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ABSTRACT

This review follows the research, development and clinical
applications of the photosensitizer 5,10,15,20-tetra(m-
hydroxyphenyl)chlorin (mTHPC, temoporfin) in photody-
namic (cancer) therapy (PDT) and other medical applica-
tions. Temoporfin is the active substance in the medicinal
product Foscan® authorized in the EU for the palliative
treatment of head and neck cancer. Chemistry, biochemistry
and pharmacology, as well as clinical and other applications
of temoporfin are addressed, including the extensive work
that has been done on formulation development including
liposomal formulations. The literature has been covered from
2009 to early 2022, thereby connecting it to the previous
extensive review on this photosensitizer published in this
journal [Senge, M. O. and J. C. Brandt (2011) Photochem.
Photobiol. 87, 1240-1296] which followed its way from initial
development to approval and clinical application.

INTRODUCTION

Slowly but surely photodynamic therapy (PDT) is becoming a
standard treatment modality in clinical practice. The basic prin-
ciple of PDT was established over a century ago by O. Raab,
H. v. Tappeiner et al. (1-3), later H. Kautsky, D. R. Snelling,
C. S. Foote et al. contributed to the understanding of the
underlying mechanism (4). Fundamentally, the light of a suit-
able wavelength is used to photoexcite a dye molecule (the
photosensitizer). After intersystem crossing, a longer-lived tri-
plet state of the dye molecule is formed allowing diffusion-
controlled interaction with neighboring molecules. The triplet
photosensitizer can then facilitate either an electron transfer
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(Type I) or energy transfer to oxygen (Type II) generating reac-
tive oxygen species (5,6). These result in various biological
effects, such as destruction of biomolecules, cell death, vascular
damage or vascular destruction and promotion of immune
responses (7-9). In a clinical setting, the ultimate goal of PDT
is to eradicate malignant cells and tissue (10), the promotion of
wound healing (11), use in cosmetics and dermatology (12,13)
and the treatment or prevention of bacterial and viral infections
(14-16). Emerging efforts are also targeted at using photosensi-
tizers in a more ‘materials oriented’ setting, e.g. for degradation
of pollutants and remediation (17).

All these interests and efforts have resulted in an almost expo-
nential growth in the available literature. Certainly, more than an
individual researcher can follow. If we take a simple look at the
occurrence of the term ‘photodynamic therapy’ in Clarivate’s
Web of Science database, the first mention in 1972 (18) was fol-
lowed by 100 publications in 1987, crossed the 1000 papers per
year in 2004, and, since 2020, now exceeds 4000 publications
per year. In part, this is driven by contemporary prolific publica-
tion practices but is also a result of continuous advances (19,20)
in developing new clinical photosensitizers (21-23), advances in
nanomedicine (24,25), new developments such as sonodynamic
therapy and other deep tissue activation methods (26-28),
increased awareness of PDT by clinical practitioners, and global
issues. Here we note the worsening situation regarding antibacte-
rial resistance (29), and the recent Covid-19 pandemic (30), both
with a resultant focus on new antimicrobials. In a sense, the lat-
ter brought the PDT community back to its roots; after all, the
very first large-scale clinical success of phototherapy by Finsen
(31) is probably due to antimicrobial PDT (32).

One way of making sense of the advances in the field is to
focus on a specific photosensitizer or ‘success story’ in PDT.
Despite all the developments, the number of photosensitizers in
clinical practice or trials is still limited (33,34). Historically,
haematoporphyrin derivative (Porfimer sodium, Photofrin®), the
first clinically approved PDT agent (5), d-aminolevulinic acid
(ALA, e.g. Levulan®) as the biosynthetic precursor of protopor-
phyrin (35), Verteporfin (‘benzoporphyrin derivative’, Visu-
dyne®) and its success in treating age-related macular
degeneration (36), and the established photochemotherapeutic
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Figure 1. Chemical formulae of 5,10,15,20-tetra(m-
hydroxyphenyl)porphyrins related to mTHPC: 1, the chlorin, a dihy-
droporphyrin, mTHPC; 2, the parent porphyrin, mTHPP; 3, the bacteri-
ochlorin, a tetrahydroporphyrin, mTHPBC.

PUVA therapy (37) are noted success stories. In terms of result-
ing from a more logical drug design development leading to clin-
ical use, temoporfin (Fig. 1, mTHPC, 5,10,15,20-tetrakis(3-
hydroxyphenylchlorin, 1)) still takes a unique position (38) and
thus can serve as an example of the state-of-the-art, ongoing
developments and limitations of PDT (39).

Developed by Bonnett almost 40 years ago (40) to create a
second-generation photosensitizer, this compound has the
advantage of being a well-characterized single molecule. Temo-
porfin is the active pharmaceutical ingredient in the medicinal
product Foscan® which is on the market in the EU for the
palliative treatment of head and neck cancer and since then is
in continuous clinical use. In the intervening years, it has
served as a test bed for many advances in third-generation
photosensitizer design. This is reflected in — again using Web
of Science (with the key words mTHPC, m-THPC, temoporfin,
Foscan) as a benchmark — about 900 publications since the
early 1990s (41). The number of annual publications is about
40 per year, a more manageable body of work than of PDT
as a whole.

The historical development of temoporfin and the related liter-
ature on its uses, developments and clinical applications up to
2010 was covered in a review by Senge and Brandt in this jour-
nal (42). In addition, a brief review covering the literature on
developments in formulation, chemical modifications and target-
ing strategies was published at the same time (43). The main
purpose of the present treatise is to survey the primary literature
since 2010 and close the gap with these earlier reviews. For ease
of access, we have maintained the structure and topical break-
down of the earlier paper (42).
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CHEMISTRY

The synthesis (40,44), standard modifications of the macrocycle
and the 3-hydroxyphenyl groups, and degradation reactions of
temoporfin were reviewed earlier (42,43). Here we focus on
recent developments in the chemical modification of mTHPC,
synthesis of related structures, and methodological advances with
related porphyrins. In chemical terms mTHPC 1 is derived by
the reduction of mTHPP 2 and can be further reduced to the bac-
teriochlorin mTHPBC 3 (Fig. 1). Overall, its synthesis involves
the  condensation of pyrrole  with  (protected)  3-
hydroxybenzaldehyde to the respective porphyrinogen, oxidation
to mTHPP and then reduction.

In a new development, the use of MnO, under microwave
conditions for the oxidation step gave a 2 in 30% yield (45).
The same authors also prepared the bacteriochlorin 3 from 1 via
Whitlock reduction using microwave conditions. This could then
be oxidized with MnO, to the chlorin 1 in ~90% yield. This
approach uses less solvents and is more facile; however, both the
reduction and oxidation steps yielded the respective chlorin and
porphyrin as by-products (10%). Mechanochemistry has also
been applied to the diimide reduction of porphyrins giving
mTHPC in 55% of mTHPP (46).

Chemical modifications of mTHPP and mTHPC

Next to the central core for metallation, only the B-pyrrole posi-
tions and 3-hydroxyphenyl groups lend themselves to functional-
ization reactions. With regard to the former, Wiehe and
coworkers presented an alternative approach towards 5,10,15,20-
tetrakis(3-hydroxyphenyl)chlorins, albeit requiring a total synthe-
sis approach (Fig. 2) (47). Using a method established by Cross-
ley’s group (48) they prepared the 3-methoxyphenyl diketone 4.
This compound could be disubstituted to the vic-dihydroxy chlo-
rin 5 using Grignard reagents. Demethylation with BBr; then
yielded the respective meso-3-hydroxyphenyl chlorin 6 (47). The
compounds exhibited absorption and photophysical properties
similar to mTHPC. While the compound with 3,5-di
(trifluoromethyl)phenyl residues exhibited a 50% higher singlet
oxygen quantum yield compared to temoporfin, its PDT activity
against HT29 cells was lower than the other compounds.

Naturally, there is more scope for functionalization of the
hydroxyphenyl groups. They can be used to attach targeting
groups, link the chromophore to carrier systems, or create
covalently linked nanomaterials. However, one has the problem
of having four reactive groups in the molecule, which, in the
case of monofunctionalization, gives rise to regioisomeric
mixtures.

To give only some examples for using standard substitution
reactions, Capobianco and coworkers reacted mTHPC with 4-
(bromomethyl)benzoic acid in the presence of NaH to yield a
mixture with 1 to 3 linkers units attached to temoporfin, most
likely via O-CH,-linkages (49). The modified chromophore was
then used to functionalize LiYF,Tm*>'/Yb®" upconverting
nanoparticles (UCNPs) via reaction with the carboxylic acid
groups to yield nanoparticles capable of inducing cell death with
980 nm irradiation. In another study, temoporfin mono-anhydride
conjugates, which additionally contained a disulfide linker, were
prepared to generate folate-conjugates (50).

In terms of synthetic methods, Rogers et al. (51) used Ste-
glich conditions to prepare mono- and tetrafunctionalized
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6

Figure 2. Synthesis of vic-dihydroxychlorins related to Temoporfin (46). Reagents and conditions: (a) RMgBr or Me;SiCF;/TBAF, THF, -45°C, 44—
53%; (b) BBr;, CH,Cl,, —50°C, 57-87%. R = hexyl, 3,5.bis(trifluoromethyl) phenyl, CF;.

mTHPC derivatives. The reaction of mTHPC 1 with a range of
non-steroidal anti-inflammatory drugs (NSAIDs) using 1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide (EDC) and hydroxybenzo-
triazole (HOBt) gave the respective ester conjugates as shown in
Fig. 3. Depending on the number of equivalents used for the
NSAIDs, either the mono- (2-4 equiv.) (7) or tetrafunctionalized
(8) derivatives (10-20 equiv.) were obtained in 36-43% and 61—
70% yield, respectively. While the compounds were all taken up
by OE33 or SKGT-4 cells, no phototoxicity was observed at
short illumination times (2 min). Similar reactions were used to
link mTHPC to nanodiamonds (52). Esterifications were also
used in the generation of mTHPC-Au-nanoparticles (AuNPs)
(53). The reaction of the AuNPs with mercaptopropionic acid
then allowed reaction of the carboxylic acid on the NPs with the
hydroxy groups of temoporfin.

Rogers et al. (54) also developed methods for the selective
mono- and tetrafunctionalization of mTHPC and mTHPP. The
reaction of 1 or 2 with propargyl bromide in the presence of
K,CO;5 could be controlled to yield, e.g. 10 in 48% (with 2
equiv.) or 11 in 98% (with 10 equiv.) yield (Fig. 4). Similar
reactions of broad substrate scope were implemented for reaction
with 1-iodopropane, benzyl chloride, 4-bromobenzyl bromide, 4-
nitrobenzyl bromide, 2-bromobenzoic acid and benzoic anhy-
dride. Using NaH as base reaction with 1 equiv. yielded the
monosubstituted mTHPP derivatives in 35-44% yield, while 10
equiv. gave the tetrasubstituted products often in quantitative
yield (59-96%). The reaction also allowed the preparation of the
respective triflate and tosylate derivatives. Related reactions were
used for the preparation of picket-fence and cofacial bisporphyrin
derivatives. The Zn(Il) complexes of mTHPP also underwent

Chan-Lam couplings with boronic acids yielding the respective
monosubstituted derivatives in 35-39% yield.

Direct substitution of the hydroxyl groups can also be used to
generate amphiphilic porphyrins. For example, the reaction of 2
with hexyl bromide gave the monofunctionalized compound in
30% yield. In turn, this could then be reacted with 2,3,4,6-tetra-
O-acetyl-1-O-(3-chloropropyl)-o-D-mannopyranoside  to  yield
compound 13 in 33% after deprotection of the carbohydrate units
(Fig. 5) (59).

The propargylic group, e.g. in 9 or 10 is a useful synthetic
handle for Cu(I) mediated 1,3-dipolar cycloaddition (‘click’)
reactions. This allows for the facile preparation of bioconjugate
derivatives of photosensitizers. For example, the reaction of the
zinc(II) complex of 9 with an azido functionalized bile acid gave
the bile acid conjugate 14 in 61% under microwave conditions
(55). Such compounds were readily taken up in esophageal can-
cer cells, localized in the ER and Golgi apparatus, but showed
no phototoxicity. In related works click reactions between ethy-
nylphenyl residues on porphyrins with azido-functionalized car-
bohydrates generate amphiphilic photosensitizers (56). Similarly,
p-azidophenylporphyrins can be reacted with propargylic deriva-
tives of carbohydrates to generate water soluble and amphiphilic
porphyrins (57-59). Click reactions are also a facile method for
linking photosensitizers to nanomaterials. One such example was
given by Chen et al. (60) who linked aliphatic azido residues
with the hydroxyphenyl groups in pTHPP and then performed
click reactions with alkynyl residues on polyhedral oligomeric
silsesquioxanes to yield nanoscale photosensitizing materials.

The propargylic groups in 9-12 can also be used in Pd-
catalyzed coupling reactions. For example, a reaction of 12 with
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4-iodobenzaldehyde under Sonogashira conditions gave the
tetraaldehyde 15 in 45% yield which exhibited an enhanced two-
photon absorption cross section compared to temoporfin indicat-
ing the possibility of using such derivatives in two-photon
induced PDT (61).

An alternative method to achieve monofunctionalization is to
use mTHPC/mTHPP derivatives carrying one functionality that
can be addressed directly (62). This was exemplified by
Staegemann et al. who prepared mTHPP analogues, where one
meso-hydroxyphenyl residue was replaced by a pentafluo-
rophenyl group. The p-position in the latter can easily be substi-
tuted under conditions not affecting the hydroxyphenyl groups,
e.g. via reaction with amines (63). The use of amines with termi-
nal alkynyl groups then allowed an entry into click-chemistry,
which was used to link the chromophore with stimuli-responsive
hyperbranched polyglycerols.

Related porphyrinoids

The range of related compounds, i.e, with similar substituent
patterns or functional groups, is ever expanding (64). In the
following, we highlight selected examples that have been directly
compared with temoporfin (see also below) or conceptional
approaches which could also be applied to mTHPP/mTHPC
systems.

An interesting approach, albeit realized only for the
5,10,15,20-tetraphenylporphyrin  framework, was reported by
Nykong et al. (65). Using a standard sequence via Michael addi-
tion of dimethyl malonate with  2-nitro-5,10,15,20-
tetraphenylporphyrin, they prepared the ‘cyclopropanochlorins’
16 and 17 (Fig. 6). The compounds showed high photostability
and in vitro and in vivo studies indicate promise for the treatment
of cholangiocarcinoma. Another chlorin of interest is disul-
fonated 5,10,15,20-tetraphenylchlorin 18. Prepared by Berg et al.
via diimide reduction of the precursor porphyrin, 18, as a mix-
ture of three isomers (TPCS,,), was used for photochemical

RCOOH
EDC, HOBt

K,COj3, DMF
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Figure 3. Synthesis of NSAID conjugates of temoporfin.

internalization (PCI) (66) of bleomycin (67). In vivo studies with
a CT26.CL25 subcutaneously growing mouse carcinoma model
showed that it effectively facilitated import and activation of the
toxin, induced siRNA-based gene silencing, and resulted in
tumor growth delay superior to mTHPC PDT.

At the bacteriochlorin level, we note a broad study by Dab-
rowski et al. on photostable sulfonamides of halogenated bacteri-
ochlorins (68). With either chlorine or fluorine atoms in the o-
phenyl positions, these compounds (19) absorb in the near-IR,
and show high cellular uptake, localization in the ER. Together
with low cyto- and high phototoxicity these photosensitizers
operate both Types I and II photochemical reactions. One of
these compounds (Redaporfin, 20) has progressed to the clinical
trial stage, as preclinical data showed it to be a potent photoacti-
vated antineoplastic that also facilitates indirect immune-
dependent destruction of malignant tissue (69). Due to the pres-
ence of the sulfonamide groups, these compounds are formed as
atropisomeric mixtures. Depending on the relative orientation of
these groups four different atropisomers are possible (o T111,
s, TN, aBs. MU, afaf: TN, Investigation of the individ-
ual redaporfin atropisomers showed the oy, atropisomer, where
the sulfonamide substituents are on the same side of the tetrapyr-
role macrocycle, to exhibit the highest cellular uptake and photo-
toxicity as the most amphiphatic rotamer (70). Thus,
atropisomerism as a drug design principle must be taken into
account for mTHPC derivatives with at least two o-phenyl resi-
dues (provided the rotation barrier is high enough).

Going back to the porphyrin level the range of compounds is
much wider. An interesting study from 2009 investigated 5,15-
diarylporphyrins with only one m-hydroxyphenyl group (21).
The compounds induced apoptosis in HCT111 human colon car-
cinoma cell, generated ROS and NO°, and showed a higher pho-
todynamic effect compared to mTHPC, most likely due to higher
uptake (71). Interestingly, related tetraarylporphyrins and -
chlorins with 3,4-dihydroxyphenyl residues — in a sense a com-
posite of mTHPC and pTHPC — were reported by Marydasan
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Figure 4. Synthesis of propargylic derivatives of mTHPP and mTHPC.

et al. (72). The chlorin 22 was prepared via diimide reduction of
the respective dimethoxyphenylporphyrin, followed by demethy-
lation with BBr;. Water solubility of 22 was increased 6-fold
compared to mTHPC, with excellent triplet excited state and sin-
glet oxygen yields. In vitro studies with human ovarian cancer
cells (SKOV-3) and in vivo studies in a mouse model confirmed
high photodynamic activity. Di- and trisubstituted phenyl sub-
stituents were also employed by Rojkiewicz et al. (73). They
prepared a range of 5,10,15,20-tetraarylporphyrins of the general
type 23 using a combination of pyrrole condensation and
hydroxy group substitution reactions to generate amphiphilic sys-
tems. All compounds exhibited singlet oxygen quantum yields in
the range of 0.6-0.7.

Other compounds of interest are the hydrophobic 5,10,15,20-
tetrakis(quinolin-2-yl)porphyrin (74), water-soluble phosphorous
V) 5,10,15,20-tetraalkylporphyrins (75), water-soluble
5,10,15,20-tetracarboxyporphyrins (76) and temocene, the por-
phycene analogue of mTHPP (77). The latter absorbs stronger in
the red spectrum compared to mTHPC, is more photostable, has
lower dark toxicity, and, depending on the delivery means, local-
izes in mitochondria or lysosomes (78). Its singlet oxygen quan-
tum yield is lower compared to mTHPC, and the DFT study
relates this to the slightly higher spin-orbit coupling matrix ele-
ments (SOCME) in the former (79).

Computational methods are increasingly used to suggest suit-
able photosensitizers or to explain features of existing ones. For
example, DFT calculations of a range of synthetic, expanded

bacteriochlorins gave higher computed SOCME compared to
temoporfin thus suggesting the PDT potential of such compounds
(80). In one study DFT was used to design new candidate mole-
cules with strong red-shifted absorption bands. The spectra were
shown to depend on the substituent pattern and one chlorin with
four propenoic acid groups (Am.x = 755 nm) was suggested as a
lead compound (81), while time-dependent DFT using long-
range corrected functionals accurately predicted the long-
wavelength absorption of temoporfin (82). However, a theoretical
quantitative structure property relationships (QSPR) study which
aimed to correlate A,.x of the Q band with eight descriptors (e.g.
aromaticity, electrostatics, reactivity) showed that the wavelength
is a multidimensional parameter and cannot be correlated with a
single descriptor. This approach gave good agreement between
theoretical and experimental data (83).

A quantum chemical study investigated the m,o,pTHPC iso-
mers (84). While most features (chemical hardness, ionization
potential, triplet energy level, and UV spectra) are similar for the
isomers, differences in the dipole moment confirmed the greater
lipophilic character of mTHPC over the o- and p-isomers.

Photochemistry

A study by Brault and coworkers used laser flash photolysis
to investigate the reaction of the mTHPC triplet state with
antioxidants (85). Both the antioxidant Trolox and the anes-
thetic Propofol reacted with the photosensitizer triplet state in
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Figure 5. Selected bioconjugates and derivatives of mTHPC.

solution regenerating the ground state. In the latter case, a uni-
molecular reaction was observed, while in the former a
bimolecular reaction with intermediary detection of a Trolox
radical and mTHPC radical anion was observed. The reaction
kinetics with Propofol indicated that quenching of triplet state
mTHPC could occur under clinical conditions when using this
anesthetic.

PHARMACOLOGY AND BIOCHEMISTRY

In vitro tests

The first step in the evaluation of any drug candidate for its medici-
nal potential is characterization at the in vitro level. This serves to
establish its uptake mechanism, intracellular localization, (dark)
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Figure 6. Representative examples of novel photosensitizers.

cytotoxicity, phototoxicity upon illumination, and modes of cell
death. The relevant classic studies related to temoporfin have been
discussed before (42). Still, the field does not stand still, and the
decade of work covered in this review has seen numerous addi-
tional in vitro studies with temoporfin and its congeners. These
were aimed at expanding clinical applications to other types of
cancer or diseases, improving PDT protocols, assessing the impact
of co-administration of other effectors, evaluating new targeting
strategies, validating new formulations, and more.

While facile and cheap, simple 2D in vitro cell tests have their
pitfalls (86). There may be changes in cell morphology, different
interactions of the cellular and extracellular environments, altered
polarity or cell division. 2D cell cultures do not reflect the 3D
tissue environment, neglect interactions and influence with other
cells, cannot mimic influences such as anti-angiogenesis, immune
effects, etc. As a result, the predictive power of 2D in vitro stud-
ies within the translational pipeline, or even for transition to
in vivo animal models, is very limited (87).

The same issues affect PDT studies, i.e. simple 2D systems
cannot provide information on the migration and invasiveness of
cancer cells (88) or the influence of the tumor vasculature (89).
Different Human cancer cell lines can give drastically different
responses to PDT (90). Another problem is the adherence of
photosensitizers to the culture microplates used in the cell tests
(91). Plaetzer and coworkers investigated a range of hydrophilic
and hydrophobic photosensitizers with respect to their adherence
to the surfaces of 96-well microplates (92). Lipophilic com-
pounds (temoporfin, hypericin, Photofrin®) exhibited strong

adherence to the microplates. Using lysis and fluorescence mea-
surements they showed that 50-90% of the fluorescence signal
was caused by PS adherence. The composition of the medium
can impact the PDT efficacy as well. Pretreatment of the medium
(RPMI 1640 supplemented with fetal calf serum (FCS)) with
Rose Bengal or temoporfin (and light) used for the growth of rat
glioma cells reduced cell survival by 40% upon irradiation of the
cell suspension (93). In the medium pre-treated with Rose Ben-
gal and light the presence of oxidizing species was detected sug-
gesting the formation of such long-lasting oxidizing species, e.g.
peroxides, as the result of initial ROS formation in the medium
(93).

By now 3D cell systems have become the standard of analysis
and have been employed in a wider range of PDT studies (see
Table 1) (236,237). Amongst others, they have been used to
evaluate the use of extracellular vesicles for drug delivery
(211,212). They have also been used to evaluate how the
stroma-rich microenvironment affects the uptake and activity of
lipid-based nanoformulations (219,220). Often such studies show
that the PS (as indicated by fluorescence) is confined to the
external cell layers of spheroids (205). A quantitative means to
determine the penetration in tumor spheroids with the high spa-
tial resolution is the use of laser ablation coupled to inductively
coupled plasma mass spectrometry (238). This requires incuba-
tion with metal complexes and Pd-tagged mTHPP was used in
this context.

3D cell systems also offer the advantage of using different
cell types within one system (236). For example, Philipps et al.
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Figure 7. Graphical illustration of pharmaceutical formulation systems explored with temoporfin.

studied the peripheral neural cell sensitivity to temoporfin in a 3-
dimensional collagen gel culture system and found MCF-7s and
satellite glia to be more sensitive to PDT than neurons (207). A
similar system comprised only of the glia cells showed that inhi-
bition of antioxidant pathways increased the sensitivity of neu-
rons to PDT (225).

In tandem with new developments in using 3D cell methods,
screening methods are advancing as well. Thus, high content
screening and analysis are slowly replacing standard assays
(51,58,75,158,239). Such assays require the identification of cel-
lular parameters (e.g. nuclear area, reciprocal form factor, cell
area, cell number, PS integrated area, and PS area) which can be
used to determine the phototoxic effects of porphyrin com-
pounds. Using esophageal cell lines Vaz et al. evaluated parame-
ters such as these in a screen of five photosensitizers, including
temoporfin (240). This proof of principle study showed that the
HCS assay offers significant advantages and correlated with
MTT data.

Temoporfin as a comparator

As an established clinical photosensitizer temoporfin and its vari-
ous formulations often serve as a comparator, i.e. are used to
evaluate the PDT potential of novel compounds and other drug
candidates. Without going into the details or analyzing all other
photosensitizer classes, compounds from almost all of them have
been compared with temoporfin and related formulations (151).
Some individual representative examples include BODIPYs
(241), bacteriochlorins such as redaporfin (109), unsymmetrically

5,15-disubstituted porphyrins (119,242), picolyl-functionalized
porphyrin zinc(Il) complexes (243), new chlorin eq derivatives
(155,213), chlorin es derivative liposomal formulations (134),
gallium(IIl) corroles (125), tetra(3,4-pyrido)porphyrazines embed-
ded in cationic cages (100), and phthalocyanines and
tetrapyrazinoporphyrazines (244). The most relevant data relating
to temoporfin are compiled in Table 1.

Such studies reveal differences in the PDT efficacy and mode
of action and cell death between photosensitizers. For example, a
comparison with redaporfin showed different susceptibilities of
A549 and CT26 cells to the two photosensitizers (Table 1) indi-
cating that e.g. A549 cells are more susceptible to PDT operating
via Type 1. Using redaporfin in combination with ascorbate and
inhibition of antioxidant enzymes significantly improved its
effect against such cells (109).

Mechanistic aspects

The basic mechanism of action of photosensitizers is quite well
understood. It relies on the formation of reactive oxygen species
(ROS) generated by Type I or Type II photoreactions. In the
case of temoporfin, the dominant mechanism is the Type II reac-
tion leading to the formation of singlet oxygen (42,109,245).
This singlet oxygen reacts, depending on the photosensitizer
localization in the cell, with surrounding biomolecules, thereby
damaging the cells and provoking cell death via apoptosis,
autophagy or necrosis, though other cell death pathways like
paraptosis also play a role (110,246-250). These direct effects on
the tumor cells are important for PDT, however, they cannot
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Table 2. Animal models used for mTHPC and related compounds (sorted by animal model and by publication year).

Animal model Compound/Study Comments Year References
Mouse
Male C57 mice bearing B16-F10 mTHPC loaded on supramolecular Suppression of tumor growth 2022 (99)
tumors (melanoma) organic frameworks (nanoparticles):
PDT efficacy
Male C57BL/6 mice bearing B16F10 Perfluorocarbon-oxygen carrier and Apoptosis induced by ROS generated 2022 (224)
tumors mTHPC in peptide-modified under ultrasound treatment, tumor
liposomes combined with neutrophils: growth inhibition
characterization and sonodynamic
application
Female BALB/c mice bearing CT26 mTHPC-loaded vitamin-E-succinate- Combination of PDT and anti-PD-L1 2021 (133)
tumors grafted chitosan oligosaccharide/D-o- checkpoint blockade inhibited growth
tocopheryl PEG succinate of local and distant tumors
nanoparticles (RGDfK peptide-
modified) combined with anti-PD-L1:
PDT and immune effects
Female BALB/c and C57BL/6 mice mTHPC vs. liposomal mTHPC (Foslip®)  Enhanced tumor selectivity and anti- 2021 (201)
bearing CT26 and ID8-Luc tumors, and extracellular vesicles derived cancer efficacy of the mTHPC in
respectively from mesenchymal stem/stromal cells extracellular vesicles, promotion of
loaded with mTHPC: PDT efficacy antitumor immune cell infiltration
Female albino (BALB/c) mice Combination of Pirarubicin PLGA Cytotoxicity synergism, lower toxicity 2021 (175)
nanoparticles and liposomal mTHPC: compared to the free drugs
Acute toxicity and particle
characterization
Male ddY mice bearing S180 mouse mTHPC in styrene maleic acid copolymer Similar anti-tumor efficacy as free 2021 (192)
sarcoma micelles: characterization, release mTHPC, less side effects
profile, PDT efficacy
Female NMRI™™ mice bearing HT-29  Extracellular vesicles loaded with Efficient tumor volume reduction with 2020 (212)
tumors mTHPC vs. liposomal mTHPC mTHPC in extracellular vesicles
(Foslip®): PDT efficacy
Female Balb/c nude mice bearing A431 mTHPC loaded polymeric micelles: Long circulating micelles resulted in 2020 (280)
tumors Pharmacokinetics and tumor significantly higher tumor
accumulation accumulation compared to short
circulating micelles
Female Balb/c nude mice bearing A431  Polymeric micelles loaded with mTHPC Prolonged blood circulation kinetics for 2020 (102)
tumors and EGFR targeting: Formulation and the nanoparticles, independent of
pharmacokinetics antibody presence
Female Balb/c nude mice mTHPC and mTHPC loaded on n-1 stacking interactions to improve cargo 2020 (101)
polymeric micelles: Comparison of retention in polymeric micelles
biodistribution in vitro, differences to in vivo
distribution
Male C57BL/6 mice bearing TRAMP-  Combined photothermal and mTHPC- Inhibition of tumor growth 2020 (202)
C1 tumors PDT with oil droplet nanoparticles:
Antitumor efficacy
MaleBALB/c mice Effect of mTHPC-PDT on tumor growth  Inhibition of tumor growth, importance of 2020 (135)
of HCT116 xenografts, role of autophagy
autphagy
Female athymic nude mice mTHPC encapsulated in (folate) Highest tumor reduction with the 2019 (191)
nanodiscs vs. liposomal mTHPC: mTHPC-loaded folate nanodiscs
antitumor efficacy
Female NMRI™™ mice bearing HT-29 ~ mTHPC/cyclodextrin inclusion complexes ~ Similar PDT efficacy of liposomal 2019 (145)
tumors in liposomal mTHPC vs. liposomal mTHPC (Foslip®) and double-loaded
mTHPC (Foslip®): PDT efficacy liposomes
Male Hsd:Athymic Nude-Foxnl mice mTHPC-loaded Ce-doped maghemite Faster accumulation compared to free 2019 (128)
bearing MDA-MB231 tumors nanoparticles: PDT efficacy mTHPC, tumor regression
Nu/Nu mice bearing MDA-MB-231 mTHPC (Foscan®) vs. silica Efficient intracellular delivery of silica 2018 (194)
tumors (human breast carcinoma) nanoparticles loaded with mTHPC: nanoparticles, passage of blood brain-
PDT efficacy barrier, mTHPC silica nanoparticles
more effective, partial tumor relapse
in all cases
Nude mice bearing HeLa tumors pTHPP vs. pTHPP polyhedral oligomeric ~ Superiority (biocompatibility, tumor 2018 (60)
silsesquioxanes with PEG: PDT volume reduction) of the nanoparticle
efficacy formulation
Female BALB/c athymic nude mice Combination of mTHPC-PDT and anti- PDT treatment followed by bevacizumab 2018 (281)
bearing HT-29 tumors VEGF monoclonal neutralizing more effective than opposite
antibody bevacizumab: Efficacy combination (bevacizumab treatment
decreased mTHPC tumor
accumulation)
BALB/c mice bearing fibrosarcoma mTHPC: pharmacokinetics 2018 (282)

(continues)
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Animal model Compound/Study Comments Year References
Rebound effect (new local drug
accumulation)
Subcutaneous-U87MG tumor-bearing mTHPC-loaded vitamin-E-succinate- Higher anti-tumor efficacy, less systemic 2017 (214)
nude mice grafted chitosan oligosaccharide/D-o- toxicity for the modified nanoparticles
tocopheryl PEG succinate
nanoparticles (RGDfK peptide-
modified) vs. unmodified
nanoparticles: PDT efficacy
SCID (143B/SCID, human xenograft mTHPC (Foscan®) and liposomal Uptake of both formulations higher in 2017  (217)
mouse model) and BALB/c mice mTHPC (Foslip®): PDT efficacy, tumor than in healthy control tissue,
(K7M2L2/BALB/c, syngeneic mouse immune effects significant tumor growth inhibition by
model), intratibial mouse model PDT, significant immune system-
dependent suppression of lung
metastasis in the K7M2L.2/BALB/c
model
BALB/c syngeneic mice bearing 4T1 Ethylene glycol derivatives of Different resistance mechanisms, for 2017 (193)
tumors and tumors derived from cells tetraphenylporphyrin and mTHPC: mTHPC: sequestration to lysosomes
of PDT-resistant clones Investigation of resistance to PDT
Nu/Nu mice bearing MDA-MB-231 mTHPC (Foscan®) vs. mTHPC in 1- Improved anti-cancer efficacy of the 2016 (127)
tumors tetradecanol thermoresponsive solid- nanoparticle formulation
lipid nanoparticles: PDT efficacy
CD1-Foxn1™ nude mice bearing CAL-  mTHPC vs. liposomal mTHPC (Foslip®)  Better biocompatibility of both 2016 (283)
33 tumors and mTHPC lipid nanoparticles: PDT nanoparticle formulations, highest
efficacy tumor volume reduction with
liposomal mTHPC
Syngeneic C3H/HeN mice bearing Combination of anti-GR1 antibody and Better anti-tumor effect with delayed anti- 2016 (284)
murine SCC (SCCVII) mTHPC-PDT: Tumor response, GR1 treatment
immune effects
NMRI male nude mice bearing PC-3 Effect of mTHPC PDT and doxorubicin Release of large amounts of extracellular 2016 (180)
prostate carcinoma on release of extracellular vesicles vesicles (higher for PDT)
Radiation-induced fibrosarcoma tumor Benzoporphyrin derivative monoacid ring  In vivo 'O, threshold doses for 2015 (285, 286)
mouse model A, Photofrin® and mTHPC: PDT Photofrin®, BPD, and mTHPC ~ 20
threshold dose times smaller than those observed
in vitro
NMRI nude mice bearing A431 tumors  Liposomal mTHPC, with iron oxide Synergistic effect, complete tumor 2015 (172)
nanoparticles in the aqueous core: ablation
combination of PDT and magnetic
hyperthermia
NMRI™™ mice bearing HT-29 tumors ~ Pegylated liposomal mTHPC (Fospeg®):  Good correlation between ex vivo tissue 2015 (287)
Pharmacokinetics and biodistribution fluorescence and reflectance imaging
via optical imaging and chemical extraction
Athymic Nude-Foxn1™ mice bearing mTHPC-loaded calcium phosphate Decrease in tumor vascularization and 2015 (170)
CAL-27 tumors nanoparticles modified with RGDfK tumor volume
peptide and NIR fluorescence dye:
PDT efficacy
Female NCRNu mice, dorsal skin-fold mTHPC (Foscan®): Correlation tumor 0, luminescence as dosimetric technique 2015 (288)
window chamber tumor model response and singlet oxygen for PDT in tumor tissue
(luciferase- and green fluorescent luminescence
protein-transduced gliosarcoma)
Female C57BL/6 mice with Liposomal mTHPC (Foslip®): Effect of Reduction of tumor growth, expression 2015 (289)
azoxymethane/dextran sulfate sodium low-dose-PDT on colitis and colitis- decrease of inflammatory mediators,
-induced colitis and tumors associated carcinogenesis lowering neutrophil influx
Female NMRI™™ mice bearing HT-29  Liposomal mTHPC (Foslip®) and Enhanced permeability and retention- 2013 (290)
tumors pegylated liposomal mTHPC based tumor accumulation and
(Fospeg®): Distribution and PDT circulation stability for Fospeg®
efficacy
Female athymic nude-Foxn1™ mice Fluorescence optical imaging of Detection of apoptotic cells shortly after 2013 (171)
bearing Cal-27 tumors liposomal mTHPC (Foslip®) in treatment, reduction of tumor
combination with DY-734 annexin V vascularization at later time points
Female nude NMRI mice bearing TC-1 ~ mTHPC vs. extracellular vesicles loaded Improved anti-cancer efficacy (reduction 2013 (164)
tumors with mTHPC and maghemite (iron of tumor growth) of the nanoparticle
oxide) nanoparticles: PDT efficacy formulation, dual imaging by
and imaging fluorescence and MRI
Female BALB/cAnN.Cg-Foxn1™/ Luciferase-immobilized quantum dots bioluminescence resonance energy 2013 (112)

CrINarl nude mice bearing A549
tumors

combined with mTHPC loaded
micelles: PDT efficacy, ROS
generation

transfer for PDT, delayed tumor
growth

(continues)
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Table 2. (continued)

Animal model Compound/Study Comments Year References
Male Hsd:Athymic Nude-Foxnl mice mTHPC vs. mTHPC in PLGA and Reduced dark toxicity for the 2012 (111)
bearing HCT-116-luc tumors pegylated PLGA nanoparticles: PDT nanoparticles, improved tissue
efficacy distribution for pegylated PLGA
nanoparticles
SCID mice bearing LNCaP tumors Interstitial PDT with pegylated liposomal  Prevention of photosensitivity with the 2012 (291)
mTHPC (Fospeg®): Effect of natural natural antioxidants
antioxidants
Female BALB, cAnN.Cg-Foxn1™ and ~ mTHPC vs. mTHPC loaded on folate- Folate-conjugated micelles have higher 2012 (94)
CrINarl nude mice bearing KB and conjugated polymeric micelles: PDT PDT efficacy than mTHPC or mTHPC
HT-29 tumors efficacy polymeric micelles without folate
Male Balb/C mice bearing SIRCC1.15  mTHPC: PDT efficacy against kidney Renal tumor destruction, mTHPC uptake 2012 (292)
(kidney) tumors tumors and PDT sensitivity increased in
endothelial cells compared renal cell
carcinoma and renal cells
Female BALB/c mice bearing hsp70- mTHPC: Investigation of tumor efficacy Maximum heat shock protein levels at 2011 (161)
GFP/EMT6 tumors and heat shock protein levels PDT doses corresponding to 30% cell
survival
Syngeneic C3H/HeN mice bearing mTHPC in combination with ceramide Increase of cancer cell apoptosis by 2011 (273)
murine SCC (SCCVII) analog (LCL29): Effect on PDT combination of LCL29 and mTHPC-
PDT
Female NMRI™™ mice bearing HT-29  Pegylated liposomal mTHPC (Fospeg®):  Fluorescence imaging (time-resolved 2011 (293)
tumors Drug quantification fluorescence white Monte Carlo
simulations combined with the Beer—
Lambert law)
Female syngeneic C3H/HeN mice mTHPC in combination with ceramide Combination improved long-term tumor 2011 (275)
bearing SCCVII tumors analog (LCL29): Effect on PDT cure, changes in sphingolipid profile
Female SKH-1 mice Liposomal mTHPC in collagen matrix: Faster wound healing (scab detachment) 2011 (294)
antibacterial photodynamic with mTHPC loaded an illuminated
inactivation collagen implant
Female Swiss (nu/nu) mice bearing mTHPC and Verteporfin: PDT efficacy, Transient response to mTHPC for RB102- 2010 (295)
RB-102-FER, RB-109-LAK and RB- xenograft model for retinoblastoma FER and response with partial
111-MIL xenograft tumors regression to mTHPC for RB111-MIL
Female BALB/c mice bearing EMT6 mTHPC: PDT efficacy using fractionation Investigation mTHPC biodistribution 2010 (296)
tumors of drug administration profile and regional distribution of
apoptosis; improved tumor cure with
fractionated drug administration
Hybrid DBA/2 x BALB/c male mice Combination of mTHPC PDT, adoptive Synergistic anti-tumor effect 2010 (297)
bearing L1210 ascitic tumors immunotherapy, and chemotherapy:
Efficacy study
Male C57BL/6 mice bearing Lewis mTHPC: PDT efficacy 0.25 mg kg~ ' mTHPC, 24 h DLI: 2010 (200)
lung carcinoma Inhibition of tumor growth, prolonged
survival
Female athymic Foxn'™/Foxn'™ mice ~ mTHPC treatment: Apoptosis and caspase ~Different expression pattern of caspase-3 2009 (124)
bearing HT-29 tumors activity and caspase-7 in mTHPC treated
tumors
Female Foxn1™™ mice bearing EMT6  mTHPC vs. liposomal mTHPC (Foslip®): Highest tumour to muscle ratios at 6 and 2009  (298)
tumors Pharmacokinetics and PDT efficacy 15 h post-administration, best tumor
response for 6 h DLI
Rat
Male Wistar rats (HsdCpb:W) bearing mTHPC (Foscan®), liposomal mTHPC Higher mTHPC fluorescence of Fospeg® 2013 (299)
4NQO-induced tumors (Foslip®) and pegylated liposomal in normal and tumor tissue compared
mTHPC (Fospeg®): Tumor to Foscan® and Foslip®, significant
accumulation vs. normal tissue differences between tumor and normal
tissue for all formulations
Male Wistar rats bearing Walker-256 mTHPC: pharmacokinetics, distribution, Highest tumor/normal tissue-ratio at 24 h 2013 (300)
tumors and elimination in orthotropic liver
cancer model
Female Wistar rats and Female HL rats ~ Pegylated liposomal mTHPC (Fospeg®):  Longer elimination half-life for higher 2012 (301)
bearing MC28 tumors distribution, effect of different degrees degree of pegylation
of pegylation
Female Fisher-344 rats bearing mTHPC (Foscan®), liposomal mTHPC Skin-fold observation chamber model, 2011  (302)
transplanted R3230AC tumors (Foslip®) and pegylated liposomal maximum tumor fluorescence 8 h for
mTHPC (Fospeg®): Tumor Fospeg®, 24 h for Foslip® and
accumulation vasculature Kinetics Foscan®, higher bioavailability of
liposomal formulations
Female Fischer-344 rats bearing 2011 (303)

transplanted R3230AC tumors

(continues)
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Animal model Compound/Study Comments Year References
mTHPC: in vivo quantification/ Skin fold observation chamber model,
pharmacokinetics via fluorescence, dual wavelength excitation, NIR
method development imaging
Fisher-344 rats bearing tumors mTHPC: in vivo quantification/ Skin-fold observation chamber model, 2009 (304)
pharmacokinetics by fluorescence correction for autofluorescence
measurement
Male Wistar rats mTHPC: in vivo quantification/ Good correlation with chemical extraction 2009 (305)
pharmacokinetics by fluorescence
differential path length spectroscopy
Male Wistar rats mTHPC: Fluorescence and reflectance Decrease in fluence rate during PDT, 2009 (306)
spectroscopic monitoring of interstitial observation of differences in vascular
PDT response even between animals of the
same treatment group
Male Wistar rats mTHPC and other PS: Determination of Determination of PDT threshold dose by 2009 (307)
PDT threshold dose depth of necrosis measurement of necrosis depth and
and superficial necrosis superficial necrotic area
Dog
Male beagles mTHPC: Dosimetry for interstitial PDT in  Light-dose escalation plan, less damage to 2016 (308)
the canine prostate surrounding tissue with dosimetry
planning, light energy dose-response
relationship
Sheep
Swiss white alpine sheep mTHPC: Pharmacokinetics by blood Similar pharmacokinetics and sensitivity 2009 (309)
sampling and fluorescence, to mTHPC-PDT compared to humans
optimization of oesophagus PDT
Cat
Cats bearing SCC (animal PDT) mTHPC: PDT treatment of feline SCC Complete remission 61%, partial 2018 (310)
(63 lesions in 38 cats) remission 22%, mean progression-free
interval of 35 months, median overall
survival time 40 months
Horse
Horse sarcoid (animal PDT) Pegylated liposomal mTHPC (Fospeg®):  Local treatment, tumor remission or tumor 2012 (311)

PDT and surgical treatment of equine

sarcoid (case report)

growth stagnation

account for the extent of tumor eradication observed in vivo.
Here indirect effects, mainly on the tumor vasculature (42,251),
are critical for long-term tumor control (42,245). In addition,
PDT effects on the immune system contribute to tumor eradica-
tion (42,245,252-254). PDT can provoke the formation of antitu-
mor inflammatory cells and can result in a persistent antitumor
immune response (8,42,252-257). A significant body of research
effort has been done addressing these effects and processes
related to PDT at the molecular and cellular level as well as at
the systemic level of the organism.

Photosensitizers rely on the ability to generate singlet oxy-
gen and other ROS when irradiated with light in the presence
of oxygen. The photophysics and basic photochemistry of
temoporfin have therefore been investigated in various sur-
roundings and under various conditions (42). In recent years,
de Vetta et al. (258,259) and de Oliveria et al. (84) studied the
photophysics of temoporfin using quantum chemical methods.
Whereas the former analyzed temoporfin in a polar solvent
(258), and later also in liposomes (see below) (259), the latter
compared temoporfin to its corresponding ortho- and para-
isomers concluding that the high efficacy of temoporfin — the
meta-isomer — is not due to photophysical parameters but the
better localization in tumor cells and tissues (84). Quantum
chemistry (vide supra) has also been used for photophysics
optimization approaches of porphyrins and chlorins for PDT
involving temoporfin (81-83). Quantum chemical methods were

also used to satisfactorily explain the higher photodynamic
activity of temoporfin compared to its porphycene analogue,
temocene (79). Also, the two-photon absorption properties of
temoporfin have been analyzed (see below under ‘Dosimetry
and Detection’) (61,260-262).

Only a limited number of investigations studied different fre-
quently used photosensitizers under the same conditions. In one
of those, Berlanda et al. (151) tested Foscan®, Fospeg® (a lipo-
somal formulation of temoporfin containing pegylated lipids, see
below), hypericin, aluminium(IIl) phthalocyanine tetrasulfonate
chloride (AIPcS,), 6-aminolevulinic acid (ALA) and Photofrin®
in the A431 cell line with wavelength-specific LED-based illumi-
nation, finding distinct differences between them. They con-
firmed that temoporfin in both formulations is a very effective
photosensitizer that induced high phototoxicity already at very
low concentrations giving the lowest LDsy value under PDT of
all tested photosensitizers (151). The efficiency of several photo-
sensitizers including temoporfin, measured as the depth of necro-
sis was hypothesized to be correlated with their photostability in
solution; however, a clear correlation could not be established
(263). Already in 2005 Mitra and Foster compared the PDT effi-
cacy of Photofrin® and temoporfin in EMT6 tumor cell spher-
oids and found that the higher efficacy of temoporfin is due to
its photophysical properties (enhanced redshift absorption com-
pared to Photofrin®) but also due to its ability to sequester
tightly in (tumor) cells (264).
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The photophysical properties of temoporfin in different carrier
systems have been investigated as well (see also ‘Formulation
Development’). In a comparative investigation of three chlorin
systems (temoporfin, disulfonated tetraphenylchlorin (TPCS,,),
chlorin eg) in solution and in liposomes, the order of efficacy fol-
lowed the sequence given above. This was attributed to the
embedding of the different photosensitizers in the liposomal
membrane (265). In human serum albumin (HSA) nanoparticles
the ability of temoporfin to generate singlet oxygen depended on
the loading ratio with only particles of lower loading able to gen-
erate singlet oxygen (188). However, after incorporation in Jur-
kat cells, all particles generated singlet oxygen based on the
release of temoporfin. Also, the influence of antioxidants on the
photophysics of temoporfin has been investigated (85). The pho-
totoxicity in cells and photophysics of halogenated bacteriochlo-
rins carrying sulfonic acids and sulfonamide moieties have been
investigated in comparison with temoporfin. Whereas the PDT
effect of temoporfin was associated primarily with a Type II
reaction, the PDT effect of investigated bacteriochlorins was con-
cluded to rest on Type I and Type II photochemical reactions
(68). In a series of publications, the photosensitizing mechanism
of temoporfin — serving as a model photosensitizer — has been
analyzed with field-induced droplet ionization mass spectrometry
at the air-water interface using lipids and on-purpose designed
lipid-like molecules (266-268). The authors observed the forma-
tion of allyl hydroperoxides by oxidation of unsaturated lipid
chains rationalized by the Type II mechanism (266). Later, evi-
dence for the involvement of Type I photoreaction was found as
well (267). This oxidation could be hindered by host-guest com-
plexation of such amphiphilic molecules (268).

At the cellular level, PDT elicits a multitude of effects and
affects numerous intracellular pathways (245). In addition, such
effects observed on the cellular level depend on the light dose
and the time after illumination (42,116). Therefore, sometimes
seemingly contradictory results originate from different cell test-
ing parameters and different observation windows. For PDT with
temoporfin, the ER and the Golgi apparatus have been identified
as primary sites of action in the cell (116,117,247,269,270). This
cellular targeting of the ER has been studied in detail for three
different photosensitizers (hypericin, temoporfin and methylene
blue) using multifunctional luciferase reporter systems, confirm-
ing the ER targeting for hypericin and temoporfin (118). Mito-
chondrial oxidative stress followed by cytochrome c release and
caspase activation resulting in an apoptotic cell response was
determined for PDT with temoporfin (42,152,168,271), though
this is not always observed in cellular assays (110). The change
from apoptotic events to autophagy has been investigated in
MCEF-7 cells subjected to temoporfin and light (116). The impor-
tance of autophagy for temoporfin PDT has also been shown in
colorectal cancer cells and in vivo in mice (135). The ROS gen-
erated by PDT were found to activate the signaling pathway via
the c-Jun N-terminal kinases (135). PDT-induced cell damage
results in the release of large numbers of extracellular vesicles,
an effect that has been observed in vitro as well as in vivo (180).
These extracellular vesicles can be exploited themselves as carri-
ers for photosensitizers (see below under ‘Formulation develop-
ment’).

PDT is also associated with the increased expression of heat
shock proteins (97,272). Mitra et al. (161) found a correlation
between long-term tumor control in vivo in mice and extracellu-
lar release of heat shock protein 70. This up-regulation of

selected heat shock proteins has also been observed in two head
and neck cancer cell lines (UMB-SCC 745 and 969) and the
increased expression of heat shock proteins was used for specific
targeting with verteporfin as a photosensitizer (272). PDT with
the liposomal temoporfin formulation Fospeg® increased the P-
glycoprotein expression — which is an important protein with
respect to multidrug resistance in cancer cells — in human
nasopharyngeal carcinoma cells (165). However, as temoporfin
was no substrate to this transporter protein the PDT efficacy was
not affected. The same authors also investigated the effect of
Fospeg® on Epstein-Barr virus positive nasopharyngeal carci-
noma cells (166). Temoporfin PDT led to an up-regulation of the
cytokines VEGF and IL-lalpha in A431 carcinoma cells (154).
Apart from such effects on specific proteins temoporfin has been
observed to have a more general impact, e.g. on microtubules
and cell endosomal transport (181). Other recent publications
found phenotype shifts in macrophages elicited by temoporfin
nanoparticles (163) and in Ras-transfected mammary cells, where
a reduction of the migratory and invasive ability was observed
for cells treated with PDT using different photosensitizers includ-
ing temoporfin (162). Sphingolipids and their ceramide subgroup
are building blocks of membranes, but also fulfil numerous other
functions in the cell and have been shown to be involved in
PDT (95,169). In a series of publications, Korbelik and Separo-
vic (95,96,169,195,273-275) analyzed the relevance of sphin-
golipids for PDT with temoporfin and investigated the
synergistic effect of combination therapies, e.g. with the cera-
mide analogue LCL29, the synthetic retinoide derivative fenre-
tinide and a ceramidase inhibitor.

Cell death mechanisms and pathways have been and are still
a matter of debate in PDT (8,110,248-250). Whereas for a long
time the modes of unregulated cell death via necrosis or the pro-
grammed cell death via apoptosis in combination with autophagy
were the main focus, recently, other modes of cell death have
found increased attention with respect to PDT, specifically cell
death triggered by the bodies’ immune response (249). Induction
of apoptosis by temoporfin PDT has been shown in many cellu-
lar assays (42,90,116,124,135,149,150,152,168,199). This cell
death by apoptosis is often found to be accompanied by autop-
hagy (90,116,135,152). In a comparative investigation, Lange
et al. (90) investigated cellular death pathways after temoporfin
PDT in five cancer cell lines (A-427, BHY, KYSE-70, RT-4,
and SISO cells). In this case, cells were treated with equitoxic
concentrations of temoporfin. Mitochondrial photodamage and
ROS formation were observed in all cases. Apoptosis was identi-
fied as the dominant cell death mechanism, accompanied by
autophagy. Lipid peroxidation and cell death due to loss of
membrane integrity were found to be less important. However,
there were considerable differences between the cell lines and
the times when certain effects were found, and the authors sug-
gest an interplay of different cell death mechanisms. That other
cell death mechanisms also play a role for temoporfin has also
recently been shown by Kessel who reported on the induction of
paraptosis following temoporfin PDT-induced ER photodamage
(110).

As mentioned above, the effects of PDT on the immune sys-
tem contribute to the tumor control effect observed in vivo, and
this has been  discussed in  numerous  reviews
(8,249,252,253,255-257,276,277). By activation of the T-cell
adaptive immune response PDT can trigger immunogenic cell
death (249). In the treatment of actinic keratosis and squamous



cell carcinoma, PDT has been found to activate the innate and
adaptive immune system, following the local inflammatory
response (277). Theodoraki et al. (254) analyzed blood samples
from nine head and neck cancer patients treated with PDT for
changes in different immune-cell subsets. Samples were taken
before, during and after PDT and were compared to samples
from age-matched healthy donors. They observed a systemic
inflammatory immune response and found altered profiles of
immune cell populations and cytokine concentrations (increased
number of Treg and NK cells). The authors suggest that a com-
bination of PDT with immune checkpoint modulators could lead
to an improved anti-tumor response. Looking at the systemic
effects of PDT resistance to PDT comes into focus as well,
which was discussed in a recent review (278). Possible resistance
mechanisms to PDT with temoporfin were investigated by Kra-
lova et al. in cells and in mice bearing tumors grown from PDT-
resistant cancer cells (193). Apart from temoporfin, ethylene gly-
col derivatives of 5,10,15,20-tetraphenylporphyrin were used as
well. Interestingly, different resistance mechanisms were found;
the more polar porphyrin ethylene glycol derivatives showed
increased drug efflux through ABCB1 P-glycoprotein, whereas
for the more lipophilic temoporfin a sequestration to lysosomes
was observed.

Animal testing

Animal testing is still an indispensable measure in the pre-
clinical development of pharmaceuticals though there is of course
intense research going on to reduce, refine and replace such
experiments according to the three R’s principle (279). Quite a
number of animal tests have been performed in recent years with
temoporfin and its formulations (see Table 2). Of the many
investigations listed in the review by Senge and Brandt from
2011 (42), many focused on elucidating the basic pharmacoki-
netic and pharmacodynamic properties of temoporfin in prece-
dence of the marketing authorization application. As can be seen
from the studies listed in Table 2 the newer in vivo investiga-
tions are to a large extent focused on the development of new
formulations, new (tumor) indications and new treatment regi-
mens. More than half of the investigations cited in Table 2 stud-
ied the in vivo behavior of new pharmaceutical formulations of
temoporfin. Consequently, those publications are reviewed in the
chapter about formulation development.

Animal experiments with temoporfin have almost exclusively
been performed in rodents, predominantly in mice and also in
rats. Single studies have been done in beagle dogs (308) and
sheep (309), the two animal species chosen due to the specific
requirements of the tumors to be treated, prostate and esophagus,
respectively. Special cases are the treatment of cats (310) and
horses (311). In these cases, a curative tumor treatment was
intended, showing that PDT is also a treatment option for certain
tumors in animals (vide infra).

A number of publications investigated the pharmacokinetics
and the PDT effect of temoporfin with respect to specific
tumors. Etcheverry et al. looked at the pharmacokinetics of the
PS in mice bearing fibrosarcoma via fluorescence measurements
(282). They observed a ‘rebound effect’, i.e. a fluorescence
increase in certain parts of the tumor compared to that measured
immediately after illumination. Fluorescence detection has also
been used in other cases to investigate pharmacokinetics in vivo

Photochemistry and Photobiology, 2023, 99 381

(303-306). In an investigation of rats, Kruijt et al. found a good
correlation between quantification by fluorescence and chemical
extraction (305). Also, singlet oxygen luminescence has been
used as a dosimetric technique in vivo showing a good correla-
tion between tumor response and singlet oxygen luminescence
(288). Ferraz et al. determined the PDT threshold dose for dif-
ferent photosensitizers including porfimer sodium, bremachlorin
(Radachlorin®) and temoporfin using a model employing the
depth and width of necrosis in rat liver. They determined a value
of 5.3 (£2.0) J cm™? at a temoporfin dose of 0.3 mg kg™', con-
siderably smaller than for porfimer sodium (28.0 (£2.0) J cm 2,
dose 2.0 mg kg™") (307). In a similar approach, in vivo necrosis
experiments in mice combined with modelling were used to
determine singlet oxygen threshold doses for PDT for different
photosensitizers including temoporfin (285,286,312). Garrier
et al. investigated the effectiveness of a compartmental targeting
in xenografted tumors in mice, finding that fractionated double-
injection of temoporfin with 24-h and 3-h drug-light intervals
(DLI) yielded 100% tumor cure (296).

In a study with cellular assays and in mice the effect of temo-
porfin PDT on the induction and release of heat shock protein 70
was analyzed, showing that there was a clear correlation between
temoporfin PDT doses achieving long-term tumor cure and those
that effect high levels of surface exposed or extracellularly
released HSP70 (161). In a mechanistic investigation, the apopto-
sis and activity of different caspases has been studied in cell cul-
tures and in mice (124). The authors observed that
photosensitized tumors had a higher number of cells with active
caspase-3 and poly-ADP-ribose polymerase 1, suggesting that
polymerase expression was mediated by treatment-induced apop-
tosis. A similar mechanistic investigation has been addressing
the importance of autophagy in cells and in mice (135). As men-
tioned above (cf. ‘mechanistic aspects’), resistance to PDT was
investigated by Kralova er al. (193) in mice bearing tumors
grown from PDT-resistant cancer cells and found to differ
depending on the photosensitizer structure.

Temoporfin in a liposomal formulation was combined with
natural antioxidants derived from Pinus halepensis in an investi-
gation in mice to assess the use of such antioxidants to prevent
photosensitizer-induced (skin) photosensitivity (291). The combi-
nation allowed to eliminate the tumor in this murine prostate
cancer model while at the same time reducing photosensitivity.
Similar protective effects of P. halepensis extracts were observed
in in vitro experiments in the LNCaP prostate cancer cell line
(176). Korbelik er al. (273,275) investigated the combination of
temoporfin and a ceramide (LCL29) for PDT in a murine tumor
model with squamous cell carcinoma. They found that this com-
bination increased cancer cell apoptosis and long-term tumor
cure. In addition, specific changes in the sphingolipid profile
were observed during and after PDT (275). The authors also
addressed the role of ceramides and sphingosines in PDT in sev-
eral in vitro investigations (95,96,169,195,273,274).

In addition, the combination of PDT with antibody treatments
has been tested in murine models. Korbelik ez al. (284) analyzed
whether an immunodepletion of granulocytic myeloid regulatory
cells by administration of the anti-GR1 antibody would improve
the effect of PDT and PDT-generated anti-cancer vaccines. They
found that this strongly depended on the timeframe, immediately
after PDT the administration of the anti-GR1 antibody eliminated
the curative PDT effect in the mice, whereas after 1 h an
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increased tumor response was observed. Temoporfin PDT has
also been combined with chemotherapy and immune lympho-
cytes collected from mice pre-treated with PDT to cure advanced
L1210 tumors in mice, showing a synergistic anti-tumor effect
(297). A similar synergistic effect was observed for the combina-
tion of temoporfin PDT with the anti-VEGF antibody beva-
cizumab; however, only if PDT preceded the administration of
bevacizumab (281).

One of the fields, where the clinical use of PDT is explored is
liver cancer (see below). Wang er al. looked at temoporfin phar-
macokinetics, distribution and elimination in an orthotropic liver
cancer model in the rat in preparation for clinical investigations
(300). The plasma concentration over time could be fitted with a
two-compartment model. Tissue distributions showed the highest
accumulation in the tumor with a subsequent decrease to liver,
heart, spleen, muscle, and skin, the tumor-to-normal tissue local-
ization ratio being highest at 24 h. PDT with temoporfin was
studied in cell cultures and in mice bearing Lewis lung carci-
noma and effectively inhibited tumor growth and prolonged sur-
vival. However, tumors regained their growth potential after nine
days (200). PDT with temoporfin (0.6 mg kg™') and verteporfin
(1 mgkg ') was tested in a mouse xenograft model for
retinoblastoma, using an irradiation wavelength of 514 nm for
temoporfin and 689 nm for verteporfin. The retinoblastoma xeno-
grafts derived from different patient cell lines reacted differently
to the PDT treatment, with temoporfin showing a significant but
transient response and verteporfin PDT being effective in xeno-
grafts where temoporfin was not (295). Temoporfin has also been
investigated in mice with kidney tumors, suggesting it may be
suitable as a nephron-sparing therapeutic option for small tumors
(292).

While the majority of pre-clinical animal testing is done in
rodents, sometimes specific indications require different animal
models. e.g. Glanzmann er al. (309) assessed a sheep animal
model for a PDT treatment of esophagus lesions with temoporfin.
Sheep and human esophagus are closely comparable histologi-
cally and the pharmacokinetics of temoporfin were investigated
by blood sampling and fluorescence in vivo measurements using
the clinically approved dosage of 0.15 mg kg !. The maximum
temoporfin concentration in plasma was observed after 10 h, and
the maximum temoporfin fluorescence was observed in the oral
cavity between 30 and 50 h. As the sheep and human tissue sen-
sitivity to temoporfin PDT was found to be similar as well, the
model was deemed suitable for optimizing esophagus PDT with
temoporfin (309). In a similar way, the canine prostate was used
as a model to perform light dosimetry during interstitial PDT
with temoporfin (308). Again, temoporfin was used in a dose of
0.15 mg kg™"' and administered 72 h prior to illumination. The
PDT effect was assessed by magnetic resonance imaging, pathol-
ogy and histopathology of excised tissue. The results allowed to
determine a threshold dose of 20 to 30 J cm™2 to induce prostate
tissue necrosis.

Formulation development

Temoporfin is a quite lipophilic substance with an estimated
octanol-water partition coefficient (logP) of >9, rendering it prac-
tically water-insoluble (313). The combination of the tetrapyrrole
skeleton with NH-groups, together with the polar hydroxyphenyl
groups gives the molecule a high affinity to membranes, proteins

and lipoproteins, which is desirable with respect to the mode of
action — the photodynamic damage to tumor cell structures. The
affinity of temoporfin and other photosensitizers to membranes,
proteins, and lipoproteins is also important with respect to their
transport to the tumor tissue after intravenous administration
(42,314). However, this poses a challenge for their pharmaceuti-
cal formulation (315,316). Of course, the problem of the pharma-
ceutical formulation of highly lipophilic, water-insoluble drug
molecules is not unique to photosensitizers but a general issue
for many new drug substances (317,318).

The presently approved drug formulation of temoporfin
(Foscan®) is a solution of temoporfin in a mixture of ethanol
and propylene glycol (319). This formulation shows a delayed
pharmacokinetics profile, which is why the PDT treatment is per-
formed 96 hrs after injection (42,319). Hence, numerous publica-
tions deal with possible new formulations of temoporfin (see
below) (320,321). As for many other anti-cancer drugs, nanopar-
ticles and nanoparticle formulations play an important role in this
respect (322), often with reference to the EPR (enhanced perme-
ability and retention) effect (323,324). Hence, nanoparticles have
been specifically exploited as carriers for photosensitizers
(24,315,316,321,323,325-331). Apart from serving as carriers,
the nanoparticulate formulation of photosensitizers can addition-
ally be used to enhance the singlet oxygen generation (332) or
may be used to switch the operating photochemical mechanism
(333).

The studies related to the delivery of temoporfin via nanopar-
ticles have quite recently been reviewed expertly by Yakavets
et al. (320). Investigations on the incorporation of temoporfin in
nanoparticles cover a broad range of materials comprising sys-
tems such as extracellular vesicles (186,211,212), supramolecular
organic frameworks (99), or polymer-block-peptides (334,335),
hydrogels (336-338), as well as carrier systems for which there
is already considerable pre-clinical and clinical experience.
Examples for the latter are PLGA [poly(lactic-co-glycolic acid)]
(111,137,138) and HSA nanoparticles (132,189,190) and lipo-
somes (42,298,320) (Fig. 7).

Chitosan nanoparticles

mTHPP has been used as a model substance for temoporfin in
the incorporation into polymethacrylic acid (PMAA)-modified
chitosan nanoparticles finding a high loading capacity for the
substance and uptake into 14C cells (184). Temoporfin itself has
been incorporated into polyplex nanoparticles consisting of
sodium alginate and a chitosan polymer or oligomer (339). The
nanoparticle size distribution could be modified by the concentra-
tion of the solutions, order of addition, the ratio of addition and
the pH. Chitosan oligosaccharides were used in the formation of
core-shell nanoparticles loaded with temoporfin and targeted with
an RGD peptide to address integrin-rich tumors (214). The tar-
geted core-shell nanoparticles showed a deeper penetration into
U87MG tumor spheroids and had a higher anti-tumor efficacy
than non-modified nanoparticles in US§7MG tumor-bearing mice.
Recently, these nanoparticles were combined with checkpoint
inhibitors  (anti-PD-1/PD-L1  antibodies) for PDT and
immunotherapy for colorectal cancer inhibiting primary and dis-
tant tumor growth in mice (133). mTHPP—ethylcellulose/chitosan
nanoparticles have also been studied for their antibacterial action
(227).



Human serum albumin nanoparticles

Wacker er al. (189) reported on the preparation of temoporfin-
loaded HSA nanoparticles, the photophysical properties of which
were later investigated in more detail (188). For these particles, a
freeze-drying method was developed which is important with
respect to the storage of a future pharmaceutical formulation
(189). In photophysical investigations in D,O only particles with
low temoporfin loading generated singlet oxygen; however, in
Jurkat cells all formulations generated singlet oxygen suggesting
that the particles were successfully taken up by the cells releas-
ing temoporfin (188,189). The release of temoporfin from the
HSA nanoparticles was found to occur via lysosomal decomposi-
tion of the nanoparticles with the HSA nanoparticles exhibiting a
higher phototoxicity than free temoporfin (190). Quite recently,
an optimized protocol for albumin nanoparticles loaded with
temoporfin was published making use of the nanoparticle
albumin-bound (nab)-technology which is also applied for the
medicinal product Abraxane®. The nanoparticles were effec-
tively taken up in the TFK-1 cholangiocarcinoma cell line and
showed high phototoxicity (132). Recently, pulsed dipolar elec-
tron paramagnetic resonance (EPR) has been used to investigate
the binding of mTHPP to BSA (bovine serum albumin) and iden-
tified the proton-rich pocket of HSA subdomain IIIA and the
main binding site (340).

PLGA nanoparticles

The incorporation of photosensitizers in nanoparticles often
results in a reduced dark (cyto)toxicity compared to the free pho-
tosensitizer. The same was also observed for the incorporation of
temoporfin in PLGA nanoparticles (137). The lysosomal decom-
position and release of the temoporfin were faster for PLGA than
for HSA nanoparticles (341). Rojnik et al. (111) compared pegy-
lated and non-pegylated PLGA nanoparticles in cells and in
mice. Both kinds of nanoparticles were found to be distributed in
the cytoplasm in MCF10AneoT cells shortly after incubation
with a preference for endoplasmic reticulum and Golgi apparatus,
whereas at later time points temoporfin fluorescence was
observed in lysosomal-endosomal compartments. Differences
were observed for in vivo distribution, e.g. in colon tissue the
temoporfin delivery was highest for the pegylated PLGA
nanoparticles whereas in lung tissue it was highest for the non-
pegylated nanoparticles (111). The rational design and scale-up
manufacture of temoporfin-loaded pegylated PLGA nanoparticles
has been investigated in more detail, again revealing reduced
dark toxicity but efficient phototoxicity of the final formulation
(138). The nanoparticles also exhibited an altered pharmacoki-
netic behavior: With Foscan®, precipitation of the compound at
the injection site (the tail vein) and a delayed distribution was
observed. This was not the case for the nanoparticle formulation
(138). Temoporfin-loaded PLGA nanoparticles were employed
for the fabrication of core-shell nanoparticles with a temoporfin-
PLGA-core and an albumin shell (126). Similar systems were
prepared with mTHPP (342). Boeuf-Muraille et al. (198) found
in in vitro release studies in a buffer of temoporfin-loaded PLGA
nanoparticles that approx. 50% of temoporfin was retained in the
nanoparticles after 5 days. Cell testing in the murine C6 glioma
cell line revealed apoptosis as the main cell death mechanism.
Elberskirch et al. (226) used the HET-CAM model with the
duodenum adenocarcinoma cell line HuTu-80 employing
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temoporfin-loaded PLGA nanoparticles as well as nanoparticles
with two porphyrin-based photosensitizers, finding that the model
was suitable to simulate in vivo endoscopic irradiation. PLGA
nanoparticles coated with a phospholipid bilayer have also been
tested for co-encapsulation of temoporfin and a chemotherapeu-
tic, exhibiting an additive effect against a retinoblastoma cell line
(183).

Polymer systems

Different polymer systems (343) have been used for the encapsu-
lation of mTHPP (344) and temoporfin and for studying the PDT
effect of the resulting nanoparticle formulations. Temoporfin has
been loaded on Eudragit® nanoparticles — which is an approved
pharmaceutical ingredient — and up-scaling for this formulation
has been investigated (185). In addition, the drug release from
these particles was studied using mathematical models (345).
One of the advantages of polymeric carriers is the broad varia-
tion of functionalities allowing the inclusion of specific linkers
that enable the release of — sometimes covalently bound — photo-
sensitizers based on specific triggers (346). pH-sensitive nanopar-
ticles based on hyperbranched polyglycerol and 2-
(diisopropylamino)ethyl methacrylate loaded with temoporfin
have been prepared (63,139) while polyglycerol-based nanogels
with the temoporfin congener mTHPP have also been specifically
tested for dermal delivery (347). Such systems are of interest for
the local administration of photosensitizers specifically in skin
cancer (348). Systems with a disulfide linker have been prepared
as well, which make use of the difference in the redox potentials
between the cellular membrane and the bloodstream (50,63). It is
known that the bloodstream has a global potential that is mildly
oxidative whereas the intracellular potential is mildly reductive
(63).

Recently, the concept of light-responsive polymers (349) as
delivery systems for temoporfin has come into focus (148).
Light-sensitive polycarbonates were combined with PLGA to
encapsulate temoporfin. Light-induced nanoparticle degradation
then led to the local release of the photosensitizer. Upon irradia-
tion, with UV light a decreasing particle count rate and an
increased release of temoporfin compared to standard PLGA
nanoparticles were found (350). Pegylation was used to obtain
particles with mucus-penetrating properties (351,352) for intesti-
nal PDT (147). Later this concept was extended to other poly-
mers (140).

Temoporfin has also been incorporated in polymeric micelles
based on different polymers. For example, Fang er al. (192) pre-
pared styrene maleic acid copolymer micelles loaded with temo-
porfin and tested their in cell cultures and in mice. They
observed a lower dark toxicity in vitro and reduced side effects
in vivo; concomitantly, the polymeric micelles maintained their
antitumor PDT effect longer as compared to free temoporfin.
Similar results were obtained for poly(2-ethyl-2-oxazoline)-b-
poly(D,L-lactide) diblock copolymer micelles loaded with temo-
porfin (141). For folate-conjugated polymeric micelles loaded
with temoporfin, an enhanced PDT efficacy compared to free
photosensitizer or polymeric micelles without folate conjugation
was observed in in vitro and in a murine model (94). Polymeric
micelles based on e-caprolactone have been described in several
publications. Wennink ez al. (196) prepared specific temoporfin-
loaded e-caprolactone micelles which were degraded faster by
macrophages than by endothelial cells thereby releasing
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temoporfin and exhibiting higher phototoxicity for this cell type
— in the context of a selective macrophage elimination by PDT.
However, as the temoporfin was found to be rapidly released
from the micelles in plasma this selectivity could not be
exploited in vivo. e-Caprolactone micelles loaded with temo-
porfin were also tested in two other in vivo investigations in mice
investigating the effect of aromatic groups on the polymer (101)
as well as that of dithiolane-crosslinking and pegylation (280).
The presence of aromatic groups in the polymer and non-
crosslinked micelles resulted in higher temoporfin retention. This
polymeric micelle approach has also been employed to produce
antibody-nanoparticle conjugates with a Llama or an EGFR-
targeted antibody (102,156).

Peptides

Peptides have been used for a long time as targeting units for
photosensitizers (353). However, the combination of peptides
and polymers has also been exploited as drug transporters for
temoporfin. Ahmadi et al. (103) used amphiphilic block-co-
polypeptides as carriers for dermal drug delivery, again taking
the temoporfin congener mTHPP as a model drug. In another
approach polymer-block-peptides were exploited for drug deliv-
ery. Combinatorial chemistry methods were used to select small
peptide sequences to specifically bind small drug molecules,
using temoporfin as an example (334,335,354-357).

As in many other cases, temoporfin proved to be a very suit-
able compound for investigating the encapsulation of hydropho-
bic drug molecules in nanoformulations, as its encapsulation and
release can easily be followed by means of optical spectroscopy
(355). The loading capacity of the formulation as well as release
kinetics were found to be strongly influenced by the specific pep-
tide sequence, and transfer from the nanoformulation to BSA, as
a model for HSA, could be observed (355). Switchable release
profiles with these systems could be realized by introducing
disulfide linkers into the peptide sequence (334) and the pharma-
cokinetics could be further modified by PEGylation (335,354).
The concept has also been applied to the preparation of nanogels
suitable for dermal drug delivery (356). The utility of the con-
cept was further tested by comparing the solubilization of three
related tetrapyrrole-based photosensitizers, temoporfin, chlorin eg,
and pheophorbide a, finding significant binding capacity differ-
ences (357). Apart from peptides, the concept was additionally
investigated, using temoporfin as a model drug, with lipid-DNA
(143), thiolactone polymers (358), peptoid sequences (359), and
alternating co-polymers (360).

Resonance energy transfer can be used to excite photosensi-
tizer molecules. This has been exploited in mTHPP containing
quantum dots (361,362) and the combination of semiconducting
polymer dots (Pdots) with temoporfin. Zhang et al. (120) pre-
pared Pdots functionalized with folic acid and horseradish perox-
idase. The fluorescent polymer backbone served as a light
antenna and as a hydrophobic carrier for temoporfin. In this sys-
tem, after luminol-H,O, activation, indications for chemolumi-
nescence resonance energy transfer were found. In another
system, Pdots with coatings of different pegylated lipids were
synthesized, the polymer backbone serving again as the light
antenna and the lipid coating ensuring close contact to the photo-
sensitizer temoporfin, enabling efficient fluorescence energy
transfer (121,363). Both compositions were effectively taken up
in cancer cells (120,121,363).

Extracellular vesicles

Extracellular vesicles (EVs) have recently found considerable
interest as new carrier systems (364). Aubertin et al. (180)
showed that PDT with temoporfin as well as chemotherapeutic
treatment with doxorubicin resulted in a high production and
release of extracellular vesicles from cancer cells, an effect that
was also observed in vivo in mice. The effect was more pro-
nounced for PDT than for chemotherapy (180). Such cell-
released vesicles could be loaded simultaneously with temoporfin
and magnetic nanoparticles (164). Piffoux et al. (186) prepared
extracellular vesicles loaded with temoporfin and iron oxide
nanoparticles as theranostic agents for PDT, MRI and hyperther-
mia and compared different methods for their production. They
identified starvation of cells in a serum-free medium followed by
ultracentrifugation as a suitable method for production and purifi-
cation of the vesicles. The same authors later modified the extra-
cellular vesicles by fusion with liposomes (187). Loading with
hydrophobic or hydrophilic molecules was possible without leak-
age of the intrinsic load of the vesicles. Temoporfin-loaded extra-
cellular vesicles have been compared to liposomal temoporfin in
multicellular tumor spheroids and in vivo in HT29 xenografted
mice (211,212). The authors observed deeper penetration of
temoporfin into the tumor spheroids and an improved biodistribu-
tion and PDT efficacy in vivo (212). In the context of a PDT-
immunotherapy combination extracellular vesicles have been pre-
pared from mesenchymal stem/stromal cells targeting peritoneal
metastasis in mice, where the authors observed a promotion of
antitumor immune cell infiltration in addition to the primary
PDT effect (201). Temoporfin-loaded extracellular vesicles have
also been tested in comparison to a liposomal temoporfin formu-
lation and a liposomal formulation additionally containing
cyclodextrin-bound temoporfin (see also below) (219). In this
investigation of stroma-rich head and neck cancer tumor spher-
oids (220) the extracellular vesicles demonstrated the highest
loading capacity and deep penetration into the tumor spheroids
(219).

Cyclodextrins

Pronounced differences in pharmacokinetics in mice were
observed between free temoporfin and temoporfin inclusion com-
plexes with cyclodextrins (CDs) (144). The photosensitizer forms
1:2 inclusion complexes with [-cyclodextrins in a 2-step-
mechanism (365). With temoporfin-f-cyclodextrin complexes, a
faster and increased accumulation in the tumor of HT29 tumor-
bearing mice were found, together with a decreased level of
temoporfin accumulation in skin and muscles (144). The release
of temoporfin from the CD inclusion complexes and transfer to
serum components could be studied making use of the Soret
band shape which was found to be sensitive to changes in the
immediate surroundings of the molecule (366). However, other
optical methods amended by computational modelling can be
used for such analyses (367,368). Similar to the above-
mentioned extracellular vesicles, B-cyclodextrin complexes led to
a higher accumulation and deeper penetration in HT29 multicel-
lular tumor spheroids compared to free temoporfin (210). How-
ever, the temoporfin—f-CD complexes are sensitive to dilution;
therefore, hyper-crosslinked cyclodextrin monomers were pre-
pared, capable of forming inclusion and non-inclusion complexes
(221). With mTHPP it was shown that covalently linked PS-f-



cyclodextrin compounds had better PDT activity in vitro against
glioblastoma cells compared to inclusions complexes (369). The
affinity of temoporfin to cyclodextrin could also be influenced by
methylation of the cyclodextrin carrier (129,365). Temoporfin
and B-cyclodextrins have also been combined with liposomes as
a second carrier to obtain ‘drug-in-cyclodextrin-in-liposome’
nanoparticle systems. In these, most of the temoporfin was bound
to cyclodextrins in the inner aqueous liposome core (370). Later
this system was modified to obtain lipid vesicles containing
temoporfin B-cyclodextrin inclusion complexes in the inner aque-
ous core as well as lipid compartments of the vesicles (145).
However, in an in vivo test in mice with xenografted HT29
tumors, the PDT efficacy was similar to that of a liposomal
temoporfin formulation (145).

Lipid nanoparticles

Lipid nanoparticles (371) have been used as carrier systems for
temoporfin as well. Navarro et al. (122,123) reported on the
preparation, characterization and cell testing of solid lipid
nanoparticles encapsulating temoporfin. The lipid nanoparticles
were composed of a lipid core, stabilized by phospholipids and
pegylated surfactants. The temoporfin-loaded lipid nanoparticles
exhibited photocytotoxicity in MCF7 cells; however, there was
also some toxicity induced by the empty lipid nanoparticles. Hin-
ger et al. (223) evaluated these lipid nanoparticles in two differ-
ent sizes (50 and 120 nm) in 3D CAL-33 cancer cell spheroids,
where the 50 nm lipid nanoparticles exhibited the same PDT effi-
cacy as free temoporfin. Later, the same authors compared the
temoporfin-loaded lipid nanoparticles with the approved drug for-
mulation (Foscan®) and a liposomal formulation (Foslip®, see
below) in CAL-33 tumor-bearing mice (283). With respect to
tumor response, Foslip® gave the best results, whereas the
temoporfin-loaded lipid nanoparticles were better tolerated and
gave less side effects. Brezaniova et al. (127) compared the
in vitro and in vivo efficacy of 1-tetradecanol-based and co-
polymer stabilized solid lipid nanoparticles loaded with temo-
porfin with Foscan®. In the experiments in mice, certain formu-
lation variants performed considerably better than the approved
drug formulation. However, partial tumor relapse was observed,
mostly at the periphery of the original tumor (127). Rad et al.
(191) compared temoporfin-loaded lipid vesicular (liposomal)
and discoidal nanoparticles with and without folate targeting for
their PDT efficacy in cellular assays and in mice. The authors
found a clear morphology effect with the folate-decorated dis-
coidal nanoparticles being more effective than the folate-
decorated vesicular nanoparticles.

In a combined photothermal and PDT approach oil droplet
nanoparticles were loaded with temoporfin and the photothermal
agent IR780 (202). The combined photothermal/PDT efficacy
was investigated in vitro and in vivo. Irradiation at 808 nm (for
IR780) and 660 nm (for temoporfin) effectively suppressed
tumor growth in TRAMP-C1 tumor-bearing mice. Lipid nanopar-
ticles have also been used in release studies (372,373). Trimyris-
tin lipid nanoparticles or phospholipid liposomes were loaded
with substances of different polarity, including temoporfin, and
transfer from these donor nanoparticles to oil-in-water emulsions
was studied by flow cytometry and separation of donor and
acceptor by ultracentrifugation (372). Flow cytometry proved to
be a suitable method to investigate dye transfer.
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Inorganic nanoparticles

Inorganic nanoparticles have been used for loading with or
encapsulation of temoporfin, e.g. temoporfin PDT and fluores-
cence imaging have been combined with RGDfK peptide target-
ing in CAL-27 cells and in mice with calcium phosphate
nanoparticles (170). Haimov et al. (53) covalently conjugated
temoporfin to gold nanoparticles and tested their PDT efficacy in
SH-SY5Y human retinoblastoma cells. Temoporfin has been
loaded on maghemite nanoparticles and magnetic targeting fol-
lowed by PDT was investigated in mice (128). Silva et al. (164)
prepared cell-derived vesicles loaded with temoporfin and mag-
netic nanoparticles and tested them in vivo in a murine tumor
model. The distribution in the animals could be followed by flu-
orescence as well as MRI. Temoporfin and iron oxide nanoparti-
cles were also incorporated in liposomes — temoporfin in the
lipid bilayer and the iron oxide particles in the aqueous core —
and these liposomes were successfully tested on mice for a com-
bined hyperthermia-PDT application (172). Shah et al. (104)
used a similar approach of liposomes incorporating temoporfin
and magnetite nanoparticles but additionally encapsulated the
chemotherapeutic doxorubicin. They investigated the separate
and combined effect in HeLa cells finding the combination to be
more effective than the individual treatments. Silva et al. (216)
employed cell-derived vesicles to load them with doxorubicin, a
tissue-plasminogen activator and the two photosensitizers temo-
porfin and disulfonated tetraphenylchlorin (Fimaporfin, TPCS,,).
They could show in vitro, using photosensitizer fluorescence, that
the microvesicles are taken up by cancer cells (SKOV-3, TC1
and PC-3 cells) and that the vesicles can be magnetically manip-
ulated. The two photosensitizers localize in different cellular
compartments; temoporfin was found in the cytoplasm whereas
TPCS,, accumulated in endosomes (181). Silica nanoparticles
have successfully been tested as well in vitro (157,194) and
in vivo (194) as carriers for temoporfin. In the in vivo tests in
mice, it was found that the temoporfin-loaded silica nanoparticles
were able to cross the blood-brain barrier (194). Silica nanoparti-
cles containing carbon dots have also been simultaneously loaded
with temoporfin and a nitric oxide photodonor (374). Hsu et al.
(112) prepared luciferase-immobilized quantum dots which were
activated by addition of coelenterazine. These bioluminescent
quantum dots served as an internal light source for temoporfin
PDT. The PDT effect was studied in cancer cell cultures and in
mice. In vivo, a delayed tumor growth due to tumor cell apopto-
sis was observed (112). Yu et al. (49) performed a chemical
modification of temoporfin with 4-(bromomethyl)benzoic acid to
connect it to the surface of LiYE,;Tm>'/Yb®>" upconverting
nanoparticles. Upon irradiation, with light of 980 nm the parti-
cles generated singlet oxygen and photocytotoxicity in HeLa
cells was detected. Timor er al. (375) reported on the solubiliza-
tion of CdSe/CdS quantum rods by decoration with lecithin and
pegylated phospholipids. This solubilizing layer was capable of
carrying temoporfin allowing close contact with the quantum
rods and enabling efficient fluorescence resonance energy trans-
fer and singlet oxygen generation.

Liposomes

Liposomes are by far the carrier system employed most widely
for the pharmaceutical formulation of temoporfin (320). This is
not unexpected as liposomes are long established as carrier
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systems for pharmaceuticals, including anti-cancer drugs (376—
378), and are of specific interest as carriers for photosensitizers
(379-384). Moreover, liposomes carry the option of additional
functionalization for drug targeting (378,379,385,386). Lipo-
somes are unilamellar vesicles consisting of an aqueous core sur-
rounded by a lipid bilayer. This structure allows hydrophilic
compounds to be included in the aqueous core or lipophilic com-
pounds to be incorporated in the lipid bilayer (377,386). Of
course, both functions can be combined to simultaneously trans-
port hydrophilic compounds in the aqueous core and lipophilic
compounds in the lipid bilayer (see also the examples mentioned
above). Temoporfin as a lipophilic membrane-affine compound is
transported in the lipid compartment of the liposomes (145,368).
The interaction of temoporfin with the liposomal membrane has
also been studied by computational methods (259).

From a practical point of view, liposomes have the additional
advantage that they can be freeze-dried — with the addition of
suitable cryo-protectants — and then re-constituted prior to use,
which is beneficial with respect to transport and stability. Visu-
dyne®, which contains the photosensitizer verteporfin as the
active substance and is used in the treatment of the age-related
macular degeneration, is such a freeze-dried liposomal formula-
tion to be re-constituted before administration to the patient
(387). Various liposomal formulations of temoporfin have been
prepared and related photosensitizers have been incorporated into
liposomes as well (226), e.g. the temoporfin analogue temocene
(78). There is also a special interest in liposomal formulations
with respect to applications in dermatology and topical delivery
(371,384,388,389).

Two liposomal temoporfin formulations are often mentioned
in the publications under their tradenames, one is Foslip®, the
other is Fospeg®. Foslip® are unilamellar vesicles (liposomes)
consisting of dipalmitoylphosphatidylcholine (DPPC) with the
addition of 10% dipalmitoylphosphatidylglycerol (DPPG) and
temoporfin at a concentration of 1.5 mg mL™". The molar drug:
lipid ratio is approximately 1:12 (290,320,390). Fospeg® is simi-
lar to Foslip®, but additionally contains pegylated lipids (290).
Incorporation of temoporfin in liposomes (or other carrier sys-
tems) changes the optical properties of temoporfin (265,368) and
can alter the cellular response compared to simple administration
of the PS (182). On the other hand, the properties of the phos-
pholipid membrane are also affected by temoporfin (390,391).

Temoporfin-loaded liposomes based on
dipalmitoylphosphatidylcholine/-glycerol have a phase transition
temperature near body temperature (390). Computational studies
suggested that temoporfin in the lipid membrane acts as a hydro-
gen donor in hydrogen-bonding interactions with the polar
groups of the phospholipids (259). The generation of singlet oxy-
gen of the photosensitizers temoporfin, fimaporfin (TPCS,,) and
chlorin es — which was similar in ethanolic solution — is different
when incorporated into liposomes (265). As liposomes serve as
carrier system for the photosensitizer the release and transfer of
temoporfin from liposomes to acceptor compartments, to mem-
branes, or to plasma components, has been extensively studied.
Different methods have been employed to study this transfer,
e.g. optical methods (392,393), radioactively labelled temoporfin
or lipids (391,394-396) or by flow-field-flow fractionation
(391,394,397,398). The latter method has also been used for
related tetrapyrrole systems (399—401). Flow field-flow fractiona-
tion was found to reliably recover liposomes loaded with temo-
porfin (drug recovery ~ 80%); however, drug loss was much

higher for drugs with a lower octanol-water partition coefficient
397).

Methods to rapidly screen and characterize different liposomal
formulations, e.g. for size and incorporation efficiency, have
been developed as well (402). Chen et al. investigated the trans-
fer of a hydrophilic model drug (carboxyfluorescein) and temo-
porfin from vesicular systems to skin in vitro. They found the
vesicular systems capable to improve the transfer of carboxyfluo-
rescein into the skin, but not for temoporfin (403). Hefesha et al.
(404) analyzed the transfer mechanism of temoporfin between
liposomal membranes of different compositions. Finding appar-
ent first-order Kinetics, the transfer rates strongly depended on
temperature, with positively charged donor liposomes exhibiting
faster transfer than negatively charged ones. The maximum
amount of temoporfin transferred was nearly the same in both
cases and a model describing the release kinetics was developed
(405). A strong influence of the membrane composition on temo-
porfin release was observed in other investigations as well (394).

The rigidity of the liposomal membrane can be influenced by
membrane additives. A comparative investigation of cholesterol
and temoporfin as membrane additives revealed that cholesterol
increases the rigidity of the membrane whereas temoporfin low-
ers it (391,396,398). Reshetov et al. compared the transfer of
temoporfin from pegylated and non-pegylated liposomes to pro-
teins and model membranes (406,407). Using fluorescence
quenching and fluorescence polarization they determined that in
Fospeg® a part of the temoporfin is also in the PEG shell and
not only in the lipid bilayer. They stated that at short incubation
time redistribution from Foslip® and Fospeg® occurred via drug
release and liposome destruction whereas at longer periods drug
release is dominant (407). In a similar investigation on the trans-
fer of temoporfin from pegylated liposomes to human plasma
proteins, the authors additionally evaluated phosphatidyl oligo-
glycerols. These alternatives to pegylated lipids resulted in a
lower transfer rate compared to pegylated liposomes (396). Using
“C-labelled temoporfin in transfer experiments with human
plasma, Kaess and Fahr could show that approximately 15% of
temoporfin is retained in the liposomes after 48 h (395). The
main acceptors in plasma were HDL and LDL, whereas albumin
played only a minor role (395,397). Recently, a dispersion relea-
ser technology combined with a four-step-model has recently
been described for such release experiments using temoporfin
and temoporfin-loaded liposomes as the test systems (408).

The pharmacokinetics of liposomal temoporfin were investi-
gated in mice (298) and in rats (299,302). A study in mice bear-
ing EMT6 xenografted tumors with i.v. administration of 0.3
mg kg~' temoporfin (as Foslip®) found that plasma pharmacoki-
netics and biodistribution could be described with a three-
compartment model. The highest tumor-to-muscle ratios for
temoporfin were observed at 6 and 15 h post administration with
the best tumor response for 6 h DLI (298). In a pharmacokinetic
investigation in rats using fluorescence detection with the
window-chamber tumor model at a temoporfin dose of 0.15
mg kg~' de Visscher et al. (302) compared Foscan®, Foslip®
and Fospeg®. They observed maximum tumor fluorescence at 8
h for Fospeg® and at 24 h for Foscan® and Foslip® with higher
fluorescence from the liposomal formulations, suggesting a
higher bioavailability for these formulations. Similar results were
obtained by de Visscher er al. (299) with the 4NQO carcinogene-
sis model in rats. Fospeg® showed higher fluorescence differ-
ences in tumor vs. normal tissue at earlier time points. Decker



et al. (409) studied the pharmacokinetics of temoporfin and the
lipid carrier in rats using radioactively labelled compounds. The
pharmacokinetic data showed that part of the temoporfin is
released from the liposomes before leaving the bloodstream. This
release increased with decreasing bilayer fluidity. Liposomes
modified with pegylated lipids or oligo-glycerols showed an
increased temoporfin loss from the liposomal carrier (409,410).

Other pharmacokinetic studies of Foslip® have been reviewed
earlier (42). Additionally, predictive models for pharmacokinetics
and biopharmaceutics have been developed using Foslip® and
Fospeg® as test formulations (411,412). Comparing the simula-
tion to the plasma-concentration-time profiles from a phase I clin-
ical trial with Foslip®, the authors showed that their model was
able to adequately describe the pharmacokinetic profile in humans
(411). Xie et al. (293) developed a method to quantify temoporfin
from Fospeg® in HT29 tumor-bearing mice tissue samples using
fluorescence imaging and correlated this with HPLC determina-
tion after tissue extraction. For Fospeg®, a higher plasma peak
concentration, a longer circulation time, and a better tumor-to-
skin ratio compared to data for Foslip® were found (287). Reshe-
tov et al. compared Foslip® and Fospeg® with respect to, e.g.
pharmacokinetics, tumor uptake and PDT efficacy in vitro an in
HT29 tumor-bearing mice (290). Temoporfin release from
Foslip® was found to be faster than from Fospeg®. The highest
temoporfin levels were found in the spleen and liver for both for-
mulations. The highest concentration in the tumor was reached
earlier for Fospeg® (6 h) than for Foslip® (15 h).

The PDT efficacy testing of Foscan® and Fospeg® in the
LNCaP prostate cancer cell line revealed a higher temoporfin flu-
orescence and a higher photocytotoxicity after incubation with
Fospeg® (177,178). Foslip® was found to be effective in 5-
fluorouracil-resistant HT29 cancer cells (209), similar to results
with temoporfin in HCT116 cells (208). An increased tumorici-
dal effect for Fospeg® compared to Foslip® has been observed
in the EMT6 CAM model (413). In comparative in vivo tests in
MC28 tumor bearing rats with Foscan® and temoporfin-loaded
liposomes with different degrees of pegylation, the latter reached
the maximal tumor-to-skin ratio at earlier time points and also
resulted in higher tumor necrosis (301). A higher PDT efficacy
of liposomal temoporfin was also found in tests in CAL-33
tumor bearing mice (283). Related studies in osteosarcoma cells
and osteosarcoma mouse models (217,218) revealed an immune-
system dependent suppression of lung metastasis in the K7M2L2
mouse tumor model (217). Liposomal temoporfin and hypericin
were tested in combination on head and neck SCC, finding syn-
ergistic effects of the combination (97,98). An investigation in
HeLa tumor cell spheroids found temoporfin fluorescence from
all three formulations (Foscan®, Foslip®, Fospeg®) only in the
outer cell layer of the spheroids, with a little higher accumulation
for the liposomal formulations (205). The liposomal delivery of
temoporfin reduced dark toxicity effects (205). A lower dark tox-
icity for temoporfin in pegylated liposomes was also observed in
cellular assays in CCD-34Lu fibroblasts and in A549 lung cancer
cells (113). Temoporfin PDT with Fospeg® effectively triggered
apoptosis in HT29 tumor cells (146). It has also been used
against nasopharyngeal carcinoma cells and tumor spheroids
(165-167) and Huh7 hepatocellular carcinoma (160). A photo-
chemical internalization approach in um-scc-U2 and um-scc-US8
head and neck cancer cells showed the cytotoxicity of bleomycin
to be considerably increased when PDT with Foslip® and
Fospeg® was performed prior to the treatment with the drug
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(159). Low-dose PDT with liposomal temoporfin reduced tumor
growth in a colitis-associated murine carcinogenesis model (289).
This low-dose PDT had a strong effect on inflammatory markers
and was able to effectively decrease inflammation.

Apart from pegylation, other modifications have been used in
connection with liposomal temoporfin formulations. e.g. temo-
porfin has been studied in DPPC monolayers investigating the
effect of folate conjugation (414). A comparison of pegylated
liposomes loaded with temoporfin with and without folate-
targeting showed that folate-modified liposomes are taken up
more in folate receptor-positive cells (114). In a similar study
transferrin-conjugated liposomes loaded with temoporfin were
tested with transferrin receptor-positive OE21 esophageal cancer
cells. In this case, an increased uptake or increased photocytotox-
icity could not be observed (158). ROS generated by the photo-
sensitizer can in principle also attack the carrier system, e.g. the
lipids of liposomal carriers. This has been used as an option for
photo-triggered liposome membrane alteration with several pho-
tosensitizers, including mTHPP (415).

The addition of gemini surfactants (dimeric surfactants) was
tested as a measure to improve the delivery efficiency of
temoporfin-loaded liposomes (215). Recently, tetraether liposomes
were proposed as a new carrier system for temoporfin (174).
Another option for modifying the liposomes is the combination of
two carriers, like in the abovementioned cyclodextrin-liposome
systems, where temoporfin was complexed by cyclodextrin within
the aqueous core of the liposome (370) or additionally included in
the lipid compartment of the liposomal carrier (145). Of course,
liposomes can be used to combine two therapeutic or diagnostic
principles as well. For example, PLGA nanoparticles containing
the chemotherapeutic pirarubicin have been coated with a lipid
bilayer loaded with temoporfin (175). These dual function particles
were then tested in SKOV3 ovarian tumor cells and in mice. The
in vitro tests suggested a synergistic effect (175). As already dis-
cussed above with the inorganic nanoparticles, liposomes have
been loaded with temoporfin in the lipid bilayer and iron oxide par-
ticles in the aqueous core for combined hyperthermia-PDT applica-
tion (172). In a similar approach, liposomes incorporating
temoporfin and magnetite nanoparticles were prepared encapsulat-
ing additionally the chemotherapeutic doxorubicin, thus combining
PDT, chemotherapy and hyperthermia (104).

Temoporfin has also been incorporated into liposomes with
additives to enhance the penetration properties, e.g. to allow i.a.
better skin penetration (384). Skin penetration has been investi-
gated with neutral, anionic and cationic flexible liposomes based
on phosphatidylcholine (416). Of these, cationic liposomes, con-
taining additional stearylamine showed the highest penetration
efficacy. As an alternative temoporfin-containing liposomal gels
were prepared using carbomer as the gelling agent (417,418).
So-called invasomes (419) containing ethanol and terpenes as
penetration enhancers have been investigated in a series of publi-
cations (142,388,420,421). The effect of the different enhancers
was analyzed, e.g. with respect to ethanol as a penetration enhan-
cer the formulation with the highest ethanol content (20%) had
the highest penetration efficacy, and the PDT efficacy was evalu-
ated in cellular assays against HT29 and A431 tumor cells
(142,388,421).

Liposomal formulations of temoporfin have also been tested
for photodynamic antimicrobial chemotherapy (see also ‘Antimi-
crobial PDT’). Garrier er al. (294) tested collagen and collagen
incubated with Foslip® as a means for wound healing in a
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murine model. The mice implanted with temoporfin-treated colla-
gen and subsequent illumination showed earlier scab detachment
and elastin neosynthesis. PDT with liposomal temoporfin in com-
bination with hypericin has been used against cariogenic bacteria
the Streptococcus mutans and Streptococcus sobrinus (235), and
PDT with temoporfin in the liposomal formulation was tested on
Enterococcus faecalis which is often found in endodontic infec-
tions (229,422). With 10 um of temoporfin a bacterial reduction
(measured in CFU, colony forming units) of E. faecalis of 5.8
log units was achieved (229). Engelhardt er al. (234) tested
water-soluble  formulations of hypericin and temoporfin
(Fospeg®) as aqueous sprays for the inactivation of Staphylococ-
cus aureus. With 100 nm of photosensitizer, a bacterial count
reduction of 4-5 log units was observed. In terms of a better bac-
terial targeting Yang et al. (231,232) modified temoporfin-loaded
liposomes either with an antimicrobial peptide or with a lectin
(wheat germ agglutinin) and tested them on S. aureus and Pseu-
domonas aeruginosa. Photodynamic antimicrobial chemotherapy
with these modified liposomes was highly effective against S.
aureus and partly effective against P. aeruginosa.

Other nanoparticular formulations

The title compound has been used with some other nanoparticu-
lar formulations. For example, it has been combined with carbon
nanotubes for a synergistic PDT and photothermal approach
(173). In this investigation in SKOV3 ovarian cancer cells a syn-
ergistic effect was detected based on the induction of different
apoptosis signaling pathways by PDT and the photothermal treat-
ment. Nanoparticles of different sizes have also been prepared
from neat temoporfin (197). The nanoparticles were produced
either by dissolution in an organic solvent (ethanol, DMSO) fol-
lowed by precipitation with distilled water and ultrasound treat-
ment or by direct ultrasound treatment of temoporfin powder
(197). These crystalline temoporfin nanoparticles were more effi-
ciently taken up in macrophages (J774A.1 cells) than in 1929
fibroblast cells. Later it was found that PDT with these temo-
porfin nanoparticles can induce a phenotypic shift in macro-
phages (163). Dissolution from temoporfin nanocrystals has been
analyzed using mathematical models (423). In another combina-
torial approach, temoporfin and a nitric oxide photodonor have
been incorporated into calix[4]arene nanoassemblies (424). Upon
visible light excitation, the nanoconstruct was able to indepen-
dently release nitric oxide and singlet oxygen. Recently, nanopar-
ticles consisting of supramolecular organic frameworks and
temoporfin have been prepared and tested in cell cultures and
in vivo in mice (99). The nanoparticles showed photo-
cytotoxicity in several cancer cell lines and were able to suppress
tumor growth in mice. In a theranostic approach, Sun er al. pre-
pared cRGD-modified liposomes encapsulating oxygen-carrying
perfluorocarbon and temoporfin, these liposomes then being
loaded into living neutrophils (224). These modified neutrophils
served as sonosensitizers and effectively suppressed tumor
growth in mice. Imaging of the tumors was realized by temo-
porfin fluorescence detection and perfluorocarbon-microbubble
enhanced ultrasound imaging.

CLINICAL EXPERIENCE

Temoporfin is the active substance in the medicinal product
Foscan® which is authorized in 2001 in the European Union for
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the palliative treatment of head and neck cancer. The standard
dosage in this treatment is 0.15 mg per kg body weight. Illumi-
nation is performed with laser light at 652 nm (425). Temoporfin
is one of the few photosensitizers authorized for clinical use in
the European Union (245,426,427). Others are padeliporfin
(Tookad®) (428), verteporfin (Visudyne®) (429) or ALA (5-
aminolevulinic acid hydrochloride, Ameluz®) (430), all of those
being authorized via the centralized procedure with the European
Medicines Agency (EMA) (431). Padeliporfin is authorized for
the treatment of low-risk prostate cancer, verteporfin for the
treatment of the so-called ‘wet’ form of age-related macular
degeneration, and ALA for the treatment of actinic keratoses and
basal cell carcinoma. A different medicinal product, also contain-
ing ALA as the active substance, Gliolan®, is authorized in the
European Union for intraoperative fluorescence diagnosis of
tumorous tissue in the surgery of malignant glioma (432). The
photosensitizer fimaporfin (Amphinex®) has received an orphan
drug designation by the EMA (433) for the treatment of cholan-
giocarcinoma in combination with the chemotherapeutic gemc-
itabine (434). Fimaporfin (disulfonated tetraphenylchlorin,
TPCS,,) enhances the effect of gemcitabine via photochemical
internalization (PCI) (67,435). The well-known photosensitizer
porfimer sodium is authorized in some European countries for
the treatment of cholangiocarcinoma. Worldwide, numerous other
photosensitizers are authorized for clinical use or are under clini-
cal development. Examples are tin ethyl etiopurpurin
(Purlytin®), motexafin lutetium (Antrin®), radachlorin, talaporfin
(Laserphyrin®) or redaporfin (426,436—438).

During its development temoporfin, like other photosensitiz-
ers, has been investigated for the treatment of numerous indica-
tions, mainly certain forms of cancer (42,43). This development
continues after the marketing authorization. Based on the estab-
lished level of quality and safety shown in the original market-
ing authorization new indications can be explored in clinical
studies. For example, verteporfin which - being authorized for
the treatment of the age-related macular degeneration — has been
investigated in the palliative treatment of pancreatic cancer
(439). In recent years a number of comprehensive reviews on
the role of temoporfin and other photosensitizers in the therapy
against cancer and other diseases have appeared paving the way
through the ever-expanding field of PDT research
(15,19,39,426,427,436,437,440-448).  Algorri et al. (449)
recently undertook the effort to compile all the latest reviews in
the area of PDT. This is further amended by reviews on PDT of
specific forms of cancer, encompassing the use of temoporfin in
the area (42) and among other therapies for brain cancer
(450,451), lung cancer (452), prostate cancer (453—455), esopha-
geal cancer (456,457), peritoneal metastasis (458), and recurrent
respiratory papillomatosis (459). Table 3 gives an overview of
the main fields of clinical applications of temoporfin in roughly
the last ten years. These include clinical trials, as well as single-
patient treatments (case reports). Most clinical experience has
been collected in the field of head and neck cancer and other
head and neck malformations, which is not surprising given the
authorized indication. Apart from these investigations, consider-
able clinical experience has also been acquired with gastrointesti-
nal diseases and certain forms of skin cancer.

In addition, recent years have seen single reports on the use
of temoporfin for bone cancer (469), primary brain tumors (470),
prostate cancer (308,471,472), and ex-vivo studies with human
retinoblastoma (522).
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Skin cancer

Temoporfin has been investigated for its use against non-
melanoma skin cancers and a number of clinical studies and
case reports have been published (see Table 3) (42,473-481).
These non-melanoma skin cancers - the most common malig-
nancy among the Caucasian population — comprise i.a. actinic
keratoses (pre-cancerous lesions), Bowen’s disease (carcinoma
in situ) and basal cell (BCC) carcinoma as well as squamous
cell carcinoma (SCC) (523). Specifically for actinic keratoses,
Bowen’s disease and BCC PDT has been established as an
alternative treatment to surgery, with ALA or MAL (methyl
aminolevulinate) being the most widely applied photosensitizer
(prodrug) (523,524). The largest study with temoporfin PDT on
BCC comprised 117 patients with a total of 460 lesions treated
(for these and all other clinical investigations compare Table 3)
(477-479). In 2008 Betz et al. published the initial study
(478,479), which was later followed by the evaluation of the
long-term outcomes in 2012 (477). The mean follow-up period
was 42 months with a sustained clearance rate of 93.7% and an
overall success rate of 90.7%. The authors compared four differ-
ent dose groups ranging from 0.06 to 0.15 mg kg™' (highest
dose group) to 0.03 mg kg~! (lowest dose). They also specifi-
cally looked at the effect on ‘high-risk lesions’ (recurrent
lesions, lesions of >3 mm thickness). Overall long-term out-
comes for BCC were best for the high-dose (0.06-0.15
mg kg™") and the reduced dose (0.05 mg kg™"). The authors
name the optimized treatment parameters for this reduced dose
as 0.05 mg kg™' temoporfin, 24 h DLI, and a light fluence of
> 40 J cm™2. For the high-risk lesions, the authors state that the
results are favorable compared to conventional treatment or
ALA and MAL PDT. The observed side effects of the treatment
were more common in patients of the high drug dose group and
comprised mostly of pain and phototoxic reactions (479).

In 2017 Jerjes et al. (475) published the retrospective evalua-
tion of the treatment of 148 patients with BCC who were treated
with MAL PDT or temoporfin PDT, the MAL PDT group com-
prising 86 patients with 127 thin BCCs and the temoporfin PDT
group with 62 patients with 116 thick BCCs. The attribution to
the respective patient (and photosensitizer) group was done on
the basis of the thickness of the lesions, as local treatment with
MAL due to the low treatment depth is only possible for superfi-
cial lesions (~1 mm), whereas thicker lesions required systemic
administration of the photosensitizer (temoporfin). Treatment
with temoporfin was done with a reduced dose (0.05 mg kg™ ")
and a DLI of 48h. Of the 62 patients treated with temoporfin 60
had a complete response after one PDT treatment. In the temo-
porfin, PDT group both superficial and nodular types of BCC
responded significantly better than invasive BCCs (475). This is
in line with other clinical observations (523). The most common
side effect for both patient groups (MAL and temoporfin PDT)
was hypopigmentation at the treatment site (5 of 148 patients)
(475). In 2019 Jerjes et al. (474) published a retrospective study
on the use of temoporfin PDT for non-metastatic SCC (T1/
T2NO), again using a dose of 0.05 mg kg™', and a DLI of 48 h.
Of the 22 patients treated 20 showed complete response after
one round of treatment (3-year follow-up). The two patients
experiencing recurrence then underwent surgical resection. The
same team investigated temoporfin PDT for the treatment of peri-
orbital skin cancers, 14 patients with BCC and four patients with
TINO SCC (473). Of the BCC group, 12 out of 14 patients

showed a complete response after one PDT treatment, the two
remaining patients underwent a second PDT treatment which led
to a complete response. Complete response was also observed
for the four treated patients with SCC. For the treatment of SCC,
a higher dose (0.1 mg kg™") and a longer DLI, 96 h, was
employed (473). In an earlier case report, the authors showed
that this treatment of SCC can be combined with optical coher-
ence tomography to better assess tumor extent and tumor mar-
gins (480).

Motta et al. (481) reported on the treatment of different non-
melanoma skin cancers in 9 patients with recurrent multiple
lesions. In total, 152 lesions were treated achieving complete
response for 117 and partial response in 35 cases. In a review
combined with case reports Horlings et al. (476) summarized the
results of temoporfin PDT for non-melanoma skin cancers until
2015. Their clinical experience supports the high response rates
found in earlier studies, however, they observed slow healing
when applying the PDT to the lower leg area, the facial and head
and neck area had fewer problems in this respect and showed
good cosmesis, which corresponds to the recent results by Ham-
doon et al. (473).

Gastrointestinal cancer

Temoporfin has been tested for the treatment of anal cancer
(460-462). Anal cancer has a low incidence, with one of the
main risk factors being a persistent high-risk human papillo-
mavirus infection (462,525). Originally, the anal intraepithelial
neoplasia, grade III, was treated topically with temoporfin in a
thermosetting gel formulation. However, this proved to be inef-
fective, presumably due to the low penetration depth of temo-
porfin from this formulation into the neoplasia, exemplarily
underlining the importance of pharmaceutical formulation devel-
opment (462). In a second study, the anal neoplasia was treated
after intravenous administration of temoporfin (460). For this, a
specific light applicator was developed (461). Treatment was per-
formed with different doses of temoporfin (0.075-0.15
mg mL~") with 48 h DLI and with red and green light illumina-
tion. With intravenously injected temoporfin the treatment was
partially effective; 4 of 25 patients showed persistent complete
response, all of these receiving green light illumination (460).
Red light illumination was found to cause more severe side
effects (intense pain, bleeding) than green light illumination
(460).

Cholangiocarcinoma is a rare form of cancer — <2% of all
cancers — of the bile duct with a poor prognosis; hence, there is
a high need for additional treatment options (526-531). In 2013,
Kniebiihler ef al. (463) published an exploratory study on the
treatment of nonresectable cholangiocarcinoma with stenting and
PDT. The 13 patients were treated with different doses of temo-
porfin (0.032-0.063 mg per kg body weight, a lower dose com-
pared to the dose used for head and neck cancer), different DLIs,
starting with 20 h later extended to 67—72 h, and different light
doses. With these low doses, side effects such as skin phototoxi-
city and perforations were not observed. The median survival
time was 13 months. The temoporfin fluorescence from the
tumor tissue could clearly be observed; however, a distinct fluo-
rescence contrast between the tumor and adjacent healthy tissue
was not observed (463,464).

In non-resectable bile duct cancer, PDT is an established
option for palliative treatment improving cholestasis and survival



thereby improving quality of life and median survival time
(532,533). Most often porfimer sodium is used as a photosensi-
tizer (533). However, the lower light absorption at longer wave-
lengths limits the tumoricidal effect of porfimer sodium
compared to chlorin or bacteriochlorin photosensitizers (42,534).
In 2013 Wagner et al. (468) published the results of the first
stage of a phase II clinical trial on temoporfin PDT for the treat-
ment of hilar bile duct cancer in a small group of patients. Look-
ing at the local response and tumoricidal penetration depth, they
observed complete local response in 1 out of 10 patients and par-
tial response in 8 patients. In four patients a tumoricidal effect
was observed up to a depth of > 7.5 mm which is approximately
a doubled tumor-ablative depth compared to porfimer sodium.
The overall median survival time was 18 months. The results of
the second stage of this trial were published in 2015 this time
analyzing the data from 29 patients (466,467). In the patients
with occlusion of biliary segments at the start of the study (29),
16 local response was observed, 11 patients stable disease was
noted and one case of progressive disease. The overall results of
the study were compared to a historical cohort of patients treated
with porfimer sodium (466,467). The effect of PDT on biliary
cancer has also been studied by the authors at the cellular level.
They detected pronounced differences between cell lines and
identified possible markers for the prediction of PDT efficiency
(203,204). In this comparison the authors note a prolonged time
to local tumor progression, the need for fewer PDT treatments
and a higher 6-months survival rate. The observed trend for
longer overall median survival; however, was not significant
compared to treatment with porfimer sodium (466). In 2016,
Hauge et al. (465) published a report on a randomized trial in
patients with nonresectable biliary tract carcinoma about the
combination of chemotherapy and stenting with and without
temoporfin PDT treatment, with ten patients in each group. The
study was primarily concerned with the question of feasibility
and safety of this combination. Looking at these endpoints no
serious, procedure-related complications due to PDT or the treat-
ment combination were observed. The number of cholangitis was
equal in the two treatment groups; however, the progression-free
survival was longer in the PDT group.

Head and neck

As mentioned above, temoporfin is authorized in the EU for the
palliative treatment of head and neck cancer therefore most of
the clinical investigations with temoporfin PDT have been done
in this area. A number of reviews have appeared giving of over-
view on the use of PDT in this indication (535-539). Though
the majority of clinical applications of temoporfin PDT in the
head and neck area are focused on cancer, it has also been suc-
cessfully employed for other malformations in this region of the
body (Table 3) (497,500,503,504,507,508,515,517,519-521).
The predominant number of clinical investigations were per-
formed with a dose of 0.15 mg temoporfin per kg of body
weight, a DLI of 96 h, and illumination at 652 nm with 20 J per
cm?; however, there are reports where a different dosage and
other DLIs as well as other light dosages have been used
(483,498,504,509,510). Head and neck cancer comprises cancers
usually starting from the squamous cells that line the mucosal
surfaces of the head and neck region, like the oral cavity, the
pharynx, the larynx and the nasal cavity. These cancers are
referred to as squamous cell carcinomas (SCCs). Head and neck
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cancers can also originate from the paranasal sinuses as well as
the salivary glands. For all of these, temoporfin PDT has been
applied (cf. Table 3).

The anatomy of the head and neck area poses specific chal-
lenges for light delivery, so for some of these applications, e.g. in
the nasopharyngeal area specific light applicators needed to be
developed (486,499,508). This specific issue with light adminis-
tration in the nasopharyngeal area was recently investigated in
more detail with eleven patients where the fluence and fluence
rates at the target location — paranasal sinuses - were detected
using in vivo light dosimetry during PDT. As the result, major
temporal and spatial variations in fluence rate and light exposure
time were found (485). The highest measured fluence rate was
328 mW cmfz, in other cases it was below 20 mW cmfz, illus-
trating how difficult light dosage in certain anatomic areas can be.

Several temoporfin PDT studies with larger patient cohorts
have been published, e.g. studies by de Visscher er al. (494) on
temoporfin PDT for oral SCCs (214 patients), by Karakullukcu
et al. (496) on early oral cavity carcinoma (98 patients), and on
oral and oropharyngeal carcinoma (170 patients) (512), by van
Doeveren et al. (540) on head and neck cancer (54 patients), and
by Jerjes et al. on head and neck cancer including vascular
anomalies (110 patients) (507), on oral dysplasia (147 patients)
(510), and on tumors and malformations in the oropharyngeal
region but also including face and limbs (68 patients) (519).
Clinical endpoints were mainly local response, progression-free
and overall survival (cf. Table 3).

De Visscher et al. (494) and Karakullukcu et al. (496) com-
pared PDT treatment to surgery for oral SCC and early oral cav-
ity carcinoma. They found similar results for disease control and
overall survival, though in the study with oral SCC PDT seemed
less effective for larger T2 tumors (tumor size ~2—5 cm) whereas
for smaller T1 tumors (tumor size <2 cm) a similar effectivity
was found (494). Visible light of 652 nm has only limited pene-
tration depth into the tissue, which in turn limits the PDT effect
specifically for larger and thicker tumors. One way to overcome
this problem is the use of an interstitial treatment, whereby mul-
tiple fibers are introduced into the tumor tissue allowing to treat
of the complete tumor mass and improving local tumor control
(541). This treatment variant has been applied for many cases in
the head and neck area using temoporfin PDT (469,483,489—
493,497,501,502,504-507,511,513,514,517,519-521). To achieve
complete illumination of the tumor a correct positioning of the
fibers is important; this treatment is usually supported using
imaging methods like MR, CT or mostly ultrasound
(469,491,492,497,500,504-507,511,517,520,521). In addition,
fluorescence-based methods like fluorescence differential path
length spectroscopy have been used (514,542). Prior to its appli-
cation in patients, this method was previously developed in ani-
mal studies (305,306,543).

Very recently, a study in 38 patients was published analyzing
the effect of PDT with temoporfin in the head and neck area on
the quality of life of patients (482). In this study, all patients
reported an improved quality of life after PDT. The main prob-
lem reported by the patients was pain after the PDT treatment. In
the 4 weeks after treatment improvement was reported for visual
symptoms, breathing, speaking and swallowing and for the fol-
lowing weeks an improvement in daily life activities, social life,
mood and anxiety were reported (482).

PDT is primarily a local treatment - though exerting systemic
immunological effects which find increasing interest
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(253,276,277) — PDT with temoporfin in the head and neck area
is usually combined with chemotherapy. Based on the marketing
authorization it is specifically used for recurrent tumors which
are resistant to other treatments like chemo- or radiotherapy or
cannot be treated by surgery (425,486). One application is the
adjuvant therapy after chemotherapy or salvage surgery, allowing
to treatment of remaining microscopic diseases after tumor resec-
tion (484,487,488,540). In this respect, Jerjes et al. published a
case report, where cutaneous SCCs in the face were treated by
PCI with fimaporfin/bleomycin followed by interstitial PDT with
temoporfin for deeper tumor areas (484). With PDT, often effec-
tive local control of tumor growth can be achieved
(483,486,487,489,495,498,499,509,510,512) with extended peri-
ods of progression-free disease (487,499,502,508,509). Effective
local tumor control was found to correlate positively with sur-
vival times (516,518).

Side effects

Concomitant with their desired pharmacological effect all medici-
nal products can elicit side effects. These side effects differ from
substance class to substance class but of course also from drug
to drug (544). The side effects of temoporfin and the medicinal
product derived therefrom, Foscan®, are reflected in the patient
information and the official EMA documents (319). As for many
other drug products, the side effects of temoporfin and Foscan®
are associated with their intended photodynamic action mecha-
nism. Therefore, the most common side effects apart from pain
are phototoxic reactions, e.g. skin photosensitivity, skin burns or
phototoxic reactions at the injection site (see also Table 3)
(466,467,495,506,520,540). Most of these may be avoided or
limited by strictly adhering to the light-protection given in the
patient information.

Severe side effects like cholangitis have been observed in biliary
tract cancer treatment though those are also observed in the standard
chemotherapeutic treatment for this disease (465-467). When the
tumor to be treated is near a large blood vessel this poses a risk for
PDT treatment. In a publication by Hamdoon et al. (513) endolumi-
nal carotid stenting has been reported as a precautionary measure.
In PDT treatments in the head and neck area swelling after PDT can
lead to complications therefore airway management is important
specifically for tongue-based tumors (490,493). An important issue
is also the unintended interaction with other drugs. For temoporfin,
an interaction with other drugs with photosensitizing potential is a
cause for concern (319,545). In a single case in the literature, the
authors report on bisphosphonate-related osteonecrosis of the jaw
which occurred associated with PDT for the treatment of oral prolif-
erative verrucous leukoplakia (503). An interaction of a drug mole-
cule with others may also be beneficial. In an interesting publication
in this respect, Lange and Bednarski investigated the synergistic
effects of three platinum-based chemotherapeutics, carboplatin, cis-
platin and oxaliplatin in combination with PDT with temoporfin in
five cancer cell lines. Depending on the type of cancer cell line pre-
treatment with PDT sensitized the cells for the treatment with the
platinum complexes (131). A similar effect was shown in Hep-2
cells (106).

Veterinary applications

In contrast to clinical use for humans, PDT is much less devel-
oped in the veterinary field and progress has been slow. It is

mainly used to treat early skin tumors in cats and some studies
have reported treating urinary tract neoplasia in dogs and equine
sarcoids (546). With regard to temoporfin, a study by Flickinger
et al. (310) investigated the long-term outcome of using Foslip
for systemic treatment of feline squamous cell carcinomas. The
study (0.15 mg drug kg™ body weight i.v., 6 h postinjection,
illumination with 652 nm diode laser, 0.5 W cm 2) showed a
very good response rate of 84% and a mean progression-free
interval of 35 months. However, the results were unsatisfactory
for invasive tumors and larger lesions.

Using Fospeg®, a case study reported the successful surgical
and photodynamic treatment of an equine sarcoid (311). Treat-
ment conditions were similar to those used for cats. The main
tumor mass and some lateral tumors showed complete remis-
sion while remaining tumors decreased in size or stopped grow-
ing.

DOSIMETRY AND DETECTION

PDT faces the issue of dose not only a drug (like in chemother-
apy) or radiation (as in radiotherapy) but both. Hence, drug and
light dosage, and especially light dosimetry are a constant chal-
lenge in PDT (446,547-551). For drug dosage of temoporfin in
clinical practice there is a quite clear picture in the literature: In
most cases a dosage of 0.15 mg per kg body weight and a DLI
of 96 h has been used, corresponding to the marketing authoriza-
tion (cf. Table 3) (425). In exploratory clinical investigations for
anal intraepithelial neoplasia, cholangiocarcinoma and non-
melanoma skin cancers lower dosages (down to 0.03 mg kg™")
have been used (cf. Table 3). Treatment dosage variations, e.g.
compartmental targeting using a fractionated double-injection
protocol have been investigated in animals (296).

Dosing of light is a challenge in PDT which is reflected in the
general PDT review literature (449,548,550,551) but becomes
also apparent from Table 3 listing temoporfin clinical trials which
shows a broader variation compared to the drug dosage, though
in many cases a fluence of 20 J cm™? has been used. In some
cases, lower (461,471) but also much higher fluences have been
employed (460,477,478,481). The use of temoporfin with low
light doses has been discussed as an option for PDT (136,552).
Light dosage in PDT is influenced by the optical properties of the
tissue to be treated (549); anatomical factors can influence the
light dose that can be administered as well, and sometimes speci-
fic light applicators are required (461,485,486,499,508). As men-
tioned above, in interstitial PDT imaging methods, mostly
ultrasound, are employed to assure correct positioning of the
light-guiding fibers (469,491,492,497,500,504-507,511,517,519—
521). Nevertheless, in some cases pronounced differences in flu-
ence and fluence rate were detected (485).

A laser is the common light source for PDT generally
(548), for temoporfin PDT in the clinical environment (cf.
Table 3) and in most pre-clinical investigations in animal spe-
cies. However, with the development of high-power LEDs,
irradiation with LEDs has become an alternative that is inves-
tigated and has been used with temoporfin (105,206,282).
Etcheverry et al. (105) performed a comparative in vitro
investigation on the use of a 637 nm LED and a 654 nm
laser light source in PDT with temoporfin on HeLa cells and
found the photodynamic efficiency to be similar. Apart from
this, other light sources are investigated as well for PDT, e.g.
implantable ones (446,553).



Due to temoporfin’s intense fluorescence, fluorescence meth-
ods, e.g. the aforementioned fluorescence differential path length
spectroscopy, can be employed to measure its concentration
in vivo aiding the optimization of PDT treatment parameters
(171,293,305,306,463,464,480,514,542,543).  Optical methods
like optical coherence tomography can also be used to more pre-
cisely determine tumor extension margins, e.g. in skin cancer
(480). Recently, the combination of Raman spectroscopy and
PDT (with ALA, protoporphyrin IX and temoporfin) has been
proposed for theranostics (115). Efforts to optimize treatment
parameters for PDT with temoporfin are also supported by pre-
clinical testing in animals and modelling approaches
(288,293,302-304,307-309,471,472,554,555), e.g. for prostate
cancer (308,471,472), liver cancer (300,307,555), esophagus
(309), transplanted mammary carcinoma (302,303), and gliosar-
coma (288). Axelsson et al. (472) described an experimental
approach to reconstruct the spatial distribution of temoporfin
inside the human prostate. In some of these animal investigations
with temoporfin detection via fluorescence, the window-chamber
tumor model has successfully been used (288,302-304). The
detection of temoporfin by fluorescence spectroscopy methods as
well as absorption spectroscopy has also proven to be a valuable
or perhaps even the standard tool in pharmaceutical formulation
development, allowing to follow the active substance
molecule when the pharmaceutical formulation interacts with
body fluids and is distributed to body compartments
(129,171,221,293,365,367,392). Moreover, changes in fluores-
cence behavior of temoporfin and changes in its absorption spec-
trum can be used to characterize the immediate surroundings of
the photosensitizer (366,368,393,554). Analysis of temoporfin
fluorescence in PDT investigations is closely associated with the
photobleaching of the photosensitizer, where the photosensitizer
is destroyed by photochemical reactions under illumination
(42,556-558). Photobleaching of temoporfin has been investi-
gated in detail by Bonnett er al. (559,560) and has been
reviewed before (42). In a series of publications, Atif reported
on photobleaching studies in keratinocytes treated with PDT with
temoporfin (554,557,558,561). These investigations found that
photobleaching of temoporfin is increasing with the higher local
concentrations of the photosensitizer (558).

In general, PDT relies on the local availability of oxygen to
achieve its desired effect on the tumor cells (6,245). Thus, the
question of the supply of oxygen at the tissue and cellular
level is critical for PDT and hence intensely discussed in the
PDT literature (6,245,440,442,449). Tumorous tissue is often
hypoxic, i.a. due to fast tissue growth and insufficiently devel-
oped vasculature (6,245,440,442). This is an important medical
issue as hypoxic zones in tumors can be more resistant to
chemo- and radiotherapy (562). In addition, photosensitization
by itself reduces cellular oxygen levels quickly, especially at
higher light fluences, not only by oxygen consumption through
the PDT process but also by occluding tumor vasculature
(6,245,440,442,449). This self-limiting effect of PDT can partly
be overcome by optimizing light dose and light fluence, e.g.
by fractionated light administration or by using hyperbaric oxy-
gen conditions or oxygen carriers (6,438,442,449,563).

Therefore, the detection, measurement and modelling of singlet
oxygen luminescence is an important approach to PDT dosimetry
(6,564-568). Singlet oxygen monitoring for dose-response studies
in PDT is challenging because, as mentioned above, there is oxy-
gen depletion during treatment; additionally, the oxygen
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concentrations in the tumor differ between different areas, e.g. cel-
lular tissue and vasculature (569,570). However, considerable pro-
gress has been made with respect to singlet oxygen measurements
(222,568,571), direct and time-resolved measurements of singlet
oxygen in living cells and tumor models like the CAM model have
been performed (179,222,571). Using the CAM model and a lipo-
somal temoporfin formulation it was possible to deduce the oxygen
content during PDT from the singlet oxygen kinetics (222,571).
The importance of singlet oxygen kinetics and time-resolved lumi-
nescence measurements has already been pointed out by Jarvi
et al. (107,108) these are critical in using singlet oxygen signal as
a dose metric when employing temoporfin as photosensitizer. Wil-
son et al. (288) investigated singlet oxygen luminescence in com-
parison with bioluminescence from luciferase- and green
fluorescent protein-transduced gliosarcoma grown in a dorsal win-
dow chamber in mice, finding that tumor response (measured via
the bioluminescence signal) correlated well with singlet oxygen
luminescence, underlining that singlet oxygen can serve as a dose
metric. Zhu et al. (285,286,312) looked at determining singlet oxy-
gen threshold doses for PDT for different photosensitizers includ-
ing temoporfin, also including a comparison to literature data. Not
unexpectedly, they found large differences, observing that the
experimental in vivo singlet oxygen threshold doses for the photo-
sensitizers investigated (porfimer sodium, verteporfin, and temo-
porfin) were about 20 times lower than those found in vitro —
underlining, that additional factors to singlet oxygen mediated cell
death contribute to the PDT effect observed in vivo (286). These
PDT threshold investigations should illuminate clinical experi-
ences, where a too low light threshold dose can result in incom-
plete tumor response (308,471).

The in vitro separation and detection of temoporfin, e.g. in
biological samples relies on chromatographic methods, with
detection via absorption or fluorescence (572). These classical
chromatographic methods are now amended by newer separation
methods, specifically, if particles are involved, like the asymmet-
rical flow field-flow fractionation which has become a routine
technique in nanoparticle separation and characterization. This
technique has successfully been applied in the characterization of
temoporfin-loaded liposomes and in the investigation of the drug
transfer from such liposomes (394,397,398).

With respect to the photophysical properties of temoporfin, it
should be noted that also the two-photon cross-section of temo-
porfin has been investigated experimentally and theoretically
(260-262) in the context of two-photon PDT (573). The values
found were lower than those for specifically designed two-
photon sensitizers (61,573) but higher than expected from theo-
retical calculations (256).

OTHER APPLICATIONS

Combination of PDT with other therapies

The interest in the combination of PDT with other therapies and
treatment modalities mainly comes from two directions: finding
synergistic effects of combined treatments could increase effec-
tiveness (446) and, as PDT in nearly all of its medical applica-
tions is not a first-line treatment — except, perhaps, for certain
forms of skin cancer like actinic keratosis — in investigating com-
patible pathways for patients already under treatment. In addi-
tion, PDT is principally a local treatment thus requiring systemic
tumor treatment to prevent metastasis. Tumor therapy with PDT
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is therefore in clinical practice mostly combined with other
tumor treatments such as chemo- or radiotherapy (574). This is
also the case of temoporfin which is authorized for the palliative
treatment of head and neck cancer meaning that patients are con-
comitantly treated with, e.g. chemotherapy. Therefore, knowl-
edge about interactions and possible synergism of such
combinations is of high medical importance.

Combination with chemotherapeutics

This dual motivation is apparent in the investigations on the
interaction of temoporfin PDT with chemotherapeutics. A syner-
gistic effect of temoporfin PDT followed by cisplatin was
reported for Hep-2 cells, the combination resulting in increased
apoptosis, necrosis, and mitochondrial destruction and reduced
autophagy (106). Lange and Bednarski (131) investigated the
effect of a combination of temoporfin PDT with carboplatin,
cisplatin, or oxaliplatin in five cancer cell lines (A-427, BHY,
KYSE-70, RT-4, and SISO cells). The authors identified some
synergistic combinations, e.g. for oxaliplatin in three of the cell
lines (BHY, RT-4, and SISO cells), however, in some cases
even an antagonistic effect was found. In cases of synergy ele-
vated ROS levels were found but these did not necessarily lead
to increased apoptosis (131). The same authors analyzed the
synergism of a combination of temoporfin PDT with two glu-
tathione peroxidase inhibitors in the five above-mentioned cell-
lines (130). Again, a synergistic effect was found for both per-
oxidase inhibitors but not in all cell lines (130). Also, the com-
bination of PDT with the chemotherapeutics taxotere and
doxorubicin has been investigated in vitro in A-431 cells (153).
Cells were exposed to the taxotere followed by temoporfin PDT
or cells were incubated with temoporfin followed by the PDT-
treatment and exposure to doxorubicin. The combination treat-
ment was found to increase cytotoxicity at the same time differ-
ences in the expression of VEGF and IL-lalpha were detected
(153). Doxorubicin has also been combined in a liposomal for-
mulation with temoporfin PDT and magnetic nanoparticles and
tested on HeLa cells, the combined treatment being more effec-
tive than the separate treatments (104). In another approach
temoporfin was combined with doxorubicin, magnetic nanoparti-
cles and second photosensitizer (TPCS,,) in extracellular vesi-
cles as the carrier system (180,216). Combinatorial approaches
have also been described for temoporfin with the DNA topoiso-
merase inhibitor f-lapachone (183), Navelbine® (297), and fen-
retinide (96).

An important issue in cancer therapy is the resistance of cer-
tain cancer cell types to common chemotherapeutics (575,576).
In this context temoporfin PDT has been tested on 5-
fluorouracil-resistant HCT116 (208) and HT29 (209) cancer cells.
In both investigations, PDT proved to be effective against these
cancer cell lines (208,209).

Antibodies

The efficacy of the combination of the anti-VEGF monoclonal
neutralizing antibody bevacizumab and PDT with temoporfin has
been evaluated in a mouse colon cancer model (HT29 tumors)
(281). PDT followed by administration of the antibody increased
the anti-tumor effect. Administration of bevacizumab prior to
temoporfin, however, led to a decreased accumulation of

temoporfin in tumor tissue at 24 h after photosensitizer adminis-
tration (281). In another approach involving antibodies, micellar
nanoparticles containing temoporfin labelled with llama single-
domain antibody fragments for targeting have been prepared
(156). In this case, temoporfin served also as a fluorescence label
for the carrier systems. On the other hand, bispecific antibody-
redirected T lymphocytes have been used as carrier vehicles for
mTHPP (577).

Other photosensitizers

In a few cases, temoporfin has also been combined with other
photosensitizers and photoactive compounds, so for example
with TPCS,,, used for photochemical internalization (216), a
nitric oxide photodonor (424), and hypericin (97,98). The latter
combination showed a reduced dark toxicity in head and neck
squamous carcinoma cells (UMB-SCC 745 and 969) and a com-
bination of apoptotic and necrotic cell death (97,98). See also
Table 1.

Quantum and polymer dots

Temoporfin has been incorporated into quantum dots and poly-
mer dots to exploit the resonant energy transfer for and an
increased and optimized PDT effect (112,120,121,363,375,578).
The respective examples are discussed above under ‘Formulation
development’.

Hperthermia

Hyperthermia combined with temoporfin PDT was investigated
with liposomes and extracellular vesicles carrying the photosensi-
tizer as well as magnetic iron oxide nanoparticles in vitro and
in vivo in mice (see above under ‘Formulation development’)
(164,172,216).

Photothermal treatment

Photothermal treatment was used in a combination of temoporfin
and multi-walled carbon nanotube PDT (173). The two treat-
ments were found to induce apoptosis by different cell signaling
pathways.

Photoprotection

PDT is associated with side effects like skin photosensitization.
In this respect the photoprotective properties of plant extracts
have been investigated (176,291,579). In investigations with a
plant extract from P. halepensis the authors reported that the
extract prevented photosensitivity after temoporfin PDT in mice
(291) and even increased intracellular ROS levels (176).

PDT-immunotherapy combinations

The immune response to the PDT treatment contributes to the
PDT effect in vivo as mentioned above. Hence, there are a num-
ber of publications investigating these effects for PDT with
temoporfin and utilizing this for PDT-immunotherapy combina-
tions. Korbelik e al. thoroughly evaluated the role of ceramides
and sphingosines in PDT immune response in several in vitro



(95,96,169,195,274) and in vivo investigations, also aiming at
anti-cancer vaccines generated by PDT (273,275,284). They, as
others, emphasize the role of neutrophils in the immediate reac-
tion to PDT (201,224,284). It has been reported for the
nasopharyngeal KJ-1 cell line that treatment with temoporfin
and light is able to inhibit migration and invasion in this cancer
cell line (88). In a mouse model, a synergistic antitumor effect
could be demonstrated for a combination of PDT with temo-
porfin, chemotherapy and immune lymphocytes (297). Extracel-
lular vesicles from the mesenchymal stem and stromal cells,
respectively, loaded with temoporfin showed increased necrosis
and a decrease in intratumoral proliferation in a mouse model
of peritoneal metastasis (201). Recently, PDT with temoporfin
in a formulation, containing RGD-modified nanoparticles has
been combined with a PD-L1 checkpoint inhibitor (PD-L1
blockade antibody) in a mouse model (CT26 tumors) (133).
This combination was found to inhibit distant tumor growth
and also stimulate immune memory response. In addition, even
without the antibody treatment, the RGD-modified nanoparticles
were able to inhibit cell proliferation and stimulate an immune
response. This is attributed to promotion of dendritic cell matu-
ration (133).

Antimicrobial PDT

Following the general trend in PDT in recent years, which has
seen a renewed focus on antimicrobial applications, temoporfin
and its formulations are featured in related studies. Target bacte-
rial species were primarily those related to wound healing and
dental hygiene. In the former, a study using Foslip® showed
that low doses of photosensitizer embedded in collagen matrixes
after implantation and illumination did significantly advance
wound healing in mice (294). Staphylococcus infections are
often a complicating factor in wound and skin diseases. Here,
both PVP-hypericin and Fospeg® resulted in a 4-5 log reduc-
tion in bacterial count (100 nm PS, 5 min incubation, 30 min
illumination 75 mW cm2) (234). This effect could be signifi-
cantly enhanced by using antimicrobial peptide (AMP) modified
liposomal formulations. The use of the AMP WLBU2 for con-
jugation to temoporfin liposomes resulted in the complete eradi-
cation of methicillin-resistant Staphylococcus aureus (MRSA).
Together with a 3.3 log reduction of Pseudomonas aeruginosa
this indicates the utility of bacteria-targeted PS delivery to com-
bat both Gram-positive and -negative bacteria (231,233). Like-
wise, wheat germ agglutinin (WGA) modified liposomes
containing temoporfin proved effective with similar results in a
related study (232).

Clostridium difficile, the main cause of antibiotic-associated
diarrhea, was the target of a comparative investigation using 13
standard photosensitizers (228). In contrast to PSs such as tala-
porfin or chlorin eg, which achieved up to 3 log reductions,
temoporfin proved to be inactive, most likely due to the forma-
tion of turbid suspensions in the medium used.

In dentistry, cariogenic bacteria such as Streptococcus mutans
and Streptococcus sobrinus are potential targets for aPDT. Stud-
ies with hypericin and Fospeg® showed that both species could
be completely eradicated using short PDT protocols with either
PS or a combination of both (235). Another target, esp. in
endodontic infections, is Enterococcus faecalis. The use of Fosli-
pos (50 mmM mTHPC, illumination with 100 J cm™2) completely
eradicated the bacterium, while 10 mm mTHPC still gave a CFU

Photochemistry and Photobiology, 2023, 99 401

reduction by 5.8 log units (229). A comparative study of temo-
porfin incorporated into liposomes and invasomes using freshly
extracted human wisdom teeth and inoculated with E. faecalis
showed a 3.6 log unit reduction directly at the root canal wall
with the latter. This was a significant improvement compared to
a standard treatment with 1% chlorohexidine gel (reduction by
1.2 log units) (422). Ultrasonic activation can be used to improve
the aPDT as it facilitates deeper diffusion into dentinal tubules
and biofilms (580).

Eradication of bacteria alone is not enough. In periodontitis
treatment often grafting materials are required to support the
regeneration of injured periodontium. In an innovative
approach, Kranz et al. (230) developed antimicrobial photody-
namic active biomaterials for periodontal regeneration. For this,
curable biomaterials (either urethane dimethacrylate or oli-
goester urethane methacrylate which contained a mixture of
tricalcium phosphate microparticles and temoporfin were pre-
pared). Both materials exhibited suitable mechanical and bio-
compatible properties and were capable of completely
suppressing P. gingivalis and significantly reduce E. faecalis
after illumination.

Antiviral PDT

The Coronavirus pandemic has elicited an increased awareness
of the potential of PDT to combat viruses (15,581). In a natu-
ral product screening study pheophorbide a (a chlorophyll
derivative) showed a light-dependent antiviral activity on
SARS-CoV-2 and inhibited virus-cell fusion. A similar mecha-
nism was shown for temoporfin; however, it exhibited only
moderate antiviral activity (582). Note, temoporfin has also
been suggested in a pre-print as a potential blocker of SARS-
CoV-2 E channel based on a docking study (583). A compu-
tational study by Absalan er al. identified temoporfin as the
best candidate for docking with the COVID-19 major protease
(6LU7) (584).

A promising development is the identification of temoporfin
as a potential drug to inhibit the replication of the Zika virus
(585). Initially endemic to Africa Zika infections have now
spread and are a global health concern. A broad screening of
>2800 existing drugs by Li et al. (586) in 2017 identified three
lead compounds as flavivirus NS2B-NS3 interaction inhibitors
with nanomolar potencies. Among them, the most promising is
temoporfin as a cytotoxic compound. Zika virus infection was
inhibited in human placental and neural progenitor cells and the
virus-induced viremia and mortality could be prevented in mouse
models. Docking studies indicate that the chlorin binds to NS3
pockets resulting in non-competitive inhibition of flaviviral
polyprotein processing.

Other infectious disease pathogens

A study by PreuB er al. (587) investigated the use of temo-
porfin, a cationic and anionic photosensitizer for Mosquito lar-
vae control. Using Chaoborus sp. as a model they showed that
all three PSs accumulated in the intestinal tract of larvae, not
the tissue. Only the cationic PS (5,10,15,20-tetrakis(1-
methylpyridinium-4-yl)porphyrin toluene sulfonate) which is
known to be active against Gram-positive bacteria resulted in
the photodynamic killing of the larvae, possibly by inactivation
of the intestinal flora.
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Non-medical applications

Although developed as a drug candidate temoporfin-related com-
pounds are occasionally used for other purposes. One such
example relies on the capability of (free base) porphyrins to act
as sensors (588) or in CBRN defense and remediation (589).
Rout and coworkers showed that changes in the Q-band absorp-
tion pattern of temoporfin upon binding of metal ions allow
temoporfin to be used as a ‘miniaturized unimolecular analytic
system’ to detect metal ions. Furthermore, considering the resul-
tant absorption intensities at different wavelengths as output sig-
nals allowed us to use of temoporfin a logic 4-to-2 encoders and
2-to-3 decoders in logical computing (590,591).

Temoporfin has also been used to modify protonated graphitic
carbon nitride (pCN) (592). Compared with unmodified pCN the
new material showed stronger absorption in the visible and near-
IR regions and higher photocatalytic activity in hydrogen evolu-
tion.

CONCLUSIONS

This overview of the literature underlines the continuous scien-
tific and medical interest in the photosensitizer temoporfin.
Temoporfin — being on the market since 2001 — is one of the
few clinically established photosensitizers. The advances and
continuing research outlined herein illustrate the increasing inter-
est in PDT in general, visible from the continuously high number
of publications in the field of PDT. Clearly, the field is not
standing still. Currently, several clinical studies with different
photosensitizers including temoporfin are under way (426,437).

With respect to clinical development, there are diverse fields
of application, from human to emerging uses in animal PDT.
Clearly, the main clinical application remains in head and neck
cancer and malformations, but PDT with temoporfin is now also
used in other fields such as skin cancer and gastrointestinal appli-
cations like cholangiocarcinoma. Apart from this, temoporfin and
its formulations have also found interest for use in antibacterial
and antiviral photodynamic treatments. Together with approved
photosensitizers such as verteporfin, ALA, or porfimer sodium,
temoporfin is one of the gold standards in contemporary PDT.
Temoporfin is also — due to the extensive scientific knowledge
about this photosensitizer and the fact that it is a well-
characterized single small molecule — often used as a comparator
to test the PDT efficacy of other new photosensitizers and their
formulations.

In the last decade, most medical developments for temoporfin
have been in the development of advanced pharmaceutical for-
mulations with a focus and extensive work on liposomal formu-
lations. Here, temoporfin is often used as a model photosensitizer
to be incorporated in new formulations as a test case. Increas-
ingly, the available body of information facilitates its use as a
general model compound for highly lipophilic drugs benefitting
from its easy detectability via absorption or fluorescence spec-
troscopy.
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