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Patient monitoring technology has been used to guide therapy and alert staff
when a vital sign leaves a predefined range in the intensive care unit (ICU)
for decades. However, large amounts of technically false or clinically
irrelevant alarms provoke alarm fatigue in staff leading to desensitisation
towards critical alarms. With this systematic review, we are following the
Preferred Reporting Items for Systematic Reviews (PRISMA) checklist in order
to summarise scientific efforts that aimed to develop IT systems to reduce
alarm fatigue in ICUs. 69 peer-reviewed publications were included. The
majority of publications targeted the avoidance of technically false alarms,
while the remainder focused on prediction of patient deterioration or alarm
presentation. The investigated alarm types were mostly associated with heart
rate or arrhythmia, followed by arterial blood pressure, oxygen saturation,
and respiratory rate. Most publications focused on the development of
software solutions, some on wearables, smartphones, or headmounted
displays for delivering alarms to staff. The most commonly used statistical
models were tree-based. In conclusion, we found strong evidence that alarm
fatigue can be alleviated by IT-based solutions. However, future efforts
should focus more on the avoidance of clinically non-actionable alarms
which could be accelerated by improving the data availability.
Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_
record.php?ID=CRD42021233461, identifier: CRD42021233461.
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1. Introduction

In an intensive care unit (ICU), many different sensors automatically monitor vital signs

(e.g. heart rate (HR), arterial blood pressure (ABP), and oxygen saturation (SpO2)), leading

to improved patient safety. Alarms occur for example when a vital sign exceeds or drops

below a predefined threshold.
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Of all patient monitoring alarms, 72% to 99% are either

technically false (e.g. due to an artefact) or clinically

irrelevant, i.e. technically true but not actionable (1). Hence

not every alarm indicates a change in the patient’s medical

situation or requires a medical intervention (2).

Alarm fatigue occurs as a result of an overwhelming amount

of alarms. This sensory overload can lead to alarm

desensitisation and a loss of competence of the ICU staff

(physicians and nurses) in dealing with alarms, ultimately

resulting in patient harm or even death (3–5). ICU staff

experiencing alarm fatigue might delay or dismiss alarms,

wrongly adjust alarm thresholds, or struggle to evaluate and

prioritise alarms (1). In both, patients and staff, excessive

amounts of alarms can cause stress, leading to distraction

from work and disrupted circadian rhythm (6–9).

The problem of alarm fatigue has been widely investigated,

both qualitatively (10) and quantitatively (11). Many different

approaches to alleviate alarm fatigue have already been

evaluated and tested: For example, workshops and trainings

for ICU staff, implementation of guidelines for alarm

management, adjustments of threshold, and development of

algorithms (12, 13). There is, however, no ultimate and

generally applicable solution yet. Excessive amounts of alarms

can be caused by many potentially interacting factors. As of

now, there is no standardised tool to measure alarm burden.

Alarm fatigue does not only involve individuals but entire

organisations (14) and the roots of the problem are very

diverse. Solely reducing the number of alarms might not

resolve the problem of alarm fatigue or change the attitude of

ICU staff towards the alarm situation (15). Patient monitoring

alarms are triggered through an IT system that uses signals

produced by various sensors. However, currently used IT

systems lack positive predictive value in the alarm generation,

subsequently causing large amounts of false-positive alarms.

We presume that a more holistic IT-based approach might be

a promising approach to alleviate alarm fatigue in intensive

care medicine.

With this systematic literature review, we address the

following research questions: (1) What are IT-based

approaches to improve alarm management in intensive-care

medicine? And (2) how do these IT systems contribute to

alarm management in intensive-care medicine?

In terms of PICOS, we specify this review as follows:

• The problem is alarm fatigue in intensive-care medicine, i.e.

intensive care unit (ICU), intermediate care unit (IMC),

neonatal intensive care unit (NICU), and post-anesthesia

care unit (PACU).

• The interventions are novel IT systems dealing with medical

alarms influencing them in any kind, for example by alarm

prediction, novel methods of alarm presentation, alarm

prioritisation, alarm suppression, alarm delay, or personal

alarming.
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• This is compared with the state-of-the-art ICU setup without

the respective intervention.

• The outcome of interest is reduction in alarm burden,

through reduction of the number of alarms per staff

member or reduction of noise due to alarms.

• And there are no restrictions on study type or time frame.

In this systematic literature review, we closely follow

the PRISMA process (16). The structure of this work

closely resembles the PRISMA checklist and deviates

only when comprehensibility and conciseness would

otherwise suffer.
2. Methods

2.1. Eligibility criteria

In addition to the PICOS defined in Section 1, we applied

the following exclusion criteria to the literature:

• publications that are not written in English language

• publications that do not provide a full text

• publications that are not peer-reviewed.

2.2. Information sources

As primary source of information, we employed the five

public literature databases: ACM Digital Library1, arXiv2,

IEEE Xplore3, PubMed4, Web of Science5. These databases

were queried as described in Section 2.3 to produce a core set

of literature which was subsequently augmented by additional

literature.
2.3. Search strategy

All databases listed in Section 2.2 were queried as defined in

Figure 1. Additionally, IEEE Xplore was queried again as

defined in Figure 2. All public database queries were executed

on December 4, 2020. All fields were queried without any

further restrictions.

Apart from querying public databases, we also employed an

internal literature database as a source for additional literature.

Furthermore, we noticed that many publications describe
frontiersin.org
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FIGURE 1

Database query used on all public databases. The first part of the
query sets the topic domain, the seconds part defines the
computer science aspects, and the third part defines the medical
aspects.

FIGURE 2

Simplified query that was used additionally on IEEE Xplore.
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solutions to the PhysioNet/CinC Challenge 20156 (17) which is

why we included papers related to this challenge7 as additional

literature.
2.4. Study selection

We have to ensure that the publications we found conform

with both the topic of this literature review defined in Section 1

and the additional formal eligibility criteria defined in Section

2.1. Therefore, we screened title, abstract, and keywords of

each publication found before assessing the full-text version

and checked if one of the exclusion criteria listed below is

met. If at least one criterion was met, we excluded the

publication from the subsequent in-depth review process.

There were cases where we could not definitely decide upon

the exclusion criteria by title, abstract, and keywords alone. In

these cases, we retained the publication in questions to be

potentially excluded in a later stage of the review. The

exclusion criteria are designed to represent PICOS as well as

eligibility criteria:
6https://physionet.org/content/challenge-2015/1.0.0/
7https://physionet.org/files/challenge-2015/1.0.0/papers/index.html
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• Does not concern (an) implemented IT solution(s)

• Does not concern intensive-care medicine

• Does not concern alarm management

• No full text can be found (e.g. abstracts of talks)

• Record is assumed to be not peer-reviewed

2.5. Data collection process

For each paper, we extracted the author names, the title, and

the year of publication as metadata. Furthermore, we answer the

questions listed in Section 2.2 based on the respective

publication. Each publication was initially processed by one of

the authors of this review. If one or more data items could

not confidently be extracted by the responsible reviewer, a

second reviewer was assigned to help clarify the issue.
2.6. Data items

From each paper, we extracted where possible following

data items formulated as questions including sample answers.
2.6.1. Objective
What is the core objective of the publication? Exemplary

objectives are the reduction in false alarms or forecasting of

alarm to reduce the urgency that is usually associated with an

alarm. This data item asks for the contribution of the

publication from a medical perspective.
2.6.2. Approach
How is the core objective achieved? Exemplary approaches

are the use of machine learning models or novel methods of

alarm presentation. This data item asks for the technical

implementation from a computer science perspective.
2.6.3. Alarm types
Which alarms are targeted? Examples are alarms due to

tachycardia or low blood pressure.
2.6.4. Hardware involvement
Does the presented system involve specific hardware that is

not a usual part of an ICU setup? If so: Which kind of hardware

was used? One example would be smartphones for additional

data collection.
frontiersin.org
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2.6.5. Data
Which data sets are used by the system? Predominantly, we

were interested in whether databases were used or if data

collection was part of the research leading to the publication.

If databases were used, we were interested in which database

was used, e.g. MIMIC-II (18).

2.6.6. Models
If there are predictive models in use: Which model types are

used? Examples are support vector machines (SVMs) or neural

networks (NNs).

2.6.7. Patients
Are there specific patient characteristics? If yes: Which?

Examples are limitations of specific age groups or patients

having specific diseases.

2.6.8. User study
If there was a user study of some kind: How many

participants were involved?
2.7. Risk of bias in individual studies

We expect a risk of bias in the individual publications. We

focused on engineering approaches for alarm management and

expected to find many feasibility studies among the

publications. Feasibility studies aim to show that the proposed

solution works and how it works. We expect a bias favouring

proposed solutions in feasibility studies because the primary

objective of a feasibility study is not to rigorously compare the

proposed solution to an alternative by means of a controlled

experiment such as a randomised controlled trial (RCT). The

authors of such feasibility studies may be biased as the

creators of the solutions themselves.
TABLE 1 Matrix of duplicates across different literature databases. The
numbers state how many publications we found in both literature
databases (row and column).

ACM
Digital
Library

arXiv IEEE
Xplore

PubMed Web of
Science

ACM
Digital
Library

25 0 0 0 1
2.8. Summary measures

To the best of the authors’ knowledge, there is no standard

measure of alarm fatigue available at the time of submission of

this review. Also, we did not find any such measure while

conducting the literature search. Therefore, we can not

provide a quantitative summary measure for the proposed

solutions covered by this review. We do, however, provide

statistics on the data items when this is feasible to show how

alarm fatigue was tried to be alleviated in the past.
arXiv 0 0 0 0 0

IEEE
Xplore

0 0 14 4 11

PubMed 0 0 4 84 33

Web of
Science

1 0 11 33 61
2.9. Synthesis of results

We analysed each data item separately for all publications

considered in this review and summarise our findings specific
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to each item in Section 3.2. As an additional analysis, we

combined publications with similarities by grouping them

together. Grouping can be done by each of the data items

defined in Section 2.6 as long as there are striking

similarities. Consequently, a publication can be part of

multiple groups. Findings for these subgroups are to be found

in Section 3.3.
2.10. Risk of bias across studies

We split the publications among the authors. This

introduces a bias from the different professional background

of the authors, either computer science or medicine. Further,

there is a positive publication bias prevalent that makes the

publication of negative findings less likely (19, 20). Applied to

this review, we have to assume that the probability of

publication is lower for solutions that were tried but did not

contribute to the alleviation of alarm fatigue.
3. Results

3.1. Study selection

We queried the public literature databases listed in Section

2.2 using the query stated in Figure 1 and found 184 records

(including duplicates). Table 1 shows the number of records

yielded by each database as well as how many records we

found in multiple databases. We treat publications that we

found in more than one database as duplicates that we merge

in the duplicate removal stage. We found many duplicates

across PubMed and Web of Science since both databases

aggregate publications from multiple publishers. In contrast,

ACM and IEEE are publishers of their own and only list

publication that they published. Consequently, there is no
frontiersin.org
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TABLE 3 Records excluded after full-text access (with reason).

Reason Records Count

No IT solution (21–31) 11

Not alarm management (32–34) 3

TABLE 2 Additional records yielded by other sources.

Database No. of Records

Referenced in included papers þ1

IEEE Xplore with “alarm fatigue” query þ8

Internal literature database þ16

PhysioNet/CinC Challenge 2015 þ18

FIGURE 3

PRISMA Flowchart.
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overlap between these databases. After duplicate removal, we

retain 135 records from public databases.

Additionally, we employed other sources as described in

Section 2.3. The additional number of records yielded by

these other sources is shown in Table 2. After adding these

43 records, we have 178 records in total to be screened.

Title, abstract, and keywords of these 178 records were

screened according to the eligibility criteria defined in Section

2.4. After screening, we excluded 95 records, hence retaining

83 records for full-text access. During the screening, we

decided to retain records where eligibility was unclear leaving

us with the option to exclude these records later on after full-

text access. The 14 records excluded after full-text access (with

reason) are listed in Table 3. After this final round of

exclusion, 69 records were left to be included in the synthesis.

The complete process of record identification, screening,

eligibility assessment with all removals and exclusions during

the process, is depicted in a prototypical PRISMA flowchart

in Figure 3.

Figure 4 shows the distribution of the reviewed publication

throughout the years. There is a very noticeable peak in 2015

which can be attributed to the PhysioNet/Computing in

Cardiology challenge of this year. Also, the number of

publications per year remains at an increased level throughout

the subsequent years. This can be attributed to publications

that used the challenge dataset but were only published after

the challenge has ended. In Section 1 we describe the impact

of this challenge in greater detail.
3.2. Synthesis of data items

3.2.1. Objective and approach
After data extraction, we chose to consider objective and

approach together. This is reasonable since the distinction

between means and ends is not always clear. As a result of

the inclusion and exclusion criteria (see Section 2), all

publications have in common that counteracting alarm fatigue
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is part of their objectives. However, the concrete way of how

this is achieved varies.

We identified three major approaches utilised in order to

counteract alarm fatigue:

3.2.1.1. Reduction of technically false alarms
Schmid et al. (35) assigns to alarm the two properties of

technical correctness and clinical relevance. Consequently,

there are (1) technically false alarms where the cause of the

alarm does not correspond to reality, (2) technically correct

but clinically irrelevant (i.e. non-actionable) alarms where the

cause of the alarm is rooted in reality but there is no

consequence to the alarm, and (3) technically correct and

clinically relevant (i.e. actionable) alarms.

We used the terminology from (35) to classify the

publications we reviewed. Among the publications that aim at

the numerical reduction of alarms, the majority of

publications address only technical correctness and not
frontiersin.org
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FIGURE 4

Number of included publications per year.

FIGURE 5

Investigated alarm types or clusters.
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clinical relevance. This is prominently the case in the “avoidance

of false arrhythmia alarms” subgroup which we identified and

describe in Section 1.

One way in which clinical relevance is addressed is via

SuperAlarm patterns (see Section 3.3.4). However, the aim of

these works is not to avoid clinically false alarms but to

identify specific highly clinically relevant combinations of alarms.

3.2.1.2. Per-patient risk assessment
In the reviewed literature we found an overlap with the related

research topic of clinical risk models (e.g. prediction of

mortality, post-operative complications, and patient

deterioration in general). While clinical risk models do not

aim at the alleviation of alarm fatigue as their primary

objective, they can still be utilised in order to prioritise

alarms. Jo et al. (36) states that “High accuracy in mortality

prediction helps nurses manage patient care by placing

patients in different priority queues. It also enhances nurses’

efficiency by reducing the number of false alarms, which

cause them alarm fatigue and desensiti[s]e them to real

alarms.” Publications with this objective are described in the

“prediction of patient deterioration” subgroup (Section 5).

3.2.1.3. Changes in the ways alarms are presented
Besides avoiding false alarms and prioritising true alarms, there

is also research in the field of human-computer interaction

aiming at changing the way alarms are presented. Most of

these works focus on reducing the acoustic load in ICUs. This

is described in greater detail in Section 3.

3.2.2. Alarm types
Among the 69 reviewed publications, we identified two

principal groups with respect to the targeted alarm types:

1. 56 publications presenting alarm-specific solutions that

target a predefined set of alarms.

2. 13 publications presenting alarm-agnostic solutions, which

do not specify any type of alarms or did not use alarms to

be developed.

As many publications do not mention the sensor(s) used to

measure the vital signs or parameters leading to those alarms,

we decided to create clusters for the parameters triggering the

alarms.

Figure 5 shows the frequency distribution of examined

alarm types and/or clusters.

3.2.2.1. Alarm-specific solutions
56 reviewed publications investigated one or several types of

alarms. We identified the following alarm types and/or clusters:

• HR/ARR: Heart rate related alarms triggered by a pulse

oximeter or electrocardiogram (ECG), in case of pulse and/or

heart rate threshold violation (both terms were often used

interchangeably in the reviewed publications) or triggered
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when arrhythmia (ARR) patterns like asystole (ASY),

extreme bradycardia (EBC), extreme tachycardia (ETC),

ventricular fibrillation (VFib), ventricular flutter (VFl), or

ventricular tachycardia (VT) were recognised (n ¼ 51).

• ABP: Arterial blood pressure alarms with blood pressure

being measured non-invasively and/or invasively (n ¼ 15).

• SpO2: Oxygen saturation alarms as per pulse oximeter (n ¼ 12).

• RESP: Respiration-related alarms from ECG/impedance

pneumography or ventilator triggered by respiratory rate,

apnea, and further ventilation parameters (n ¼ 7).

• Other: Alarms triggered by further, less frequent parameters

namely intracranial pressure (ICP) (n ¼ 4), central venous

pressure (n ¼ 3), body temperature (n ¼ 2), perfusion

(n ¼ 2), and pulmonary arterial pressure (n ¼ 2).

We analysed the number of alarm types and/or clusters

evaluated by the reviewed publications. We noticed that most

of the publications focused on only one alarm type or cluster

(n ¼ 39) and if so, most frequently on the HR/ARR cluster.

The described solutions can be uni- or multimodal, hence
frontiersin.org
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using different data sources such as laboratory values as

additional information.

3.2.2.2. Alarm-agnostic solutions
13 reviewed publications do not specify the alarm types they are

focusing on (n ¼ 11) or do not use alarms to develop a solution

aiming to alleviate alarm fatigue (n ¼ 2). Hence, these solutions

claim to be applicable to all types of alarm without or with only

minor adaptations.

Wilken et al. (37) presents a system enabling healthcare

workers to analyse the alarm situation on their ICU using a

data warehouse for daily clinical decision making and further

research. The system does not target any specific set of alarms.

5 publications from Cobus et al. present devices to counteract

acoustic load, reduce high cognitive load, and the risk of alarm

fatigue in ICUs. Their prototypes were not restricted to any

alarm types, hence all alarms are possibly targeted. These

publications are further described in Section 3.3.3.

5 publications proposed the use of SuperAlarm patterns

predicting code blue events and using all types of alarms as

input. They are further described in Section 3.3.4.

2 publications do not use any alarm data to develop

solutions to reduce alarm burden by predicting clinical

deterioration (38) or mortality along with a de-prioritisation

of alarms from patients with a lower mortality probability

(36) (see Section 3.3.5).

3.2.3. Hardware involvement
We found only a few publications proposing an alarm

management system that involves hardware. Mainly, systems

rely on existing hardware, most prominently patient monitors.

Data collected through patient monitors is captured in

databases such as MIMIC-II (18) (see Section 3.2.4). Solely

software-based systems use these databases for evaluation and

– if machine learning is involved – training of models.

As an exception to this, there is hardware involved in the

subgroup “novel means of alarm presentation” (see Section

3.3.3). The publications of Cobus et al. present and utilise

devices like a vibrotactile wearable alarmsystem or head-

mounted display for delivering alarm to the medical staff.

Further, there is a system called “D.A.S.H.” Greer et al. (39)

which adapts the volume of alarms to the background noise to

avoid unnecessary noise pollution. This is implemented in

hardware as a physical system using “an Arduino Mega

microcontroller board with [a] digital and analog[ue] input/

output pins for computation purposes, a Wave Shield for

added sound quality, microphones for sound acquisition, a

pulse sensor for measuring patient HR, and a loudspeaker for

sound output.”

Additionally, smartphones are commonly used as a

hardware component for two distinct purposes. Firstly,

smartphones are used as low-cost and ubiquitously available

sensing hardware, e.g. in (40). Secondly, smartphones can be
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used as a communication device to facilitate personal

alarming, notifying a specific member of staff instead of

informing all members of staff in the vicinity of the problem

with a broadcast-style audible alarm. This is by way of

example demonstrated by (41).

Finally, there is specific simulation hardware that is used in

order to better understand alarm fatigue. Kobayashi (42) uses

manikins (i.e. SimMan 2G and an ECG-enabled Resusci-Anne

by Laerdal) to build a simulation space for studying alarm fatigue.

3.2.4. Data
The vast majority of publications reviewed in this work use

custom data sets for training and/or evaluating their proposed

IT systems. Custom data set in this case either means a data

set specifically created for this publication or a data set that

we could not trace back to another publication.

5 publications use no data at all or do not mention the use

of data. This is the case in (43–47).

Furthermore, the MIMIC-II database is an important

material in alarm fatigue research. MIMIC-II is used by

(36, 48–53). It is, however, noteworthy that specifically

MIMIC-II is used while its successor MIMIC-III (54) and

other ICU databases such as HiRID (55) and eICU CRD (56)

are not even mentioned in the publications under review. A

reason for this might be that MIMIC-III, HiRID, and eICU

CRD are relatively new while MIMIC-II is publicly available

since 2010 (18). This manifests a need for further research as

it needs to be evaluated how the proposed IT solutions can

benefit from more recent databases.

Another important data source for alarm fatigue research is

PhysioNet (57). PhysioNet both helps to distribute ICU

databases like the ones mentioned above and hosts yearly

challenges in conjunction with the Computing in Cardiology

conference. These challenges include data sets that are used as

part of the challenge but also for subsequent research. In the

publications we reviewed (40, 58) mention the use of a data

set distributed via PhysioNet but do not offer any specifics,

(59) uses the data from the 2009’s and the 2014’s challenge,

and (60) uses the data from the 2011’s challenge.

We want to put special focus on the data set associated with

the 2015’s challenge. This data set contains physiological signals

preceding arrhythmia alarms which is extremely relevant in

terms of alarm fatigue especially concerning the improvement

of technical correctness of alarms (35). Besides the submission

to the challenge described in Section 3.3.1, the following

publications are also using this data set: (61–68)

3.2.5. Models
Out of the papers that utilise models in some way, the most

commonly used ones are tree-based models (decision tree (DT),

random forest (RF), extremely randomised trees (ERT), gradient

boosting machine (GBM)). As so-called explainable models they

have the benefit of producing humanly-comprehensible reasons
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for their decisions. Further applied explainable models are logistic

regression (LR), fuzzy logic and case-based reasoning (CBR).

Apart from these, the most frequent models are SVMs. Deep

networks such as NNs and long-short term memorys (LSTMs)

are less popular in the reviewed literature, which could be due

to the requirement of large databases or their black-box

character which is not that suitable for the medical field. 10

papers describe other models, such as clustering- or threshold-

based models, or rare regression models.

3.2.6. Patients
Most studies utilised monitoring data produced by adult

patients admitted to ICUs in the United States or Europe.

Several studies relied on data from the PhysioNet databases

such as MIMIC (see Section 3.2.4). However, some

publications included own data especially regarding neonatal

or paediatric (41, 69), cardiothoracic (70, 71) or neurosurgical

(72–74) patients. The majority of data included came from

critically ill patients in the ICU, a minority from patients in

IMCs (75).

3.2.7. User study
A user study is performed in eight of the reviewed papers.

“User study” was defined as an evaluation of the usability or

an assessment of the proposed method of alarm reduction.

Most of these papers are from Cobus et al. since their

proposed method includes hardware. These user studies

consisted of the testing of the prototype (47, 73, 76, 77),

performance of tasks (46, 47, 77), interviews (45, 58), as well

as pilot sessions (42). Not all the papers included the number

or the background of the participants in their user study. Of

those who provided this information, the number of

participants ranged from 9–15, all of them healthcare workers.

Table 4 shows a complete list of user studies found during

this review as well as their characteristics.
TABLE 4 Papers with a user study.

Publication Type of user
study

# of
participants

Participant
background

(73) Performance of tasks 11 not specified

(76) Assessment of the
prototype

12 Nurses

(47) Performance of tasks,
assessment of the
prototype

12 Nurses

(77) Performance of tasks,
assessment of the
prototype.

15 not specified

(45) Semi structured
interviews (before
development of the
prototype)

9 Healthcare
workers

(58) Interviews not specified not specified

(42) Two pilot sessions not specified not specified
3.3. Subgroup analyses

Among the reviewed papers, we identified five subgroups

with publications having common themes in terms of

objective or approach. These subgroups are partially

overlapping meaning that one paper can be part of more than

one subgroup for example when false arrhythmia alarms

(Section 3.3.1) are avoided using signal quality indicators

(SQIs) (Section 3.3.6). In the following, we present the

identified subgroups.

3.3.1. Avoidance of false arrhythmia alarms
This subgroup contains the 20 additional publications

identified through the PhysioNet/CinC Challenge 2015,

namely (17, 62, 78–95). Furthermore, we identified 8 more

publications that also belong to this subgroup, namely (40, 49,
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61, 64–66, 68). These publications share the common

objective of alleviating alarm fatigue through the reduction of

false arrhythmia alarms.

For the publications from the PhysioNet/CinC Challenge

2015, (17) is the overview paper which describes the challenge

and also compares the different solutions to the challenge. All

solutions use the same challenge data set of 1250 segments

(750 for training and 500 for testing after submission). Each

segment is 5:00 minutes for real-time and 5:30 minutes for

retrospective solutions. The segments include ABP, ECG,

photoplethysmogram (PPG), and respiration (RESP)

waveform signals. However, not all solution to the challenge

use all signals. Alarms targeted by this challenge are ASY,

EBC, ETC, VT, and VFib or VFl (VFib and VFl as one

alarm). All solutions are solely software-based and do not

involve hardware. While some solutions use hand-crafted

algorithms others use predictive models i.e. DTs, RFs, SVMs,

and NNs. There was no user study since the algorithms were

evaluated against a data set.

The publications in this subgroup that did not directly

emerge from the PhysioNet / CinC Challenge 2015 were all

published in the same year or the years following the

challenge. Eerikäinen et al. (66) seems to be a follow-up paper

to (81) using the same data set and a similar algorithmic

approach. Yanar and Dogrusoz (64) also provides a solution

to the PhysioNet / CinC Challenge 2015 but was published

only in 2017 and solely focuses on ASY and EBC alarms

while also using the challenge data set. Yanar and Dogrusoz

(65) seems to be a follow-up paper specifically focusing on

VFib and VFl alarms and also using the challenge data set.

Also using the PhysioNet/CinC Challenge 2015 dataset,

Gajowniczek et al. (68) proposes the use of weighted RFs for

arrhythmia detection. Targeting the full set of available

arrhythmia alarms, the authors show that weighted RFs show
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the best results in terms of area under the receiver operating

curve and challenge score.

Puri et al. (40) presents iCarMa, an inexpensive

smartphone-based system for cardiac monitoring using PPG

sensors which is able to detect ASY, EBC, ETC, VFl, and VT.

An important aspect of this work in terms of alarm fatigue

alleviation is the strong focus on signal decorruption and

avoidance of technically false alarms. The findings for PPG

signals can be used to facilitate ECG-based arrhythmia

detection in patient monitors.

Roychoudhury et al. (50), Wang et al. (49) and Srivastava

et al. (61) use data from the MIMIC-II database (18) for

detecting false arrhythmia alarms. Roychoudhury et al. (50)

developed a method for extracting shapelets from the ECG

signal that are distinctive for false alarms concerning ASY and

VT that can be matched for prediction while considering

some uncertainty. The other two publications present classical

machine learning (ML) systems. While (49) uses only ABP

and ECG signals, Srivastava et al. (61) additionally uses a

PPG signal. Both systems try to detect false alarms concerning

ASY, EBC, ETC, VT, and VFib. To this end, (49) uses SVM,

DT, and k nearest neighbours (KNN) models and (61) uses a

RF classifier in conjunction with SQIs.

3.3.2. Avoidance of false intracranial pressure
alarms

This rather small subgroup includes only two publications,

namely (73, 96). Both papers have two authors in common and

are based on the same dataset, which was collected

retrospectively from a NeuroICU at the University of

California, Los Angeles Medical Center between March 2010

and October 2012. The dataset consists of 8000 alarms (which

is a subset of the collected alarms, reduced for convenience

purposes), 4791 of which were manually labelled. Continuous

ICP signals were also extracted from the monitors. Both

papers explore methods based on pattern recognition to

improve the detection accuracy of ICP alarms by predicting

the morphology of an ICP wave before an alarm occurs.

In the first paper, the authors introduce three supervised

regression models using only the labelled dataset: Spectral

regression, kernel spectral regression, and SVMs. They also

compare conditional distribution for feature encoding with

morphological clustering and analysis of ICP pulse

(MOCAIP) tracking used to extract segments from ICP

waves. In the second paper, the authors explore the use of

semi-supervised learning models to test the detection

accuracy of ICP alarms using a smaller set of labelled data.

They compare two models: Kernel spectral regression and

SVM, both adjusted to be used in a semi-supervised manner.

3.3.3. Novel means of alarm presentation
This subgroup consists of (39, 44–47, 76, 77). The first

publication presents a dynamic system for alarm loudness
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regulation with respect to ambient noise (39). The second

publication proposes a distributed, secure system allowing

healthcare workers to get personalised alarm notifications.

The system is based on a service-oriented device connectivity

standard family, namely IEEE 11073, ensuring the

interoperability of devices from different producers, and

allowing the system to be extended and further developed in

the future (44). The latter five publications (all by the same

first author) describe devices using multimodal concepts to

forward and present alarms acoustically and non-acoustically

to the responsible caregiver. The modalities used are

vibration, peripheral light and (bone conduction) sound. They

present a vibrotactile wearable alarm system worn on the

upper arm (47) as well as different versions of a head-

mounted display for alarm presentation showing an evolution

throughout the years 2017 to 2019 (45, 46, 76, 77). The head-

mounted display delivers alarms as well as alarm-relevant

information, such as the patient’s vital data, the sensor, the

respective patient’s name or its priority. The authors aimed at

reducing the high cognitive load, “counteract[ing] the acoustic

load on intensive care units,” “convey[ing] alarms directly to

the responsible nurse,” ultimately leading to patient safety

improvement and counteracting of alarm fatigue. All

publications described in this section presented their devices

with the help of prototypes/demonstrators, and some were

tested in small user studies (see Section 3.2.7).

3.3.4. SuperAlarm patterns
One research group published a number of papers revolving

around the same concept of SuperAlarm patterns (97–101).

These are combinations of alarms preceding a code blue event

on ICU. Utilising the Apriori algorithm (102), appropriate

candidate SuperAlarm patterns are mined from the training

data. They are then filtered using a support threshold required

amongst code blue training samples, closed itemset mining, as

well as a threshold for the false positive rate (FPR) as

indicated by negative (non-code blue) training samples. Based

on the final SuperAlarm pattern set, time windows before a

new alarm are analysed and classified as valid or invalid. (98)

In extensions to that work, laboratory test results are included

in the SuperAlarm patterns (100), or a so-called “weighted

accumulated occurrence representation (WAOR)” also

encodes the temporal information of preceding alarms,

allowing for more sophisticated classification with LR (99).

The latter approach has also shown good results in cross-

institutional application (97). Finally, the same research group

tried training a LSTM on the raw alarm information without

extracting patterns which yielded comparable results (101).

3.3.5. Prediction of patient deterioration
This subgroup includes (36, 38, 48, 53, 103). These

publications describe approaches for predicting patient

deterioration, which can reduce alarm fatigue by scheduling
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an action in the near future, preempting further critical alarms.

Conversely, alarms for patients with a low predicted chance for

deterioration could be suppressed. Since this is a large research

field on its own, we only include papers specifically mentioning

alarm fatigue.

First, Bhattacharya et al. (48) investigate the prediction of an

acute hypotensive episode (AHE) up to 120 minutes before its

start. The used data are mean arterial pressure (MAP)

measurements (23 � systolic ABP � 1
3 � diastolic ABP) from the

MIMIC-II database (18), measured every minute. Depending

on MAP means and standard deviations within the patients

in the training set, two decision boundaries are fitted to

classify between risk and no risk of an AHE. MAP means

between the decision boundaries are treated separately by

determining the mean squared deviation between the sample

mean and all means in the two classes, assigning the class

label according to the lower deviation. Similarly, Shin et al.

(53) predict sustained hypotensive episodes (SHEs), defined as

the aforementioned AHEs, for patients receiving vasopressor

infusion. They train a LR and an auto-regressive model, and

include vasopressor dose information in addition to the MAP

values. However, they only achieve a good prediction between

two and ten minutes before the SHE.

Jo et al. (36) details a unique approach utilising

state transition models based on textual information from

nursing notes. The models are used to predict 1-day, 1-week,

1-month, 6-month and 1-year mortality of the patient.

Hu et al. (38) use a NN with a single hidden layer to predict

ICU transfer or cardiac arrest for patients four to eight hours in

advance. The model is given laboratory data and mean vital sign

values and produces a binary output.

Looking at a much shorter time frame, Joshi et al. (103) use

data from the NICU to predict critical alarms occurring one to

three minutes after a warning produced by HR, SpO2 or RESP

surpassing a pre-defined threshold. This goal is achieved by

training a GBM based on DTs with Gini impurity and max

depth of 6 with a large feature set comprised of patient

information and features extracted from continuous vital

parameter measurements leading up to the warning.

3.3.6. Usage of SQIs for avoidance of false
alarms

According to our review, SQIs are a popular tool in the

attempt to alleviate alarm fatigue by reducing the amount of

technically false alarms (as opposed to technically correct but

clinically irrelevant i.e. non-actionable alarms, see (35)).

Especially the correctness of heart-related alarms is often

assessed via SQIs. This is why there is a considerable

intersection between this subgroup and the “avoidance of false

arrhythmia alarms” subgroup (see Section 3.3.1). Specifically,

(78–82, 84, 85, 88, 94) are using SQIs and are part of the

PhysioNet / CinC Challenge 2015; (61, 66) are using SQIs

and are also part of the arrhythmia subgroup although not
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and (43, 60, 63) are dealing with SQIs and do not directly

aim at arrhythmia alarms.

3.3.6.1. SQIs for arrhythmia detection
SQIs are used for improving the detection of cardiac arrhythmia.

Table 5 shows which SQIs are commonly used for which signals.

A question mark (?) indicates that it is not clear from the

publication alone if and how the respective SQI was used but

this information can be inferred from context or references.

The table does not capture that for ECG signal quality

assessment, custom methods are predominantly used.

Eerikainen et al. (81) uses a combination of different signal

quality measures, since (110) found that ECG SQIs differ in

performance with varying types of arrhythmia. Eerikäinen

et al. (66) is a follow-up publication to (81) and also uses a

combinations of different signal quality measures on the ECG

signal to build a custom SQI.

Xu et al. (85) state that they use a number of SQIs. However,

they do not reference the SQIs in use only naming them as

“iSQI,” “kSQI,” “ppgSQI,” and “sSQI” which are not referenced

properly. For “ppgSQI” we can assume that (105) is the

associated publication because it appears in the list references

and the naming would be conclusive with the rest of the

challenge. “kSQI” is referenced in (60) as (106) and “sSQI” is

referenced in (60) as (108). For “iSQI” we did not find a

corresponding reference. Sadr et al. (88) and He et al. (94) also

use custom methods for assessing the ECG signal quality.

3.3.6.2. Newly proposed SQI
Through our literature search we also found one publication

proposing a novel SQI stating the alleviation of alarm fatigue

as one possible purpose. Shahriari et al. (60) propose an

image-based ECG SQI using the structural similarity measure

(SSIM). The proposed SQI outperforms “baseSQI” (108),

“kSQI” (106), and “sSQI” (108) which it was compared against.

3.3.6.3. Review papers
Finally, there are two review papers on the available set of SQIs

as well as their characteristics.

(43) focuses on signal quality assessments for ECG and ABP

signals. However, since ABP and PPG are both pulsatile signals

exhibiting a similar shape, approaches and findings for ABP

signals are easily transferable to PPG signals. Concerning

ECG quality assessment, the review’s main distinction is

between time-domain and frequency-domain approaches as

well as combinations of both.

Daluwatte et al. (63) assesses the effect of the beat detector

on ECG SQIs. This is relevant because some SQIs require

knowledge about the heartbeat positions in the ECG

recording to make an assessment. This creates a circular

problem because on the one hand, beat detectors are used to

enable the signal quality assessment and on the other hand,
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TABLE 5 SQIs used for arrhythmia detection.

Pub. (104) (105) (106) (107) (108) (109)
Aliases “jSQI” aka. “SAI” “ppgSQI” “bSQI” and “kSQI” “wSQI” “sSQI”

(78) ABP PPG

(79) ABP? PPG?

(80) ABP+PPG ECG

(81) ABP PPG?

(82) ABP PPG

(84) ? ABP + PPG

(85) PPG ? ?

(88) ABP PPG

(94) ABP ABP

(61) ABP PPG
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signal quality assessments are used to judge the feasibility of a

signal for beat detection.
4. Discussion

This literature review addressed two research questions: (1)

What are IT-based approaches to improve alarm management

in intensive-care medicine? And (2) how do these IT systems

contribute to alarm management in intensive-care medicine?

In the following, we summarise our findings for these

research questions in an interleaved manner. For the IT

systems we found, we present how these systems contribute to

alarm management in terms of the data items defined in

Section 2.6. Furthermore, we also summarise and discuss

which kinds of systems we expected but did not find.
4.1. Summary of evidence and
non-evidence

Alarm fatigue is a multicausal problem and approaches to

alarm fatigue are multidisciplinary. This is confirmed by this

review in a way that, even though we limited the domain of

approaches to alarm fatigue to IT solutions, we still found a

large variety of different works.

We found a diversity of objectives and approaches

including assessment of the technical correctness of alarms,

patient-specific risk, and alarm presentation. However, what

is more interesting than what we found is what we expected

but did not find as this manifests a need for future research.

We did not find publications of systems classifying alarms

according to their clinical relevance, i.e. whether an alarm is

actionable or not. We suppose that this is due to a lack of

data concerning this issue. Furthermore, there is a lack of

systems affecting the timing of alarms. We found no systems

for alarm forecasting and only one system proposing a
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strategical delay of alarms. Finally, we did not find systems

that help to set reasonable alarm thresholds. Although there

are heuristics in place in clinical practice for setting alarm

thresholds, we did not find a system that can learn optimal

alarm thresholds from data.

In terms of alarm types, we found that the majority of

approaches targets heart rate or arrhythmia related alarms.

This is reasonable since (11) found that these alarms

represent the majority of all audible alarms.

The data item on hardware involvement showed that

hardware is mainly used to introduce new means of alarm

presentation or to facilitate simulations. There is a lack of

publications using additional data sources such as inertial

measurement unit (IMU) sensors which could be used for

artefact detection and signal quality assessment which is

currently done only via the signal itself (see Section 3.3.6).

Concerning data, the reviewed publications focus on custom

data sets, MIMIC-II and the PhysioNet / Computing in

Cardiology 2015 data set. More recent ICU databases like

MIMIC-III, HiRID, and eICU CRD were not used which

manifests a need for future research. Also, there is a need for

ICU databases putting a stronger focus on alarms, hence

facilitating alarm fatigue research.

Regarding the use of predictive models, there is a strong

focus on rather simple and especially explainable models.

Most publications either do not use models at all and rely

on hand-crafted rules or use tree-based models. Complex

models such as NNs, which are hard to explain and hard

to investigate, are rarely used. We assume that this is to

achieve acceptance by doctors and patients by showing the

model’s decision-making process and thus avoid rare

unanticipated effects which might cause harm in a clinical

setting.

In our review, we found a wide range of different patient

characteristics regarding age groups and specific conditions. It

is, however, unclear how specific patient characteristics affect

an IT solution. This is because every proposed IT solution
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was only evaluated with one set of patients and there are no

comparative studies included in the scope of this review.

User studies were performed rarely and if so only with few

(�15) participants. This seems to indicate that most solutions –

although promising – are far from being implemented as a

regular part of clinical practice. Future work is needed to facilitate

the adoption of new technologies to counteract alarm fatigue.
4.2. Limitations

There are a number of limitations relevant to this literature

review.

4.2.1. Scope
Alarm fatigue is a multimodal problem emerging not

from a single source but from a variety of different aspects

that need to be considered (1). This systematic literature

review is limited to only include publications on

computational approaches. There are, however, other

domains to be considered as well, e.g. sound design and

floor planning (10). We chose not to consider these other

domains in this work because including all aspects of alarm

fatigue in a single review would result in an unmanageable

number of publications.

4.2.2. Quantifiability
To the best of our knowledge, there is as of now no tool

or metric available to quantify alarm burden. Therefore, we

have no means to measure the effect each of the reviewed

approaches has on the overall levels of alarm fatigue. Thus,

we can only provide a qualitative summary of approaches

aimed at alleviating alarm fatigue. Furthermore, even

comparisons between very similar solutions are not always

reasonable since the use of different data sets or otherwise

changed circumstances might have a large impact on the

efficacy of an approach.
4.3. Conclusions

We found that the IT-based solutions to alarm fatigue

correspond to the nature of the alarm fatigue problem. The

problem is complex and multicausal and hence the

solutions address different causes and aspects of the

problem, e.g. reduction of false alarms, alarm prioritisation,

and alarm presentation. But we also found that existing

research orients strongly on the existing data and not on

clinical needs. Avoiding technically false alarms is a heavily

researched topic because there are data available on this

issue. However, there are few works on the avoidance of

clinically irrelevant (i.e. non-actionable) alarms which might

be due to the lack of available validated datasets on this issue.
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Future research in this area needs to focus more on clinical

needs and less on what is easily realisable from a technical

perspective. Classifying alarms by clinical relevance (actionable

or non-actionable) is an important next step. With an

appropriate dataset of labelled alarms, machine learning models

can perform this classification task. But datasets of relevance-

labelled alarms do not exist as of yet or are at least not publicly

available. An important next step in alarm fatigue research is

creating such a dataset. In existing studies, clinical experts

manually label alarms retrospectively, for example through

inspecting video recordings of the situation. But manual labelling

is time-consuming and thus limited to relatively few alarms.

Another option is automatic annotation using a computer

program that accesses the electronic health record and searches

for interventions in response to the alarm. Automatic annotation

can create a much larger dataset of labelled alarms and enables

the creation of a machine learning classifier that helps clinical

staff distinguish actionable from non-actionable alarms.
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