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1 | INTRODUCTION

Abstract

Saxifraga section Saxifraga subsection Arachnoideae is a lineage of 12 species distrib-
uted mainly in the European Alps. It is unusual in terms of ecological diversification by
containing both high elevation species from exposed alpine habitats and low elevation
species from shady habitats such as overhanging rocks and cave entrances. Our aims
are to explore which of these habitat types is ancestral, and to identify the possible
drivers of this remarkable ecological diversification. Using a Hybseq DNA-sequencing
approach and a complete species sample we reconstructed and dated the phylog-
eny of subsection Arachnoideae. Using Landolt indicator values, this phylogenetic tree
was used for the reconstruction of the evolution of temperature, light and soil pH
requirements in this lineage. Diversification of subsection Arachnoideae started in
the late Pliocene and continued through the Pleistocene. Both diversification among
and within clades was largely allopatric, and species from shady habitats with low
light requirements are distributed in well-known refugia. We hypothesize that low
light requirements evolved when species persisting in cold-stage refugia were forced
into marginal habitats by more competitive warm-stage vegetation. While we do not
claim that such competition resulted in speciation, it very likely resulted in adaptive

evolution.
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amply documented based on fossil evidence, particularly pollen

fossils (Bennett, 1997; Birks, 2019; Lang, 1994), phylogeography
(Hewitt, 1996, 2000, 2004), the analysis of ancient DNA (Birks &
Birks, 2016) and species distribution modeling (Svenning et al., 2011).

The response of plants to the climatic oscillations of the Quaternary
were extinction, migration or evolution (Bennett, 1997). Whereas

extinction of species was rare but has been documented Although it has been argued that periods of isolation required for

(Bennett, 1997), migration into and out of refugial areas has been speciation were never long enough in the Quaternary (Willis &
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Niklas, 2004), the climatic oscillations of the Quaternary have been
shown to have resulted in evolution, i.e., genetic differentiation and
speciation, often by changes in geographical distribution resulting
in range fragmentation and divergence in geographical isolation,
but also by hybrid speciation upon secondary contact (Kadereit &
Abbott, 2022).

In Europe, the distribution of intraspecific genetic variation,
and also of regional endemics, in combination with geological
and palaeoenvironmental evidence, have been used to identify
major refugial areas for, e.g., alpine species in and around the Alps
(Schonswetter et al., 2005; Tribsch & Schonswetter, 2003), and for
the Mediterranean area (Hewitt, 2011; Médail & Diadema, 2009;
Nieto Feliner, 2011). Environmental conditions in areas which
served as glacial refugia were not the same as in those areas in
which species went extinct in glacial periods of the Quaternary
(Bennett, 1997; Davis & Shaw, 2001; Hewitt, 1996, 2000, 2004).
Thus, refugia clearly were not simply sanctuaries where species
were preserved from extinction (Nieto Feliner, 2011), but adaptation
to different conditions in these glacial refugia may have resulted in
genetic divergence and eventually speciation (Davis & Shaw, 2001;
De Lafontaine et al., 2018; Hewitt, 1996, 2000; Stewart et al., 2010;
Stewart & Stringer, 2012). Moreover, abiotic and biotic conditions
in areas serving as refugia clearly were subject to changes through
Quaternary times. Considering alpine species, the glacial refugial
areas in and around the European Alps identified by Schonswetter
et al. (2005) were cold-stage refugia (Birks & Willis, 2008). As shown
by fossil evidence, many alpine species were much more widespread
outside these refugia in glacial times (Birks & Willis, 2008; Tzedakis
et al,, 2013). In Quaternary interglacials and the Holocene, both
changing climatic conditions and increasing competition resulted in
the extant ranges of most alpine species, which can be considered in-
terglacial (Bennett & Provan, 2008) or warm-stage refugia (Bhagwat
& Willis, 2008; Birks & Willis, 2008). However, populations of al-
pine species also persisted in mostly small areas within the former
cold-stage refugial area in habitats unsuitable for more competitive
components of warm-stage vegetation (Birks & Willis, 2008; Gentili
et al., 2015; Pigott & Walters, 1954). Such persisting populations or
species experienced dramatic changes in environmental conditions,
from cold-stage to warm stage-conditions, through time, and these
changes have driven evolutionary divergence in some cases (e.g.,
Scheepens et al., 2013).

Saxifraga L. section Saxifraga subsection Arachnoideae (Engl.
& Irmsch.) Tkach, Réser & M.H.Hoffm. was first recognized by
Tkach et al. (2015), and currently comprises 12 species (Ebersbach
et al., 2017; Gerschwitz-Eidt & Kadereit, 2020; Tkach et al., 2019).
These are S. aphylla Sternb., S. arachnoidea Sternb., S. berica (Bég.)
D.A.Webb, S. facchinii W.D.J.Koch, S. hohenwartii Vest ex Sternb.,
S. muscoides All., S. paradoxa Sternb., S. petraea L., S. prenja Beck,
S. presolanensis Engl., S. sedoides L. and S. tenella Wulfen. Apart from
S. prenja mainly from the Balkans, and a disjunct subrange of S. se-
doides in the Apennines, subsection Arachnoideae occurs only in or
near the Alps (Figure 1). The subsection is well known ecologically
(Kaplan, 1995; Landolt et al., 2010; Webb & Gornall, 1989) and is

most remarkable in terms of ecological diversification. While, e.g.,
the calcifuge S. muscoides grows largely above the tree-line at ele-
vations of up to 4200m, the calcicole S. berica is limited to a small
area in the Colli Berici near Vicenza (northern Italy) outside the Alps
where it grows in shady hollows under overhanging rocks at ele-
vations lower than 450m. Other species of the subsection mostly
growing in very shady and humid conditions under overhanging
rocks, in recesses and hollows or at the entrance of caves, mostly at
lower than alpine and frequently at collin or montane elevations, are
S. arachnoidea and S. paradoxa, which have often been interpreted as
Tertiary relics in the past (Gams, 1933; Meusel, 1943; Pitschmann &
Reisigl, 1959; von Hayek, 1908).

Published phylogenetic analyses of subsection Arachnoideae
either did not include all taxa and did not succeed in fully resolv-
ing phylogenetic relationships (Ebersbach et al., 2017; Tkach
et al., 2015, 2019), or, when sampling all species (Gerschwitz-Eidt &
Kadereit, 2020), did not succeed in resolving phylogenetic relation-
ships and identified supported conflict between nuclear and plastid
phylogenetic trees. Against this background, we here aim at recon-
structing and dating the phylogeny of subsection Arachnoideae with
a Hybseq approach using a bait set of 329 protein-coding nuclear
loci designed for phylogenetic reconstructions in Saxifragales (Folk
et al., 2019; Stubbs et al., 2018). This phylogenetic tree will be used
to explore the ancestral ecology of the subsection. It seems possible
that either species from shady conditions and mostly low elevations
(S. arachnoidea, S. berica, S. paradoxa) or species from bright habitats
at high elevations represent the ancestral habitat. We will also ex-
amine whether interspecific hybridization affected the evolution of
ecological preferences in the group. Considering phylogenetic rela-
tionships, extant ecology and geographical distribution in relation to
the location of known refugia we finally aim at identifying possible

drivers of ecological diversification in the lineage.

2 | MATERIALS AND METHODS
2.1 | Sampling and DNA sequencing

Altogether 41 samples of all 12 species of Saxifraga section
Saxifraga subsection Arachnoideae, one sample each of all five
species of Saxifraga section Saxifraga subsection Androsaceae
(Engl. & Irmsch.) Tkach, Réser & M.H.Hoffm. and one sample of
Saxifraga irrigua M.Bieb., the last two very close relatives of sub-
section Arachnoideae, were collected from wild populations in the
European Alps, the Apennines and the Dinaric Alpsin 2016 or were
obtained from herbarium material (Table 1). DNA was extracted
from dried specimens using a Macherey-Nagel NucleoSpin Plant II
kit (Machery-Nagel GmbH & Co. KG, Diren, Germany) and purified
by ethanol precipitation following Sambrook and Russell (2001).
For creating a next generation sequencing (NGS) DNA library,
400-2000ng of DNA per sample were used. The libraries were
pooled in groups of five to seven individuals and enriched using
hybrid capture-based target enrichment (Lemmon et al., 2012;
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FIGURE 1 Distribution of the species of Saxifraga subsection Arachnoideae based on Kaplan (1995). The brown asterisk indicates a
disjunct population of S. prenja in the Apennines as found by Gerschwitz-Eidt and Kadereit (2020). For clarity, distribution ranges are shown

in two maps (a, b). The locations of samples analyzed are indicated by dots.
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TABLE 1

SRA accession

no.

Classification (sensu Tkach

et al., 2015)

Coll. Area; collector and year; coll. no.; herbarium no.

Accession type

Sample

Taxon

SRR7901512

n.a.;n.a.;n.a;n.a.

NCBI sra

SAMN10066230
SAMN10066239
SAMN10066248

S. magellanica

SRR7901734

n.a.;n.a.;n.a;n.a.

NCBI sra

S. moschata

SRR7901366

n.a.;n.a;n.a;n.a.

NCBI sra

S. pedemontana

SRR7901409
SRR7901600

n.a.;n.a;n.a;n.a.

NCBI sra

SAMN10066254

S. portosanctana

n.a.;n.a;n.a;n.a.

NCBI sra

SAMN10066256

S. pubescens

SRR7901234

n.a;n.a;n.a;n.a.

NCBI sra

SAMN10066259

S. rosacea

GERSCHWITZ-EIDT ET AL.

Open Access,

Note: SRA accession numbers in italics were newly generated in this study.

Lemmon & Lemmon, 2013) for a panel of 301 loci (Folk et al., 2019)
plus additional 28 loci from Stubbs et al. (2018). The enriched NGS
DNA libraries were mixed with 10% of non-enriched DNA library
and sequenced on an lllumina HiSeq 2500 sequencer with a read
length of 2 x250bp and a total number of 2 x 138 M reads. Library
construction, target enrichment, and DNA sequencing were per-
formed by Arbor Biosciences (Ann Arbor, Michigan, USA). All DNA
sequences generated in this study were submitted to the NCBI
short-read archive (Table 1). Additionally, DNA sequences of 17
species of Saxifraga subsection Saxifraga (sensu Tkach et al., 2015)
and of Saxifraga hirsuta L. of Saxifraga section Gymnopera D.Don
were added from the NCBI BioProject PRIJNA492276 (Folk
et al., 2019).

2.2 | Sequence assembly and alignment

We merged forward and reverse reads for each sample and re-
moved PCR duplicates using ParDRe v2.2.5 (Gonzalez-Dominguez &
Schmidt, 2016). Adapter sequences as well as read segments of poor
quality were removed with Trimmomatic v0.36 (Bolger et al., 2014)
using a sliding window of 4 bp with a sliding window minimum
phred quality score of 20. DNA sequence assembly was performed
using the BWA version of HybPiper v1.3.1 (Johnson et al., 2016)
with default settings. Exons were filtered for paralogs (Method 1 in
Appendix A) and aligned across all samples locus-wise using MAFFT
v7.305 (Katoh & Standley, 2013). Seven species of Saxifraga subsec-
tion Saxifraga aligned poorly in most loci with high numbers of base
mismatches and indels. We removed these samples from the data
set and repeated the alignment of the exons with the 58 remaining
samples. Subsequently, the non-exonic sequences were added to the
exonic alignments using the ‘-addlong’ option in MAFFT. The result-
ing alighments frequently contained indel-rich stretches of poorly
aligned non-exonic sequences which were several thousand base
pairs long. We used BuddySuite v1.3.0 (Bond et al., 2017) to reduce
the number of these regions by trimming alignment positions that
consisted of more than 50% gaps. Any alignments that were miss-
ing more than 20% of the samples or the S. hirsuta sample were also
excluded from further analysis. We removed residual paralogs with
TreeShrink v1.3.3 (Mai & Mirarab, 2018; Method 2 in Appendix A).
The resulting data set consisted of 405 loci in 58 samples.

2.3 | Phylogenetic analysis

We calculated bootstrapped maximum likelihood (ML) gene trees for
all 405 loci of the full data set in RAXML v8.2.12 (Stamatakis, 2014)
and used ASTRAL v5.7.3 (Zhang et al., 2018) to infer two boot-
strapped summary coalescent (SC) species trees from the 405 ML
gene trees, using a taxon map for the second run (Rabiee et al., 2019).
Taking into account the results of the first ASTRAL run, the S. mus-
coides samples were coded into two groups (S. muscoides 1 and 2) for
the taxon map of the second ASTRAL run.
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Additionally, we inferred phylogenetic networks to include both
incomplete lineage sorting (ILS) and reticulation in the modeling pro-
cess under the multispecies network coalescent (Wen et al., 2016).
We calculated SC species networks from the 405 gene trees under
the maximum pseudo-likelihood (MPL) method “InferNetwork_MPL”
(Yu & Nakhleh, 2015) in PhyloNet v3.8.0 (Than et al., 2008; Wen
et al., 2018), using a taxon map and a gene tree bootstrap thresh-
old of 70. We computed 11 MPL networks with a number of hybrid
nodes (K) ranging from zero to ten. Each network was inferred with
10 independent runs to optimize the pseudo-likelihood. For each
K the best network weighted by pseudo-likelihood was identified.
We inferred the major trees, i.e., the species trees underlying the
networks, from the best networks for K = 1-10 to explore the com-
monalities of the network topologies. For this purpose, all minor
edges were removed from the best networks using the “majorTree”
command in PhyloNetworks v.0.11.0 (Solis-Lemus et al., 2017) as
implemented in Julia-REPL v.1.2.0 (Bezanson et al., 2017). The major
trees were visually compared to draw conclusions about the mono-
phyly of Saxifraga subsection Arachnoideae and to identify its most
likely sister clade. To assess the relative model fit, we plotted the
log-likelihoods of the best networks against their respective K.

To assess uncertainty in network inference for interspecific
relationships in Saxifraga subsection Arachnoideae, we pruned the
data set to include the 41 samples of subsection Arachnoideae and
one sample of S. pedemontana All. as new outgroup (see results)
and removed any alignments that were missing more than 20% of
the samples or the outgroup sample, resulting in a total of 388
loci. We here used S. pedemontana as outgroup because this spe-
cies, which is part of section Saxifraga subsection Saxifraga, is more
closely related to subsection Arachnoideae than S. hirsuta which
was used as outgroup in those analyses which sampled across
section Saxifraga. We calculated bootstrapped ML gene trees in
RAXML v8.2.12 and used ASTRAL v5.7.3 to infer an SC species
tree with 100 bootstrap replicates from the 405 ML gene trees,
using a taxon map. We used SNaQ (Solis-Lemus & Ané, 2016) as
implemented in PhyloNetworks v0.11.0 to calculate six SC species
networks for zero to five hybrid nodes (H), assessed the relative
model fit by the Log pseudo-likelihood profile and performed 100
bootstrap replicates each for the best networks with H = 1 and
H = 2 (Method 3 in Appendix A).

2.4 | Divergence times estimation

Divergence times for Saxifraga subsection Arachnoideae were mod-
eled on a multi-labeled phylogenetic tree (Blanco-Pastor et al., 2012;
Huber et al., 2006; Pirie et al., 2009). The multi-labeled species tree
used was based on the ASTRAL species tree as calculated from
the full data set. Based on the network reconstructions, a second
parent lineage of the hybrid species S. facchinii was added to the
ASTRAL species tree and the two lineages of S. facchinii were la-
beled ‘S. facchinii 1' and ‘S. facchinii 2'. Of the full data set of 58 sam-
ples, we selected 10 loci each for which the ML gene trees could be
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unambiguously assigned to either of the two topologies contained in
the multi-labeled tree (Method 4 in Appendix A). The 20 associated
DNA alignments were visually inspected in MEGA X v10.0.5 (Kumar
et al., 2018) and manually re-aligned to ensure overall good align-
ment quality. In the ten alignments used to reconstruct the lineage
‘S. facchinii 1’, sequences of the two samples of S. facchinii were la-
beled with the suffix ‘1. Correspondingly, in the ten alignments used
to reconstruct the lineage ‘S. facchinii 2, S. facchinii sequences were
labeled with the suffix ‘2. Time-calibrated phylogenetic trees were
calculated with STARBEAST2 v0.15.5 (Ogilvie et al., 2017) as imple-
mented in BEAST v2.6.3 (Bouckaert et al., 2019), using an uncorre-
lated lognormal relaxed molecular clock (Drummond et al., 2006) with
a birth-death speciation process (Gernhard, 2008; Stadler, 2009) and
the nucleotide substitution model GTR+T. Based on the results of
a molecular dating analysis of Saxifragales (Folk et al., 2019), a uni-
formly distributed root prior of 9.12-24.4 Ma was used for a second-
ary calibration of the Saxifraga section Saxifraga stem. Tree topology
was restricted to the multiple-labeled species tree both to prevent a
bias in divergence time estimation due to convergence on alternative
tree topologies and to reduce calculation time. All other parameters
of the model were optimized in STARBEAST2. We set up four in-
dependent runs, each with 62 parallel adaptive Metropolis-coupled
Markov chains (Altekar et al., 2004; Mller & Bouckaert, 2020) and
run them for a total of 450 million generations. Every 5000th gen-
eration was sampled. We used Tracer v.1.7.1 (Rambaut et al., 2018)
to assess convergence and an effective sample size of at least 200 to
identify an appropriate burn-in for each run. The four runs were com-
bined using LogCombiner v.2.6.3 (Drummond & Rambaut, 2007). We
used TreeAnnotator v.2.6.3 (Drummond & Rambaut, 2007) to cal-
culate a maximum clade credibility tree from the species tree dis-
tribution. Node heights of the maximum clade credibility tree were
set to the medians of the respective node height distributions. The
chronogram was plotted using the R package phyloch (Heibl, 2013)
in Rv.4.1.2 (R Core Team, 2021).

2.5 | Ecological trait reconstruction

We reconstructed the evolution of three ecological traits of Saxifraga
subsection Arachnoideae using the ecological indicator values (EIV)
of Landolt et al. (2010). According to Silvertown et al. (2006), EIVs
can be considered as numerical representations of ecological niche
traits and therefore can be used to reconstruct ecological niche evo-
lution in a phylogenetic framework (Prinzing et al., 2001; Silvertown
et al.,, 2006). Because EIVs represent quasi-cardinal numbers
(Ellenberg, 1992), they can be directly translated into continuous
trait states as long as the EIVs under consideration show little in-
traspecific variation. Values for the niche trait indicators tempera-
ture (T), light (L) and soil pH (R) were taken from Landolt et al. (2010).
Since Landolt EIVs were not available for S. prenja, we collected and
comparatively reviewed available information on the ecology of
S. prenja from various sources (Horandl, 1993; Kaplan, 1995; Webb
& Gornall, 1989). We concluded that the ecological traits of S. prenja
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are comparable to those of S. hohenwartii and used the EIVs of the
latter for the former.

All taxa for which no Landolt EIVs exist were pruned from
the time-calibrated multi-labeled species in the R package ape
v5.0 (Paradis & Schliep, 2019). The hybrid species S. facchinii was
removed because its inclusion violates the model's essential as-
sumption of a bifurcating tree. As two independent measures of
the strength of phylogenetic signal, we calculated Blomberg's K
(Blomberg et al., 2003) and Pagel's 4 (Pagel, 1999) using the R pack-
age phytools v.0.7-90 (Revell, 2012). We used the R package geiger
v2.0.7 (Pennell et al., 2014) to fit four models of ecological trait evo-
lution to all three ElIVs, i.e. (1) a simple Brownian motion model (BM;
Felsenstein, 1973), (2) an Ornstein-Uhlenbeck model (OU; Butler &
King, 2004), (3) an early burst model (EB; Harmon et al., 2010), and
(4) a white-noise model. We calculated the corrected Akaike infor-
mation criteria (AlCc) weights (wi) from the AlCc of the four models
as a measure of the model's predictive power. Reconstruction of an-
cestral traits was performed for each of the three EIVs under the
respective model with the largest AlCc weight using the phytools
‘anc.ML function with 1 million iterations each. Finally, we projected
the inferred traits onto the pruned species tree using the ‘contMap’
function of phytools.

We also used the Maximum Parsimony approach for the recon-
struction of continuous characters implemented in Mesquite v3.70
(Maddison & Maddison, 2021). Landolt EIVs were reconstructed as
continuous characters with the squared change assumption. For the

analysis we used the same phylogenetic tree as above.

3 | RESULTS
3.1 | DNA assembly and alignment statistics

In the initial assembly, reads mapped to 326 of the original 329 refer-
ence loci. After three iterations of assembly, visual paralog assess-
ment and reference file editing, reads were mapped successfully to
567 loci in the final assembly, of which 463 were retained for further
analysis. After filtering for a minimum sample coverage of 80% and
for loci that included a sequence of the outgroup sample S. hirsuta,
the full data set contained the filtered alignments of 405 loci with
a total length of approximately 1.33 Mbp, an average taxon cover-
age per locus of 53.5 of 58 samples, a mean alignment length of
3293 bp, a mean proportion of missing data of 18%, a mean propor-
tion of variable alignment positions of 60%, and a mean proportion
of parsimony informative alignment positions of 40%. The pruned
data set (samples of subsection Arachnoideae and S. pedemontana as
outgroup) contained 388 loci with a total length of approximately
1.28 Mbp, an average taxon coverage of 39.3 of 42 samples, an aver-
age alignment length of 3294 bp, an average proportion of missing
data of 10%, an average proportion of variable alignment positions
of 40%, and an average proportion of parsimony informative align-

ment positions of 20%.

3.2 | Phylogenetic relationships and hybridization

For the full data set with 58 samples, the two ASTRAL species trees
(Figure 2, Figure A1) and the major trees of the 10 best PhyloNet
networks for K = 1 to K = 10 (Figure A2a-j) were mostly congru-
ent. In all phylogenetic analyses, Saxifraga subsection Arachnoideae
(sensu Gerschwitz-Eidt & Kadereit, 2020) was reconstructed as
monophyletic. In the ASTRAL trees, a clade of S. berica, S. paradoxa
and S. petraea (clade 1) was sister to the rest of the group. In this, a
clade of S. hohenwartii, S. prenja and S. sedoides (clade 2) was sister
to a clade of S. muscoides, S. presolanensis and S. tenella (clade 3). A
clade of S. facchinii, S. aphylla and S. arachnoidea (clade 4) was sister
to clades 2 and 3.

Clades 1-4 were found in identical form only in the PhyloNet
network for K= 1 (Figure A2a). In the PhyloNet networks for K =2
to K = 10, reconstruction of clades 1-4 differed in the placement
of only one or two taxa (Figure A2b-j). Three additional clades
were always reconstructed: First, a clade consisting of S. moschata
Woulfen, S. fragilis Schrank, S. pedemontana, S. humilis Engl. &
Irmsch. and S. latepetiolata Willk. (clade 5) as sister to subsec-
tion Arachnoideae (clades 1-4). A clade of Saxifraga subsection
Androsaceae, S. irrigua and S. rosacea Moench (clade 6) was iden-
tified as sister to clades 1-5. A clade consisting of S. cebennensis
Rouy & E.G. Camus, S. globulifera Desf., S. corbariensis Timb.-Lagr.,
and S. pubescens Pourr. (clade 7) was reconstructed as sister to
clades 1-6. No optimal number of reticulations could be inferred
unequivocally from the shape of the saturation curve of the log
likelihoods of the phylogenetic networks for K = 0 to K = 10
(Figure A3a).

For the data set with 42 samples, the saturation curve of the
pseudo-likelihoods of the networks plotted against H showed a
strong decrease from H = 0 to H = 1 and a moderate decrease from
H =1 to H = 2 (Figure A3b). A further increase of H resulted in only
minor improvement of the pseudo-likelihood, indicating that one or
two hybrid nodes are the best hypotheses for the true species net-
work topology. The ASTRAL species tree and the major trees of the
species networks were congruent with each other. Consistent with
the 58 samples data set ASTRAL species trees and the major trees
of the phylonet species networks, clades 1-4 as described above
were also found in the 42 samples species networks of subsection
Arachnoideae (Figure 3a,b).

In the best networks for H= 1 (Figure 3a) and H = 2 (Figure 3b),
S. facchinii was reconstructed as a hybrid species (BS = 77 and
BS = 98, respectively). In 58 (H = 1) and 68 (H = 2) of 100 BS
replicates, the hybrid parents were a lineage in clade 3 (BS = 75
and BS = 90, respectively) with inheritance values of y = 0.468
and y = 0.469, respectively, and a lineage in clade 4 (BS = 60 and
BS = 72, respectively) with y = 0.532 and y = 0.531, respectively.
A second hybrid node (BS = 84) was reconstructed in the network
for H = 2, with one of the two hybrid edges connecting the stem
of S. petraea (BS = 84, y = 0.164) to the stem lineage of clades 2-4
(BS = 84, y =0.836).

85U80|7 SUOWWIOD @A FeaID 8|qedt|dde ayy Aq peusenob 8@ S9ple YO ‘@SN JO S9N 10 A%eiqi8uljuO A8|IAA UO (SUONIPUOD-pUe-SW.el W00 A 1M Afeiq 1 Ul |Uo//:Sdny) SUORIPUOD pue swie | aul8es *[€20z/v0/T] uo ArigiTauliuo Ao|Im ‘ullied BerseAIuN @R Aq 82.6'€899/200T OT/I0p/LIco" A8 1w AreJq1uluo//sdny wouy pepeoumoq ‘T ‘€202 ‘85225102



GERSCHWITZ-EIDT ET AL.

3.3 | Divergence times

For the first topology in the multi-labeled phylogenetic species
tree, with the parent lineage of S. fachinii in clade 4, we selected
10 alignments with a length of 40,970bp. For the second topol-
ogy, with the parent lineage of S. fachinii in clade 3, we selected 10
alignments with a length of 33,130bp. The maximum clade cred-
ibility tree was constructed from a total of 133,204 dated spe-
cies trees (Figure 4). The stem age of subsection Arachnoideae was
dated to 5.12 (95% confidence interval 3.28-9.32) million years
ago (myr). Their crown age was estimated at 3.54 (2.21-6.43) myr.
For clade 1, stem and crown ages of 3.54 (2.21-6.43) myr and 3.16
(1.81-5.79) myr were estimated. Stem and crown ages of clade 4
were estimated at 2.77 (1.66-5.08) myr and 1.7 (0.94-3.18) myr,
respectively. The stem age of the S. facchinii lineage in this clade
corresponds to the clade crown age. For clade 2, stem and crown
ages of 2.39 (1.47-4.39) myr and 2.35 (1.42-4.3) myr were esti-
mated. In clade 2, the overall youngest node was found for the
last common ancestor (MRCA) of S. sedoides and S. prenja with an
age of 0.06 (0-0.16) myr. Stem and crown ages of 2.39 (1.47-4.39)
myr and 2.29 (1.41-4.22) myr were calculated for clade 3. The
stem age of the S. facchinii lineage in this clade was dated to 1.94
(1.1-3.57) myr.

100

100

100+

FIGURE 2 Summary coalescent
species tree of Saxifraga subsection
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3.4 | Ancestral ecology

Based on Blomberg's K and Pagel's 4, a strong phylogenetic signal
was detected in the temperature indicator (K = 0.947, p =.004;
2 = 1.009, p = 8.01x107°). Consistent with this finding, a simple
Brownian motion model was fitted as the best model (wi = 0.642;
Table 2). The stem group node of subsection Arachnoideae was re-
constructed as 1.96, corresponding to subalpine elevations, and its
descendants shifted into lower (clade 1) or higher elevations (clades
2-4, Figure 5a). The same result (1.96) was obtained in our Mesquite
reconstruction. No phylogenetic signal was indicated for the light
indicator (K = 0.120, p =.627: 1 =4.83x 107>, p = 1.0) and for the soil
pH indicator (K = 0.448, p =.123; 1 = 0.234, p =.494). Accordingly,
white noise models were fitted as the best models for soil pH and
light niche evolution (Table 2). The second best model for soil pH
evolution was an OU model (x = 0.692, wi = 0.390). According to the
model, the stem group node of subsection Arachnoideae was recon-
structed as 3.66, corresponding to neutral to slightly alkaline soils,
and adaptation to base-poor soils took place independently in S. par-
adoxa and the MRCA of S. muscoides and S. presolanensis (Figure 5b).
The same result (3.66) was obtained in our Mesquite reconstruction.
The second best model for light niche was also an OU model, how-
ever, with a large rubber band parameter o and a low Akaike weight

@ S. aphylla
@ S. arachnoidea
[0 S. facchinii clade 4
a9 @ S. presolanensis
09 |0 S. muscoides 2
= O S. muscoides 1
—— [ S. tenella clade 3
e
100 100 | 400 [l:l S. sedoides
@ S. prenja
86
1 S. hohenwartii clade 2
100 O S. petraea
100 [ S. paradoxa
S. berica clade 1
7 gs) |: """""""" S.moschata T
i 100 S. fragilis

S. pedemontana

Arachnoideae. Branch lengths are 100
shown in coalescent units. Numbers

above branches are bootstrap support
values. The stem branch of subsection
Arachnoideae is marked with an arrow.

— S. hirsuta

S. humilis

clade 5 |

S. seguieri

S. italica
S. styriaca
S. rosacea

S. androsacea H
clade 6

99 S. cebennensis

S. globulifera
S. corbariensis

S. pubescens clade 7 !

0.9
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L': S. arachnoidea
73 S. aphylla

(a)
y=0.532
v=(; .5468 50 @-¢—— . facchinii
100 100 S. muscoides 1
96 39 S. muscoides 2
{ S. presolanensis
l 3 S. tenella
100 S. prenja
90 S. sedoides
S. hohenwartii
100 S. berica
99 S. paradoxa
{ S. petraea
S. pedemontana
(b) o S. berica
95 S. paradoxa
S. petraea
4‘# L':S' arachnoidea
l @ 1:2 95 V=053 S. aphylla
y= (; .0469 W S. facchinii
100 S. muscoides 1
¥=0.836 97 38 S. presolanensis
o {S. muscoides 2
96 S. tenella
100 S. prenja
86 { S. sedoides
S. hohenwartii
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FIGURE 3 Summary coalescent species networks of Saxifraga subsection Arachnoideae modeled with (a) one and (b) two reticulation
events. Branch lengths are non-informative. Reticulation edges are indicated by blue lines for the major parent and green lines for the
minor parent of a reticulation event. Numbers in blue or green below reticulation edges are inheritance probabilities. Numbers in black
above branches are branch support values of regular edges. Numbers below a branch in magenta indicate a hybrid branch and are hybrid
edge support values. Numbers in brown circles next to a network node are support values for that specific combination of two parental
reticulation edges and a progeny hybrid edge. The stem branch of subsection Arachnoideae is marked with an arrow.

(0 = 321.974, wi = 0.189) indicating poor model fit. According to the
model, the stem group node of subsection Arachnoideae was recon-
structed as 3.77, corresponding to just below bright. Adaptation to
half-shady, shady or very shady habitats took place independently in
S. arachnoidea, S. paradoxa and S. berica. The Mesquite reconstruc-
tion resulted in a very similar value (3.76).

Apart from our reconstruction of ecological traits, S. arachnoidea
as a species from upper montane to lower subalpine elevations and

shady to half-shady habitats clearly differs strongly from its closest
relative, S. aphylla, a species from alpine elevations and very bright
habitats (Landolt et al., 2010). In case of S. berica and S. paradoxa,
S. paradoxa grows on acid substrates in contrast to S. berica (basic)
and S. petraea (basic). Differentiation in light requirements are less
pronounced than in S. arachnoidea/S. aphylla, with S. berica growing
in very shady, S. paradoxa in shady and S. petraea in half-shady habi-
tats (Landolt et al., 2010).
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FIGURE 4 Chronogram of Saxifraga subsection Arachnoideae. Horizontal blue bars indicate 95% confidence intervals. Node numbers are
median node ages in million years. The stem branch of subsection Arachnoideae is marked with an arrow.

4 | DISCUSSION

4.1 | Phylogeny of subsection Arachnoideae and
the origin of ecologically divergent species

The three species of clade 1, S. petraea, S. paradoxa and S. berica all
grow in shady and humid conditions under overhanging rocks, in re-
cesses and hollows or at the entrance of caves. Whereas S. berica,
only known from the Colli Berici near Vicenza (northern Italy), grows
at elevations lower than 450m, both S. petraea and S. paradoxa
mostly grow at elevations lower than 500 m but occasionally can be

found at higher elevations (Kaplan, 1995; Webb & Gornall, 1989).
Considering the extant distribution of the three species (Figure 1)
and their relationships to each other (Figure 2), speciation likely
was allopatric and the narrowly distributed S. berica split from the
more widely distributed S. petraea+S. paradoxa before these two
latter species separated. Following Landolt et al. (2010), ecologi-
cal divergence in terms of light requirements is very limited in this
clade (S. berica: very shady; S. paradoxa: shady; S. petraea: half-
shady). Interestingly, S. paradoxa, by growing on gneiss or mica-
schists, is one of only two species of the subsection which is not
calcicole. The extant range of S. paradoxa lies in the ‘easternmost
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FIGURE 5 Ancestral state reconstructions in Saxifraga subsection Arachnoideae for (a) temperature, (b) soil pH and (c) light preferences.
Indicator values for the stem group node of subsection Arachnoideae were reconstructed as 1.96/1.96 (Geiger/Mesquite; subalpine),
3.66/3.66 (neutral to slightly alkaline) and 3.77/3.76 (just below bright). Bars below phylogenetic trees explain the color scheme used. The

stem branch of subsection Arachnoideae is marked with an arrow.

Central Alps’ refugium for calcifuge taxa (Schénswetter et al., 2005;
Tribsch & Schonswetter, 2003), and that of S. berica in the ‘Monte
Baldo, Monti Lessini, and Prealpi Bellunesi’ refugium for calcicole
taxa (Schonswetter et al., 2005; Tribsch & Schonswetter, 2003). Of
all clades of subsection Arachnoideae (except part of S. sedoides and
S. prenja of clade 2, see below), clade 1 has the southernmost distri-
bution range by occurring along the southern and eastern periphery
of the Alps. As clade 1 is sister to the remainder of the subsection,
it is likely that clade 1 as a whole separated parapatrically from the

remainder of the subsection in a cold phase of the late Pliocene and
acquired its extant ecology in its further evolution (see below). The
hypothesis of an essentially parapatric divergence of clade 1 from
the remainder of the subsection finds support in the detection of
hybridization between S. petraea and the last common ancestor of
clades 2, 3 and 4 (Figure 3b).

As in clade 1, the three species of clade 2, S. sedoides, S. ho-
henwartii und S. prenja, are largely allopatric in distribution. The
only exception from this is the co-occurrence of S. sedoides and
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S. prenja in the Apennines. They all occur at subalpine to alpine
elevations and grow on limestone and dolomitic scree. As shown
in detail by Horandl (1993), the niche of S. hohenwartii is much
narrower than that particularly of S. sedoides. Saxifraga hohenwartii
as sister to S. sedoides +S. prenja is likely to have split allopatrically
from the latter two species. The species has been interpreted as
a relict endemic by Hérandl (1993), and its current range lies in
the ‘southeasternmost calcareous Alps’ refugium for calcicole taxa
(Tribsch & Schonswetter, 2003). Considering the extant ranges of
S. sedoides and S. prenja, their last common ancestor most likely
attained a wide range including areas outside the Alps, and the
two species most likely originated by vicariance. Equally, S. se-
doides, by occurring in the southern and northeastern Alps, a
disjunction long known from other taxa (Merxmidiller, 1952), and
also in the Apennines, must have had a wider range in the past.
The same applies to S. prenja which also occurs in the Apennines.
Long-distance dispersal to the Apennines of both S. sedoides and
S. prenja, however, cannot be excluded. The subrange of S. sedoi-
des in the northeastern Alps lies in the ‘northeastern calcareous
Alps’ refugium for calcicole taxa (Tribsch & Schénswetter, 2003).
Clade 2 (except for S. prenja) essentially is distributed allopatrically
with clade 1 in the south and the remainder of the subsection in
the north (Figure 1). The three species of clade 3, S. muscoides,
S. presolanensis and S. tenella, are also distributed allopatrically.
They differ strongly in ecology. Whereas the calcifuge S. mus-
coides, not resolved as monophyletic in our phylogenetic tree, is a
distinctly alpine species by occurring at elevations between 2250
and 4200 m (Kaplan, 1995; Webb & Gornall, 1989), S. tenella grows
at between 700 and 2000 m on shady limestone rocks and screes,
and S. presolanensis grows on north-facing and shady vertical or
even overhanging limestone cliffs (Kaplan, 1995; Merxmidiller
& Wiedmann, 1957; Webb & Gornall, 1989) between 1800 and
2100m. The range of S. tenella lies, as that of S. hohenwartii, in
the ‘southeasternmost calcareous Alps’ refugium for calcicole
taxa (Skubic et al., 2018; Tribsch & Schonswetter, 2003), and that
of S. presolanensis, located on the very edge of the main range of
S. muscoides, in the ‘Alpi Bergamasche’ refugium for calcicole taxa
(Tribsch & Schénswetter, 2003). Although the range of S. tenella is
widely disjunct with the major part of the range of S. muscoides in
western parts of the Alps, the disjunct subrange of S. muscoides in
the Tauern somewhat connects the two species. With the excep-
tion of S. tenella, clade 3 clearly is allopatric with clades 1, 2 and
4. Although there is a broad overlap, at a large scale, of S. mus-
coides with S. aphylla of clade 4, these two species are well sep-
arated by their different bedrock requirements. Finally, in clade
4, excluding S. facchinii as a species of hybrid origin, S. aphylla
and S. arachnoidea are distributed allopatrically and are strongly
differentiated ecologically. Whereas S. aphylla grows on calcare-
ous scree and stony ground, often where the snow lies late, at
elevations between 1730 and 3200 m (Kaplan, 1995) but mostly
between 2100 and 2800 m (Webb & Gornall, 1989), S. arachnoidea
grows between 600 and 1850 m in limestone dust under over-
hanging rocks (Pitschmann & Reisigl, 1959) sheltered from rain and

sun (Webb & Gornall, 1989). Accordingly, the light requirements
(Landolt et al., 2010) of S. arachnoidea (half-shady) are much lower
than those of S. aphylla (very bright). Saxifraga arachnoidea is al-
lopatric with the more widely distributed S. aphylla, and its range
lies within the ‘Monte Baldo, Monti Lessini, and Prealpi Bellunesi’
refugium for calcicole taxa (Schénswetter et al., 2005; Tribsch &
Schénswetter, 2003).

In summary, the distribution of the four clades recognized and
the distribution of species within these four clades is largely para-

and allopatric.

4.2 | Saxifraga facchinii, a hybrid species

As evident from our analyses, S. facchinii originated through hybridiza-
tion between the last common ancestor of S. presolanensis and S. mus-
coides on the one hand and the last common ancestor of S. aphylla and
S. arachnoidea on the other hand (Figure 2). Although a hybrid origin of
S. facchinii had never been suspected, its relationship to S. muscoides is
reflected in its treatment as a variety of that species by Engler (1872),
and a close relationship between S. facchinii and S. aphylla had been
found by Vargas (2000). Gerschwitz-Eidt and Kadereit (2020) found
the species to be closest relative of S. muscoides/S. presolanensis in
their ITS phylogenetic tree, and to be closest relative (unsupported)
of one sample of S. aphylla in their plastid phylogenetic tree. Saxifraga
facchinii grows on calcareous rocks and scree at alpine elevations be-
tween 2250 and 3000m and in this respect is ecologically comparable
to S. aphylla and S. muscoides of its two parental lineages. Accordingly,
this hybridization event did not result in major changes in ecological
preferences of the resulting hybrid species.

The distribution of S. facchinii on the one hand and its two pa-
rental lineages on the other hand is allopatric, as very commonly
observed in both homoploid and allopolyploid hybrid species
(Kadereit, 2015). Following Kadereit (2015), this may be the result of
the segregation of ranges of ecologically differentiated entities in re-
sponse to climatic changes. Considering the distribution of S. facchi-
nii, it seems possible that its parental lineages were sympatric in the
area of the extant range of S. facchinii at a time when the range of the
last common ancestor of S. muscoides included the major range of
this species in the west and the disjunct subrange of this species in
the Tauern (Figure 1). In this case the hybrid species might have per-
sisted in its area of origin and the parental lineages migrated tracking
their niches in times of climatic change. As the chromosome number
of S. facchinii is unknown, we do not know whether the species is a

homoploid or polyploid hybrid species.

4.3 | The ancestral ecology of subsection
Arachnoideae

Subsection Arachnoideae is part of section Saxifraga (Ebersbach
etal., 2017; Tkach et al., 2015) together with subsection Saxifraga, sub-
section Androsaceae and S. irrigua. Subsection Saxifraga is found mainly
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in the Iberian peninsula, subsection Androsaceae mainly in the Alps,
and S. irrigua is from Crimea, where the species grows in rocky woods
and on shady cliffs, always on limestone, between 500 and 1250m el-
evation (Webb & Gornall, 1989). Relationships among these three well-
supported clades and S. irrigua were not resolved in the phylogenetic
tree of Tkach et al. (2015), although Tkach et al. (2019) obtained support
for a sister relationship between S. irrigua and subsection Androsaceae.
As reconstruction of the ancestral ecology of subsection Arachnoideae
requires an outgroup, our reconstruction used part of our species tree
based on Hybseq sequences (Figure 2) which altogether included nine
species of subsection Saxifraga and resulted in a non-monophyletic
subsection Saxifraga. In our reconstruction, the stem group node of
subsection Arachnoideae was reconstructed as subalpine, neutral to
slightly alkaline soils and (just below) bright (Figure 5). Accordingly, the
calcifuge ecology of S. paradoxa (and S. muscoides) and the reduced
light requirement of S. berica, S. paradoxa and S. arachnoidea evolved
twice independently each within the subsection. With respect to el-
evational distribution, our results imply that high elevation (subalpine)
rather than low elevation distribution is ancestral in the subsection.
However, alpine distributions evolved twice independently (S. aphylla,

S. muscoides), as known from other examples (Trucchi et al., 2017).

4.4 | Origin of divergent ecologies through
adaptive evolution in refugia - a hypothesis

The definition of a refugium as an area where a particular species
survived for an entire glacial-interglacial cycle (Hewitt, 2004) ap-
pears to suggest that such areas were sanctuaries where species
were preserved from extinction (Nieto Feliner, 2011). However, it
is widely appreciated that evolutionary change resulting in specia-
tion took place in the Quaternary through geographical isolation
in refugia and through hybrid speciation upon secondary con-
tact (Kadereit & Abbott, 2022). Evolutionary change most likely
also took place in response to exposure to novel selection pres-
sures in biotic and abiotic conditions, different from the condi-
tions in areas where the species lived and went extinct in glacial
periods of the Quaternary (Davis & Shaw, 2001; De Lafontaine
et al., 2018; Nieto Feliner, 2011; Stewart et al., 2010; Stewart &
Stringer, 2012). Abiotic and biotic conditions in refugia changed
through Quaternary times. Considering alpine species, the glacial
refugia in the area of the European Alps identified by Schénswetter
et al. (2005) were cold-stage refugia (Birks & Willis, 2008). In in-
terglacials or the Holocene, both changing climatic conditions and
competition in the former cold-stage refugia in most cases will have
resulted in the re-migration of alpine species into high elevation
habitats, i.e., into their warm-stage refugia (Birks & Willis, 2008).
Considering the extant distribution of S. berica, S. paradoxa and S.
arachnoidea in well-known refugial areas, and assuming that these
refugia, identified for the Last Glacial Maximum (Schonswetter
et al., 2005; Tribsch & Schonswetter, 2003), can be taken as prox-
ies for the location of cold-stage refugia in earlier parts of the
Quaternary, we here hypothesize that the extant ecology of these
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species originated through adaptive evolution in refugial areas
where they persisted irrespective of climatic change. Saxifraga
paradoxa is one of two calcifuge species of the subsection by grow-
ing on gneiss or mica-schists. We consider it highly likely that the
shift from calcicole to calcifuge followed the climatically enforced
migration of a calcicole ancestor into a cold-stage refugium for
calcifuge plants. Shifts from calcicole to calcifuge and vice versa
linked to and likely resulting from Quaternary migration and dis-
persal into edaphically different areas had before been postulated
for Adenostyles Cass. (Dillenberger & Kadereit, 2013) and Jovibarba
(DC.) Opiz and Sempervivum L. (Klein & Kadereit, 2015).

The low light requirements of S. berica, S. paradoxa and S. arach-
noidea are likely to have evolved in response to changing environ-
mental conditionsintheirrespective distributionranges. These three
species all have very small distribution ranges which lie within well
known cold-stage refugia (Schonswetter et al., 2005). Accordingly,
they are likely to have persisted in their refugia. Considering that
cold-stage refugia on the edges of the Alps most likely contained
more or less all habitat types of extant alpine species, we con-
sider it likely that the extant habitats of S. berica, S. paradoxa and
S. arachnoidea do not correspond to those encountered when the
populations which gave rise to these species initially migrated into
cold-stage refugial areas. Instead, occupation of these very marginal
habitats with little interspecific competition probably is the result
of competitive exclusion from other sites after the recolonization
of cold-stage refugial areas by more competitive species in inter-
glacial times. All three species, as indeed all species of subsection
Arachnoideae, were assessed as stress-tolerators (vs. competitors;
Grime, 1974) by Landolt et al. (2010). Interestingly, the habitats of
S. berica, S. paradoxa and S. arachnoidea somewhat resemble some
of those habitats occupied by extant alpine species when growing
at low elevations. These, in the British Isles, include screes, north-
facing slopes, steep cliffs and cool ravines (Birks & Willis, 2008;
Pigott & Walters, 1954), and gorges in the Mediterranean area
(Gentili et al., 2015). Whereas the ecology of extant alpines at low
elevations or southern latitudes is, as far as known, the result of
competition and thus of ecological processes, we hypothesize that
the limitation of S. berica, S. paradoxa and S. arachnoidea to their
specific habitats is the result of adaptation and thus of evolutionary
processes. Adaptation to conditions into which species were forced
by competition before has been postulated for an eastern North
American narrow endemic of Dodecatheon L. limited to patchy
cool cliffs by Oberle and Schaal (2011) and the serpentine en-
demic Cherleria (= Minuartia L.) laricifolia (L.) lamonico subsp. ophi-
olitica (Pignatti) lamonico from the northern Apennines by Moore
et al. (2013). Interestingly, Webb and Gornall (1989) observed that
cultivation of S. berica, S. paradoxa and S. arachnoidea is only possi-
ble when the conditions of their natural habitat, particularly shade,
are reproduced as closely as possible. This clearly implies that these
three species are not limited to their present niches by competition
alone but require the conditions found for successful growth and
reproduction. It remains unclear whether these marginal habitats
were colonized only as the result of increasing competition or had
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been part of the niche of these species before. In the first case,
novel selection pressures resulting in evolutionary divergence thus
not only arose from abiotic environmental conditions but proba-
bly mainly from interspecific competition, the ‘new neighbors’ of
Hewitt (1996, 2000, 2004). When considered together with their
closest relatives, S. berica (closest relatives: S. petraea, S. paradoxa),
S. paradoxa (S. petraea) and S. arachnoidea (S. aphylla), persisting in
cold-stage refugial areas upon climatic warming, can be considered
stable rear edge populations or species (Hampe & Petit, 2005). For
such populations, Ackerly (2003) proposed, in his ‘trailing edge hy-
pothesis of adaptive evolution’, that the most important condition for
adaptive evolution to occur at the rear edge is the exclusion of com-
petitors. In case of S. berica, S. paradoxa and S. arachnoidea this ap-
pears to have been realized by the evasion of competitors through
adaptation to shady habitats unsuitable for them.

If indeed adaptation to novel selection pressures in S. berica,
S. paradoxa and S. arachnoidea took place in warm stages of the late
Pliocene and Pleistocene, as also postulated for adaptive differentia-
tion within Taxus baccata L. (Mayol et al., 2015), geological time avail-
able for evolutionary change was even shorter than in cold stages
because warm stages were substantially shorter than cold stages in
the Pleistocene (Birks, 2019). Although it has been argued that pe-
riods of isolation required for speciation were never long enough in
the Quaternary (Willis & Niklas, 2004), speciation in Quaternary gla-
cials has been implied by Kadereit et al. (2004). For S. berica, S. par-
adoxa and S. arachnoidea we do not postulate that they originated
in interglacial times. Instead, they are more likely to have originated
when pushed into refugia in late Pliocene/Pleistocene cold stages.
However, their extant ecological make-up appears to be the result
of adaptive evolution in Quaternary interglacials. In consequence,
both Late Pliocene/Pleistocene cold stages, resulting in geographical
isolation, and warm stages, inducing adaptive change, shaped the

evolution of these species.
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APPENDIX A

Method 1: exon paralog filtering

During sequence assembly, multiple contigs per locus were assem-
bled for almost all loci and samples of Saxifraga sect. Saxifraga. Those
contigs might either be true alleles or paralogs. A three-step proce-
dure was used to separate orthologous (i.e., alleles) and paralogous
sequences. First, the quality-filtered DNA reads were assembled
with HybPiper using the original sequence reference from Folk
et al. (2019). Subsequently, the HybPiper post-processing scripts
were used as described in Johnson et al. (2016) to identify orthologs
and paralogs in Saxifraga sect. Saxifraga: The HybPiper scripts 'par-
alog_investigator.py' and 'paralog_retriever.py' were used to extract
the exonic sequences of all contigs at each locus, to align them for
all samples using MAFFT v7.305 (Katoh & Standley, 2013) and to
calculate a phylogenetic maximum likelihood (ML) gene tree from
each alignment. The gene trees were then visually evaluated for the
presence of paralogous sequences. Putative paralogous sequences
were identified in the ML trees based on the segregation pattern
of multiple sequences of the same sample: Assuming a specimen
is represented by multiple orthologous sequences in the sequence
dataset of a phylogeny, the leaves of this individual in the phyloge-
netic tree either form a monophylum (in the absence of incomplete
lineage sorting; ILS) or are at least close relatives (under low ILS).
Paralogous sequences, on the other hand, are not closely related in
the gene tree but instead group with the respective orthologous se-
qguences of other samples. For all loci where paralogs were identified
by this rule, two to four sequences from each group of putative or-
thologs were selected and added to an updated reference sequence
file as new reference sequences for their respective ortholog.
Previous sequence references for these loci were deleted so that,

FIGURE A1 Cladograms of the major trees of 11 maximum
pseudo-likelihood phylogenetic networks calculated in PhyloNet.
The stem branch of subsection Arachnoideae is marked with an
arrow.
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number of hybridizations h

in a second DNA assembly, sequences from these loci could be as-
sembled exclusively against the updated reference sequences. Using
this updated reference sequence file, DNA assembly with HybPiper
and post-processing steps was repeated as described above. Paralog
assessment was repeated as described above and additional refer-
ence sequences from putative orthologs were added to an updated
reference file. Finally, after a third DNA assembly, all loci still con-
taining paralogs in samples of Saxifraga subsect. Arachnoideae were
discarded. For the remaining loci, all further steps of HybPiper were
performed to also obtain the non-exonic sequence data.

Method 2: non-exon paralog filtering

We used TreeShrink v1.3.3 (Mai & Mirarab, 2018) to identify indi-
vidual samples or clades that contributed disproportionately to the
length of a phylogenetic tree by containing, e.g., few paralogs in an
otherwise mostly orthologuous dataset, and to automatically re-
move the corresponding DNA sequences from the alignments. First,
we calculated ML gene trees with RAXML v8.2.12 (Stamatakis, 2014)
using an unpartitioned GTR + I" nucleotide substitution model with
S. hirsuta as outgroup. Second, all gene trees and alignments were
analyzed together in a single TreeShrink run to remove outlier se-
quences. Alignments were finally re-examined with BuddySuite
v1.3.0 to trim all alignment positions that consisted of more than
50% gaps, and to remove all alignments missing more than 20% of

the samples or the S. hirsuta sample.

Method 3: phylogenetic network bootstrap analysis

Phylogenetic networks were calculated using SNaQ (Solis-
Lemus & Ané, 2016) as implemented in PhyloNetworks v0.11.0.
First, we created a table of quartet concordance factors (Cfs) in
PhyloNetworks, using 388 bootstrapped ML gene trees, calcu-
lated in RAXML v8.2.12, for all combinations of four different
taxa each. Six phylogenetic MPL networks were then iteratively
calculated from the Cfs table in SNaQ guided by a taxon map for
zero to five hybrid nodes (H). The reconstruction was initialized
for H = 0 using the ASTRAL species tree as the starting tree. The
networks for H = 1-3 were each initialized with the best network
from the previous run. Network reconstruction for H = 4 could not

be initialized with the best network for H = 3 because no further

number of hybridizations h

reticulation edges could be added to it without the creation of in-
tersecting cycles which are prohibited in SNaQ. Instead, the cal-
culations of the networks for H = 4 were initialized with the best
network for H = 2. For the same reasons, neither the best network
for H = 3 nor for H = 4 could be used to initialize the calculation
of the network for H = 5. Therefore, it was also initialized with the
best network for H = 2. For each value of H=0-5, 50 independ-
ent network calculations were performed. The pseudo-likelihoods
of the best networks for each value of H were plotted against H
and the shape of the curve was interpreted to determine the most
likely number of hybrid nodes and thus the most likely network.

Bootstrap analyses were performed in SNaQ for the best net-
works of H=1 and H = 2 to incorporate gene tree estimation error
into the network calculation (Solis-Lemus, personal communication
2020). The 38,800 bootstrap replicates of the 388 ML gene trees
were used as input data. First, one random gene tree bootstrap rep-
licate was selected for each of the 388 gene trees. Second, a table
of quartet Cfs was generated from these 388 gene tree bootstrap
replicates. Third, the best network was reconstructed from the Cf
table in 50 independent runs to obtain a single network bootstrap
replicate. Fourth, this process was performed a total of 100 times
each for H =1 and H = 2 to generate two bootstrapped networks
with 100 bootstrap replicates each.

Method 4: locus selection for divergence times estimation

We used the full data set of 58 samples to identify several loci for
which gene trees could be unambiguously assigned to one of the two
topologies contained in the multi-labelled tree as inferred from the
42 samples network reconstructions. We aimed to select a total of 20
gene trees, with ten trees for each of the two topologies. To achieve
this, we first calculated Robinson-Foulds (RF) distances of the gene
trees to the two species tree topologies in PhyloNetworks v0.11.0
for each of the 405 gene trees of the 58 samples data set. For the
calculation of RF distances to the first topology, we used the original
58-samples species tree calculated with ASTRAL (Figure A1). For the
calculation of RF distances to the second topology, the ASTRAL spe-
cies tree was permuted by moving the S. facchinii clade from clade
4 to clade 3. We identified all gene trees that had different RF dis-
tances to the two species tree topologies. These gene trees were
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FIGURE A3 Summary coalescence species tree calcul‘:ated in ASTRAL. The stem branch of subsection Arachnoideae is marked with an

arrow.
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visually inspected to determine whether their topologies could each
be unambiguously assigned to one of the two topologies contained
in the multiple-labelled phylogenetic species tree. Nodes with boot-
strap support less than 70% were interpreted as polytomies in this
process. Using these criteria, 10 loci with a taxon sample as complete
as possible were selected for the divergence times estimation for

each of the two species tree topologies.
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