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Abstract

Background: Contamination detection is a important step that should be carefully considered in early stages when designing and
performing microbiome studies to avoid biased outcomes. Detecting and removing true contaminants is challenging, especially in
low-biomass samples or in studies lacking proper controls. Interactive visualizations and analysis platforms are crucial to better guide
this step, to help to identify and detect noisy patterns that could potentially be contamination. Additionally, external evidence, like
aggregation of several contamination detection methods and the use of common contaminants reported in the literature, could help
to discover and mitigate contamination.

Results: We propose GRIMER, a tool that performs automated analyses and generates a portable and interactive dashboard integrating
annotation, taxonomy, and metadata. It unifies several sources of evidence to help detect contamination. GRIMER is independent of
quantification methods and directly analyzes contingency tables to create an interactive and offline report. Reports can be created in
seconds and are accessible for nonspecialists, providing an intuitive set of charts to explore data distribution among observations and
samples and its connections with external sources. Further, we compiled and used an extensive list of possible external contaminant
taxa and common contaminants with 210 genera and 627 species reported in 22 published articles.

Conclusion: GRIMER enables visual data exploration and analysis, supporting contamination detection in microbiome studies. The
tool and data presented are open source and available at https://gitlab.com/dacs-hpi/grimer.
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Introduction
Microbiome studies enable, via high-throughput sequencing, the
investigation of the composition of complex microbial communi-
ties from diverse environments. Microbiome studies usually yield
large amounts of raw sequences for several samples that can be
analyzed with an increasing number of computational methods
and databases. Standards, protocols, and best practices for design-
ing and performing a microbiome study have been improving and
changing over the years [1, 2], and the field is in constant evolu-
tion due to higher availability and reduced costs of sequencing
runs as well as with the increase in number of publicly available
reference sequences and computational methods.

In early stages of a standard in silico microbiome analysis, raw
or quality-filtered sequences are classified or clustered into spe-
cific groups and quantified to generate a profile for a given envi-
ronmental sample. Marker gene, whole-metagenome, and meta-
transcriptome analyses have their own set of tools and stan-
dards that should be carefully chosen to generate reliable mea-
surements for each sample in the study [3]. This step can be
computationally intensive but reduces the large amount of data
into a concise table of measurements. Alternatively, genome as-
sembly can be performed for metagenomics samples, allowing
genome-resolved analysis. Although still a complex task, gene
prediction, taxonomic, and functional analyses are improved
with metagenome-assembled genomes, resulting in overall better
measurements [4].

After measurements are obtained, hypotheses are validated
through data mining and statistical analysis. This step is mostly
exploratory and specific to the hypotheses and research questions
pursued, and the required analyses are difficult to be fully au-
tomatized. It is also very important to take in consideration the
compositionality of data at this stage when working with the mi-
crobiome [5]. Several comprehensive and generalized analytical
packages [6–8] and web platforms (Table 1) are available to per-
form a large number of microbiome analysis: basic data sum-
maries, diversity and functional analysis, microbial interactions,
and differential abundance, among others. Additionally, interac-
tive tools for analytical and visual exploration are extremely help-
ful in this stage to better understand the data distribution and its
properties and to guide further investigations to follow. In the last
decade, several applications were developed with focus on visual-
ization of microbiome data (Table 2). A comparison among many
of those methods and their functionalities can be found in a re-
cent review [9].

At this stage of a study, contamination detection should be con-
sidered. Contamination side effects have gained attention in re-
cent years due to the controversial detection of a placental mi-
crobiome [31–33]. However, the issue is not new, and contamina-
tion has been known and reported for decades in the literature
[34]. Contamination is characterized by exogenous DNA in a given
sample introduced externally or internally. External contamina-
tion can come from diverse sources: DNA extraction kits, labo-
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Table 1: Web resources to process, analyze, and visualize microbiome data

Name Website Reference

MG-RAST https://www.mg-rast.org/ [10]
MGnify https://www.ebi.ac.uk/metagenomics/ [11]
MicrobiomeDB https://microbiomedb.org/ [12]
Nephele https://nephele.niaid.nih.gov/ [13]
Qiita https://qiita.ucsd.edu/ [14]

Table 2: Interactive analysis and visualization tools for microbiome data published in the last 10 years

Name Focus Plataform Website Year Reference

METAGENassist Comparative
metagenomics

Web http://www.metagenassist.ca/MET
AGENassist/

2012 [15]

VAMPS Microbial population
structures

Web https://vamps2.mbl.edu/ 2014 [16]

Shiny-phyloseq Microbiome analysis Locally hosted (R) https://joey711.github.io/shiny-ph
yloseq/

2015 [17]

MetaCoMET Microbiome analysis Web https:
//probes.pw.usda.gov/MetaCoMET/

2016 [18]

BusyBee Web Metagenomics binning
and analysis

Web https://ccb-microbe.cs.uni-saarlan
d.de/busybee

2017 [19]

MicrobiomeAnalyst Microbiome analysis Web https://www.microbiomeanalyst.ca 2017 [20]
Burrito Taxonomy and function

analysis
Web http://elbo-spice.cs.tau.ac.il/shiny/

burrito/
2018 [21]

Pavian Metagenomics analysis Locally hosted (R) https:
//github.com/fbreitwieser/pavian

2019 [22]

GenePiper Microbiome analysis Locally hosted (R) https:
//github.com/raytonghk/genepiper

2020 [23]

animalcules Microbiome analysis Locally hosted (R) https://github.com/compbiomed/
animalcules

2021 [24]

MicrobiomeExplorer Microbiome analysis Locally hosted (R) https://github.com/zoecastillo/mic
robiomeExplorer

2021 [25]

microViz Microbiome analysis Locally hosted (R) https://github.com/david-barnett
/microViz/

2021 [26]

Namco Microbiome analysis Web https://exbio.wzw.tum.de/namco/ 2021 [27]
OpenContami Contaminant detection Web https:

//openlooper.hgc.jp/opencontami/
2021 [28]

wiSDOM Microbiome analysis Web or Locally hosted (R) https:
//github.com/lunching/wiSDOM

2021 [29]

Mian Microbiome analysis Web https://miandata.org/ 2022 [30]
GRIMER Contaminant detection CLI + standalone file https://github.com/pirovc/grimer 2022 this work

ratory reagents, surfaces and equipment, ultra-pure water, resid-
uals from previous sequencing runs, and microbes from labora-
tory technicians [2, 35, 36]. Internal contamination can be defined
as a undesired exchange of genetic material between samples,
and it is usually referred as well-to-well contamination, cross-
contamination, or sample ”bleeding” as well as index switching
in multiplexed sequencing libraries [37].

Contamination may affect most sequencing projects to some
degree, especially low-biomass samples [38]. The composition
of an environmental sample is mostly unknown before se-
quencing, increasing the complexity of detecting contamina-
tion when compared to a defined isolate genome and tar-
geted sequencing project. Low-biomass samples (e.g., meco-
nium, blood, human tissues) yield little to no DNA to be
amplified and sequenced, an ideal scenario for exogenous
contaminants to outcompete and dominate the biological
signal.

It is important that contamination is acknowledged, ac-
counted for, and discovered at the earliest stage of a study
prior to statistical analysis, to not bias measurements and to

ensure that bias is not propagated into databases [39, 40]. In-
clusion of negative and positive control samples is the rec-
ommended way to measure, detect, and mitigate contamina-
tion [2, 38, 41]. Negative controls should be included in the
study design for every sample, extraction, or amplification batch.
Once provided, controls should be carefully analyzed in silico,
and results obtained should be applied to biological samples in
terms of prevalence (e.g., observations in negative controls) but
also based on the frequency in relation to DNA concentration
[42, 43].

However, due to the complexity and diverse possible sources
of contamination, detection and mitigation are not a trivial tasks.
Several approaches to identify and exclude background contami-
nation in microbial studies have been proposed. These are based
on exclusion of organisms detected in negative controls, use of
replicates to find possible contaminants, removal of low abun-
dant signals, negative correlation between organism abundance
and bacterial load, clustering analysis, and others [44, 45]. Each
approach has strengths and weaknesses based on the study de-
sign, data type, and control availability. Further, many studies do

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad017/7094242 by Freie U

niversitaet Berlin user on 12 April 2023

https://www.mg-rast.org/
https://www.ebi.ac.uk/metagenomics/
https://microbiomedb.org/
https://nephele.niaid.nih.gov/
https://qiita.ucsd.edu/
http://www.metagenassist.ca/METAGENassist/
https://vamps2.mbl.edu/
https://joey711.github.io/shiny-phyloseq/
https://probes.pw.usda.gov/MetaCoMET/
https://ccb-microbe.cs.uni-saarland.de/busybee
https://www.microbiomeanalyst.ca
http://elbo-spice.cs.tau.ac.il/shiny/burrito/
https://github.com/fbreitwieser/pavian
https://github.com/raytonghk/genepiper
https://github.com/compbiomed/animalcules
https://github.com/zoecastillo/microbiomeExplorer
https://github.com/david-barnett/microViz/
https://exbio.wzw.tum.de/namco/
https://openlooper.hgc.jp/opencontami/
https://github.com/lunching/wiSDOM
https://miandata.org/
https://github.com/pirovc/grimer


GRIMER | 3

not include or have a limited number of control samples due to
the required increase in costs. Hornung et al. [41] reported that
based on publications from the 2018 issues of Microbiome and The
ISME Journal, only 30% cited the use of negative controls and only
10% positive controls. Moreover, Harrison et al. [46] reported that
out of 50 selected publications from 2019 and 2020, only 15 used
some type of negative control and 10 of positive control to account
for reagent contamination. There was also no observed increase in
positive or negative controls usage in the literature from 2015 to
2020, based on selected publications. Additionally, the detection
of recurring contaminants in extraction kits and reagents (also
called “kitome”) is known to be an issue [47] but remains under-
explored, mainly for not being properly cataloged, centralized, or
automated.

To overcome some of those challenges, we propose GRIMER, a
tool to analyze, visualize, and explore microbiome studies with
a focus on contamination detection. Based on a table of obser-
vations per sample, GRIMER generates an offline and interac-
tive dashboard to automate data analysis, transformations, and
plots and generates a set of charts integrating evidence for bet-
ter decision-making and contamination detection. Additionally,
we compiled an extensive list of common contaminants con-
taining 210 genera and 627 species reported in 22 published
articles. These data are integrated into the report. GRIMER is
an effortless step once quantification is done, turning measure-
ment tables into a interactive and dynamic report in seconds.
GRIMER is open source, and the code is available at the GitHub
repository [48]. Installation and usage instructions as well as
an user manual are available in the repository. The tool is in-
dependent of analysis methods, does not rely on web or lo-
cal servers, and generates standalone and shareable interactive
dashboards.

Methods
GRIMER analyzes and annotates multisample studies based on
count tables and generates a report with several interactive plots
to better explore the data and to facilitate contamination detec-
tion. GRIMER integrates several sources, references, analyses, and
external tools and brings them together in one concise dashboard.

The output of GRIMER is a self-contained HTML file that can
be visualized in any modern web browser. It works independently
from any actively running server or web service. Once generated,
it can be used and shared as an offline document. It has the advan-
tages of a static report and a complex dashboard being portable
and interactive. This feature makes it very convenient to dis-
tribute (e.g., as an email attachment), keep track of changes in
analytical pipelines, and reproduce analyses in different environ-
ments.

GRIMER is independent of any quantification method and
only requires a contingency table with raw counts of observa-
tions/components for each sample/composition in the study. Ob-
servations are usually, but not limited to, taxonomic entries (e.g.,
genus, species, strains), operational taxonomic units (OTUs), am-
plicon sequence variants, or sequence features. A count of unclas-
sified or unassigned observations is also supported to generate
normalized values. Additional files and data can be provided to
expand GRIMER reports: study metadata, a taxonomy database,
multiple control samples, the DNA concentration, custom con-
taminants, and reference groups of interest. The more informa-
tion provided, the more complete and interactive the final report
will be.

Annotation
GRIMER annotates observations and samples linking data with
external data sources.

Sample annotations are based on a user-provided study meta-
data, where each sample is described in 1 or more fields and vari-
ables. Those fields can contain either numeric or categorical val-
ues and are useful for grouping and clustering analyses as well as
detection of batches and control/treatment effects.

Observation annotations are based on external lists of taxo-
nomic entries, which can be used, for example, to link findings
to common contaminants or connect analyses outcomes with
known environments or biomes. Those entries can be easily pro-
vided by the user in a simple list of names or taxonomic identifiers
in a formatted and annotated file (more information can be found
in the GRIMER repository).

Contamination references
We compiled an extensive list of possible contaminant taxa re-
ported in several studies (Table 3). The studies selected were ob-
tained from cross-references in review articles [38] and individual
selected findings in the literature, usually focusing on contam-
ination detection or mitigation. Articles were manually curated
and more studies can potentially be added to the list, which is
dynamically maintained. Contributions are welcome through the
GRIMER repository [48]. The studies selected are very diverse in
terms of sequencing technology, methodology used, and environ-
ment studied. Contamination in those studies can originate from
diverse sequencing kits and reagents as well as the lab environ-
ment or other unknown sources. The idea behind compiling this
list is to detect which taxa are the most recurrently identified
as contaminant in diverse conditions, providing a guideline and
consensus for further studies. Entries on this list are not strictly
considered a contaminant and should not be used alone to de-
fine contamination in a study. However, it serves as an additional
evidence supporting it, especially if entries are highly recurrent
(Table 4) and corroborate with additional lines of evidence. Those
contaminants were reported mainly at genus or species level in
different formats, names, and taxonomies. We manually curated
and converted them into the NCBI taxonomy [49] nomenclature
for standardized usage.

Additionally, we compiled another list of common organisms
found in probable external contamination sources: taxa com-
monly occurring in human skin, oral and nasal cavities, and face
and other human limbs. Those were reported as possible sources
of contamination [38]. Reference organisms names were obtained
from BacDive [69], eHOMD [70], and further publications [71].

MGnify
Additionally to the contamination references, a summary gen-
erated from the MGnify repository [11] is provided with counts
of occurrences for each observation in thousands of microbiome
studies, grouped by biome. MGnify is a resource to analyze micro-
biome data in an automated and standardized way. Thousands
of analyzed studies are publicly available with related metadata.
We mined this repository with the provided open API [72] and col-
lected all taxonomic classifications available for every study. For
each study, we collected the latest taxonomic classification based
on the highest pipeline version available. If multiple classifica-
tions from different sources were present, we selected the largest
one by file size. For each study output, the top 10 top most abun-
dant organisms were linked to the study respective biome(s) def-
inition, and a final count of top organisms by biome is generated.
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Table 3: Summary of common contaminants taxa extracted from the literature. The complete list of taxa per study can be found in the
GRIMER repository [48].

Organism group Genus Species Reference

Bacteria 6 0 1998 Tanner et al. [50]
Bacteria 0 10 2002 Kulakov et al. [51]
Bacteria 4 0 2003 Grahn et al. [52]
Bacteria 16 0 2006 Barton et al. [53]
Bacteria 11 1 2014 Laurence et al.[54]
Bacteria 92 0 2014 Salter et al. [35]
Bacteria 7 0 2015 Jervis-Bardy et al. [42]
Bacteria 28 0 2015 Jousselin et al. [55]
Bacteria 77 127 2016 Glassing et al.[36]
Bacteria 23 0 2016 Lauder et al. [56]
Bacteria 6 0 2016 Lazarevic et al. [57]
Bacteria 62 0 2017 Salter et al. [58]
Bacteria 0 122 2018 Kirstahler et al. [59]
Bacteria 34 0 2018 Stinson et al. [60]
Bacteria 18 0 2019 Stinson et al. [61]
Bacteria 52 2 2019 Weyrich et al. [62]
Bacteria 8 26 2019 de Goffau et al. [63]
Bacteria 15 93 2020 Nejman et al. [64]
Viruses 0 1 2015 Kjartansdóttir et al. [65]
Viruses 0 1 2015 Mukherjee et al. [66]
Viruses 0 291 2019 Asplund et al. [67]
Eukaryota 0 3 2016 Czurda et al. [68]
Eukaryota 0 1 PRJNA168
Total (unique) 210 627 —

Table 4: Top 8 most reported taxa from Table 3 at genus and species level. If multiple child nodes of organisms are reported in the same
study, they are counted here just once.

Genus # reported Species # reported

Pseudomonas 13 Cutibacterium acnes 4
Stenotrophomonas 13 Pseudomonas fluorescens 4
Ralstonia 12 Stenotrophomonas maltophilia 4
Bradyrhizobium 11 Acinetobacter baumannii 3
Methylobacterium 11 Bradyrhizobium elkanii 3
Acinetobacter 10 Corynebacterium tuberculostearicum 3
Corynebacterium 10 Rhodococcus fascians 3
Sphingomonas 10 Streptococcus mitis 3

GRIMER uses this resource to annotate observations and links how
many times each identified taxon was present in other biomes.
This gives another level of evidence for the possible origin of cer-
tain taxa in a study, compared to thousands of other microbiome
studies. For example, in the current version, the genus Ralstonia, a
commonly reported contaminant, appeared in 30 environmental
aquatic biome studies and 14 engineered bioreactor studies (out
of a total of 79 studies) while the human-related bacterial genus
Prevotella appears mostly in host-associated biomes (89% of occur-
rences). All 5 levels of biome classification are available for each
taxonomic entry.

Input data
GRIMER requires only a contingency table to generate the full re-
port, either in a text/tabular format (observations and samples ei-
ther in rows or columns with a header) or a BIOM file [73]. Further
data can be provided to extend the report:

� Metadata: annotate samples and give further technical infor-
mation. The metadata should be tabular and categorical, and
numerical fields are supported.

� Taxonomy: GRIMER will automatically parse a given taxo-
nomic annotation or generate one based on the provided ob-
servations. Data will be summarized in many taxonomic lev-
els, and plots will be created accordingly. Taxonomy is fully
automated for several commonly used taxonomies (NCBI,
GTDB, SILVA, GreenGenes, OTT).

� Controls: 1 or more groups of control samples can be provided
in a simple text file. Those samples will be further used to
summarize data and annotate plots.

� References: custom sources of contamination or any refer-
ences can be provided in addition to the precompiled ones
described above.

GRIMER will parse and process the data provided and run a set
of analyses:

� General data summary by observation and samples, linking
references, taxonomy, and metadata

� Filtering and transformation: observations and samples can
be filtered to reduce noise or small counts. Transformations
are applied (log, centered log-ratio, normalization) to account
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for the composionality of the data and improve some visual-
izations.

� Hierarchical clustering: 1 or more metrics and methods can
be used to perform the clustering. The combination of all of
them is executed and available in the report. For this analysis,
zeros are replaced by small counts defined by the user.

� Correlation: symmetric proportionality coefficient (rho corre-
lation) [74, 75] is calculated for top abundant observations in
the study.

� DECONTAM [43]: R package with a simple method to detect
contaminating taxa/observations based on 2 main assump-
tions: frequency of contaminant taxa inversely correlate with
DNA concentrations, and contaminant taxa are more preva-
lent in control samples than in biological samples. DECON-
TAM uses linear models based on the assumptions and fre-
quencies of the data and outputs a score for each observa-
tion to define contamination. If DNA concentration is not pro-
vided, total counts are used instead as an indirect concentra-
tion value replacement.

� MGnify: each taxon reported will be linked to the respective
MGnify entry, reporting most common biome occurrences.

GRIMER report
GRIMER will generate a report/dashboard with visualizations to
better understand the distribution of observation counts among
samples and the connection with external annotations, metadata,
and taxonomy. Currently, GRIMER reports contain 4 main panels:
Overview (Fig. 6), Samples (Fig. 1), Heatmap (Fig. 4), and Correla-
tion (Fig. 5). Some of them were previously suggested to be ade-
quate for contamination detection [45] and are commonly used in
standard microbiome analysis. Every panel has 1 or more visual-
ization and widgets to select, filter, group, and modify its contents.
Panels can be reported independently.

An individual summary for each observation and its relation
to annotations and distribution among samples can be found in
the Overview panel (Fig. 6). Here, all evidence related to a specific
observation is integrated for further examination. Each observa-
tion provided in the study is listed and summarized in a tabular
format. Once selected, the distribution of counts for the specific
observation for each sample can be observed in a bar plot. Infor-
mation of annotations, MGnify biomes, and DECONTAM output
are also available in the same interface. The DECONTAM output
indicates if the observation is classified as a contaminant with a
score and a plot showing the frequency of the selected observation
against the DNA concentration for all samples containing that ob-
servation. Linear models showing the expected values for contam-
ination and noncontamination values are also plotted. If provided,
taxonomic lineages are integrated in the table, and plots and ob-
servation are decomposed and summarized into taxonomic levels.
The Overview panel also roughly summarizes samples contents in
the bar plot, with general classification metrics. Those bars can be
transformed, annotated, grouped, and sorted to connect observa-
tion values to overall sample distribution.

In-depth evaluation of individual samples can be performed in
the Samples panel (Fig. 1). Normalized distribution of top obser-
vations for each sample can be visualized in the bar plot to easily
compare the overall distribution of observations among samples,
with options for grouping and sorting by metadata. Automated se-
lection of groups of samples is also possible by counts and meta-
data.

Several transformations can be applied to the data (normaliza-
tion, log, center log ratio) to be further visualized in the Heatmap

panel (Fig. 4). Hierarchical clustering and grouping and sorting
options can be independently selected for samples and observa-
tions to enable pattern detection (e.g., batch effects, treatment ef-
fects). Dendrograms are plotted when clustering options are se-
lected. Annotation bars are plotted around the heatmap showing
dynamic selection of sample annotations (metadata) and obser-
vation annotations (references, controls, and DECONTAM output).
Metadata are automatically colored to reflect categories (distinct
colors) and numeric (sequential colors) fields. Multiple metadata
fields can be select interactively. Observation annotation values
are normalized and plotted in the same color scale for easier in-
terpretation. One heatmap is generated for each taxonomic level.

Correlation between observations is plotted as a matrix (Fig. 5).
Positive or negative correlations among observations can point to-
ward concurrent signals in the microbiome analysis. Observations
present in multiple samples in similar ratios are positively corre-
lated, and the opposite configures negative correlation. Once a sig-
nal is observed, the correlation matrix can indicate co-occurrence
of observations and help to identify further candidates (e.g., clus-
ter of co-occurring contaminants at similar ratios).

Implementation
GRIMER is written in Python and Javascript and outputs a report
file in HTML format. All visualizations and layouts are created
with the the Bokeh library [76]. Bokeh plots, tables, and charts au-
tomatically provide a set of tools for interaction (e.g., zoom, selec-
tion) with an option to export the current selection to an image
file. Many plots have interactive tool-tips, showing more informa-
tion about the data under the mouse cursor. Help buttons are also
included, explaining the plots and options.

Further libraries were used to analyze samples and generate
the report: pandas [77] for general parsing and data structures,
scipy [78] for hierarchical clustering, and scikit-bio [79] for trans-
formations. Scripts to download and generate MGnify annotations
and update reference sources are provided in the GRIMER reposi-
tory [48].

GRIMER automatically handles taxonomic entries using Mul-
tiTax [80]. GRIMER will automatically parse given taxonomies or
download and convert any taxonomic ID or name internally and
decompose results in taxonomic ranks. Currently supported tax-
onomies are NCBI, GTDB, Silva, GreenGenes, and OpenTree Tax-
onomy. Reference lists are currently only available based on the
NCBI Taxonomy.

Results
We reanalyzed publicly available studies to demonstrate the use
of GRIMER reports in real case scenarios and what types of analy-
ses are possible. In some examples, we try to reproduce analyses
and in other cases point to new evidence that may have been over-
looked. We encourage the readers to download [81] or open live
examples of GRIMER reports [82] and interactively visualize the
results being described to fully understand the capabilities of the
report. All reports presented below were generated using GRIMER
version 1.1.0.

Detecting contamination
The attempt to detect and describe a possible human placental
microbiome has motivated several studies and investigations [47,
63, 83, 84]. Leiby et al. [85] published a detailed and well-designed
study contributing to the subject. Placental samples for term (con-
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Figure 1: Bar plot with relative abundance of top 20 genera for the placenta study. Bars are grouped by sample type and case/control. There is a stark
difference in composition between air, vaginal, and saliva samples to placental samples and controls (blank, H2O).

trol) and preterm (case) newborns were collected for the mater-
nal and fetal sides. Additionally, positive control samples were ob-
tained from the mothers (saliva and cervicovaginal fluid) as well
as negative control samples (air from the sample processing room,
empty tubes, and PCR-grade water). The study was performed
in both marker gene sequencing (amplicon) and metagenomics
(MGS). The authors could not distinguished a unique placental
microbiome that differs from the contamination background. We
reanalyzed the samples in a standard pipeline with QIIME2 [6] for
amplicon data and ganon for MGS data [86], generated a GRIMER
report for both, and searched for the previously detected contam-
ination.

In the MGS report, the bar plot (Fig. 1) shows a stark difference
in signal between sample types but a smaller difference in case
and control groups. The Ralstonia genus is present in 96% of the
all samples with an average abundance of 8.24%. Reads assigned
for this genus were found in all negative control samples and H2O
samples. Ralstonia was also reported in 12 studies as a common
contaminant, based on our compiled contaminant list (Table 4),
and it was classified as a contaminant by the DECONTAM method,
based on the correlation of frequencies and the total number of
reads per sample. Further, the abundance of this genus is higher
in negative controls and placental samples as well as in samples
with low number of reads, probably related to their low biomass,
as depicted in the Fig. 2. Those results are in line with the ones re-
ported in the original publication [85], even though the data were
reanalyzed with a different set of tools, parameters, and reference
databases. All evidence described pointing to Ralstonia as a con-
taminant was automatically generated by GRIMER and can be di-
rectly extracted from the Overview panel from the report. Besides
human reads, Ralstonia insidiosa is the most prevalent species in
this study. For the amplicon data, a similar pattern can be de-
tected for the Ralstonia genus based on amplicon sequence vari-
ants (Fig. 2).

Further, all other taxa present can easily be verified for the
same patterns. Pseudonomas show similar distribution and was
also reported originally as probable contaminants in the placen-
tal samples. Corynebacterium, Cutibacterium, and Mycobacterium, al-
though less prevalent, are further taxa with very similar patterns
that could be potential contaminants and were not reported in
the original publication.

Multiple microbiome studies exploration
Definitive and robust conclusions from low-biomass studied en-
vironment are only possible with a set of controls and protocols
to deal with contamination. KatharoSeq [87] is a well-designed
protocol to better handle contamination in high-throughput low-
biomass DNA microbial studies for amplicon sequencing or shot-
gun metagenomics. The protocol has guidelines for positive and
negative controls implementation at the DNA extraction and li-
brary construction steps as well as computational approaches to
define and exclude samples that did not achieve minimal amount
of signal to be used. In their publication [87], the authors vali-
date the protocol sequencing and analyzing with 3 low-biomass
environments: the Jet Propulsion Laboratory spacecraft assem-
bly facility (SAF), rooms of a neonatal intensive care unit (NICU),
and an endangered abalone-rearing facility (abalone). A set of low
biomass (LBM) negative controls to compare extraction kits is also
included in the study.

We downloaded the OTU table and metadata from KatharoSeq
evaluations for the 16S ribosomal RNA (rRNA) analyses available
in Qiita [14] in the following configuration: reads trimmed at 150
bp and classified using closed-reference OTUs clustered at 97%
similarity annotated with the greengenes taxonomy. A GRIMER
report was generated for the raw table with all samples without
any filtration. The heatmap generated for the annotated species
level (Fig. 3) shows a distinct and clear pattern between envi-
ronments and the LBM. As reported in the publication, abalone
samples have a higher richness (here as species annotated OTUs)
as well as the highest average number of reads per sample. It is
possible to identify potential contaminants in the study by look-
ing for observations prevalent across environments and the rela-
tion to its annotations. Using this analysis, we detected Cutibac-
terium acnes, which is reported as a common contaminant and
human-related species, present among all 4 environments stud-
ied as well as highly frequent in negative and positive controls.
Even though DECONTAM did not identify this taxon as a contam-
inant, related data still hold strong evidence for contaminant of C.
acnes in this study. Furthermore, Staphylococcus aureus and Staphy-
lococcus epidermidis, known as human-related bacteria, were de-
tected in high abundances in both NICU and SAF environments—
areas with low and high human exposure, respectively. However,
both species were also relatively highly present in negative con-
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Figure 2: Evidence supporting Ralstonia as a contaminant taxon in the placenta study. (A, B) Right y-axis shows normalized abundance of genus
Ralstonia in log scale for each sample in the MGS (A) and amplicon (B) data. Bars (left y-axis) summarized counts at the genus level for each sample.
Samples are grouped by sample type and sorted by number of reads (x-axis). The yellow circles show abundance of Ralstonia, which is higher in the
control samples (blank and H2O) as well as increased in real samples with low read count. (C, D) DECONTAM plots for Ralstonia genus for the MGS (C)
and amplicon (D) data. DECONTAM plots show that taxa counts follow the expected distribution for contamination based on the number of reads per
sample (red line).

trols, the abalone environment, and LBM samples. Additionally,
both were positively classified as contamination by DECONTAM,
indicating that besides human exposure, those organisms could
be driven by an external source of contamination.

Species identification based on 16S rRNA is limited due to its
low resolution: approximately 15% of the OTUs are annotated at
species level and 69% at genus level in this study. The same anal-
ysis visualized at genus level gives an increased perception of the
distribution of the data in this study. With a higher signal, it is
possible to visualize how several clusters are formed and in many

cases agree in multiple levels of evidence supporting the possibil-
ity of contamination (Fig. 4).

Looking at the correlation between top observations reported
(Fig. 5), a matrix of highly correlated genera can be detected. Such
a pattern was previously reported to be an indication of contam-
ination from reagent-derived sources since they are invariably
present within samples in similar ratios [45]. Further inspection of
those genera (Glaciecola, Leucothrix, Mycoplasma, Oleibacter, Polarib-
acter, Pseudoalteromonas, Psychrilyobacter, Psychromonas, Shewanella)
shows that they are mainly from Aquatic/Marine biomes with
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Figure 3: Heatmap visualization at species level for the KatharoSeq data. Samples are grouped by study type (y-axis) and clustered by observations
(x-axis, euclidean distance metric, complete method). Data in the heatmap are center log ratio transformed. Bottom panel shows annotation related to
the observations. “Contaminants” and “human-related” annotations are normalized counts against precompiled list of references described in this
article. “Decontam” is the normalized DECONTAM P score. All “control” annotations show the proportion of the observation in the indicated group of
control samples.

Figure 4: Heatmap visualization at genus level for the KatharoSeq data. Samples and observations axis are clustered and sorted based on the
euclidean distance metric, complete method. Data in the heatmap are center log ratio transformed. Bottom panel shows annotation related to the
observations. “Contaminants” and “human-related” annotations are normalized counts against precompiled list of references described in this article.
“Decontam” is the normalized DECONTAM P score. All “control” annotations show the proportion of the observation in the indicated group of control
samples. Metadata panel show color-coded sample information on study (md_title) and type of sample (md_control_verbose). The annotation panel
shows higher values on multiple sources of evidence for contamination relative to data clusters of the heatmap. Metadata panel shows how samples
show independent patterns based on the environment (md_title) and difference from controls (md_control_verbose).
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Figure 5: Symmetric proportionality coefficient (rho correlation) between top 50 most abundant genera in the KatharoSeq data. Positive correlation
values (between 0 and 1) are displayed in red. Negative correlation values (between −1 and 0) are displayed in blue. Highly correlated matrix among 9
genera (dark red) points to reagent-derived contamination, when considered with other lines of evidence (Fig. 6).

help of the matching results with the MGnify database (Fig. 6B).
Further, they are more prevalent in negative controls (Fig. 6A),
an evidence of DNA extraction kit or sample processing contami-
nants. Those organisms are highly frequent in the abalone study,
which is a Marine environment, and some of them were also de-
scribed in the original publication. Although in very low amounts,
those groups were also reported present in NICU samples (Fig. 6C),
pointing to possible well-to-well contamination.

Discussion
GRIMER is an easy-to-use and accessible tool for specialists and
nonspecialists that generates a concise interactive offline dash-
board with a set of analyses, visualizations, and data connections
from a simple table of counts. It automatically summarizes sev-
eral levels of evidence to better understand the relation between
observations, samples, metadata, and taxonomy. GRIMER reports
are a valuable resource for investigating contamination, a prob-
lem that affects every microbiome study to some degree.

All the conclusion and visualizations presented in this work in
the Results section were solely based on GRIMER reports, showing
that microbiome analysis, contamination investigation, and de-
tection are possible with the methodology proposed. The use of
multiple sources of evidence to annotate observations improves
the ability to better detect clear contaminants in microbiome
studies as well as to point to probable groups of candidate con-
taminants.

In addition to the GRIMER software, we compiled and provided
in this work a list of common taxa contaminants based on 22
publications (Table 3). Many of the reported contaminants are re-
current in diverse studies, pointing to a consensus for some taxa
(Table 4) as a probable contaminant. Taxa in this list cannot be
strictly considered a contaminant by itself. However, they can cor-
roborate suspicious contamination discovered via several other
lines of evidence without the extra effort of researching the liter-
ature. The presented list is not comprehensive but a first step to
centralize and standardize recurring contaminants described in
the literature. We expect this list to incrementally grow over time
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Figure 6: GRIMER overview panel plots (A) listing of 9 highly correlated genera detected in Fig. 5. Samples have high incidence in DNA negative
controls. MGnify plot showing proportion of biomes related to Psychrilyobacter in the whole MGnify database. (B) bar plot listing samples (x-axis),
grouped by study and sample type and sorted by total number of reads. Bars represent the total number of counts for each sample and are annotated
with the proportion assigned to genus level (left y-axis). Log-transformed abundance of Psychrilyobacter is displayed in yellow circles (right y-axis). This
taxon is abundant in the abalone samples but has some signal in the NICU samples that are inversely correlated to the total amount of reads, pointing
to potential contamination. The other 8 taxa show similar patterns in the report.

as more evidence of kit and laboratory contamination becomes
available. The information of common contaminants is a valu-
able resource to aid contamination detecting, and we are willing
to keep and extend it. Improvements to the list and suggestions
of further candidate taxa can be provided via the GRIMER reposi-
tory at [48]. As a future work, the list can be associated with study
details as biome, extraction kit, and methodology to be further
queried and integrated in more details.

Additionally to the aforementioned common contaminants,
GRIMER can also use general lists of custom organisms to anno-
tate samples. In this work and by default, human-related organ-
isms commonly occurring in human skin and oral and nasal cav-
ities, as well as face and other human limbs, are used since they
can be external sources of contamination. Those lists can be eas-
ily provided as taxonomic identifiers or names to GRIMER. If the
target study conflicts with any of those environments (e.g., study
of human skin), one could simply remove the related entries from
the configuration files. More details and examples on how to per-
form this can be found in the online documentation.

GRIMER works out-of-the-box with as little data as possible but
can incrementally expand the reports when more data are pro-
vided and can be adapted for user necessities. GRIMER is fast and
generates reports in a matter of seconds on a standard notebook.
The outcome dashboard is lightweight and can handle hundreds
to thousands of samples and observations. Report sizes usually
vary from 1 to 10 MB and are highly compressible, since they are
text-based HTML files. GRIMER reports with a higher number of
samples (thousands) can grow significantly in size (10–100 MB) but
still run normally. If report size is a limitation, many options can
be adjusted to generated more compact files: reducing number
of taxonomy ranks displayed, less combinations of analyses, and
filtering very low-abundant observations, among others.

One of the core strengths of GRIMER is the taxonomy automa-
tion. It accepts taxonomic identifiers from several different tax-
onomies but also parses names and converts them to their respec-

tive identifiers. If only 1 taxonomic level is provided (e.g., species
level), GRIMER can decompose and summarize the data in higher
ranks. That means that users do not have to handle taxonomy
and everything will work automatically. GRIMER was developed
in a way that new visualizations can be included with little effort.

We listed and summarized a list of similar currently available
methods published in the last 10 years (Table 2) as well as web
platforms for complete analyses of microbiome data (Table 1).
A list of functionalities between similar available tools is pro-
vided in [9], but a detailed comparison with GRIMER is out of the
scope of this work. Most methods share some basic functions (e.g.,
taxonomic abundance analysis) but are diverse in many other
aspects and were sometimes developed with specific goals (e.g.,
function analysis, biomarker identification). However, there is no
comprehensive method that can provide a complete solution for
the many possible analyses in a microbiome study. We believe that
many of those tools, besides their overlapping functions, are com-
plementary and can be used concurrently. GRIMER mainly shares
features with pavian [22] in terms of general microbiome explo-
ration and support to metagenomics data and with OpenContami
[28] regarding contaminant detection. GRIMER, however, is unique
in its output format. The vast majority of the currently available
tools are web based, are hosted in a remote server, or rely on a lo-
cal hosted web server to properly work (Table 2). This may be im-
practical for many nonspecialists and for long-term storage and
reproducibility. GRIMER reports are portable and fully functional
offline. This allows analysis to be accessible by many researchers
with different backgrounds working together in the same study,
increasing direct interaction with data. The portability also en-
ables better documentation of results, reproducibility, and share-
ability. Further, web-based tools may disappear after some years
of inactivity or lack of funding, and analysis may be lost, as it
is the case for for some methods (Table 5). GRIMER reports are
completely offline and will work as long as the report file is safely
stored.
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Table 5: Tools and web resources no longer available, supported, or inaccessible (as of 28 February 2022)

Name Reason Year Reference

Community-analyzer Website offline 2013 [88]
calypso Website offline 2017 [89]
Metaviz Web tool not responsive 2018 [90]
iMAP No longer supported due to funding 2019 [91]
biomminer Page not found 2020 [92]

Overall, we believe that GRIMER is a valuable contribution to
the microbiome field and can facilitate data exploration, analysis,
and contamination detection.

Data Availability
In addition to the GitHub repository [48], an archival copy of the
code and supporting data are available via the GigaScience reposi-
tory, GigaDB [93].

GRIMER reports presented in this article are available for down-
load via Zenodo [81] and can be used interactively online [82].

The datasets and metadata for the placenta study were ob-
tained from ENA database with the Bioproject ID PRJNA451186.

The datasets and metadata for the KatharoSeq study were ob-
tained from the qiita website [94] (log-in required).

Availability and Requirements
Project name: GRIMER
Project homepage: https://github.com/pirovc/grimer
Operating system(s): Platform independent
Programming language: Python 3.5 or higher
Other requirements: bokeh 2.2.3 or higher
License: MIT License
Any restrictions to use by nonacademics: Use based on MIT li-
cense
RRID: SCR_023265
biotools: grimer
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