
this impairment several nutritional strategies have been developed [1, 19]. These include sup-
plementations with colostrum [20] or bovine whey protein [21], nucleotides [22], short-chain
fatty acids [23] and specific amino acids (AA) [24].

Glutamine (GIn) and glutamate (Glu) are the most abundant protein bound amino acids
(PBAA), whereas free glutamine in sow milk increases during lactation and becomes the most
abundant free amino acid (FAA) [25]. In vitro studies have shown that Gln is a primary energy
source for neonatal porcine enterocytes [26-28]. It is assumed that Gln promotes protein syn-
thesis, immune response and oxidative status in mucosal cells of SI [29]. In enterocytes, Gln
can be transformed to Glu, which is a precursor of glutathione, a key anti-oxidative defense
molecule [30]. Gln metabolism by the jejunum has been investigated in several species, includ-
ing pigs [27, 31, 32]. However, the majority of the Gln supplementation studies in pigs have
been conducted in weaned piglets [29, 33-36], which are, from a physiological perspective, dif-
ferent from suckling piglets. In these studies Gln has been supplemented as single AA [34-36]
or as dipeptide [29, 33], with most of the control groups supplemented with isonitrogenous
amounts of alanine (Ala). Studies supplementing Gln to piglets during the later suckling
period, analyzing parameters after weaning, have been conducted as well [33, 37-39]. Studies
with lactating sows suggest that the Gln provided by milk might be limiting for protein synthe-
sis of piglets [39]. Hence, it was also investigated whether supplementation of maternal diet
with Gln either during pregnancy or lactation [40] was beneficial, but the effects on piglet
growth were inconclusive.

To the best of our knowledge, this is the first study to investigate the effect of oral Gln sup-
plementation on jejunal morphology, development and AA profiles in tissues and digesta in
sow reared piglets. Since jejunal morphology as well as development is impaired in LBW com-
pared to NBW piglets [18], we hypothesized that Gln supplementation would improve these
parameters in LBW piglets compared to their Ala supplemented control littermates. In addi-
tion, changes in jejunal AA profiles could provide insights into jejunal Gln metabolism and its
potential role in improving LBW jejunal morphology and development. The aim of this study
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was to investigate the effects of oral Gln supplementation to suckling piglets with different
birth weights on jejunal characteristics including morphology, AA-metabolism and anti-oxi-
dative-defense.

Methods

Animals, experimental design and sample collection

All experimental procedures were approved by the licensing authority State Office for Agricul-
ture, Food Safety and Fishery Mecklenburg-Western Pomerania, Germany (permission No.
7221.3-1-026/16), and performed according to the German Animal Welfare Act following the
Directive 2010/63/EU (European Convention for the Protection of Vertebrate Animals used
for Experimental and Other Scientific Purposes). Healthy German Landrace gilts were bred
and gave birth at the Research Institute for Farm Animal Biology experimental pig facility,
where the entire study was conducted [41].

The trial design has been previously described in detail [42]. Briefly, male LBW with a
mean birth weight (BiW) of 1.1 + 0.04 kg (n = 48; below the lowest BiW quartile of the experi-
mental pig facility) [42] and NBW (1.49 + 0.04 kg; n = 48; represents the middle 50™ percentile
of piglets born at the experimental pig facility) littermates selected at birth. Within 24 h post
farrowing, litter sizes were standardized to 12 piglets and experimental piglets assigned to
either Gln (1 g/kg BW/d; n = 48) or Ala (1.22 g/kg BW/d; isonitrogenous to Gln; n = 48) sup-
plementation. Each LBW or NBW sibling was assigned to a supplementation (Ala, Gln) or
age-group (5 or 12 d) in order to obtain similar mean birth weights of LBW (5 or 12 d;
LBW-Ala vs. LBW-GIn) or NBW (5 or 12 d; NBW-Ala vs. NBW-Gln) supplementation pair-
ings. Not more than three piglet pairs per sow were selected. Experimental piglets remained
with, and were suckled by their respective dam throughout the study, which was performed
across 17 experimental blocks. Approximately 24 h post birth, experimental piglets were orally
supplemented with Gln or Ala as described [42]. Piglets were supplemented 3 times daily
(07:00, 12:00 and 17:00) with 1/3 of the calculated daily dose using disposable syringes. The
procedure used to orally dose the piglets with the supplemental amino acids is described in the
S1 File. Exclusion criteria for pairs of piglets in this study were loss of body weight for more
than two consecutive days, sickness or lack of mobility of already one of the paired piglets.
During the experimental period 5 pairs of LBW and NBW piglets were excluded accordingly.
Excluded pairs were replaced by matching pairs of piglets to reach the total sample size
(n = 96). In addition, no blinding was conducted during the study, with all participants know-
ing the experimental group allocations from birth.

At 5 and 12 d, piglets were transported to the Research Institute for Farm Animal Biology
slaughterhouse 2.5 h prior to euthanasia. Two h before euthanasia each piglet received 33% of
their respective daily AA supplement in 6 mL milk replacer (150 g/L water at 45°C; 16.5 M]J of
metabolizable energy (ME)/kg, 20.5% crude protein, 10% crude fat, 0.2% crude fiber; Neopigg
Rescuemilk 2.0, Provimi, Netherlands). Piglets were electro-stunned and euthanized by exsan-
guination. Within 5 min post-euthanasia a 35 (5 d) or 40 cm (12 d) jejunal tissue section was
sampled from a defined anatomical site in each animal and age group (5 d; ~40 cm, 12 d; ~60
cm prior to the ileocecal junction). Digesta was collected, snap-frozen in liquid N,, and stored
at -80°C for subsequent analysis. The jejunal tissue was then washed with physiological saline
and a 5 cm section (most proximal to the ileocecal junction) put into Roti-Histofix (4% para-
formaldehyde, Histofix, Roth, Karlsruhe, Germany) for histological analysis. The remaining
tissue was diced into small pieces, snap frozen in liquid nitrogen and stored at -80°C for subse-
quent analysis.
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Jejunal morphometry, histochemistry and immunohistochemistry

Histo-fixed jejunum samples were cut with a feather-trimming blade (FEATHER, No.130
Type(S)) into 1 large and 2 smaller pieces and prepared as previously described [43]. A micro-
tome (Type 1400 Fa. Leitz Wetzlar, Germany) was used for cutting 5 pm sections from the par-
affin blocks. For mucosal morphometry measurements and differentiation of diverse mucin
types defined by the carbohydrates displayed, the Alcian blue pH 2.5 -periodic acid Schiff
staining method described by Liu et al. (2014) [44], was used. The measurements were investi-
gated using a microscope (Photomicroscope BX43F, Olympus, Tokyo, Japan) equipped with a
digital camera (Olympus DP72, Tokyo, Japan). Pictures were examined with the cellSens
imaging software (v. 1.4, Olympus). Five villi and corresponding crypts were randomly chosen
from various well-orientated parts of at least four sections. Sections with undamaged villi and
crypts were cut longitudinally. The distance from the tip of the villi to the bottom of the crypts
was measured. Morphometric measurements included villus height (VH) (from the tip of the
villus to the crypt mouth), villus width (VW), crypt depth (CD) (from the crypt mouth to the
base of the crypt), villus height to crypt depth ratio and tunica muscularis thickness (TuM)
[44].

For quantification of Immunoglobulin-A (IgA) secreting cells, 5 um jejunal paraffin sec-
tions were mounted on glass slides. After deparaffinization and rehydration, the slides were
boiled in 0.1 M sodium citrate buffer (pH 6.0). Endogenous peroxidase was inhibited with 1%
aqueous hydrogen peroxide solution for 30 min at room temperature. Slides were then incu-
bated in a humid chamber for 1 h in PBS containing 10% normal horse serum to avoid non-
specific antibody binding. Afterwards, sections were incubated over night at 4°C with the
following antibody: goat anti-porcine IgA 1:4000 (NB724, Novus Biologicals, Abingdon, UK).
Subsequently washed sections were incubated for 1 h with biotinylated horse anti goat IgG
1:500 (Cat. NO: BA-9500, Vector Laboratories) and then administered with ABC complex
(Vectastain elite ABC peroxidase Kit, Standard, Vector Laboratories). To visualize the immune
reaction, a 3,3"-diaminobenzidine chromogen solution (DAB Substrate kit, Vector Laborato-
ries) was applied [45]. An isotype control with a non-specific antibody (goat IgG, AB-108-c,
R&D Systems) was conducted to avoid nonspecific binding of the Fc part of the primary anti-
body. IgA positive cells were counted in the jejunal lamina propria in three areas in five eye
fields from four sections per animal according to Waly et al. (2001) [46]. The areas were delin-
eated with cellSens imaging software (v. 1.4, Olympus), ignoring the epithelium, large blood
vessels and artefacts. In each area, stained cells were counted and the results were given as posi-
tive cells per 10,000 um? of lamina propria tissue [47].

The detection of CD3-positive intraepithelial lymphocytes was performed as described pre-
viously [48]. Briefly, for antigen retrieval, slides were heated in 0.1 M sodium citrate buffer
(pH 6.0) in a microwave oven until boiling for 30 min. Afterwards the primary antibody PPT3
(mouse anti porcine CD3 epsilon, CAT NO 4510-01, Southern Biotech) was applied to the
slices. An isotype control with a non-specific antibody (mouse IgG, CAT NO 0102-01, South-
ern Biotech) was included, to control nonspecific binding of the Fc part of the primary anti-
body. For visualization of the primary antibody, a two-step indirect method was used (mouse
and rabbit Specific HRP/DAB IHC Detection Kit, ab236466, ABCAM). The secondary anti-
body was conjugated with horseradish peroxidase (HRP) labelled micro-polymer (goat anti-
rabbit HRP Conjugate, 58009 ABCAM). The whole immunohistochemistry protocol was per-
formed according to a published procedure [49]. To evaluate the stained sample a double-
blind quantification of CD3-positive intraepithelial lymphocytes was performed. Only com-
plete and intact villi (two slices per animal, five villi per slice) were evaluated and cell counts
were expressed per 100 enterocytes (Fig 1).
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Jejunum
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Fig 1. Jejunal Histomorphology and Immunohistochemistry (IHC) of 5 d and 12 d old male suckling piglets. A Alcian blue pH 2.5
-periodic acid Schiff stained jejunal tissue with stained goblet cells, different arrows indicating goblet cells containing different mucins. Narrow
arrow = acidic mucins, wide closed arrow = neutral mucins, wide open arrow = mixed mucins. 5 d, 12 d: upper picture 100 x, lower picture 200
x magnification. B THC of CD3, arrows indicating positive stained intraepithelial CD3+ cells in villi. 5 d, 12 d: upper picture 100 x, lower picture
200 x magnification. C IHC of IgA positive stained cells in lamina propria, no IgA positive cells detected at day 5, arrows indicating IgA positive
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cells. 5 d, 12 d: upper picture 100 x, lower picture 200 x magnification. Villus tip stained probably by milk derived secretory IgA (SIgA) on the
apical side of the enterocytes.

https://doi.org/10.1371/journal.pone.0267357.g001

Free and protein bound AA and AA metabolites concentration in jejunal
tissue and digesta

Jejunal tissue samples were prepared as previously described [50] and tenfold diluted by
ultrapure water for FAA analysis. For the assessment of total amino acids (TAA), an enzy-
matic hydrolysis was performed [51]. Two pL of supernatant was diluted with 55 puL
HEPES buffer (50 mM, pH 7.5), combined with 1 pL of pronase E (54 Units/mL) (Sigma-
Aldrich, Munich, Germany), 1 uL of prolidase (250 Units/mL) (Sigma-Aldrich, Munich,
Germany), and 1 pL of aminopeptidase M (25 Units/mL) (MP Biomedicals, Santa Ana,
California) and incubated at 37°C for 20 h. Samples were centrifuged (4°C) at 16,000 g for
10 min, and diluted 15/100 by ultrapure water. Digesta samples were lyophilized and 5 mg
was suspended in 500 pL of ultrapure water. Samples were vortexed for 15 s and centri-
fuged at 17,000 g, 4°C, for 10 min. The supernatant was transferred to a new test tube
without the lipid layer and diluted by factor 4 with ultrapure water for FAA determina-
tion. For the assessment of TAA, samples were hydrolyzed enzymatically as described
above with the exception that 20 pL of supernatant and 37 pL HEPES buffer were used.
Free AAs, AA metabolites and TAA were measured by HPLC as described earlier [52]
using 5 pum C18 columns, 250 x 4 mm HyperCloneTM 120 A or 250 x 4.6 mm Gemini®)
110 A (both Phenomenex, Aschaffenburg, Germany). Protein bound AA were calculated
by subtracting FAA from TAA concentrations.

Jejunal biochemical indices and fractional protein synthesis rate

Total RNA and DNA was extracted from ground jejunal tissue (80-120 mg) according to the
manufacturer’s protocol (peqGOLD TriFast; VWR International GmbH, Hannover, Ger-
many), whereas total protein was isolated, using a lysis buffer [50] described above. Total RNA
and DNA was quantified using a Nanophotometer (Implen GmbH, Munich, Germany), whilst
total protein was quantified photometrically using BCA reagent (Biorad Laboratories, Feld-
kirchen, Germany). Biochemical indices of cell size (protein:DNA ratio), protein synthetic effi-
ciency (protein:RNA ratio) and protein synthetic capacity (RNA:DNA ratio) were calculated
as previously described [53].

Fractional protein synthesis rate (FPSR) was determined using the flooding dose method as
described [54] with modifications. Piglets were given an intraperitoneal injection of L-*Hs
phenylalanine (Ring-"Hs, 99.1% atom “H; “Hs-Phe; Euriso-Top, Saint-Aubin, France) (125
mg/kg BW) in physiological saline (Serumwerk Bernburg AG, Bernburg, Germany) one h
before euthanasia, to measure the jejunal FPSR.

Fifty mg of ground jejunal tissue was suspended in 0.5 mL of 0.2 M perchloric acid kept on
ice, using a sonication tip (Amplitude 80, cycle 0.5, 30 pulses), vortexed and centrifuged (4°C)
at 3,000 g for 10 min. The FAA containing supernatant was adjusted to pH 7 using 4 M KOH.
After centrifugation (4°C) at 3,000 g for 10 min, the supernatant was dried at 60°C under
nitrogen. Samples were treated with N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide to
form tert-butyldimethylsilyl-derivatives. Additionally, the protein pellet was used to determine
the protein-bound *Hs-Phe enrichment. After washing the protein pellet twice with 1 mL of
0.2 M perchloric acid and with 1 mL of ultrapure water it was dried at 60°C under nitrogen
gas. The dried pellet was hydrolyzed as described [55] and the free AA were converted to tert-
butyldimethylsilyl-derivatives. The abundance of *Hs-Phe was quantified using GC-MS
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(Quadrupole, GC-MS QP 2010, Shimadzu, Japan, equipped with a Zebron ZB-5HT column,
30 m x 0.25 mm X 0.25 um column, Phenomenex, USA) as described [55]. The diagnostic ions
m/z 336 (M+0) and m/z 341 (M+5) were used to calculate the enrichment as molar per cent
excess of “Hs-Phe. The FPSR was calculated using the following equation:

Eppr 1
FPSR(%/d) = —Z2ten 5 ~ % 100
E, t

Where Ep,orein is the enrichment of ?Hs-Phe in the jejunal tissue protein and Eg.. is the
enrichment of *Hs-Phe in the free AA pool of the jejunal tissue at the time of sampling. The
period between *Hs-Phe injection and sampling is defined as t. The FPSR is expressed as the
percentage of tissue protein renewed per d (%/d).

Jejunal transcript abundances related to AA transport, AA metabolism and
antioxidative defense

Purification of RNA and cDNA synthesis. Total jejunal RNA (30 pg) extracted for the
calculation of biochemical indices was purified using RNeasy minikits (Qiagen, Hilden, Ger-
many) and quantified using a Nanophotometer (Implen GmbH, Munich, Germany). The
RNA quality was assessed using a Bioanalyzer 2100 and RNA 6000 Nano kit (Agilent Technol-
ogies, Waldbronn, Germany), with an RNA integrity number range of 6.9 and 9.7 (mean
8.8 + 0.8). Purified RNA (500 ng) was reverse transcribed to make cDNA using the Sensi-
FAST™ cDNA Synthesis Kit (Bioline, Berlin, Germany) according to the manufacturer’s
instructions.

Primer design, real time PCR assay and data preparation. Primers were made by Inte-
grated DNA Technologies (IDT, Antwerp, Belgium), and selected from previous studies
or designed using the IDT RealTime qPCR Assay design tool. Primers were tested using
serial dilutions (1/25, 1/50, and 1/100 diluted cDNA). Due to varying mRNA abundances
between targets either 1/25 or 1/50 dilutions were used for quantification. Primer details
are presented in (S1 Table in S1 File). Amplified cDNA samples were analyzed on 96 well
plates (Roche) using the LC 96 system (Roche Diagnostics, Mannheim, Germany). Sam-
ples were analyzed in duplicate (plus five additional samples: two inter-run calibrators, a
no-template and a no-enzyme control and a water control). Quantitative real time PCR
was performed using the SensiFAST SYBR No-Rox Mix (Code: 98050, Bioline, Berlin,
Germany), with the template (4 uM) and all reagents at half of the manufacturers recom-
mended volume. The same reaction conditions; enzyme activation and initial denatur-
ation (95°C for 30 s); denaturation/annealing repeated 40 cycles (95°C for 30 s, 60°C for
20 s); and melting curve analysis from 65 to 98°C with 1°C increment every 5 s) were used
for all mRNA targets analyzed. The PCR efficiency and quantification cycle values were
then obtained for each sample using LinRegPCR v 2014.5 [56]. Average PCR-efficiency
and quantification cycle values are reported in S1 Table in S1 File. The GeNorm applet
from qBASEplus selected the reference genes from six candidates (5 d: beta actin (ACTB),
ribosomal protein S18 (RPS18), and DNA topoisomerase 2-beta (TOP2B), 12 d: peptidyl-
prolyl isomerase A (PPIA) and ribosomal protein S18 (RPS18)) as the most stably
expressed across the BiW and Suppl used in this study. Reference genes were used to nor-
malize target gene mRNA abundance in the qBASEplus software and the Cq-values were
converted into log transformed calibrated normalized relative quantities (Log-CNRQ)
values, taking into account amplification efficiencies, inter-run variations, and normaliza-
tion factors. All data was reported as per the Minimum Information for Publication of
Quantitative Real-Time PCR Experiments (MIQE) guidelines [57].
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Data and statistical analysis

The required experimental sample size (1) was calculated per 2 and 3 level factor combination
of (1) birth weight (LBW, NBW), (2) supplementation (Ala, Gln) and (3) treatment duration /
age group (5 d and 12 d), using CADEMO for Windows ANOV version 4.03 (2000; BioMath
GmbH, Rostock, Germany), and the settings o. = 0.05, = 0.20. The primary outcome mea-
sures used to determine n were body weight gain and changes in intestinal villus height and
abundance of mRNA molecules associated with oxidative status.

Normal distribution was assessed via Shapiro-Wilks criteria, followed by a linear mixed model
analysis which was conducted for each of the 143 variables using the MIXED procedure of SAS
(version 9.4; SAS Institute Inc., Cary, NC, USA) with three fixed factors: (1) birth weight (LBW,
NBW), (2) supplementation (Ala, Gln) and (3) age group (5 d and 12 d). Unless otherwise indi-
cated, the group size for each analysis performed was n = 12. Deviating group sizes are reflected
in the footnotes of the corresponding table. Sow was defined as a random factor which allowed
explicit modelling of the non-independence of littermates from the same sow and improved infer-
ence about the fixed effects. ANOVA F-tests for the three fixed effects and their interactions were
carried out and the Tukey-Kramer test was applied to compare groups and correct for multiple
testing. Least squares means (LSM) and their standard errors (SE) are reported, with the largest
SE shown. Differences were considered significant if Tukey-Kramer test was P < 0.05.

The linear mixed model analysis revealed that the factor ‘age group’ had a significant effect on
the analyzed set of variables. To identify the variables discriminating the two age groups (5 d and 12
d), the N-integration with Projection to Latent Structures models with Discriminant Analysis
(PLS-DA) was applied, using R 4.1.0 (R Core Team, 2021) and the mixOmics package (v6.14.1;
[58]). Here, so called ‘blocks’ of variables measured on the same samples are integrated in a holistic
supervised analysis. In this study, all 143 variables were first analyzed together. Cross-validation was
used to evaluate the performance of the PLS-DA model, with a 10-fold cross-validation and 1000
repeats to get an accurate estimations of the error rates. Centroid distance was chosen as it is
regarded a suitable measure for the complex classification problems [58]. The quality of the
PLS-DA model was verified by fold cross-validation using two performance indicators: Q?, “good-
ness of prediction”, or predicted variation and R? known as the goodness of fit [59]. All 143 vari-
ables were then assigned to ten individual blocks; morphology characteristics (n = 5), cell types
(n = 13), biochemical indices (n = 7), mRNA target-molecules (n = 21), jejunal tissue (free AA;

n =20, AA-metabolites; n = 10, PBAA; n = 20) and digesta (free AA; n = 20, AA-metabolites; n = 7,
PBAA; n = 20). Sample plots for each ‘block’ of variables are presented only to visualize the potential
discriminatory ability of each component in the space spanned by the first two latent variables.

A volcano plot was generated using R 4.1.0 (R Core Team, 2021) and the effsize package
(v0.8.1; [60]) and qvalue package (v2.22.0; [61]). Effect sizes (Cohen’s d) were calculated for
each variable based on the estimated least square means of 5 d versus 12 d. The list of p-values
of the age group fixed effect estimate was then used in conjunction with a standard false dis-
covery rate (FDR) estimation procedure to find the number of variables to be declared as dif-
ferent while controlling FDR at a specified level of 0.05. The FDR-adjusted p values were
calculated using the Benjamini & Hochberg procedure [62].

Results
Jejunal morphology and abundance of goblet cells, intraepithelial
lymphocytes, and IgA positive cells

The VH was affected by Suppl (P = 0.041), whereas VW (P = 0.012) was influenced by BiW
(Table 1). Age affected VH (P = 0.019), VW (P = 0.019), TuM (P = 0.020) and CD (P < 0.001).
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Table 1. Jejunal morphology characteristics in low and normal birth weight male suckling piglets.

Ala Gln P values'
Item Age (d) LBW NBW LBW NBW SE Biw Suppl Age
Villus height (um) 5 812 718 789 872 65.3 0.265 0.041 0.019
12 899 855 1061 935 66.5
Villus width (um) 5 95.3 97.8 95.3 101 2.87 0.012 0.256 0.019
12 99.9 105 103 107 2.93
Crypt depth (um) 5 113°¢ 126 124 125 5.90 0.949 0.703 <0.001
12 150° 145 149 142 5.90
Villus height to crypt depth ratio 5 7.25 5.90 6.67 7.12 0.51 0.274 0.098 0.622
12 6.17 6.00 7.11 6.78 0.52
Tunica muscularis thickness (um) 5 107 105 122 102 12.3 0.814 0.882 0.020
12 127 144 128 126 12.2

*f Labeled LSM within a column within one Suppl and BiW group without a common letter differ, P < 0.05 (Tukey-Kramer test).

Values are LSM = SE, the largest SE is shown; n = 12/group (5, 12 d).

! ANOVA F test. None of the interactions of the fixed factors (Suppl x BiW; Suppl x Age; BiW x Age or Suppl x BiW x Age) were significant (P > 0.05).

% Tunica muscularis was damaged due to the thawing procedure. Therefore group size deviated from 1 = 12 for the parameter Tunica muscularis thickness. 5 d
LBW-Ala, 5d LBW-Gln, 12 d NBW-Gln, 12 d LBW-GIn, and 12 d NBW-Alan =11.

https://doi.org/10.1371/journal.pone.0267357.1001

The CD in the jejunum was higher at 12 d than at 5 d in LBW-Ala piglets (P < 0.001)
(Table 1). Mixed mucins containing goblet cells in villi were affected by Suppl (P = 0.007)
(Table 2). Age affected the number of mixed mucins containing goblet cells in crypts
(P =0.025) and villi (P = 0.020), as well as the total number of goblet cells in the crypt

Table 2. Number of jejunal goblet cells in low and normal birth weight male suckling piglets.

Ala Gln P values'

Item? Age (d) LBW NBW LBW NBW SE Age

Villus Acid 5 3.97 4.23 4.65 4.83 0.59 0.588
12 4.83 4.92 4.7.0 4.38 0.60

Neu 5 6.58 8.24 6.76 7.02 0.72 0.901
12 6.71 7.41 7.07 7.10 0.74

NA 5 7.31 8.52 5.96 6.10 0.64 0.020
12 5.52 6.14 5.11 5.51 0.65

Total 5 17.8 21.0 17.4 18.0 1.38 0.318
12 17.1 18.5 16.9 17.0 1.41

Crypt Acid 5 21.7 20.0 22.2 24.5 1.85 0.081
12 18.2 18.4 19.0 21.9 1.87

Neu 5 12.0 13.6 12.9 11.6 1.74 0.755
12 11.7 13.8 12.3 14.2 1.77

NA 5 22.6 21.6 21.6 20.5 1.58 0.025
12 18.3 19.0 17.9 19.3 1.59

Total 5 56.5 55.3 56.5 56.5 2.9 0.029
12 48.2 51.1 49.1 55.2 2.92

Values are LSM =+ SE of goblet cells containing different mucins per 1 mm basement membrane, the largest SE is shown; n = 12/group (5, 12 d).
! ANOVA F test. Suppl had a significant effect on NA mucins in villus (P < 0.01); neither the fixed factor (BiW) nor the interactions of the fixed factors (Suppl x BiW;
Suppl x Age; BiW x Age or Suppl x BiW x Age) were significant (P > 0.05).

Acid = acidic mucins; NA = mixed neutral and acidic mucins; Neu = neutral mucins.

https://doi.org/10.1371/journal.pone.0267357.t1002
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Fig 2. Partial Least-Squares Discriminant Analysis (PLS-DA). Sample plots of the block PLS-DA of all 143 jejunal variables assigned to ten variable groups
(‘blocks’) and measured in 96 samples. Shown are the sample plots for the three blocks with the best discriminatory ability: Free amino acids tissue, Protein-
bound amino acids tissue, Amino acid metabolites tissue. The other seven blocks are shown in the supplementary material (S1 Fig in S1 File). The colours
indicate the eight experimental groups of the 3-factorial crossed design (birth weight: LBW/NBW, supplementation: Ala/Gln and age group: 5 d/12 d) and
highlight the main comparison of the two age groups (reddish: 5 d; bluegreen: 12 d).

https://doi.org/10.1371/journal.pone.0267357.9002
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Fig 3. Volcano plot of jejunal variables analysed between 5 and 12 d old suckling piglets. Comparison of quantities of all 143 variables measured in 5 d and
12 d old suckling piglets. Q-values estimating the false discovery rate (FDR) were calculated for each variable from p-values of multiple Tukey-Kramer-tests
comparing 5 d and 12 d old piglets. Effect sizes (Cohen’s d) were calculated for each variable based on the differences in estimated marginal means and
standard deviations of 5 d versus 12 d old piglets. Differences are classified as being substantial (grey shaded area) if FDR is limited to 0.05 (q < 0.05) and if the
effect size of Cohen’s d < 1 (5 d is smaller than 12 d) or Cohen’sd > 1 (5 d is larger than 12 d). The 16 variables meeting this condition are annotated.

https://doi.org/10.1371/journal.pone.0267357.003

(P =0.029). We could not observe IgA positive stained cells in the jejunal lamina propria of 5 d
old piglets. In 12 d old piglets supplementation influenced the number of IgA positive cells in
the lamina propria next to the crypts (Area 3) (P = 0.048) (S2 Table in S1 File). The number of
intraepithelial lymphocytes CD3" cells in the jejunal villi (S3 Table in S1 File) and the number
of CD3" cells in crypt area did not differ among groups.

Jejunal free AA and AA metabolite concentrations

There was an effect of Suppl on Gln, of BiW on Cys, and of Age on the concentration of all
FAA measured in the jejunal tissue (54 Table in S1 File), with the exception of the AA metabo-
lites citrulline, ornithine and taurine (S5 Table in S1 File). The interaction BiW x Suppl
affected o-Aminoadipic acid (Aad), whereas the interaction BiW x Suppl x Age was significant
for Asp, Gln, His, Ile, Met, Ser, Thr, Val, the branched-chained AA, and the Aad concentra-
tion. The concentration of Gln was higher in 5 d NBW-GIn compared to NBW-Ala piglets

(P = 0.044). The concentration of hydroxyproline (P = 0.029) was higher in all four 5 d groups
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than in the 12 d groups. Higher concentrations of Aad and Ala (P < 0.028) were found in the
jejunal tissue of 5 d group compared to 12 d group with exception of NBW-Ala. The jejunal
concentrations of Ser (P = 0.006), Gln, His, Ile, Thr (P = 0.041), and the group of dispensable
AAs (P =0.009) were higher in 5 d compared to 12 d LBW-Ala piglets. The concentrations of
Glu and 3-Methylhistidine (P = 0.042) were higher in 5 d compared to 12 d LBW-GIn piglets.
In NBW piglets supplemented with Gln the concentrations of Gln (P = 0.007), Asp, Glu, Ser,
the group of dispensable AA (P = 0.029) were higher at 5 d compared to 12d.In 12 d
LBW-GlIn (P =0.010) and NBW-Ala (P < 0.001), the jejunal Gly concentration was higher
compared to 5 d.

The Block PLS-DA showed a separation between the blocks jejunal FAA and AA metabo-
lites (Fig 2B and 2C), probably contributing to the 5 and 12 d group separation observed in the
PLS-DA analysis of all experimental blocks (Fig 2; 1 comp, R* = 0.65, Q* = 0.65). A subsequent
univariate analysis (volcano plot; Fig 3) showed that four jejunal FAA and AA metabolites
were different between the two age groups (Cohen’s d > 1, FDR < 0.05). The FAA in jejunal
tissue Pro and the AA metabolite BAla were lower in 12 d compared to 5 d age groups, whereas
the Cys and the AA metabolite Car were higher in the 12 d compared to the 5 d age groups
(Fig 3) (S6 Table in S1 File).

Jejunal protein bound AA concentrations

There was an effect of Age on the concentration of all PBAAs (except Pro), whereas BiW
affected Asn and Ile concentrations. The concentration of protein bound Glu, Ser (P = 0.049),
the group of indispensable AA, branched-chained AA, dispensable AA and the group of total
AA (P =0.029) were higher in all 4 groups of 5 d piglets compared to the groups of 12 d piglets
(S7 Table in S1 File). The concentration of protein bound Asn and Met (P = 0.031) was higher
in groups of 5 d piglets compared to the respective groups of 12 d piglets except for the group
of NBW-Ala. Higher concentrations of protein bound Arg and Trp (P < 0.047) were found in
the jejunal tissue of the 5 d group in LBW-Ala and NBW-GIn compared to the respective 12 d
groups. Lower concentrations of protein bound Arg and Trp (P < 0.029), were found in 12 d
compared to 5 d LBW-Ala piglets. The concentrations of Gly (P < 0.048) were lower in 12 d
compared to 5 d NBW-Gln piglets.

Block PLS-DA indicated that jejunal PBAA (Fig 2D) may be contributing to the 5 and 12 d
group separation observed in the PLS-DA analysis of all experimental blocks (Fig 2A). A sub-
sequent univariate analysis (volcano plot) showed that 10 variables (jejunal protein-bound Ile,
Leu, Lys, Phe, Thr, Val, Ala, Asp, Cys, and Tyr) were lower in 12 than in the 5 d age groups
(Cohen’sd > 1, FDR < 0.05), (Fig 3) (S6 Table in S1 File).

Free and protein bound AA concentrations in jejunal digesta

The concentration of the digesta y-aminobutyric acid was influenced by Suppl, whereas the
FAAs Asp and Ser were affected by BiW, while Aad, o-aminobutyric acid, and Orn were
affected by Age. The interaction BiW x Suppl was significant for digesta free Glu, o:-aminobu-
tyric acid while the interaction Age x Suppl affected Arg and Asp (S8 and S9 Tables in S1 File).
The concentration of digesta free Aad was lower in NBW-Gln (P < 0.001) at 5 d compared to
12 d, and in LBW-GIn compared to NBW-Gln piglets at 5 d (P = 0.008). Additionally, the con-
centration of free Aad was higher in NBW-GlIn than in NBW-Ala at 5 d (P = 0.006). Age was
significant for the concentration of the digesta PBAAs Lys, Gln, and Pro (S10 Table in S1 File).
The concentration of protein-bound Lys increased from 5 d to 12 d, in NBW-Ala piglets
(P=0.017).
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Table 3. Jejunal biochemical indices in low and normal birth weight male suckling piglets.

Ala GIn P values’

Item Age (d) LBW NBW LBW NBW SE Age

DNA (ug/mg rar:) 5 438 4.90° 4.89° 5.17¢ 0.30 <0.001
12 3.74 3.27° 3.3 3.09° 0.31

Protein (ug/ mg gp:) 5 117¢ 1084 119°¢ 114° 3.27 <0.001
12 81.9 83.4° 86.7° 84.0° 3.28

RNA (ug/ mg pap:) 5 3.97 4.41° 4.15° 3.99¢ 0.18 <0.001
12 3.23 3.24F 3.10f 3.16° 0.19

RNA/DNA 5 0.94 0.92 0.86 0.79 0.11 0.044
12 0.97 1.07 1.13 1.13 0.11

Protein/RNA 5 29.9 25.0 29.6 29.7 1.53 0.196
12 25.9 26.3 28.6 275 1.53

Protein/DNA 5 27.6 22.8 255 22.7 3.09 0.085
12 25.9 28.9 31.8 295 3.12

FPSR (%/d)° 5 60.7 69.8 72.8 71.6 7.42 0.123
12 55.7 61.7 57.8 58.7 7.56

*f Labeled LSM within a column between one Suppl—birth weight group without a common letter differ, P < 0.05 (Tukey-Kramer test).

Values are LSM * SE, the largest SE is shown; n = 12/group (5, 12 d).

' ANOVA F test. None of the other fixed factors (Suppl or BiW) or interactions of the fixed factors (Suppl x BiW; Suppl x Age; BiW x Age or Suppl x BiW x Age) were
significant (P > 0.05).

> FM = Fresh matter

? Because of an insufficient accumulation of *Hs-Phe in jejunal tissue, the group size deviated from # = 12 for jejunal FPSR. 5 d LBW-GIn, 12 d NBW-Gln, 12 d
LBW-Glnn=11.

https://doi.org/10.1371/journal.pone.0267357.t003

Jejunal biochemical indices and fractional protein synthesis

Protein, RNA, DNA (P < 0.001) concentrations and the RNA/DNA ratio (P < 0.044), reflect-
ing protein synthetic capacity, in jejunal tissue were affected by Age. The concentration of
DNA (P = 0.005) and RNA (P = 0.050) was higher in 5 d compared to 12 d LBW-Gln,
NBW-Ala and NBW-Gln piglets (Table 3). Jejunal FPSR was unaffected by any of the main
factors (Table 3). Subsequent univariate analysis (volcano plot) showed that the variable pro-
tein concentration was lower (FDR P < 0.001) in the 12 d compared to 5 d age group (Fig 3)
(S6 Table in S1 File).

Jejunal transcript abundance related to AA transport, AA metabolism and
antioxidative defense

The BiW class affected AST-2 (P = 0.020) whereas Age influenced the mRNA abundance of
solute carrier family 1 member 5 (SLC1A5), solute carrier family 1 member 4 variant 1
(SLC1A4V1), aspartate aminotransferase 2 (AST-2), Glu cysteine ligase (GCL), glutathione
synthetase (GSS) (P < 0.05), and succinate dehydrogenase complex, subunit A (SDHA)

(P < 0.001) (S11 Table in S1 File). The BiW x Age interaction affected PSMC3 (P = 0.039). The
mRNA abundance of succinate dehydrogenase complex, subunit A (SDHA) was higher in 5 d
compared to 12 d LBW-Ala piglets (P = 0.009).

Discussion

The SI of LBW piglets is developmentally and functionally compromised compared to NBW
individuals [63, 64]. Oral Gln supplementation has been previously shown to be beneficial for
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the jejunal development and function of piglets around weaning [34, 35], however only few
studies examined effects of Gln supplementation in piglets during the suckling phase [33, 38,
65]. While most studies have looked at weaned piglets, the present work is focused on the early
suckling period, which to our knowledge has not been studied in this species. The jejunum is
critical for the digestion of milk and absorption of nutrients. Therefore, in this work we
focused on this section of the intestine and used a wide range of analytical methods to charac-
terize potential effects of glutamine or alanine supplementation.

Our outgoing hypothesis was that the jejunal morphology and development of LBW com-
pared to NBW male piglets benefits from Gln as compared to Ala supplementation. In addi-
tion, changes in jejunal AA profiles could provide insights into Gln jejunal metabolism and its
potential role in improving LBW jejunal morphology and development.

Comparison among supplementation groups

Oral Gln supplementation to LBW suckling piglets was not associated with changes in any
of the jejunal parameters measured, when compared to LBW-Ala or NBW-GlIn control
groups, at 5 d or 12 d of life. In addition, no effects were observed when Gln supplementa-
tion was assessed within each age group irrespective of BiW. In vitro studies in intestinal
porcine enterocytes have shown that media supplemented with 2 mM Gln increased FPSR
[66] and cell growth [67], both of which were unaffected in this study. However, this is a
concentration 2-8 times higher than that reported in piglet plasma [38, 68] and thus trans-
lation of results is difficult. Furthermore, more recent in vitro studies on intestinal porcine
enterocytes have shown effects of Gln on ATP production and apoptosis [28, 69]. In LPS-
challenged suckling piglets, Haynes et al. (2009) showed that oral Gln supplementation
prevented endotoxin related villus atrophy [38]. In vivo studies investigating effects of Gln
supplementation on intestinal physiology have been conducted in piglets at the end of the
suckling period, but different parameters were evaluated [65]. However, the majority of
studies were conducted in weaned piglets [29]. Their physiological conditions are very dif-
ferent from that of the suckling piglets used in this study as intestinal AA-metabolism,
local immunity and cellular population are changing [15]. It has been reported that Gln
supplementation during weaning improved growth performance and intestinal health by
preventing villus atrophy and reducing antioxidative stress [33-35, 70]. Hsu et al. (2012)
[71] observed increased tunica muscularis thickness in jejunum and ileum in weaned pig-
lets upon Gln supplementation. In an infection study with pathogenic E. coli GIn supple-
mentation of weaned piglets inhibited villus atrophy [72]. Thus, it appears that Gln may
have a protective effect on the SI under stressful conditions such as infection [38, 72] and
weaning [33-35, 70]. Another study reported that Gln supplementation had similar effects
on growth performance and plasma concentration of TNF-alpha in weaned piglets as anti-
biotic treatment [36]. Although we observed in a companion study with the same experi-
mental animals that plasma Gln concentrations were higher 2 h after oral Gln
supplementation in the 5 d and 12 d old piglets compared to Ala supplementation [42], in
jejunal digesta and tissue the FAA and PBAA GIn concentrations and that of its metabolite
Glu were not different between the Ala and Gln piglets. This may indicate that the Gln
dose was absorbed in the proximal SI (duodenum and/or proximal jejunum) [29].

It has been reported that excess Gln is stored in the skeletal muscle [73] and that skele-
tal muscle is one of the main locations of Gln synthesis [74]. Glutamine is released under
stressful conditions such as starvation or infection from the skeletal muscle, and the syn-
thesis of Gln increases under such conditions [74]. A companion paper, using the same
animals as in this study, showed no difference in free Gln concentrations in the M.
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longissimus dorsi of LBW-GIn when compared to LBW-Ala or NBW-GlIn groups, at 5 d or
12 d of life [75]. However, the concentration of Ala in M. longissimus dorsi in the Ala sup-
plemented NBW and LBW piglets was higher than in the Gln littermates at 5 and 12 d of
life. A study by Stoll et al. (1998) [76], using '*C labelled AAs in suckling pigs, showed that
Gln has a negative portal balance, indicating that Gln is utilized intensively by the SI.
Thus, our observations, together with FAA profiles from the duodenum of these animals
that show higher Gln concentrations in LBW-Gln and NBW-GIn compared to their Ala
birth weight companions (unpublished data) suggest, that the supplemental Gln is already
absorbed in more proximal regions of the SI. Additionally, it seems that the skeletal mus-
cle as a Gln storage tissue [73], may not be relevant within the 2 h time period between
Gln administration and sampling in this study.

Comparison between birth weight groups

A possible reason for the absence of differences in jejunal development between LBW-Gln and
LBW-Ala or NBW-GIn piglets could be linked to the birth weight range of LBW piglets in this
study (0.8-1.2 kg vs. 1.4-1.8 kg). In fact, the range of BiW reported for LBW piglets is rather
wide [24, 64, 77]. Apparently, differences in intestinal development and function between low
and normal BiW piglets, were reported mostly in piglets with much lower body weights than
used here [77-79]. For example, Xu et al. (1994) observed reduced jejunal VH, CD, intestinal
thickness, total DNA, RNA and protein content in very low birth weight piglets (0.59 + 0.34
kg) at birth (prior to suckling) compared to normal BiW (1.32 + 0.47 kg) littermates. Another
study investigating newborn low birth weight piglets (0.83 + 0.04 kg) and normal birth weight
piglets (1.66 + 0.07 kg) showed decreased length and weight of the SI, decreased VH:CD ratio
and reduced expression of genes related to oxidative defense in low birth weight piglets [80].
In contrast, neither Wang et al. (2016) [79] nor Wiyaporn et al. (2013) [81] did observe differ-
ences in proximal jejunum VH, or CD between newborn un-suckled LBW piglets (0.81 £ 0.02
kg; and 0.88 + 0.02 kg) compared to normal littermates (1.30 + 0.03 kg; and 1.47 + 0.03 kg).
Similarly, small intestinal villus height, width and depth did not differ according to BiW (Huy-
gelen et al., 2015). Additionally, Thongsong et al. (2019) [82], utilizing the same experimental
piglets as Wiyaporn et al. (2013), did not find an effect of BiW on mRNA abundance of jejunal
glucose, peptide and AA transporters including SLC7A8, which we determined in the present
study. In the present study we did not determine jejunal parameters in newborn un-suckled
piglets, thus it is not known whether the jejunal parameters measured differed at birth in our
piglets. Interestingly, Wang et al. (2016) reported that in un-suckled low BiW piglets’ jejunal
permeability and tight junction (OCLN) mRNA abundance were higher, and antioxidant
scavenger (Gpx1, CAT) mRNA abundance was lower compared to normal BiW littermates.
Yet by 3 d of life, the differences were no longer present. The absence of difference on
mRNA level related to oxidative defense in our study might indicate that LBW were not
challenged by additional oxidative stress. Also Huygelen et al. (2015), did not observe differ-
ences in SI cell proliferation and in intestinal barrier function between low and normal Biw
piglets at birth and after 3, 10, and 28 d of suckling. These results suggest three possibilities,
(1) that the intestinal parameters measured in our study do not differ between low and nor-
mal BiW piglets, or (2) that differences observed at birth prior to suckling might have
already disappeared during postnatal development if the nutritional requirements of piglets
are met as reviewed by Everaert et al. (2017). Thirdly, it cannot be excluded that low birth
weight piglets surviving the first 3 days of life are more vital and less comparable to the very
low birth weight piglets with compromised intestinal development, which leads to a bias of
selection of these piglets.
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Comparison of piglet age groups

The development of the SI during the suckling phase is characterized by rapid growth, both on
a macroscopic [10] and microscopic [77] scale. Several studies indicate that SI maturation is
accompanied with changes in enterocyte metabolism [15, 26, 83] and nutrient absorption
kinetics [84]. In the current study, jejunal morphological and immunological markers as well
as nucleic acid, protein and AA profiles were compared between 5 d and 12 d old piglets, irre-
spective of the Suppl or BiW group. Morphologically, higher CD, VH, VW and TuM were
observed in the 12 d compared to the 5 d group, consistent with previous studies conducted in
sow-reared piglets [10, 19, 77, 85]. Longer and wider villi, as well as deeper crypts observed in
12 d compared to 5 d old piglets reflect an increased absorptive area. An increasing CD also
indicates a higher crypt cell production and is an indicator for maturation of villous entero-
cytes [85]. The higher TuM observed in the older age group indicates jejunal cell proliferation
and maturation. It should be noted that conflicting results in regard to the development of VH
with age have been reported [19, 77, 86], which appear to be related to differences in piglet age,
SI segment, villus atrophy, creep feed consumption and milk intake [12, 86]. Generally, the
shape and length of the villi in the small intestine changes with weaning [12]. We observed
lower staining of mixed mucins containing goblet cells in the villi and crypts and lower total
number of crypt goblet cells in piglets of the 12 d compared to the 5 d group. Goblet cells con-
taining different mucin types act as an innate defense mechanism, where the mucins protect
the gastrointestinal tract by acting as a diffusion and micro-ecological barrier [87]. The
observed decrease may suggest that at 12 d of age the mucosal barrier function built by mucins
is changing due to immune system maturation, or may indicate changing luminal bacteria
composition [88]. In addition, the abundance of IgA positive cells in the lamina propria was
assessed. These IgA positive cells are B-cells that are derived from the antigen-specific IgA-
committed B cells in Peyer’s patches, which migrate to the lamina propria and function as part
of the innate immune defense [89]. Consistent with previous studies [90, 91] our results show
that IgA positive cells were mainly located in the lamina propria and were detected only in the
12 d group. The abundance of IgA positive plasma cells have been shown to be influenced by
age [90, 92], commensal microbiota [93], and diet [94]. Taken together, these results indicate
that the jejunum of the piglets in this study matures morphologically and immunologically
from 5 d to 12 d of age and neither differences in maturation due to BiW nor to AA supple-
mentation were observed.

Multivariate analysis via block PLS-DA showed that jejunal FAA, PBAA and amino-metab-
olites were the only variable blocks significantly affected by piglet age. Univariate analysis of
the individual variables within each block confirmed this observation, revealing altered jejunal
concentrations for almost all of the individual and grouped FAA and PBAA when 12 d were
compared to 5 d piglets. A subsequent, more stringent univariate analysis (volcano plot) was
performed to identify highly significant variables contributing to the age group separation in
these blocks. Identified were Pro and B-Alanine, which were lower in the 12 d animals com-
pared to 5 d, whilst the opposite was observed for Cys and Carnosine. The importance of these
AA and amino-metabolites for the age-dependent development of the porcine intestine are
not fully understood. It has been previously reported [84] that the capacity to absorb AA per
length unit of intestine decreases, as the total length of intestine increases, potentially explain-
ing the decrease for several AA concentrations observed in the older piglet group used in this
study. Moreover it was shown that AA metabolism in the jejunum of piglets changes within
the different periods of the suckling phase [83]. Why this occurs is currently not understood,
but it could be linked to differences in the intestinal microbiota [95], changes in cell structure
and function, or in AA metabolism [83] and absorption [11, 96].
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In the present study, lower jejunal protein, RNA and DNA concentrations and increased
RNA to DNA ratio, a measure of ribosomal RNA content or protein synthetic capacity was
observed in piglets of the 12 d compared to the 5 d group. The DNA concentration is a marker
of cell number, and lower concentrations in the 12 d group indicates that the numbers of cells
per mg of jejunal tissue is lower potentially explaining why the protein, RNA, FAA and PBAA
concentrations are decreased. Why the cell number decreased from 5 d to 12 d is not fully
understood, but it may be linked to reappearing rise in apoptosis, after an enhanced mitosis
accompanied by a reduction of apoptosis during the first days after birth [97]. In addition it
should not be overlooked, that intestinal cell turnover is affected by nutrition and specific
nutrients [15]. Whilst protein synthetic capacity increased, there was no effect of age on FPSR
or the ratio of protein to DNA. Thus, in terms of protein synthesis, there appears to be no
effect of age in these very young piglets.

Furthermore, the mRNA abundance of genes related to Gln/Ala-uptake and metabolism
and glutathione production was assessed. We observed that the mRNA abundance of one Gln
(SLC1AS5) and one Ala (SLC1A4 transcript variant 1) transporter, two enzymes involved in
Gln metabolism (AST-1, GLUD-1, SDHA) and three involved in the glutathione synthesis
pathway (GCL, GSS and GPX4) were lower in piglets from the 12 d compared to the 5 d
group. The GCL encodes the rate-limiting enzyme for the glutathione production, whilst GSS
encodes the enzyme involved in the subsequent step and our results may indicate that oxida-
tive defense via glutathione production was lower in piglets from the 12 compared to 5 d
group. This observation is similar as in a previous study which showed a downwards trend of
GPX4 expression, an enzyme converting glutathione to glutathione-disulfide in the presence
of radical oxygen species, in the jejunum of suckling piglets after the age of d 14 [98]. The
mRNA abundance of antioxidative enzymes is not only dependent on the age of the individual
piglet, but on the sampled tissue as well [99]. Thus, within the context of earlier studies on
ontogenetic development of the jejunum in suckling piglets, the results from this study are
consistent with an adequate physiological development independent of BiW or Gln
supplementation.

Conclusion

This study is the first to investigate the effect of oral Gln supplementation on jejunal develop-
ment and AA profiles in suckling low and normal birth weight piglets. Results show that Gln
as compared to Ala supplementation and BiW appears to have only small effects on the mea-
sured jejunal parameters, whereas the effect of age was significant. These novel findings sug-
gest that oral Gln supplementation might not be an appropriate way to stimulate the
development of jejunum in the suckling period. However, it is conceivable that Gln might be
beneficial in a more challenging environment. Thus further research is warranted to investi-
gate more proximal sections of the GIT, or cellular proliferation, microbial composition and
the abundance of tight junction proteins during jejunal development.
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Abstract: Mortality, impaired development and metabolic dysfunctions of suckling low-
birthweight piglets may be influenced by modulating the intestinal microbiome through glutamine
supplementation. Therefore, this study examined whether glutamine supplementation may affect
the colonic development and microbiome composition of male low- and normal-birthweight piglets
at 5 and 12 days of age. Suckling piglets were supplemented orally with glutamine or alanine.
Colonic digesta samples were obtained for 16S rDNA sequencing, determination of bacterial
metabolites and histomorphological tissue analyses. Glutamine-supplemented piglets had lower
concentrations of cadaverine and spermidine in the colonic digesta (p < 0.05) and a higher number
of CD3* colonic intraepithelial lymphocytes compared to alanine-supplemented piglets (p < 0.05).
Low-birthweight piglets were characterised by a lower relative abundance of Firmicutes, the genera
Negativibacillus and Faecalibacterium and a higher abundance of Alistipes (p < 0.05). Concentrations
of cadaverine and total biogenic amines (p < 0.05) and CD3* intraepithelial lymphocytes (p < 0.05)
were lower in low- compared with normal-birthweight piglets. In comparison to the factor age,
glutamine supplementation and birthweight were associated with minor changes in microbial and
histological characteristics of the colon, indicating that ontogenetic factors play a more important
role in intestinal development.

Keywords: glutamine; colon; suckling piglets; low birthweight; intestinal morphometry;
microbiota; bacterial metabolites

1. Introduction

After birth, the neonatal piglet must adapt to a nonsterile environment and transition
from uterine nutrition to colostrum and milk. This transition initiates the rapid
development towards a maturing digestive and immune system. By suckling milk, piglets
are provided with essential nutrients, such as lactose and proteins, as well as
immunoglobulins and oligosaccharides [1]. Low-birthweight piglets (LBW), often born to
sows with a high reproductive performance, have a higher risk of neonatal mortality and
digestive disease, lower body weight (BW) gain [2] and impaired gastrointestinal (GIT)
development [3].

There is increasing evidence that host-microbiota interactions are associated with
nutrient uptake and metabolism, development of host immune functions and disease
disposition [4]. It is known that the GIT microbiota are unstable in the first days of life [5]
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and influenced by the maternal and solid diet [6], as well as by the environment [7].
Neonates with intestinal microbial dysbiosis may be more susceptible to intestinal
diseases [8]. The majority of studies investigating the development of GIT microbiota in
newborn piglets report data from normal-birthweight (NBW) piglets [5,9,10], whereas few
studies have looked more closely at the development of the colonic microbiota of LBW
piglets [11]. Studies in neonatal intrauterine-growth-restricted piglets show that mucosa-
associated bacterial colonisation was increased compared to NBW piglets [12,13]. Early
age is characterised by a rapidly changing colonic [11] and faecal [14] microbiome.
Microbial metabolites are considered as important factors for the microbiota—host cross-
talk [10], impacting many physiological and immunological traits of the host. Short-chain
fatty acids (SCFAs) and lactate contribute to meeting the energy needs in pigs, but also
have an important signalling function [15]. SCFAs and biogenic amines, which control cell
metabolism and may have neuromodulatory effects in animals [16], are considered
important bacterial metabolites with physiological and immune-modulating functions
[10]. Increasingly, data are available, showing that the mechanisms involve complex
signalling systems and molecular cascades [15].

In sow milk, GIn and glutamate are highly concentrated peptide-bound amino acids.
The free Gln concentration increases during lactation [17]. Glutamine is an important
energy source for enterocytes of neonatal piglets [18]. Studies investigating the effect of
enteral GIn on improving GIT development have mainly focused on weaned piglets,
indicating its importance in numerous metabolic processes essential for the morphological
development and function of the small intestine (SI) [19]. In addition, GIn has been shown
to affect the bacteria of the SI and their AA utilisation pattern [20]. In suckling piglets,
little is known about the effect of GIn supplementation on the colonic microbiome and
important fermentation products such as SCFAs and biogenic amines.

Therefore, this study used a pig model with different birthweights (BiWs; LBW vs.
NBW) and oral AA supplementation (GIn vs. Ala) across two different age groups (5 and
12 days old) to investigate their potential impact on colon development, the colon
microbiome and targeted metabolites. Alanine was used as the control supplementation
to balance for the nitrogen content of GIn supplementation [19,21-23].

2. Materials and Methods
2.1. Animals, Experimental Design and Sample Collection

All experimental procedures were performed according to the German Animal
Welfare Act following Directive 2010/63/EU and were approved by the State Office for
Agriculture, Food Safety and Fisheries, Mecklenburg-Vorpommern, Germany
(permission no. 7221.3-1-026/16). German Landrace gilts were kept at the Research
Institute for Farm Animal Biology. A detailed description of the experiment was
published previously [17]. To remove sex-specific effects, only male piglets were chosen.
In brief, LBW (0.8-1.2 kg; n = 48; with BiW below the lowest BiW quartile of the
experimental pig farm) and NBW (1.4-1.8 kg; n = 48; with BiW reflecting the middle 50t
percentile of the BiW of piglets born on the experimental pig farm) male littermate piglets
born to gilts were observed until 5 or 12 days (d) of age. Within 24 h post-farrowing, litters
were standardised to 12 piglets, and the LBW and NBW piglets were assigned to either
GIn (1 g/kg BW/d; n = 48) or isonitrogenous Alanine (Ala, 1.22 g/kg BW/d; n = 48)
supplementation groups (Supp), with up to three piglet pairs per sow being involved in
the study. In a three-factorial design (Supp, BiW, Age), 4 experimental groups (GIn-LBW,
GIn-NBW, Ala-LBW, Ala-NBW: n = 24/age-group) were investigated at 5 or 12 d of age.
The supplementation of Gln and Ala was performed as described [17].

Two hours (h) before sampling, each piglet received 33% of the respective daily AA
supplement and 6 mL of milk replacer (150 g/L water at 45 °C; 16.5 M] metabolisable
energy (ME)/kg, 20.5% crude protein, 10.0% crude fat, 0.2% crude fibre; Neopigg
Rescuemilk 2.0, Provimi, The Netherlands).
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Colonic tissue and digesta were sampled from the ascending colon. After collection,
the digesta was snap-frozen in liquid nitrogen and then stored at -80 °C until subsequent
analysis. A section of the sampled colonic tissue was rinsed with 0.9% physiological saline,
and preserved in Roti-Histofix (4% paraformaldehyde, Histofix, Roth, Karlsruhe,
Germany) for histological analysis.

2.2. Colonic Morphometry, Histochemistry and Immunohistochemistry

Histo-fixed colonic tissue samples were processed as previously described [24]. From
paraffin blocks, 5 um sections were cut with a sledge microtome (Type 1400, Leitz Wetzlar,
Germany). The Alcian blue pH 2.5-periodic acid-Schiff (AB-PAS) staining method was
used for morphometry and for the quantification of neutral, acidic and mixed mucin types
[25]. Measurements were carried out using a Photomicroscope BX43F (Olympus, Tokyo,
Japan) with an attached digital camera (Olympus DP72, Tokyo, Japan). Pictures were
examined with cellSens imaging software (v. 1.4, Olympus). Ten well-orientated crypts
were randomly chosen. Morphometric measurements included crypt depth (CD) (from
the crypt mouth to the bottom of the crypts) and crypt area (CA) [26]. Mucins in goblet
cells were differentiated by AB-PAS staining [26].

For quantification of IgA secreting cells, slides were boiled in sodium citrate buffer
(pH 6.0) in a microwave. Endogenous peroxidase was inactivated at room temperature
for 30 min with 1% aqueous hydrogen peroxide solution. Slides were incubated for 1 h in
a humid chamber with PBS and 10% normal horse serum to block nonspecific antibody
binding. Sections were incubated overnight at 4 °C with goat anti-porcine IgA 1:4000
antibody (NB724, Novus Biologicals, Abingdon, UK), washed and incubated for 1 h with
biotinylated horse anti-goat IgG 1:500 (Cat. NO: BA-9500, Vector Laboratories), treated
with ABC complex (Vectastain Elite ABC peroxidase Kit, Standard, Vector Laboratories)
and a DAB Substrate Kit (Vector Laboratories) [27]. Isotype control was produced with a
nonspecific antibody (goat IgG, AB-108-c, R&D Systems). To quantify IgA-positive
stained cells, 3 areas of lamina propria on each section were chosen [28]. The areas were
delineated with cellSens imaging software (v. 1.4, Olympus), ignoring the epithelium,
large blood vessels and artefacts. Positive stained cells were counted and expressed per
10,000 pm? of lamina propria tissue [29].

The analysis of CD3* intraepithelial lymphocytes (IELs) was performed as described
previously [30], and the number of CD3* IELs in the lamina propria next to the crypts
was evaluated. Slides were heated for 30 min in boiling citrate buffer using a microwave.
Slides were then cooled and incubated with a primary antibody PPT3 (mouse anti-porcine
CD3 epsilon, CAT NO 4510-01, Southern Biotech) and an isotype control with a
nonspecific antibody (mouse IgG, CAT NO 0102-01, Southern Biotech). The visualisation
was achieved with the mouse and rabbit Specific HRP/DAB IHC Detection Kit (ab236466,
ABCAM), and the secondary antibody was visualised with horseradish peroxidase
(HRP)-labelled micropolymer (goat anti-rabbit HRP Conjugate, 58009 ABCAM) [31]. A
double-blinded quantification of CD3-positive IELs was performed in well-orientated
complete crypts (two slices per animal, ten crypts per slice). The CD3* IELs were expressed
per 100 enterocytes and CD3* in the lamina propria per 10,000 um?.

2.3. Chemical Analyses

Colon digesta SCFA and biogenic amines were quantified as described previously
[32,33]. Briefly, SCFA analysis of digesta was performed by acidifying the samples with
oxalic acid, followed by centrifugation for 3 min at 14,000 g and adding the internal
standard (caproic acid). A gas chromatograph (Agilent Technologies 6890N, autosampler
G2614A and injection tower G2613A; Network GC Systems, Boblingen, Germany) was
used. Ion exchange chromatography was performed with a Biochrom 30 Amino Acid
Analyzer (Biochrom) to analyse biogenic amines (putrescine, cadaverine, spermidine,
spermine, propylamine, tyramine). Trichloroacetic acid (10%) was added to the digesta
samples. After homogenisation and filtering (0.2 um pore size), samples (25 uL) were
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injected onto a 10 cm polyamine ion-exchange column (Laborservice Onken GmbH, Griin-
dau, Germany). The eluent was sodium citrate buffer (pH 7.2). Amines were quantified
after post-column ninhydrin derivatisation by photometric detection at 570 nm [33].

2.4. DNA Extraction and 16S rDNA Sequencing

Bacterial genomic DNA was extracted from 250 mg digesta using a commercial kit,
NucleoSpin Tissue Mini Kit for DNA from cells and tissue (NucleoSpin, Macherey &
Nagel, Diiren, Germany) according to the manufacturer’s instructions with the following
exceptions: bead beating of 250 mg digesta in 1 mL of pre-lysis solution was carried out
on a FastPrep-24™ 5G homogeniser (MP Biomedicals, LLC, Santa Ana, CA, USA) at a
speed of 6 m/s for 10 min (4 times 5 x 30 s and 15 s cooling pause); Proteinase K treatment
lasted for 30 min at 56 °C. The following steps were performed as described by the man-
ufacturer, but the volume of the elution buffer was doubled to increase DNA yield. Ac-
cording to the manufacturer’s instructions, DNA concentration was determined using
Promega QuantiFluor® dsDNA System (Promega, Corporation, Madison, Wisconsin,
USA). DNA extracts were subjected to amplicon sequencing using an Illumina
NextSeq500 sequencer (LGC, Berlin, Germany) with 150 bp-paired reads using 16S rDNA
primers 341f and 785r. Demultiplexing was achieved with Illumina bcl2fastq (v. 2.17.1.14);
paired reads were combined with BBMerge (v. 34.48).

2.5. Data Evaluation and Statistical Analysis

A multivariate approach was used for statistical analyses of histological data, bio-
genic amines and SCFAs. Linear mixed model analysis was conducted using the ANOVA
procedure of the IBM SPSS Statistics software Version 25 (IBM, Chicago, Illinois, USA).
The three fixed-effects Supp (Ala, Gln), BiW (LBW, NBW) and Age (5 d and 12 d) and
their interactions were tested, and the Tukey test was used for groupwise comparisons.
Means and their standard errors are shown. Differences were considered statistically sig-
nificant at p <0.05 and as trends at p <0.1.

The 165-rDNA sequences were analysed using the QIIME2 pipeline [34] and the
SILVA SSU database [35]. Quality control and determination of sequence counts were
performed using the DADAZ2 database software [36]. Further details were previously de-
scribed [37]. The bacterial alpha-diversity measures Richness, Shannon Index and Even-
ness were calculated from ASV-level data. The Kruskal-Wallis test was used to test the
effects of the main factors Supp, BiW and Age and their interactions on the bacterial abun-
dance in the colon . A level of 95% was deemed as significantly different. Principal com-
ponent analysis (PCA) and hierarchical clustering, using Clustvis [38], were used to visu-
alise Supp, BiW and Age differences (Figure S1).

3. Results

3.1. Morphology of the Colon and Frequency of Goblet Cells, Intraepithelial Lymphocytes and
IgA-positive Cells

Colon tissue from Gln-supplemented piglets had a higher number of CD3* IELs (p =
0.028) and showed a trend for an increase in the lamina propria (p = 0.054) (Table 1). A
higher number of CD3* IELs was observed in NBW compared to LBW piglets (p = 0.047).

In piglets that were 12 d-old, CD and CA and the number of CD3* IELs and CD3*
lymphocytes in the lamina propria (p < 0.001) were higher than at 5 d. However, the total
numbers of goblet cells (p =0.001) with neutral (p = 0.006) or mixed mucins (p <0.001) were
lower at 12 compared to 5 d of age. [gA-positive cells were absent in the colonic lamina
propria in 5 d-old piglets, and were detected in all piglets at 12 d (Table 1, Figure 1)

The interactions of Supp x Age and BiW x Age were associated with changes in CD
(p=0.001; p <0.001) and CA (p =0.010; p =0.002), respectively, and the interaction of Supp
x BiW x Age was associated with changes in CD (p = 0.026), CA (p = 0.008) and CD3*IELs
(p=0.043) and a trend for the number of mixed mucins (p = 0.080) (Tables S1 - S3).
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Figure 1. Histomorphology and immunohistochemistry of the colon of 5 d- and 12 d-old male suck-
ling piglets. (a) Alcian blue pH 2.5-periodic acid—Schiff-stained colonic tissue with stained goblet
cells, with different arrows indicating goblet cells containing different mucins, white arrow with
black border = acidic mucins, black arrow = neutral mucins, white arrow = mixed mucins, 100x (up-
per pictures), 400x magnification (lower pictures); (b) IHC of CD3, with black arrows indicating
positive stained intraepithelial CD3+ cells in colon, white arrows indicating positive stained CD3+
cells in lamina propria 100x (upper pictures), 400 x (lower pictures) magnification; (c) IHC of IgA-
positive stained cells in lamina propria, no IgA-positive cells detected at day 5, with arrows indicat-
ing IgA-positive cells,100x and 400x magnification.
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Table 1. Morphometric and immunohisto-morphometric measurements of the colon of 5- and 12-day-old male suckling piglets®.

Supp BiW Age p Values®
Item GIn Ala IBW NBW 5d 12d SEM Supp BiW Age SuppxBiW Supp x Age BiW x Age Supp x BiW x Age
Morphometry
CD, um 237 236 234 238 210 263 213 0.730 0.197 <0.001 0.490 0.001 <0.001 0.026
CA, pm? 10950 10993 10964 10979 9389 12554 144 0.842 0.947 <0.001 0.259 0.010 0.002 0.008
AB—PAS staining of Goblet cells?
Acid 219 247 227 238 217 248 107 0196 0.609 0.145 0.234 0.684 0.244 0.681
Neutral 671 692 709 654 754 609 264 0.686 0280 0.006 0.296 0.915 0.527 0.128
Mixed 841 871 8.2 820 964 748 2,60 0513 0.130 <0.001 0.330 0.759 0.303 0.080
Total 173 181 183 171 194 161 525 0430 0248 0.001 0.213 0.911 0.578 0.130
CD3* lymphocytes?
CD3+IEL 197 176 177 196 115 260 0.07 0.028 0.047 <0.001 0.255 0.107 0.165 0.043
CD3* lamina propria 870 828 883 865 590 112 0.18 0.054 0.109 <0.001 0.911 0.495 0.514 0.603
IgA-positive cells in lamina pro-
pria‘
IgA-positive cells 817 871 804 883 nd 844 054 0.627 0479 na 0.911 n.a n.a n.a

!Values are means, the SE of all groups is shown; n = 48/group. Colon samples were obtained 2 h after oral supplementation of Gln or Ala and fixed in Formalin.
2Number of Alcian blue-periodic acid-Schiff (AB-PAS)-positive goblet cells per 1 mm basal membrane. 3 Number of CD3*-positive lymphocytes per 100 entero-
cytes and per 10 000 um?lamina propria next to the crypts. *Number of IgA-positive cells per 10,000 um?of lamina propria. > ANOVA F test; significant differences
(p < 0.05) are marked in bold, trends (p < 0.1) are marked in italic and bold. Ala = Alanine; Acid = acidic mucins; BiW = birthweight; CA = crypt area; CD = crypt
depth; Gln = Glutamine; IELs = intraepithelial lymphocytes; LBW = low birthweight; n.a = not available (no IgA-positive cells detectable at 5 d); NBW = normal
birthweight; n.d = not detectable; Mixed = mixed neutral and acidic mucins; SE = standard error; Supp = supplementation group; Total = total number of AB-PAS-
positive goblet cells.
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3.2. Bacterial Metabolites in the Colon Digesta

Glutamine-supplemented piglets had lower concentrations of cadaverine (p = 0.036)
and spermidine (p = 0.020) and tended to have lower tyramine concentrations (p = 0.087)
in the colonic digesta compared to Ala piglets (Table 2).

Normal-birthweight piglets had higher concentrations of cadaverine (p = 0.026) and
total biogenic amines (p = 0.011) and a trend for increased concentrations of tyramine (p =
0.057) compared to LBW piglets (Table 2).

At 12 d, colonic digesta had higher tyramine (p = 0.019), putrescine (p = 0.018) and
total biogenic amines (p < 0.001) and lower spermidine (p <0.001) concentrations than at 5
d (Table 2).

The interaction of Supp x BiW showed a trend towards an effect on concentrations of
propionic acid (p =0.071), total SCFA (p =0.074) (Table 3) and concentrations of cadaverine
(p=0.023), tyramine (p = 0.053), spermidine (p =0.099) and total biogenic amines (p=0.061).

The interaction of Supp x Age showed two trends, BiW x Age, with one significant
effect and two trends and Supp x BiW x Age, with one significant effect and one trend for
an effect on the concentration of biogenic amines (Tables 2 and S5). The interaction of
Supp x BiW x Age tended to affect the concentration of butyric acid (p = 0.090) (Tables 3
and S6).

Table 2. Concentrations of biogenic amines in the colon digesta of 5- and 12-day-old male suckling
piglets 1.

Supp Biw Age p Values?

. Supp x

ftem, pmol/g Wet o)\, [BW NBW 5d4 12d SEM Supp BiW  Age SuppxBiw SuPP* BiWx Bisxl;x
Weight Age Age Age
Spermine 002 003 003 003 003 003 000 0275 0534 0764 0.351 0.840 0744  0.076
Cadaverine 005 026 004 027 004 027 007 0036 0026 0253 0.023 0163 0189 0258
Tyramine 006 017 005 017 005 017 005 0087 0057 0.019 0.058 0152 0.086  0.049
Propylamine 006 003 004 005 004 005 001 0111 0676 0.198 0.931 0.067 0672 0712
Histamine 007 009 007 009 007 009 002 0698 0611 0546 0.192 0725 0901  0.319
Spermidine 029 039 036 033 036 033 003 002 0205 <0.001 0.099 0485  0.034 0427
Putrescine 058 046 046 058 046 058 007 0152 0208  0.018 0.470 0.074 0189  0.819
Total biogenicamines 114 143 105 152 105 152 015 0130 0011 <0.001 0.061 0816  0.098  0.188

! Values are means, the SE of all groups is shown; n = 10 group (not enough colonic digesta of all
piglets available for analyses). Colon digesta samples were obtained at 2 h after oral supplementa-
tion with GIn or Ala and milk replacer, and snap-frozen in liquid nitrogen. 2ANOVA F test; signif-
icant differences (p < 0.05) are marked in bold, trends (p < 0.1) are marked in italic and bold. Ala =
Alanine; BiW = birthweight; Gln = Glutamine; LBW = low birthweight; NBW = normal birthweight;
SE = standard error; Supp = supplementation group.
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Table 3. Short chain fatty acid concentrations in the colon digesta of 5- and 12-day-old male suckling
piglets 1.

Supp BiW Age p Values 2
. Supp x
S S BiWw
Item,mmol/L GIn Ala LBW NBW 5d 12d SEM Supp BiW Age —oPP* SUPPX BUVX piyy
Biw Age  Age
Age
Acetic Acid 262 272 268 266 271 262 139 0726 0948 0.753 0.173 0.804 0.531 0.621
Propionicacid 794 949 819 924 807 936 083 0359 0.532 0.445 0.071 0.737 0.893 0.222
Isobutyricacid 139 149 138 149 139 148 010 0.645 0.594 0.671 0.252 0.627 0.894 0.597
Butyric acid 300 360 303 357 28 373 039 0436 0487 0.263 0.101 0.520 0.870 0.090
Isovalericacid 125 139 123 141 123 140 0.09 0451 0328 0.372 0.363 0.417 0.616 0.641
Valeric acid 113 119 113 118 1.07 124 009 0718 0.767 0.325 0.174 0.203 0.865 0.132
Total SCFA 40.85 4434 4173 4346 41.77 4341 243 0486 0.728 0.742 0.074 0.649 0.738 0.289
!Values are means; the SE of all groups is shown; n = 24/group (not enough colonic digesta of all
piglets available for analyses). Colon digesta samples were obtained at 2 h after oral supplementa-
tion with GIn or Ala and milk replacer, and snap-frozen in liquid nitrogen. 2ANOVA F test; signif-
icant differences (p < 0.05) are marked in bold, trends (p < 0.1) are marked in italic and bold. Ala =
Alanine; BiW = birthweight; Gln = Glutamine; LBW = low birthweight; NBW = normal birthweight;
SE = standard error; Supp = supplementation group.
3.3. Impact of AA Supplementation on the Colonic Microbiota
Trends for lower relative abundances of Planctomycetes on the phylum level (Table 4)
and on the order level and a trend for lower abundances of an unknown Firmicutes were
detected in colonic digesta of GIn- compared to Ala-supplemented piglets (p = 0.054) (Ta-
ble S7).
At the genus level, the relative abundances of Phascolarctobacterium (p = 0.086) and
Peptococcus (p =0.081) showed a trend of being higher (Table S8), and relative abundances
of several unknown genera from the families of Clostridiaceae 1 (p =0.091), Carnobacteriaceae
(p = 0.055) and Streptococcaceae (p = 0.053) tended to be lower in colonic digesta of Gln-
compared to Ala-supplemented piglets.
Table 4. Microbial diversity indices and relative abundance of bacterial phyla in the colon digesta
of male suckling piglets .
Supp Biw Age p Values?
. Suppl x
Item, % Gin Ala LBW NBW 5d 12d SEM Supp BiW  Age OuPPX Suppbx BiWx g,
Biw Age Age Age
Richness 3 179 167 172 173 164 181 5.56 0.391 0.974 0.114 0.794 0.343 0.204 0.550
Shannon.Index 3 3.73 3.72 3.72 3.72 3.67 3.77 0.05 0.792 0.956 0.389 0.694 0.763 0.657 0.633
Evenness 3 0.72 0.73 0.72 0.73 0.72 0.73 0.01 0.613 0.801 0.621 0.867 0.775 0.959 0.695
Firmicutes 68.8 66.6 64.4 71.1 65.1 70.4 1.82 0.429 0.049 0.156 0.009 0.429 0.105 0.032
Bacteroidetes ~ 22.1 219 23.6 20.4 23.8 20.2 1.40 0.301 0.423 0.052 0.412 0.175 0.180 0.420
Fusobacteria 3.75 6.42 5.71 4.35 6.89 3.17 1.17 0.538 0.374 0.362 0.371 0.670 0.625 0.635
Proteobacteria 3.07  3.77  4.01 2.80 3.65 3.16 0.57 0.322 0.258 0.307 0.504 0.510 0.486 0.804
Verruffi’?lcro' 078 000 081 000 000 08 040 0973 0360 0002 0741 0025 0009  0.098
WPS-2 0.42 0.10 0.06 0.47  0.00 0.53 0.17 0.179 0.138 0.173 0.233 0.281 0.256 0.473
Actinobacteria  0.33 0.24 0.32 0.26 0.36 0.21 0.06 0.524 0.904 0.869 0.779 0.796 0.717 0.836
Spirochaetes 0.29 0.32 0.43 017  0.05 0.55 0.11 0.380 0.917 0.003 0.784 0.024 0.019 0.121
Planctomycetes  0.27 017  0.26 0.18 0.07 0.38 0.06 0.054 0.248 0.113 0.166 0.074 0.293 0.309
Tenericutes 0.12 0.04 0.10 0.06 0.00 0.16 0.05 0.590 0.582 0.002 0.897 0.022 0.023 0.198
Epmmﬁj“”“' 003 023 019 006 003 023 008 0465 0819 <0001 089 0004 0006  0.054
K“”“E:‘:EH%' 002 011 006 007 000 012 003 039 0973 0021 0757 0037 0127 0242
Lentisphaerae  0.01 0.04 0.02 0.03 0.05 0.01 0.01 0.937 0.080 0.230 0.145 0.499 0.083 0.191

!Values are means of relative abundance; the SE for all groups is shown; n = 22/group (not enough
colonic digesta of all piglets available for analyses). Colon digesta samples were obtained at 2 h after
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oral supplementation of GIn or Ala and milk replacer, and snap-frozen in liquid nitrogen. 2 Kruskal—-
Wallis test, asymptotic significance; significant differences (p < 0.05) are marked in bold, trends (p <
0.1) are marked in italic and bold 3 Calculated on amplicon sequence variant (ASV) level. Ala =
Alanine; BiW = birthweight; Gln = Glutamine; LBW = low birthweight; NBW = normal birthweight;
SE = standard error of the mean; Supp = supplementation group.

3.4. Impact of Birthweight on the Colon Microbiota

Low-birthweight piglets were characterised by a lower abundance of the phylum Fir-
micutes (p = 0.049) and showed a trend for a decrease in the phylum Lentisphaerae (p =
0.080) compared to NBW piglets (Table 4). The order Actinomycetales tended to be in-
creased in LBW compared to NBW piglets (p = 0.062) (Table S7)

On the genus level, LBW piglets had a higher relative abundance of Alistipes (p =
0.043) and a trend for slightly higher relative abundances of Peptostreptococcus (p = 0.087),
Mannheimia (p = 0.075) and unknown Desulfovibrionaceae (p = 0.095) compared to NBW
piglets (Table S8). In comparison to LBW piglets, the relative abundance of Negativibacillus
(p = 0.020) and Faecalibacterium (p = 0.039) was higher and showed a trend for a slightly
higher abundance of the genera Dorea (p = 0.066) and unknown Prevotellaceae (p = 0.063) in
the colon digesta of NBW piglets.

3.5. Impact of Age on the Colon Microbiota

At the level of the phyla, a lower relative abundance of Verrucomicrobia (p = 0.002),
Spirochaetes (p = 0.003), Tenericutes (p = 0.002), Epsilonbactereota (p < 0.001) and Kriti-
matiellaeota (p = 0.021) and a trend for slightly higher abundances of Bacteriodetes (p =
0.052) were detected in the colon digesta of piglets at 12 d compared to 5 d of age (Table
4).

At the level of bacterial order, the abundance of Victivallales (p = 0.037) and Coriobac-
teriales (p = 0.003) was lower at 5 than at 12 d (Table S7). Lactobacillales (p = 0.063), and
Bacteroidales (p = 0.052) showed a trend for a higher abundance at 5 compared to 12 d. The
relative abundance of unknown WPS-2 (p = 0.002), Desulfovibronionales (p = 0.002), Betap-
roteobacteriales (p = 0.002), Corynebacteriales (p = 0.005) and Campylobacterales (p =0.021) was
lower at 5 than at 12 d, and a similar trend was found for Spirochaetales (p = 0.054), Mol-
licutes RE39 (p = 0.058) and Micrococcales (p = 0.092).

At the genus level, the relative abundances of 28 genera were higher (p <0.05), and 8
tended to be higher (p < 0.1) in the colon digesta of 12 d- compared to 5 d-old piglets.
Furthermore, the relative abundances of 26 genera were lower (p < 0.05), and another 8
genera tended to be lower (p <0.1) in the colon digesta of 12 d- compared to 5 d-old piglets
(Table S8). Of the dominating genera with a mean abundance > 1%, unknown Muribacu-
laceae (p = 0.001), unknown Lachnospiraceae (p = 0.013), Lachnoclostridium (p = 0.022) and
Parabacteroides (p < 0.001) were lower at 12 d than 5 d, and the relative abundance of Fuso-
bacterium (p =0.052) and Prevotellaceae NK3B31 groups (p =0.091) showed a trend for lower
values at 12 d than at 5 d. The genera Rombutsia (p = 0.010), Ruminococcaceae UCG-002 (p =
0.004), Ruminococcaceae UCG-005 (p < 0.001), Alloprevotella (p = 0.024), Christensenelllaceae
R-7 group (p <0.001) and unknown F082 (p < 0.001) showed an age-dependent increase in
colon digesta from 5 to 12 d of age (Table S8).

3.6. Interaction of Supplementation, Birthweight and Age Effects on Bacterial Phyla, Order and
Genera

The interaction of Supp x BiW (p =0.009) and Supp x BiW x Age (p =0.032) influenced
the abundance of Firmicutes. Several other significant and trends for interactions for bac-
terial phyla with a relative abundance < 1%, mainly influenced by the factor Age, are
shown in Table 4.

The interaction of Supp x BiW influenced the relative abundance of Bradymondales (p
=0.024) and showed a trend for an influence on the relative abundance of WCHB1-41 (p =
0.096). In total, seven significant and two trends for the interaction of Supp x BiW, six
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significant and one trend for the interaction of BiW x Age and three trends for the inter-
action of Supp x BiW x Age of bacterial abundances < 1% on the order level are shown in
Tables S7 and S11.

The interaction of Supp x BiW affected the relative abundances of unknown Brady-
mondales (p = 0.024), unknown Prevotellacae (p = 0.049), Alistipes (p = 0.030), Staphylococcus
(p=0.028) and CAG-873 (p =0.015) in colonic digesta. Moderate interactions of Supp x BiW
and effects of the other interactions (Supp x Age, BiW x Age; Supp x BiW x Age), again
mainly influenced by the factor Age, were found and are shown in Tables S8 and S12.

3.7. Quantitative Analysis, Ecological Indices and Principal Component Analysis of the Colonic
Microbiota

The main abundant phyla in the colon digesta of male suckling piglets were Firmicu-
tes and Bacteroidetes, followed by Fusobacteria and Proteobacteria (Table 4). On the order
level, Clostridiales, Lactobacillales and Bacteroidales were most abundant (Table S1). Regard-
less of Supp, BiW and Age, the dominating bacterial genera were Lactobacillus and Clos-
tridium sensu stricto 1 (Table 52). Neither Supp nor BiW or Age affected Richness, Evenness
or Shannon Indices (Table 4). Principal component analysis of all bacterial genera revealed
no separation between Supp or BiW (Figure 2 a,b); however, Age did, with 5 d-old piglets
clustered separately from 12 d-old piglets (Figure 2c,d).

b
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Figure 2. Principal component analysis (PCA). Principal component analysis (PCA) showing the

effect of (a) supplementation; (b) birthweight; (c) age; (d) age and supplementation x birth weight
on bacterial genus level. Ala = Alanine, Gln = Glutamine, LBW = low birthweight, NBW = normal

birthweight. PCA was performed with Clustvis.
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3.8. Correlations between Microbiota and Bacterial Metabolites in Colon Digesta

A link between the colonic metabolites and the major genera was investigated by
Spearman correlation. The Ala and GIn Supp groups were taken together because the bac-
terial abundance and the metabolite concentrations did not show major significant
changes between groups. Figure 3 a,b show the correlations between SCFAs and major
bacteria genera (mean abundance > 0.5%) in the colon digesta of 5 d- and 12 d-old piglets.
Total SCFAs and acetic and propionic acid positively correlated with the abundance of
Lactobacillus and Alloprevotella at 5 d, respectively (p < 0.05). Butyric acid showed a signif-
icant negative correlation with the abundance of Lactobacillus and Streptococcus at 5 d,
whereas the genus Alloprevotella showed a positive correlation (p < 0.05). At 12 d of age,
total SCFAs negatively correlated with the abundance of Fusobacterium and Actinobacillus,
whereas they positively correlated with the genera Rikenellaceae RC9 gut group. Propionic
acid also showed a negative correlation with Fusobacterium and Actinobacillus and a posi-
tive correlation with the genera Phascolarctobacterium, Ruminiclostridium 9 and Dorea. Bu-
tyric acid was negatively correlated with the abundance of Fusobacterium, Prevotellaceae
NK3B31 group and Terrisporobacter and positively correlated with the Rikenellaceae RC9
gut group, Ruminococcaceae UCG 002/UCG 005 and unknown Clostridiales vadin BB60
group. Few correlations between the biogenic amines and major bacteria genera (mean
abundance > 0.5%) at 5 d (Figure 3 c¢) and 12 d (Figure 3 d) could be detected. We found
the most positive correlations between different bacterial genera and histamine at 5 d of
age. At 12 d of age, most positive correlations between different bacterial genera and prop-
ylamine were detected. Cadaverine showed a negative correlation with the genera Actino-
bacillus and Prevotellaceae NK3B31 group in 12 d-old piglets.
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Figure 3. Concentration of bacterial metabolites and their correlation with bacteria having an abun-
dance > 0.5%. The data are presented as mean values, n = 5 for SCFAs between groups; n = 2 for
biogenic amines at 5 d of age and 1 =4 at 12 d of age; the colours range from blue (negative correla-
tion) to red (positive correlation). Significant correlations are marked by ** p <0.01 and * p <0.05; (a)
Spearman’s correlation between colonic microbiota with a general abundance > 0.5% and SCFAs at
day 5; (b) Spearman’s correlation between colonic microbiota with a general abundance > 0.5% and
SCFAs at day 12; (c) Spearman’s correlation between colonic microbiota with a general abundance
>0.5% and biogenic amines at day 5; (d) Spearman’s correlation between colonic microbiota with a
general abundance > 0.5% and biogenic amines at day 12. The colours range from blue (negative
correlation) to red (positive correlation). Significant correlations are marked by ** p <0.01 and * p <
0.05.

4. Discussion

The objective of the study was to follow up on the results of a previous study in which
GIn was administered to neonatal suckling piglets. That study showed improved growth,
milk intake and lipid metabolism in LBW pigs, and associations with AA metabolism in
NBW piglets [17]. Therefore, in the present study, we further investigated the impact of
GlIn, BiW and age on the colonic microbiota composition, microbial metabolites, mucosal
morphology and immune cell density. We hypothesised that GIn supplementation from
1to 12 d of age is associated with changes in the intestinal microbiota and microbial me-
tabolites, also impacting the lower intestinal tract. Our results show some interesting ef-
fects in Gln-supplemented piglets. However, age had the most profound influence.
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To the best of our knowledge, this is the first study investigating the effects of Gln
supplementation in the ascending colon of piglets during the early suckling phase. Few
studies with suckling piglets have investigated histological and immunologic parameters,
and the microbiota and the metabolites of the colon [9-11]. However, the majority of stud-
ies investigated Gln and its relation to the development and function of the SI after wean-
ing [19,23], while this was rarely explored in suckling piglets [21,39]. A possible down-
stream transfer of beneficial effects of Gln supplementation from proximal gut segments
to the large intestine has not been characterised.

4.1. Effects of GIn Supplementation

Glutamine is an important energy source for immune cells in the GIT of piglets [23].
Within the adaptive immune system, T lymphocytes in the intestinal epithelium play a
significant role in the gut barrier function, defence and tolerance mechanisms. Intraepi-
thelial lymphocytes have a primary function for maintaining gut health in early life. They
are one of the first cells with an immunological function protecting the intestinal epithe-
lium [40]. Therefore, a higher number of CD3* IELs in GIn- compared to Ala-supple-
mented piglets might indicate a more maturate intestinal immune system. The observed
difference in CD3* IELs could be related to T-cell-dependent pathways via a direct effect
of Gln supplementation on the intestinal microbiota in more proximal gut segments [41].
An explanation for the absence of effects of GIn supplementation on most of the examined
morphological colonic parameters could be due to the metabolism and absorption of the
supplemented Gln in proximal parts of the SI with only minor changes in AA concentra-
tions in jejunal digesta and tissue [42] and possibly only little carry-over effects of proxi-
mal metabolic products into distal gut segments [43].

In our study, colonic SCFA concentrations remained largely unaffected by GIn sup-
plementation. The relative abundance of Lactobacillus spp. was quite similar between Gln-
and Ala-supplemented suckling piglets. There was obviously no promotion of SCFA pro-
duction by the presence of Lactobacillus spp., which may also be due to the fact that 5 d- or
12 d-old animals still show extreme fluctuations in the microbiome, which is not as stable
as after weaning [10]. Biogenic amines are products of bacterial AA decarboxylation,
whose biological importance has been increasingly recognised for both the microbiota and
the intestinal tissue [44]. A lower pH is important for the AA decarboxylation activity, and
Lactobacillus ssp. are mainly responsible for the synthesis of biogenic amines [45]. This is
why decreased concentrations of cadaverine and spermidine in the Gln-supplemented
piglets in our study might reflect different microbial abundances and microbial fermenta-
tion profiles in the colon or more proximal gut segments. Putrescine, spermidine and ca-
daverine influence gut maturation in weaned piglets [46]. Spermidine is believed to con-
tribute to gut maturation in young piglets. Therefore, it could be assumed that a lower
concentration of spermidine in the colon might indicate a more immature gut with re-
duced autophagic activity [46]. All in all, knowledge on the effects of intestinal biogenic
amines in suckling piglets is scarce, but it is important to note that the function of biogenic
amines is probably dependent on their concentration and the condition of the host [47].

Glutamine is extensively catabolised by bacteria in the SI of pigs and mice [22,43]. It
was shown that 1% GIn supplementation in six week old mice had an influence on micro-
bial composition in the jejunum and ileum, and activated proinflammatory processes
through TLR4-nuclear factor kB (NF-kB), mitogen-activated protein kinases (MAPKSs),
and phosphoinositide-3 kinases (PI3Ks)/PI3K-protein kinase B (Akt) signalling pathways
[43]. Even if GIn is mainly utilised in the SI, bacteria and metabolic products might reach
the large intestine and influence the microbial composition and metabolic activity. Studies
investigating effects of GIn or AA blends on the colonic microbiota have not been reported
in suckling piglets. In weaned pigs, blends of Glu, Gln, glycine, arginine and N-acetylcys-
teine, added at 1% in the diet, increased Lactobacillus and Bifidobacterium spp. in mid co-
lonic digesta [48]. In our study, the microbial abundance in colonic digesta was only mod-
erately affected by Gln supplementation, similar to findings in rats [43], rabbits [49] and
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in faecal samples of underweight infants [50]. Effects of AA supplementation might be
influenced by individual microbial composition in the colon of weaned piglets [51]. The
individual variability in microbial AA degradation in suckling piglets, on the other hand,
is not known.

4.2. Effects of Birthweight

Intraepithelial lymphocytes are components of the gut-associated lymphoid tissue,
and are a first line of defence against infection [40]. In the current study, we show that
LBW was associated with a lower number of CD3+ IELs in the colon compared to NBW,
possibly indicating a better adaptive immune response of NBW piglets. A connection be-
tween the number of IELs and BW has been described in other animal species. For exam-
ple, it was shown in mice that IELs have an important function in promoting weight gain
[52]. This is possibly associated with the protective function of IELs in the gut [40].

Dietary protein has been reported to be mainly responsible for the concentration of
biogenic amines in the colon of pigs [53]. While branched-chain fatty acids are produced
by the deamination of valine, leucine and isoleucine, amines are produced by the decar-
boxylation of different AAs [53]. The digestive system of piglets in the current study can
be considered as rapidly developing. Higher milk intake and the rapidly changing intes-
tinal microbiome might lead to higher total biogenic amine and cadaverine concentrations
in the colonic digesta of NBW piglets. It is known that the diamine cadaverine is almost
only synthesised by bacteria [54].

Normal-birthweight piglets have different abundances of bacteria in the faeces
[14,55], ileum and colon [11] during suckling and weaning compared with LBW piglets.
At 3 and 7 d after birth, it has been reported that LBW suckling piglets (0.75-0.95 kg BiW)
have a lower faecal abundance of Firmicutes than NBW (1.35-1.55 kg BiW) [14]. The higher
relative abundance of Firmicutes in NBW piglets observed in the current study might re-
late to similar findings in obese minipigs [56]. Thus, a higher BW in NBW compared to
LBW piglets [17] could be associated with a higher abundance of Firmicutes. However,
overall, the abundance of the major bacterial genera was similar between LBW and NBW
piglets. Most changes have been reported to occur in the minor bacterial genera in the
colon and faeces of suckling piglets [11,14,55], which is in line with the current study. The
faecal microbiota of LBW piglets were characterised by a lower relative abundance of Lac-
tobacillus, Streptococcus and Faecalibacterium spp. and a higher proportion of Fusobacterium
spp. at 3 and 7 d of age [14]. Piglets with a low daily BW gain at the ages of 4, 8 and 14 d
have been reported to have lower faecal abundances of Lactobacillus, unclassified Prevotel-
laceae and Ruminococcaceae UCG-005 [55]. To the best of our knowledge, there appears to
be only one other study [11] comparing the colonic microbiota of LBW and NBW suckling
piglets. In the current study, LBW piglets had lower abundances of colonic Alistipes, Lach-
nospiraceae, Ruminococcaceae and Prevotellaceae and Faecalibacterium spp. Piglets harbouring
increased levels of Faecalibacterium in the GIT showed a lower risk for diarrhoea after
weaning [57]. In humans, this genus is associated with a lower incidence of inflammatory
bowel disease and colorectal cancer [58]. In contrast to previous studies [11,55], we did
not observe lower microbial abundances of Bacteroidetes, Bacteroides and Ruminococcaceae,
especially Ruminococcaceae UCG-005 in LBW piglets. This relative stability of the microbi-
ota might explain the similar SCFA concentrations in the colonic digesta. Interestingly, we
observed a higher relative abundance of the genus Alistipes in colon digesta of LBW com-
pared to NBW piglets. Low birthweight is associated with increased body fat accumula-
tion [59], hepatic lipid droplets, the rate of lipolysis in the liver [60] and the number of
intramyocellular lipid droplets in juvenile pigs [61]. Alistipes finegoldii belonging to the
Bacteroidetes phylum has been shown to be a resident in the human gut microbiome and
is involved in lipid metabolism via the bacterial type II fatty acid biosynthesis system [62].
The genus Alistipes has been associated with increased porcine back fat mass, intramus-
cular fat accumulation [63] and lean body mass in pigs [64], while in humans, health-
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protective effects have been reported to be related to liver fibrosis, colitis, cancer and gut
dysbiosis [65].

As described previously [55], only minor effects of BiW on the microbiota, bacterial
metabolites and histomorphomometric traits may have been observed, due to the higher
BiW of selected LBW piglets compared to other studies [11-14]. Since studies on the his-
tomorphological development of the large intestine in suckling piglets are scarce, espe-
cially those comparing LBW and NBW piglets, it should be mentioned that in this and in
previous studies, using intrauterine-growth-restricted (BiW < 1.15 kg) and NBW piglets
(1.25-1.70 kg BiW), no major morphological differences in the colon were detected in pig-
lets at 5 d of age or earlier [12,13]. In addition, the lack of differences observed between
LBW and NBW piglets in the relative abundance of the colonic microbiota reported in this
study may also explain the lack of differences in bacterial metabolites concentrations. A
possible explanation could be that biogenic amines and SCFAs are primarily produced by
the dominant (>1% relative abundance) bacteria [10], and all other bacteria probably do
not contribute strongly to the production of metabolites. Another explanation could be
that possible birthweight-dependent differences may have been reduced during postnatal
development when milk intake was high [66]. Furthermore, if the piglets survive the first
3 days of life, and suckle enough sow milk including immunoglobulins, antibodies and
milk oligosaccharides [67], they become less comparable to very low birthweight piglets,
which have been shown to differ in intestinal development, gene expression and bacterial
profiles compared to NBW piglets immediately after birth [3,12,13,23].

4.3. Comparison of Age Groups

In the present study, the CD and CA of the colon and numbers of CD3+ IELs, CD3+
lymphocytes in the lamina propria and the number of IgA-positive cells as markers of
immunological development increased with age, indicating a highly dynamic gut devel-
opment in suckling piglets. Comparable results were obtained in piglets from 1 to 42 d of
life observing an increased CD and increased expression of Toll-like receptors 2 and 9,
indicating a better immune protection against pathogens [10]. The increase in CD was also
confirmed in 0 d- compared to 28 d-old pigs [68]. The increases in CD are associated with
increases in the absorptive surface and mucosal mass and could be related to factors such
as intake of sow’s faeces and spilled feed or the developing intestinal microbiota. The
influence of the intestinal microbiota on the intestinal architecture has already been
shown. For example, the SI of germfree mice had shorter crypts [69], and similar findings,
such as reduced mitotic index and cell turnover rate in the intestinal epithelium of colon
and ileum of rats, were reported [70]. A decrease in the abundance of goblet cells contain-
ing different mucins in colonic crypts could also be dependent on the interaction with
luminal and mucosal gut bacteria and the changing immune system due to maturation as
was assumed earlier [9]. Goblet cells provide mucins for the mucus layers found in the
colon. The outer layer, mainly consisting of MUC2, is permeable to bacteria. The tightly
adherent inner layer, including different mucins impermeable to bacteria, contributes to
the strong barrier function in the colon [71]. Decreasing densities of goblet cells in our
study from 5 to 12 d of age are in accordance with a previous study observing a decrease
in goblet cell density from O to 7 days of age and an increase at 14 d of age [9]. Examination
of mucin composition revealed a relatively constant number of goblet cells containing
acidic mucins from 5 d- and 12 d-old piglets, mostly located in the bottom of the crypts.
The location of goblet cells containing acidic mucins was also seen in colonic crypts of
piglets after weaning [26]. The balance between the major commensal bacteria leads to
colonic epithelial homeostasis due to their effect on mucus production [72]. Bacteroides
spp. positively affect mucus production, reducing neutral and mixed goblet cells in piglets
[72]. In addition, it could be assumed that different bacteria ferment mucins. Therefore,
the general bacterial interaction could be responsible for the abundance of mucins [72].

A higher frequency of CD3+ cells might indicate a more mature immune system in
12 d- compared to 5 d-old piglets. It is known that an adequate density of CD3+ IELs
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sustains epithelial barrier function [73]. The lower number of neutral, mixed and total
goblet cells at 12 d of life may indicate that other factors contribute to an efficient barrier
function. Due to the increasing milk intake of piglets in the first two weeks of life, it could
be that sow milk including immunoglobulins, antibodies and milk oligosaccharides could
lead to adequate protection. Therefore, the described protecting effect of milk oligosac-
charides on the intestine [67] might lead to lower mucus production as the intestinal bar-
rier function of the gut is intact and improved. At this point, it is of interest that milk
oligosaccharides have a similar structure to mucin glycans, possibly having similar tasks
in barrier function next to the known immunomodulatory and microbial effects [67].
Therefore, the intestinal barrier function in the colon might be supported by maternal milk
and the higher number of CD3+ IELs.

IgA-positive B cells function as part of the innate immune defence after migrating
from the Peyer’s patches into the lamina propria [74]. Factors such as age [75], the com-
position of the microbiota [76] and diet [77] seem to influence the abundance of IgA-pos-
itive B cells. The lack of IgA-positive cells at 5 d of age is in line with previous studies [75].
The emergence of an active immune system in the colon at the second week of life was
demonstrated in the current study by the detection of IgA-positive cells in the lamina pro-
pria.

The primary site of lactate production is the upper GIT, where it is mainly produced
by Lactobacillus spp., having beneficial effects on gut health, while acetate, proprionate
and butyrate are mainly produced by specific microbial communities in the colon [15].
Arnaud et al. [9] reported increases in colonic SCFAs in the early postnatal period (7 to 14
d of age), whereas Li et al. [11] (7 to 21 d of age) and Qi et al. [10] (7 to 14 d of age) did not
observe age-dependent changes, which is in line with the current study.

Polyamines have been reported to have concentration-dependent protective effects
[46], and it has been suggested that putrescine, spermidine and cadaverine have an influ-
ence on gut maturation in weaned piglets. In contrast to Qi et al. [10], we observed a lower
spermidine concentration and a higher total biogenic amine concentration in colon digesta
in 12 d- compared to 5 d-old piglets. A decrease in putrescine concentrations in colon
digesta of 7 d- compared to 14 d-old piglets has been previously reported [10]. The lack of
agreement between the studies could be due to creep feeding (not in the current study) or
the physiologically decreasing protein content of sow milk during lactation [78]. Higher
tyramine and total biogenic amine concentrations in the colonic content of piglets could
be due to a higher intake of indigestible nutrients and immature digestive function. Tyra-
mine and other biogenic amines are produced by gut microbiota degradation of AAs [44].
A decrease in tyramine was observed in piglets right after weaning [79], which could be
related to lower or no feed intake. In this study, piglets consumed more nutrients with
increasing age, which might have led to an increase in tyramine and other biogenic
amines.

The core microbiota of the colon and faeces are the Firmicutes and Bacteroidetes [9—
11,14,55], and we observed here that they are the most abundant microbial phyla in the
colonic digesta of neonatal piglets. The abundance of the genus Lactobacillus did not
change in the colon digesta between 5- and 12-day-old piglets. Most of the initially less
abundant bacterial phyla increased in number with age in the colon digesta, in line with
previous observations [10,55]. Unknown Muribaculaceae, the fourth most abundant genus,
decreased in abundance from 5 to 12 d. The functional role is not yet clear, but Muribacu-
laceae can degrade carbohydrates, although lower abundances were observed in mice and
rats fed carbohydrate-enriched diets [80]. The observed increased abundance in the Rumi-
nococcaceae family with age has also been described in previous studies [11,14,55]. Rumi-
nococcacae can ferment dietary fibre, produce SCFAs and are considered as a dominant
part of the microbiota of the pig colon [55]. In our study, Ruminococcacceae abundance was
positively correlated with butyric acid concentration. It is not known whether bacteria
belonging to the Ruminococcaceae family are involved in the fermentation of milk oligosac-
charides to produce SCFAs, as has been observed for Lactobacillus and Bifidobacterium [67].
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However, unknown interactions with the other members of the colon microbiota might
also increase the abundance of Ruminococcaceae. These findings might indicate the matu-
ration of the intestinal microbiota and the immune system of neonatal piglets towards
increasing protection of the intestine in the first weeks of life or the protective function of
milk oligosaccharides against possible pathogens [67].

Changes in the diversity of the colonic microbiota were identified in the first week of
life and after 21 d [10] or 28 d [9] of life in piglets with no major changes in-between.
Additionally, the bacterial abundance depends on the location and type of the sample as
well as on nutritional and environmental factors [43] Another explanation for minor dif-
ferences in bacterial abundances of the colon between 5 d- and 12 d-old suckling piglets
could be that the colonic microbial composition of suckling piglets during the first two
weeks of life is more likely driven by the milk oligosaccharides in sow milk [67] or by the
sow—piglet relationship [81].

5. Conclusions

Glutamine supplementation, compared to Ala, and birthweight had minor effects on
colonic development, microbial composition and microbial metabolites in piglets,
whereas most of the observed effects were age-dependent. Glutamine supplementation
increased the number of CD3+ IELs in the colon as well as the concentration of some bio-
genic amines in the colonic digesta. Our data suggest the effects of Gln supplementation
are less distinct in distal parts of the gastrointestinal tract in neonatal piglets.
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5 Discussion

The aim of our study was to provide insight into the Gl development of suckling normal and
LBW piglets, supplemented with GIn or Ala. In the jejunal tissue, morphometric data, immune
cell colonization, and AA profiles were investigated, together with genes involved in AA
metabolism. In the digesta of jejunum, AA profiles and in digesta of the colon the composition
of the microbiota and the concentration of microbial metabolites were used as indicators of
early microbial development. In contrast to reports in post weaning piglets, GIn and BiW had
only a minor influence in gut development, whereas age had a major effect on the intestinal

characteristics.

The problem of large litter sizes in hyperprolific sows with increased numbers of LBW piglets
is well known (Foxcroft et al. 2006). Since LBW have high mortality in the first days of life, it is
a relevant topic to develop solutions for this problem (Marchant et al. 2000), which goes along
with high economic losses (Beaulieu et al. 2010). Different feeding trials of sows and piglets to
reduce mortality of LBW piglets, using other AA, nucleotides, bovine milk replacers and SCFA,
next to modulating the housing and the environment, have been already conducted (Farmer
and Edwards 2021; Huting et al. 2021). Therefore, the supplementation of GIn, which is known
to be an important energy substrate for enterocytes (Darcy-Vrillon et al. 1994; Wu et al. 1995c),
to LBW suckling piglets is a promising supportive strategy. In previous trials mainly conducted
in weaned piglets GIn supplementation showed beneficial effects on performance and Gl
development (Wu et al. 1996b; Wang et al. 2008; Cabrera et al. 2013) which was
also conformed in LPS treated suckling piglets (Haynes et al. 2009). The problem of LBW is
also seen in infants. Using a pig model which can be transferred to humans was not the
main aim but additionally justifies this basic research study.

A critical aspect is the selection of piglets, which was handled very differently in the previous
studies (Cooper 1975; De Vos et al. 2014; Feldpausch et al. 2019). Selection criteria and the
high mortality makes it difficult to compare all effects between different studies. The selection
criteria for LBW in our study, with LBW piglets defined by a BiW of 0.8 — 1.2 kg is rather high.
It can be explained by the high mortality of piglets with lower BiW. However, it is a certain
limitation, results could be different in severely underweight piglets. Therefore, it should be
tried in further studies to focus on piglets with BiW below 0.8 kg, to characterize the potentially
beneficial effect of GIn supplementation. Another interesting aspect would be to start the
application of GIn immediately after birth, because most underweight piglets have a massive

energy deficiency, which greatly reduces their chances of survival.
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The resources needed for to execute this should not be neglected. In our study, the workload
during farrowing, the selection of piglets at birth and generating data, made the additional

supplementation at birth impossible.
5.1 Impacts of glutamine
5.1.1 Influence on gut development and absorption

In contrast to studies supplementing GIn to weaned piglets (Haynes et al. 2009; Wu et al.
2011b; He et al. 2019), the supplementation of Gln to suckling piglets in this study showed no
impact on Gl development and only minor effects on immune cells. An improved Gl
development, especially of the morphological characteristics, with regards to the energy
delivered by GIn for enterocytes (Darcy-Vrillon et al. 1994; Wu et al. 1995c¢), was hypothesised.
The knowledge of the absorption kinetics of GIn in the intestine of pigs is scarce (Windmueller
1982; Wu et al. 1996b), but similar to other AA it can be expected to be absorbed in the Sl
(Wernerman 2011). The similar AA patterns in digesta and tissue of the jejunum might confirm
that the absorption and or metabolism of the supplemented AA occurred in more proximal gut
segments, leading to only minor carry over effects of GIn supplementation in distal gut
segments. Interestingly, the concentration of plasma GIn was higher compared to Ala pigs,
and vice versa (Li et al. 2022). This demonstrates, that the supplemented AA were absorbed,
most likely in more proximal S| segments. Additionally, it is known that free Gin is not as stable
as a GIn-dipeptide (Fuerst 2001) , especially in an acidic milieu. Therefore, Gln might have not
have been fully available in the Sl. Nevertheless, it has been reported that in weaned piglets
supplemented with 1% free GlIn, that the concentration of GIn in the duodenal digesta increases
8-fold (Wu et al. 1996b). Additionally, it was recently shown that supplemental Gln and Ala
increased concentrations in the stomach content and duodenum tissue of suckling piglets
(Sciascia et al. 2022). If or how far the GIn transits into the jejunum is still unknown, however,
intestinal transit time studies show that the passage rate of the S| ranges from 1.8-3.2 hours
(depending on diet composition) (Henze et al. 2021), this is enough time for any supplemental
AA to pass to the jejunal section sampled for this study. Frequency, duration, and way of
supplementing GIn could also play a role for possible effects of GIn in the GIT. A constant
supplementation with GIn would only be possible by supplementing GIn parenterally.
Parenteral GIn supplementation did not show a benefit compared to enteral GIn
supplementation in weaned healthy and endotoxemic pigs. A combination of both seemed to
be promising approach. It is expected, that the majority of enterally supplemented Gin will be
utilized by enterocytes and immune cells, with the rest being absorbed into the portal vein by
the liver. This would then result in a small fraction of Gin in the systemic circulation. It has been

shown in pigs, that enteral GIn supplementation has only minor effects on the systemic
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circulation, while the use for intestinal metabolic needs seemed to be sufficient. Stavrou et al.
(2018) observed that enteral supplementation of 92 mmol GIn to endotoxemic swine resulted
in a portal GIn concentration of 0.4 mmol/L compared to parenteral supplementation, leading
to a perfusion of the GIT through the mesenteric artery resulting in a portal GIn concentration
of 2.5 mmol/L. Intravenous supplementation displayed a similar Gin supply for the GIT
compared to endogenous supply. A combination of 92 mmol intravenous and 92 mmol enteral
GIn led to the highest portal concentration of 2.9 mmol. In total, 7 times higher than the 0.4
mmol portal GIn fraction of solely enterally fed endotoxemic pigs (Stavrou et al. 2018). The
duration of enteral GIn application in most of the studies with suckling or weaned piglets was
two weeks or longer (Wu et al. 1996b; Haynes et al. 2009; Cabrera et al. 2013)

5.1.2 Influence on immune cell development and bacterial metabolites

We reported no differences in tissue and digesta AA of the jejunal tissue sampled in this study
(Schregel et al. 2022). This supports the findings of similar SCFA concentrations, microbial
composition, and only minor differences in biogenic amines concentration in the digesta of the
colon. However, effects on CD3" intraepithelial lymphocytes (IEL) in the colon of Gin
supplemented piglets might be affected by changes in microbial composition in more proximal
parts of the GIT. The CD3* IEL protect the intestinal epithelium and are the first cells with
immunological function, colonizing the intestinal tissue. It is assumed that their abundance is
related to T-cell dependent pathways which can be affected by changes in microbial
composition due to GIn supplementation (Wu et al. 2016). Another explanation might be that
the higher GIn concentration in the circulation (Li et al. 2022) led to a proliferation of intestinal
lymphocytes. It has been shown that the small as well as the large intestine can use GIn from
the digesta or the bloodstream (Wernerman 2014). Looking at these findings, the increase of
CD3" IEL in the colon might be also related to the fact that intestinal lymphocytes use GIn as
an energy source and require Gin for proliferation (Dugan et al. 1994; Wu 1996). Moreover,
changes in concentrations of biogenic amines by Gln supplementation are difficult to evaluate,
because of the current limited knowledge of their biological effects especially in the early life
period. In the digesta, biogenic amines are produced by bacterial AA decarboxylation. In the
literature, the function of biogenic amines is described to be related to concentrations and host
general health, by maintaining barrier function and improving immunity of the intestine.(Fan et
al. 2017; Ma et al. 2021). Their effects on intestinal development in suckling piglets are not
known. The minor effects of GIn supplementation on biogenic amines and microbial

composition in suckling piglets in this study might depend on a very limited carry-over effect of
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proximal metabolic products into more distal gut segments assuming that the supplemental

AA are being absorbed in more proximal tissues.
5.1.3 Effect on microbiota and reasons for little effects in suckling piglets

To date, the investigation of Gln and Glu catabolism by microbiota of the porcine Sl has only
been conducted in vitro, and shows that jejunal and ileal bacteria appear to use 22 to 40% of
dietary GIn, as indicated by the incorporation of 2 mmol/L *C — labeled GiIn into proteins (Dai
et al. 2010). The catabolism of AA by bacteria is not yet sufficiently described, but it has been
shown that the metabolism of AA is dependent on the microbial community and differs between
gut segments (Dai et al. 2010; Dai et al. 2012b). Different utilization patterns of lysine, leucine,
valine, ornithine and serine by jejunal and ileal mixed microbiota have been observed by
adding different concentrations of GiIn (Dai et al. 2013). We could not observe an effect of GIn
on AA concentrations in digesta or tissue of the distal jejunum, indicated by similar
concentrations of the different AA (Schregel et al. 2022). Effects on the microbiota of the colon
digesta and on bacterial genera with an abundance below 1% were observed. Bacteria
belonging to the Clostridium and Peptostreptococcus family, known for their extensive role in
large intestine AA metabolism (Davila et al. 2013), were not greatly affected by GIn
supplementation in our study. This had no obvious effect on the metabolism of AA into SCFA,
which was reported in a previous study (Dai et al. 2011). It should be mentioned that all GIn
and Ala supplementation groups in this study had the possibility to constantly suckle the dam.
Milk GIn and Glu have been determined in the first 3 weeks of lactation. Concentrations of free
GIn were 0.02-0.05 g/l milk, protein-bound GIn 11.0 — 7.24 g/l milk, free Glu 0.02-0.06 g/I milk
and protein-bound Glu 13.8-5.54 g/I milk, were quite high in sow milk (Wu et al. 2011b). In
total, the sum of GIn and Glu provided up to 20% of the total protein-bound AA in sow colostrum
and milk (Wu et al. 2011b). To date the level of GIn and Glu in practical diets for weaned piglets
is not analyzed, but it can be assumed from analyses measuring the content of total AA in
different feed ingredients, that diets for weaned piglets have a similar or even higher content
of total (free and protein bound) GIn plus Glu than sow milk. Animal and plant ingredients have
a Glu plus GIn content, which makes up to 10 — 32% of total protein (Li et al. 2011). It is known
that the high abundance of GIn in sow milk is an important factor for the growth and maturation
of the piglet SI (Wu et al. 1998). Glutamine is converted to Glu and ammonia in the
mitochondria of enterocytes by the phosphate-dependent GLS first (Blachier et al. 1999).
Glutamate can then either be metabolized inside the mitochondria or exported to the cytosol.
There, the transamination to alpha-ketoglutarate takes places, before it is used inside the
mitochondria in the Krebs cycle (Duee et al. 1995). However, it has been shown, that if GIn

and Glu are available for isolated pig enterocytes at the same time, the mitochondrial GLS
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activity can be inhibited by Glu (Blachier et al. 1999), leading to a production of other functional
AA like aspartate (Blachier et al. 1999), Ala, proline (Wu et al. 2011a), ornithine (Blachier et al.
1992) and citrulline (Wu et al. 1994b). Next to the high abundance of AA in sow milk, supporting
the conversion into other important AA in the pig intestine, it should be mentioned, that sow
milk includes a wide range of other bioactive factors, such as caseins, whey proteins, proteins
associated with milk fat membranes, immunoglobulins, hormones, growth factors, enzymes
and others (Theil and Hurley 2016). There is a natural drop in protein content of sow milk from
approximately 7% at day two of lactation to reach a plateau of 5% during the rest of lactation
(Hansen et al. 2012). This is related to the higher concentration of immunoglobulins and
bioactive factors in colostrum compared to mature milk. The milk protein content is usually not
affected by dietary treatment, because even in cases of malnutrition the sow mobilizes body
reserves to maintain milk production and protein content (Theil and Hurley 2016). Therefore,
possible beneficial effects of GIn supplementation might be diminished by an adequate milk
intake. Not to forget the fact that the treatment of the control group supplemented with an
isonitrogenous amount of Ala might have minimised differences as well. Alanine is a
nitrogenous product of the intestinal catabolism of GIn (Windmueller 1982) and is regarded as
an energy substrate on its own, as transamination of Ala produces pyruvate, which can be
used as an energy source, yielding 13.7 — 18.3 kJ/g metabolizable energy depending on the
concentration of urine nitrogen (May and Hill 1990). In addition, it must be mentioned that it
has been shown that GIn may have beneficial effects under stressful conditions. This has
been shown in pigs during infection and weaning studies (Wu et al. 1996b; Haynes et al.
2009; Stavrou et al. 2018; He et al. 2019). It also has to be considered that piglets in our
study had a sufficient milk intake (Li et al. 2022), which can be different on the farm, with
bigger litters, where LBW piglets get displaced from the teats by bigger littermates (Huting
et al. 2021). A GIn supplementation might also have beneficial effects in these cases
resulting in starvation of LBW suckling piglets followed by local gut inflammation, but this
has not been studied before. Furthermore, studies in endotoxemia and sepsis models
in other species have described the depletion of GIn results in impaired body homeostasis
and the onset of disease (Kao et al. 2013; De Oliveira et al. 2014). Similar pathways can be
expected in weaned piglets, who have a reduced feed intake in the first weeks and the GIn
rich sow milk is not available for them anymore (Wu et al. 1996b). For this reason, it can be
argued that selecting LBW piglets or the supplementation 3 x times daily mimic a stressful
event. But as stated before, as long as the piglets survive the first day and have free
access to GIn rich sow milk this might not have the same effect as after weaning or during
an infection. It was shown that “drenching” is not a stressful event for piglets (Van Tichelen
et al. 2022), as long as it is performed in the farrowing pen, like it was done in our study.
A question which should be discussed is: are suckling piglets capable of using the surplus

supplemental GIn in addition to the GIn taken up by sow milk? In the literature it is described
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that the enzymatic activity for metabolizing GIn in the gut of suckling is less developed than
in weaned piglets (Madej et al. 1999). Although beneficial effects of supplemental Gin
to weaned piglets have been described, over supplementation to suckling piglets has
also been reported. For example, by supplementing 1 g Gin’kg BW two times daily, weight
gain was reduced by 19% in 7 — 21-d old suckling piglets (Haynes et al. 2009).
Regarding these points, a sufficient dosage of GIn for the supplementation to
suckling piglets still needs to be determined and it might be, that there is no need for a
supplementation, as long as suckling piglets are healthy and have access to adequate

amounts of milk.

5.2 Impact of Birthweight
5.2.1 Influence on morphological characteristics

Only minor effects of BiW were detected on parameters investigated in both studies comparing
LBW and NBW. As mentioned, it could be related to the relatively high BiW (0.8 — 1.2 kg) of
LBW piglets selected in this study. Nevertheless, these piglets are defined as LBW piglets
according to the definition of (Cooper 1975). In general, the BiW range of LBW piglets in
different studies varies (0.59 kg - < 1.0 kg) (Xu et al. 1994b; Morise et al. 2008; Huygelen et
al. 2015; Chen et al. 2021b). Morphological or growth characteristics and gene expression
differences have mostly been reported when using very low BiW piglets (Xu et al. 1994b) or
LBW piglets with a BiW around 0.8 kg (Chen et al. 2021b). In contrast, Wang et al. (2016) and
Wiyaporn et al. (2013) have reported no differences in morphological characteristics and gene
expression of jejunum between LBW and NBW piglets. In addition, no major differences in the
morphological development of the colon between piglets influenced by IUGR and NBW
suckling piglets at 5 days of age or earlier, have been observed (D'inca et al. 2010a; D'inca et
al. 2010c). To date, these are the only studies comparing morphometric development of the
GIT between LBW and NBW GIT, indicating a paucity of information in this field. The selection
of LBW piglets in the different studies, indicates the difficultly in keeping them alive. The study
by Feldpausch et al. (2019) demonstrates that nearly 100% of piglets with a BiW of 0.5-0.6 kg
die before weaning. Therefore, if the LBW piglets survive the first days of life and take up sow
milk it might be that existing differences in morphological characteristics, tissue proliferation
and gene expression diminish, as reviewed by Everaert et al. (2017). Supporting this
statement, different studies (Xu et al. 1994b; Wang et al. 2008; Chen et al. 2021b) found
differences in gene expression and morphologic characteristics of jejunum between LBW and
NBW piglets right at birth but not later during the suckling period. However, other studies could

not detect differences in morphological development of the gut and gene expression of jejunum
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between LBW and NBW piglets (Wiyaporn et al. 2013; Huygelen et al. 2015; Thongsong et al.
2019), thus supporting the findings of our study. Nevertheless, it has to be noticed that the
studies with and without differences in morphological development and gene expression of
jejunum used pigs with different genetic (Wiyaporn et al. 2013; Huygelen et al. 2015;

Thongsong et al. 2019; Chen et al. 2021b), which could have an influence on the results.

5.2.2 Effects on immune cells

The differences observed in CD3" IEL and CD3" lamina propria lymphocytes of colonic tissue
but not in jejunal tissue between LBW and NBW piglets is not clear. One explanation could be
that the jejunum adapts faster after birth, whereas the development of the colon is slower than
that of the SI (Mccance 1974).The jejunum is very permeable right after birth and has been
shown to host more IEL than the large intestine. The greater surface area of the Sl, created
by the villi and only having a relatively liquid mucus layer, whereas the colon has no villi and
more firm mucus layers, may lead to higher numbers of IEL and faster immune development
(Wiarda et al. 2020). Another reason may be that the Sl is exposed more to luminal contents
than the large intestine, leading to less IEL in the large intestine. Also, the large intestine as
the fermentation chamber is dependent on a symbiotic relationship with the microbes.
Tolerating the beneficial bacteria, but still regulating them, might result in a lower number of
IEL in the colon (Wiarda et al. 2020). The higher number of CD3* cells in jejunum might lead
to no detectable differences in CD3* IEL in our study. However it is reported that LBW piglets
(1.12 kg) have a higher amount of CD4*CD8" T-cells and dendritic cells in blood and
mesenteric lymph nodes and a lower number of blood cytotoxic T — cells at 16 days of age
than NBW piglets (1.81 kg) (Verso et al. 2018). The flow cytometric investigation of these data
is not comparable with the quantitative immunohistomorphometric method we used in our
study. To the best of our knowledge there is no published studies investigating colonic
immunological cell development at this early time point of life. Another reason could be the fact
that we compared all LBW piglets supplemented with GIn or Ala against all NBW piglets in the
study investigating the colon, because of little effects of supplementation and BiW. A higher
number of investigated piglets might have led to a difference here. Feed intake differences
between LBW and NBW piglets might also play a role in developing an immune response. Sow
milk is highly digestible, leading to only small amounts of minimally- or un-digested substances
reaching the colon (Lzerke and Hedemann 2012), which might also influence the
immunological development of the colon. Normal birthweight pigs are more vital and therefore

it can be expected that they take up more spilled feed and sow’s faeces (Sansom and Gleed
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1981). Thus, the intake of a small amounts of solid feed might lead to an altered colonic

immune cell development.

5.2.3 Influence on biogenic amines

A finding of our study, regarding the effect of Gin in the colon, which might support the
immunological development is, that we measured a higher concentration of total biogenic
amines, cadaverine and tyramine in colon digesta of NBW suckling piglets. Biogenic amines
are bacterial metabolites, produced by decarboxylation of AA. Cadaverine is mainly derived
from lysine and source of the monoamine tyramine is mainly exogenous trough the ingestion
of feed which is rich in tyrosine degrading bacteria like Enterococcus and Lactobacillus spp.,
leading to the accumulation of tyramine (Fan et al. 2017). Cadaverine is expected to regulate
an adaptive response to acidic conditions using in vitro cell cultures by modulating outer
membrane permeability (Samartzidou and Delcour 1999). Changes in low abundant bacteria
with an abundance below 1 % might also explain why differences in SCFA concentration in
digesta of the colon were not seen between LBW and NBW piglets. Only bacteria with a relative

high abundance contribute in the production of bacterial metabolites to a bigger extent.

5.2.4 Influence of birthweight on microbial development

Previously it has been described, that the microbiota of the colon and the faeces of LBW (0.88
kg) suckling piglets differs from the microbiota of NBW (1.43 kg) suckling piglets (Li et al. 2018;
Li et al. 2019). Studies comparing the microbiota of LBW and NBW suckling piglets in the colon
are scarce. To the best of our knowledge the study of (Li et al. 2019) is the only one comparing
the colonic microbiota of LBW and NBW piglets, like it was done in our study. We could neither
find the same pattern of microbial changes as (Li et al. 2019) in colon nor as (Li et al. 2018;
Gaukroger et al. 2020) in faeces of LBW compared to NBW piglets. But interestingly in these
studies the majority of changes in microbial abundance between LBW and NBW suckling
piglets was observed in the low abundant bacterial families. The different observations might
be also partly explained by the different feeding regime between our study and the previous
studies. In the study by (Li et al. 2018; Li et al. 2019) piglets were offered a solid starter feed
from 3 to 5 days after birth, which might be partly responsible for different microbial
abundances in the colon digesta. Nevertheless, one main finding on phylum level is similar,
which reveals an association of a certain microbial pattern of LBW or NBW. Low birthweight
piglets seem to have a lower abundance of Firmicutes and a relatively higher abundance of

Bacteroidetes (Li et al. 2018; Li et al. 2019). With regards to humans this finding is in line with
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literature, because it is reported that the Firmicutes to Bacteroidetes ratio is higher in obese
and lower in lean infants (Bervoets et al. 2013). Since the Firmicutes to Bacteroidetes ratio is
also higher in obese minipigs (Pedersen et al. 2013), a lower abundance of Firmicutes and a
higher abundance of Bacteroidetes might be associated with a lower BW of piglets . Other than
Li et al. (2019) in ileum content of LBW the observation of higher abundances of Alistipes in
colon content of LBW piglets in our study might be closer to what is reported in literature,
describing an association of LBW and fat accumulation in the body of pigs (Morise et al. 2008).
The genus Alistipes seems to involved in the lipid metabolism (Radka et al. 2020), and has
been shown to have beneficial effects in humans (Parker et al. 2020). Together with
observations of a higher back fat mass and intramuscular fat accumulation (Tang et al. 2020),
also a higher lean body mass in pigs (Chen et al. 2021a), was associated with the bacterial
genus Alistipes. All in all, the influence of BiW on the microbiota of the colon needs further

research.

5.3 Impact of Age
5.3.1 Morphological characteristics, immune cells and goblet cells affected by age

In the literature a similar rapid morphological development of the jejunum (Hampson 1986;
Adeola and King 2006) and the colon (Qi et al. 2021) of suckling piglets as observed in our
study is described. An increasing villus height and crypt depth in jejunum and increasing crypt
depth in colon are indicators of an expanding mucosal absorptive surface. The increasing crypt
depth, as an indicator of crypt cell proliferation, which starts at the bottom of the crypts, leads
to deeper crypts and elongation of villi in the SI (Hampson 1986). Nevertheless, contrary to
our study it is also reported that the villus height in jejunum decreases during the first two
weeks of life in suckling piglets (Van Ginneken et al. 2002; Huygelen et al. 2015). Different
feed, microbial development and gut segments (Umesaki et al. 1995; Van Ginneken et al.
2002; Al Masri et al. 2015) could explain the different observations. In the colon it is also known,
that development of the microbiota influences crypt depth. For example, germfree mice had a
lower crypt depth than in colonized mice (Umesaki et al. 1995). A decrease in the abundance
of goblet cells in crypts of the jejunum and the colon during the first two weeks of life in suckling
piglets was observed in our studies. Since goblet cells produce mucins which act as diffusion
barrier and also have protective function against microorganisms (Pelaseyed et al. 2014), it
could be, that their abundance is changed due to a changing bacterial composition in digesta
or an immune system maturation (Forder et al. 2007). Moreover, it was shown, that a balance
between major abundant microorganisms and Bacteroides ssp influence mucus production

and led to reduced numbers of neutral and mixed mucins (Wrzosek et al. 2013). In colonic
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tissue the same decrease in the number of goblet cells was described in suckling piglets from
0 to 7 days of age (Arnaud et al. 2020). Even though no change in CD3* IEL was observed in
the jejunum in our study, the increase of CD3* IEL and lamina propria CD3" cells in colon of
our study and the appearance of IgA positive cells might indicate the maturation of the immune
system. However, it is not totally clear which number of CD3" cells is the healthy status, but it
is known that a suitable density of CD3" IEL’s supports epithelial barrier function (Van Kaer
and Olivares-Villagédmez 2018). No identification of IgA positive B-cells in the lamina propria
of 5 day old piglets, but at 12 days of age, mostly in the lamina propria of jejunum and colon,
is in line with the literature (Rothkotter et al. 1991). IgA positive B-cells are play a part in the
innate immune response and it is known that they are affected by age (Rothkotter et al. 1991),

composition of the microbiota (Collinder et al. 2002) and diet (Hedemann et al. 2006).
5.3.2 Effects on abundance of amino acids

Interestingly we found that certain jejunal free AA, protein bound AA and AA metabolites
changed in concentration over time. The decrease in jejunal AA concentrations may be due to
very young animal’s having the highest AA requirements and that AA absorption capacity
decreases later in life (Wang et al. 2018). The transport systems in the intestine seem to adapt
to changes of dietary intake and AA requirements, depending also on the regulation of the
ontogenic development (Buddington et al. 2001). But the overall knowledge about the whole
process of AA absorption in the intestine of piglets during the suckling phase is still scarce.
Here again the microbiota (Arnaud et al. 2020), structural and functional changes in cells or in
absorption (Wang et al. 2018), could be responsible. We could also show a decrease in DNA
concentration in the jejunal tissue in suckling piglets from 5 to 12 days of age. This is an
indicator of a lower cell number per mg of jejunal tissue and goes in line with the findings of
lower protein, RNA, free AA and protein-bound AA. However, this was observed for the first
time, and is possibly indicating a rise in apoptosis, after enhanced mitosis and reduced
apoptosis at birth (Godlewski et al. 2005).

5.3.3 Alterations in bacterial metabolites

In this study, only the microbiota of the colon were investigated, assumptions and correlation
to results possibly affected by microbial changes cannot be made for the jejunum. Changes in
biogenic amines in colonic digesta, which are products of AA decarboxylation by bacteria (Fan
et al. 2017), could be related to an increasing richness of bacteria in colon digesta or
exogenous intake of materials containing biogenic amines (Girdhar et al. 2006; Van Zyl et al.
2015). However the decrease in concentration of spermidine could also be linked to its similar

function to spermine (He et al. 2015), which has been shown to regulate mucosal repair and
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intestinal health in rats (Wang and Johnson 1992). But a decrease of spermidine could be also
linked to the increase of putrescine which is a precursor of spermidine (Gupta et al. 2009). For
the production of spermidine, the enzyme spermidine synthetase is necessary (Gupta et al.
2009), which could be reduced or not activated at this early point of life. Putrescine is known
to be an additional source of energy for the intestine because it is also a precursor of succinate
(Desury et al. 2002). Additionally it is reported that exogenous dietary putrescine protects the
intestinal mucosa (Girdhar et al. 2006). In the colon digesta of suckling piglets the increase of
tyramine can be also dependent on diets rich in tyramine or synthesis by bacteria in the GIT
(Van Zyl et al. 2015). Nevertheless, next to the positive effects of biogenic amines the
concentration dependent possibly toxicity should not be neglected. For example, in weaned
piglets increased production of biogenic amines, by bacterial fermentation of precaecally
undigestible protein, is leads to diarrhea (Kozak et al. 2015). The same mechanism could also
explain the higher concentrations of biogenic amines in digesta of colon of our study. These

concentrations did not lead clinical signs of diarrhea.
5.3.4 Influence on microbial development

The general development of the core microbiota, mainly Firmicutes and Bacteroidetes, in
suckling piglets is also pointed out in other studies (Li et al. 2018; Li et al. 2019; Arnaud et al.
2020). Moreover, since the microbial mass in the intestine increases with age, it makes sense
that there is an increase in bacterial diversity. We observed an age related increase in bacteria,
which were less abundant in digesta of the colon at 5 days of age. The bacterial genus
unknown Muribaculaceae, having no clear functional role other than the degradation of
carbohydrates, were within the most abundant bacteria at 5 days and declined at 12 days of
age. As the name of the bacterial genus suggests, most studies regarding this bacteria have
been conducted in mice and rats (Lagkouvardos et al. 2019). Muribaculaceae spp. is
considered to be the major bacterial family in the gut of healthy mice (Nagpal et al. 2018).
Thus, it cannot be excluded, that environmental factors, like contamination in the stable and
stable hygiene, lead to higher abundances of Muribaculaceae. Comparable to other studies,
increasing abundances of bacteria belonging to the Ruminococcaceae family were determined
(Li et al. 2018; Li et al. 2019), though. Whether there is a relationship to SCFA production due
to fermentation of bioactive factors in sow’s milk, or if other bacteria lead to the increase of
Ruminococcaceae, needs further clarification. However, the knowledge so far is, that bacteria
belonging to the Ruminococcaceae family ferment dietary fiber and build a dominant part of
the colonic microbiota in pigs (Gaukroger et al. 2020). The ontogenetic development observed
in the study of the jejunum and colon of suckling piglets, reveal a physiological gut

development, which is in line with data from the literature. Nevertheless, it should be stated,
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that the whole physiological development process in neonates is majorly dependent on
sufficient and adequate quality milk intake, supplementation of other feeds and the

environment (Everaert et al. 2017).

5.4 Options for future studies

Future in vivo studies investigating the effect of GIn supplementation in piglets are necessary
and might concentrate more on the effect of a supplementation to underweight piglets right at
birth or in stress conditions such as starvation or weaning. According to the literature, under
stressful conditions the most promising effects were observed. Next to adding an
isonitrogenous supplementation group with Ala, it should be considered to add an additional
negative control group, to see if possible positive effects of GIn might be also diminished by
using Ala as a control group. In general, the whole AA metabolism in neonates and the
influence of sows milk, with its bioactive factors and other dietary and environmental factors,
like the intake of faeces of sows and littermates, spilled feed, bedding material and general
housing conditions, need further evaluation. Further in vivo and ex vivo experiments should
consider the GIn effects in more proximal parts of the GIT, the influence of GIn on
immunological development in proximal parts of the intestine using quantitative analyses such
as flow cytometry, and the production and influence of biogenic amines for neonates as well.
The dosage and the biochemical form of GIn, and the content of GIn in starter and weaner
feed, best for supplementation should also be tested before starting new experiments.
Moreover, the whole mechanism behind changes in bacterial abundances and their
metabolites should be elucidated. This should also include minor abundant bacterial species

as their effect is often neglected.
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6 Conclusion

The results of this study revealed a minor impact of Gln supplementation and BiW on the
measured jejunal and colonic traits in male suckling piglets, whereas most of the observed
effects were age dependent. The findings suggest that Gln supplementation during the first
two weeks of life may not be an appropriate way to stimulate the development of the jejunum
and colon during the suckling period. However, reviewing the literature, GIn supplementation
might be beneficial under more challenging conditions. Further research should focus on the
influence of more proximal parts of the GIT, changes in microbial abundances and their
metabolites in the digesta and mucosa of these proximal parts, starting with a GIn
supplementation right at birth using LBW piglets. Alternatively, this should be done in weaning

piglets, where already positive effects of Gln supplementation were reported.
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7 Summary

Summary of the Thesis
The impact of glutamine supplementation on morphological gut development, immune
cells, tissue and digesta amino acid profiles, microbiota and bacterial metabolites in

low birthweight and normal birthweight male suckling piglets

Due to the breeding of hyperprolific sows with large litters size, the number of low birthweight
piglets (LBW) increased in the last decade. Low birthweight piglets show a higher preweaning
mortality and reduced growth performance. The high mortality cannot be accepted regarding
animal welfare and the reduced growth performance leads to economic losses. Promising
results of glutamine (GIn) supplementation to piglets were observed at weaning and under
stressful conditions, such as infections, leading to better gut development and growth. An
important aspect of the non-essential amino acid GIn is, the function as an energy fuel for

enterocytes and immune cells of the intestine.

The objective of this study was to investigate the impact of GIn supplementation on gut and
immune cell development, amino acid absorption, the microbiota and their metabolites in LBW

male suckling piglets.

To test the effect of Gln on male suckling piglets an animal trial was performed. LBW (0.8-1.2
kg) and normal birthweight (NBW) (1.4-1.8 kg) male littermates born to gilts were paired at
birth. The piglets received an oral supplementation of either 1 g GIn or an isonitrogenous
amount of alanine (Ala) (1.22 g/kg BW) until 12 days of age. In total four different groups were
studied: LBW+GIn; NBW+ Gin; LBW+Ala; NBW+Ala (n = 12/age group). The piglets had free
access to suckle the dam throughout the study. At 5 and 12 days of life (n = 96) piglets were
euthanized. Tissue and digesta of the jejunum and colon were snap frozen in liquid nitrogen

or fixed in formalin for subsequent analysis.

Interestingly the supplementation of GIn led to no differences in most of the investigated
parameters in the jejunum. Glutamine supplementation had no effect on jejunal morphology,
development, tissue and digesta amino acid profiles and mRNA abundance of genes involved
in amino acid transport, metabolism, glutathione synthesis in LBW piglets compared Ala
supplementation and birthweight (BiW) at 5 and 12 days of age. Only the jejunal tissue Gin
concentration was higher in NBW piglets supplemented with GIn compared to Ala at 5 days of

age. The BiW comparisons revealed no difference between LBW and NBW piglets. However,
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age seemed to have the biggest effect, because morphological characteristics, immune cells,
the ratio of jejunal RNA to DNA and the concentration DNA, protein and RNA, as well as amino

acid profiles changed from 5 compared to 12 days in suckling piglets.

In the colon we observed similar effects. Concentrations of biogenic amines were lower and
the number of CD3" intraepithelial lymphocytes (IEL) were higher in Gln compared to Ala
supplemented piglets. Low birthweight of piglets had minor effects on the microbial
composition and led to a lower concentration of some biogenic amines and IEL. In contrast to
GIn supplementation and BiW the factor age had a major influence on histological and

microbial characteristics in male suckling piglets.

In conclusion, the oral supplementation of GIn and the BiW of piglets had only minor effects
on the observed parameters in the distal small intestine and the colon of suckling piglets,
whereas age had a major impact. This indicates, that the intestinal development is mainly

driven by ontogenetic factors during the suckling period of piglets.
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8 Zusammenfassung

Zusammenfassung der Doktorarbeit

Die Auswirkungen einer Glutaminsupplementierung auf morphologische Entwicklung
des Darms, Immunzellen, Aminosaureprofile von Gewebe und Digesta, die Mikrobiota
und die bakteriellen Stoffwechselprodukte bei mannlichen Saugferkeln mit niedrigem

und normalem Geburtsgewicht

Aufgrund der Verflgbarkeit von fruchtbaren Sauen mit gro3en Wiirfen hat die Zahl der Ferkel
mit niedrigem Geburtsgewicht (LBW) im letzten Jahrzehnt zugenommen. Ferkel mit niedrigem
Geburtsgewicht weisen eine hoéhere Sterblichkeit vor dem Absetzen und ein geringeres
Wachstum auf. Die hohe Sterblichkeit ist aus Sicht des Tierschutzes nicht akzeptabel, und die
verringerte  Wachstumsleistung fuhrt zu wirtschaftlichen Verlusten. Es wurden
vielversprechende Ergebnisse bei der Gabe von Glutamin (GIn) an Ferkel zum Zeitpunkt des
Absetzens und unter Stressbedingungen, wie zum Beispiel bei Infektionen, beobachtet, die zu
einer besseren Darmentwicklung und einem héheren Wachstum fihrten. Ein wichtiger Aspekt
der nicht-essentiellen Aminosaure Glutamin ist, dass sie als Energietrager fur Enterozyten und

Immunzellen des Darms von Bedeutung ist.

Ziel dieser Studie war es, die Auswirkungen einer GIn-Supplementierung auf die Entwicklung
des Darms und von Immunzellen, die Aminosaureabsorption und die intestinale Mikrobiota

sowie deren Metaboliten bei mannlichen LBW Saugferkeln zu untersuchen.

Um die Wirkung von GIn auf mannliche Saugferkel zu testen, wurde ein Futterungsversuch
durchgeflhrt. Fir den Versuch wurden mannliche Wurfgeschwister mit LBW (0,8-1,2 kg) und
normalem Geburtsgewicht (NBW) (1,4-1,8), die von Jungsauen geboren wurden, bei der
Geburt gepaart. Die Ferkel erhielten bis zum Alter von 12 Tagen entweder 1 g GIn oder eine
isonitrogene Menge an Alanin (Ala) (1,22 g/kg Kdorpergewicht) oral verabreicht. Insgesamt
wurden vier verschiedene Gruppen untersucht: LBW+GIn; NBW+ GIn; LBW+Ala; NBW+Ala (n
= 12/Altersgruppe). Die Ferkel hatten wahrend der gesamten Studie freien Zugang zum
Saugen des Muttertiers. Am 5. und 12. Lebenstag (n = 96) wurden die Ferkel zur
Probenentnahme euthanasiert. Das Gewebe und die Digesta des Jejunums und des Kolons
wurden fiur die anschlielende Analyse in flissigem Stickstoff eingefroren oder in Formalin

fixiert.
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Interessanterweise flhrte die Supplementierung von GIn zu keinen Unterschieden bei den
meisten der untersuchten Parameter im Jejunum. Glutamin hatte keinen Einfluss auf die
Morphologie des Jejunums, die Entwicklung der Immunzellen und die Aminosaureprofile im
Gewebe und im Verdauungstrakt bei LBW Ferkeln im Alter von 5 und 12 Tagen. Dies war auch
fur die mMRNA-Expression von Genen, die am Aminosauretransport, dem Stoffwechsel und der
Glutathion Synthese beteiligt sind zu beobachten. Nur die GIn-Konzentration im Gewebe des
Jejunums war bei NBW-Ferkeln mit GIn-Supplementierung im Vergleich zu Ala im Alter von 5
Tagen hoher. Es wurden keine Einflisse des Geburtsgewichts auf die untersuchten Parameter
nachgewiesen. Das Alter schien jedoch die gréfte Auswirkung zu haben, da sich die
morphologische Entwicklung, die Immunzellen, das Verhaltnis von jejunaler RNA zu DNA und
die Konzentration von DNA, Protein und RNA sowie die Aminosaureprofile bei Saugferkeln im

Alter von 5 Tagen im Vergleich zu 12 Tagen veranderten.

Im Dickdarm beobachteten wir ahnliche Auswirkungen. Die Konzentrationen biogener Amine
waren niedriger und die Zahl der CD3* intraepithelialen Lymphozyten (IEL) bei Ferkeln nach
Gabe von GIn im Vergleich zu Ferkeln, die Ala erhielten, hdher. Ein niedriges Geburtsgewicht
der Ferkel hatte geringfligige Auswirkungen auf die mikrobielle Zusammensetzung und flihrte
zu einer geringeren Konzentration einiger biogener Amine und geringerer Anzahl an IEL. Im
Gegensatz zur GIn-Supplementierung und zum Geburtsgewicht hatte der Faktor Alter einen
grolkeren Einfluss auf die histologischen und mikrobiellen Merkmale bei mannlichen

Saugferkeln.

Zusammenfassend lasst sich sagen, dass die orale Supplementation von GIn und das
Geburtsgewicht der Ferkel nur geringe Auswirkungen auf die beobachteten Parameter im
distalen Dunndarm und im Dickdarm der Saugferkel hatten, wahrend das Alter einen groRen
Einfluss spielte. Dies deutet darauf hin, dass die Entwicklung des Darms hauptsachlich durch

ontogenetische Faktoren wahrend der Saugezeit der Ferkel bestimmt wird.
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