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Simple Summary: Splenomegaly is a feature of a broad range of diseases including hematological
malignancies and non-neoplastic conditions. However, the morphological appearance of an enlarged
spleen alone does not necessarily reveal the underlying cause. The application of deep learning could
deliver new quantitative imaging biomarkers to identify the underlying etiology of splenomegaly. In
this study, a deep learning model was developed to automatically segment and classify splenomegaly
in patients with malignant lymphoma versus patients with cirrhotic portal hypertension based on
CT images. This model could help identify the underlying disease and triaging malignant cases to
ensure timely diagnosis and treatment.

Abstract: Splenomegaly is a common cross-sectional imaging finding with a variety of differential
diagnoses. This study aimed to evaluate whether a deep learning model could automatically segment
the spleen and identify the cause of splenomegaly in patients with cirrhotic portal hypertension versus
patients with lymphoma disease. This retrospective study included 149 patients with splenomegaly
on computed tomography (CT) images (77 patients with cirrhotic portal hypertension, 72 patients
with lymphoma) who underwent a CT scan between October 2020 and July 2021. The dataset was
divided into a training (n = 99), a validation (n = 25) and a test cohort (n = 25). In the first stage, the
spleen was automatically segmented using a modified U-Net architecture. In the second stage, the
CT images were classified into two groups using a 3D DenseNet to discriminate between the causes
of splenomegaly, first using the whole abdominal CT, and second using only the spleen segmentation
mask. The classification performances were evaluated using the area under the receiver operating
characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Occlusion
sensitivity maps were applied to the whole abdominal CT images, to illustrate which regions were
important for the prediction. When trained on the whole abdominal CT volume, the DenseNet was
able to differentiate between the lymphoma and liver cirrhosis in the test cohort with an AUC of 0.88
and an ACC of 0.88. When the model was trained on the spleen segmentation mask, the performance
decreased (AUC = 0.81, ACC = 0.76). Our model was able to accurately segment splenomegaly and
recognize the underlying cause. Training on whole abdomen scans outperformed training using
the segmentation mask. Nonetheless, considering the performance, a broader and more general
application to differentiate other causes for splenomegaly is also conceivable.

Keywords: malignant lymphoma; splenic involvement; radiomics; machine learning; computer
aided diagnosis; subtype classification; quantitative imaging biomarkers
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1. Introduction

As a major lymphoid organ, the spleen is involved in a broad range of diseases, in-
cluding hematological malignancies as well as infectious or inflammatory syndromes [1–3].
Splenic infiltration can lead to changes in volume, morphology, and metabolic activity [4].
The discrimination of these changes based on qualitative features of cross-sectional imaging
alone can be challenging [4], and often only a rather descriptive reference is reported.
Although splenomegaly is a common finding in computed tomography (CT), often only
the craniocaudal diameter is mentioned in radiological reports. An accurate segmentation
and classification of splenomegaly could help identify the underlying disease and triaging
malignant cases to ensure timely diagnosis and treatment, but manual segmentation is time
consuming and not feasible in clinical routine.

In the case of malignant hematological diseases, besides the classification according
to the World Health Organization’s (WHO) classification of tumors of hematopoietic and
lymphoid tissues [5], cross-sectional imaging plays a significant role in baseline staging and
therapy monitoring [6]. Splenomegaly is seen in approximately one third of all Hodgkin
lymphomas (HL) at presentation [7] and in different proportions in other subtypes [8]. Pre-
vious retrospective studies in US hospitals reported that hematological diseases were found
in 16–66% in patients with splenomegaly: among them, the most common diagnoses were
lymphoma (16–44% of all splenomegaly), CML (8–29%), hemoglobinopathy (7–25%), CLL
(0–20%), and myelofibrosis (9–16%) [9–11]. In a baseline imaging workup, splenomegaly
is defined by more than 13 cm of craniocaudal diameter in CT images according to the
Lugano classification of lymphomas [12].

In recent years, deep learning achieved high performance in segmentation and classifi-
cation tasks in medical imaging, with some algorithms being successfully implemented in
clinical routine [13–15]. In oncologic imaging, the accurate and automated segmentation
of abdominal organs is a critical first step for the detection and delineation of tumors and
metastases, and for surgical preplanning. Recent works showed robust results in the spleen,
kidneys and liver segmentation on CT and MRI images with high dice scores ranging from
0.88 to 0.96 [16–20]. Other works demonstrated the value of imaging biomarkers in differ-
entiating malignant lymphoma from other cancer entities [21,22], and even in predicting
early relapse, as it has been shown by Lisson et al. for mantle cell lymphoma [23].

In our study, we present a two-stage deep learning model to automatically segment the
spleen and distinguish whether splenomegaly originates from lymphoma or from cirrhotic
portal hypertension. Such a model would provide a highly accurate segmentation of the
spleen, and contribute to the effort of developing an imaging biomarker to analyze splenic
changes in oncological and cirrhotic patients. To our knowledge, this is the first study to
evaluate an automated, deep learning-based segmentation, and classification of causes of
splenomegaly.

2. Materials and Methods

This retrospective study was approved by our institutional review board (No.: EA4/136/21).
The requirement for informed consent was waived due to the retrospective design of the study.
The personal data of the patients were strictly protected and anonymized prior to analysis.

2.1. Study Population

The inclusion criteria were either (1) patients diagnosed with liver cirrhosis or (2) patients
with lymphoma.

The exclusion criteria were (1) normal splenic volume; (2) splenic infarction; (3) cystic
or solid lesions of the spleen; and (4) thrombosis of the portal or the splenic vein.

Enrolled patients were randomly divided into a training cohort (n = 124) and a testing
cohort (n = 25). The study flow diagram is shown in Figure 1.
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Figure 1. Study flow diagram showing the steps conducted for the selection of samples and the
study design.

2.2. CT Imaging Characteristics and Scanning Protocol

For the lymphoma patients, the baseline staging protocol was standardized and
included a contrast-enhanced CT of the neck, chest, abdomen and pelvis. In patients with
liver cirrhosis, the study protocol included either the chest, abdomen, and pelvis, or only
abdomen and pelvis, depending on the clinical question.

CT scanners from two manufacturers were used to acquire the CT scans: Aquilion
One (number of performed examinations = 22), Aquilion PRIME (n = 38), and Aquilion 64
(n = 2) from Canon Medical Systems (Otawara, Tochigi, Japan) and Revolution HD (n = 37),
Revolution EVO (n = 42) and LightSpeed VCT (n = 8) from General Electric Healthcare
(Boston, MA, USA).

The contrast agents used were iomeprol (Imeron 400®, Bracco Imaging, Milan, Italy)
iobitridol (Xenetix 350®, Guerbert, Villepinte, France), and iopromide (Ultravist 370®, Bayer,
Leverkusen, Germany) with amounts varying between 100 and 140 mL. Portal venous
phase imaging was performed at 70–80 s after the intravenous administration of the contrast
agent. Axial reconstructions with a slice thickness of 5 mm without gaps were used in this
study. Figure 2 shows a sample of CT images in coronal reconstruction.
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Figure 2. Sample of CT images of patients presenting with splenomegaly due to liver cirrhosis (C1-3)
and splenomegaly due to malignant lymphoma (L1-3): ♀: female patient; ♂: male patient.

2.3. Segmentation Pipeline

The deep learning-based model was developed on the open source MONAI Frame-
work (Medical Open Network for AI, version 0.8.0) [24]. The automated segmentation
of the spleen in CT images was performed using a 3D U-Net architecture and already
presented in our previous study [13]. Briefly, the model consisted of an enhanced version
of 3D U-Net with residual units, which was trained on an open dataset and an inhouse
dataset (a total of 122 patients). A 3D U-Net consists of contracting an expansive path
(downsampling and upsampling). In our study, five downsampling and upsampling
blocks were implemented. The downsampling block consisted of two convolutional layers
(convolution—instance normalization—parametric rectified linear unit (PReLU)) and a
skip-connection representing a residual unit. During training, Dice loss as loss function
and Adam as optimizer were used, with a learning rate set at 1e-4. The implemented 3D
U-Net achieved a dice score of 0.941 ± 0.021. The cohort presented in this study was not
included in the training of the segmentation model.

2.4. Classification Pipeline

The image data were reformatted from standard DICOM to the Neuroimaging Infor-
matics Technology Initiative (NIfTI) format and subsequently transferred to an in-house
server for the training, validation, and testing of the model.

The 3D DenseNet was implemented using the Python programming language (version
3.7, Python Software Foundation, https://www.python.org (accessed on 17 April 2022)) on
the open source deep learning framework MONAI in conjunction with PyTorch (version
1.8.1 https://pytorch.org (accessed on 17 April 2022)).

A DenseNet is a convolutional neural network (CNN) which is composed of four
dense blocks as represented in the schematic diagram (Figure 3), and which connects each
layer to every other layer in a feed-forward fashion [25]. For our study, we implemented

https://www.python.org
https://pytorch.org
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the DenseNet model due to various advantages: first, it combines features by concatenating
them into all subsequent layers. Each layer gains the collective knowledge of all other
layers, resulting in a thinner and compact network. Second, DenseNet 121 has fewer
trainable parameters and is less computationally intensive compared to ResNet 50 [25].
To investigate whether the use of DenseNet 121 is beneficial, another CNN with residual
connections (ResNet 50) was additionally evaluated.
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Figure 3. 3D-UNET and DenseNet 121 architectures for the automated segmentation and classification
of splenomegaly in the two-step approach (image adapted with permission from PlotNeuralNet [26],
Copyright (c) 2018 HarisIqbal88. Available under the MIT license).

During training, we used the Dice loss as the loss function and Adam as the optimizer,
with a learning rate set at 1e-4 and backpropagation to compute the gradient of the loss function.

3. Results
3.1. Study Population

A total of 149 patients were enrolled in this study, as shown in Figure 1, among
which 77 patients had liver cirrhosis with splenomegaly due to portal hypertension, and
72 patients had a histologically proven malignant hematologic disease, including 12 different
subtypes—namely diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), T-cell
lymphoma (TCL), Burkitt lymphoma (BL), Hodgkin lymphoma (HL), mantle cell lymphoma
(MCL), acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), marginal zone
lymphoma (MZL), chronic myeloid leukemia (CML), plasmablastic lymphoma (PBL), and
post-transplant lymphoproliferative disorder (PTLD). CT images were acquired between
October 2020 and July 2021. Patient and disease characteristics are outlined in Table 1. Since
more than 60% of the patients presented with a diffuse large B-cell lymphoma (DLBCL),
a follicular lymphoma (FL), and B-cell lymphoma (BCL), only these three subtypes are
included in Table 1. All the remaining subtypes are among others **.
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Table 1. Clinical factors of the training, validation, and testing cohorts. Unless otherwise indicated,
data are expressed as the number of participants.

Clinical Factors Training and Validation Cohort Testing Cohort

Number of patients 124 25

Female 47 (38%) 12 (48%)

Age * 58.3 ± 14.7 56.2 ± 16

Cirrhosis with portal hypertension 64 13

Three most frequent lymphoma subtypes:

DLBCL 13 6

FL 14 3

TCL 5 2

Other ** 30 2

* Data are expressed as mean ±standard deviation; ** Other hematologic diseases include the remaining subtypes
as described above.

3.2. Classification Performance Using the Spleen Mask

When trained only with the spleen mask, DenseNet achieved an ACC of 0.84 and an
AUC of 0.84 in the validation dataset, and an ACC of 0.76 and an AUC of 0.81 in the test
set. ResNet achieved an ACC of 0.79 and an AUC of 0.82 in the validation, and an ACC of
0.64 and an AUC of 0.77 in the testing cohort. The metrics of DenseNet are summarized in
the confusion matrix and the ROC AUC curve (Figure 4) and in Table 2.
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tion model in the testing cohort using the spleen mask (Dense-Spl).

Table 2. Metrics of the two models. AUC = area under the curve. ACC = accuracy. SEN = sensitivity.
SPE = specificity.

DL Models
Training Cohort (n = 124) Testing Cohort (n = 25)

AUC ACC SEN SPE AUC ACC SEN SPE

Dense-Spl 0.84 0.84 0.77 0.91 0.81 0.76 0.69 0.83

ResNet-Spl 0.82 0.79 0.62 0.90 0.77 0.64 0.3 1

Dense-Abd 0.88 0.88 0.85 0.92 0.88 0.88 1 0.75

ResNet-Abd 0.86 0.84 0.76 0.91 0.80 0.80 0.69 0.91
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3.3. Classification Performance Using the Whole Abdominal Volume (Dense-Abd)

The implemented 3D DenseNet for distinguishing splenomegaly in patients with
malignant lymphoma patients from those with liver cirrhosis achieved an ACC of 0.88 and
an AUC of 0.88 in the validation and the testing cohort. ResNet achieved an ACC of 0.84
and an AUC of 0.86 in the validation, and an ACC of 0.80 and an AUC of 0.80 in the testing
cohort. The metrics for DenseNet are summarized in the confusion matrix and the ROC
AUC curve (Figure 5) and in Table 2.
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3.4. Occlusion Sensitivity Maps Visualization

In order to understand the decision making of our model, we analyzed the occlusion
sensitivity maps of the whole abdominal volumes. The occlusion map shows which parts of
the image have a positive contribution and which parts have a negative contribution to the
classification score. Red areas of the map have higher and blue areas lower values, where
higher values represent parts of the image that lead to a decrease of the score when occluded,
i.e., they contain important information. Three regions were mostly involved in the prediction
of the underlying disease, namely the liver, the spleen, and the periaortic retroperitoneum.
Figure 6 shows exemplary CT images and the corresponding occlusion sensitivity maps
superimposed over the input images. The visualization reveals that the deep learning model
makes the classification of whether the patient has a splenomegaly due to liver cirrhosis with
portal hypertension or due to a malignant lymphoma by focusing not only on the spleen, but
also on the liver and to a lesser extent to retroperitoneal lymphadenopathy.
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4. Discussion

The aim of this study was to develop a two-stage deep learning-based model for
automated segmentation and classification of causes of splenomegaly. The results show
that (i) an automated segmentation of the spleen can be applied to detect and delineate
splenomegaly; (ii) a deep learning classification model can accurately differentiate between
splenomegaly due to a malignant lymphoma and due to liver cirrhosis with portal hyper-
tension; and (iii) when only trained with the spleen mask, the classification model still
shows a high accuracy in discriminating the causes of splenomegaly.

In recent years, deep learning has gained momentum in different computer vision
fields and is more and more applied for segmentation and classification tasks in medical
image analysis. Deep learning-based segmentation models even reached the human level
in detecting and delineating organs and pathologies [14,15,27–29]. To the best of our knowl-
edge, this is the first study to combine a deep learning pipeline for spleen segmentation
and classification of the underlying disease of splenomegaly.

As a major lymphoid organ, the spleen is involved in a wide range of infectious,
metabolic and hematological diseases, and splenomegaly is a frequent image finding.
Whereas splenomegaly is present in up to two thirds of patients with hematological con-
ditions [9], it has been described in up to 50% of patients with liver cirrhosis and portal
hypertension [30]. The spleen parenchyma is divided into two distinct macroscopic com-
partments, the red pulp and the white pulp. The red pulp is composed of venous sinuses,
reticular fibers, myofibroblasts, and associated macrophages. The white pulp is composed
of the peri-arteriolar lymphoid sheath (PALS), the follicles, and the marginal zone, which
includes lymphocytes, macrophages, dendritic cells, and plasma cells [31]. Etiologically,
liver cirrhosis and portal hypertension results in a congestive splenomegaly, which is char-
acterized by a prominent red pulp, whereas hematological disorders induce an infiltration
of the white pulp and marginal zone by clonal hematopoietic cells [30]. Subsequently, the
different histological patterns could result in different imaging features. In our study, we
evaluated whether a deep learning-based classification model could discriminate between
the two etiologies of splenomegaly using CT images.

Because of different histopathological characteristics, several studies have also ex-
plored the usefulness of radiomics signatures to further characterize conditions with splenic
involvement. Radiomics is a machine learning method that extracts and analyzes quantita-
tive imaging features and textural information to enhance clinical-decision making [32]. A
recent study, for example, showed that splenic radiomics features on CT can predict the
prognosis of gastric cancer patients [33]. Another study used the spleen’s radiomics sig-
nature on CT to predict the recurrence of HCC [34]. Additionally, considering lymphoma,
Enke et al. developed a radiomics model on CT to differentiate between spleen involvement
versus controls, as well as to discriminate different subtypes of malignant lymphoma [35].
Their results showed that the radiomics signature could predict the presence of malignant
lymphoma with an AUC of 0.86, and even differentiate between subtypes with a satisfying
AUC. However, in spite of promising results, the main challenge of radiomic studies is
their poor reproducibility, since published data suggest that all steps prior to radiomics
analysis can bias feature values [36,37]. Even though they were not explicitly considered
in our study, the two-stage approach suggests that textural features may play a role in
determining the cause of splenomegaly, since the model could only consider the spleen to
make its decision.

In the first step of our study, splenomegaly was automatically segmented with a 3D U-
Net model, reaching a dice score of 0.94, which is comparable with the results of Humpire-
Mamani et al. [13,19]. More recently, modified U-Net architectures, such as Attention-
based U-Net, TransUNet, and Swin-UNet achieved higher scores in medical imaging
segmentation, as demonstrated by Gulzar et al. [38], but these models are more complex
than the U-Net and necessitate more computational power. The automated segmentation
of splenomegaly can also save precious time, eliminate interrater variability, and allow
quantitative imaging analysis with a higher amount of data and its implementation in
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clinical routine. In the second step, 3D DenseNet and 3D ResNet models were trained and
validated once on the whole abdominal volume, and once only using the spleen masks,
automatically generated from the 3D U-Net model in step one. Using the whole abdominal
CT-image, the DenseNet model reached an AUC of 0.88 and an ACC of 0.88. When
the spleen mask is applied, the robustness of the model slightly drops, but still shows a
satisfactory AUC of 0.81 and an ACC of 0.76. ResNet showed a slightly lower performance
as described in Table 2. Since disease classification in medical imaging is a relatively
new field, there is still no global consensus on which the model would perform the best.
Luetkens et al. used ResNet-50 and DenseNet-121 for the differentiation of alcoholic and
other-than-alcoholic cirrhosis based on MRI. ResNet50 achieved the best results (ACC
0.75, AUC 0.82), however, the performance was not significantly higher compared to
Densenet121 [39]. Remedios et al. provided an ablation study to compare convolutional
neural networks for detecting large-vessel occlusion on computed tomography angiography
in 300 patients. The performances of ResNet-50, DenseNet-121, EfficientNet-B0, PhiNet,
and an Inception module-based network were compared. An external validation set
showed that DenseNet-121 had the best average performance on accuracy, precision, recall,
specificity, and F1 score. In concordance with these studies, DenseNet-121 performed better
than ResNet for our classification task.

To better understand the decision-making process of our classification model, we
applied the occlusion sensitivity maps to the abdominal CT-image. We identified three
regions of interests that were frequently enhanced on the heat maps, namely the liver,
the spleen, and the periaortic retroperitoneum. First, this observation demonstrated that
our classification model recognized the important imaging features and spared other
parts of the abdomen that were not relevant to the classification task. Moreover, this
reveals the presence of relevant imaging features in the liver, in the spleen, and in the
retroperitoneum to differentiate between splenomegaly due to malignant lymphoma and
due to liver cirrhosis with portal hypertension.

As an outlook, our deep learning-based pipeline could be easily integrated into the
clinical workflow in a triage scenario [40]. After image acquisition, the deep learning model
can automatically segment the spleen, quantify its volume, and predict the underlying dis-
ease. The patients could even be automatically referred to the right physician (hematologist
for malignant lymphoma, gastroenterologist for liver cirrhosis).

Our study has some potential limitations. First, as a retrospective, single-center study,
an external validation of the model robustness is missing. Moreover, our cohort with
149 patients is relatively small. However, our deep learning model cannot be considered
as a “black box” since the occlusion sensitivity maps provide a reasonable explanation
of the classification outcomes. Since we focused on a dichotomous decision regarding
splenomegaly and its causes in our study, we cannot generalize it to all patients with
splenomegaly. Splenomegaly also has a limited value in determining splenic involvement
in malignant lymphomas, as one-third of normal-sized spleens can have a focal or diffuse
tumor infiltration without splenomegaly [41]. Therefore, we will include all patients with
diagnosed malignant lymphoma in the future, with new features such as splenic lesions,
and evaluate a classification model to differentiate between the subtypes of malignant
hematological diseases.

5. Conclusions

We present a deep learning-based pipeline for a fully automated segmentation of
splenomegaly and classification of its etiology. Our model can attain a state-of-the-art
performance in detecting and segmenting splenomegaly, and the binary classification is
capable of differentiating between malignant lymphoma and liver cirrhosis as the under-
lying disease. Hence, considering the model performance, a broader and more general
application to differentiate other causes for splenomegaly is also conceivable.
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