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1. Introduction
Managing the consequencesof climate changeandhumanactivity isoneof thegreat-
est challenges of the twenty-first century. Extremeweatherevents, suchas heatwaves
anddroughts, are becomingmore commonandmore severe [1], andurban andagri-
cultural expansion is contributing to the loss of biodiversity and the degradation of
ecosystems [2]. This new reality challenges the capacity of host species to persist and
forces infectious diseases to rapidly evolve. Indeed, the COVID-19 pandemic has
emphasized how quickly infectious diseases can evolve and spread—with conse-
quences for transmission, virulence and evasion of host defences [3]—and that
disease dynamics will play out differently across regions of the globe [4,5].

Addressing these challenges requires multi-faceted approaches that explore the
effects of human-induced change on host–pathogen (including parasites) inter-
actions across space and time (i.e. ecological and evolutionary timescales).
Developing measures to enhance the resilience of natural and agricultural commu-
nities to these changes is also critical. Yet, these concepts have traditionally been
tackled from disparate viewpoints with little empirical overlap. Ecological and epi-
demiological research, for example, has linked the spread of disease to
environmental factors (e.g. [6–8]). But there is a pressing need for evolutionary
research to capture how hosts and their pathogens may evolve under the sweeping
environmental changes that populations now face. There is evidence that abiotic
environmental factors can impact selection in host–pathogen interactions (e.g. [9]),
but often empirical work examines these questions in abstract ways (hot versus
cold, low versus high food). In turn, suggestions to use ecological and evolutionary
principles in the management of agricultural pests and pathogens do not often con-
sider the social and economic factors that underlie any long-term intervention [10].

This special issueaimstobring together research fromdifferent fields (ecological,
evolutionary, epidemiological and applied) and approaches to better understand
and address the impact of human-driven environmental change on infectious dis-
ease. It addresses a lack of comprehensive discussion on key issues that arise
because different types of environmental change often form their own fields of
research, rather than being studied as interconnected symptoms of human activity.
To address this gap, the contributions herein focus on three key themes: climate
change and infection outcomes; understanding host–pathogen interactions in dynamic
environments; and outbreaks and pathogen evolution in human-altered ecosystems. By
comparing different forms of global change, integrating across multiple fields, and
identifying empirical and theoretical research gaps, this issue’s goal is to showcase
and sparknew thinking on infectious disease evolution in a rapidly changingworld.
2. Theme 1: climate change and infection outcomes
Thermal conditions can strongly impact host- and pathogen infection-related
traits. Temperature has been shown to alter the encounter rates between host
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andparasites, host susceptibility and tolerance to infection and,
finally, the infectivity and virulence of parasites (reviewed in
[11–14]). There is a common prediction of increased pathogen
development and replication rates as well as enhanced parasite
transmission under elevated temperatures (i.e. ‘warmer hence
sicker world’ scenario, e.g. [12]). However, the empirical evi-
dence is inconclusive—certain studies support but others
contradict (e.g. [15–17]) this hypothesis.

The first group of papers focus on the most widely con-
sidered facet of global change—climate change and rising
temperatures—but address the pressing need to consider
these in the light of host and pathogen traits as well as
their spread and evolutionary potential. Empirical studies
explore the direct impacts of warming on key pathogen infec-
tivity and host resistance traits, with implications for disease
outbreaks. A field study extends exploration of trait variation
in the larger host community to disease risk as temperature
increases. An empirical study and an opinion piece further
consider the roles host and pathogen adaptation play in cli-
mate-driven disease emergence and severity. Whether hosts
can shift their thermal tolerance, or pathogens evolve to
become more virulent, has major implications for species
persistence in a warming world.

To better understand the impact of environmental temp-
eratures on disease outbreaks, two papers focus on changes
in mechanisms underpinning the ability of parasites to infect
[18] and of hosts to resist [19]. In effect, these papers take
care to start from the beginning, where the host and parasite
first meet, using the planktonic crustacean Daphnia and its bac-
terial parasites. Marcus et al. [18] found that parasite spores
exposed to higher temperatures were impaired in their ability
to attach to hosts and subsequently establish infection. The
degree of impact on these traits also varied depending on
whether spores were desiccated or kept wet during heat
spells. It is not the case that a warmer world is sicker if parasite
survival is at risk between hosts. Like most hosts, waterfleas
have physical barriers to infection and also have cellular
immune responses. In detailed experiments, Sun et al. [19]
found that warming affected these defence traits differently,
with consequences for infection outcomes. Disease spread
can also depend on how temperature interacts with traits in
host communities [20,21]. In a thorough field study set in the
Swiss Alps, Halliday et al. [22] found– complex relationships
between trait variation in plant communities driven by temp-
erature gradients and prevalence of infection in those
communities. Together, these three studies highlight that to
predict disease dynamics under climate change, we should
consider multiple traits at the interface of host–pathogen inter-
actions and their variation within species and communities.

The final two papers in this theme address the evolution-
ary potential of hosts [23] and pathogens [24] in the face of
rising temperatures. The geographical ranges of hosts, and
the pathogens they carry, are expanding owing to changing
climates [25]. Of particular concern is the future impact of cli-
mate change on the potential for mosquitoes—vectors for
many human disease-causing viruses—to adapt to shifts in
their thermal environment and move into new areas. Ware-
Gilmore et al. [23] thoughtfully address this issue by studying
how the heritable genetic variation and physiological
responses in the mosquito Aedes aegypti may affect the
upper thermal limits in populations over evolutionary time.
In addition to driving vector evolution, will climate change
select for more virulent pathogens? In the light of the classic
virulence–transmission trade-off [26], Hector et al. [24] discuss
what happens to pathogen virulence, burdens, and replication
in host populations suffering heat stress. The authors find pre-
dicting the evolution of pathogen virulence amidst climate
change might require a better understanding of transmission
strategies and covariation among pathogen traits.
3. Theme 2: understanding host–pathogen
interactions in dynamic environments

The study of abrupt environmental changes, such as hot versus
cold or pristine versus polluted (e.g. see [9,27,28]) is often used
to interpret the ecological or evolutionary impact of global
change. However, the varied and dynamic nature of human-
induced change is highly realistic. The simplification of environ-
mental change is understandable given the added sample sizes
that studying multiple host or pathogen genotypes or species
necessitates. Yet, this situation is rapidly changing. For the
study of thermal change, for example, a range of temperatures
are increasingly being used to study thermal performance
curves [8,29] or even the variation in daily thermal fluctuations
or heatwaves [30]. New theoretical and empirical approaches,
however, are now needed to expand our capacity to quantify
the dynamics of environmental change and predict host and
pathogen evolution in nature.

The first two papers in this theme evaluate how well cur-
rent modelling approaches perform in capturing the rapidly
changing environments that host and pathogens face. Best
& Ashby [31] review the main approaches used to model
host–pathogen evolution when ecological dynamics fluctuate
owing to either extrinsic (seasonality, food availability) or
intrinsic (time lags) factors. They then provide an in-depth
guide on how to implement one main method and apply
this approach to fluctuations arising from seasonally varying
resources, among others. By contrast, Jiranek et al. [32] review
the use of mechanistic models to study host–pathogen inter-
actions under different scenarios of climate change, with a
focus on plant systems. They outline the challenge of linking
disease outbreaks with weather variables when climate
change will likely affect many aspects of host and pathogen
physiology, host demography, and pathogen life cycles, and
these effects may frequently be nonlinear. The authors then
discuss how mechanistic models overcome this limitation.
These models can leverage data from wild and agricultural
plant–pathogen systems to understand the complex feedback
loops arising among physiological, demographic and
evolutionary processes.

Complementing the modelling-focused perspectives are
two empirical papers exploring how local environmental con-
ditions predict disease prevalence, severity and evolution.
Graham et al. [33] highlight the utility of using high-through-
put phenotyping to make disease comparisons across large
environmental, spatial and temporal gradients. By surveying
seagrass wasting disease in eelgrass meadows throughout
their northern range (covering eight degrees of latitude)
they show that disease prevalence and severity was lower
in cooler sites, colder years, and higher latitudes. The authors
provide several suggestions for how this new information can
improve eelgrass management. The final paper in this theme,
by Melero et al. [34], considers how climate change and
human activity might induce changes in plant development
that can shape the evolution of host–virus interactions.
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Using Arabidopsis thaliana as a model system, the authors
experimentally evolved a turnip mosaic virus at three differ-
ent host developmental stages. They found hosts in later
developmental stages were prone to faster and more severe
infections, but the virus nonetheless evolved more rapidly
in younger hosts.
lishing.org/journal/rstb
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4. Theme 3: outbreaks and pathogen evolution
in human-altered ecosystems

The third group of papers considers the broader extent of
direct human activity on host–pathogen interactions. Syn-
thesis and empirical papers explore the socio-economic
challenges of implementing evolutionarily responsive prac-
tices in agriculture, and the consequences for pathogen
evolution when an intervention, such as well-meaning habi-
tat restoration, goes wrong. Geffersa et al. [35] summarize
research efforts on crop disease management based on
deployment of resistance genes. The goal is to disrupt patho-
gen adaptation and prevent the breakdown of resistance.
However, practical uptake of such strategies is limited, and
applied evolutionary research to control pathogen adaptation
can have socio-economic challenges. Geffersa et al. develop a
conceptual framework for the economic valuation of engin-
eering of genes conferring resistance, emphasizing the value
of these strategies beyond economic benefits. Feau et al. [36]
argue that the introduction of new host species can accelerate
pathogen evolution and affect long-established host–patho-
gen coevolutionary dynamics. Specifically, the emergence of
a new pathogen lineage with the intensification of poplar
tree cultivation causes stem infections in a new host. This rep-
resents a serious threat to poplars and could affect both
natural and planted forests. Finally, Manley et al. [37] explore
how conservation measures to protect pollinators—planting
wildflowers along fields—affect disease prevalence in polli-
nator communities. They found wildflower patches did not
act as transmission hubs, but reduced the prevalence of
some viral infections, playing an unintended but additional
role in pollinator conservation.

Complementing these papers is a novel empirical explora-
tion of the consequences of emerging pollutants, namely
nanoplastics [38] and pharmaceuticals [39]. Unlike other
well-studied pollutants, wastewater treatment is often
inadequate in removing nanoplastics and pharmaceuticals.
These pollutants will thus remain a problem in the coming
decades. Plastic production is estimated to reach 33 billion
tons by 2050 [40] and is particularly insidious because plas-
tics break down into smaller particles called micro- or
nanoplastics (size less than 5 mm and less than 100 nm,
respectively) that can cross cell membranes, penetrate
organs and bioaccumulate in organisms. In the current
issue, Manzi et al. [38] and Aulsebrook et al. [39] both used
the planktonic crustacean Daphnia as experimental host.
Manzi et al. found that it depends on the type of parasite
whether and to what extent nanoplastics affect the infection.
Low plastic load had no direct negative consequences for the
host, but infection rates either greatly increased (Metschniko-
wia bicuspidata) or were impeded (Ordospora colligata). These
results indicate that distinct parasite species can show contra-
dictory responses to a contaminant and that nanoplastics can
favour co-infections.
Thousands of pharmaceuticals are used for healthmanage-
ment in humans, pets and agricultural animals, and over 600
products have now been detected in thewild [41]. These pollu-
tants remain bioactive when excreted, are often resistant to
degradation, and target receptors conserved in many species
[42–44]. Aulsebrook et al. [39] showed that the non-monotonic
effects of fluoxetine were only expressed once a host was
infected, demonstrating that the full impact of pharmaceuticals
may only be experienced in the presence of other stressors.
Parameterizing an epidemiological model, they further
explore how fluoxetine can shape the likelihood of an infec-
tious disease outbreak. Their result reiterates the findings of
Manzi et al. [38] that the effects of pollutants are likely to be
pathogen species or genotype specific. Both pollutants exem-
plify the complexity of modern human activity on disease
dynamics by acting in a nonlinear (non-monotonic) manner
and causing an unexpected exaggeration of infection outcomes
at trace amounts.
5. Future directions and conclusion
The consequences of global change to infectious disease ecol-
ogy and evolution are relevant for the health of humans,
animals, plants and the environment. In this issue, climate
change, environmental pollution and the increasing move-
ment of people, animals or cultivars, are presented as
examples of human-induced change that can affect the emer-
gence and evolution of hosts, pathogens and vectors. Beyond
public or ecosystem health concerns, pathogen spread and
evolution due to global change have also been presented as
intimately linked to issues of food security—crop production
and other aspects of agriculture (including aquaculture and
apiculture). Arising from the series of papers across the
three themes of this special issue are these takeaways:

1. We need to know more about the potential and realized
evolutionary paths of hosts and pathogens in a human-
altered world. Both host and pathogen responses to climate
change, emerging pollutants, or even interventions, are
likely to be species or genotype specific. Pathogens and
many pathogen-carrying invertebrates can also evolve on
short timescales that are relevant for predicting disease out-
breaks, as well as the likelihood and impact of zoonoses.

2. A warmer or heavily modified world is not always sicker.
Temperature affects each component of host–pathogen
interactions in unique ways, from host demography to
within-host pathogen burden, making simple generaliz-
ations difficult. While traditional pollution at a greater
dose is usually more damaging for hosts or pathogens,
for emerging pollutants (i.e. pharmaceuticals), the greatest
effects can often occur at the smallest doses, owing to the
way these chemicals target conserved pathways.

3. Not all populations will be equally impacted by change.
Host and pathogen populations should be expected to
be adapted to their local environment, and disease out-
comes will likely vary with latitude, altitude, water
depth (in the case of aquatic organisms), or prior exposure
to human activity. Local adaptation is key both to under-
standing how host and pathogen responses to human
activity might vary over space and time, and for making
predictions on the future distribution of vectors and
pathogens under different change scenarios.
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4. Opportunities to expand the scope with which human-
induced change is studied are sorely needed. Directly
incorporating fluctuating ecological dynamics into our
studies or using empirical data to build mechanistic
models of different types of change offer some solutions
for predicting evolutionary change in response to
human modification.

5. Parasitism is one of the most common lifestyles on Earth
[45]. There is a need to incorporate interactions between
host species and their pathogens as new ecotoxicological
endpoints to better assess the ecological consequences of
novel pollutants. Assessing the effects of any pollutant
in isolation and, in particular, dismissing infection may
lead to a severe underestimation of their real impact on
individual host physiology, with upscaling effects on over-
all populations and ecosystems.

6. Adapting evolutionary or ecological principles into the
management of human activity, pests or pathogens is
not without its costs. The longer timescales with which
these implementations operate, particularly when com-
pared with traditional agricultural approaches, for
example, create additional social and economic challenges
that are often not appreciated when eco–evo ideas are
first suggested.

Overall, this issue summarizes current progress and
identifies remaining gaps in our understanding of infectious
disease ecology and evolution in a global change framework.
We hope the special issue will help drive new research on
host–pathogen interactions, integrating traditionally isolated
fields of study.
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