
New J. Phys. 25 (2023) 023024 https://doi.org/10.1088/1367-2630/acbab6

OPEN ACCESS

RECEIVED

4 August 2022

REVISED

12 November 2022

ACCEPTED FOR PUBLICATION

9 February 2023

PUBLISHED

20 February 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Mapping atomic trapping in an optical superlattice onto the
libration of a planar rotor in electric fields
Marjan Mirahmadi1,∗, Bretislav Friedrich1, Burkhard Schmidt2,3 and Jesús Pérez-Ríos1,4,5
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Abstract
We show that two seemingly unrelated problems—the trapping of an atom in an optical
superlattice (OSL) and the libration of a planar rigid rotor in combined electric and optical fields
(PR) – have isomorphic Hamiltonians. Formed by the interference of optical lattices whose spatial
periods differ by a factor of two, OSL gives rise to a periodic potential that acts on atomic
translation via the AC Stark effect. The PR system, also known as the generalized planar pendulum,
is realized by subjecting a planar rigid rotor to combined orienting and aligning interactions due to
the coupling of the rotor’s permanent and induced electric dipole moments to the combined fields.
The PR system belongs to the class of conditionally quasi-exactly solvable problems and exhibits
intriguing spectral properties that have been established in our previous work Becker et al (2017
Eur. Phys. J. D 71 149). Herein, we make use of both the PR 7→ OSL mapping and the quasi-exact
solvability of the PR system to treat ultracold atoms in an OSL as a semifinite-gap system. The band
structure of this system follows from the eigenenergies and their genuine and avoided crossings
obtained previously for the PR system as solutions of the Whittaker-Hill equation. These solutions
characterize both the squeezing and the tunneling of atoms trapped in an OSL and pave the way to
unraveling their dynamics in analytic form. Furthermore, the PR 7→ OSL mapping makes it
possible to establish correspondence between concepts developed for the two eigenproblems
individually, such as localization on the one hand and orientation/alignment on the other.

1. Introduction

The spatial patterns imprinted upon ensembles of gaseous atoms by optical lattices have served as platforms
for quantum simulation of condensed matter systems as well as for quantum information processing,
including quantum computation [1–13]. Superimposed commensurate lattices (or superlattices for short)
whose spatial periods are in integer ratios have enabled patterned loading key to achieving versatile
atom-lattice architectures [14], quantum computing with atom transport [15], atom-pair manipulation
[16], and topologically protected transport [17]. The engineering of optical lattices and superlattices has
been recently reviewed in [18].

Herein, we show that the translational confinement of atoms in an optical superlattice (OSL) formed by
the interference of optical lattices whose spatial periods differ by a factor of two can be mapped onto the
libration of a planar rigid rotor (PR) in external fields. The latter system is realized by subjecting a planar
rotor to combined orienting and aligning interactions that arise due to the coupling of the rotor’s permanent
and induced dipole moments with collinear external electric fields [19–32].

Interestingly, pulsed optical traps had been used earlier to simulate the kicked rotor [33–35] as a way of
modelling quantum chaos and Anderson localization [36–40]. In contradistinction, our present study makes
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Figure 1. Three different eigenproblems whose Hamiltonians are isomorphic: (a) trapping of ultracold atoms in an optical
superlattice; (b) libration of a planar rigid rotor in collinear external electric fields; (c) the torsional motion in a molecule such as
CCl3CH(OH)2.

use of the previously established features of the driven rotor to shed light on the behavior of ultracold atoms
confined in an OSL. Among these features is the conditional quasi-exact solvability (C-QES) of the former
system eigenproblem: under certain conditions (i.e. for particular ratios of the strengths of the orienting and
aligning interactions), many (but not all) eigenfunctions and eigenenergies are available in analytic form.
These can be then used, inter alia, to obtain the analytic form of several lattice band-edge states.

Moreover, the time-independent Schrödinger equation (TISE) for a planar rotor subject to combined
orienting and aligning fields (also known as the generalized planar pendulum) is isomorphic with the
Whittaker-Hill equation, which is a special case of the Hill differential equation [41]. The spectral
characteristics of the Whittaker-Hill equation give rise to a semifinite-gap structure (every second gap is
eventually closed) of the OSL system. To our knowledge, the Whittaker-Hill equation has not been
considered in the optical lattice literature, unlike the Mathieu equation (another special case of the Hill
equation family) which is well-known in the study of atoms in one-dimensional optical lattices consisting of
single wells (only a cos term is involved). The spectral properties of the Whittaker-Hill equation provide a
new means to control the OSL configurations.

In addition, we have established a relationship between the main physical characteristics of the two
eigenproblems such as localization on the one hand and directionality (orientation and alignment) on the
other.

We note that also the Hamiltonian for molecular torsion in polyatomics [42], whether or not subject to
coherent control [43–45], is isomorphic with the Hamiltonians of the two systems under consideration, see
figure 1. However, in what follows we focus on the OSL and PR systems only.

This paper is organized as follows: In section 2, we introduce the Hamiltonian of a single atom subject to
an OSL. The isomorphism of this Hamiltonian with that of the planar rotor in combined fields is established
in section 3. In section 4, we provide a survey of the C-QES of the Schrödinger equation for either
Hamiltonian. In section 5, we make use of the spectral properties of the PR system to investigate the band
structure of the atoms trapped in an OSL. The spatial localization of the band-edge Bloch states and its
relation to the orientation and alignment of the planar rotor is treated in section 6. Finally, section 7 provides
a summary of the present work and outlines prospects for its future applications. Appendix A details the
analytically obtainable band-edge states while appendix B outlines the spectral properties of the Hill
equation.

2. An atom interacting with a one-dimensional OSL

A one-dimensional (1D) optical lattice, generated by the interference of two linearly polarized laser beams of
the same wavelength λ counter-propagating along the x axis, produces, via the AC Stark effect, an optical
trapping potential for atoms that is proportional to cos2(kx), with k= 2π/λ the wave-number of either of
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the laser beams. Superimposing two such optical lattices, characterized by wavevectors ki = 2π/λi with
i= 1,2, leads to a superlattice that produces an optical potential [2, 10, 14, 15]

V(x) = V0 +V1 cos(2k1x)+V2 cos(2k2x−φ) (1)

with Vi = d2E2
i /(2ℏ∆i) the depth of the 1D lattice i, Ei the amplitude of the corresponding electric vector of

the laser field, d the projection of the atomic dipole moment d⃗ on the electric field E⃗i (note that d can be
different for each lattice based on the atomic states involved),∆i the detuning of the laser field i from the
nearest atomic resonance, and ℏ the reduced Planck constant. The relative phase of the two superimposed
lattices is characterized by the angle φ. The constant AC Stark shift V0 between the two constituent lattices
i= 1 and i= 2 will be omitted.

Provided the laser fields are sufficiently far detuned from any atomic resonance, i.e.∆i � Γ, with Γ the
spontaneous emission rate, we can invoke the adiabatic approximation [46] and write the effective
Hamiltonian for atoms in a 1D superlattice as6

HOSL =− ℏ2

2m

d2

dx2
+V(x) (2)

withm the atomic mass. Furthermore, as long as the scattering length of the atoms is small compared to the
interatomic distance, we can treat the system as a non-interacting quantum gas.

In what follows, we consider a superlattice generated by the interference of two optical lattices whose
spatial periods differ by a factor of two, i.e. ks ≡ k1 = 2k2, where the subscript s labels the lattice with the
shorter wavelength, λs. Herein, we set the relative phase φ= 0. The effect of a non-zero relative phase on the
properties of the superlattice and the solvability of the corresponding eigenvalue problem is the subject of
our forthcoming work. Thus, equation (1) can be recast in the form

V(x) = Vs cos
2(ksx)+Vℓ cos(ksx) (3)

which is suitable for establishing the mapping of the OSL onto the planar rigid rotor under the orienting
(∝ cos) and aligning (∝ cos2) interactions, i.e. onto the PR system. Note that in equation (3), we have
neglected a constant shift of Vs/2 due to the transformation from cos to cos2. The amplitudes V s ad Vℓ, with
the subscript ℓ pertaining to the lattice with the longer wavelength, λℓ, are proportional to the depths of the
‘short’ lattice, V1, and ‘long’ lattice, V2, via

Vs = 2V1 =
ℏΩ2

1

4∆1
(4)

and

Vℓ = V2 =
ℏΩ2

2

8∆2
(5)

respectively, wherein Ωi =−2⃗d · E⃗i/ℏ is the Rabi frequency.
The optical potential (3) due to the superlattice is a periodic function with period (or ‘lattice constant’)

a= 2π/ks whose shape depends on the relative magnitude and sign of the amplitudes Vℓ and V s. As shown
in figure 2, for Vs < 0 the shape of the OSL potential can be varied from a single-well (SW) potential in the
case |Vℓ|> 2|Vs| to an asymmetric double-well (DW) potential when |Vℓ|< 2|Vs| over the unit cell of the
superlattice. For |Vℓ|= 2|Vs|, the potential has a flat maximum where the first, second, and third derivatives
of the potential are zero. Hence the shape of the OSL potential for a given atom can be tailored by changing
the ratio of the laser intensity to the detuning of the two constituent optical lattices.

The choice of the sign of Vℓ is arbitrary since it is equivalent to a shift of V(x) by half a period (= π/ks)
in x. Thus, without a loss of generality, we can assume Vℓ > 0, although the results and discussion presented
below apply to both cases: for a blue-detuned (∆2 > 0) as well as a red-detuned long lattice (∆2 < 0). In
contrast, the lattice geometry and its band structure are qualitatively different depending on whether V s is
positive or negative, as illustrated in figure 3. Hereafter, we consider the short lattice to have a red detuning,
∆1 < 0 (V s negative), giving rise to an OSL potential consisting of an asymmetric double well with a local
minimum, (Vs +Vℓ), a global minimum, (Vs −Vℓ), and a maximum,−V2

ℓ/(4Vs), as shown in panel (a) of
figure 3. Panel (b) shows what the OSL potential looks like for V s positive.

6 In this scenario, the atom can be treated as a two-level system whose evolution is described by that of its ground state.

3



New J. Phys. 25 (2023) 023024 MMirahmadi et al

Figure 2. Superlattice optical potential, equation (3), for different relative magnitudes of the parameters Vℓ > 0 and Vs < 0. Note
that choosing Vℓ < 0 results in a shift in x of V(x) by π/ks.

Figure 3. Superlattice optical potential, equation (3), for Vℓ > 0 and (a) Vs < 0 whose local minimum, global minimum, and
maximum are marked by the black dashed, blue dashed and black dotted lines, respectively. (b) Vs > 0. In either panel,
|Vℓ|< 2 |Vs|.

3. Comparing an atom subject to an OSL with a planar rotor subject to combined
orienting and aligning interactions

The Hamiltonian of a planar (2D) rigid rotor subject to collinear orienting and aligning interactions is given
by [47–49]

HPR =−B
d2

dθ2
− η cosθ− ζ cos2 θ (6)

where B= ℏ2/(2I) is the rotational constant, with I the moment of inertia, and 0⩽ θ < 2π is the polar angle
between the axis of the rotor and the direction of the external collinear fields. It is the couplings of the
permanent and induced dipole moments, fixed to the axis of the rotor, with the external collinear fields that
give rise to the orienting and aligning interactions, see panel (b) of figure 1. The strengths of the orienting
and aligning interactions are characterized, respectively, by the parameters η and ζ . For either a vanishing η
or ζ , the TISE pertaining to the resulting Hamiltonian becomes isomorphic with the Mathieu equation,
which satisfies different boundary conditions for the purely orienting and purely aligning interactions, cf
table III of [20]. When both η and ζ vanish, the eigenproblem becomes that of a planar rotor.
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Table 1. Correspondence between the interaction parameters of the OSL and PR eigenproblems.

System Parameters

Atom in an optical superlattice (OSL) θa V s Vℓ ER
Planar rotor in external fields (PR) θ −ζ −η B

In order to establish the isomorphism of Hamiltonians (2) and (6), we introduce a dimensionless
variable θa ≡ ksx (= 2πx/a) whose substitution transforms Hamiltonian (6) into

HOSL =−ER
d2

dθ2a
+Vs cos

2 θa +Vℓ cosθa (7)

with ER = ℏ2k2s /(2m) the atomic recoil energy. Note that the recoil energy is related to the lattice constant a
via ER = 2π2ℏ2/(ma2). Comparing Hamiltonians (6) and (7) makes it possible to establish a correspondence
between the interaction parameters of the OSL and PR eigenproblems, see table 1.

Note that, unlike the polar angle θ, the variable θa in equation (7) is not defined on a circumference but
on a line7. In particular, the interval 0⩽ θa < 2π describes a unit cell consisting of an asymmetric DW with a
local minimum at θa = 0 or 2π and a global minimum at θa = π.

In order to explore the spectral properties of the two Hamiltonians given by equations (2) and (6), we
divide the Schrödinger equation pertaining to each Hamiltonian through its characteristic energy, ER or B.
Thus, for the OSL system we obtain

H̃OSLψ(θa) = Eψ(θa) (8)

with HOSL/ER → H̃OSL. Hence the eigenvalues E of H̃OSL pertaining to eigenfunctions ψ(θa) are rendered in
units of recoil energy ER.

On the other hand, the reduced eigenvalue problem for the PR system becomes

H̃PRϕ(θ) = ϵϕ(θ) (9)

with HPR/B→ H̃PR. The eigenvalues ε of H̃PR then come out in units of the rotational constant B. The
corresponding eigenfunctions are ϕ(θ).

Despite the above similarity of the OSL and PR eigenproblems, the physically meaningful boundary
conditions on the two systems lead to different structures of the energy levels of equations (9) and (8).

Due to its spatial periodicity, equation (8) can be treated via Floquet’s theorem (or equivalently Bloch’s
theorem), with solutions obeying the boundary condition

ψ(θa + 2π) = µψ(θa) (10)

where µ= exp(i2πq) is the Floquet multiplier and 2πℏq/a is the quasi-momentum. Consequently, the
eigenvalues of equation (8) are energy bands E≡ En(q) with n= 0,1,2, . . . the band index. Note that the
parameter q is continuous and confined to the first Brillouin zone (in the reduced-zone scheme), i.e.
−1/2⩽ q< 1/2. For physically meaningful solutions, the modulus of µmust be equal to one, i.e. the
parameter qmust be real (see appendix B).

In the case of the planar rotor interacting with combined fields, the TISE (9) may be solved either for a
periodic boundary condition,

ϕ(θ+ 2π) = ϕ(θ) (11)

or an antiperiodic boundary condition8,

ϕ(θ+ 2π) =−ϕ(θ). (12)

Given that equations (11) and (12) are equivalent to equation (10) for µ= 1 and µ=−1, respectively, the
(pendular) eigenstates of the planar rotor in combined fields correspond to Bloch waves for atoms in an OSL
with integer and half-integer wave numbers. In other words, the eigenfunctions and eigenvalues of the PR
Hamiltonian are equivalent to those at the edges of the first Brillouin zone: the periodic solutions to q= 0
and the antiperiodic ones to |q|= 1/2.

7 In classical mechanics, the dynamics of a particle subject to a linear periodic potential is identical to that of a rotor, which is not the case
for its quantum mechanical counterpart.
8 We include these 2π-antiperiodic (or, equivalently, 4π-periodic solutions as they may prove useful for problems involving Berry’s geo-
metric phase or systems with 4π rotational symmetry.
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Table 2. Analytically obtained lowest band-edge energies of the optical superlattice (eigenenergies ϵ(Γ)) for the first four values of κ
defined in equation (16). Here Γ stands for the irreducible representations of the C2v point group of HPR.

κ Γ E= ϵ(Γ)

1 A1 −β2

2 B1 −β2 −β+ 1/4
B2 −β2 +β+ 1/4

3 A1 −β2 − 1
2

√
16β2 + 1+ 1/2

A1 −β2 + 1
2

√
16β2 + 1+ 1/2

A2 −β2 + 1

4 B1 −β2 −β−
√

4β2 + 2β+ 1+ 5/4
B1 −β2 −β+

√
4β2 + 2β+ 1+ 5/4

B2 −β2 +β−
√

4β2 − 2β+ 1+ 5/4
B2 −β2 +β+

√
4β2 − 2β+ 1+ 5/4

4. C-QES of the TISE

The solvability of the TISE (9) as well as its spectral properties have been studied by means of supersymmetry
and Lie-algebraic methods in our previous work [31, 47–50]. In this section, we make use of the results
obtained therein to study the trapping of atoms in an OSL. Based on the relation between Hamiltonians
equations (9) and (8), we provide analytic insights into the band-gap structure of the OSL.

The TISE (9) for the PR system can be mapped onto the Whittaker-Hill differential equation [51, 52]
(a special case of the Hill differential equation [41]),

d2f(y)

dy2
+
[
λ+ 4κβ cos(2y)+ 2β2 cos(4y)

]
f (y) = 0 (13)

by making use of the definitions of the angular variable y≡ θ/2, the eigenvalues λ≡ (4ϵ+ 2ζ), and the real
parameters κ and β via

η/B= κβ ζ/B= β2. (14)

In the same way, we can map equation (8) for the OSL system onto the Whittaker-Hill differential equation
by setting y≡ θa/2, λ≡ (4E− 2Vs), and

Vℓ/ER =−κβ Vs/ER =−β2. (15)

The parameter κ has been termed the topological index [31, 47].
For ζ > 0, the PR system belongs to the class of conditionally quasi-exactly solvable (C-QES)

eigenproblems. This means that it is possible to obtain a finite number of its eigenvalues and eigenfunctions
analytically (quasi-exact solvability, QES) [53–56]), but only if the interaction parameters η and ζ satisfy a
particular condition (conditional exact solvability, CES) [57–59]). Specifically, analytic solutions of
equation (9) for the PR system only obtain for integer values of the topological index κ. In addition, the
integer values of κ specify the number of obtainable analytic solutions.

Due to the PR 7→ OSL mapping, we see that the band-edge wavefunctions and energies of the OSL with
TISE (8) are analytically obtainable only for integer ratios

κ=
|η|√
ζ
=

|Vℓ|√
−Vs

. (16)

Note that this statement is only valid for Vs < 0 as TISE (8) is not C-QES if the short-lattice is blue-detuned.
If κ is an odd integer, the first κ states obeying the periodic boundary condition (i.e. band-edge states

with q= 0 or integer wavenumbers) are analytically obtainable. If κ is an even integer, the κ lowest
antiperiodic solutions (i.e. band-edge states with |q|= 1/2 or half-integer wavenumbers) can be obtained
analytically. In [48, 49], analytic expressions for forty PR eigenenergies ϵ(β) have been found. Those
obtained for κ= 1 to κ= 4 are listed in table 2 as band-edge energies E(β) = ϵ. In addition, more details,
including the analytic expressions for the band-edge eigenfunctions, are given in appendix A.

We note that the QES conditions equation (16) only apply to the OSL with λs = λℓ/2. It is also worth
noting that if β→ 0 as κ→∞ and, at the same time, κβ remains finite, then the Whittaker-Hill
equation (13) reduces to the Mathieu equation. As the above conditions of quasi-exact solvability do not
apply to the Mathieu equation, it has no analytic solutions.

6



New J. Phys. 25 (2023) 023024 MMirahmadi et al

5. Atoms subject to an OSL as a semifinite-gap system

The spectrum of a periodic Schrödinger operator consists of regions of allowed eigenvalues (bands) where
the corresponding eigenfunctions are bounded, and forbidden eigenvalues (gaps), where the eigenfunctions
do not have a finite norm and, therefore, are not physically meaningful. As shown in section 3, for the
TISE (8) of the OSL system, the bands only obtain for q real (in which case q corresponds to the Bloch
wavenumber). The q parameter as a function of E can be determined from the Hill discriminant,D(E), by
making use of the relation,

2cos(2πq) =D(E). (17)

This procedure is commonly used to describe the band structure of a periodic differential equation such as
the Hill equation [41, 60–62]. In appendix B, we summarize the procedure resulting in equation (17), which
is valid for any real and smooth periodic potential.

By making use of equation (17), it is straightforward to locate the allowed and forbidden energy regions:
if q is real, |D(E)|⩽ 2, which defines the energy bands; if q is not real, |D(E)|> 2, which defines the energy
gaps. In particular, the eigenvalues that satisfy |D(E)|= 2, define the band-edge states whose parameter q
takes integer or half-integer values. In general, the Hill discriminant is an oscillating function of the (real)
variable E that intersects the linesD(E) =±2 in the course of each oscillation. Consequently, the energy
bands implied by the Hill equation obey the inequality |D(E)|⩽ 2. The bands are separated by forbidden
regions (gaps) where |D(E)|> 2. However, for the TISE (8) of the OSL system, after a few oscillations, the
Hill discriminant intersects only one of these two±2 lines and, eventually, touches but one of them without
crossing it, as depicted in figure 4. A system with a spectrum whose every second gap is eventually closed is
referred to as a semifinite-gap system [63, 64]. While the OSL with potential V(x) of equation (3) represents
such a system, a system described by the Mathieu equation does not.

Since the eigenvalues E of the OSL system satisfyingD(E) =±2 correspond to the spectrum of PR’s TISE
with periodic (+2) and antiperiodic (−2) boundary conditions, the knowledge of the PR spectrum provides
a new perspective on the band structure of ultracold atoms in an OSL, as encapsulated in figure 4.

As the symmetries of PR system are isomorphic with those of the C2v point group [48], the solutions of
the corresponding Schrödinger equation (9) fall into four categories, each corresponding to one of the
irreducible representations Γ ∈ {A1,A2,B1,B2} of C2v [48, 49]. The solutions associated with the A1 and A2

symmetries are, respectively, even and odd functions (with respect to θ = π), satisfying the periodic
boundary condition on the interval θ ∈ [0,2π]. The solutions corresponding to B1 and B2 symmetries are,
respectively, odd and even functions (with respect to θ = π), satisfying the antiperiodic boundary
condition9. In accordance with Sturm’s oscillation theorem [41, 62], the eigenvalues form a monotonously

increasing infinite sequence of real values ϵ(A)0 < ϵ
(B)
0 ⩽ ϵ

(B)
1 < ϵ

(A)
1 ⩽ ϵ

(A)
2 < ϵ

(B)
2 ⩽ ϵ

(B)
3 < .. . , where {ϵ(A)i }

is the energy set corresponding to the periodic solutions (either A1 or A2), and {ϵ(B)i } corresponds to the
antiperiodic solutions (either B1 or B2). Furthermore, the number of nodes of the corresponding
eigenfunctions in the interval [0,2π] is equal to 0,1,1,2,2,3,3, . . . , where the odd (even) number of nodes
corresponds to antiperiodic (periodic) eigenfunctions.

Figure 5 shows the energy levels of the planar rotor in combined fields as a function of the orienting
parameter η for a constant value of the aligning parameter ζ = 50 B. The energy levels that lie beyond the
C-QES interval, i.e. above the local minimum of the potential (marked by the upper dashed lines), have been
obtained numerically by means of the Fourier grid Hamiltonian method [65] as implemented within the
WavePacket software package [66–68]. For more details regarding the C-QES interval see appendix A and
[48, 49]. All eigenvalues below the local minimum of the potential, either analytic (integer κ) or numerical
(non-integer κ), pertain to singlet states with a specific symmetry Γ. However, the energy differences
between some pairs of the A and B levels in this part of the spectrum are small and hardly discernible on the
scale of panel (a), which is why they are shown once more but separately: A levels in panel (b) and B levels in
panel (c). Note that the ground state always pertains to the A1 symmetry.

The most striking feature of the eigenenergies shown in figure 5 is their rich pattern of genuine and
avoided crossings. As expected from the Wigner-von Neumann non-crossing rule [69, 70], levels pertaining
to the same symmetry (i.e. to the same irreducible representations Γ) exhibit avoided crossings whereas
levels of different symmetry exhibit genuine crossings.

For odd integer κ values, all eigenenergies corresponding to the periodic eigenstates A are two-fold
degenerate, see panel (b) of figure 5. These degenerate states cannot be labeled by one of the specific

9 Note that the correlation between the even functions andB2 (or odd functions andB1) is valid for η< 0 andwill change to the correlation
between even functions and B1 (odd functions and B2) for η> 0. For more details, see [48, 49]
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Figure 4. Schematic diagram of the Hill discriminant for atoms in an optical superlattice treated as a semifinite-gap system for
(a) κ= 2 and (b) κ= 3. The shaded areas indicate the allowed energy (E) regions for |D(E)| ⩽ 2. Note that the widths of the
bands and gaps depend on the choice of the values of the V s and Vℓ parameters.

Figure 5. (a) Energies of the planar rotor interacting with combined fields as functions of η for constant ζ = 50 B. The vertical
blue dotted lines mark the η values associated with the integer values of κ from κ= 1 (η =−

√
50) to 14 (η =−14

√
50). Panels

(b) and (c) show the energies of the periodic (A1,A2) and antiperiodic (B1,B2) states, respectively. Here, the potential is an
asymmetric double well with local and global minima indicated by black dashed lines, and a maximum shown by the black dotted
curve.

symmetries, A1 or A2. Similarly, for even integer κ, the genuine crossings occur for the antiperiodic states B1

and B2, see panel (c) of figure 5. In other words, if κ is an odd (even) integer, the TISE (9) has two linearly
independent solutions obeying the periodic (antiperiodic) boundary condition. This is referred to as
coexistence of two linearly independent solutions with the same periodicity and is a peculiarity of the

8
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Figure 6. The band-gap structure of the optical superlattice with respect to the long-lattice depth when the short-lattice depth is
constant Vs =−5 ER. The allowed bands are shaded in grey. Blue vertical dotted lines mark Vℓ corresponding to κ= 1 to κ= 13.
The black dashed vertical line at Vℓ = 2|Vs|= 10 ER distinguishes the double-well (left side) and single-well (right side) regimes.
For the single-well regime, black dashed lines indicate the maximum and minimum of the potential. For the double-well regime,
see figure 5.

Whittaker-Hill equation (arising only for ζ > 0) [41, 71, 72]. We note that the coexistence (degeneracy) of
two Mathieu functions has been proved to be impossible [72].

On the other hand, the avoided crossings occur between pairs of states with the symmetry B1 or B2

(i.e. between the energy curves with the same colors in panel (c) of figure 5) for odd integer κ. For even
integer κ, the avoided crossings occur between pairs of the A1 or A2 levels (i.e. between the energy curves
with same colors in panel (b) of figure 5). Note that some of the avoided crossings cannot be discerned on
the scale of the figure. Therefore, one may conclude that the energy curves show extrema at even κ. Although
this is valid for the lower energy levels, it is not always true for higher energy levels and larger κ values.

The discussion above regarding the energy levels of the PR system can be extended to the case of ultracold
atoms in an OSL, completing the picture of its semifinite-gap structure. In particular, the energy bands
(|D(E)|⩽ 2) of equation (8) are intervals

[ϵ
(A)
0 , ϵ

(B)
0 ], [ϵ

(B)
1 , ϵ

(A)
1 ], [ϵ

(A)
2 , ϵ

(B)
2 ], . . . (18)

separated by the gaps (|D(E)> 2) whose edges correspond to the PR’s eigenfunctions of the same periodicity:
A-type gaps for periodic (|q|= 0) and B-type gaps for the antiperiodic (|q|= 1/2) boundary conditions, i.e.

(ϵ
(B)
0 , ϵ

(B)
1 ), (ϵ

(A)
1 , ϵ

(A)
2 ), (ϵ

(B)
2 , ϵ

(B)
3 ), . . . . (19)

Therefore, the genuine crossings in PR’s spectrum correspond to the closed gaps in the OSL band structure.
For even integer κ, all B-type gaps are closed except for the first κ/2. In addition, using the analytic energies
(see section 4 and appendix A), it is possible to derive analytic expressions for the widths of these κ/2 open
B-type gaps. If κ is an odd integer, all A-type gaps vanish except for the first (κ− 1)/2, whose widths can be
calculated analytically. The semifinite-gap structure for two examples, κ= 2 and κ= 3, are shown,
respectively, in panels (a) and (b) of figure 4.

The band structure of atoms in an OSL for constant Vs =−5 ER and different Vℓ is shown in figure 6.
Note that while the energy bands below the maximum of the potential (i.e. below the upper black dashed
line) are hardly discernible, those sufficiently above the potential’s maximum exhibit a significant width.
However, the gaps shrink with the energy of the band. These differences are more prominent when the OSL
has deeper wells, as can be seen by comparing figure 5 with figure 6. Furthermore, guided by the
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Figure 7. The band-gap structure of atoms in an optical superlattice with respect to the short-lattice depth when the long-lattice
depth is constant Vℓ = 60 ER. Blue dotted lines mark V s corresponding to κ from κ= 5 to κ= 10. The black dashed vertical line
at−Vs = Vℓ/2= 30 ER separates the single-well (left side) and double-well (right side) regimes. In the single-well regime, black
dashed lines indicate the maximum and minimum of the potential. For the double-well regime, the local and global minima are
shown, respectively, by black dashed lines, and the maximum by the black dotted curve, cf figure 5. The color-coding is the same
as in figure 6.

color-coding assigned to different Γ symmetries, we can see that with every transition from a genuine
crossing (i.e. Vℓ corresponding to closed gaps), the symmetry of the lower and upper band-edge states
involved is interchanged (A1 ↔ A2 or B1 ↔ B2). We note that even though the gaps decrease in the high
energy limit, the gaps become zero only at the loci of integer κ. Although further into the single-well regime
(on the right from the red dotted vertical line in figure 6) the avoided and genuine crossings in principle still
occur, the characteristic features of the DW regime fade out, see figure 6.

Figure 7 complements the overview of the above phenomena by displaying the band structure for a
long-lattice well-depth Vℓ = 60 ER. The rich energy structure in the DW regime (|Vs|> 30 ER, to the left of
the red dotted vertical line) compared to the single-well regime (|Vs|< 30 ER) is clear in this figure where the
closed gaps located at Vs =−144 ER, Vs =−(60/7)2 ≈−73.47 ER, and Vs = (60/9)2 ≈−44.44 ER (i.e.
κ= 5,7,9 are indicated by vertical dotted blue lines).

6. Correspondence between orientation/alignment of a planar rotor and spatial
localization (squeezing) of an atom in an OSL

The concept of directionality (orientation and alignment) of a planar rotor subject to orienting and aligning
combined fields corresponds to the spatial squeezing of atoms in an OSL (see, e.g. [29, 73]). In order to
illustrate this correspondence, we make use of the common measures of orientation and alignment defined,
respectively, as the expectation values 〈cosθ〉 and 〈cos2 θ〉. A fully oriented and fully anti-oriented planar
rotor is characterized, respectively, by 〈cosθ〉= 1 and 〈cosθ〉=−1. A fully aligned planar rotor satisfies
〈cos2 θ〉= 1 whereas the spatial distribution of the axis of a free planar rotor (when the orienting and
aligning interactions are absent) is characterized by the isotropic value 〈cos2 θ〉= 1/2.

Therefore, when the planar rotor is oriented, θ≈ 0, whereas when it is anti-oriented, θ ≈ π. Similarly, we
find alignment when θ≈ 0 or π and anti-alignment for θ ≈ π/2. Figure 8 shows a schematic representation
of the relationship between orientation and alignment of the rotor and the spatial squeezing of atoms in an
OSL with Vℓ > 0 and Vs < 0. As illustrated in the figure, an oriented planar rotor is equivalent to the case of
θa ≈ 0, i.e. the spatial localization of the atomic wavefunction (probability density) at the local minimum of

10
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Figure 8. Correspondence between orientation of a planar rotor and spatial localization (squeezing) of an atom in an optical
superlattice with Vℓ > 0 and Vs < 0. Panel (a) shows the oriented rotor (θ= 0) and panel (b) the anti-oriented rotor (θ = π).
Here, ẑ indicates the direction of the collinear external fields.

Figure 9. Plots of the probability density |ψ(θa)|2 in the unit cell of an optical superlattice for Vs =−49 ER, together with the
polar plots of a planar rotor subject to external fields, |ϕ(θ)|2 with ζ = 49 B.

the lattice. On the contrary, an anti-oriented planar rotor is analogous to the case of spatial localization at the
global minimum10.

Figure 9 shows the probability densities |ψ(θa)|2 of two different bound states of an atom in an OSL and
their analogues in the PR system |ϕ(θ)|2: (a) a highly localized state around the global minimum, and (b) a
nearly delocalized state. Panel (a) corresponds to 〈cosθ〉=−0.964 and 〈cos2 θ〉= 0.931, which can be
characterized as an anti-oriented and aligned pendular state. Panel (b), on the other hand, corresponds to
〈cosθ〉= 0.095 and 〈cos2 θ〉= 0.459, a characteristic of an almost isotropic state (〈cosθ〉 ≈ 0).

As mentioned before, the band-edge state at the closed gaps (i.e. a doubly degenerate state) results from a
superposition of two driven rotor’s states with different Γ symmetries and hence, different localizations. An

example is shown in figure 10, where the probability densities |ϕ(A2)
1 (θ)|2 and |ϕ(A1)

2 (θ)|2 corresponding to
the lowest closed gap at κ= 1 are depicted. In this case, orientation and alignment of the state associated with
A2 symmetry (the light blue curve localized around the global minimum of the lattice) are 〈cosθ〉=−0.886
and 〈cos2 θ〉= 0.793, respectively. However, for the A1 symmetry (the purple curve localized around local
minimum of the lattice) we find 〈cosθ〉= 0.9603 and 〈cos2 θ〉= 0.925. Consequently, the superposition will
be still (nearly) aligned but does have approximately zero orientation (double-arrow like). Note that the
discussion given above also applies to the antiperiodic states.

Based on the correspondence between the PR and OSL systems, we introduce the expectation values
〈cosθa〉 and 〈cos2 θa〉 as quantitative measures of the spatial localization of the Bloch states in an OSL. This
makes it possible to use the Hellmann-Feynman theorem to establish a relationship between the spatial
dependence of the band-edge energies, such as those shown in figures 5 and 7, and the spatial localization of
the corresponding eigenstates [49, 74]. According to the Hellmann-Feynman theorem, 〈ψn |∂χH(χ)|ψn〉=

10 Note that by choosing Vℓ < 0, localization around the local/global minimum would be analogous to antiorientation/orientation.
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Figure 10. Same as in figure 9 but for a genuine crossing at ζ = 49 B and η =−7 B or, equivalently, a closed gap at
Vs =−49 ER,Vℓ = 7 ER. The color coding is the same as in figure 6.

∂χEn for χ a parameter in the Hamiltonian, which in our case is either Vℓ or V s. Hence we obtain (over a
single unit cell and for a constant q),

〈cosθa〉n =
∂En
∂Vℓ

⟨
cos2 θa

⟩
n
=
∂En
∂Vs

. (20)

Therefore, the Hellmann-Feynman theorem implies that variations of the band energy in the vicinity of the
genuine and avoided crossings will result in significant changes in the spatial localization of the atoms
(see [49] for further details in the case of the PR system). From equation (20) and given that the global
minimum of the potential V(x) rises whereas the local minimum of the potential drops at the avoided
crossings (see section 2), the localization of band-edge states around θa = 0 and θa = π interchanges,
although the symmetry of the states involved remains the same.

We note that the abrupt changes in the localization of the wavefunctions at these intersections are
characteristic of energy levels well below the maximum of the potential but still above the local minimum.
Indeed, for higher excited states, those changes occur more smoothly.

7. Conclusions and prospects

We have shown that two seemingly unrelated systems—an atom under the potential of an OSL (formed by
two 1D lattices whose spatial periods differ by a factor of two) and a planar rigid rotor under combined
orienting and aligning interactions (also known as the generalized planar pendulum in our previous
works)—have isomorphic Hamiltonians. We made use of this isomorphism and applied the extensive results
obtained previously for the latter case, based in part on the theory of the Whittaker-Hill equation [48, 49], to
treat atoms in an OSL. Given that the eigenproblem of a planar rotor in combined fields is conditionally
quasi-exactly solvable, we have been able to obtain analytic results for atoms in an OSL as well. These analytic
solutions correspond to the edge states (the states with integer and half-integer quasi-momentum) of the
OSL band structure. We note that because of the properties of the TISE and its solvability conditions,
analytic solutions cannot be obtained for other states (inside the bands).

In particular, we have obtained in analytic form a finite number of eigenstates corresponding to the
deep-lying band edges around the global minimum of the superlattice potential. Thereby, we prepared the
soil for obtaining exact expressions for tunneling amplitudes between the sites of the superlattice (such as
two global minima) and hence the hopping term in the corresponding Hubbard model Hamiltonian or the
Landau-Zener tunneling probabilities [3]. By invoking the spectral properties of the Whittaker-Hill
equation, we have shown that the motion of ultracold atoms in an OSL gives rise to a semifinite-gap system
that can be used to study topological properties of the atoms’ energy spectra [17, 63, 64]. Finally, we have
shown how orientation and alignment of the planar rotor in interacting with external fields translate into the
localization (squeezing) of the ultracold atoms in an OSL. This treatment of atom squeezing offers itself to
studying transport in OSLs [15].

Conversely, the isomorphism between the Hamiltonians of two systems would make it possible to
simulate the planar rotor in the presence of external fields by the OSL. In particular, ultracold atoms in an
OSL could be used to simulate the semifinite-gap spectrum of the supersymmetric partners of the planar
rotor under the orienting and aligning interactions as well as under more involved potentials [31, 47, 75].
Therefore, the present study can be viewed as a proposal for a quantum simulator of a planar rotor subject to
external fields.

In future work, the available analytic solutions will be used to develop analytic dynamical models of the
trapping of atoms in an OSL. We will also analyze the case of non-zero relative phase, φ 6= 0, between the two
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lattices that constitute the OSL and show that the QES conditions (and the topological index κ) for that case
differ from those presented here for φ= 0.

We note that ultracold atoms in optical lattices are generally studied via the properties of the Mathieu
equation that the TISE for a simple 1D optical lattice∝ cos2(kx) [18] reduces to. However, as we have shown
herein, using the Whittaker-Hill equation instead, with its intriguing spectral features as well as its C-QES,
reveals new perspectives on the OSL eigenproblem that could prove useful in band structure engineering of
ultracold quantum gases. In particular, the solutions of the Whittaker-Hill equation provide a new means to
control the lattice configuration by varying the depth of the lattice (for a fixed φ). Note that this was not the
case in previous studies (e.g. [5, 15, 17, 76]), where the main focus is on the relative phase φ. the relative
phase φ. All this is a further indication that the fields of ultracold atoms, coherent control, and condensed
matter physics are coming closer together.
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Appendix A. Analytically obtainable band-edge states

The eigenstates of the PR Hamiltonian can be obtained in analytic form by diagonalizing the four
finite-dimensional symmetry-adapted matrix representations of this Hamiltonian. The solutions that satisfy
the q= 0 (periodic boundary condition) can be written as

ψ(A1)(θa) =
(
N(A1)

)−1/2
eβ cosθa

(κ−1)/2∑
ℓ=0

vℓ cos
2ℓ θa

2

ψ(A2)(θa) =
(
N(A2)

)−1/2
eβ cosθa sinθa

(κ−3)/2∑
ℓ=0

ṽℓ cos
2ℓ θa

2
(A.1)

which are normalized by (on the 2π interval of θa)

N(A1) = 2π
∑
ℓ,ℓ ′

1

22L
vℓvℓ ′


(
2L

L

)
I0(2β)+ 2

L−1∑
j=0

(
2L

j

)
IL−j(2β)


N(A2) = 2π

∑
ℓ,ℓ ′

1

22L+1
ṽℓṽℓ ′

{(
2L

L

)
I1(2β)/β+

L−1∑
j=0

(
2L

j

)
[2IL−j(2β)− IL−j+2(2β)

− IL−j−2(2β)]

}
. (A.2)

The constants vℓ and ṽℓ are components of the eigenvectors of the matrix representations corresponding to
the A1 or A2 symmetries (see [48, 49]). Iρ is the modified Bessel function of the first kind and ρth order [77,
78],

(b
a

)
is the binomial coefficient, and L : = ℓ+ ℓ ′.

The 2π-antiperiodic solutions can be written as

ψ(B1)(θa) =
(
N(B1)

)−1/2
eβ cosθa cos

θa
2

(κ−2)/2∑
ℓ=0

wℓ cos
2ℓ θa

2
,

ψ(B2)(θa) =
(
N(B2)

)−1/2
eβ cosθa sin

θa
2

(κ−2)/2∑
ℓ=0

w̃ℓ cos
2ℓ θa

2
(A.3)
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Figure A1. The lowest available analytic eigenvalues of planar rotor in the combined fields (band-edge energies in optical
superlattice) as functions of β =

√
ζ/B=

√
−Vs/ER for different integer values of the topological index κ given by

equation (16).

where, the constants wℓ and w̃ℓ are components of the eigenvectors of the matrix representations associated
with the B1 and B2 symmetries given in [48, 49]. The normalization constants are

N(B1) = 2π
∑
ℓ,ℓ ′

1

22L+1
wℓwℓ ′

{(
2L

L

)
[I0(2β)+ I1(2β)]+

L−1∑
j=0

(
2L

j

)
[2IL−j(2β)

+ IL−j+1(2β)+ IL−j−1(2β)]

}

N(B2) = 2π
∑
ℓ,ℓ ′

1

22L+1
w̃ℓw̃ℓ ′

{(
2L

L

)
[I0(2β)− I1(2β)]+

L−1∑
j=0

(
2L

j

)
[2IL−j(2β)

− IL−j+1(2β)− IL−j−1(2β)]

}
. (A.4)

A total of 40 analytic solutions are given in [48, 49]. Note that these analytic solutions are limited to the
so-called interval of (conditional) quasi-exact solvability. Above this interval all the solutions are only
obtainable by means of numerical methods. However, solutions at the loci of integer κ are still given by
equations (A.1) and (A.3) but with coefficients calculated numerically.

Figure A1 displays 24 of the analytic energy curves as a functions of β for different values of κ. It is
important to keep in mind that the superlattice geometry changes from a single-well for β < κ/2 to a DW
per site for β > κ/2.

Appendix B. The Hill discriminant

Consider the differential equation

d2f

dy2
+ [λ+Q(y)]f(y) = 0 (B.1)
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where Q(y+T) = Q(y) is a real-valued smooth periodic function and λ is the eigenvalue. This periodic
differential equation (often called the Hill equation [41]) has a band-gap structure. Due to the translational
symmetry, functions f (y) should fulfill the following boundary condition

f(y+T) = µf(y) (B.2)

where µ is known as the Floquet multiplier.
In order to study its spectrum, we choose a basis set consisting of two linearly independent solutions

f1(y,λ) and f2(y,λ) corresponding to the same eigenvalue λ and obeying the conditions
f1(0,λ) = f ′2(0,λ) = 1 and f2(0,λ) = f ′1(0,λ) = 0 (prime denotes the derivative with respect to y). Defining
the general f function corresponding to the eigenvalue λ as

f(y,λ) = αf1(y,λ)+βf2(y,λ) (B.3)

and substituting it into equation (B.2) and its derivative, we have[
f1(T,λ) f2(T,λ)
f ′1(T,λ) f ′2(T,λ)

][
α
β

]
= µ

[
α
β

]
. (B.4)

The 2-by-2 matrix on the left hand side of equation (B.4) is the transpose of the monodromy matrix with a
constant (y-independent) determinant equal to one [41, 62, 63]. It is known that the eigenvalues of the
monodromy matrix, µ, are Floquet multipliers and that the trace of the monodromy matrix,

D(λ) = f1(T,λ)+ f ′2(T,λ) , (B.5)

is the discriminant associated with the Hill equation (B.1), the so-called Hill discriminant or Floquet
discriminant [63, 64]. Note that some authors defineD(λ) as half of this value (see e.g. [60, 62]). Thus, from
equation (B.4), the characteristic equation for the eigenvalues µ reduces to

µ2 −D(λ)µ+ 1= 0 . (B.6)

By substituting µ= exp(iTq) in equation (B.6), we obtain the relation between the Hill discriminant and
the q parameter as

D(λ) = 2cos(Tq(λ)) . (B.7)

Finally, the spectral properties of equation (B.1) can be explained by using the oscillation properties of its
associated Hill discriminantD(λ) [41, 60, 61, 63]: (i) for |D(λ)|⩽ 2, the parameter q is real and so the
modulus of µ is equal to one. Therefore, the solutions f (y) are bounded and the corresponding λ values are
allowed (bands). (ii) for |D(λ)|> 2, the parameter q is not real and so the solutions f (y) do not have a finite
norm and thus are not physically admissible. The corresponding λ values are forbidden (gaps). Furthermore,
the λ values withD(λ) = 2 are the spectral edges corresponding to the periodic solutions (µ= 1), and those
withD(λ) =−2 to the antiperiodic solutions (µ=−1). Therefore, these values describe the edges of the
allowed regions (band-edges).

We note that the oscillations of the discriminantD(λ) as a function of real eigenvalues λ and their
intersections with linesD(λ) =±2 depend on the shape of the periodic function Q(y) in equation (B.1).

ORCID iDs

Marjan Mirahmadi https://orcid.org/0000-0003-4038-2608
Bretislav Friedrich https://orcid.org/0000-0002-1299-4239
Burkhard Schmidt https://orcid.org/0000-0002-9658-499X
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