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A B S T R A C T   

Forests interact with the local climate through a variety of biophysical mechanisms. Observational and modelling 
studies have investigated the effects of forested vs. non-forested areas, but the influence of forest management on 
surface temperature has received far less attention owing to the inherent challenges to adapt climate models to 
cope with forest dynamics. Further, climate models are complex and highly parameterized, and the time and 
resource intensity of their use limit applications. The availability of simple yet reliable statistical models based on 
high resolution maps of forest attributes representative of different development stages can link individual forest 
management practices to local temperature changes, and ultimately support the design of improved strategies. In 
this study, we investigate how forest management influences local surface temperature (LSTs) in Fennoscandia 
through a set of machine learning algorithms. We find that more developed forests are typically associated with 
higher LST than young or undeveloped forests. The mean multi-model estimates from our statistical system can 
accurately reproduce the observed LST. Relative to the present state of Fennoscandian forests, fully develop 
forests are found to induce an annual mean warming of 0.26 ◦C (0.03/0.69 ◦C as 5th/95th percentile), and an 
average cooling effect in the summer daytime from -0.85 to -0.23 ◦C (depending on the model). On the contrary, 
a scenario with undeveloped forests induces an annual average cooling of -0.29 ◦C (-0.61/-0.01 ◦C), but daytime 
warming in the summer that can be higher than 1 ◦C. A weak annual mean cooling of -0.01 ◦C is attributed to 
forest harvest from 2015 to 2018, with an increased daytime temperature in summer of about 0.04 ◦C. Overall, 
this approach is a flexible option to study effects of forest management on LST that can be applied at various 
scales and for alternative management scenarios, thereby helping to improve local management strategies with 
consideration of effects on local climate.   

1. Introduction 

Forests cover around 30% of the global ice-free land surface and are 
widely distributed from tropical to boreal regions (Crowther et al., 2015; 
Hansen et al., 2013). They are a primary component of many national 
economies and interact with the global carbon cycle as they can be both 
sources and sinks of CO2 (Luyssaert et al., 2018; Pan et al., 2011). Forests 
also play a vital role to support ecosystem services, including local 
climate regulation via water and heat exchanges with the atmosphere 
(called biophysical effects) (Anderson et al., 2011; Bonan, 2008). 
Depending on locations, tree species, and forest management type, these 
biophysical effects can either reinforce or counteract the carbon benefits 

of forests. Generally, presence of forests instead of open land induces 
regional land surface cooling in the tropics due to large amounts of 
evapotranspiration, while the effects are more uncertain and spatially 
heterogenous at mid-latitudes (Alkama and Cescatti, 2016; Li et al., 
2016, 2015; Perugini et al., 2017). Outside tropical climates, contribu
tions from radiative (i.e., changes in surface albedo and radiation fluxes) 
and non-radiative (i.e., evapotranspiration) effects of forests greatly 
vary depending on background conditions (climate, soil moisture), for
est type (deciduous or coniferous), type of open land used for the 
benchmark (grassland or cropland), or method used for the analysis 
(observations vs. climate models) (Ge et al., 2019; Li et al., 2016; 
Pitman et al., 2011; Tian et al., 2022). For example, the nonradiative 
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cooling effect of forests is typically stronger using satellite retrievals (Ge 
et al., 2019), but for the same region the use of a coupled 
land-atmosphere model instead shows a dominant radiative effect on 
local temperature changes (i.e., a net warming effect) (Tian et al., 2022). 
In the boreal region, where the snow masking effect in late winter and 
early spring is stronger, forests typically have a low surface albedo that 
tends to warm the surface, with net effects that are of a similar order of 
magnitude to the carbon benefits (Mykleby et al., 2017; Perugini et al., 
2017). However, forests usually have stronger latent heat fluxes in the 
summer, with seasonal cooling relative to open lands (Alkama and 
Cescatti, 2016; Naudts et al., 2016). 

Although less studied due to inherent complexities, the net response 
of local temperature is also sensitive to the forest structure and man
agement practices that influence its development (Kellomaki et al., 
2021; Kumkar et al., 2020; Luyssaert et al., 2014; Naudts et al., 2016). 
Forest management is widespread in Fennoscandia (i.e., Norway, Swe
den, and Finland) (McGrath et al., 2015; Zhou et al., 2021). It affects 
forest structure attributes such as tree density, standing volume (V), leaf 
area index (LAI), crown length (CL), and canopy height (CH), which in 
turn control the surface energy, moisture, and momentum fluxes via 
surface albedo, evapotranspiration, and surface roughness (Anderson 
et al., 2011; Jackson et al., 2008). Changes in forest structure thus have 
the potential to influence the local climate. However, there is a weak 
representation of various forest development stages within existing land 
surface models, where the same parameterization of LAI or CH is typi
cally used for the different vegetation classes (e.g., coniferous or de
ciduous forests have their own set of fixed parameters, irrespective of 
forest development stage or age) (Lawrence et al., 2019). There are 
increasing efforts in embedding different forest stage parameterizations 
within gridded land use datasets for various forest types (Majasalmi 
et al., 2018; McGrath et al., 2015), but applications remain limited and 
largely idealized due to the complexity to link forest dynamics with 
climate models (Kumkar et al., 2020; Luyssaert et al., 2018; Naudts 
et al., 2016). Global climate models are not suitable to study the local 
impacts of forests on climate due to their coarse spatial resolutions and 
uncertainties in the physical processes. Regional climate models can 
achieve a finer resolution, but they still have challenges to simulate the 
complex spatial and temporal patterns of the effects of forest dynamics, 
and models often show contradictory results to land cover changes 
(Davin et al., 2020; de Noblet-Ducoudré et al., 2012). 

Preliminary studies have investigated the effects of forest manage
ment on European climates. The application of a land-atmosphere model 
to the reconstructed history of forest management in Europe shows an 
increase of 0.12 ◦C in summertime atmospheric temperature due to 
species conversion from broadleaf to coniferous (Naudts et al., 2016). A 
similar study found that options that locally maximize the carbon sink 
through carbon sequestration are preferable over management practices 
to meet climate objectives in Europe (Luyssaert et al., 2018). More 
specific to the Fennoscandian context, prescribed idealized scenarios of 
structural changes were used to explore their influence on LST via offline 
simulations with a land surface model (Kumkar et al., 2020). Results 
show that older forests induce a light cooling effect (unclear if statisti
cally significant), and younger forests tend to warm the surface because 
of lower evapotranspiration. These studies are based on numerical 
models, either fully coupled climate models (Luyssaert et al., 2018; 
Naudts et al., 2016) or the land surface model only (Kumkar et al., 
2020), which are highly demanding in terms of time and costs. The 
availability of simplified yet reliable approaches that directly link forest 
attributes to local temperature can favour the understanding of the ef
fects on local climate of alternative forest management practices. Ma
chine learning methods have the potential for mining data in linear or 
non-linear systems (Doan and Kalita, 2015; Kolevatova et al., 2021; 
Sharma et al., 2013), and can offer simplified solutions to study 
climate-forestry interactions. 

In this work, we integrate advanced forest maps with class- and 
stage-specific parameterization with remotely-sensed land surface 

temperature (LST) data to explore if different forest management stages 
can influence LST. We then apply a set of machine learning algorithms to 
estimate the effects of forest management scenarios on surface temper
ature. As the advanced map represents the current management-induced 
forest structure in Fennoscandia, a simplified statistical model is built to 
link changes in LST with changes in forest structure parameters (such as 
LAI and CH), under a set of defined variables (elevation, radiation, snow 
cover). This approach secures certain advantages over numerical 
models, as it is computationally more efficient (and cheaper), relatively 
easier to be used by non-experts, and open to flexible applications (e.g., 
able to investigate alternative forest management scenarios). It also 
directly links temperature changes with forest structure parameters, so 
avoiding the need to decompose the surface energy budget into different 
components to estimate the temperature response. The analysis is also 
performed at a horizontal resolution (about 5 km) that is higher than 
what is typically allowed by coupled numerical models, and it captures 
gradients in topography, forest structure and tree composition. The 
model is applied to three case studies: two idealized cases of tempera
ture response to forests at either low or high development stages, and 
one case that quantifies the temperature response to historical forest 
harvest. 

2. Methods 

2.1. Land surface temperature and surface attributes 

LST is the radiative skin temperature of the land, and it is a funda
mental aspect of climate and biology, affecting near surface air tem
perature, organisms and ecosystems from local to global scales. Land 
surface cover (e.g., snow cover, vegetation cover, bare soil, etc.) and 
elevation are key determinants of local LST. 

Daytime and night-time LST are retrieved from the MODIS MYD11C3 
version 6 product (Wan et al., 2015), a monthly dataset available at a 
0.05-degree resolution that retrieves data from clear-sky conditions over 
each 8-day period (Wan, 2014). The satellite passes over the region at 
approximately 13:30 (daytime LST) and 01:30 (night-time LST), which 
can be interpreted as the daily maximum and minimum temperatures. In 
order to compare potential differences under all-sky conditions, we also 
use a recently produced spatiotemporally continuous dataset that 
reconstructed daytime and night-time LST by integrating clear-sky re
trievals from MODIS (MOD11C1 and MYD11C1) with all-sky conditions 
from the ERA5-Land climate reanalysis dataset (Yu et al., 2022). We 
calculated monthly all-sky LST using the daily average of the recon
structed LST data. We use a digital elevation model at 1 km resolution 
for the elevation topographic variable and geographical coordinates 
(Amatulli et al., 2018). Daytime and night-time net shortwave and 
longwave radiation at the surface are from the Global Land Data 
Assimilation Systems (GLDAS) (Rodell et al., 2004) and the snow cover 
data are from the MODIS/Terra monthly snow-cover product (Hall and 
Riggs, 2021). In order to reduce the effects of interannual variability, we 
averaged monthly mean LST data, snow cover, and radiation from 2013 
to 2017 (5 years mean), as the land forest map is representative of 2015. 
The resulting monthly means are used in the regression model. LST re
trievals for the grids where forests are less than 50% of the grid area are 
excluded from the analysis. Totally, 56 134 grids are used in the anal
ysis. Supplementary Figure S1 shows a simplified flowchart with the 
main steps of the analysis (pre-processing the datasets, training the 
models and their applications). We separately apply the clear-sky and 
all-sky LST to train different models and obtain parameters for each 
regression model, which is then applied to either clear-sky or all-sky 
LST. Supplementary Table S1 summarizes the datasets used in our 
study. All datasets are remapped to a 0.05◦ resolution with bilinear 
interpolation. 
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2.2. Forest structure and composition 

Forest structure parameters rely on an enhanced land cover dataset 
produced to represent the current forest status in Fennoscandia in 2015 
(Majasalmi et al., 2018). This land cover data is integrated within the 
ESA CCI LC map (ESA, 2017), where forest classes are updated with the 
attributes from National Forest Inventory (NFI) data. This dataset dis
tinguishes the three major tree species in the region (two coniferous 
species, pine and spruce, and one deciduous, birch), and for each of them 
it specifies different structural attributes indicating four different forest 
development stages. These stages range from Development Class 1 (DC1, 
a forest with predominance of young or poorly developed trees, which 
are typical in post-harvested sites) to DC4 (a forest with highly devel
oped tree structure and canopy, index of low management intensity or 
well regenerated secondary forest) (see Supplementary Figure S2). For 
each tree species and DC, the dataset has attributes like total stem vol
ume (V, in m3), maximum growing season leaf area index (LAImax, in 
m2/m2), tree crown length (CL, in m), and mean tree Lorey’s height (H, 
in m). The resulting map of structural attributes of forests in Fenno
scandia is shown in Supplementary Figure S3, and the individual pa
rameters for forest type and development class in Supplementary 
Table S2. 

For our analysis, we further improve this dataset by considering 
monthly variations in LAI (Table 1), as this attribute can considerably 
vary over the year (especially for birch, a deciduous specie). We used the 
given LAImax to proportionally re-scale the monthly LAI variations for 
each class of forest and tree type using the look-up table available from 
the coupled community land model (Lawrence et al., 2019). This 
look-up table includes monthly LAI of needleleaf (spruce and pine) and 
broadleaf forest (birch). The resulting enhanced forest cover dataset 
with monthly LAI values is aggregated at a 0.05-degree resolution to 
match LST data. In the statistical model, the fraction of forest types and 
attributes per grid cell is considered by computing the weighted mean 
LAI, CL, H, and V for each tree species. We then calculate the monthly 
values of the different DC parameters by doing the average across the 
different tree species. 

2.3. Multivariable regression model 

Multivariable regression models are widely used to estimate the 
relationship between two or more explanatory variables and a response 
variable by fitting a linear model to observed data. Every value of the 
independent variable x is associated with a value of the dependant 
variable y. Formally, the model for multiple linear regression, given p 
explanatory variables x1, x2, …, xp and n observations, is 

yi = β0 + β1xi1 + β2xi2 + …βpxip + εi for i = 1, 2,…n (1) 

Where, for each month, yi is LST for a grid i, β0 is the model intercept, 
β1… βp are the regression coefficients, and x1…p is the full list of the 
variables, that is, both site-specific (latitude, altitude, net shortwave 

radiation, net longwave radiation, snow cover) and forest structure 
parameters (volume, canopy height, crown length, LAI). We note that 
variables of forest structure are not completely independent, as fully 
developed forests typically show a high canopy height and a large vol
ume. Multicollinearity is known to affect the coefficients, but it does not 
influence the predictions and the goodness-of-fit statistics (Kutner et al., 
2004). As our primary goal is to make LST predictions, we only assess 
model performances in reproducing observed LSTs and we don’t indi
vidually explore the role of each independent variable (which might be 
influenced by the multicollinearity). 

The population regression line for p explanatory variables is defined 
to be μy = β0 + β1x1 + β2x2 + …βpxp. This line describes how the mean 
response μy changes with the explanatory variables. The observed values 
for y vary about their means μy and are assumed to have the same 
standard deviation σ. The fitted values b0, b1, …, bp estimate the pa
rameters β0, β1, …, βp of the population regression line. Generally, we 
can employ the regression method to obtain the fitted values b0, b1, …,

bp, and then acquire the fitted population regression line. 

2.4. Multiple-regressor system (MRS) 

Several regression models are available to estimate the regression 
parameters (Fernandez-Delgado et al., 2019). In our analysis, we build a 
multiple-regressor system using seven regression models to capture the 
relationship between land surface temperature and forest structure at
tributes in Fennoscandia. The seven regression models, selected through 
an iterative process based on best fitting models, are bagEarth, bMa
chine, cubist, earth, extraTrees (ET), gbm, and svr (Table 2). They are all 
included amongst the best 20 regression models to predict 

Table 1 
Re-scaled monthly LAI phenology from tree- and stage-specific LAImax. DC = development class of the forest.  

Species DC Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Spruce 1 5.2 5.3 5.8 6.0 6.2 6.3 6.0 5.9 5.8 5.3 5.0 5.0  
2 8.3 8.5 9.3 9.7 9.9 10.1 9.7 9.5 9.3 8.5 8.1 8.1  
3 10.8 11.1 12.1 12.7 12.9 13.2 12.7 12.4 12.1 11.1 10.6 10.6  
4 13.0 13.3 14.5 15.2 15.5 15.8 15.2 14.9 14.5 13.3 12.6 12.6 

Pine 1 3.8 3.9 4.2 4.4 4.5 4.6 4.4 4.3 4.2 3.9 3.7 3.7  
2 5.5 5.6 6.2 6.4 6.6 6.7 6.4 6.3 6.2 5.6 5.4 5.4  
3 7.7 7.9 8.6 9.0 9.2 9.4 9.0 8.8 8.6 7.9 7.5 7.5  
4 6.9 7.1 7.7 8.1 8.2 8.4 8.1 7.9 7.7 7.1 6.7 6.7 

Birch 1 0.0 0.0 0.2 0.8 2.0 3.2 3.1 2.3 0.8 0.2 0.0 0.0  
2 0.0 0.0 0.4 1.4 3.5 5.5 5.3 4.0 1.4 0.4 0.0 0.0  
3 0.0 0.0 0.5 2.0 5.0 7.9 7.6 5.7 2.0 0.5 0.0 0.0  
4 0.0 0.0 0.7 2.6 6.6 10.3 9.9 7.5 2.6 0.7 0.0 0.0  

Table 2 
Regression models used in this study.  

Model Regression 
family 

Reference Code repository 

bagEarth Bagging Kuhn (2019) http://topepo.github. 
io/caret/train-models-by-tag. 
html#bagging 

bMachine Bayesian 
models 

Kapelner 
and Bleich 
(2016) 

https://cran.r-project.org/web/pa 
ckages/bartMachine/index.html 

cubist Regression 
rules 

Quinlan 
(1992) 

https://pypi.org/project/cubist/ 

earth Additive 
models 

Friedman 
(1991) 

https://contrib.scikit-learn.org/py- 
earth/ 

extraTrees Random 
forests 

Geurts et al. 
(2006) 

https://scikit-learn.org/stable/mo 
dules/generated/sklearn.ensemble. 
ExtraTreesRegressor.html 

gbm Boosting Greenwell 
et al. (2022) 

https://cran.r-project.or 
g/web/packages/gbm/index.html 

svr Support 
vector 
regression 

Chang and 
Lin (2011) 

https://scikit-learn.org/stable 
/modules/generated/sklearn.svm. 
SVR.html  
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small-to-large, easy-to-difficult datasets (Fernandez-Delgado et al., 
2019). The seven regression models are from seven different regression 
families, as models from the same regression family have been excluded. 
We randomly used 80% of our grid cells to train the model, and then 
used the trained model to predict the entire domain. This procedure is 
repeated for both clear-sky and all-sky LST data. 

The model bagEarth is a member of bagging regression family, which 
uses bagging wrapper for multivariate adaptive regression splines 
(MARS) via the earth function (Kuhn, 2019). bagEarth is a form of 
non-parametric regression analysis technique which automatically 
models non-linearities and interactions between features. We do not 
provide an estimate of the coefficients for Eq. (1), as solutions for each 
term are based on multiple splines. 

Using the Bayesian additive regression tree, bMachine model con
sists of a sum of regression trees and a regularization process developed 
on the parameters of the tree set (Kapelner and Bleich, 2016). We use the 
default number of trees and tunable hyperparameters to train the 
bMachine model. 

The model cubist learns a M5 rule-based model with corrections 
based on nearest neighbours in the training set (Quinlan, 1993), 
implemented by the Cubist package. A tree structure is created and 
translated to a collection of rules, which are pruned and combined, and 
each rule gives a regression model, applied to the patterns which 
accomplish that rule. The nearest neighbour based to correct the 
rule-based prediction is used in cubist model. 

Earth belongs to the additive model regression family. This method is 
a hybrid of generalized additive model (GAM) and regression trees 
which uses an expansion of product spline functions to model non-linear 
data and interactions amongst inputs (Friedman, 1991). The spline 
number and parameters are automatically determined from the data 
using recursive partitioning, and distinguishing between additive con
tributions of each input and interactions amongst them. The functions 
are added iteratively to reduce maximally the residual, until its change is 
too small or a number of iterations is reached. Same as bagEarth, we do 
not provide an estimate of the coefficients for Eq. (1) in earth model. 

Extremely Randomized Trees (extraTrees, ET) is an ensemble 
learning method which creates extra trees randomly in sub-samples of 
datasets to improve the predictivity of the model and control over-fitting 
(Geurts et al., 2006). It randomizes the input and cut-point of each split 
(or node in the tree), using a parameter that tunes the randomization 
strength. The full training set is used instead of a bootstrap replica. 

The generalized boosting regression model (gbm) is the stochastic 
gradient boosting in the caret model list (Kuhn, 2019). The hyper
parameters are the maximum depth of input interactions, with integer 
values from 1 to 5, and number of trees for prediction, with values from 
50 to 250 with step 50. We use a Gaussian distribution and 
shrinkage=0.1 (default values). 

Support vector regression (svr) is a supervised learning algorithm 
that uses the same principle as the support vector machines (Chang and 
Lin, 2011). It is used to predict discrete values. The basic idea behind svr 
is to find the best fit line which has the maximum number of points in a 
hyperplane. 

2.5. Forest management scenarios and historical harvest data 

The enhanced observationally-based dataset represents the current 
(i.e., 2015) structure and compositional state of Fennoscandian forests, 
and it is used to prescribe the present state of the forest, or control forest 
management scenario (CTRL). A key advantage of this dataset is its 
flexibility in terms of specification of tree species and development class 
of the forest, which allows to design management scenarios by creating 
new datasets with modified forest structure attributes. Two idealized 
forest management scenarios are defined to investigate effects of two 
opposite structural changes: undeveloped forests (UDF) and fully 
developed forests (FDF). In UDF, structural attributes of CTRL are 
changed to DC1 (the least developed class) for each tree species in all 

forested areas of the domain, so to mimic the effects of an idealized 
extensive management. In FDF, the structural attributes of CTRL are 
changed to DC4, the most developed forest class, to exemplify a forest 
state without management interventions. In addition to these extreme 
cases, we define a forest harvest scenario (HARV) to explore the effects 
on LST of historical forest management. In this case, the forest areas in 
Nordic countries where harvest occurred from 2015 to 2018 are changed 
from highly developed to low-developed classes. A new database of 
spatially explicit forest harvest data is used (Zhou et al., 2021). It was 
produced by integrating national roundwood production statistics from 
FAOSAT with high resolution maps of forest losses and gains (Hansen 
et al., 2013) attributed to forest management (Ceccherini et al., 2020). 
This dataset was then integrated with the European Space Agency 
Climate Change Initiative Land Cover (ESA CCI LC) maps (v.2.0.7) 
(ESA, 2017) to obtain temporally and spatially homogenous maps at 
300 m resolution of annual (2003–2018) forest harvest areas in Fen
noscandia (Zhou et al., 2021). This map is resampled at 0.05◦ resolution 
as the other datasets, preserving information on the fraction of forest 
harvested per tree species (see Supplementary Figure S4). In our study, 
this dataset is used to identify the grids where harvest occurred between 
2015 and 2018. In these grids, the corresponding fraction of a grid 
affected by harvest is converted from highly developed classes (DC4 and 
DC3, in order of priority in the conversion) to DC1. The resulting dataset 
is averaged again for the different parameters in forest structure, so to 
get a new map with modified monthly mean values. 

For all the case studies (UDF, FDF, and HARV), the modified forest 
maps are applied to Eq. (1) to calculate the resulting LST, and the dif
ference with the reference state of the forest (e.g., HARV – CTRL) shows 
the local temperature impacts of different forest structure. In all man
agement scenarios, the implemented changes in forest structure are 
constrained by observations and the approach taken allows to interpret 
the temperature effects as the result of alternative forest management 
strategies: widespread harvesting (UDF), reduced harvest and frequency 
of management interventions to enhance stand volume and tree density 
(FDF), and historical harvest (HARV). 

3. Results 

3.1. Forest structure distribution and its relationship to LST 

More than 30% of the land area in Norway, 68% in Sweden and 73% 
in Finland is covered by forest. In total, the area covered by forests in 
Fennoscandia is more than 60 Mha (57% of the land area). The most 
abundant tree species is pine (which dominates in Sweden and Finland), 
followed by spruce (predominant in Norway), and birch (Fig. 1). The 
most common development class is Pine DC2, followed by Pine DC1 
(Fig. 1a). This is the result of intensive forest management activities that 
historically took place in Fennoscandia. Spruce DC1 has the lowest 
presence in the domain, since Norway, the country where spruce dom
inates, has historically lower management interventions than Sweden 
and Finland (Iordan et al., 2018). Deciduous species (mostly birch) are 
more widespread and mostly connected to natural forest succession or 
early-stage tree encroachment. DC1 and DC2 are common in moun
tainous areas and at high latitudes, where low temperature is a limiting 
factor for tree growth. 

Forest development stage is a key factor in shaping local surface 
temperature. We find that the annual mean clear-sky LST is generally 
increasing with the forest development class. Across an elevation 
gradient of an area experiencing similar climatic conditions (black box 
in Fig. 1b), the average annual mean LST of a pine-dominated forest 
tends to be warmer for DC4 (data points: n = 303) than DC2 (n = 340) 
and DC1 (n = 161), especially at low elevation (Fig. 1c). Values for DC3 
are affected by a low number of points (n = 26). The trends are 
confirmed when projecting all temperature values for the different tree 
species and development classes in the domain (Supplementary 
Figure S5). For all tree species, and for nearly all elevation ranges, 
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higher LST values are found for higher development classes. 
Similar results emerge when assessing the probability distribution of 

LST across the different DCs for each of the tree species for all the 
domain (Fig. 1d-f) or for forest areas located at an elevation lower than 
100 m (Fig. 1g-i). On average, more developed forests (DC3 and DC4) 
are associated with higher annual mean LST than poorly structured 
forests (DC1 and DC2). The same trend is observed for all-sky LST data, 
whose probability distributions of LST values across DCs and tree species 
only show small differences relative to those under clear-sky conditions 
(Supplementary Figure S6). Although not specifically linked to forest 
development stages, a warming trend associated with forest cover at 

high latitudes relative to open land is typically found in other observa
tional studies as well (Alkama and Cescatti, 2016; Li et al., 2015; 
Perugini et al., 2017). Fig. 1 further shows the role potentially played by 
forest management and development stage of the forest, thereby sug
gesting that a multivariable regression model using forest structure pa
rameters and local surface geographic information as predictor variables 
can infer the variability in LST. The resulting parameters of regression 
models can be used to predict the effects of the management-induced 
changes in forest structure on LST. 

Fig. 1. Forest distribution in Fennoscandia, its breakdown into development classes (DC), and associated annual mean clear-sky LST. (a) Land cover area (in Mha) of 
four development classes for spruce, pine, and birch. (b) Dominant forest class distribution in Fennoscandia at 0.05◦ resolution (aggregated for visualization purposes 
only; weighted averages of each DC and tree per grid cells dominated by forests are used in the analysis). (c) Annual mean LST over an elevation profile from the area 
within the black box in (b). Probability density distribution (in%) of annual average land surface temperature (clear-sky) for four development classes of spruce (d), 
pine (e), and birch (f) for all the domain and for forest areas located at an elevation lower than 100 m (g, h, i). See Figure S6 for a similar analysis for all-sky LST. 
Colour lines show different forest classes and grey bars represent the probability density distribution of all the grids. LST values are multi-annual averages 
(2013–2017). . 
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3.2. Regression model performance 

The average of the predictions from the seven individual machine 
learning algorithms in the multiple-regressor system (MRS) show a good 
performance in reproducing observed LST (Fig. 2). When compared to 
observations, both daytime (Fig. 2a) and night-time (Fig. 2c) LSTs show 
nearly symmetrical bias scattered all over the domain without any 
relevant cluster, with some exceptions (such as a cold bias in southern 
Norway and warm bias in central eastern Finland). The 5th and 95th 
percentiles of the differences of estimated LST vs. observations range 
from − 0.75 to 0.78 ◦C for daytime temperature, and between − 1.02 and 
0.83 ◦C for night-time temperature. 

For the seasonal and annual mean daytime and night-time LST, the 
temperature differences between simulated and observed LST shows a 
gaussian distribution with a near zero mean. The R-squared (R2) of the 
predictions from each model of land surface temperature vs. observed 
LST per grid cell mostly fall between 0.81 and 0.98 for all the seasons, 
except for summer daytime, where the R2 is smaller (0.51 - 0.81) 
(Fig. 2b). On annual average, the R2 for daytime temperature from all 
the models is high, ranging from 0.95 (svr) to 0.99 (cubist), resulting in a 
multi-model mean of 0.97. Values are relatively lower for night-time, as 
some models have R2 = 0.91 (bMachine and svr), with a multi-model 
mean of 0.95. In daytime summer, the R2 of model predictions ranges 
from 0.51 (bMachine and svr) to 0.81 (cubist), with multi-model mean 
of 0.71. 

A similar trend can be appreciated by the root-mean-square error 
(RMSE) of the predicted LSTs from the individual models (Fig. 2d). The 
average RMSE of annual mean daytime and night-time LST is 0.49 ◦C 

and 0.58 ◦C, respectively. Nearly all regressors in the MRS produce 
constrained RMSE to less than 0.8 ◦C for annual mean daytime and 
night-time LST. On the seasonal scale, the range of multi-model mean 
RMSE is from 0.46 (autumn) to 0.90 ◦C (winter) for daytime LST, and 
from 0.57 (spring) to 1.04 ◦C (winter) for night-time LST. Winter thus 
has the highest seasonal values of RMSE, and might be due to the 
presence of snow, which can largely affect the surface energy budget. In 
general, svr and bMachine shows the highest RMSEs, and cubist and ET 
the lowest. 

The average annual variance of the simulated daily LST from the 
MRS ranges from 0.10 (cubist) to 0.42 (svr), but in some cases it can 
reach above two (daytime LST for winter from bMachine and svr 
method). In general, all machine learning algorithms show a large 
variance in daytime LST in winter, while it is usually smaller than 0.85 
for the other seasons. 

The full range of performance statistics (R2, RMSE, variance, and 
bias) of the individual models is available in Supplementary Table S3 for 
daytime, night-time, and daily averaged temperature. Generally, svr and 
bMachine show poorer performances than the other regression models, 
as their simulated LSTs always have the highest RMSE, lowest R2, largest 
variance, and highest model bias. On the other hand, cubist has the best 
statistical scores: the seasonal mean RMSE is from 0.33 to 0.66 ◦C for 
daytime LST and from 0.40 to 0.58 ◦C for night-time LST. Model bias are 
relatively low for all simulations, as the regression models are based on 
the least-square-error. The estimated coefficients for the monthly-mean 
LST from the different machine learning algorithms are available in 
Supplementary Tables S4-S7, and are applied to study the effects of 
alternative forest structure variables on LST. 

Fig. 2. Performance of the multiple regressor system (MRS) in reproducing observed clear-sky LST. Difference in the annual mean LST (unit: ◦C) between multi- 
model means of the MRS and MODIS products for daytime (a) and night-time LST (c). The blue range in the top left corner refers to the 5th and 95th percentile 
of the spatial variability in the map (the box indicates the standard deviation, the line in the box is the median, and the dot the average). The R-squared (R2) of the 
seasonal mean LST between each model in the MRS and MODIS products for daytime and night-time LST (b). The root-mean-square error of the differences in 
seasonal mean LST (unit: ◦C) between each model in the MRS and MODIS products for daytime LST and night-time LST (d). Triangles indicate the average R2 and 
root-mean-square errors of seasonal or annual mean LST from the 7 models, the range is the maximum and minimum, and the line is the median. . 
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Overall, the MRS captures the mean status and spatial distribution of 
LST. It shows a relatively low level of bias and RMSE, especially when 
compared to other modelling tools. Its statistical performance can be 
compared to that of regional climate models (RCM), which are widely 
used in simulating local-to-regional climate (Kotlarski et al., 2014) and 
for exploring land-climate interactions (Cherubini et al., 2018; Davin 
et al., 2020; Hu et al., 2019; Huang et al., 2020). In most RCMs simu
lations, the regional average annual mean temperature differences in 
northern Europe goes from − 1.98 to − 0.02 ◦C (Kotlarski et al., 2014), 
but in some grids it can reach up to − 2.90 ◦C. The RCM error ranges of 
annual mean and seasonal mean temperature are thus remarkably larger 
than those from our MRS, despite the RCM being much more demanding 
in terms of resources and computational power/time. 

3.3. Effects of idealized forest management on LST 

The MRS is first applied to evaluate the LST changes from two 
idealized forest management scenarios, FDF and UDF (Fig. 3). If all 
forests in Fennoscandia would be at a highly developed stage (DC4), 
representative of no or limited management interventions, the effects on 
daily land surface temperature are an annual average increased warm
ing of 0.26 ◦C (0.03–0.69 ◦C as 5th-95th percentile) (Fig. 3a). This 
warming is widespread across the domain, and it has higher intensity at 

high latitudes and at higher elevation, when seasonal snow cover is more 
pronounced. This suggests that changes in surface albedo can be a main 
driver of the annual mean changes in LST. However, the temperature 
changes vary dramatically between seasons and between day and night 
(Fig. 3b). Night-time temperatures are positive all year round, meaning 
that a fully developed forest causes warmer nights. During the daytime, 
temperature changes are positive (i.e., warming) in winter and negative 
(i.e., cooling) in summer. In particular, the average summer cooling is 
estimated by the different models to range from − 0.23 (ET) to − 0.85 ◦C 
(earth). The statistics for the FDF scenarios produced from the applica
tion of the individual models are shown in Supplementary Table S8. 

Similar differences in the seasonal and diurnal LST response are 
found in other observational studies assessing the local temperature of 
nearby forested vs. non-forested sites (Alkama and Cescatti, 2016; Peng 
et al., 2014; Tang et al., 2018). Overall, the climate impacts are sensitive 
to the incoming radiation and, as a consequence, the largest response 
occurs during the summer solstice. In line with other studies (Alkama 
and Cescatti, 2016; Naudts et al., 2016; Zhang and Liang, 2018), the 
summer cooling of forests is the result of increased evapotranspiration 
and surface roughness under higher radiation load. Forest development 
generally reduces surface albedo owing to the snow masking effect in 
winter and to the darker colour of canopies than short vegetation in 
summer, thereby increasing both net radiation at the surface and latent 

Fig. 3. Land surface temperature changes (clear-sky) induced from idealized forest management scenarios. The same results under all-sky conditions are shown in 
Figure S7. Annual mean daily temperature differences (unit: ◦C) between a scenario with a full development class (DC4) of all forested areas and present-day forest 
structure (FDF – CTRL) (a), and between all un-developed forest (DC1) and present-day forest structure (UDF - CTRL) (c). Both (a) and (c) show the multi-model mean 
LST from the regression coefficients of the individual machine learning models. Boxplots in the top-left corner in (a) and (c) show the spatial variability across the 
forested areas (the range indicates the 5th and 95th percentile, the box the standard deviation, the line in the box the median, and the dot the average). The 
seasonality of the LST changes of FDF (b) and UDF (d) relative to CTRL is shown for daytime, night-time, and daily LST. The boxplots are based on the average 
regional LST change for each individual model used (the range indicates the minimum and maximum values, the box the standard deviation, the triangle the average 
and the line the median). . 
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and sensible heat fluxes. The vegetation cover largely determines how 
this extra energy is partitioned, and trees typically increase latent heat 
flux instead of sensible heat, thereby inducing cooling effects. This leads 
to an increase of the diurnal variation, that is, the difference between the 
daily maximum (daytime LST) and minimum (night-time LST) temper
ature. The net effects of periodically changed albedo, surface roughness 
and ET under varying radiation loads shape the seasonal changes in the 
response of the local climate to forest dynamics. These aspects are dis
cussed in more details in the discussion section. 

A predominant cooling of − 0.29 ◦C (− 0.61/− 0.01 ◦C as 5th/95th 
percentile) is found in the UDF scenario (Fig. 3c). A more limited forest 
structure in Fennoscandia is thus associated with an annual mean 

reduction in land surface temperature. As in the FDF scenario, there is a 
strong seasonality in the induced temperature effect. Depending on the 
machine-learning method used, daytime LST in summer can increase up 
to about 1.2 ◦C (with bagEarth) or be almost unchanged (weak reduction 
with cubist). Average reductions in night-time temperatures are around 
− 0.4 ◦C, ranging from about 0 (bagEarth) to 0.6 ◦C (earth). In winter, 
changes in both day- and night-time temperatures are negative (i.e., 
cooling), and in one model (earth) they can be up to − 2 ◦C. The statistics 
for the UDF scenarios produced from the application of the individual 
models are shown in Supplementary Table S9. 

The results for both FDF and UDF are highly consistent to those 
obtained when the all-sky LST data (and corresponding MRS) are used 

Fig. 4. Total harvested areas from 2015 to 
2018 in Fennoscandia and effects on land sur
face temperature (clear-sky). Volume of forest 
harvest in m3 per ha (a). Annual mean land 
surface temperature changes caused (HARV – 
CTRL) by forest harvest in ◦C (b). Boxplots of 
regional average seasonal and annual mean 
temperature changes (unit: ◦C) in the harvested 
grids caused by forest harvest from 2015 to 
2018 (c). The boxplots show the average 
regional LST change for each individual model 
in the MRS (the range indicates the minimum 
and maximum values, the box is the standard 
deviation, the triangle is the average and the 
line is the median).   
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(Supplementary Figure S7). The same seasonality and magnitude of the 
temperature changes is observed, with the main difference being the 
spring night-time response in UDF (for which one model estimates an 
all-sky LST reduction of about − 1.5 ◦C, against a range of values be
tween − 0.4 ◦C and − 0.75 ◦C from the other models). In general, these 
findings are in line with the outcomes of observational studies per
formed in boreal forests (Alkama and Cescatti, 2016; Lee et al., 2011; 
Zhang et al., 2014), which show that forest clearing increases the daily 
temperature during summer months, while afforestation reduces it. 
They also agree that changes in temperature are smaller in the other 
seasons. Similar trends in diurnal LST asymmetries are found in other 
observational studies of both afforestation and deforestation. In China, 
forest plantations cooled daytime temperatures and warmed nights (Ma 
et al., 2017; Peng et al., 2014), and the same is found for forests relative 
to nearby open lands in Europe (Tang et al., 2018). In particular, the 
latter found a mean annual daytime cooling effect of forests of − 1.06 ±
0.03 ◦C, a mean annual night-time warming of 0.58 ± 0.01 ◦C, and a 
mean annual daily cooling of − 0.24 ± 0.01 ◦C. This is highly consistent 
with our estimates, which are lower in magnitude due to the different 
vegetation changes considered. Our scenarios investigate effects of for
est management caused by smaller differences in forest structure, e.g., 
from a mixed developed forest to a fully (FDF) or under-developed 
(UDF) forest. The other studies compare temperature differences be
tween forests and open land, either between nearby pair sites or after 
afforestation/deforestation, for which changes in vegetation structure 
are more pronounced. In summary, letting boreal forests to develop to 
more mature stages increase annual mean surface temperatures, 
although it brings cooling benefits in the summer, with a potentially 
important contribution in mitigating effects of summer heat. An oppo
site effect is found when forest structures are simplified. 

3.4. Effects of historical forest management on LST 

From 2015 to 2018, about 252 million m3 of roundwood was har
vested in Finland, 49 million m3 in Norway and 296 million m3 in 
Sweden (see Supplementary Table S10 and Figure S4). Forest harvest 
has mostly taken place in south-east Norway, central Sweden and 
southern Finland (Fig. 4a). The harvest reduces the local total volume of 
trees and its overall structural properties (i.e., LAI, CL, and H). The ef
fects of historical harvest on LST (HARV scenario) were simulated by 
applying the MRS to a newly created forest map where, in the areas 
where harvest occurred, high development classes (DC3 and DC4) are 
converted to the lowest development class (DC1). 

Results show a largely homogeneous multi-model annual mean 
cooling of − 0.01 ◦C associated with the historical harvest, with confi
dence intervals (5th and 95th percentiles) ranging from − 0.03 ◦C to 
+0.01 ◦C (Fig. 4b and Table S11). A few warming signals are detected in 
the southern coastal areas. The seasonality shows that the day- and 
night-time LST response have opposite sign but similar magnitude in 
summer, while in winter they are both negative (e.g., cooling), except 
for one model (earth) (Fig. 4c). In particular, a cooling effect at night is 
observed throughout the year, while daytime temperature increases in 
all seasons but winter. These results are highly consistent with those 
observed in the UDF scenario, as they are associated with a (less 
extreme) simplification of the forest structure. 

4. Discussion 

In this study, we use a multi-model regression system and satellite 
observations to investigate the effects of forest management on local 
surface temperatures. The multi-model mean has a reasonable accuracy 
in reproducing observed LST and models show a large consistency in 
estimating the temperature response to different forest management 
scenarios. We find that local biophysical processes triggered by 
enhanced forest structures can effectively mitigate summer tempera
tures. On the other hand, a simplification of the forest structure reduces 

absorbed radiation, especially during winter months in areas affected by 
seasonal snow cover owing to the well-known snow-albedo effect 
(Anderson et al., 2011; Betts et al., 2007), which can be dominating 
throughout the year and results in annual net cooling (but with summer 
daytime warming). 

The predicted effects of forest dynamics from our multi-model sta
tistical approach are consistent with other studies that investigated the 
relationship between forest cover and LST. A study that quantified the 
seasonal effects of forests on LST in Europe found that, relative to nearby 
open land, forests cool daytime clear-sky LSTs during the warm season, 
but the opposite occurs in winter, and that the forest night-time 
warming effect occurs year-round (Tang et al., 2018). Our analysis of 
the FDF scenario achieved the same conclusions, although numerical 
values are smaller because in our case we are assessing effects from 
marginal increases in forest development, rather than an alternative 
land cover. Another study located in China reached similar conclusions, 
i.e., large-scale afforestation decreased daytime LST and increased 
night-time LST, especially during summer (Peng et al., 2014). 

The comparison with previous numerical models is challenging 
because of the large diversity in climate system response from different 
climate models. For example, there is no agreement across models on the 
sign of temperature changes in summer from afforestation in Europe, as 
some regional climate models predict a widespread cooling (well below 
− 2 ◦C), others a widespread warming (around +2 ◦C or above) or even 
a mixed response (Davin et al., 2020). More specifically to the Scandi
navian domain, a study based on an individual climate model found that 
an expansion of forests leads to additional warming of surface temper
atures in winter and spring (between 1.0 ◦C and 1.5 ◦C) and cooling in 
summer (between − 1.6 ◦C and − 1.3 ◦C) (Mooney et al., 2021). Despite it 
affects a limited number of grid cells, this response is relatively stronger 
than what we found in our forest management scenarios, but the sea
sonal trend is similar. More specifically on the sensitivity of LST to forest 
structure, an off-line land surface model found that more developed 
forests have a light annual cooling of 0.04 ◦C, and undeveloped forests 
an annual mean warming of 0.14 ◦C (Kumkar et al., 2020). In general, 
modelling studies provide amplified responses relative to 
observationally-constrained estimates (Perugini et al., 2017). Differ
ences can be connected to the accuracy in the representation of land 
cover classes and physical processes, as modelling studies do not usually 
distinguish amongst forest stages and directly assess larger scale changes 
between two alternative land covers with default parameterization 
schemes. 

The observed diurnal asymmetry in day- and night-time temperature 
is due to different energy balance processes (Hain and Anderson, 2017; 
Peng et al., 2014). Daytime temperatures are shaped by incoming solar 
radiation, land surface properties (e.g., albedo and emissivity), latent 
and sensible heat fluxes, and near-surface atmospheric boundary layer 
conditions. The amount of absorbed radiation is determined by surface 
albedo, and this energy is then partitioned into latent and sensible heat 
fluxes depending on vegetation cover and soil moisture (Mu et al., 
2011). The higher LAI of highly developed forests makes them more 
efficient in dissipating energy as latent heat into the atmospheric 
boundary layer through turbulent diffusion (Rotenberg and Yakir, 
2010), so resulting in larger daytime cooling than less structured forests 
(which dissipate a higher fraction of energy as sensible heat). In the 
night, the evapotranspiration from vegetation is negligible, and the LST 
is mainly influenced by energy stored during the day and the status of 
the near-surface atmospheric boundary layer. Forests thus tend to be 
warmer at night as they get developed, because taller vegetation en
hances turbulence and draws heat from the air towards the surface (Lee 
et al., 2011; Tang et al., 2018). There are two other relevant factors 
reported in the scientific literature as possible drivers of higher tem
perature at night of forests. The typical increased soil moisture of forests 
tends to increase the surface heat capacity, and thus the daytime heat 
storage and night-time heating (dos Santos et al., 2021; Schultz et al., 
2017). Further, the higher evapotranspiration from mature forests 
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increases air humidity and boundary layer clouds, thereby increasing 
the downward longwave radiation from the atmosphere and decreasing 
the one upward (longwave) from the surface, which increases surface 
temperatures at night (Li et al., 2016; Peng et al., 2014). This longwave 
radiative imbalance has a stronger effect during night-time, when the 
boundary layer is thinner and more stable (Dai et al., 1999; Peng et al., 
2014; Zhou et al., 2007). From summer to winter, the importance of 
these effects and that of evapotranspiration fluxes declines, while the 
albedo effect becomes dominating (especially in presence of snow), so 
that more developed forests result in a net warming effect in winter (at 
both day and night). 

Our analysis focuses on land surface temperature, which may differ 
from air temperature. Changes of LST induced by forest cover dynamics 
can be up to 50% larger than that of air temperature (especially in the 
maximum values, although differences are smaller in mean values), but 
the patterns and directions of a change are the same (Alkama and Ces
catti, 2016). This numerical difference is probably driven by satellite 
retrievals, as estimates of LST occur under clear sky conditions. Our 
analysis compared the findings under both clear-sky and all-sky condi
tions, showing that results are highly consistent. The presence of clouds 
decreases the incoming shortwave radiation from the sun and increases 
the downward longwave radiation during the night, potentially causing 
variability between cloud-covered LST and a cloud-free LST. Relative to 
all-sky conditions, LST values under clear sky conditions are usually 
higher, especially in the summer (Gallo and Krishnan, 2022). As no 
significant differences are found in our analysis, we can argue that 
vegetation dynamics induce proportional changes in LST that are the 
same under clear-sky and all-sky conditions. However, limitations can 
lie on the dataset used for all-sky LST, which relies on interpolating 
empirical orthogonal functions of climate reanalysis data for 
cloud-contaminated LST reconstruction. Given the lower resolution of 
the reanalysis data, the capabilities of this new dataset to robustly detect 
all-sky LST variability induced by forest development stages that occur 
at a much finer scale should be further explored, and as such its feasi
bility to estimate effects of forest management. In addition, our 
approach estimates local impacts on temperature resulting from 
small-scale variations in forest structure, without including possible 
large scale feedbacks due to land-atmosphere interactions and tele
connections (Portmann et al., 2022). 

Our analysis considers average climatic conditions to better identify 
the effects of forest management on LST and avoid biases from inter
annual climate variability. However, the biophysical processes at play 
may be sensitive to variable background climate from year to year (Li 
et al., 2016; Pitman et al., 2011). For example, in the case of a warmer 
year, the amount of snow cover duration and snow depth is reduced, and 
thus the importance of the albedo mechanism. A better representation of 
snow phenology in the MRS can increase the accuracy of the predictions 
in winter and early spring, because snow phenology is highly sensitive to 
temperature (Ma et al., 2020; Peng et al., 2013), with potential re
percussions on the surface energy balance. For example, earlier snow 
cover termination is typically correlated on a year-to-year basis with a 
positive temperature anomaly during the snowmelt month (Peng et al., 
2013). More complex snow-related metrics beyond snow cover could be 
considered, such as daily (diurnal) freeze-thaw dynamics, mean melt 
onset date, snow cover depletion date, and snowmelt duration in spring. 
However, availability of high-quality data is typically a constraint for 
Nordic regions, where there is a sparse regional network of weather 
stations relative to the diversity of the landscape. Further, the long 
season of polar darkness, which largely overlap with the period of snow 
cover, and persistent cloud cover in the shoulder seasons, strongly 
reduce monitoring possibilities from satellite optical sensors. Reanalysis 
datasets of snow phenology exist, but they usually have coarse resolu
tions and poor representation of surface properties (especially of 
different forest development stages), making their suitability for appli
cations relying on high horizontal resolution and high diversity of forest 
structures limited. Adding more variables to the MRS would also make it 

more complex and data intensive, and optimal solutions in terms of 
marginal additions and relative gains in prediction estimates should be 
pursued. Similarly, the number of models required to produce robust 
estimates could be optimized. We tested the influence of the number of 
selected models by repeating the analysis with five models instead of 
seven (reiteratively excluding two models from the regression system). 
The results are similar and did not show changes in trends. Our analysis 
retained one model per regression family to show their performances, 
but a reduction in the number of regression models would not affect our 
conclusions. 

The evapotranspiration effect is highly sensitive to soil moisture, and 
periods of droughts can influence it. Modelling studies generally show 
that the cooling effect of forest losses (which we can interpret as a proxy 
of forest harvest) decreases with a warmer background climate, 
although with a latitudinal gradient (lower decreases at high latitudes) 
(Armstrong et al., 2016; Li et al., 2016; Pitman et al., 2011; Winckler 
et al., 2017). For the Fennoscandian region, the risks of warmer winters 
under progressing climate change can become a key factor in reducing 
the snow-albedo cooling effects of harvested sites, and thereby reduce 
the biophysical temperature benefits induced by forest harvest. At the 
same time, summer droughts can induce soil moisture benefits and 
reduce the latent heat fluxes, and thus the cooling effects, of developed 
forests. More specific model simulations combined with ground obser
vations are necessary to robustly estimate the resulting effects on annual 
mean temperature of these two contrasting effects caused by climate 
change. 

5. Conclusions 

This study offers a simplified statistical approach to assess the effects 
of forest management on land surface temperature in Fennoscandia. We 
found a consistent pattern in the domain of higher mean surface tem
perature in presence of more developed forests relative to poorly 
structured forests, indicating that changes induced by forest manage
ment contribute to shape the local climate. The multi-model mean es
timates from the regression system made of seven machine-learning 
models can reproduce the temperature values observed in the forest at 
reasonable accuracy, and thanks to their integration with high resolu
tion maps of forest attributes can assess the influence of forest man
agement on local temperature. 

Compared to other numerical models, our approach is much cheaper 
and easier to use (a desktop computer is sufficient). It is also more 
flexible to be applied at different regional scales and locations, provided 
the number of grids is large enough to allow a robust estimate of the 
regression coefficients. The regression coefficients from our study are 
made available in the supplementary materials, and they can be used by 
non-experts to evaluate LST response to different forest management 
scenarios, either for the entire domain or for a subset of it, by using as 
inputs previous and post-harvest forest structure parameters. Finer 
scales different than the one used in this study can be explored, and they 
can deliver more specific predictions thanks to reduced geographical 
and climatic variability. An optimal solution in terms of size of the 
domain and accuracy of multi-model estimates of observed LST is to be 
identified. Possible extensions of this work include the possibility to 
ingest more land surface information such as aspect of the terrain, soil 
moisture, snow phenology, or forest root parameters, and capture the 
local LST response to extreme events such as drought periods or heat 
waves. At the same time, there should be a preference to limit the 
number of variables used in the model for simplification and reduce the 
volume of data needed to run the statistical model. Future work could 
explore an optimal solution for the minimum number of input variables 
that are needed to arrive at robust predictions. This optimal would 
probably differ per geographical region, meaning that the best combi
nation of variables can be a compromise between available data and 
accuracy of the estimates. 

Availability of simple parametric models for predicting surface 
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temperature changes from forest management can enhance the inclusion 
of biophysical effects in climate impact analysis. Currently, our models 
are tested and validated for Fennoscandian forests and cannot be 
directly used in other studies with different climate and species 
composition. Although future work should specifically test its trans
ferability, the same approach is expected to perform in other forest 
areas. As LST data are available from all the globe, a major limitation 
can be the availability of tree- and stage-specific maps of forest attri
butes, which are essential to model the effects of management-induced 
changes in forest structure. In such cases, a statistical approach can be 
unpracticable, and calibration of physical/numerical modelling systems 
can be the only option to gain insights on forest-climate interactions. 
Overall, this work is a step forward to facilitate the consideration of the 
effects of forest management on land surface temperature and contrib
utes to develop strategies that bridge the gap between forestry and 
climate sciences. 
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