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Abstract: Background: ceramic veneers, crowns, and other types of restorations are often made
using either the press heating technique or the subtractive method. The advent of lithography-based
ceramic manufacturing (LCM) allows for the manufacturing of such restorations in an additive way.
Methods: this concept paper describes the first clinical experience in the application of LCM lithium
disilicate restorations in vivo for the manufacturing of classic veneers for a patient with severe tooth
wear. The applied restorations were analyzed in terms of their marginal fit in metrology software
(Geomagic Control X, 3D Systems). Furthermore, the feasibility of 3D printing of non-prep veneers
with a 0.1 mm thickness was tested. Results: the classic LCM lithium disilicate veneers were tried
in the mouth cavity and demonstrated adequate esthetics and a sufficient marginal fit of 100 µm.
Furthermore, the non-prep veneers with a 0.1 mm thickness could be successfully printed using
LCM technology and also demonstrated an adequate fit on the model in vitro. Conclusions: the
described technical approach of lithium disilicate 3D printing with LCM technology may pose a valid
alternative to subtractive and analog manufacturing and be a game-changing option with the use of
additive chairside ceramic fabrication.

Keywords: vat polymerization; 3D printing; digital workflow; laminate veneers; non-prep veneers;
dental ceramics

1. Introduction

Dental glass-ceramic, especially lithium disilicate, is widely used for the manufactur-
ing of crowns, overlays, and veneers in the esthetically relevant region as it overcomes
the limitations of metal-ceramic restorations [1]. The advent of digitization and computer-
aided design and manufacturing (CAD/CAM) in the dental field provided new technical
and clinical protocols for the design and manufacturing of ceramic restorations [2]. Even
though there is not sufficient evidence on the superior performance of the digital workflow
in comparison to conventional approaches of dental ceramics fabrication [3], it has been
widely applied in the clinical practice in recent years [4,5]. Whereas the semi-digital work-
flow allows for the additive manufacturing of wax restoration prototypes, the fully digital
workflow allows for the computer-aided manufacturing of the final ceramic restoration
using milling technologies [6]. However, subtractive manufacturing does not provide the
absolute freedom in its design as there may be some applications that cannot be achieved
by milling, due to being unattainable for a milling instrument [7]. In such cases, additive
manufacturing, with its layer-by-layer working principle, surpasses the subtractive one.
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Some pilot studies proved the feasibility of the fabrication of dental ceramics in an addi-
tive approach, such as yttria-stabilized zirconia (ZrO2), alumina (Al2O3), and tricalcium
phosphate (TCP) [8,9]. The limitations of such manufacturing processes relate mostly
to the ceramics’ post-processing, which significantly extends the average manufacturing
time, making it less attractive for the clinical practice. In contrast, as demonstrated at
the Technische Universität Wien (TU Wien), lithium disilicate may qualify for the addi-
tive chairside clinical application as it utilizes a more rapid stereolithographic ceramic
manufacturing (LCM) process [10]. Baumgartner et al. reported that lithium disilicate
restorations manufactured with LCM showed adequate printing accuracy and mechanical
properties and can be manufactured within one day [11]. However, the literature lacks any
clinical reports on the application of additively manufactured ceramic restauration in the
in vivo environment.

The clinical application of ultra-thin laminate veneers and occlusal veneers may pose
a valid alternative to conventional crowns as they can also provide a sufficient bearing
capacity [12,13]. This can be attributed to the fact that no preparation or minimal prepara-
tion allows for direct bonding to the enamel, providing a greater bonding strength [14]. As
subtractive manufacturing of thin ceramic parts may be prone to fracture, it may not be
the best option for the manufacturing of laminate veneers and non-prep veneers, which
often do not exceed a thickness of 0.3 mm [15–17]. Therefore, such restorations are still
most commonly produced in an analogue workflow [18]. The LCM technology allows the
manufacturing of thin restorations from lithium disilicate in the span of 0.1–0.2 mm and
can, therefore, substitute the heat pressing technique.

The present clinical case demonstrates the preliminary experience with the clinical
application of lithium disilicate restorations in the anterior region produced by LCM.
Furthermore, a pilot trial was performed with the additive manufacturing of thin non-prep
veneers on a phantom model.

2. Materials and Methods
2.1. Clinical Presentation of Classic Venners

A 60-year-old female patient with severe wear in the whole dentition (Figure 1A) was
referred to the Department of Prosthodontics at the Charité University Hospital and re-
ceived long-term temporary composite restorations in the lower jaw for the reestablishment
of the vertical dimension of occlusion (VDO). She also gave her informed written consent
for the manufacturing of six lithium disilicate veneers in the anterior area using the LCM
technology. The six anterior teeth in the lower jaw were prepared with a 0.5 mm chamfer
in the vestibular and proximal areas (Figure 1B). The gingival retraction was performed
using the two-cord technique. An intraoral scanner (IOS), Trios 4 (3shape, Copenhagen,
Denmark), was used to capture the upper and lower jaws with the final VDO in the stan-
dard tessellation language (STL) format (Figure 1C). Two buccal scans were performed for
the bite registration.

Six veneers were designed in the CAD software (DentalCAD, version Galway, Exocad,
Darmstadt, Germany) and exported as STL data (Figure 2A). These were uploaded in the
data preparation software CeraFab Control (version 8, Lithoz, Vienna, Austria) and printed
with a CeraFab System S65 Medical (Lithoz, Vienna, Austria). The printer uses the principle
of vat photopolymerization with mask exposure, which is also known as DLP (digital
light processing). In conjunction with highly-filled ceramic suspensions of photocurable
resins, this process is called lithography-based ceramic manufacturing (LCM) and allows
the production of dense and precise ceramic products. Labial-placed support structures
were generated with the Software Deskartes 3D Data Expert (Deskartes Oy, Helsinki,
Finland) and loaded in the data preparation software of the printers alongside the STL of
the restorations (Table 1). After printing the LCM-printed lithium disilicate, restorations
were post-processed as follows. The green parts (still containing organic binder) were
cleaned from excess slurry with the CeraCleaning Station Ultra (Lithoz, Vienna, Austria)
with the proprietary cleaning fluid LithaSol 30 (Lithoz, Vienna, Austria). Subsequently, the
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restorations were placed in a furnace (L40, Nabertherm, Lilienthal, Germany) and heated
up to 430 ◦C, followed by a dwell time of 6.5 h. The final sintering was conducted within a
Programat CS3 (Ivoclar Vivadent GmbH, Ellwangen, Germany) at a temperature of 900 ◦C
with a dwell time of 1 sec. Finally, support structures were removed with a laboratory
handpiece (Perfecta 900, W & H, Bürmoos, Austria) (Figure 2B).
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Figure 1. (A) initial situation with severe wear; (B) preparation of six frontal teeth with chamfer in
the vestibular and proximal areas; (C) digital impression obtained with intraoral scanner (IOS).

Table 1. Printing parameters for lithography-based ceramic manufacturing on a CeraFab System S65
Medical for lithium disilicate anterior teeth veneers.

Ceramic material

Lithium disilicate generic color with 45 Vol%
solid loading and chemical composition based
on IPS e.max® Press LT (Ivoclar Vivadent AG,
Liechtenstein)

Layer height 25 µm

Number of layers 606

Layer time 36 s

Runtime for whole print run 6 h

Exposure intensity starting layers 200 mJ/cm2

Exposure intensity general layers 175 mJ/cm2

Lateral (XY) shrinking compensation 1.31

Build direction (Z) shrinking compensation 1.35

Z curing depth compensation Off

Z curing depth compensation layers 0

Contour offset 0 µm

Support structure thickness 380 µm

Vat type Ultra-High-Contrast (UHC) with CeraVat F

Cleaning fluid LithaSol 30

The post-processed restorations in a generic color were customized using an extrinsic
coloring set (Ivocolor, Ivoclar Vivadent, Ellwangen, Germany). The final restorations were
tested on the patient using try-in gel (Variolink Esthetic try-in-paste, Ivoclar Vivadent,
Ellwangen, Germany) (Figure 3).
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Figure 3. The LCM-manufactured lithium disilicate restorations in situ.

In order to assess the marginal adaptation on the dyes, all six restorations in situ were
scanned again with an IOS. Furthermore, the interior surface of each single restoration was
scanned with a laboratory scanner (D2000, 3 Shape, Copenhagen, Denmark). The single
scans of each restoration were matched with the scan of the same restorations in situ in
the metrical software (Geomagic Control X, 3D Systems, Morrisville, NC, USA) using the
best fit function (Figure 4A). The teeth preparation scan was also aligned with the scan of
restorations in situ (Figure 4B). The marginal and bottom adaptation of the LCM-printed
restorations were assessed according to the distance between the interior surface of each
restoration and preparation surface of the corresponding dye (Figure 4C).

Materials 2022, 15, x FOR PEER REVIEW 5 of 8 
 

 

 
Figure 4. (A) A scan of each single restoration (multicolor) with the interior surface matched with 
the scan of restorations in situ (blue); (B) scan of the restorations in situ (blue) matched with the scan 
of the preparation (red); (C) heat map of the distances between the interior surface of each LCM 
restoration and corresponding preparation surface, representing the bottom adaptation. 

The LCM-printed restoration was not cemented as the printed lithium disilicate had 
not yet received approval for definitive restorations, which is planned in the near future. 

2.2. Non-Prep Veneers 
A typodont model of simulated diastema in the upper jaw was scanned with an IOS. 

Two restorations were designed in DentalCAD software with a minimal thickness of 0.1 
mm (Figure 5A). The STL file of each restoration was sent to the CeraFab System S65 Med-
ical 3D printer and printed with lithium disilicate in the generic color analog to the classi-
cal prep veneers as described previously. The supporting structures were placed on the 
proximal surfaces. The printing time depended on the height of the restoration and the 
chosen layer time—in this case, the total printing time was around 5 h. After cleaning, 
debinding, and sintering, the supports were removed manually, as described above. The 
restorations were tried in the model (Figure 5B). 

 
Figure 5. (A) virtual design of non-prep veneers for diastema closure; (B) LCM-manufactured non-
prep veneers with the minimal thickness of 0.1 mm. 

3. Results 
The performed bottom adaptation analysis revealed distances of 100 µm on most of 

the preparation surfaces with areas of 150 µm on the peak of each dye. The adaptation 
distance showed a decreasing tendency towards the marginal area. Clinically, the LCM 
classic veneers demonstrated an adequate marginal seal, which was discovered optically 
and by probing. The LCM non-prep veneers were tried in the model and also demon-
strated an adequate marginal seal, which could be seen only optically. 

  

Figure 4. (A) A scan of each single restoration (multicolor) with the interior surface matched with the
scan of restorations in situ (blue); (B) scan of the restorations in situ (blue) matched with the scan
of the preparation (red); (C) heat map of the distances between the interior surface of each LCM
restoration and corresponding preparation surface, representing the bottom adaptation.
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The LCM-printed restoration was not cemented as the printed lithium disilicate had
not yet received approval for definitive restorations, which is planned in the near future.

2.2. Non-Prep Veneers

A typodont model of simulated diastema in the upper jaw was scanned with an IOS.
Two restorations were designed in DentalCAD software with a minimal thickness of 0.1 mm
(Figure 5A). The STL file of each restoration was sent to the CeraFab System S65 Medical 3D
printer and printed with lithium disilicate in the generic color analog to the classical prep
veneers as described previously. The supporting structures were placed on the proximal
surfaces. The printing time depended on the height of the restoration and the chosen layer
time—in this case, the total printing time was around 5 h. After cleaning, debinding, and
sintering, the supports were removed manually, as described above. The restorations were
tried in the model (Figure 5B).
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Figure 5. (A) virtual design of non-prep veneers for diastema closure; (B) LCM-manufactured
non-prep veneers with the minimal thickness of 0.1 mm.

3. Results

The performed bottom adaptation analysis revealed distances of 100 µm on most of
the preparation surfaces with areas of 150 µm on the peak of each dye. The adaptation
distance showed a decreasing tendency towards the marginal area. Clinically, the LCM
classic veneers demonstrated an adequate marginal seal, which was discovered optically
and by probing. The LCM non-prep veneers were tried in the model and also demonstrated
an adequate marginal seal, which could be seen only optically.

4. Discussion

The presented proof-of-concept case demonstrates 3D printing of classic and non-prep
veneers using LCM technology. This technology has previously been shown to produce
accurate parts with the maximum deviation of 50 µm to the STL-file [11]. The performed
bottom adaptation analysis revealed distances of 100 µm on most of the preparation surfaces
with areas of 150 µm on the peak of each dye. The adaptation distance showed a decreasing
tendency towards the marginal area. These parameters correlate with the accuracy of
heat-pressed and milled restorations [19]. The demonstrated marginal adaptation of LCM
veneers may be regarded as a clinical success [20]. The fact that examined restorations were
not cemented might not have negatively influenced their marginal fit [21]. The applied
method to evaluate the bottom adaptation may include the matching bias as the scanning
of each single restoration as well as the fitted restorations within the mouth cavity may be
prone to inaccuracies. For this reason, systematic research is needed to provide evidence
on the fit of LCM restorations.

The finding of this proof-of-concept clinical case coincides with the data obtained
by Baumgartner et al., showing the most dimensional changes in the middle of the LCM
restoration [11]. Schönherr et al. described the frame-like supporting structure to be optimal
for LCM and highlighted which areas of the restoration are most suitable for placement
of supporting structures [22]. However, these recommendations are sometimes hard to
follow in the case of minimally invasive restorations as the complex geometry of interior
and proximal surfaces may influence the placement of supporting structures. Further
optimization of the build angle for such fragile ceramic restoration may be investigated in
future research.
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With regards to production time, up to 48 pieces of the displayed diastema veneers
can be placed at once on a build platform of a CeraFab System S65 Medical (Figure 6).
The print run of a full platform takes a little less than 5 h, resulting in a printing time
per part of around 6 min. The post-processing for each part can be conducted in around
2 min, including the placement in the furnaces. The time needed for individualization and
coloring of the post-processed parts is not included as it highly depends on the skills of the
dental technician and the demands of the patient.
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The future perspective of additive manufacturing of lithium disilicate may also evolve
to multicolor 3D printing. This would be a game-changing feature as it would allow
omitting the individualization by the dental technician and would bring us one step closer
to full chairside lithium disilicate manufacturing.

With regards to the price of the final 3D printed lithium disilicate restoration, the cost
estimation is mostly based on the material price, the machine depreciation, and the costs
for post-processing manual labor.

The current proof-of-concept clinical case does not consider the mechanical and ad-
hesive properties of printed restorations. Thus, flexural and bonding strength should be
assessed in future research alongside the surface characterization of the LCM-manufactured
lithium disilicate. The demonstrated clinical and technical approaches also open new hori-
zons for in vivo testing of such additively manufactured ceramic restorations as soon as
this material, in combination with the printing technology, receives the approval for its
clinical application.

5. Conclusions

The current concept paper presents the first clinical experience with LCM-manufactured
classic veneers. Furthermore, it demonstrates the technical feasibility of additive man-
ufacturing of thin ceramic non-prep veneers. The described technology seems to be a
viable option for the chairside manufacturing of lithium disilicate restorations and may
pose a game-changing alternative to the subtractive and heat-pressing technologies in the
future. Aystematic research is needed in the future to provided evidence on the clinical
performance of LCM restorations.
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