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1
Introduction

Graph covering problems are among the most classical and central subjects in graph theory.
They also play a huge role in many mathematical models for various real-world applications.
Be it the design of police patrol areas, sales territories, or voting districts, or be it a terrain
coverage with multiple robots, e.g., for cleaning, harvesting, or security: All these problems
come down to a covering problem of a graph. Moreover, as these examples show, it is
often desired that each subgraph of the covering is connected. In most cases, additional
constraints on the covering subgraphs, which are also called templates, are imposed. Most
notable are lower or upper bounds on the �size� of each template, or the requirement that
the subgraphs have to be disjoint. The latter results in a graph partitioning problem which
we also consider in this thesis.
But clearly, we are not content with just any graph covering. The objective of the

covering di�ers from application to application. Police districts could be designed with
regard to minimal expected response time, while for cleaning robots the total completion
time would be important. In other applications, the objective is to minimize the number of
templates that is necessary for the covering. We will come back to the notion of �optimal�
covering later, and �rst di�erentiate the graph covering problem between two fundamental
concepts.

The two variants of the graph covering problem are concerned with covering the edges
or, respectively, the vertices of a graph. Both draw a lot of scienti�c attention and are
subject to proli�c research. Interestingly, however, the �eld is divided into two practically
independent parts: The edge covering problem belongs to the graph theory community,
and the contributions often comprise theoretical bounds or (in)approximability results.
Vertex covering problems, on the other hand, are mostly motivated by applications, and
advances are mainly driven by the operations research community. Consequently, most
contributions contain heuristic or approximation algorithms, integer programming (IP)
formulations, or polyhedral studies to strengthen the respective linear programming (LP)
relaxations.
While we will review both �elds in this thesis, our focus clearly lies on the vertex covering

problem, and the reasons therefore are threefold: First, the industry project funding and
driving this research is concerned with a districting problem, which clearly falls into the
realm of vertex covering, at least from the standpoint of the literature. Second, observe
that by considering the line graph, an edge covering with connected subgraphs corresponds
to a vertex covering with trees. While this is not a one-to-one relation, the problems
are equivalent in the sense that any solution of one problem can be transformed into an
equivalent solution of the other problem (cf. Section 2.7). And third, the author of this
thesis must admit that he �nds the techniques of the operations research community far
more appealing than the seemingly dry topics of graph theory.

1
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(b) homogeneous templates

Figure 1.1.: Example for balanced and homogenous templates. The numbers indicate ver-
tex weights.

The two most common goals for vertex covering problems are to use balanced or, re-
spectively, homogeneous templates. For the balancing objective, the templates shall be as
similar as possible, while for the homogeneity goal, each template graph is supposed to be
as homogeneous as possible. Figure 1.1 illustrates solutions with respect to each objective.
Note that homogeneity and balancing are not necessarily opposing objectives. In many
cases both are pursued, e.g., if we are seeking a cover that is homogeneous with respect to
given vertex weights but balanced with respect to the cardinality of the templates.

Motivation: Our research is motivated by a concrete real-world application of de-
signing optimal toll control sections for inspectors on German motorways. A detailed
introduction and analysis of this Toll Section Design Problem is given in Section 6.1. Here,
we give a brief overview: Given a road network with lengths and tra�c volumes on the
edges, our goal is to �nd a covering of the network with smaller, contiguous control areas.
Homogeneous tra�c within each control area is an operative goal. Furthermore, the areas
are subject to lower and upper length bounds. As formulated, the problem is an edge cov-
ering problem with various side constraints and a fuzzy homogeneity objective. For now,
we take this problem as a motivation for a journey through the �eld of graph covering, and
revisit this application in Chapter 6.

Contributions and Structure of this Thesis

In this thesis, we give a holistic overview of graph covering and partitioning problems, to-
gether with their di�erent formulations and solution techniques. While graph covering is a
central topic in graph theory, there has not been a similar attempt to survey and categorize
the whole �eld. Even for the sub�eld of vertex covering (or rather partitioning) problems,
we are not aware of another systematical review of problems and approaches. Our overview
of the �eld and its division into three practically independent and methodically di�erent
parts is shown in Figure 1.2.
Apart from this structuring of the �eld, we provide contributions to di�erent variants of

the problem in the form of newly proposed approximation algorithms and primal heuristics,
preprocessing techniques and exact formulations. Concerning the critical subproblem of
�nding a single connected subgraph subject to various constraints, we compare known IP
formulations for modeling connectivity within subgraphs, and we propose a number of
valid inequalities to strengthen the LP relaxation of our problem formulation. Finally, we
combine all these contributions and put them into practice by modeling and solving the
aforementioned Toll Section Design Problem within a branch-and-price-and-cut framework.
In detail, this thesis is structured as follows.
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Edge Covering

with

� Cliques

� Bicliques

� Cycles

� Paths

� Connected Subgraphs

� other Templates

I Theoretic Bounds

Vertex Covering

balanced

�

Connected Vertex
Partition

� (`, u)-Partition

� Special Templates

I Approximations

homogeneous

� Graph Partitioning

� Community Detection

� Territorial Districting

I Heuristic Approaches

I Exact Approaches

Figure 1.2.: An overview of graph covering problems and corresponding predomi-
nantly used mathematical techniques or objectives.

In Chapter 2, we review the literature on edge covering. Our presentation is organized
along the lines of possible template classes such as cliques, cycles, or connected subgraphs.
The contribution of this chapter is a comprehensive overview and categorization of the
problems, techniques and notable results in this topic. It is the �rst attempt to organize
and survey the literature on edge covering problems since Pyber's article in 1991 [Pyb91].

With Chapter 3, we shift our focus to vertex covering and we start with the balanced
version. We survey the most important variants and results which mostly concern ap-
proximations. In line with this, we examine the main variant of this �eld and present
new approximation algorithms for this case. In addition, we provide an elegant way to
transform and improve this approximation result to the respective edge covering problem.

The homogeneous variant of vertex covering is the topic of Chapter 4. We begin by
reviewing di�erent options to measure homogeneity of (sub)graphs. Our comprehensive
overview of the related literature is divided into heuristic and exact solution approaches.
Finally, one might say, we arrive at the discussion of di�erent IP formulations and im-
proving techniques. These IP formulations fall into two categories: We can use a standard
covering IP with one variable per possible template and, since enumerating all feasible
templates is impossible, generate promising templates dynamically. Alternatively, we have
formulations that assign each node to one (or more) templates, resulting in a covering
of the vertex set. To close this chapter, we present a method to e�ciently incorporate
connectivity constraints into the latter formulation.

Chapter 5 follows the direction of generating promising templates dynamically and is
concerned with �nding a single feasible template (that is optimal in some sense). Due
to the connectivity condition of a single template, this problem results in the well-known
Maximum Weight Connected Subgraph Problem (MWCS) with additional constraints. We
focus on a speci�c variant of this problem, the Balanced, Rooted, and Capacitated MWCS
(BRCMWCS), and study this problem in-depth. We present di�erent methods to model
connectivity within an IP formulation, propose powerful reduction techniques, and provide
di�erent families of inequalities that strengthen the LP relaxation. In an extensive compu-
tational study we compare the connectivity formulations on di�erent classes of instances,
and demonstrate the e�ectiveness of the proposed enhancements.
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Finally, Chapter 6 is devoted to modeling and solving the Toll Section Design Problem.
The broad literature review from the previous chapters reveals that this problem �ts best
into the category of homogeneous vertex covers. In particular, our covering problem is
surprisingly related to the class of districting problems. Employing and extending the
approaches from this �eld, we �nd a column generation approach to be best suited. The
pricing problem boils down to a capacitated MWCS with a complex objective function.
We take a novel perspective and split up the pricing into many subproblems with a �xed
root node. As it turns out, we can reduce each subproblem to the BRCMWCS considered
in Chapter 5 and employ all improvements from there. In addition, we propose two further
enhancements, a heuristic pricing and a local search, and con�rm their positive impact on
all real-world instances and additional arti�cial instances that mimic these. Finally, we
demonstrate that our methods that were developed with regard to the TSDP also translate
to general districting problems, and that the results of this thesis propel the state of the
art for the whole �eld.

Preliminaries and Notation

In a graph covering problem we are given a graph G and a set of possible subgraphs of G.
Following the terminology of Knauer and Ueckerdt [KU16], we call G the host graph while
the set of possible subgraphs forms the template class. Elements of the template class are
called template graphs or, for short, templates. An edge (resp. vertex) covering is a set
of templates such that each edge (resp. vertex) of the host graph belongs to at least one
template. In addition, there is a measure for the quality of a covering, e.g., the number
of used templates. The graph covering problem is to �nd a covering that optimizes this
quality measure among all coverings.
If the template graphs of a covering are pairwise disjoint, the covering is called a parti-

tioning. In many cases the analogously de�ned graph partitioning problem is considered
instead of the graph covering problem.
Since we can consider the connected components of a graph separately, we assume

throughout this thesis that the host graph is connected, unless explicitly stated other-
wise.

General Notation: In the vast majority of cases, we use the standard notation of
graph theory and follow the book of Diestel [Die16]. In particular, we use the terms vertices
and nodes synonymously and adopt the notion of writing G−H where G is a graph and
H can be a graph, a node set, or an edge set that is removed from G.
Apart from that, we use the standard notation [i] := {1, . . . , i} for i ∈ N, and for

variables or parameters ϕ de�ned on a �nite set X and for X ′ ⊆ X, we denote by ϕ(X ′)
the sum

∑
x∈X′ ϕx. In addition, for a graph G = (V,E) and weights ϕ de�ned on V , we

also write ϕ(G) instead of ϕ(V ). Notation beyond this is used locally and introduced when
appropriate.
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2
Edge Covering

In this chapter, we overview the �rst part of graph coverings, namely, to cover the edges
of a given host graph with templates of certain types. The investigation of edge covering
problems in its present form was initiated by graph theory legends Paul Erd®s [EGP66] and
László Lovász [Lov68]. Since then, research is predominantly concerned with improving
bounds on the covering number, i.e., the minimum number of templates necessary for an
edge covering. The covering number is studied for di�erent template classes and often,
special host graphs or special coverings are considered.
As a special covering we single out the local covering number here. It is de�ned as the

smallest number ` such that a covering exists where every vertex is contained in at most `
template graphs.
The only survey article on edge covering that we are aware of is over 30 years old and due

to Pyber [Pyb91]. The focus of this chapter lies on an overview and the categorization of the
literature on this topic. We will include only notable results, and organize the presentation
along the lines of di�erent template classes. Table 2.1 summarizes our classi�cation of the
relevant papers. In line with the standard notation, we denote by n the number of vertices
and by m the number of edges of a graph.

2.1 Edge Covering with Cliques

The clique covering problem is the oldest variant and has been studied in di�erent types
and under di�erent names such as keyword con�ict or intersection graph basis. A number of
survey articles summarize earlier results on this topic as well as a few applications [Pul83;
Rob85; MPR95; Cav05].
The problem was �rst studied by Erd®s, Goodman, and Pósa [EGP66] in terms of

decomposing a graph into edges and triangles. They showed that such a decomposition
can be done with at most bn2/4c template graphs and that this bound is met for the
complete bipartite graph Kn/2,n/2. Recently, Král et al. [Krá+19] extended this result and
proved that any graph admits an edge partitioning into n2 copies of K2 and n3 copies of
K3 such that 2n2 + 3n3 ≤ (1/2 + o(1))n2, settling a conjecture of Gy®ri and Tuza [GT87].
An upper bound for the clique covering number of general host graphs is given by Lovász

[Lov68]: If k =
(
n
2

)
− m and t ∈ N is maximal with t2 − t ≤ k, then there is always a

covering with k+ t cliques. Another bound due to Alon [Alo86] depends on the minimum
degree δ of the host graph. He proves that 2e2(n − δ)2 loge n cliques su�ce. Gyárfás
[Gyá90] proposes a set of simple reduction techniques and derives a lower bound that is
logarithmic in the size of the reduced graph. Since then, no progress has been made on
the bounds for the general covering case.
Other authors study the relation between covering and partitioning of the edges. It

is clear that the latter needs at least as many templates as the former. Caccetta et al.

7
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survey general bounds special host graphs special coverings other partition

cliques

[Pul83],
[Rob85],
[MPR95],
[Cav05]

[EGP66], [Lov68],
[Alo86], [Gyá90]

[Orl77], [PC80].
[PC81], [PD81],
[GP82], [Wal82],
[CP83], [Pul84],

[CGP85], [EFO88],
[MWW89], [Hoo92],
[Che+00], [CM01],
[CV08], [CFS14].
[JMO16], [JH19],

[Cha+21]

[PSW82], [JMO16]

[Kel73], [KSW78],
[Cac+85],

[DC+86], [EFO88],
[Gyá90], [BT06],

[Gra+07],
[Gra+09], [FH15],
[CPP16], [Rod21],

[EGP66], [PSW82],
[Cac+85], [EFO88],
[Uiy03], [Krá+19],

[RUW21]

bicliques [MPR95]
[HHM77],

[Ber78], [Chu80],
[Tuz84], [JK09]

[GWS99],
[Bez+08]

[FH96], [EP97],
[DL07]

[Orl77], [Mül96],
[AVJ98], [CF06],
[Wat06] [Gün07].

[GP72], [Tve82],
[CES83], [EP97],
[GWS99], [DL07],
[Pin14], [ABH17]

cycles [Zha97]
[EGP66],

[Pyb85], [Bon90],
[Fan02]

[Ita+81], [BJJ83],
[AT85], [Jae85],
[Fan97], [Tho97],
[Fan98], [BS01],
[HO01]. [IMM05],
[Cha09], [Zha16]

paths
[Chu80], [Pyb96],

[Fan02]

[Lov68], [Don80],
[Yan98], [Fan05],
[ZL06], [BJ17],

[Gir+21]



2.1 ... with Cliques 9

[Cac+85] investigate the di�erence between clique covering number and clique partitioning
number, providing a lower and an upper bound on the worst-case di�erence on any graph
with n vertices. Erd®s, Faudree, and Ordman [EFO88], on the other hand, focus on the
ratio of the two numbers. They �nd that this ratio cannot be larger than 1

12n
2 for any

graph on n vertices.

Concerning the complexity of �nding the clique covering number, Kou, Stockmeyer, and
Wong [KSW78] and, independently, Orlin [Orl77] proved that clique covering is NP-hard.
The former also proved that there is no 2-approximation unless P=NP, and later it was
shown that no approximation within a factor of nε for some ε > 0 is possible [LY94].

More can be said about speci�c host classes: The problem remains NP-hard if the
host graph is planar [CM01], but in this case a polynomial-time approximation scheme is
known [BKV12]. The problem is also NP-hard for host graphs of maximum degree 6 [Hoo92],
but polynomially solvable for smaller maximum degrees [Pul84; Hoo92]. It can also be
solved in polynomial time for chordal graphs [MWW89], line graphs [Orl77], and host
graphs with bounded treewidth [BKV12]. Other works consider the clique covering prob-
lem on claw-free graphs [JMO16; JH19; Cha+21], on regular graphs [PC80; PC81; CP83],
or on split graphs [WW91]. Furthermore, the clique covering problem has been consid-
ered for complements of graphs. While Wallis [Wal82] derives bounds for complements of
general graphs, other articles focus on complementary graphs of certain graph classes such
as paths and cycles [CGP85], cliques [Orl77; PD81; EFO88], matchings [Orl77; EFO88;
GP82], or forests [CV08; CFS14]. De Caen et al. [DC+86] provide bounds for the sum and,
respectively, the maximum of the clique covering numbers of a graph and its complement.
They also present bounds for the respective clique partitioning numbers that are further
improved by Rohatgi, Urschel, and Wellens [RUW21].

Instead of restricting the host class, one can also consider special covers. Pullman, Shank,
and Wallis [PSW82], for instance, consider the edge partitioning into maximal cliques.
Interestingly, not every graph can be partitioned into maximal cliques, as the example of
K4 with one edge removed shows. The paper thus discusses the existence of maximal-clique
partitions and studies the minimum number of templates that such a partition must have.
With regard to local covering, Javadi, Maleki, and Omoomi [JMO16] examine the local
clique covering number. In particular, they derive lower and upper bounds that depend on
the maximum degree and the maximum clique number. In addition, they give asymptotic
bounds for the local clique covering number if the host graph is claw-free.

Constructive and improving heuristics for the clique covering problem on general host
graphs are presented in [Kel73; BT06; Rod21], a comparison of di�erent heuristics is carried
out in [Gra+07]. Gramm et al. [Gra+09] consider the decision variant of the clique covering
problem with a �xed input parameter k for the number of allowed templates. Extending the
reduction techniques of [Gyá90], they derive a problem kernel, i.e., an instance (G′, k′) that
is a yes-instance i� the original instance (G, k) is a yes-instance. They also propose an exact
branching algorithm that is applied to the kernel and empirically performs particularly
well on sparse host graphs. The question now is: How small can the kernel size get in
relation to k? On the negative side, Cygan, Pilipczuk, and Pilipczuk [CPP16] prove that
in the worst case, there is no kernel of subexponential size, assuming the exponential
time hypothesis (which states that 3-SAT cannot be solved in subexponential time). On
the upside, Friedrich and Hercher [FH15] �nd that the expected kernel size of random
intersection graphs can be much smaller than the worst case suggests.
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2.2 Edge Covering with Bicliques

Another template class to consider are bicliques, i.e., complete bipartite graphs. It is
easy to see that the edges of Kn can be covered with n− 1 stars. The same holds for the
partition case, but here fewer bicliques do not su�ce [GP72; Tve82]. For the covering ofKn,
however, we can reduce the number of required bicliques to dlog2 ne [HHM77; Ber78]. Basic
bounds for the general case are provided by Bermond [Ber78]. Chung [Chu80] evaluates
the asymptotic behavior of the biclique covering number, while Tuza [Tuz84] provides the
best known upper bound at n−blog2

2n
3 c. A lower bound of ν

2

m is due to Jukna and Kulikov
[JK09] if the matching number ν of the host graph is known.
The di�erence between biclique covering and biclique partitioning is explored in [Pin14].

A lower bound for the biclique partition number is proved in [GWS99]. Alon, Bohman,
and Huang [ABH17] give a probabilistic upper bound for the partition case.
Just as the clique covering problem, the biclique covering problem is NP-hard, even if

the host graph is bipartite [Orl77]. It remains NP-hard if the bipartite graph is chordal
[Mül96], but is polynomial solvable for bipartite domino-free graphs [AVJ98].
If the host graph is the complement of a path or a cycle, Gregory, Watts, and Shader

[GWS99] give exact values for the biclique partition number. Bezrukov et al. [Bez+08] give
a tight bound on the biclique covering number if the host graph is a Kn,n with a perfect
matching removed.
The local biclique covering number of Kn is dlog ne, as shown by Fishburn and Hammer

[FH96] for n ≤ 16 and by Dong and Liu [DL07] for general n. Concerning the local biclique
partition number, Erd®s and Pyber [EP97] prove an upper bound of cn

logn with c being a
constant that is not computed explicitly. If the host graph is planar, then 4 bicliques
always su�ce [DL07].
Cornaz and Fonlupt [CF06] formulate an integer program to �nd a minimum biclique

cover, while Watts [Wat06] considers the LP relaxation of this problem, i.e., fractional
biclique covers.
An application for the biclique cover number is presented by Günlük [Gün07]. It is shown

that this number is an upper bound on the min-cut max-�ow ratio of a multi-commodity
�ow problem.

2.3 Edge Covering with Cycles

It is obvious that a cycle covering of the edges exists if and only if the host graph is 2-
connected. For arbitrary host graphs, Erd®s, Goodman, and Pósa [EGP66] conjectured
that any graph can be covered with n − 1 cycles and edges. While this bound is clearly
tight for trees, it was proven for general graphs by Pyber [Pyb85].
Below we summarize the results for 2-connected host graphs and di�erent variants of

the cycle cover problem. These variants are also discussed in the survey article by Jackson
[Jac93] and in a book on this topic by Zhang [Zha97].
Bondy [Bon90] conjectured that b2n−1

3 c cycles always su�ce for the covering and showed
that this bound is best possible. His conjecture was con�rmed by Fan [Fan02]. Therefore,
cycles are one of the considered template classes for which the exact value of the covering
number is known. There are, however, many works that consider related problems.
A famous variant of the present problem is the cycle double cover conjecture. As the

name suggests, it asks whether every 2-connected graph has a cycle covering where each
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edge of the graph belongs to exactly two cycles. While this conjecture is still open, advances
towards it are given in the surveys by Jaeger [Jae85], Chan [Cha09], and Zhang [Zha16].
Another well studied and practically relevant version of the cycle covering problem takes

into account the length of the covering cycles. More speci�cally, the goal of this minimum

cost cycle-cover problem (MCCP) is to �nd an edge covering with cycles such that the sum
of the length of all cycles is minimal. For the unit weight case, Itai et al. [Ita+81] give a
constructive upper bound on the total length. This bound is further improved by Bermond,
Jackson, and Jaeger [BJJ83], Alon and Tarsi [AT85], Fraisse [Fra85], Fan [Fan97], and Fan
[Fan98]. The best known upper bounds for the cumulated cycle length are m+ n− 1 and
2n − 2 [Fan98]. Determining the optimal value, however, is NP-hard [Tho97]. The case
of metric edge weights is studied by Immorlica, Mahdian, and Mirrokni [IMM05]. They
give an approximation result for a natural greedy covering and show that imposing length
bounds on the template cycles makes the problem APX-hard. The MCCP with length
constraints is also studied by Bläser and Siebert [BS01] and by Hochbaum and Olinick
[HO01]. Finally, let us brie�y describe the di�erence between MCCP and the well-known
Chinese Postman Problem (CPP). The CPP is concerned with �nding a closed walk of
minimum length that contains every edge of a given edge-weighted graph. Its practical
importance cannot be described better than in [IMM05]: �Besides its obvious application to
mail delivery in China, this problem �nds application in a variety of routing problems such
as robot navigation and city snow plowing planning�. Unlike the MCCP, the CPP is known
to be polynomial solvable [EJ73]. Every solution of MCCP can easily be transformed into
a solution of CPP. The only di�erence between the two is that a CPP solution can be
the union of cycles and edges, whereas edges are forbidden templates for the MCCP. This
small change, however, leads to the complexity increase from P to NP-hardness.

2.4 Edge Covering with Paths

The Gallai conjecture states that any graph can be partitioned into dn2 e edge-disjoint paths.
Indeed, one can see that this bound is sharp by considering a graph where every vertex
has odd degree. Then, n is even and every vertex must be an endpoint of a covering path,
which leads to a minimum of n

2 covering paths (cf. [Lov68]). Gallai's conjecture is still
open, but progress has been made for special cases, see [Lov68; Don80; Yan98; Fan05;
ZL06; BJ17; Gir+21] and references therein.
How about the respective covering problem? Analogously to the partitioning case, Chung

[Chu80] conjectured that any graph can be covered with at most dn2 e paths. Pyber [Pyb96]
was able to prove a weaker bound, but Fan [Fan02] �nally con�rmed that dn2 e paths indeed
su�ce. While the covering conjecture was thereby settled, the partitioning case, i.e. the
famous Gallai conjecture, remains open.

2.5 Edge Covering with Connected Subgraphs

Finally, we single out the template class of connected subgraphs. Again, the number of
templates to use is given. Existing work is focused on the partition case and on the objective
that the template graphs should have similar weight. The weight of a template graph is
the sum of all edge weights in this graph. For the unit weight case, Jünger, Reinelt, and
Pulleyblank [JRP85] work towards an equipartition of the edges into connected subgraphs.
Chu et al. [Chu+10] consider a similar problem for trees as host graphs. The general case
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with arbitrary graphs and edge weights is handled in [CWC13]. The authors present a
linear time algorithm to �nd a partition into connected components such that the heaviest
template has at most twice as much weight as the lightest template.
In Section 3.2.4, we will derive an independent 2-approximation by transforming the

problem into a vertex partition problem and exploiting the claw-freeness of line graphs.
Finding a partition into connected subgraphs of similar weight is also the subject of the
connected vertex partition problem that is discussed in the next section.

2.6 Edge Covering with other Templates

While Gallai conjectured that any graph can be partitioned into dn2 e paths, Chung [Chu78]
showed that it is indeed possible with the same number of trees. Earlier, Nash-Williams
[N64] had already studied this problem, while Vidyasankar [Vid78] considers the respective
covering problem on directed graphs.
More general, Harary, Hsu, and Miller [HHM77] derive a bound for the number of bipar-

tite graphs required to cover all edges. In particular, they show that dlog2 χ(G)e template
graphs always su�ce, where χ(G) is the chromatic number. A remarkable consequence of
their result is that any planar graph can be covered with two bipartite graphs.
Motivated by an application for testing printed circuit boards, Bussieck [Bus94] studies

the problem of covering the edges of a graph by cuts. The objective is to minimize the sum
of the cardinalities of all cuts. He proves that �nding an optimal cut cover is NP-hard and
discusses approximation possibilities. Füredi and Kündgen [FK01] provide general bounds
as well as sharp bounds for special host graphs. Kündgen and Spangler [KS05] give an
improved bound on the size of the cut cover and describe a connection to cycle covers.
Another variant is the covering with odd graphs, i.e., graphs where each non-isolated

vertex has odd degree. Due to Mátrai [Mát06], three odd subgraphs su�ce to cover any
simple graph. The same result also holds for loopless graphs [P�19].
Knauer and Ueckerdt [KU16] give results for various template classes on di�erent host

graphs. As templates they consider star forests, caterpillar forests, and interval

graphs. As host graphs they consider, e.g., planar graphs or graphs with bounded tree-
width. They overview existing results for these cases and provide new bounds, not only
for the classical objective of minimizing the number of necessary templates but also for
slightly di�erent objectives.
Thite [Thi06] considers the covering with a given number of induced subgraphs and

the objective to minimize the number of vertices in the largest template graph. Finding this
minimum is NP-hard, but he proves lower bounds and presents approximation algorithms
for certain host graph classes.

2.7 Edge Covering as Vertex Covering

In some cases, we can transform an edge covering problem into a vertex covering problem
by considering the line graph. Given an undirected graph G = (V,E), the line graph L(G)
consists of the vertex set E and has an edge between e 6= f ∈ E if and only if e and f are
incident in G, i.e., they share a common endpoint in G.
If we consider �taking the line graph� as a function L operating on the set of connected

graphs, we might be interested if the inverse function L−1 exists. In plain words: Can we
reconstruct the original graph from the line graph? Strictly speaking, the answer is no.
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Figure 2.1.: The triangle K3 and the star K1,3 have the same line graph, a K3.

The function L is not injective as the trivial example of a triangle K3 and a claw K1,3

both mapping to K3 proves (cf. Figure 2.1). Very surprisingly, however, this is the only
exception. Whitney's theorem [Whi32] states that each line graph H 6= K3 has a unique
(up to graph isomorphisms) original graph G = L−1(H) with L(G) = H. Furthermore,
L−1(H) can be reconstructed in linear time (w.r.t. |V (H)|) as described in [LTVM15].

Let us point out some simple properties of the function L: First, note that with G being
connected, also L(G) is connected. The converse is also true, at least if we ignore any
isolated vertices in G. Furthermore, we observe that L(Cn) = Cn, L(Pn) = Pn−1, and
L(K1,n) = Kn where Cn and Pn denote the cycle and, respectively, the path with n ≥ 3
vertices. Since every edge covering of G clearly corresponds to a vertex covering of L(G),
and due to Whitney's theorem, we can state the following:

� There is a bijection between edge coverings of G with paths and vertex coverings of
L(G) with paths.

� There is a bijection between edge coverings of G with cycles (not containing C3 as
template) and vertex coverings of L(G) with cycles (not containing C3 as template).

� There is a bijection between edge coverings of G with stars (not containing K1,3 as
template) and vertex coverings of L(G) with cliques (not containing K3 as template).

� There is a bijection between edge coverings of G with connected subgraphs (not
containing K1,3 or K3 as template) and vertex coverings of L(G) with connected
subgraphs (that are line graphs, but not K3).

In fact, all statements extend to the partitioning case. As this thesis is particularly
concerned with connected subgraphs, let us further examine the last statement. The
restrictions on the templates are necessary to obtain a bijection. We can, however, also
establish a weaker relationship that proves to be more useful. Our goal is to express edge
coverings with connected subgraphs as vertex coverings with trees. More speci�cally, we
claim that any solution of one problem can be transformed into an equivalent solution of
the other problem, as the following proposition details.

Proposition 2.1 Let S1, . . . , Sk be an edge covering of G with connected subgraphs.

Then, there exist trees T1, . . . , Tk in L(G) with V (Ti) = E(Si) for all i ∈ [k] that constitute
a vertex covering of L(G).

Conversely, let T1, . . . , Tk be a vertex covering of L(G) with trees. Then, there exist

connected subgraphs S1, . . . , Sk in G with E(Si) = V (Ti) for all i ∈ [k] that constitute an

edge covering of G.
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Proof. For the �rst statement, we note that choosing any spanning tree Ti of L(Si) for
i ∈ [k] satis�es the requirements. For the second statement, we simply choose Si = L−1(Ti)
(which is well de�ned since K3 is not a tree) and recall that with Ti also L−1(Ti) is
connected.

We use this relationship in Chapter 6 when we formulate an edge covering problem on
a road network as a vertex covering problem with trees.



3
Balanced Vertex Covering

The �rst vertex covering problem that we are going to detail concerns the covering with
balanced templates. The goal of the balancing is to use templates of similar weight, and
there are several important applications for this problem. While the task of political
districting clearly requires a partition [BEL03; GW18], other applications such as terrain
coverage with multiple robots admit overlapping solutions. The latter includes signi�cant
future tasks such as cleaning, harvesting, and security patrolling jobs performed by a
number of coordinated robots [Zhe+05; YJC13]. In both applications it is desired that the
resulting subregions have a similar weight, i.e., the number of voters or the time necessary
for job completion.
There are di�erent popular objectives for balanced covers. Among the most prominent

variants are the max-min and min-max objectives. Given a weighted graph and a number
of templates, the goal is to maximize the total weight of the minimum part or, respectively,
to minimize the weight of the maximum part. The bounded covering problem, on the other
hand, aims to minimize the number of templates given a maximum template weight.
In this chapter, we give an overview on di�erent variants of balanced vertex covering,

or rather, as we will see, balanced vertex partitioning. Indeed, the literature is almost
exclusively concerned with the partitioning case. In Section 3.1, we consider di�erent main
variants of the problem and review corresponding results. A majority of the works is
dedicated to �nding approximation algorithms or inapproximability results. In line with
this, we present an approximation algorithm for the most studied variant in Section 3.2.
The presented approximation runs in linear time and is valid for both main objectives:
min-max and max-min.

3.1 Literature Overview

Without constraints on the template graphs, a balanced partition problem becomes a
multi-way number partitioning problem, which is a generalization of the classical NP-hard
partition problem, see e.g. [Kor09]. Therefore, the minimum requirement that is generally
set on template graphs is connectivity. We divide the literature review for balanced covers
into three parts. First, we consider the basic problem with connected templates. Then,
additional constraints on the template sizes are imposed. And �nally, we conider several
other classes of connected templates, namely trees, paths, stars, and cycles.

3.1.1 Connected Vertex Partition

For a vertex weighted graph and an input parameter k ∈ N, the connected vertex parti-
tioning problem (CVP) asks for a partition of the vertices into k connected components. If
k is �xed, the problem is denoted by CVPk. The CVP is usually considered with max-min

15
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or min-max objective and also known as the balanced connected partition problem.
The min-max and max-min version of CVP are closely related. In fact, for CVP2 the

two versions obviously coincide. For larger k though, optimal solutions of the two problems
can di�er. A simple example of this is presented in Figure 3.1. While for this instance
one can �nd a solution that simultaneously optimizes the min-max and max-min objective,
some instances do not admit such a solution (cf. [LPS93]).
Concerning the complexity, already CVP2 is NP-hard [CGM83], even on unit-weighted

bipartite graphs as shown by Dyer and Frieze [DF85]. Moreover, it is also hard to approx-
imate. Chataigner, Salgado, and Wakabayashi [CSW07] prove that CVP2 does not admit
a polynomial-time approximation scheme and that there is no α-approximation for CVP
with α < 6

5 , unless P = NP. Earlier, Chlebíková [Chl96] had given a 4
3 -approximation for

CVP2, which was later shown to actually be a 5
4 -approximation [Che+20]. Concerning an

approximation for the general CVP, the �rst result was a ∆-approximation, where ∆ is
the maximum degree of a spanning tree of the host graph [BES19]. We will detail this
algorithm in Section 3.2.2. This result is improved by Casel et al. [Cas+21] who derive a
3-approximation for both versions of the CVP.

Focusing on the max-min CVP, more approximation results are known. For CVP3

and CVP4 the best known result is a 2-approximation for 3-connected or, respectively,
4-connected graphs [CSW07]. For the CVP3, this was improved by Chen et al. [Che+20]
to a 5

3 -approximation which also applies to general graphs.
The max-min CVP for special host graphs allows for even better results. For instance,

CVPk is polynomially solvable for trees. Note that on a tree, any partition into k connected
parts is uniquely determined by choosing k − 1 cut edges. This observation was used to
give polynomial algorithms for the max-min CVPk [PS81] and for the min-max CVPk
[BPS80]. Earlier, Kundu and Misra [KM77] had considered a closely related problem and
provided an algorithm that can be employed to solve the min-max CVPk in polynomial
time. In 1991, Frederickson [Fre91] gave linear-time algorithms for both problems. These
are particularly important, since di�erent heuristics transform the original instance onto a
tree to e�ciently solve the problem there [CWC13; Zho+19].
Another host graph class for which CVP was investigated are grid graphs. While it was

shown that CVPk is NP-hard for arbitrary grid graphs [Bec+98], the max-min CVPk can
be solved in polynomial time for ladders, i.e., grid graphs with two rows and an arbitrary
number of columns [Bec+01].

4
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(a) optimal solution for
min-max CVP3 that
is not optimal for
max-min CVP3

4

1

2

2

(b) optimal solution for
max-min CVP3 that
is not optimal for
min-max CVP3

4

1

2

2

(c) optimal solution for
min-max CVP3 and
max-min CVP3

Figure 3.1.: Comparison of solutions for min-max CVPk and max-min CVPk for an exem-
plary instance. The numbers indicate vertex weights.
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For the class of series-parallel graphs, CVPk is also NP-hard. Ito, Zhou, and Nishizeki
[IZN06] give a pseudo-polynomial time algorithm for both, the min-max and max-min CVP.
They also show that their algorithm can be extended to graphs with bounded tree-width.
Wu [Wu12] gives a fully polynomial time approximation scheme for su�ciently connected

(i.e., k-connected for CV Pk) interval graphs.
Finally, there are approaches to solve the max-min CVP with integer linear programs.

Mati¢ [Mat14] presents a �rst formulation and introduces a variable neighborhood search to
facilitate the optimization procedure. The formulations of Miyazawa et al. [Miy+20] make
use of vertex separators or �ows, respectively, to model the connectivity. For the separator
version the respective polyhedron is studied for the case of unit-weighted vertices. The same
authors extend their work in [Miy+21] introducing valid inequalities with a corresponding
separation routine.

The min-max CVP has received less attention. As mentioned above, Becker, Perl, and
Schach [BPS80] give a polynomial algorithm for the min-max CVPk if the host graph is a
tree. Returning to general host graphs, the min-max CVP3 can be approximated within a
ratio of 3

2 [Che+20]. An approximation for the unit-weighted min-max CVPk for k ≥ 3 was
presented by Chen et al. [Che+21]. They propose a neighborhood search that results in a
k
2 -approximation. Moura, Ota, and Wakabayashi [MOW22] achieve a pseudo-polynomial
k
2 -approximation also for general vertex weights.
A mixed integer linear programming approach using a �ow formulation to ensure the

connectivity of the subgraphs is due to Zhou et al. [Zho+19]. Since this approach is only
feasible for small instances, they also propose a genetic algorithm as a heuristic approach.
The main idea is to �nd a proper spanning tree whose optimal partition will also be optimal
for the given graph.

3.1.2 (l, u)-Partition

As an alternative to the min-max or max-min objective, we can impose additional con-
straints on the size of each template to model the balancing. Given a graph with non-
negative vertex weights and numbers 0 ≤ l ≤ u, a partition into connected components,
each of which has a cumulated weight in the range [l, u], is called an (l, u)-partition. Typical
objectives are to maximize or to minimize the number of components of the (l, u)-partition.
There is also a feasibility variant that asks if an (l, u)-partition into a given number k of
components exists. Applications occur in political districting where each district should
have a similar number of residents, but also in paging systems of operation systems and in
image processing [Cun19].

Lucertini, Perl, and Simeone [LPS93] consider this problem when the host graph is a
path. Exploiting the simple graph structure, they give a preprocessing routine and a greedy
algorithm to solve the three mentioned variants of (l, u)-partition in linear time.
The problems are still polynomially solvable on trees [Ito+12]. The authors solve it with

dynamic programming while preventing the corresponding table from expanding unreason-
ably.

For general host graphs the problem is studied by Ito, Zhou, and Nishizeki [IZN06].
They show that all variants are NP-hard, even for series-parallel graphs. For the class of
series-parallel graphs, however, a pseudo-polynomial algorithm whose runtime depends on
the upper bound u is given.
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Cunha [Cun19] tackles the (l, u)-partition of minimum cardinality with integer pro-
gramming. The problem is solved with a branch-and-cut algorithm that makes use of
lifted subtour elimination constraints and other valid inequalities that prevent too small
templates.

3.1.3 Special Template Classes

Here, we will discuss several vertex covering problems with di�erent template classes that
are related to the vehicle routing problem (VRP). The VRP generalizes the traveling sales-
man problem (TSP) and belongs to the most important and studied problems in combina-
torial optimization. It asks for an optimal set of routes for a number of vehicles, starting
and ending at one or multiple depots, to visit a given set of customers. There is a number
of popular variants for the VRP, e.g., with inclusion of time windows or with pickup and
delivery constraints. The capacitated VRP imposes an upper bound on the length of each
route. For details on VRP variants and a review of solution techniques see [Lap92; TV02;
BRVN16].
In contrast to the CVP and to (l, u)-partitions, we consider edge weighted host graphs.

The weights are usually assumed to be metric and in some cases one or several root vertices
for the templates are speci�ed. A rooted covering problem requires that every template
contains the single root vertex or, in case of multiple given roots, that every template
includes a distinct root vertex.
The paper by Farbstein and Levin [FL15] provides contributions to all problems that

we consider next. The time complexity of their approximation algorithms, however, may
be exponential in k and also depends on an ε that de�nes the quality of the approxi-
mation. By �xing these parameters, the problem can be solved in polynomial time, and
hence, it is called �xed parameter tractable (FPT). For brevity, we call the corresponding
approximation algorithm an FPT-approximation.
The �rst covering that we consider uses trees as templates. Even et al. [Eve+04] show

that the min-max tree covering is NP-hard and derive a 4-approximation which is in-
dependently achieved by Arkin, Hassin, and Levin [AHL06]. Khani and Salavatipour
[KS14] improve the approximation ratio to 3, and Farbstein and Levin [FL15] give an
FPT-approximation with ratio (2 + ε − 2

k+1). There still remains a gap, as Xu and Wen
[XW10] prove that a 1.5-approximation is the best we can hope for. The problem has also
gained notable attention if the host graph is a tree. As seen above, min-max partitioning
a tree into k subtrees is polynomially solvable, whereas the respective covering problem is
NP-hard already for k = 2 [AB96]. Polynomial approximations for this case are possible
with a ratio below 2: Averbakh and Berman [AB97] give a (2− 2

k+1)-approximation, Nag-
amochi and Okada [NO04] achieve the same result but they reduce the time complexity to
O(k2n). The rooted version of this problem can be approximated within a factor of 2 + ε
for any ε > 0 [NO03], and for the case k = 2 even within a factor of 4

3 [AB96]. Rooted
cases for general host graphs are discussed in [Eve+04], [Nag05], and [FL15]: Parallel to
the unrooted case, Even et al. [Eve+04] give a 4-approximation for the rooted version with
multiple roots. With an FPT-approximation, the factor can be improved to of 3 + ε− 2

k+1
[FL15]. Again, no approximation within a factor of 1.5 is possible, unless P=NP [XW10].
For the single-rooted case, Nagamochi [Nag05] provides a (3− 2

k+1)-approximation, while
here, the current inapproximability bound lies at 10

9 [XW10]. An approximation for the
min-max k tree cover with cardinality constraints on each template is due to Das, Jain,
and Kumar [DJK20]. The bounded tree cover problem is NP-hard [AHL06] and there are
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approximation algorithms with factors of 3 [AHL06] and 2.5 [KS14], respectively. A linear
programming formulation for this problem is studied in [YLB20].
A special tree covering is the covering with paths. This problem was the subject of

the Whizzkids '96 competition to determine optimal paths for newspaper delivery from a
single depot in a speci�c instance (n = 120, k = 4). Applegate et al. [App+02] tackle this
particular problem with a branch-and-bound approach. The general problem is studied
in depth by Arkin, Hassin, and Levin [AHL06], establishing NP-hardness and providing a
4-approximation, and by Xu and Wen [XW10] who prove that no approximation within
a factor of 1.5 is possible, unless P=NP. Farbstein and Levin [FL15] propose an FPT-
approximation with ratio 2 + ε for this problem. A linear programming formulation for
the path covering problem is again given in [YLB20].
Finally, we have the covering with cycles which is closest to the VRP. Most papers ex-

plicitly or implicitly assume the host graph to be complete. In this case any tree covering
α-approximation can easily be transformed into a cycle covering 2α-approximation. Ex-
ploiting the metric edge weights, the transformation mimics the classic TSP approximation
with doubling the edges of the tree and using shortcuts to avoid repeated vertices. For
instance, this provides a 6-approximation from the tree covering approximation in [KS14].
Improved approximations for min-max cycle covering are due to Jorati [Jor13] and Xu,
Liang, and Lin [XLL13] with factor 16

3 + ε. An FPT-approximation achieves a ratio of
4 + ε [FL15], while the best known inapproximability bound is again 1.5 [YL19]. Yu, Liu,
and Bao [YLB19] consider the bounded cycle cover and provide approximation algorithms.
In [YLB20] the same authors derive lower bounds with relaxed LP formulations for this
problem. Traub and Tröbst [TT21] consider a version of the problem where the number
of cycles as well as the maximum weight of the cycles is part of the objective function.
Rooted versions of the min-max cycle covering problem date back to Frederickson, Hecht,
and Kim [FHK76] who studied this as a min-max k-TSP problem deriving a �rst approxi-
mation. A number of other papers also deal with approximation results for the rooted case
[Nag05; XXZ12; Jor13; XLL13; FL15; YL19; LL20; LZ21]. The best known results are a
7-approximation for the single-rooted case [XLL13], and a (5 + ε)-approximation for the
multi-rooted version [LL20], as well as an inapproximability bound of 1.5 [YL19].

3.2 An Approximation for Connected Vertex Partition

The literature overview revealed that the connected vertex partition problem is the most
studied variant of balanced vertex covering problems. We have seen that a number of
approximation results are derived for the min-max and max-min version of the CVP. In
this section, we present a ∆-approximation for both versions of the CVP, where ∆ is
the maximum degree of a spanning tree of the host graph. This means that if W is the
objective value of our algorithm and W ∗ is the optimal objective value, we guarantee that
W ≤ ∆W ∗ for the min-max CVP, and W ≥ 1

∆W
∗ for the max-min CVP.

When the approach was proposed in [BES19], it provided the �rst approximation result
for the CVP on general graphs. Earlier works did only provide approximations for �xed k
or for certain host graph classes. Motivated by the presented approach, the approximation
of the general CVP gained further interest, and meanwhile, a 3-approximation has been
developed by Casel et al. [Cas+21]. In many cases, the factor of 3 is better than the ∆-
approximation discussed here. However, the approach is also much more technical and the
presented ∆-approximation is not only easier to implement, but also much faster: If X∗
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is the optimal objective value and wmax the maximum node weight, the 3-approximation
of the min-max CVP in [Cas+21] runs in O(log(X∗)|V ||E|(log logX∗ log(|V |wmax) + k2)),
whereas our algorithm has an O(|E|) runtime. The di�erence for the max-min CVP is
comparable.
The remainder of this section is structured as follows. First, we propose a general approx-

imation scheme that is subsequently used for our approximation results. In Section 3.2.2,
we employ the scheme to derive a ∆-approximation for CVP. Then, we present a re�ned ap-
proach for the max-min CVP that also yields a ∆-approximation (but without a previously
imposed condition). Finally, we develop a variation of the approach that is specialized for
line graphs, achieving a 2-approximation for the min-max and max-min edge partitioning
problem. We start, however, by formally stating the problem at hand.

Problem Formulation: Given a connected and undirected graph G = (V,E) with
positive vertex weights w ∈ QV

>0 and an integer k ∈ N, �nd vertex-disjoint connected
subgraphs S1, . . . , Sk with V =

⋃
i∈[k] Si. In the case of min-max CVP, our goal is to

minimize maxi∈[k]w(Si), while for the max-min CVP, we maximize mini∈[k]w(Si).
Let us also introduce some additional notation for the remainder of this section. We

denote by wmax the largest weight of all vertices, i.e., wmax := maxv∈V wv. Furthermore,
we denote the degree of vertex v in G by degG(v) and the maximum degree of G by ∆(G).

3.2.1 A General Approximation Scheme for CVP

We propose an approximation scheme that allows us to handle di�erent approximation
problems simultaneously. More speci�cally, we employ the scheme to obtain approxima-
tions for the min-max and max-min CVP, and also for the respective versions in edge
partitioning.
To this end, we generalize the already mentioned (l, u)-partition. Given an interval I,

an I-partition is a partition S = {S1, . . . , Sm} of the vertices such that w(Si) ∈ I for all
i ∈ [m]. Furthermore, if w(Si) ∈ [l, u) for all i ∈ [m − 1] and w(Sm) < u, we call S a
quasi-[l, u)-partition.
We will see that for certain choices of λ, a quasi-[λ, cλ)-partition leads to a c-approximation

for the CVP. The following theorem gives the details.

Theorem 3.1 Let (G,w, k) be an instance of CVP and let T1, . . . , Tm be connected and

form a quasi-[λ, cλ)-partition of G.

a) If λ := max{wmax,
w(G)
k }, then T1, . . . , Tm is a c-approximation for the min-max CVP

on (G,w, k).

b) If λ := w(G)
ck , then T1, . . . , Tm leads to a c-approximation for the max-min CVP on

(G,w, k).

Proof.

a) Let T ∗1 , . . . , T
∗
k be an optimal partition for the min-max CVP on (G,w, k) and let

W ∗ := maxi∈[k]w(T ∗i ). Then, w(G) =
∑

i∈[k]w(T ∗i ) ≤ kW ∗ and, hence, λ ≤ W ∗ because
wmax ≤W ∗ is obvious.
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Note that w(Tm) > 0, and therefore

w(G) = w(Tm) +
m−1∑
i=1

w(Ti) ≥ w(Tm) + (m− 1)λ >
m− 1

k
w(G),

which implies that m − 1 < k or, equivalently, that m ≤ k. As a result T1, . . . , Tm is a
feasible k-partition and w(Ti) < cλ ≤ cW ∗ for any i ∈ [m], which completes the proof of
the �rst statement.

b) Now let T ∗1 , . . . , T
∗
k be an optimal partition for the max-min CVP on (G,w, k) and let

W ∗ := mini∈[k]w(T ∗i ). Then, w(G) =
∑

i∈[k]w(T ∗i ) ≥ kW ∗ and, consequently, λ ≥ 1
cW

∗.
Since w(Ti) < cλ for every i ∈ [m], we know that w(G) =

∑
i∈[m]w(Ti) < mcλ and,

hence, k = w(G)
cλ < m.

We can easily relabel the trees T1, . . . , Tm−1 such that
⋃
j∈{k,...,m} Tj is connected. Af-

terwards, we de�ne

Si :=

{
Ti , i ∈ [k − 1],⋃
j∈{k,...,m} Tj , i = k.

From w(Ti) ≥ λ ∀i ∈ [m− 1] we obtain w(Si) ≥ λ ≥ 1
cW

∗ for arbitrary i ∈ [k] and hence
S1, . . . , Sk is the sought approximation.

3.2.2 ∆-Approximation for CVP

The min-max CVP has a natural tendency towards many templates. In the ideal case,
every vertex is a single template and the objective value is wmax. In some sense, our goal is
therefore to minimize the number of templates while keeping the weight of every template
below a given value. The max-min CVP, on the other hand, tends towards few templates.
Without any restrictions on k, the optimal solution would be to take the full host graph as
single template with objective value w(G). From this point of view, our goal is to maximize
the number of templates subject to a certain minimum weight of each template.
It is all the more surprising that we apply the same algorithm to achieve an approxima-

tion for both versions of the problem. The approximation for the CVP instance (G,w, k)
is performed in two steps: First, we �nd a spanning tree T of G and specify a root node
r. Then, we successively remove subtrees of a given minimum weight from the spanning
tree, ensuring that the remaining tree is still connected.

While we discuss the choice of the spanning tree later, let us focus on the problem of
partitioning a tree into connected parts of similar weight. Lukes [Luk74] was the �rst to
consider partition problems on trees, but did not demand connectivity of the parts. Kundu
and Misra [KM77] give an algorithm to partition a tree with node weights into subtrees
with an upper weight bound. Since then, various other approaches have been proposed,
e.g., in [BPS80; Fre91; ABP93; Ito+12], but none of these were employed to construct
approximation algorithms for the corresponding problem on general graphs.

In order to simplify the description of our algorithm, we start by introducing some
notation concerning rooted trees. Let T r be the tree rooted at node r. With N+(v) we
denote the set of child nodes of the node v and N−(v) is the (unique) parent node of v 6= r
in T r. For v ∈ T r, the graph T rv is the subtree of T r rooted at v. For instance, in Figure 3.2
we have T2 = T ae . Note that both T

r
v and T r − T rv are trees and that their respective node
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Algorithm 3.1: BalancedPartition(G,w, λ)

Input: graph G = (V,E), w ∈ QV
>0, λ ≥ wmax

Output: trees T1, . . . , Tm ⊆ T r with V =
⋃̇
i∈[m] V (Ti)

1 T r ← spanning tree of G rooted at node r
2 T ← ∅; wrv ← 0 ∀v ∈ V
3 Q← list of vertices of T r in reversed BFS order
4 for v ∈ Q do

5 if v = r then
6 return T ∪ T r
7 wrv ← wv +

∑
x∈N+(v)w

r
x

8 if wrv ≥ λ then
9 T ← T ∪ T rv
10 T r ← T r − T rv

sets are disjoint, i.e., the edge between v 6= r and its parent does neither belong to T rv nor
to T r − T rv .
The tree partitioning routine is described in Algorithm 3.1 and Figure 3.2 illustrates

how it works. We successively split o� rooted subtrees of minimum weight λ from bottom
to top, while manipulating the original tree T r (cf. line 10). After considering all other
nodes, we process the root node and set Tm to be the remaining tree T r.
With the preceding observations, the correctness of Algorithm 3.1 is clear. Let us now

brie�y analyze its computational complexity. A spanning tree of G can be found in O(|E|),
the breath-�rst search then runs in O(|V |) and afterwards, we process every node in amor-
tized constant time. Thus, our algorithm has a runtime linear in |E|.
The following result is the cornerstone for the ∆-approximation.

Lemma 3.2 Let (G,w, k) be an instance of CVP, let λ ≥ wmax, and let T1, . . . , Tm
be the output of BalancedPartition(G,w, λ). Furthermore, assume that the constructed

spanning tree is rooted at node r with degT (r) < ∆(T ) =: ∆.

Then, T1, . . . , Tm is a quasi-[λ,∆λ)-partition.

Proof. For some i ∈ [m] consider the root v of Ti and observe that wrxj < λ for all child
nodes x1, . . . , x` of v in Ti. Due to the choice of r we have ` ≤ ∆− 1 and hence

a = r

b c

d e
f

g

h

i j k l m

T4

T3

T2 T1

Figure 3.2.: Balanced tree decomposition for an exemplary tree rooted at node a with unit
weights and λ = 3.
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w(Ti) = wrv = wv +
∑̀
j=1

wrxj < wmax + `λ ≤ ∆λ.

The fact that w(Ti) ≥ λ ∀i ∈ [m− 1] comes from line 8 of the algorithm.

Now we have everything together to state the main result:

Theorem 3.3 Let (G,w, k) be an instance of CVP, and let ∆ be the maximum degree

of a spanning tree of G. Then, a ∆-approximation for the min-max CVP can be computed

in O(|E|). Furthermore, if w(G)
∆k ≥ wmax, a ∆-approximation for the max-min CVP can be

computed in O(|E|).

Proof. Concerning the min-max CVP, the choice of λ := max{wmax,
w(G)
k } is a valid input

for BalancedPartition, and by choosing a spanning tree of maximum degree ∆ within
the algorithm, Lemma 3.2 together with Theorem 3.1 proves the statement.
For the max-min CVP, the same theorem suggests to set λ := w(G)

∆k . However, since
Lemma 3.2 requires λ ≥ wmax, we can apply the same technique as above but demand
that w(G)

∆k ≥ wmax.

In the next section, we re�ne the approach for the max-min CVP and guarantee a
∆-approximation also for the case w(G)

∆k < wmax.
For both versions of the CVP, one can also �nd examples for which the algorithm attains

an approximation ratio of ∆. While the author of this thesis wonders how many people

1

1 + ε

1 1 1
. . .

1

(a) Output of BalancedPartition for CVP in-
stance (G,w, |V |).

1

1 + ε

1 1 1
. . .

1

(b) Optimal solution for min-max CVP in-
stance (G,w, |V |).

. . .

. . .

(c) Output of BalancedPartition for CVP
instance (G, 1, 2).

. . .

. . .

(d) Optimal solution for max-min CVP in-
stance (G, 1, 2).

Figure 3.3.: Exemplary instances of CVP for which BalancedPartition attains an approx-
imation ratio of ∆.
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actually read this sentence, let us start with the min-max CVP: We consider a star graph
where the center has a weight of 1+ε and every other node has unit weight. Consequently,
we set λ = wmax = 1+ε and BalancedPartition yields the solution depicted in Figure 3.3a
with objective value ∆ + ε. In Figure 3.3b, the optimal solution with objective value 1 + ε
is depicted. Note however, that the example exploits that m � k for the output of the
algorithm, i.e., we only obtain two trees instead of |V | trees. It remains open if a second
stage optimization where we iteratively partition the heaviest tree can further improve the
theoretic bound.
An approximation ratio of ∆ can also be attained for the max-min CVP, as the example

in Figure 3.3c and 3.3d shows. The depicted graph has unit weights and we consider k = 2,
leading to λ = 2∆

2∆ = 1 and the output of BalancedPartition in Figure 3.3c with objective
value 1. The optimal solution, shown in Figure 3.3d, on the other hand, has an objective
value of ∆. This example can also easily be extended for arbitrary k.

To end this section, we will brie�y discuss the choice of the spanning tree. To obtain a
best possible approximation result, we are interested in �nding a spanning tree whose
maximum degree is as small as possible. This problem is known as minimum degree

spanning tree problem. While the problem is NP-hard, Fürer and Raghavachari [FR92]
give a polynomial time algorithm to �nd a spanning tree of degree at most ∆∗ + 1, where
∆∗ is the maximum degree of an optimal spanning tree. For special classes of graphs,
better results can be achieved. For instance, we will exploit later that every line graph
admits a spanning tree of degree at most 3 (cf. Lemma 3.7).

3.2.3 A Re�nement for max-min CVP

The ∆-approximation for the max-min CVP from Theorem 3.3 requires w(G)
∆k ≥ wmax. In

the following, we will derive an alternative approach to drop this condition.
Let us �rst examine why the condition was imposed, and why the precondition λ ≥ wmax

in BalancedPartition is set. It is necessary in order to apply Lemma 3.2, and in this
lemma it is only needed to prove that each template has weight less than ∆λ. This, in
turn, is used for the max-min variant in Theorem 3.1 to show m > k, and that we can
hence merge templates to obtain a partition into k parts.
Here, we adjust this approach, and use BalancedPartition only for certain parts of the

graph. Adhering to the interpretation of maximizing the number of templates subject to a
lower weight bound λ on each template, we �rst identify the heavy vertices that can form
such a template on their own, i.e., we de�ne

H := {v ∈ V : wv ≥ λ}.

The algorithm MaxMinPartition starts by removing these heavy vertices from G, such that
we are left with a number of connected components which we categorize based on their
cumulated weight. Components with cumulated weight less than λ are aggregated in the
set G<, the other components form the set G≥. Note that by design, each component in G<
is adjacent to a vertex h ∈ H. Therefore, we form templates Sh = {h} for every h ∈ H and
add each component in G< to the template of an adjacent heavy node h ∈ H. Consequently,
we are only left with the components in G≥, and these are partitioned using Algorithm 3.1.
More speci�cally, we observe that the maximum vertex weight of any component Gi ∈ G≥
is smaller than λ (since Gi∩H = ∅), and that the preconditions for the algorithm are hence
satis�ed. BalancedPartition(Gi, w, λ) now returns a partitioning Si1, . . . , S

i
ki

of Gi, and
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Algorithm 3.2: MaxMinPartition(G,w, λ)

Input: graph G = (V,E), w ∈ QV
>0, λ ≥ 0

Output: connected subgraphs S1, . . . , Sm ⊆ G with V =
⋃̇

i∈[m]

V (Si),
approximation bound ∆

1 H ← {v ∈ V : wv ≥ λ}
2 G< ← connected components C of G−H with w(C) < λ
3 G≥ ← connected components C of G−H with w(C) ≥ λ
4 for h ∈ H do

5 Sh ← ({h},∅) // The graph consisting of node h
6 for C ∈ G< do

7 h← any vertex in H adjacent to C
8 Sh ← Sh + C

9 for Gi ∈ G≥ do
10 Si1, . . . , S

i
m ← BalancedPartition(Gi, w, λ)

11 ∆i ← maximum degree of the spanning tree used in BalancedPartition

12 if w(Sim) ≥ λ then
13 Si ← {Si1, . . . , Sim−1, S

i
m}

14 else

15 Si ← {Si1, . . . , Sim−2, S
i
m−1 + Sim}

16 return
⋃
h∈H

Sh ∪
⋃

Gi∈G≥
Si , max

Gi∈G≥
∆i

i� w(Siki) < λ, we merge Siki and S
i
ki−1 to form a connected subgraph of weight at least λ.

The resulting partitioning of Gi is denoted by Si, and we de�ne S =
⋃
h∈H

Sh ∪
⋃

Gi∈G≥
Si.

Now there are two possibilities: If |S| < k, we did not end up with a su�cient number
of templates and, therefore, have to decrease the weight bound λ and iterate. If |S| ≥ k,
however, we merge connected sets arbitrarily in S until |S| = k. A binary search for the
largest λ in the interval [0, w(G)/k] for which MaxMinPartition returns a set S with at least
k elements, leads to a ∆-approximation for max-min CVP.

Lemma 3.4 The output S of MaxMinPartition(G,w, λ) is a [λ,∞)-CVP for G.

Proof. From the construction it is clear, that each vertex belongs to exactly one template,
i.e., we have a vertex partition. Furthermore, the graphs Sh for h ∈ H are connected (cf.
line 7) and w(Sh) ≥ wh ≥ λ. The graphs in Si for Gi ∈ G≥ are also connected since they
are the output of BalancedPartition. If in line 15, the last two graphs are combined, the
resulting graph is still connected, due to the design of BalancedPartition. This operation
also ensures that w(Si) ≥ λ for all Si ∈ Si.

Lemma 3.5 Let (G,w, k) be an instance of max-min CVP with optimal objective

value W ∗. If MaxMinPartition(G,w, λ) yields output (S, ∆) with |S| < k, then ∆λ > W ∗.

Proof. For the proof we assume that ∆λ ≤W ∗, and we will show that with such a λ, the
output S of MaxMinPartition has at least k templates.
To this end, we consider the sets H, G<, and G≥ = {G1, . . . , G`} that are constructed
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within MaxMinPartition, and an optimal solution S∗ = {S∗1 , . . . , S∗k} of the instance
(G,w, k). For Gi ∈ G≥, we de�ne S∗i := {S ∈ S∗ : S ⊆ Gi}. All other optimal tem-
plates form the set S∗H , i.e., S∗H := S∗ K

⋃`
i=1 S∗i , and we note that these sets form a

partition of S∗.
Observe that for each S ∈ S∗H , we have S ∩H 6= ∅. To see this, recall that H separates

all Gi ∈ G≥ and all C ∈ G< from each other. Therefore, if for some S ∈ S∗, we know that
S ∩Gi 6= ∅ but S 6⊆ Gi for some Gi ∈ G≥, then S ∩H 6= ∅ is implied. Analogously, since
w(S) ≥ λ, if S ∩ C 6= ∅ for some C ∈ G<, then S ∩H 6= ∅ is also necessary. Since each
h ∈ H can only be part of one template, we can derive that |S∗H | ≤ |H|.
Next, we show that |S∗i | ≤ |Si| for i ∈ [`]. To this end, we consider a �xed Gi ∈ G≥ and

the output Si1, . . . , S
i
m of BalancedPartition(Gi, w, λ). Now we have

|S∗i |W ∗ ≤
∑
S∗∈S∗i

w(S∗) ≤
m∑
j=1

w(Sij) < m∆λ. (3.1)

The �rst inequality holds because W ∗ = minS∈S∗ w(S). The second inequality holds
because S∗i is a packing in Gi while Si1, . . . , S

i
m is a partitioning. The third inequality

holds because w(Sij) < ∆λ for j ∈ [m], as is guaranteed by BalancedPartition. Now
since ∆λ ≤W ∗, we derive |S∗i | < m from (3.1), and since m− 1 ≤ |Si| (recall that the last
two templates might be merged), we conclude that |S∗i | ≤ |Si|.
Taking everything together, we derive a contradiction to |S| < k:

|S| = |H|+
∑̀
i=1

|Si| ≥ |S∗H |+
∑̀
i=1

|S∗i | = |S∗| = k.

Let us �nally examine the time complexity of MaxMinPartition. Finding the heavy
vertices H and computing the resulting connected components of G−H can be performed
in time O(|E|). The algorithm BalancedPartition runs in time O(|E(Gi)|) for every
subgraph Gi ∈ G≥. Since the graphs Gi are pairwise disjoint, the total running time of
MaxMinPartition is O(|E|).

Theorem 3.6 Let (G,w, k) be an instance of max-min CVP with optimal objective

value W ∗, and let ∆ be the maximum degree of a spanning tree of G. Then, a ∆-

approximation for this instance can be computed in O(log(W ∗)|E|).

Proof. First, let us assume integer node weights, which we can always obtain by appro-
priate multiplication of rational weights. Then, the optimal value W ∗ is also integer,
and for di�erent integer values W we choose λ = bW∆ c. If we �nd that for some λ∗,
MaxMinPartition yields a partition S with at least k templates, but for λ∗ + 1 we obtain
less than k templates. Then,

W ∗ < ∆(λ∗ + ε) = ∆λ∗ + ∆ε
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3.2.4 2-Approximation for Edge Partitioning

In this secion, we extend the presented algorithms to achieve a 2-approximation for the
respective connected edge partitioning problem (cf. Section 2.5), denoted as CEP. As
detailed in Section 2.7, we transform the problem to the line graph, and solve it as a
CVP. Knowing that we are concerned with a line graph, however, we can improve on the
approximation guarantee.
In 1970, Beinecke [Bei70] proved a characterization of line graphs in terms of forbidden

subgraphs. One result is that a line graph cannot contain a claw, i.e., a K1,3, as induced
subgraph. This has an interesting implication concerning the minimum degree spanning
tree of line graphs.

Proposition 3.7 Every line graph has a spanning tree T with ∆(T ) ≤ 3. Furthermore,

every tree found with depth-�rst search (DFS) has this property.

Proof. Let L be a line graph of some simple graph and let T be a tree obtained by depth-
�rst search in L. Assume that T has a vertex v of degree ≥ 4, then v has at least three
child nodes a, b, c. Since T is a DFS tree, we know that ab, ac, bc /∈ E(L). Thus, L contains
an induced claw on the nodes {v, a, b, c}, contradicting the assumption that L is a line
graph.

With a transformation of the problem to the line graph, this result immediately gives us
a 3-approximation for the min-max CEP and max-min CEP. However, we can use the fact
that the line graph L(G) of G is claw-free for an even stronger result. Namely, we obtain
a 2-approximation for both variants of the CEP. The following lemma lays the foundation.

Lemma 3.8 Let G = (V,E) be a claw-free graph with vertex weights w ∈ RV>0 and let

λ ∈ [wmax, w(G)]. Then there exists a tree S ⊆ G with w(S) ∈ [λ, 2λ) such that G− S is

connected.

Proof. The proof is constructive. Consider a DFS spanning tree T = T r of G which is
rooted at some node r. As G is claw-free, degT (r) < 3. From Proposition 3.7 we know
that ∆(T ) ≤ 3 and hence, every node in T has at most two child nodes.
If there exists some v ∈ T r such that w(T rv ) ∈ [λ, 2λ) we are done since G − T rv is

connected. In the remaining case there has to exist a node v with child nodes x and y such
that w(T rv ) ≥ 2λ while w(T rx ) < λ and w(T ry ) < λ. In particular, note that w(T rl ) ≤ λ
for every leaf l in T r and that v with w(T rv ) ≥ 2λ cannot have a single child node x with
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lighted subtree T r

y + vy

Figure 3.4.: Exemplary transformation from line graph to DFS spanning tree.
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Algorithm 3.3: BalancedLineGraphPartition(L,w, λ)

Input: line graph L = (V,E), w ∈ RV>0, λ ≥ wmax

Output: trees T1, . . . , Tm ⊆ L with V =
⋃̇
V (Ti)

1 T := ∅
2 while w(L) ≥ 2λ do

3 S := tree in L as constructed in Lemma 3.8
4 T := T ∪ S
5 L := L− S
6 S := spanning tree of L
7 return T ∪ S

w(T rx ) < λ. Consequently, we have

λ = 2λ− λ ≤ w(T rv )− w(T ry ) = w(T rx ) + wv < λ+ λ = 2λ

to prove w(T rx ) + wv ∈ [λ, 2λ), and analogously we obtain w(T ry ) + wv ∈ [λ, 2λ). So if
v = r, we choose the tree consisting of T ry extended with the edge vy, which we denote by
S = T ry + vy, and �nd that G − S is still connected. If v 6= r, then v has a parent node
u. Because T r is a DFS tree we know that xy /∈ E, and since G is claw-free, we know that
ux ∈ E or uy ∈ E. W.l.o.g. we assume the former and conclude that S = T ry + vy is a
sought tree in G.

This result can be used to de�ne an algorithm for tree partitioning of line graphs as
listed in Algorithm 3.3. Analogously to BalancedPartition, this algorithm yields a quasi-
[λ, 2λ)-partition, and due to Theorem 3.1, we immediately obtain a 2-approximation for
the min-max connected edge partitioning problem (CEP). The same approximation for the
max-min CEP (without condition on wmax) is achieved from MaxMinPartition by replacing
each call to BalancedPartition with the same call to BalancedLineGraphPartition.



4
Homogeneous Vertex Covering

Grouping similar entities in a complex network is a common and essential task in many
applications. Such homogeneous covering problems occur in social studies, political dis-
tricting, and sales territory design. That is also the reason why the research on this topic
is mainly driven by the operations research community. As many applications require
disjoint template graphs, the partition variant is predominant in this �eld. In addition,
the unique structure of a partition often makes the problem more amenable to theoretical
results. For the problems discussed here, the cardinality of the partitioning may be part
of the input or not.
As mentioned above, homogeneity and balancing are not necessarily opposing objectives.

If for a homogeneous cover, the template size is bounded by upper or sometimes lower
bounds, we call this a capacitated covering. The other case is referred to as uncapacitated
covering. Uncapacitated partitioning is closely related to data clustering, where data
points are to be grouped in several clusters of similar data points. Formulated as a vertex
partitioning problem, however, the host graph is usually complete. This makes methods for
general vertex partitioning unattractive for data clustering problems. On the other hand,
methods for data clustering are usually inapplicable for general vertex partition problems
on arbitrary host graphs or with constrained templates. Therefore, we will not discuss
problems or techniques for data clustering in this thesis, but refer to [JMF99; HPK11].
Instead, we begin this chapter by examining di�erent possibilities to measure homo-

geneity and by presenting three problem classes that are central for homogeneous vertex
coverings. We then proceed to overview the most important heuristic (Section 4.2) and ex-
act (Section 4.3) solution approaches. In Section 4.4, we will discuss a method to e�ciently
incorporate connectivity requirements.

4.1 What is Homogeneity?

The main question for homogeneous covers is: How should we measure homogeneity? We
follow the presentation of the survey article by Hansen and Jaumard [HJ97]. Assume
that the dissimilarity between any two vertices is given by a symmetric, non-negative
matrix (duv) with zeros on the diagonal. For given vertex weights w ∈ RV≥0, this could be
duv = |wu−wv|. For given edge weights, on the other hand, duv could be the shortest path
distance between u and v. Another possibility is that (duv) is the adjacency matrix with
edge weights as entries.
Two ways to achieve homogeneous groups are to maximize the separation between di�er-

ent groups or the homogeneity within the single groups. Given the dissimilarities, we �rst
focus on measures for the separation or homogeneity of a single template T . Concerning
separation-based measures, we list the following two.

29
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� split s(T ) := min
u∈T, v /∈T

duv,

� cut c(T ) :=
∑
u∈T

∑
v/∈T

duv.

For a �xed template, both measures consider vertex pairs where exactly one vertex belongs
to the template. While split is concerned with the dissimilarity of the worst-case pair, the
cut objective considers the sum over all dissimilarities. Hence, cut is a more robust measure
than split. In order to obtain a homogeneous cover, we maximize the value of the worst
template or the sum over all templates, respectively.
In addition to separation-based measures we can also consider homogeneity-based mea-

sures. For these we consider dissimilarities of vertex pairs with both vertices in a �xed
template T . Here, we discuss the following measures.

� diameter d(T ) := max
u,v∈T

duv,

� radius r(T ) := min
u∈T

max
v∈T

duv,

� star st(T ) := min
u∈T

∑
v∈T

duv,

� clique cl(T ) :=
∑

u,v∈T
duv,

� sum-of-squares ss(T ) =
∑
v∈T

(wv − wT )2 where wT = 1
|T |
∑
v∈T

wv.

Again, we can optimize the value of the worst template or the sum over all templates,
but in contrast to separation-based measures, we aim for a minimization. As described in
Hansen and Jaumard [HJ97] these measures may also have normalized variants.
Let us take a closer look at the measures (cf. [HJ97]). Note that for the partitioning

case, maximizing the sum of cut values is equivalent to minimizing the sum of clique values.
This does only hold if we consider the sum of the template values instead of the value of
the worst template. Another useful observation is that radius, star, and sum-of-squares
make use of a center that can also be used as a representative of a template. While radius
considers the maximum distance (or dissimilarity) to the center, the star criterion takes
into account all distances. In this sense, the measures are not only comparable to split and
cut, but also have a relation to facility location. In a nutshell, given a number of points, a
distance matrix, and a number k, the facility location problem is to determine locations for
k facilities to minimize the distance to the given points. The two most prominent objectives
for this problem are k-center and k-median. The former aims to minimize the maximum
distance from a point to its closest center which is equivalent to the worst-case radius
objective. On the other hand, the k-median aims to minimize the sum over all distances
from a point to its closest center which is equivalent to the sum of stars objective. A special
feature of facility location problems is that the host graph is usually complete and, hence,
connectivity of templates is not an issue. Finally, note that the sum-of-squares can easily
be extended to multidimensional vertex weights by considering the (squared) Euclidean
distance between a vertex weight and the mean vertex weight.
We stress that the literature covers even more than the presented measures for homogene-

ity. However, our selection is concentrated on the most prominent ones in the operations
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research community. Depending on the dissimilarity measure, most of the objective func-
tions tend to favor connected templates. This is also desired in various applications and,
thus, many models incorporate such connectivity constraints. Before we address di�er-
ent optimization methods, we single out a special homogeneous vertex covering problem
and describe two independent �elds of application that drive the research on homogeneous
covers: community detection and territorial districting.

Graph Partitioning: A famous variant of vertex covering is the partitioning case
where the host graph is edge-weighted and the dissimilarities are given by the weighted
adjacency matrix. The problem is often considered under the name graph partitioning,
and when referring to this particular version, in contrast to a general vertex covering,
we will adopt this notion here. The almost universally accepted measure for the quality
of a partition is the cut objective, sometimes also in normalized form. In many cases a
capacitated clustering is sought, i.e., additional balancing constraints hold the templates
to similar sizes. Various books and survey articles (e.g. [Fjä98; BS11; Bul+16]) detail
problems, methods and applications for this particular vertex partitioning problem. In the
optimization methods overview below, we also discuss results on graph partitioning.

Community Detection: The advances in this �eld are driven by the analysis of
social and biological networks that are typically very large and in most cases unweighted.
Problems of community detection are considered in the partitioning but also in the covering
version. The name stems from the studying of social or citation graphs where one can
observe that two neighbors of the same vertex are more frequently linked by an edge than
two arbitrary vertices [GN02]. Accordingly, we can �nd subgroups of people with relatively
dense internal connections. By identifying these communities, we can better understand
the structure and the interdependencies in these networks.
The problem is, however, ill-posed and various measures for the community analysis are

considered. Let us single out the modularity maximization, de�ned by Newman and Girvan
[NG04]. Informally, the modularity measures the fraction of edges inside of the communities
minus this (expected) fraction in a random graph with identical degree distribution. For
the speci�cs, di�erent variants of modularity, and a plethora of other measures we refer the
reader to the survey on community measures by Chakraborty et al. [Cha+17]. While the
modularity maximization is among the most popular objectives in community detection,
it has a notable resolution limit, i.e., it tends to ignore relatively small clusters even if
they are well de�ned communities like cliques [FB07]. Furthermore, as most objectives,
modularity maximization is NP-hard [Bra+07].
Due to the size of the host graphs the solving methods in this �eld are not exact but

rely on heuristic approaches. Schae�er [Sch07] gives an excellent survey over prominent
solution techniques, but there are also more recent surveys [FH16; Jav+18].
As pointed out above, the applications of community detection go well beyond the

analysis of social networks. Closely related problems arise in the analysis of di�erent
biological networks. Here, the clustering helps to uncover the mechanisms behind gene
expression [XOX02] or protein-protein interaction [BH03; KPJ04].

Territorial Districting: While community detection is concerned with abstract graphs,
territorial districting problems are usually tied to graphs representing geographic maps.
The predominant application is political districting but the same problem occurs in the
planning of school districts [FG90], police patrol areas [Ami+02; CHQ10; CCY19], or in
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sales territory design [HS71; FP88; ZS05; SRC11]. Motivated from these applications, the
number of districts is usually given and the goals of the partition are threefold. Resulting
districts should be contiguous, compact, and balanced with respect to given vertex weights
(e.g., the number of voters, children, or customers), While the contiguity is usually ensured
by constraints on the template graphs to be connected, the balance of the templates can be
implemented as constraints or as part of the objective function. The compactness of dis-
tricts is the most vague goal among these. Informally, �a round-shaped district is deemed
to be acceptable, while an octopus- or an eel-like one is not� [RSS13]. The compactness
can be formalized by using homogeneity measures such as star or radius with appropriate
distance measures for every pair of nodes (e.g., bee-line distance or shortest path distance).
Two excellent survey articles on this topic are due to Ricca, Scozzari, and Simeone

[RSS13] with an emphasis on optimization methods and by Kalcsics and Ríos-Mercado
[KR19] with an emphasis on di�erent variants and applications. A recent book summarizes
latest results, models, and applications [Río20].

Let us now turn to di�erent approaches for solving homogeneous covering and partition-
ing problems. We are focused on works of the operations research community with the
presented homogeneity measures. These papers mostly relate to districting applications or
graph partitioning while several (heuristic) methods are also used in community design.
Table 4.1 categorizes contributions to homogeneous vertex covering problems.

Table 4.1.: Homogeneous vertex covering contributions: Entries with dashed underlines do
not impose the connectivity of the templates as a constraint.

heuristic exact

split [Han+03] [HJM90] , [MSN97]

cut
[KL70] , [DH72] , [Fie75] ,

[SM00] , [Bic11] , [Kim+11] ,
[LK13] , [SS13]

[GW89] , [BCR97] , [Sen01] ,
[Arm+08a] , [LÖ10] , [Sør17] ,
[Hoj+21], [PW21], [VB22]

diameter [Ami+02], [RS11] [GN70]

radius [RS08], [RF09], [ERD14]
[Nyg88], [RF09], [SRC11],
[Lar+16], [CGP19], [BSS23]

star [FP88], [BLP05], [Seg+07]
[MJN98], [Seg+07],

[Apo+08], [SRC11], [BSS23]

clique
[ABR92] , [MSN97],
[HFV99] , [DAR12]

[JMN93] , [Fer+96] , [Fer+98]

sum-of-squares [MS95] [Hes+65]

survey [Mur85], [Gor96], [HJ97] , [SKK00] , [HM03], [RSS13], [Bul+16]
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4.2 Heuristic Solution Approaches

Especially for large instances, many common solution methods rely on hierarchical cluster-
ing that can be either agglomerative (bottom-up) or divisive (top-down). The former start
with singleton templates that are successively merged, for instance in a greedy fashion. On
the other hand, divisive methods start with the host graph as single template and repeat-
edly divide the current template graphs, for instance by computing minimum cuts or by
spectral methods exploiting eigenspaces of the graph's Laplacian [DH72; Fie75; SM00].
Similar to agglomerative approaches, graph coarsening is a method where multiple ver-

tices are contracted to a single vertex. This process can either be repeated until a sought
number of vertices remains, or other optimization methods can be applied to the coarsened
graph. Bichot [Bic11] gives an overview on this topic and discusses di�erent coarsening and
uncoarsening techniques. This approach is also particularly well suited for parallelization
[Pel11; LK13].
Another heuristic approach is an adaption of the k-means algorithm. Iteratively, tem-

plate centers are chosen (location) and every vertex is then assigned to its closest center
(allocation). Again, a new template center can be determined for every template and the
process iterates until a �xed point, i.e., a local optimum, is found. This process was �rst
used by Hess et al. [Hes+65]. Later, Segura-Ramiro et al. [Seg+07] present an adaption
for the case that the templates should also be balanced.
Graph partitioning techniques from computational geometry are reviewed by Schloegel,

Karypis, and Kumar [SKK00]. Geometric approaches are based on coordinates of the
vertices instead of the underlying graph structure. If such coordinates are not given, they
can be set based on the connectivity of the graph [Hal70]. Again, many solution methods
are based on recursive bisection (see e.g. [HR95; GMT98]). Another approach, lying in
between geometric and location-allocation methods, uses Voronoi diagrams to partition
the space. After �xing the Voronoi centers, the resulting Voronoi cells give a partition of
the space and, therefore, of a graph embedded therein. Partitioning using Voronoi regions
is applied for community detection [Der+14] and also for political districting [RSS08].
If the host graph is a tree, many homogeneous covering problems can be solved in

polynomial time. While Maravalle and Simeone [MS95] prove this for the sum-of-squares
measure, Hansen et al. [Han+03] consider the split version. Both exploit this fact for
another heuristic approach where the problem is solved on a spanning tree of the host
graph.

Apart from these constructive approaches, several local improvement heuristics can be
employed. We start with approaches specialized for graph bipartition. Note that the
uncapacitated version of this problem can e�ciently be solved using a max-�ow min-cut
algorithm [FF56]. Including balancing constraints, the �rst and most famous improvement
heuristic is due to Kernighan and Lin [KL70]. The method iteratively swaps two vertex
sets of same cardinality in di�erent parts of the current bipartition. The sets are chosen
so as to improve the objective value as much as possible. Many other heuristics for graph
bipartitioning either re�ne or build on this algorithm (e.g. [FM82; KK98]). A more modern
approach by Sanders and Schulz [SS13] makes local improvements by detecting negative
cycles.
Regarding general vertex partition problems, greedy local search techniques are used

in [HFV99], [RF09], and [DAR12] for example. Hansen and Mladenovi¢ [HM03] propose
a variable neighborhood search that uses multiple neighborhood de�nitions. If a local
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optimum in a neighborhood is found, one can simply change the neighborhood and continue
the search. Other improvement approaches include tabu search [ABR92; BEL03; DAR12],
simulated annealing [ABR92; Ami+02; DAR12], or genetic algorithms [BLP05; Kim+11].
A comparison of di�erent local search methods for districting problems is done by Ricca
and Simeone [RS08]. In particular, they compare the greedy local search, tabu search,
simulated annealing, and another heuristic called old bachelor acceptance that is due to
Hu, Kahng, and Tsao [HKT95]. Their computational results based on political districting
instances for Italy show that the latter produces the best results in the majority of the
cases.

4.3 Exact Solution Approaches

In general, exact methods in this �eld rely on integer programming formulations. We start
with the few exact approaches that follow a di�erent route: Hansen, Jaumard, and Musitu
[HJM90] present an exact approach for the split case without connectivity constraints
in which a sequence of bin packing problems is solved. Sensen [Sen01] solves the graph
partitioning problem with a branch-and-bound algorithm where the bounds are based on
multi-commodity �ow problems.

With respect to IP formulations, we can group the approaches into two categories: For-
mulations where we have one variable per possible template, and those where the optimal
templates are composed by variables related to the vertices of the host graph.

4.3.1 Column Generation

A naive approach for the vertex covering problem uses one variable per feasible template.
Let T denote the set of feasible templates, and assume that the inhomogeneity of template
T ∈ T is expressed by the penalty term pT . Then, we can use the following classical
covering IP formulation:

min
x

∑
T∈T

pT xT (4.1a)

s.t.
∑
T3v

xT ≥ 1 ∀v ∈ V (4.1b)

xT ∈ {0, 1} ∀T ∈ T (4.1c)

We have a binary variable xT for every feasible template T , indicating if T is used in
the covering, and minimize the cumulated penalty (4.1a) while covering all vertices (4.1b).
The partitioning case is obviously modeled by replacing the inequality in (4.1b) with an
equality. If we are not optimizing with regard to the cumulated (in)homogeneity, but aim
to minimize the maximum penalty pmax of all covering templates, this can be modeled
with the additional constraint pmax ≥ pT xT .
While this formulation is simple and self-evident, it quickly becomes impracticable to

enumerate all feasible templates or determine all associated penalties. Early attempts in-
deed enumerate a set T of promising templates to run the above model with. Gar�nkel and
Nemhauser [GN70] solve a political districting problem with up to 2495 possible templates,
Nygreen [Nyg88] enumerates up to 564 possible templates for a similar problem.



4.3 Exact Solution Approaches 35

In many applications, however, we can expect millions of feasible templates. In such
situations, a column generation approach, where new templates are generated only if nec-
essary, is an excellent tool. We will go into the details of this approach in Section 6.2.2,
and continue here with the literature overview.
Johnson, Mehrotra, and Nemhauser [JMN93] are the �rst to employ column generation

in a branch-and-price framework. Mehrotra and Trick [MT98] copy this approach but
develop a new method to tackle the pricing problem. A column generation approach
for connected templates is done by Mehrotra, Johnson, and Nemhauser [MJN98]. They
solve the homogeneous partitioning problem with star objective in a case study concerning
electoral districts in South Carolina. To reduce the complexity of the problem, the set of
possible template graphs is further restricted. Namely, it is required that with any vertex
in a template also all vertices on a shortest path to the template center have to belong
to this template. This constraint dramatically reduces the complexity of the subproblem
[SC98]. Clautiaux, Guillot, and Pesneau [CGP19] consider a similar problem motivated
by an application in waste collection. They also use column generation and solve the
NP-hard pricing problem with Lagrangian relaxation and a dynamic program. However,
identical to [MJN98], they demand that each template is a subtree of the shortest path tree
to its center. In Section 6.2.2, we will present an approach to allow arbitrary connected
subgraphs within the pricing problem.

4.3.2 Compact Models

Apart from these approaches to dynamically generate possible templates, there are com-
pact models that merge vertices to optimal templates. The models are almost exclusively
designed for graph partitioning, i.e., the templates are not required to be connected, and we
minimize the cumulated weight of all cut edges. In the following, we review three di�erent
IP formulations to model the graph partitioning problem. We also examine how connec-
tivity constraints can be incorporated into the formulations. For this purpose, there are
basically two possible approaches: Enforcing connectivity by some kind of �ow variables,
or dynamically separating non-connected solutions within a branch-and-cut framework.
Recall that for partitioning problems, the min-cut and max-clique objectives are equiva-

lent and, indeed, both variants are used in these formulations. For the following exposition,
we assume that V = {1, . . . , n} and denote the edge weights of the host graph by (wuv).

Triangular Model: The triangular formulation (TRI) was designed for the clique
partitioning problem, i.e., to partition the vertices of a complete graph with arbitrary
edge weights w ∈ RE into any number of cliques while minimizing the cut weight. The
formulation of Grötschel and Wakabayashi [GW89] uses binary variables xuv for any pair
of vertices with u < v to indicate whether u and v belong to the same template:

(TRI)

max
x

∑
uv∈E

wuv xuv (4.2a)

s.t. xuv + xuw − xvw ≤ 1 ∀u, v, w ∈ V : u < v < w (4.2b)

xuv − xuw + xvw ≤ 1 ∀u, v, w ∈ V : u < v < w (4.2c)

−xuv + xuw + xvw ≤ 1 ∀u, v, w ∈ V : u < v < w (4.2d)

xuv ∈ {0, 1} ∀u, v ∈ V : u < v (4.2e)
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These triangle inequalities model the transitivity of the equivalence relation of vertices
belonging to the same template. The same formulation can be used for the graph partition-
ing problem, i.e., to partition the vertices of an arbitrary graph into arbitrary sets while
minimizing the cut: It simply su�ces to set wuv = 0 for all uv ∈

(
V
2

)
K E. The equivalent

interpretation is to add all non-existing edges to the host graph and setting their weight
to 0.

This approach, however, has a drawback: Although the original host graph might be
sparse, the formulation needs O(n3) constraints. By showing that it is su�cient to con-
sider only triples u, v, w such that at least two of these nodes are adjacent, Nguyen et al.
[Ngu+17] are able to reduce this to O(mn).

Grötschel and Wakabayashi [GW90] carry out a polyhedral study and �nd various facets
of the corresponding polytope. The resulting cutting plane algorithm [GW89] solves all
considered instances in the root node, i.e., no branching is necessary. Oosten, Rutten, and
Spieksma [ORS01] continue the polyhedral study and provide more facets for this polytope.

The TRI formulation has another drawback, as it is not possible to incorporate a bound k
on the size of the partitioning (without introducing more variables, leading to formulations
similar to the ones discussed next). On the positive side, it is possible to model the
capacitated partitioning problem by adding the constraint∑

uv∈E
wu xuv ≤ WU − wv ∀v ∈ V, (4.3)

or a similar constraint for a lower weight bound on each template (cf. [LÖ10; PW21]).

Faigle, Schrader, and Suletzki [FSS87] appear to have been the �rst to carry out a poly-
hedral study of the capacitated clustering problem, considering unit weights on the vertices
and an upper cardinality bound on the templates. Labbé and Özsoy [LÖ10] examine the
polytope if the cardinality of the templates is bounded from below and above.

Vertex-to-Cluster Formulation: The vertex-to-cluster formulation (VTC) assigns
each vertex to one of the k possible clusters. If the number of templates is not restricted,
we have to set k = n. We consider binary variables xiv for v ∈ V, i ∈ [k] to indicate if
vertex v is assigned to template i. We need additional binary variables zuv for uv ∈ E
to indicate whether u and v belong to di�erent templates, and should hence be accounted
for in the objective function. The approach was �rst stated by Johnson, Mehrotra, and
Nemhauser [JMN93], but we will mainly follow the presentation of Validi and Buchanan
[VB22].
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(VTC)

max
x,z

∑
uv∈E

wuv zuv (4.4a)

s.t.
∑
i∈[k]

xiv = 1 ∀v ∈ V (4.4b)

zuv ≥ xiu − xiv ∀u, v ∈ E, ∀i ∈ [k] (4.4c)

xiu + xiv + zuv ≤ 2 ∀u, v ∈ E, ∀i ∈ [k] (4.4d)

xiv ∈ {0, 1} ∀v ∈ V, ∀i ∈ [k] (4.4e)

zuv ∈ {0, 1} ∀u, v ∈ E (4.4f)

Constraints (4.4b) ensure that each solution is indeed a partition, while constraints (4.4c)
force that zuv = 1 whenever uv is a cut edge. The constraints (4.4d) are only necessary if
there are negative edge weights, and in this case, they enforce the reverse of (4.4c). Using
the x variables, this model can easily be extended for the capacitated case.

A major issue of this formulation is symmetry, meaning that any feasible partitioning
is represented by k! equivalent solutions of VTC that come from permuting the template
labels. Such symmetries cause trouble in the branch-and-bound procedure and, hence,
di�erent approaches to break symmetries have been proposed (see [Mar10; PR19] for an
overview).
The symmetries occurring here are very similar to the ones arising in the classical vertex

coloring formulation. No wonder that approaches to break those, e.g., from [MDZ00],
transfer to our formulation. One of the standard tricks is to enforce that the template
with label i contains no smaller nodes than i (recall that V = [n]), which can be done by
the inequalities

xiv ≤ xii for v > i and xiv = 0 for v < i. (4.5)

While this eliminates the symmetry only to some degree, Kaibel and Pfetsch [KP08] pro-
pose a set of linear inequalities to remove all symmetry. Faenza and Kaibel [FK09] use an
extended formulation to drastically reduce the number of necessary inequalities. Validi and
Buchanan [VB22] con�rm a positive impact of this formulation for a districting problem.
They also introduce a number of variable �xing techniques for the capacitated version.
Kaibel, Peinhardt, and Pfetsch [KPP11] handle the symmetries of VTC in a di�erent

way. Instead of adding symmetry breaking inequalities, they propose a number of �xing
rules to apply in the nodes of the branch-and-bound tree. A generalization of this concept,
called orbital branching and �xing, is presented in [Ost+11] (not oriented towards graph
partitioning).
With modern MIP solvers constantly evolving, simple symmetry breaking inequalities

become less important for the modeler, as many symmetry issues are handled within the
solver during the presolve or via orbital branching and �xing [Ach+20].

Problem speci�c polyhedral insights, on the other hand, can considerably strengthen the
formulations. For the capacitated graph covering problem with unit weights, Sørensen �nds
various classes of facet-de�ning inequalities [Sør04; Sør07; Sør17]. Ferreira et al. [Fer+96]
study the capacitated version on a vertex-weighted host graph. They �nd di�erent facets
and valid inequalities for this polytope and employ these in a branch-and-cut framework
[Fer+98].
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Concerning connected templates, Validi, Buchanan, and Lykhovyd [VBL22] consider four
connectivity formulations, two based on �ows and two based on cuts. They �nd that the
cut approaches perform better and argue that the compactness objective of the templates
often su�ces to induce connectivity. Hojny et al. [Hoj+21] compare a single-commodity
�ow and a node separator approach and �nd the �ow formulation to be a competitive way
to model connectivity. The �ow formulations require the designation of a root of each
template, leading to formulations that are detailed next.

Vertex-to-Root Formulation: The idea of the vertex-to-root formulation (VTR)
is that one node of each template graph serves as representative (or root) of this template.
Instead of assigning the vertices to cluster labels as in the VTC formulation, we assign
the vertices to cluster representatives. Hess et al. [Hes+65] were the �rst to formulate this
model in the context of political districting. Here, we have binary variables xrv for v, r ∈ V
that indicate if vertex v is assigned to the template rooted at r ∈ V . The z variables are
identical to VTC.

(VTR)

min
x,z

∑
uv∈E

wuv zuv (4.6a)

s.t.
∑
r∈V

xrv = 1 ∀v ∈ V (4.6b)

zuv ≥ xru − xrv ∀u, v ∈ E, ∀r ∈ V (4.6c)

xrv ∈ {0, 1} ∀v ∈ V, ∀r ∈ V (4.6d)

zuv ∈ {0, 1} ∀u, v ∈ E (4.6e)

The model is very similar to VTC. In fact, we simply replaced every `i' with `r' and
every `[k]' with `V ', i.e., instead of assigning vertex v to k possible templates, we now
assign v to n possible representatives, increasing the number of variables and worsening
the symmetry of the model. So what is the advantage of this model? The variables xrr
that characterize the roots of the templates can be very helpful to integrate connectivity
constraints. Again, the x variables make it easy to formulate capacity constraints on each
template or a maximum covering size.
The symmetry of the VTR formulation is even worse compared to VTC. However, we

cannot only add the adapted inequalities (4.5), enforcing that the representative of each
template is its smallest vertex, but also improve them. As Validi and Buchanan [VB22]
point out, the concept of �smallest� can be extended to any ordering on the vertices.
More speci�cally, they construct an ordering that exploits the lower and upper capacity
bounds on connected templates which leads to signi�cant reductions of the problem size:
In their experiments on large districting instances with hundreds of nodes, over 95% of the
x variables could be �xed.

Special Cases: A special case of capacitated clustering is the equipartition or equicut
problem. The goal is a partition of the vertices into two sets that di�er by at most 1 in
cardinality. The associated polytope is studied by Conforti, Rao, and Sassano [CRS90]
and Souza and Laurent [SL95]; a branch-and-cut algorithm and a computational study
is presented by Brunetta, Conforti, and Rinaldi [BCR97]. In order to limit the size of
the branch-and-bound tree, Lisser and Rendl [LR03] and Anjos et al. [Anj+13] develop
improved bounds for this problem.
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The capacitated bipartition without requiring the parts to be of nearly equal cardi-
nality is studied by Armbruster et al. [Arm+08b] from a polyhedral standpoint with an
accompanying computational study in [Arm+08a].
Polytopes for partitioning a clique into a bounded number of templates are also con-

sidered by several authors [DGL92; CR95; AKP16; AK20]. If the host graph is a tree
and the template centers are �xed, Apollonio et al. [Apo+08] prove that the polytope
of connected centered partitions is integral and, hence, optimal partitions can be found
e�ciently. While [Apo+08] is focused on the star objective, Lari et al. [Lar+16] discuss
the radius objective. A polyhedral study for arbitrary host graphs is due to Chopra and
Rao [CR93]. In addition, Chopra [Cho94] �nds that cycle inequalities su�ce to de�ne the
polytope if the host graph is series-parallel. Finally, we note that for a �xed number of
templates, the uncapacitated graph partitioning problem can be solved in polynomial time
[GH94].

4.4 Connectivity with Few Roots

We have seen that many covering (or partitioning) problems require connectivity of the
templates. If the connectivity is enforced with a �ow, we need root nodes that serve as
sources (or sinks) for the �ow. The VTR formulation allows every vertex as potential root,
but if we are given a lower weight bound WL on the templates � as is usual in districting
problems � we might be able to drastically reduce the number of roots that is needed. Our
goal is to remove as few vertices as possible from G such that any connected component
in the resulting graph has cumulated weight less than WL. Consequently, any connected
subgraph with weight at least WL has to contain at least one of the removed vertices, and
we can choose these as roots. In the literature, such a vertex set is known as balanced
separator, but its de�nition is not consistent. Here, we use the following:

De�nition 4.1 Let G = (V,E) be a graph with node weights w ∈ RV≥0, X ⊆ V , and
α ∈ [0, 1]. We call X an α-balanced separator if any connected component C in G − X
satis�es w(C) ≤ αw(G).

In this section, we consider a more general problem that we can also use for �nding a
minimum number of roots for connectivity.

Minimum Balanced Separator

Instance: A graph G = (V,E) with node weights w ∈ RV≥0 and α ∈ [0, 1].

Problem: Find an α-balanced separator in G of minimum cardinality.

Unfortunately, this problem is NP-hard. By setting w ≡ 1 and α = 1
|V | , we basically

search for a minimum vertex cover, which is one of the classical NP-hard problems. If we
set α = WL−ε

w(G) for ε su�ciently small, Minimum Balanced Separator models our problem
of minimizing the number of necessary roots.
Balanced separators have a variety of other applications, and the book by Rosenberg

and Heath [RH01] discusses many of them. Most notably, they can be used in divide-
and-conquer algorithms reducing a given problem to a number of smaller instances [LT80],
which, in turn, �nds application for instance in VLSI layout for computer chip design
[BL84].
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The problem was originally introduced by Lipton and Tarjan [LT80] who also gave the
�rst approximation result. For planar graphs, this has been improved in [Dji00; Ale+07],
and for graphs with maximum degree 3 in [BJ92]. Preprocessing techniques to reduce the
problem size are studied in [Cas+21]. Other works focus on the separation into two vertex
sets, either from an exact [BS05; SB05; SC11] or approximative [FHL08; Hol+10; BW17]
view.
Here, we are going to discuss two exact approaches for Minimum Balanced Separator.

We start by presenting an adaption of a mixed-integer programming (MIP) formulation
from [Eli18]. The formulation is very large and has a weak LP relaxation. Therefore,
we propose a di�erent model and solve the Minimum Balanced Separator problem by
dynamically adding violated constraints to an alternative formulation. Our computational
comparison of the two approaches shows that the latter performs signi�cantly better.

4.4.1 Compact Flow Formulation

Elijazyfer [Eli18] proposes a MIP formulation to �nd α-balanced separators in edge weighted
graphs. In the following, we present the adapted version to the node weighted case. The
connectivity is based on a �ow formulation which requires directed graphs. To turn G into
a directed graph, we de�ne A as the bidirected arc set of the edges in E. The idea is to
search for an arc partition such that each component induces a connected subgraph and its
cumulative weight (without separator nodes) does not exceed αw(G). The set of vertices
occurring in more than one component constitutes an α-balanced separator. Therefore,
the objective is to minimize the cardinality of this vertex set, and the MIP formulation is
as follows.

min
x,s,c,y,q

∑
v∈V

xv (4.7a)

s.t.
∑
r∈V

yra = 1 ∀a ∈ A, (4.7b)

yr(u,v) = yr(v,u) ∀r ∈ V ∀(u, v) ∈ A, (4.7c)

2 yr(u,v) ≤ sru + srv ∀r ∈ V ∀(u, v) ∈ A, (4.7d)

qra ≤ yra (|V | − 1) ∀r ∈ V ∀a ∈ A, (4.7e)∑
v∈δ+(v)

qra −
∑

v∈δ−(v)

qra ≥ srv ∀r ∈ V ∀v ∈ V K {r}, (4.7f)

1 + xv (|V | − 1) ≥
∑
r∈V

srv ∀v ∈ V, (4.7g)∑
v∈V

(srv − crv)wv ≤ αw(G) ∀r ∈ V. (4.7h)

crv ≤ srv ∀r ∈ V ∀v ∈ V, (4.7i)

crv ≤ xv ∀r ∈ V ∀v ∈ V (4.7j)

xv ∈ {0, 1} ∀v ∈ V, (4.7k)

yra ∈ {0, 1}, qra ∈ N0 ∀r ∈ V ∀a ∈ A, (4.7l)

srv, c
r
v ∈ {0, 1} ∀r ∈ V ∀v ∈ V. (4.7m)
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The binary variables x de�ne the balanced separator and the variables y de�ne the arc
partition. We have the �ow variables q ensuring connectivity of the components, and
variables s and c to determine the weight of a component.
Constraints (4.7b) partition the arcs and (4.7c) force both directions of an arc to be in

the same component. In (4.7d), it is ensured that both endpoints of an arc are in the same
component as the arc. Lines (4.7e) and (4.7f) specify a �ow to ensure connectivity, and we
will discuss this method in more detail in the next chapter. If a vertex is in more than one
subgraph, it is deemed part of the separator, which is forced by (4.7g). The upper weight
bound of each component is set in (4.7h), while the variable crv indicates if vertex v in the
component rooted at r is excluded in the cumulative weight. This is only possible if srv = 1
(4.7i) and if v belongs to the separator (4.7j).
We can see that the model contains a large number of variables and constraints, and uses

many bigM constraints. This and the strong symmetry within the model lead to a weak LP
relaxation. Indeed, the dual bound of every single of the 75 instances in our computational
study remains zero, even after two hours. Symmetry breaking constraints similar to the
ones concerning the vertex-to-root formulation in the previous section, would certainly
bene�t this model. Also note that for the connectivity, we consider a �ow emerging from
every vertex, while our main motivation is to avoid this necessity. If we have to solve
multiple problems on the same graph (as in the pricing problem of a column generation
approach), however, it can be useful to invest the time and determine an optimal set of
roots.

4.4.2 Dynamic Cut Formulation

We propose a di�erent exact approach that circumvents the issues of the compact �ow
model. Our goal is to �nd a set of vertices that intersects every connected subgraph of
cumulative weight greater than αw(G). This is essentially a Hitting Set problem where
we choose U = V and S = {V ′ ⊆ V : G[V ′] is connected and w(V ′) > αw(G)}.

Hitting Set

Instance: A set U and S ⊆ 2U .

Problem: Find X ⊆ U such that X ∩ S 6= ∅ ∀S ∈ S and |X| is minimum.

Our IP formulation for Minimum Balanced Separator thus mimics the classical formu-
lation for Hitting Set:

min
x

∑
v∈V

xv (4.8a)

s.t.
∑
v∈S

xv ≥ 1 ∀S ∈ S, (4.8b)

xv ∈ {0, 1} ∀v ∈ V. (4.8c)

The binary variable xv indicates if v is part of the balanced separator, and the objective
is to minimize its cardinality. Constraints (4.8b) ensure that each subgraph in S contains
at least one separating vertex. As the number of these constraints is potentially huge, we
consider those only for a subset S ′ ⊆ S and dynamically add violated constraints within a
branch-and-cut approach.
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We may start with S ′ = ∅ and call the separation routine only for integer solutions. For
such a solution x, we consider the set X = {v ∈ V : xv = 1}. The separation problem is
to simply compute the cumulative weight of each connected component in G −X, which
can be done with a breadth-�rst search (BFS). If its weight is larger than αw(G), we add
the vertex set of this subgraph to S ′ and iterate.
For the implementation, we improve the formulation by adding violating subgraphs of

minimal weight to S ′. Instead of adding a full component C of G−X with w(C) > αw(G),
we start a BFS at any vertex in C. As soon as the current subgraph violates the upper
bound, we add the respective vertex set to S ′ and restart the BFS at an uncovered vertex
of C.

4.4.3 Computational Comparison

For a practical comparison of the two approaches, we tested both formulations on test
instances that resemble transit networks of di�erent complexity. We consider the same
25 line graphs of trees and 50 line graphs of voronoi networks as for our study in Sec-
tion 6.4.1. Here, we go not into detail on the construction of these networks but state that
the graphs have around 200 vertices and that typical instances together with an optimal
solution are depicted in Figure 4.1. Inspired by the application from Chapter 6, we set
the parameter α such that αw(G) = 100 − ε, where ε = 10−4. This leads to values of α
ranging from 0.12 to 0.21.
We ran the experiments on machines equipped with Intel Xeon E3-1234 CPUs with

3.7GHz and 32GB RAM. The code is written in Python 3.6 and to solve MIPs Gurobi 9.1 is
used. The time limit is set to two hours. We call formulation (4.7) the compact formulation

and denote the branch-and-cut approach for (4.8) by B&C.

First, we note that the compact formulation is indeed very weak and su�ers from sym-
metry issues. The dual bound is still at 0 after the time limit of two hours for all 75
instances. In contrast, B&C is able to solve each of the tree_lg instances in a fraction
of a second to optimality. The performance of B&C on the voronoi_lg instances varies.

(a) tree_lg (b) voronoi_lg

Figure 4.1.: Exemplary instances from our computational study with optimal balanced
separator highlighted in red.
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While 15 instances are solved within 10 seconds, 31 within 100 seconds, and 45 out of 50
within 1000 seconds, there are two instances that hit the time limit. We observe that for
the harder instances, the issues lie on the primal and on the dual side, i.e., Gurobi has
problems to �nd an optimal solution but also to provide a bound to prove optimality.

Concerning the quality of the solutions, the compact formulation is also much worse.
The objective value of the incumbent solution after two hours is on average 30% higher
than the optimal value for tree_lg. With regard to the voronoi_lg instances, this gap
increases to over 40%. In fact, the compact formulation yields an optimal solution only for
one of the 75 instances but is not able to prove optimality as the dual bound remains 0.
Once again, this illustrates the superiority of the proposed B&C approach.





5
Finding a Single Optimal

Subgraph
This thesis revolves around covering a graph with a number of connected subgraphs. Why,
then, is this chapter concerned with �nding a single subgraph? In the previous chapter,
we have seen that a branch-and-price approach is one way to solve covering problems.
An important subproblem in this approach is to identify single promising subgraphs to
include into the formulation. This motivates the detailed study of �nding single optimal
(connected) subgraphs. Indeed, the �nal chapter of this thesis is devoted to solving a
speci�c districting problem with column generation. Here, we are focused on the resulting
pricing problem which can be formulated as an independent problem and is fascinating in
its own right.
The most important and well-studied representative for this problem type is the Max-

imum Weight Connected Subgraph Problem, which is to �nd a node set of maximum
cumulated weight that induces a connected subgraph in a given node-weighted graph.

Maximum Weight Connected Subgraph (MWCS)

Instance: G = (V,E), p ∈ RV .

Problem: Find V ′ ⊆ V such that G[V ′] is connected and p(V ′) is maximal.

In the rooted version of MWCS, a given set R ⊆ V has to be a subset of the selected
nodes V ′. In the capacitated variant, we are given additional weights w ∈ RV≥0 and numbers
0 ≤WL ≤WU , and demand that w(V ′) ∈ [WL,WU ].
A plethora of applications has driven the research on the MWCS and its variants.

This includes applications in oil-drilling [HP94], communication network design [LD98;
KLT15], systems biology [Ide+02; Dit+08; Yam+09; Bac+12], environmental conserva-
tion [Con+07; DG10], video activity detection [CG12], and forest planning [Car+13].
In this chapter, we discuss the critical task for the MWCS to enforce connectivity within

MIPs. In particular, we focus on the case with a single given root node, and state for-
mulations using single-commodity �ows, multi-commodity �ows, arc separators, and node
separators. In Section 5.2, we propose a coarse-to-�ne paradigm that splits the connectiv-
ity issue into a macro and a micro level. The micro level consists of induced paths with
vertices of degree 2 and is modeled independently from the macro level, the coarse graph.
In a polyhedral comparison, we show that the most important connectivity formulation on
this disaggregated network is tighter than on the original graph.
After this more general overview, we shift our focus to a fairly speci�c variant of MWCS.

We consider a single-rooted and capacitated MWCS with an additional balancing con-
straint: The nodes of the host graph are colored blue and red, and the chosen subgraph

45
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is required to be balanced regarding its cumulated blue and red weight. We formalize this
problem in Section 5.3, review the related literature and present an IP formulation. In
Section 5.4, we present powerful reduction techniques for a preprocessing that can dras-
tically reduce the problem size. Further improvements in the form of LP strengthening
cuts are studied in Section 5.5. We propose di�erent families of constraints that speed-up
the optimization if added to the initial model. An extensive computational study in Sec-
tion 5.6 compares the connectivity formulations and assesses the impact of our proposed
improvements. Finally, we investigate the problem of �nding such an optimal subgraph
on a tree. In Section 5.7, we show that the simple structure of the graph allows for a
simpler IP formulation for connectivity and a dynamic programming approach to solve the
problem.

5.1 Enforcing Connectivity in MIPs

In this section, we discuss various ways to model connectivity within a (M)IP. A decent
number of papers are dedicated to this problem and the related study of the connected
subgraph polytope. These are mostly motivated by the Steiner tree problem and its vari-
ants concerning Steiner arborescences, prize-collecting Steiner tree, and maximum weight
connected subgraphs. Similar connectivity formulations, apart from the vast literature
concerning traveling salesman problems, originate for instance from the generalized min-
imum spanning tree problem [MLT95; Pop09; Pop20], a connected network design prob-
lem [MR05], or the minimum arborescence problem [Duh+08]. Very recently, connectivity
in MIPs has also been studied with regard to balanced connected partitions [Miy+21], the
connected max-k-cut problem [Hoj+21], and, close to our setting, with regard to political
districting [VBL22; VB22]. We have already reviewed these models in Section 4.3.

The �rst connectivity models for Steiner problems by Aneja [Ane80] and Wong [Won84]
date back to the 1980s and propose a �row generation scheme� using minimum cuts, and,
respectively, a multi-commodity �ow. Since then, other formulations as well as new separa-
tion and preprocessing techniques have been developed. A review of di�erent formulations
and comparisons of the respective LP relaxations can be found in [GM93; KPH93; MW95;
PD01; RFK22]. In addition, computational comparisons of distinct models for variants of
the Steiner tree problem are carried out in [DG10; ÁMLM13a; ÁMLM13b; Fis+17]. An
excellent survey article by Ljubi¢ [Lju20] covers all relevant topics concerning Steiner trees,
including variants, MIP formulations, preprocessing techniques, and applications.
Complementing the variety of IP formulations, the problem has also been studied from a

polyhedral perspective. The connected subgraph polytope is the convex hull of all node in-
cidence vectors inducing a connected subgraph. A full description is known when the graph
is a tree [KLS91], a cycle [Goe94b], series-parallel [Goe94b], or complete bipartite [Lüt18].
Other important facets and valid inequalities for the mentioned and related polytopes are
presented in [CR94; KM98; ÁMLM13a; ÁMLM13b; WBB17]. The edge-induced connected
subgraph polytope was studied in [Goe94a; Goe94b; KZ14; BKN15].

Having reviewed the literature for connected subgraphs, we shift our focus to the single-
rooted case. For a graph G = (V,E) and a node r ∈ V , an r-tree is a tree of G containing r.
Consequently, we study the r-tree polytope, i.e., the convex hull of

Yr := {χ(V ′) : V ′ ⊆ V is the vertex set of an r-tree}.
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Note that conv(Yr) is, in fact, a facet of the connected subgraph polytope. Goemans
[Goe94b] studies the related r-tree polytope conv(Y+

r ) in the dimension {0, 1}|E|+|V |, i.e., he
considers a concatenation of edge and node incidence vectors of r-trees. Clearly, conv(Yr)
is a projection of conv(Y+

r ). Since Goemans [Goe94b] gives a full description of conv(Y+
r )

if G is a cycle or series-parallel, the optimization over conv(Yr) is also polynomial in these
cases. We note that in [Goe94b], the empty graph is also considered an r-tree to simplify
the polyhedral study. Since this edge case is not practically relevant, and for ease of
exposition, we exclude the empty graph from Yr.

The presence of a single root simpli�es the (M)IP formulations. Hence, we present
four important formulations that describe Yr. For some of the formulations we consider
the bidirected version D = (V,A) of the undirected graph G = (V,E). Throughout
the presentation, we use binary y variables to indicate the nodes of the selected subgraph,
x variables for describing a �ow on A, and binary z variables to model decisions concerning
individual arcs.

5.1.1 Single-Commodity Flow (SCF)

A single-commodity �ow to ensure connectivity was proposed by Gavish and Graves [GG82]
in the context of the traveling salesman problem. Maculan [Mac87] transforms the formu-
lation to the Steiner tree problem. Similar SCF models are used in [LD96; Shi05; Con+07;
DG10; Hoj+21; Miy+21; VBL22] and [VB22]. The third and fourth of these papers con-
sider a rooted and budgeted (only with upper bounds) version. Our formulation is adapted
for the single-root case. This spares us from introducing an arti�cial super source.

yr = 1 (5.1a)∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = yv ∀v ∈ V K {r} (5.1b)

xuv ≤ Muv yv ∀(u, v) ∈ A (5.1c)

xa ≥ 0 ∀a ∈ A (5.1d)

yv ∈ {0, 1} ∀v ∈ V (5.1e)

The idea is to construct a �ow that emerges at the root node and where each node of the
chosen subgraph consumes one unit of �ow while all other nodes satisfy �ow conservation.
This is ensured by equalities (5.1b). Inequalities (5.1c) are necessary to activate every node
that is used by the �ow. The use of a big M parameter is bad for the LP relaxation, but
necessary. It should be chosen as small as possible, and M = |V | − 1 for each arc (u, v) is
an upper bound. Following Validi and Buchanan [VB22], the upper weight bound allows
us to improve it to M = max

D⊆V K{r}
{|D| : w(D) ≤ WU − wr}, which we can compute with

a greedy algorithm. We can further strengthen the formulation by considering arc speci�c
big M values. Consider the arc (u, v) ∈ A and let `ru be the unit-weight shortest path
length from r to u. Since each chosen node consumes one �ow unit, the �ow value on arc
(u, v) is bounded by Muv = M − `ru. Note that these values can be determined with a
single breadth-�rst search.
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5.1.2 Multi-Commodity Flow (MCF)

The �rst multi-commodity �ow formulation for connectivity is due to Beasley [Bea84] and,
independently, to Wong [Won84]. Maculan [Mac87] shows that the LP relaxation of MCF
is stronger than the SCF relaxation.

yr = 1 (5.2a)∑
a∈δ−(w)

zva −
∑

a∈δ+(w)

zva = 0 ∀v, w ∈ V K {r}, w 6= v (5.2b)

∑
a∈δ−(v)

zva = yv ∀v ∈ V K {r} (5.2c)

∑
a∈δ+(v)

zva = 0 ∀v ∈ V K {r} (5.2d)

zwa ≤ yv ∀v, w ∈ V K {r}, a ∈ δ−(v) (5.2e)

zva ≥ 0 ∀a ∈ A, ∀v ∈ V K {r} (5.2f)

yv ∈ {0, 1} ∀v ∈ V (5.2g)

In the MCF formulation, we consider an r-v �ow zv for every node v 6= r. Flow conservation
is stated in (5.2b), and the �ow value is determined by (5.2c) and (5.2d): It is set to 1, if
node v is chosen, and otherwise set to 0. Finally, (5.2e) guarantees that a node is chosen
if any �ow uses it.

The advantage of the MCF formulation is that the arc �ow is binary and, hence, we have
no big M . This bene�ts the LP relaxation of the MCF. On the other hand, the number of
variables and constraints is much larger than in the SCF formulation.

5.1.3 Rooted Arc Separators (RAS)

A second way to enforce connectivity is with separators. First, we consider a formulation
using edge cuts. As our problem is stated on an undirected graph, we can stick with the
natural undirected formulation, �rst proposed by Aneja [Ane80], or consider the corre-
sponding formulation in the bidirected graph. Chopra and Rao [CR94] show that the LP
relaxation of the bidirected formulation is tighter than for the undirected case. Goemans
and Myung [GM93] further investigate the relation between the two and give an extended
undirected relaxation that is equivalent to the bidirected arc cut relaxation. However,
we present the arc formulation, which goes back to a Steiner arborescence formulation by
Wong [Won84] and is predominantly used in the literature. Similar models are applied in
[KM98; Lju+06; Duh+08; DG10; ÁMLM13b; Fis+17; RK19].

yr = 1 (5.3a)∑
a∈δ−(v)

za = yv ∀v ∈ V K {r} (5.3b)

∑
a∈δ−(S)

za ≥ yv ∀v ∈ S, ∀S ⊆ V K {r} (5.3c)

za ∈ {0, 1} ∀a ∈ A (5.3d)

yv ∈ {0, 1} ∀v ∈ V (5.3e)
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If the z variables span an arborescence rooted at r, then the nodes of the arborescence
form a connected subgraph in G. Therefore, we have (5.3b) to activate the nodes of the
arborescence, and to ensure an in-degree of 1. In addition, we have (5.3c) to ensure that
there is a directed r-v-path if v is chosen.
The set δ−(S) in (5.3c) is an arc separator for r and v, i.e., there is no r-v-path in D−S.

Since there is an exponential number of these constraints, the LP relaxation is solved with
a cutting plane approach. The crucial ingredient is the separation routine where violated
constraints are identi�ed.

Separation: For the separation, we consider a node v and compute a maximum �ow
from r to v in D with arc capacities z. If the �ow value is smaller than yv, the inequality of
any corresponding minimum cut is violated, and we add an appropriate constraint. Hence,
the separation can be solved e�ciently with at most n− 1 maximum �ow computations.
While this describes the basic procedure, there are a number of tricks to improve the

separation. First of all, we have to decide when to cut o� fractional solutions of the LP
relaxation. While Ljubi¢ et al. [Lju+06] decide to check for a violated inequality for each
v with yv > 0, Fischetti et al. [Fis+17] choose a threshold of yv ≥ 0.5 for a fractional
separation, and Dilkina and Gomes [DG10] separate only for yv > 1− ε.
As our experiments also suggest to separate for yv > 1− ε, we present another improve-

ment for this case that showed to have a signi�cant e�ect: Instead of considering every
vertex separately, we compute the connected components of G − {v ∈ V : yv ≤ 1 − ε}
and compute a maximum �ow only for a single representative of each non-root component.
Since the resulting cut is also a minimum cut for each node of this component, this can
dramatically reduce the separation time. In particular, we spare the separation for every
node of the root component. Also, this bene�ts situations where a node subset induces a
connected subgraph, but the z variables do not form an arborescence, as the example in
Figure 5.1 shows: While in this case, the solution is not feasible for (5.3), we can still skip
the separation, as our main goal is to �nd a vertex set that induces a connected subgraph.
Further improvements like back-cuts, nested cuts, and the use of minimum cardinal-

ity separators were proposed by Koch and Martin [KM98] and empirically con�rmed in
[Lju+06] and [Fis+17].
The idea of back-cuts, that was already described by Chopra, Gorres, and Rao [CGR92],

is to �nd a maximum �ow (minimum cut) not only in the described network but also in
the reversed network where every arc is �ipped. As the resulting cuts tend to be di�erent,
more cuts are generated and the number of cutting plane iterations empirically decreases.
Ljubi¢ et al. [Lju+06] note that both cuts (forward and backward) can be found with one

Figure 5.1.: (Infeasible) solution for (5.3) that represents a feasible template: Nodes and
arcs in green correspond to variables with value 1 while all other values are 0,
the root is depicted as a square.
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maximum �ow calculation using a speci�c implementation from [CG95].
Nested cuts are another way to generate more cuts in a single cutting plane iteration.

The idea is to set all capacities of already found minimum cut arcs to 1, and to iterate
until the �ow value is 1. This ensures that arc sets of found violated cuts are disjoint.
The third approach for enhancing the separation is to use minimum cuts of minimum

cardinality. Therefore, a small ε > 0 is added to every capacity before computing a
maximum �ow. While this might lead to increased running times of �ow calculations,
the use of minimum cardinality cuts can have a great impact on the overall performance.
Indeed, the results are split. While [KM98] and [Fis+17] con�rm a very positive e�ect,
[Lju+06] report extended running times.

LP Strengthening: Apart from an e�cient separation routine, the performance of
this approach heavily depends on adding adequate cuts to the initial model to strengthen
the LP relaxation. Many of the cuts discussed in the literature are focused on the Steiner
tree problem, exploiting the fact that only terminal nodes have to be connected [KM98]
or dealing with asymmetry that we do not have [Lju+06]. Here, we will outline two types
of cuts from the literature that translate to our setting; see, e.g., [Lju+06; ÁMLM13b]. In
Section 5.5, we will present new families of inequalities that help to strengthen the initial
model.
Most importantly, we should extend the initial model with so-called 2-cycle inequalities

zuv + zvu ≤ yv ∀(u, v) ∈ A, (5.4)

allowing at most one of each bidirected arc pair to be part of the arborescence. At the
same time, these constraints ensure that both end nodes of an arc are active if the arc is
chosen. This concept can be generalized to cycles of length k in G. Let C be such a cycle
and let A[C] denote all 2k bidirected arcs corresponding to C. Then, for each node u ∈ C,∑

a∈A[C]

za ≤
∑

v∈CK{u}

yv (5.5)

is a valid inequality. There are, indeed, cases where these cuts are useful. For instance, in
[ÁMLM13b], all 4-cycle inequalities are added initially if G is a grid graph.
Ljubi¢ et al. [Lju+06] note that for any separator S and for v ∈ S we can add the

equations (5.3b) for nodes in S and subtract the inequality (5.3c) to obtain the valid
inequality ∑

a∈A∩S2

za ≤
∑

u∈SK{v}

yu.

These generalized subtour elimination constraints are already studied by Goemans [Goe94b],
and found to be facet-de�ning under certain circumstances.

5.1.4 Rooted Node Separators (RNS)

The rooted node separators formulation is similar to the previously described RAS, but
can be formulated on the original undirected graph and uses only node variables. Such
a formulation was �rst used by Fügenschuh and Fügenschuh [FF08] and later applied in
[Bac+12; ÁMLM13b; Car+13; ÁMS17; Fis+17].
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Let us denote by N (r, v) the set of r-v-node separators, i.e., all sets S ⊆ V such that
there is no r-v-path in G− S.

yr = 1 (5.6a)∑
w∈S

yw ≥ yv ∀v ∈ V K {r}, ∀S ∈ N (r, v) (5.6b)

yv ∈ {0, 1} ∀v ∈ V (5.6c)

The formulation is straight forward. Inequalities (5.6b) ensure that if node v is chosen,
then any r-v-node separator must also contain a chosen node.

For the separation routine we describe two possibilities. The �rst one is in accordance
with the RAS separation and described, for instance, in [FF08] and [ÁMLM13b]. A directed
auxiliary graphD is created by splitting each node v into an arc (vin, vout) with capacity yv.
Every edge vw ∈ E is replaced by the arcs (vout, win) and (wout, vin), each with capacity 1.
Now, all procedures from the RAS separation carry over, when comparing the maximum
rout-vin-�ow value to yv.

Since the described separation procedure is rather time consuming, Fischetti et al.
[Fis+17] propose a di�erent variant that ignores violations of (5.6b) for fractional solu-
tions. Instead, their separation routine is only called when the branching produced an
integer solution. A great advantage of this approach is that the authors of [Fis+17] show
that minimal separators for integer solutions can be found very e�ciently. Since their algo-
rithm is intended for the prize-collecting Steiner tree problem, we give an adaption for the
single-rooted connected subgraph problem in Algorithm 5.1. Each connected component
and its neighborhood can be computed with an adapted breadth-�rst search. Lines (8)�(10)
handle the back-cuts. The resulting separation sets are pairs of node sets (C, S), and for
every v ∈ C, we know that S is an r-v-separator and, therefore, we add the corresponding
constraint (5.6b) to the model and iterate.

Algorithm 5.1: NodeSeparation

Input: G = (V,E), r, integer solution y
Output: separation sets S

1 S ← ∅;
2 V ′ ← {v ∈ V : yv = 1};
3 C ′r ← connected component of r in G′ := G[V ′];
4 N(C ′r)← {v ∈ V K C ′r : ∃u ∈ C ′r : uv ∈ E};
5 foreach component C ′ of G′ with r /∈ C ′ do
6 C ← component of G− C ′r that contains C ′;
7 S ← S ∪ (C ′, N(C ′r) ∩ V (C));
8 N(C ′)← {v ∈ V K C ′ : ∃u ∈ C ′ : uv ∈ E};
9 C ← component of G− C ′ that contains r;

10 S ← S ∪ (C ′, N(C ′) ∩ V (C));
11 return S;
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5.2 A Coarse-to-Fine Paradigm

In the uncapacitated MWCS, one can often remove edges or nodes or contract edges to
simplify the graph structure [RKM19]. With the capacity constraints and the balancing
condition, however, these reductions are not possible anymore.
In this section, we discuss how to improve connectivity formulations for graphs with a

large fraction of degree 2 vertices. These graphs usually contain long induced paths where
every vertex has degree 2. We exploit the fact that with any chosen vertex of such a path
(not containing the root), at least one of the endpoints of the path has to be chosen as
well. Following this idea, the coarse network is formed by contracting the speci�ed paths.
Now, we model the connectivity on the coarse network and on each of the paths separately.
We call this disaggregation the coarse-to-�ne (C2F) approach.

5.2.1 Construction of Coarse and Fine Graphs

Given is a graph G = (V,E) together with a root r ∈ V and the vertices of the coarse
network Vc ⊆ V with r ∈ Vc. Let V>2 ⊆ V be the vertices with degree greater than 2, and
we demand V>2 ⊆ Vc. Note that with this condition, each connected component of the
induced subgraph G[V K Vc] is a path. The arcs of the coarse network Dc = (Vc, Ac) are
constructed as follows: Whenever there exists a path between two coarse vertices u, v ∈ Vc,
only containing vertices from V KVc (except for u and v), the path is replaced by two coarse
arcs (u, v) and (v, u), and the �ne nodes on this path are denoted by Pf (u, v). Observe
that this construction also replaces an edge between two coarse vertices with two arcs,
and hence, the coarse graph can be a multigraph. We will see later that it is su�cient to
restrict the connectivity formulation to a certain core graph that has no vertices of degree
1, except for the root (cf. Section 5.4). Our implementation, which allows for multiarcs
and loops, therefore uses Vc = V>2 ∪ {r}. For ease of exposition, however, we assume here
that Vc contains all leaves in G and that Vc is chosen in a way such that Ac is a simple set:
When (u, v) ∈ Ac is a multiarc then at least one arc originates from a path that contains
vertices from V K Vc. By lifting one of these vertices to Vc the resulting coarse network
does not contain the corresponding arc anymore.
Recall that the bidirectional graph of G is denoted by D = (V,A). The �ne network is

then given by Df = (V,Af ), where Af = A KAc.

5.2.2 Connectivity in the Fine Graph

We present two possibilities to model the connectivity within each �ne path: a �ow and a
predecessor formulation.

Fine Flow Model:∑
a∈δ−Df

(i)

xa −
∑

a∈δ+Df
(i)

xa = yi ∀i ∈ V K Vc (5.7a)

xuj ≤Muj yu ∀(u, j) ∈ Af : u ∈ Vc (5.7b)

xij ≤Mij yj ∀(i, j) ∈ Af : j /∈ Vc (5.7c)

yv ∈ {0, 1} ∀v ∈ V (5.7d)

xa ≥ 0 ∀a ∈ Af (5.7e)
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Analogously to the SCF formulation, each active vertex consumes one unit of �ow, but
here, we have one �ow per �ne path and it can emerge from either of the two coarse end
nodes. As for the SCF, (5.7c) activate the head of an arc with �ow and (5.7b) activate the
coarse nodes from which the �ows emerge.
Concerning the big M values, let us consider (i, j) ∈ Af and (u, v) ∈ Ac such that

j ∈ Pf (u, v). By mjv we denote the number of arcs from j to v in G[Pf (u, v)∪{v}] and we
assume that miv = mjv + 1, i.e., (i, j) lies on the directed path from u to v that includes
j. Then, Mij = mjv is a feasible choice because the �ne �ow over (i, j) has to carry �ow
for at most mjv vertices.

Fine Predecessor Model: A di�erent way to model the �ne connectivity exploits
the simple structure of the �ne paths. To this end, we introduce binary arc variables za
for a ∈ Af . Now note that every arc (i, j) ∈ Af with i /∈ Vc has a unique preceding �ne
arc prec(i, j) := (h, i) ∈ Af with h 6= j. We can now model the �ne �ow as follows:∑

a∈δ−Df
(j)

za = yj ∀j ∈ V K Vc (5.8a)

zij ≤ zprec(i,j) ∀(i, j) ∈ Af : i /∈ Vc (5.8b)

zij + zji ≤ yi ∀(i, j) ∈ Af (5.8c)

za ∈ {0, 1} ∀a ∈ Af (5.8d)

Fine node j is active if and only if one of the two incoming arcs is active. Each active arc
then activates the preceding arc, until a coarse vertex is reached. Finally, we ensure that the
tail of every active arc is active, but strengthen the constraint to 2-cycle inequalities (5.8c).
In particular, this activates the coarse vertex where the active �ne path starts.

5.2.3 Connectivity in the Coarse Graph

We can model the connectivity in the coarse graph with any of the presented formulations
from Section 5.1 with the advantage that the coarse graph is usually much smaller. In
particular, this drastically reduces the big M values for the SCF formulation in sparse
graphs which leads to tighter LP relaxations compared to the SCF in the original graph.

C2F-Coupling: Finally, we have to couple the coarse and the �ne connectivity which,
in this case, means that an active coarse arc has to activate all nodes of the respective �ne
path. If we have binary arc variables ẑ for the coarse arcs, we do this with

ẑuv + ẑvu ≤ yi ∀(u, v) ∈ Ac ∀i ∈ Pf (u, v). (5.9)

Otherwise, if we have a coarse single-commodity �ow x̂, we use

x̂a ≤ Ma yi ∀a ∈ Ac ∀i ∈ Pf (a), (5.10)

where Ma comes from the SCF formulation on Dc. When we have no arc variables such
as in the RNS formulation, we cannot apply the C2F principle. While possible, we also
refrain from using it in combination with the MCF formulation.
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Proposition 5.1 With the �ne predecessor model and ẑ variables on the coarse arcs,

the inequalities

ẑuv ≤ ziv ∀(u, v) ∈ Ac ∀i ∈ Pf (u, v) ∩N(v). (5.11)

imply the inequalities (5.9).

Proof. Let (u, v) ∈ Ac, k ∈ Pf (u, v), and let ju and jv be the neighbors of k that are closer
to u and, respectively, v. Furthermore, let i ∈ Pf (u, v) ∩ N(v) be the neighbor of v in
Pf (u, v). Then,

ẑuv ≤ ziv
(5.8b)

≤ zprec(i,v)

(5.8b)

≤ · · ·
(5.8b)

≤ zjuk

and, consequently,

ẑuv + ẑvu ≤ zjuk + zjvk
(5.8a)

= yv.

5.2.4 Polyhedral Study

Let us explore if the C2F model provides any bene�t from a polyhedral perspective. Using
the �ne predecessor model, the RAS and C2F-RAS formulations are very similar. We
consider

CRAS := {y ∈ [0, 1]V
∣∣ ∃ẑ ∈ [0, 1]Ac ∃z ∈ [0, 1]Af such that

(y, ẑ) satis�es (5.3a) � (5.3c), (5.4) on Dc,

(y, z) satis�es (5.8a) � (5.8c), and (ẑ, z) satis�es (5.11)},
FRAS := {y ∈ [0, 1]V

∣∣ ∃z ∈ [0, 1]A : (y, z) satis�es (5.3a) � (5.3c), (5.4) on D}.

The coarse-to-�ne model is characterized by the set of coarse vertices; to avoid ambiguities
we denote the polytope corresponding to the LP relaxation by CRASVc

.

Proposition 5.2 Let G = (V,E) be a graph together with a root r ∈ V , and let Vc ⊆ V
with r ∈ Vc and V>2 ⊆ Vc be a set of coarse vertices, then

CRASVc ⊆ FRAS.

Proof. Let y ∈ CVc be a feasible solution and let ẑ ∈ [0, 1]Ac and z ∈ [0, 1]Af be corre-
sponding arc values that satisfy the conditions from the de�nition of CRAS. If Vc = V , we
have Dc = D and Af = ∅ and, therefore, (y, ẑ) satis�es (5.3a) � (5.3c), (5.4) on D so that
y ∈ F .
Now we show that if Vc ( V , we can always lift a vertex i ∈ V K VC to the coarse

network such that y ∈ CVc∪{i}. To this end, let (u, v) ∈ Ac be any coarse arc with
Pf (u, v) 6= ∅ and let i ∈ Pf (u, v) with N(i) = {v, j}. We construct the coarse network D′c
for V ′c = Vc ∪ {i} as described above, i.e., we replace the coarse arcs (u, v) and (v, u) with
the arcs (u, i), (i, u), (v, i), and (i, v). Conversely, we lose the �ne arcs (v, i) and (i, v), and
if u = j, also the �ne arcs (u, i) and (i, u) in the new �ne arc set A′f . We will proceed to

construct vectors ẑ′ ∈ [0, 1]A
′
c and z′ ∈ [0, 1]A

′
f to certify that y ∈ CVc∪{i}.

For the �ne network we can simply use z′a = za for a ∈ A′f , and since we only consider
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a subset of the previous constraints, we know that (y, z′) satis�es (5.8a) � (5.8c). For the
new coarse arcs, we set ẑ′ui = zji, ẑ

′
iu = ẑvu, ẑ

′
vi = zvi, and ẑ′iv = ẑuv, and for all other

arcs a ∈ A′c ∩ Ac, we set ẑ′a = ẑa. Since the root constraint (5.3a) is trivially satis�ed, let
us check the indegree constraint (5.3b): For the node u it is satis�ed because we replaced
the arc (v, u) with the arc (i, u) and ẑ′iu = ẑvu. The same reasoning works for node v and,
trivially, (5.3b) holds for all other nodes in V ′c K {i}. For node i, the equality also holds
because ∑

a∈δ−(i)

ẑ′a = ẑ′vi + ẑ′ui = zvi + zji
(5.8a)

= yi.

Concerning the separator constraints (5.3c), observe that each arc separator in Dc that
used (u, v) now contains either (u, i) or (i, v). Since ẑ′iv = ẑuv and

ẑ′ui = zji
(5.8b)

≥ ziv
(5.11)

≥ ẑuv, (5.12)

all separator constraints are still satis�ed in D′c.
The C2F-coupling constraints (5.11) are trivially satis�ed by our setting of ẑ′, so that

we are only left with the 2-cycle constraints (5.4) in D′c. Let us �rst consider the 2-cycle
with nodes u and i; the 2-cycle between v and i then follows immediately. Substituting
for ẑ′ yields ẑ′ui + ẑ′iu = zji + ẑvu, and we need to show that the latter is less or equal to yi
and yu, respectively. Analogously to (5.12), we obtain ẑvu ≤ zij and, therefore, we have

zji + ẑvu ≤ zji + zij
(5.8c)

≤ yi.

For the other case, we assume that k is the neighbor of u in Pf (u, v) and obtain

zji + ẑvu
(5.8b)

≤ zuk + ẑvu
(5.11)

≤ zuk + zku
(5.8c)

≤ yu.

We conclude that y ∈ CVc∪{i}, and we iterate this process until Vc = V .

The preceding result established that the C2F-RAS formulation is at least as tight as
the RAS formulation. When we solve the RAS with branch-and-cut, however, not all arc
separator constraints are present. In this case, the C2F-RAS formulation can produce
better results as the example in Figure 5.2. shows: An activation of the arc (v2, v3) implies
with the �ne predecessor model the activation of (v1, v2) and (r, v1). But also without the
predecessor constraints, the activation of v3 triggers the activation of the coarse arc (r, v3),
and the coupling constraints then enforce yv1 > 0.

r v1 v2 v3

Figure 5.2.: (Infeasible) solution which is feasible for the initial RAS model but not for the
initial C2F-RAS with Vc = {r, v3}. The y and z variables with positive value
are displayed in color: orange represents the value 1

2 and green the value 1.
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r

v1

v2

v3 v4 v5

1
1
4

1
4

1 1 0
3 | 3

4

3 | 3
4

2 | 1
2

2 | 1
2

1 0

1 | 0

Figure 5.3.: Solution for C2F-SCF with Vc = {r, v1, v2, v3, v5}. The y values are colored in
cyan, big M values in orange, x̂ values in blue, and z values in red.

What about the respective polytopes for the SCF formulation? We would like to prove
a similar statement for

CSCF := {y ∈ [0, 1]V
∣∣ ∃x̂ ∈ RAc

≥0 ∃z ∈ [0, 1]Af such that

(x̂, y) satis�es (5.1a) � (5.1c) on Dc,

(y, z) satis�es (5.8a) � (5.8c), and (x̂, z) satis�es (5.10)},
FSCF := {y ∈ [0, 1]V

∣∣ ∃x ∈ RA≥0 : (x, y) satis�es (5.1a) � (5.1c) on D}.

However, this is not possible as the following example shows. Let us consider the graph
depicted in Figure 5.3 and assume unit-weights and WU = 4. One can check that the
bigM values are set as speci�ed and that the depicted coarse �ow and the �ne path values
are indeed feasible, i.e., y ∈ CSCF. In particular, note that the coupling constraints (5.1c)
for (r, v1) and (r, v2) are tight.
If we lift the vertex v4 to the coarse network, however, the big M values on (r, v1) and

(r, v2) do not change, i.e., the �ow values on these arcs cannot increase. On the other hand,
the coarse �ow now has to carry the �ow for v4 and, thus, an additional �ow value of 1
has to leave the root node. As this is not possible, we conclude that there is no x ∈ RA≥0

such that (x, y) satis�es (5.1a) � (5.1c) for the depicted vector y and, hence, y /∈ FSCF.
Our counterexample shows that the big M values are too tight for the theoretic result

that we aimed for. One can adjust the setting and use weaker big M values to obtain a
model for which the transformation of a solution is possible. Indeed, we followed this path,
and describe a di�erent C2F-SCF formulation in [BSS23]. There, we prove that for this
formulation, the C2F-SCF formulation is tighter than the respective SCF formulation. We
refrain from repeating the formulations and the corresponding polyhedral study here, and
refer the interested reader to [BSS23].

5.3 Rooted MWCS with Balancing and Capacity Constraints

After the detailed discussion of connectivity in IPs, it is time to formally introduce the
main problem of this chapter. It is essentially a combination of two known optimization
problems: The MWCS in the single-rooted and capacitated version, and the Balanced
Connected Subgraph Problem (BCS). For the BCS, we are given a graph G = (Vb ∪̇Vr, E)
with nodes colored either blue or red, and seek a maximum-cardinality subgraph that
contains an equal number of blue and red nodes.
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Now we are ready for the main problem:

Balanced, Rooted, and Capacitated MWCS (BRCMWCS)

Instance: A graph G = (V,E) with V = Vb ∪̇Vr, node weights w ∈ RV≥0 and
p ∈ RV , as well as numbers 0 ≤ WL ≤ WU , ∆ ≥ 0, and a root node
r ∈ V .

Problem: Find V ′ ⊆ V such that G[V ′] is connected with w(V ′) ∈ [WL,WU ],
r ∈ V ′, and |w(V ′ ∩ Vb)− w(V ′ ∩ Vr)| ≤ ∆ while maximizing p(V ′).

In other words, the BRCMWCS asks for a maximum-pro�t connected subgraph that
is built from a root r, respects a lower and upper weight bound, and contains a �similar
mass� of red and blue nodes. Figure 5.4 depicts an exemplary instance of this problem.

Complexity: The BRCMWCS is NP-hard and the reduction can come from multiple
angles. For instance, we know that the rooted MWCS is NP-hard due to [ÁMLM13b]. By
settingWL = 0, WU = w(V ), and ∆ = w(V ), we basically drop the capacity and balancing
constraint and the rooted MWCS reduces to the respective BRCMWCS with arbitrary node
colorings.
On the other hand, since the Balanced Connected Subgraph Problem is NP-hard (see

[Bho+19a]), a reduction from this direction is also possible. With unit weights and unit
pro�ts, WL = 0, WU = |V |, and ∆ = 0, we can solve the respective BRCMWCS once for
every node representing the root, and thereby solve the BCS.
Finally, the capacity constraints alone make the problem NP-hard. A reduction from the

number partition problem is possible by considering a star graph where the leaf weights
are the numbers of the partition instance and the center, which we use as the root, has
weight 0. By setting WL = WU = w(V )

2 and ∆ = w(V ) for arbitrary node colorings, we see
that the resulting BRCMWCS (with arbitrary pro�ts) has a feasible solution if and only
if the partition problem has a feasible solution.

Figure 5.4.: Exemplary BRCMWCS instance. The root node is depicted as a yellow square,
circles represent nodes in Vb and triangles nodes in Vr, node sizes correspond
to weights and colors to node pro�ts.
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5.3.1 Related Work

The Balanced Connected Subgraph Problem was introduced in [Bho+19a] and shown to
be NP-hard, even on planar, bipartite, and chordal graph, or when a single root node is
speci�ed. When the graph is a tree, however, Bhore et al. [Bho+19a] give a labeling algo-
rithm to solve the BCS in time O(|V |4). Kobayashi et al. [Kob+19] improve the runtime to
O(|V |2) by running a dynamic program on a transformed rooted binary tree with possibly
additional uncolored nodes. The authors also brie�y study a weighted version of BCS and
give complexity results for special graph classes. Further complexity and inapproximability
results as well as polynomial-time algorithms for the BCS on other special graph classes
are provided in [Bho+19a; Bho+19b; Dar+19; Mar+21].

Shifting to relevant variants of MWCS, the capacitated version with a lower bound
has been considered in [HP94; LD96; LD98]. However, the nodes bear unit weights and
WL = WU = k, i.e., the goal is a maximum weight connected subgraph with exactly k
nodes. While Hochbaum and Pathria [HP94] propose a dynamic program that �nds the
optimal solution on trees and a 1

k -approximation on general graphs, the authors of [LD98]
reduce the problem to the single-rooted case which is heuristically solved in [LD96].

The rooted and capacitated MWCS has been studied in [DG10; ÁMLM13b], but only
with an upper weight bound, i.e., WL = 0. Dilkina and Gomes [DG10] compare three
connectivity models: A single-commodity �ow, a multi-commodity �ow, and a Steiner
arborescence (SA) formulation that is similar to our RAS. On 100 synthetic 10 × 10 grid
instances with 3 roots, the computational comparison shows that the SCF LP relaxation is
fastest but provides the worst integrality gap. The SA LP relaxation is also relatively fast
and gives the best gap. The MCF LP relaxation is the slowest of the three models and the
gap is between the SCF and SA relaxations. With respect to optimal integer solutions, the
results in [DG10] indicate that SCF is best if the upper weight bound WU is so large that
it can almost be ignored. In the other case, however, SA performs better on the considered
instances.

Álvarez-Miranda, Ljubi¢, and Mutzel [ÁMLM13b] refrain from including the SCF formu-
lation into their computational comparison, and only evaluate the SA formulation against
a node separator (NS) formulation. They �nd that the performance of the two formula-
tions is complementary, and depends on the instance. It seems as the NS formulation with
fewer variables performs better on dense graphs, whereas the SA formulation seems better
suited for sparser graphs.

Computational studies show that preprocessing methods and primal heuristics generally
have a huge impact when considering the general MWCS and its relatives. Reduction tests
can prove that certain nodes or edges must belong to every solution, or that they cannot
be part of any solution. This helps to drastically reduce the problem size. A number of
techniques for di�erent Steiner problems are proposed in [CGR92; KM98; PD01; CCL06;
Lju+06; GVHS08; EKK14; Lei+18; RK19; RKM19]. Unfortunately, these algorithms are
highly problem speci�c, and most of the approaches do not translate to the BRCMWCS,
since they con�ict with our capacity constraintsWL ≤ w(V ′) ≤WU or make use of Steiner
terminals that we do not have. Concerning the Balanced Connected Subgraph Problem,
we are not aware of any preprocessing approaches at all.
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5.3.2 IP Formulation for BRCMWCS

We use binary y variables to indicate the chosen vertices, and we model the rooted con-
nectivity with the abstract constraint y ∈ Yr. The IP formulation of the BRCMWCS is
straightforward and can be stated as follows.

max
y

∑
v∈V

pv yv (5.13a)

s.t. WL ≤
∑
v∈V

wv yv ≤ WU (5.13b)∑
v∈Vr

wv yv −
∑
v∈Vb

wv yv ≤ ∆ (5.13c)

∑
v∈Vb

wv yv −
∑
v∈Vr

wv yv ≤ ∆ (5.13d)

y ∈ Yr (5.13e)

The objective (5.13a) is to maximize the pro�t of the chosen subgraph. The capacity
constraints are speci�ed in (5.13b), and the balancing constraints in (5.13c) and (5.13d).

5.4 Reduction Techniques for BRCMWCS

When we consider an instance of BRCMWCS, we might be able to eliminate certain parts
of the network, or even prove infeasibility in a preprocessing phase. Computational studies
show that preprocessing methods for the MWCS generally have a huge impact on the solu-
tion time [EKK14; RK19; RKM19]. While the general methods for the MWCS do not carry
over to the BRCMWCS, we propose a number of e�ective approaches that signi�cantly
reduce the problem size and computation times for our problem.

5.4.1 Basic Reduction Techniques

We start with some basic reduction techniques, but stress that the word �basic� relates
to the mathematical depth of the approaches and not to their impact. In fact, for many
instances, these reductions account for a large portion of the e�ect that is achieved by the
preprocessing.

For a straightforward presentation, we transform the node weights (wv) in G to arc
weights in the bidirected version D = (V,A). Therefore, for (u, v) ∈ A we de�ne

w̃(u,v) := wv,

w̃b(u,v) :=

{
wv , if v ∈ Vb,
0 , else,

w̃r(u,v) :=

{
wv , if v ∈ Vr,
0 , else.

(5.14)
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WU -Radius: A simple and yet e�ective method is to exclude all vertices that are not
within distance WU to r w.r.t. the vertex weights w. As it is impossible to reach these
within the weight bound of WU , they cannot be part of any feasible solution. We can
determine these nodes with a single call of Dijkstra's algorithm on D with arc weights w̃
starting at r.

Color Radii: A natural extension of this idea is to consider the node weights in com-
bination with the node colors. If we combine the capacity constraints with the balancing
condition, we can derive capacity bounds for each color class.

Lemma 5.3 Given a BRCMWCS instance (G,w, c,WL,WU ,∆, r), let

W b
L :=

WL −∆

2
, W b

U := min

(
WU + ∆

2
, w(Vr) + ∆, w(Vb)

)
,

W r
L :=

WL −∆

2
, W r

U := min

(
WU + ∆

2
, w(Vb) + ∆, w(Vr)

)
.

Then, any feasible solution T = (VT , ET ) satis�es

w(VT ∩ Vb) ∈ [W b
L, W

b
U ] and w(VT ∩ Vr) ∈ [W r

L, W
r
U ].

Proof. The bounds are fairly easy to deduce. Exemplarily, we prove the lower weight
bound for the set of chosen �blue� vertices, i.e., w(VT ∩Vb) ≥ WL−∆

2 . For brevity, we write
wb = w(VT ∩ Vb) and use wr accordingly. If wr < wb, we can prove this bound for wr and
it would follow for wb. Thus, we assume that wr ≥ wb and, then, we have wb+wr = w(VT )
and wr − wb ≤ ∆. Consequently,

wb ≥ wr −∆ = w(VT )− wb −∆ ≥ WL − wb −∆,

and the statement follows immediately.

Ignoring the lower bounds for the moment, we can de�ne the color radius for each
color class as the set of nodes that can be reached from the root on a path that satis�es
the upper weight bound of the according color. Analogously to the WU -radius, we can
determine this set with a single shortest path tree computation in D with arc weights w̃b

and w̃r, respectively. Every node that is outside of either color radius cannot be part of
any feasible solution and can be removed.

Restricting Connectivity Formulations to the Core Graph: A clever idea to
reduce the model size is to concentrate the connectivity issue to a core graph by handling
�outer� parts of the network separately. More speci�cally, if v 6= r is a leaf in G with unique
neighbor u, we can add the inequality yv ≤ yu to our model and remove v from the graph
that is used for the connectivity formulation. By successively removing nodes of degree 1
(except for the root node) we obtain the core graph.
For very sparse, tree-like instances, which we also consider here, the restriction to the

core graph proves to have an enormous impact. Note that if the graph is a tree, then the
core graph consists of only one node, the root. In this case, the added inequalities indeed
su�ce to model the connectivity condition as we will see in Section 5.7.



5.4 Reduction Techniques for BRCMWCS 61

Algorithm 5.2: ComputeBicolorLabels

Input: G = (Vb ∪̇Vr, E), w, r, `max

Output: set of labels per node in G

1 Consider arc weights ω in the bidirected version of G with ω(u,v) ←
(
w̃b(u,v), w̃

r
(u,v)

)
;

2 `r ←

{
(wv, 0) , if r ∈ Vb,
(0, wv) , else

; labels[v] ←

{
{`r} , if v = r,

∅ , else
for v ∈ V ;

3 L← {(r, `r)};
4 repeat

5 L′ ← ∅;
6 for (u, `u) ∈ L do

7 for each neighbor v of u in G do

8 `′ ← `u + ω(u,v);
9 if `′ respects `max and is not dominated by any label at v then

10 Add `′ to labels[v];
11 Add (v, `′) to L′;
12 Remove dominated labels in labels[v];
13 L← L′;
14 until L = ∅;
15 return labels

5.4.2 The Bicolor Radius

Instead of computing the single color radii, we can also consider the bicolor radius, i.e., the
set of nodes that can be reached from the root on a path that satis�es the upper weight
bound of both color classes.

Unfortunately, the bicolor radius cannot be computed via a shortest path tree. In fact, it
is essentially a constrained shortest path problem to determine if a speci�ed node is inside
the bicolor radius. We solve the problem with a Bellman-Ford-like labeling algorithm that
determines Pareto-optimal shortest path costs. The approach is detailed in Algorithm 5.2
and uses two-dimensional arc weights and node labels (for the blue and red cumulated
weight, respectively). The upper weight bounds, given as a pair `max = (W b

U ,W
r
U ), are

part of the input. We use the usual notion of domination, i.e., label `1 dominates label `2
if each weight in `1 is less than or equal to the corresponding weight in `2 and if at least
one of the inequalities is strict. The algorithm is closely related to constrained shortest
path labeling approaches and runs in pseudo-polynomial time. A node v is in the bicolor
radius if and only if labels[v] 6= ∅ where labels is the output of Algorithm 5.2.

The e�ect of the bicolor radius preprocessing can be substantial, and goes far beyond
the single color radii. For the instance depicted in Figure 5.5, the single color radii cannot
exclude a single node. The bicolor radius, on the other hand, is able to eliminate all gray
nodes, essentially eliminating half of the graph.
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Figure 5.5.: E�ect of the bicolor radius preprocessing. The root node is depicted as a yellow
square, the gray nodes are outside of the bicolor radius and can be removed.

5.4.3 Preprocessing

The bicolor radius is an e�ective method to remove nodes from the graph that cannot be
part of any feasible template. Complementary to this approach, we can also �x nodes that
have to be part of any feasible template.
In order to �x a node v, we consider the connected component C of r in G − v. If

C violates the lower weight bound of any color class, this component cannot contain a
feasible template and, thus, we can �x node v to be part of any solution. The routine
described in Algorithm 5.3 strictly follows this principle. In our implementation, however,
we precompute the articulation points of G and consider the nodes in a depth-�rst search
(DFS) order. Therefore, if v is an articulation point we can e�ciently deduce the color
weights of the root component from the parent node. If, in addition, the root component
of G− v is feasible, we do not have to consider any descendants of v in the DFS tree.
Since the weight bounds and the network may change when we remove nodes, and the set

of �xed nodes can impact the removal, it makes sense to repeat the procedures until a stable

Algorithm 5.3: FixNodes

Input: G = (Vb ∪̇Vr, E), w, r, W b
L, W

r
L

Output: set V f of �xed nodes

1 V f ← ∅;
2 for v ∈ V (G) K r do
3 C ← connected component of r in G− v;
4 if w(V b ∩ V (C)) < W b

L or w(V r ∩ V (C)) < W r
L then

5 V f ← V f ∪ {v};
6 return V f ;
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Algorithm 5.4: Preprocessing

Input: G = (Vb ∪̇Vr, E), w, r, W b
L, W

r
L, W

b
U , W

r
U

Output: relevant subgraph G′ ⊆ G,
set V f of �xed nodes

1 V f ← {r}
2 repeat

3 De�ne node weights w′ with w′v ←

{
wv , if v /∈ V f ,

0 , else
for v ∈ V

4 `′max ←
(
W b
U − w(V f ∩ Vb), W r

U − w(V f ∩ Vr)
)

5 labels← ComputeBicolorLabels(G,w′, r, `′max)
6 repeat

7 Remove every node v with labels[v] = ∅ from G

8 Recompute W b
L,W

r
L,W

b
U ,W

r
U , `
′
max

9 Remove all labels in labels that do not dominate `′max

10 until no nodes were removed ;
11 if w(Vb) < W b

L or w(Vr) < W r
L or V f 6⊆ V (G) then

12 return (∅,∅)

13 V f ← FixNodes(G,w, r,W b
L,W

r
L)

14 until no additional nodes were �xed ;
15 return (G,V f )

state is reached. To this end, we propose Algorithm 5.4 that presents our preprocessing
routine. The input for the weight bounds stems from Lemma 5.3.
Note that we ignore the weight of all �xed nodes (cf. line 3) for the computation of the

bicolor labels. In return, we subtract the weight of �xed nodes from the upper weight
bounds (cf. line 4). This can lead to a tighter bicolor radius and remove even more nodes.
The update of the weight bounds in line 8 allows us to repeatedly remove nodes without

the more expensive recomputing of all bicolor labels.
We can also quickly identify infeasibility, as it is done in line 11: Whenever the remaining

graph does not meet a lower weight bound or when we removed a �xed node, we can deduce
that there is no balanced connected subgraph that meets the capacity constraints.
Finally, in order to improve our formulation, we can add the valid inequalities from

Lemma 5.3 to our respective MIP, i.e.,

W b
L ≤

∑
v∈V b

wv yv ≤ W b
U , W r

L ≤
∑
v∈V r

wv yv ≤ W r
U . (5.15)

Let us consider the functioning of Algorithm 5.4 on a speci�c example depicted in Fig-
ure 5.6. The table contains key values at di�erent stages of the algorithm, namely, after
the execution of the line that is speci�ed in the respective column. We report the total
bicolor weight w̃(V f ) of the �xed nodes, the cumulated bicolor weight ω(V ) of remaining
un�xed nodes, as well as the current lower and upper weight bound reduced by the �xed
weight, ΩL and ΩU .
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(a) (b) (c)

(d) (e) (f)

image line w̃(V f ) ω(V ) ΩL ΩU

(a) 1 (0.0, 0.0) (228.7, 876.5) (47.4, 47.4) (100.0, 100.0)
(b) 10 (0.0, 0.0) (78.6, 178.6) (47.4, 47.4) (78.6, 81.2)
(c) 13 (12.4, 16.4) (66.2, 162.2) (35.0, 31.0) (66.2, 64.8)
(d) 10 (12.4, 16.4) (37.7, 65.4) (35.0, 31.0) (37.7, 36.6)
(e) 13 (45.0, 37.8) (5.1, 44.0) (2.4, 9.6) (5.1, 14.9)
(f) 10 (45.0, 37.8) (5.1, 9.8) (2.4, 9.6) (5.1, 0.0)
� 13 (45.0, 47.6) (5.1, 0.0) (2.4, 0.0) (5.1, 0.0)

Figure 5.6.: Key steps of the preprocessing in Algorithm 5.4 for an exemplary instance,
portrayed as images and within a table. The root node and �xed nodes are
colored yellow. The columns of the table are speci�ed in the text.

We see that the �rst discarding step results in a massive reduction of the network size.
Then, it is possible to �x a certain subset of nodes while this, in turn, lowers the upper
weight bound ΩU (and sets the weight of �xed vertices to 0). With the new bounds, it is
possible to discard even more nodes, and on the resulting graph, we �nd new nodes that
have to be part of any solution. After this �xing and a next discarding step, we perform a
�nal node �xing round. As one can see in the last line of the table, the cumulative weight of
all remaining un�xed red nodes is 0.0, i.e., all red nodes of the remaining graph have to be
included in any feasible solution. Starting with a graph on 161 vertices, the preprocessing
was able to discard 140 of these nodes and �x 18 of the remaining 21 vertices. While this



5.5 LP Strengthening 65

is indeed an extreme example, we see that such an e�ect is not unusual for the pricing
instances considered in the next chapter.

5.5 LP Strengthening

With removing dispensable nodes and �xing necessary ones, we often reduce the problem
size signi�cantly. However, we can gain even more valuable insight before starting the
optimization. In the following, we will explore a number of possibilities to incorporate
additional information into the initial MIP formulation to strengthen its LP relaxation.
The overall e�ect of our strengthening methods is immense and Figure 5.7 shows their

impact. Depicted are the optimal solutions to the LP relaxations of SCF and the initial
RAS model, i.e., (5.3) without (5.3c) but with 2-cycle inequalities (5.4), once without the
strengthening cuts proposed in the following and once with their inclusion. All nodes with
y value 0 are colored gray. We see that the LP relaxation of the basic SCF is very weak
and that for the RAS, the solution consists of several connected components that are far
apart. Both solutions look much better when the strengthening cuts are added. In fact,
the vertices with positive y values in the RAS solution now induce a connected graph. We
can also evaluate the improvement with respect to the objective value. While the optimal
objective value of the IP is 11.6, the basic LP relaxations achieve 24.4 (SCF) and 23.0
(RAS). The strengthened versions, on the other hand, have optimal objective values of
14.6 (SCF) and 14.7 (RAS). So let us discover which cuts cause this great improvement.

5.5.1 Implied Nodes

The �rst option that we consider is the �xing of nodes, given that a certain other node is
included in a solution. More speci�cally, our goal is to identify vertices u 6= v such that
for every feasible subgraph T we have

u ∈ T =⇒ v ∈ T.

These implications can be integrated into the MIP model with the simple constraint
yu ≤ yv. We have already seen these constraints when building the core graph, and
indeed, a leaf (unless it is the root) and its neighbor are a special case of implied nodes.

Articulation Points: A simple method to �nd such implications is to determine the
articulation points of G, i.e., the set of all vertices v such that G − v is not connected
anymore. It is well known that the articulation points of G can be found with a modi�ed
DFS in time O(|E|) [HT73]. If v is an articulation point and u is not in the root component
of G − v, then the inclusion of v is clearly necessary for the inclusion of u in any feasible
template, and the above inequality is valid. Lüthen [Lüt18] and Hojny et al. [Hoj+21]
also follow this direction but �nd that there are too many cuts to add. We concentrate
on a subset of these that proves to be very useful: the neighbors of articulation points.
In particular, let {v} be an r-u-separator with uv ∈ E, then we call the valid inequality
yu ≤ yv an Articulation Point Neighborhood Cut.

General Case: Again, the color classes and capacity constraints allow for more impli-
cations. To this end, we consider the contraposition of the statement, i.e., v /∈ T =⇒ u /∈ T .
Our goal is to run Algorithm 5.2 on G−v to �nd vertices u that cannot be reached anymore.
We can do this more e�ciently, if we store each label ` together with the Pareto-optimal
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(a) SCF - no strengthening (b) SCF - with strengthening cuts

(c) initial RAS - no strengthening (d) initial RAS - with strengthening cuts

Figure 5.7.: Solutions to LP relaxations of the SCF and initial RAS model with and without strengthening constraints.
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path P` that led to it in the initial run of Algorithm 5.2. For x ∈ V K {r} let

P (x) :=
⋃

(`,P`)∈ labels[x]

V (P`)

be the set of nodes that are on any considered Pareto-optimal r-x-path. Now let us consider
a speci�c vertex v and remove it from G. The set Av := {w ∈ V : v ∈ P (w)} consists of
all vertices for which we have to delete at least one label. If after the removal of all labels
(`, P`) with v ∈ P`, every vertex still has at least one label, there are no implications to
be drawn from v /∈ T . In the other case, we start our algorithm ComputeBicolorLabels

on G − v in a slightly adjusted variant: Apparently, all labels of nodes in V K Av do not
change, and the nodes S := (V KAv)∩N(Av) are the nodes that do not change any label,
but are adjacent to vertices that are a�ected. Therefore, we de�ne the start labels as
L := {(w, `) : w ∈ S, ` ∈ labels[w]} and use this set in line 3 of Algorithm 5.2. With this
adjustment, we ensure that the search for new labels is steered towards the relevant part of
the graph. Every node u that has no label after the ComputeBicolorLabels run on G− v
can only be part of any feasible solution if v is also part of the template.
In order to reduce the number of implications, we have two strategies. First, we consider

only coarse nodes as necessary nodes, i.e., we considerG−v only for v with deg(v) ≥ 3. And
second, we �lter implied nodes by removing transitivity redundancies, i.e., with u =⇒ v
and v =⇒ w, we can drop the implication u =⇒ w.

Activation Pairs: For the sake of completeness, we also brie�y cover the implication
u /∈ T =⇒ v ∈ T . It means that at least one of the two nodes u and v has to be part of
any solution, and the corresponding cover constraint that can strengthen our MIP model
is yu + yv ≥ 1. We can �nd such a node pair by running Algorithm 5.3 on G− v for each
node v 6= r. The performance can be improved if we consider the nodes v in a DFS order
as we did for the node �xing and prune early. Our computational tests revealed, however,
that these inequalities do not help in reducing the computation time.

5.5.2 Con�icts

Besides implied nodes (u ∈ T =⇒ v ∈ T ) and activation pairs (u /∈ T =⇒ v ∈ T ), there is
a third implication which we study here:

u ∈ T =⇒ v /∈ T

for every feasible template T . It states that the two nodes u and v cannot be both part of a
feasible solution. In other words, they form a con�ict pair and the inequality to potentially
tighten the LP relaxation of our formulation is yu + yv ≤ 1.
The idea of analyzing con�icting pairs (or even larger sets), and deriving stronger con-

straints has been proven to be very useful in di�erent set packing problems, such as knap-
sack or matching problems. The proposed idea also translates to the rooted and capacitated
MWCS, i.e., without the colors and balancing condition.

Finding Con�ict Pairs: In order to identify con�ict pairs, we can once more make
use of the upper capacity bounds from Lemma 5.3. If for two nodes u and v and for every
tree T = (VT , ET ) containing r, u, and v, we know that w(VT ) > WU or w(VT ∩ Vb) > W b

U

or w(VT ∩ Vr) > W r
U , then (u, v) is a con�ict pair.
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Algorithm 5.5: SteinerTreeConflictPairs

Input: D = (V, A), r, w̃ ∈ RA≥0, wmax

Output: set C of con�ict pairs

1 C ← ∅;
2 len← all pairs shortest path lengths in D w.r.t. w̃;
3 for all node pairs u, v ∈ V K {r} do
4 for c ∈ V do

5 weight← len[(r, c)] + len[(c, u)] + len[(c, v)];
6 if weight ≤ wmax then

7 // there is a feasible Steiner tree
8 Go to line 3 and check the next node pair;
9 Add (u, v) to C;
10 return C;

Deciding if there exists a tree connecting a given set of terminal vertices at some cost, is
a Steiner tree problem. Fortunately, an elegant combinatorial approach is known for the
Steiner tree problem with three terminals. It is based on the insight that any Steiner tree
with three terminals is a union of paths from a common center node (that is possibly a
terminal itself) to the terminals.
Building on this, Algorithm 5.5 describes our procedure to identify con�ict pairs. As

input, we use the bidirected version D of G, the root node r, and one of the following three
weight combinations:

� w̃, wmax = WU − wr,

� w̃b, wmax = W b
U − wr · χ(r ∈ Vb),

� w̃r, wmax = W r
U − wr · χ(r ∈ Vr),

with arc weights as de�ned in (5.14) and χ denoting the characteristic function. The union
of the three respective return values of Algorithm 5.5 constitutes our set of con�ict pairs.
The proposed algorithm runs in time O(|V |3), but there is some room for improvement,

especially for very sparse graphs. First of all, it is not necessary to consider every node
in V as a potential center for the Steiner tree with terminals r, u, v. Since all arc weights
are non-negative, it su�ces to consider the coarse nodes Vc as well as r, u, and v as center.
The coarse graph can also be used for the shortest path computations. Suppose that we
computed all distances d(u, v) for all pairs (u, v) of coarse nodes, and let i ∈ Pf (u1, u2)
and j ∈ Pf (v1, v2) be �ne nodes on di�erent coarse arcs, i.e., (u1, u2) 6= (v1, v2) 6= (u2, u1).
Since computing distances on a path takes linear time, we can e�ciently compute the
distance d(i, j) from i to j as

d(i, j) = min{d(i, u1) + d(u1, v1) + d(v1, j),

d(i, u1) + d(u1, v2) + d(v2, j),

d(i, u2) + d(u2, v1) + d(v1, j),

d(i, u2) + d(u2, v2) + d(v2, j)}.
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The computation of the distance from a coarse to a �ne node is analogous. Altogether,
we need time O(|E|) to compute all distances on paths and O(|Vc|3) for the all pairs
shortest path distances in the coarse graph Dc. In the worst case, we have to check all
O(|Vc|) potential centers for all node pairs and can hence reduce the time to O(|V |2| |Vc|).
In practice, there are even more tricks to speed up the procedure. We might be able to

exclude a set of potential centers for a certain node pair right away. Then, we can sort the
remaining centers heuristically to obtain a feasible Steiner tree as early as possible. We
can also make use of �implied con�icts�: If u1 and v1 form a con�ict pair and u2 implies
u1 while v2 implies v1, then (u2, v2) is also a con�ict pair. Finally, if the endpoints of two
coarse arcs are crosswise in con�ict then, obviously, every �ne node of one arc is in con�ict
with every �ne node of the other arc. We could extend the list of practical tricks but
already the mentioned ones are not necessary for Algorithm 5.5 on our instances. There
is, however, another variant in which these improvements play a vital role.
Analogously to the color radii that we improved to the bicolor radius, we can also extend

the Steiner trees from above to bicolor Steiner trees. This means that for two nodes u and
v, we only accept a Steiner tree with terminals r, u, and v that simultaneously meets the
upper bounds of both color classes as �certi�cate of non-con�ict�. The good news is that this
tree is still the union of three paths from a common center c. However, instead of adding
three (one-dimensional) lengths, we have to check all combinations of two-dimensional
Pareto-optimal labels to prove infeasibility. Even worse, we have to compute these Pareto-
optimal labels from a potential center to all other nodes in advance. We implemented
this approach, and even though one would expect the resulting (additional) con�icts to be
particularly valuable, it had no positive e�ect on the solution time. Therefore, we do not
describe this approach in more detail, and instead, we adhere to the con�icts generated by
the simpler approach in Algorithm 5.5.
For most of our instances, this routine is already able to identify a large number of

con�ict pairs. In fact, in most cases there are so many con�ict pairs that it is bad to
include all of them and we need a reduction strategy. We will discuss two approaches:
Deriving large con�ict sets and identifying essential con�icts.

The Con�ict Graph: The individual con�ict pair inequalities yu + yv ≤ 1 can be
too weak to e�ectively strengthen the LP relaxation. We construct the con�ict graph on
the vertex set V by introducing an edge for every con�ict pair. Analogously to the set
packing problem (see [BW00] for details), we can derive stronger inequalities from the
con�ict graph: Given an odd cycle C of length 2k+ 1 in the con�ict graph, the inequality∑

v∈C yv ≤ k is known to be stronger than the ordinary con�ict pair inequalities. These
odd-cycle cuts, however, usually do not help the optimization process. The situation is
di�erent when considering a clique C in the con�ict graph. The clique cuts

∑
v∈C yv ≤ 1

are known to be often bene�cial for the LP relaxation.
We experimented with including clique cuts to our formulation. Since the number of

cliques is even much larger than the number of con�ict pairs, we determined an edge cover-
ing with cliques, and only added the respective clique cuts. These additional inequalities,
however, showed to have a negative e�ect on the solution time in our tests. A typical
con�ict clique together with an optimal solution for the BRCMWCS instance is depicted
in Figure 5.8. One can see that the con�icting nodes are quite far apart and located at the
boundary of the graph. Depending on the node pro�ts of the instance, such clique cuts
are rarely violated by the optimal LP relaxations. Hence, we shift our focus to identifying
more meaningful con�ict pairs.
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Figure 5.8.: The nodes of an exemplary con�ict clique are colored red, an optimal solution
is colored blue.

Essential Con�icts: Our experiments showed that the addition of all con�ict cuts
results in signi�cantly longer solution times. The same holds true if only violated cuts are
added dynamically to the program. Hence, it is necessary to identify essential con�icts
that actually facilitate the solution process. Such con�icts presumably involve nodes that
are closer to the root node or have a high pro�t.
In order to specify these nodes, we de�ne a scoring function that assigns a value from

the interval [−1, 1] to every vertex. A positive pro�t as well as a small ratio between the
shortest r-v-path length and WU increase the score of node v. Essential con�icts are then
de�ned as all con�ict pairs between nodes with a positive score. Figure 5.9 shows the node
scores and all resulting essential con�icts for an exemplary instance. Observe that the
con�ict sets are now much more central. We evaluate the impact of adding these essential
con�icts to the respective MIP formulation in Section 5.6.5.

Figure 5.9.: Essential con�icts and node scores of an exemplary instance.
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5.5.3 Binary Arc Variables

The arc separator formulation uses binary arc variables z that should describe an arbores-
cence for the sought template. The seeming advantage of the node separator formulation
is that it only uses node variables y. The single-commodity �ow, on the other hand, has
non-negative �ow variables x for the arcs. While it might sound counterintuitive, we could
add binary arc variables also to the SCF and RNS model. But why should we do this?
While this has obviously no e�ect concerning any integer solutions, it can help the

LP relaxation. Indeed, we found that the inclusion of the z variables in combination
with indegree constraints and 2-cycle cuts is highly bene�cial for both models. One great
advantage of the arc variables is their ability to break symmetries, as the following example
shows.
Transferring indegree constraints to node variables, we get constraints of the form∑
u∈N(v) yu ≥ yv for every v 6= r. Now, we consider the induced path (v1, v2, v3, v4)

that does not contain r and note that yv1 = yv4 = 0 and yv2 = yv3 = 1 satisfy these
constraints, since v2 is an active neighbor of v3 and vice versa. If, on the other hand, we
consider indegree constraints in combination with 2-cycle cuts, this solution is not feasible
anymore. From yv2 = yv3 = 1 and zv2v3 + zv3v2 ≤ 1, we know that zv1v2 + zv4v3 ≥ 1 which
results in yv1 + yv4 ≥ 1. The symmetry that v2 and v3 can act as active neighbor for each
other is broken.
If we add binary arc variables z to the SCF formulation, we can also use them to

activate the nodes that the �ow uses. More speci�cally, we replace constraints (5.1c), i.e.,
xuv ≤Muv yv for all (u, v) ∈ A, with the following constraints:

xuv ≤ Muv zuv ∀(u, v) ∈ A.

Together with the 2-cycle cuts zuv + zvu ≤ yv for (u, v) ∈ A, we obtain a stronger version
of the original constraints.
The inclusion of z variables into SCF and RNS also allows us to incorporate the other

strengthening cuts that we will present in the following. These concepts also have natural
�node versions�, i.e., cuts that only involve y variables, and we also experimented with
these. However, our tests show that the arc versions perform better. Our explanation is
that the node versions su�er from symmetry issues similar to the example above, and the
arc versions have stronger implications.
For the remainder of this chapter, we will denote by SCF+z (respectively RNS+z) the

formulation (5.1) (respectively (5.6)) with additional variables z ∈ {0, 1}A and additional
constraints (5.3b) and (5.4).

5.5.4 Root Ring Cuts

Once again, we exploit the capacity constraint to derive implications for our MIP model.

Lemma 5.4 Let S be a node separator in G and let Cr be the connected component of

r in G− S. If w(Cr[Vb]) < W b
L or w(Cr[Vr]) < W r

L, then∑
v∈S

yv ≥ 1

is a valid inequality for SCF, MCF, RAS, and RNS.
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Proof. Obviously, Cr is not a feasible template as it violates a lower weight bound from
Lemma 5.3. Therefore, more nodes have to be included and since the template has to be
connected, at least one node in S is necessary.

In order to present a simple method to identify disjoint separators that meet the stated
criteria, we introduce a new notation. Let N i(v) be the set of vertices with shortest unit-
weight distance i to vertex v. In particular, we have N0(v) = {v} and N1(v) = N(v), and
we note that all of these node sets are pairwise disjoint. With an adjusted BFS we can
now �nd the sets N1(r), . . . , Nk(r) such that

w

(
k−1⋃
i=0

N i(r) ∩ Vb

)
< W b

L or w

(
k−1⋃
i=0

N i(r) ∩ Vr

)
< W r

L

and

w

(
k⋃
i=0

N i(r) ∩ Vb

)
≥W b

L and w

(
k⋃
i=0

N i(r) ∩ Vr

)
≥W r

L

Simply enough, the determined node sets N1(r), . . . Nk(r) are separators that meet the
condition in the lemma above. As each of these sets can be seen as a ring around the root
node, we call the respective inequalities root ring cuts.

Instead of using node separators, we can do the described procedure also with arc sepa-
rators. Therefore, we de�ne

δ+i(r) :=
{

(u, v) ∈ A : u ∈ N i−1(r), v ∈ N i(r)
}
.

Again, we have δ+1(r) = δ+(r), and observe that δ+i(r) and δ+j(r) are disjoint for i 6= j.
Analogously to the node separator case, we �nd the maximum number k such that the
root component in G−δ+k(r) is not feasible with respect to the lower color weight bounds.
Finally, for i ∈ {1, . . . , k}, we can add the valid inequalities∑

a∈δ+i(r)

za ≥ 1 (5.16)

to SCF+z, RAS, and RNS+z. Our experiments show that the addition of arc root ring
cuts is superior to adding the cuts with node variables. Figure 5.10 shows the root rings
in di�erent colors for an exemplary instance.

5.5.5 Extended Indegree Cuts

Recall that constraints (5.3b) from the RAS formulation are∑
a∈δ−(v)

za = yv ∀v ∈ V K {r}.

As they state that each node of the arborescence spanned by z has exactly one arc going
into it, they are called indegree constraints. Our idea to extend these constraints is just as
simple as it proves to be e�ective. And yet, we are not aware of similar constraints in the
literature with an equivalent e�ect.
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Figure 5.10.: Root rings: At least one arc of every color class has to be chosen to ob-
tain a connected subgraph that meets the lower color weight bounds from
Lemma 5.3.

For the presentation, we introduce a new notation that is in line with our de�nition for
δ+i above. Namely, for x ∈ V and i ∈ N we write

δ−i(x) :=
{

(u, v) ∈ A : u ∈ N i(x), v ∈ N i−1(x)
}
.

Proposition 5.5 Let v ∈ V and let k ∈ N such that r /∈ N i(v) for i ∈ {0, . . . , k − 1}.
Then, ∑

a∈δ−k(v)

za ≥ yv (5.17)

is a valid inequality for SCF+z, RAS, and RNS+z.

Proof. Since r /∈ N i(v) for i ∈ [k], we know that Nk(v) is an r-v-node separator and,
hence, δ−k(v) is an r-v-arc separator. Now, if yv = 0, the inequality is trivially true, and
in the other case, the cover inequality for the separator is valid.

We call the cuts (5.17) extended indegree cuts (EIC), and denote all such cuts for i ≤ k
with EIC-k. Since for vertices of degree 2, the 2-cycle cuts (5.4) have the same e�ect, it is
su�cient to consider the EIC for vertices of degree ≥ 3. Note that the EIC are essentially
certain arc separator constraints (5.3c). To see this, we set S :=

⋃k−1
i=0 N

i(v) and note that
δ−i(v) = δ−(S). But what is the bene�t of adding these cuts to the initial model?
The EIC essentially help to avoid small cycles and, in fact, they are more e�ectively

than the k-cycle cuts (5.5). For example, consider the solution depicted in Figure 5.11.
Note that this solution is feasible for the initial RAS model, i.e., (5.3) without (5.3c), and
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r u v1 v2

v3v4

Figure 5.11.: (Infeasible) solution which is feasible for the initial RAS model. The y and
z variables with positive value are displayed in color: orange represents the
value 1

2 and green the value 1.

it remains feasible with additional 2-cycle and 3-cycle inequalities. The solution is not
even infeasible with 4-cycle inequalities, as one can verify. However, already adding the
constraints for EIC-2 breaks the cycle since δ−2(v1) = {(r, u)} and δ−2(v2) = {(u, v1)}.
Alternatively, one could lift one of the 4-cycle inequalities to include all arcs of the

induced subgraph, i.e., ∑
a∈A(G[C])

za ≤
∑

v∈CK{u}

yv

for the cycle C = (v1, v2, v3, v4). While this cuts o� the displayed LP solution, these
constraints are more complex. Also, we would need lifted k-cycle inequalities to �escape�
a clique of size k whereas EIC-2 still su�ce in this case.
The strength of the extended indegree cuts is also con�rmed in our computational tests.

We �nd that in practice, the EIC-2 constraints perform much better than the 3-cycle cuts.
While one cannot prove that EIC-2 dominate 3-cycle cuts (cf. Figure 5.12), we suspect that
the practical dominance stems from the di�erent behavior in cliques. Another advantage of
the extended indegree cuts is that they are much simpler to construct compared to k-cycle
cuts. In fact, an adapted BFS up to depth k su�ces for EIC-k.

Figure 5.12.: (Infeasible) solution where EIC-2 constraints are satis�ed but 3-cycle cuts
would prevent this solution. The y and z variables with positive value are
displayed in color: orange represents the value 1

2 and green the value 1.
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5.5.6 Fine Path Cuts

We have seen that the EIC are a subset of the arc separator constraints (5.3c) that are
bene�cial for the initial model. Here, we present a method to �nd other valuable arc
separators to add the corresponding cuts initially.

To this end, we consider the coarse graph Dc = (Vc, Ac) and for (u, v) ∈ Ac we de�ne
the arc weight wuv := wu + wv + w(Pf (u, v)). For a given node v, our goal is to �nd an
r-v-arc separator in Dc of maximum weight. The motive is that the implication of the
separator constraint from a large value of yv is stronger because it a�ects a vertex set of
larger weight. In order to �nd such a separator, we set arc capacities cuv := 1

w2
uv

in Dc and
compute a minimum r-v-cut Xc. We transform this cut to an r-v-arc separator X in D by
replacing each arc (u, v) ∈ Xc KA with the last arc of the respective �ne path in D. Then,∑

a∈X
za ≥ yv (5.18)

is a valid inequality for SCF+z, RAS, and RNS+z. . With the arc preceding constraints
(5.8b) in combination with indegree constraints, the value of za for each a ∈ X is now
propagated across the �ne path. In particular, we have yi ≥ za for each node i of the �ne
path, boosting the implication from (5.18).

Instead of computing these cuts for every node, we do this only for a relevant subset.
These important nodes can be solely derived from the network topology or can be deter-
mined dynamically, but in our case, we simply add �ne path cuts for the top ten nodes
with the highest pro�t.

Figure 5.13.: Fine Path Cuts: All nodes and arcs of at least one colored �ne path have to
be active in order to reach the yellow node v.
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5.6 Computational Study

The goal of our computational study is to evaluate the di�erent models and improvements
that we reviewed and introduced. In particular, we compare the di�erent connectivity
formulations, and assess the impact of the coarse-to-�ne model, the inclusion of con�icts,
and the other strengthening techniques that we presented.
We start with an introduction of our test instance set. In Section 5.6.2, we detail the

test setting and describe the experiments.

5.6.1 Test Instances

We are not aware of any test instances from the literature that �t our setting of the
BRCMWCS. Consequently, we generated a new set of instances. Our goal is to mimic
transit networks, and we found that Voronoi diagrams are an excellent starting point.
The basic Voronoi graph is spanned by the ridges of the Voronoi cells (cf. Figure 5.14a)

and we use Euclidean edge weights. Now, we add additional random leaves (cf. Fig-
ure 5.14b), split the edges to obtain a speci�ed number of nodes (cf. Figure 5.14c), and
stretch each edge by a random factor. The resulting networks resemble typical subgraphs
of road networks. In Section 6.4.1, we will also mimic the tra�c �ow on such instances
and analyze the resulting tra�c networks in more detail.
For this chapter, it is su�cient to note that we consider four groups of instances that

are depicted in Figure 5.15. First, we consider actual pricing instances from the next
chapter that are de�ned on the line graph of Voronoi graphs (details on this are given in
Section 6.4.1). These are contained in the set voronoi which consists of 45 instances: We
have �ve di�erent networks (and node colorings) and for each, we consider nine di�erent
pro�ts (three are actual reduced costs from the pricing problem, three are distributed
uniformly at random in the interval [−1, 1], and three are based on the normal distribution
to thin out extreme pro�ts). Then, we consider three other instance classes for which we
only use random colors and random pro�ts: large_voronoi contains instances that are
similar to the �rst class but are much larger, sparse_voronoi with instances having a very
large fraction of vertices with degree 2, and grid which consists of 25× 25 grids with the
central node being the root.
Some important attributes for the instance classes are summarized in Table 5.1. Smaller

values for fL[%] and fU [%] indicate a bigger potential for the preprocessing routine. As
we did not want to blow up the instance size just to reduce it in the preprocessing, only
few or often no vertices are outside of the WU radius of the root node.

(a) (b) (c)

Figure 5.14.: Construction steps of Voronoi instances.
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Table 5.1.: Selected properties of considered instance sets: # denotes the number of in-
stances in the respective group, fL[%] the average fraction of nodes within the
lower weight radius around the root, and fU [%] the fraction w.r.t. the respective
upper bound.

Instance set # |V | |E| fL[%] fU [%]

voronoi 45 565.4 864.0 45.9% 94.7%
large_voronoi 10 3994.1 5491.5 74.1% 100.0%
sparse_voronoi 10 2500.6 2517.4 73.6% 99.9%
grid 10 625.0 1200.0 100.0% 100.0%

(a) voronoi (b) large_voronoi

(c) sparse_voronoi (d) grid

Figure 5.15.: Exemplary BRCMWCS instances. The root node is depicted as a yellow
square, circles represent nodes in Vb and triangles nodes in Vr, node sizes
correspond to weights and colors to node pro�ts.
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5.6.2 Experiments and Test Setting

We can group our experiments into four categories:

� a comparison of the connectivity models,

� the assessment of the impact of our coarse-to-�ne model,

� an evaluation of adding con�ict cuts,

� and the analysis of the impact of selected single parameters.

Together with the connectivity models, we evaluate the e�ect of adding binary arc vari-
ables to SCF and RNS as proposed in Section 5.5.3, and we also see the enormous e�ect
of combining all improving methods. Taking the example of single-commodity �ow, we
use the following notation: SCF denotes the basic formulation as it is introduced in Sec-
tion 5.1. SCF+z also includes binary arc variables z in combination with indegree and
2-cycle constraints, and SCF+C2F is the basic �ow formulation on the coarse graph with
the predecessor formulation for the �ne paths. Finally, SCF∗ denotes the single-commodity
�ow formulation with the best combination of our improving methods that we found in
extensive tests that go far beyond the presented settings. This best combination is de-
tailed in Section 5.6.6 but it basically means the use of all proposed methods except for
the coarse-to-�ne model and con�ict cuts. For the moment, it su�ces to view the ∗ version
as �the optimal� setting.
We ran our experiments on machines equipped with Intel Xeon E3-1245 CPUs with

3.70GHz and 32GB RAM. Our code is written in Python 3.8 and we use Gurobi 9.5 with
default settings as LP and MIP solver. We introduce a time limit of one hour, and instances
that terminate due to memory errors are set to the time limit. All times reported in the
following are in seconds.

Details on RAS: In the basic variant, the initial model of RAS is only strengthened
with 2-cycle inequalities. During the separation, we ignore nodes with yv ≤ 0.999 and
compute a maximum �ow only for each non-root component. With the �ow computation
in Python code, however, the separation routine for the RAS is the bottleneck of this
approach. By using the maximum �ow function from scipy, which is written in C, we
obtain a massive speed-up and the separation is no longer the bottleneck. For our instances,
nested cuts, minimum cuts of minimum cardinality, and generalized subtour elimination
constraints did not provide any advantages, but the inclusion of back-cuts showed to have
a slight positive e�ect overall. The in�uence of back-cuts is also discussed in Section 5.6.6.

Separation for RNS: We use the adapted approach of Fischetti et al. [Fis+17] and
call the separation only for integer solutions. In consequence, we observe that almost no
time is spent in the separation routine.

5.6.3 Comparison of Connectivity Models

Our �rst results concern the choice of the connectivity model, as shown in Table 5.2. We
provide instance-wise solution times in Tables A.1 and A.2 in the appendix.
When comparing the basic variants, the arc separator formulation is clearly the best.

For the voronoi instances, the SCF formulation at least �nds solutions in reasonable time,
but for most of the other instances and for almost all instances with RNS, the time limit
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Table 5.2.: Average computation times (in seconds) for di�erent connectivity formulations
in the basic variant, with z variables, and as optimal variants.

Instance set SCF MCF RAS RNS SCF+z RNS+z

voronoi 321.0 3124.3 8.8 3495.5 84.4 3163.3
large_voronoi 3600.0 3600.0 556.2 3600.0 2403.4 3600.0
sparse_voronoi 3240.1 3015.3 6.0 3282.2 95.9 2565.7
grid 3045.1 3600.0 21.9 3600.0 1228.9 3600.0

Instance set SCF∗ MCF∗ RAS∗ RNS∗

voronoi 10.1 1957.6 3.6 186.3
large_voronoi 201.2 3600.0 69.0 3246.6
sparse_voronoi 3.9 2997.6 2.1 1.7
grid 389.5 3600.0 24.1 3600.0

of one hour is reached. The timeout for MCF, on the other hand, is mostly due to memory
issues.
The impact of adding z variables with indegree and 2-cycle constraints to SCF is remark-

able, especially for sparse instances, providing a speed-up factor of over 33. Concerning
the RNS formulation, this addition on its own is only helpful for a handful of instances.
More speci�cally, for 8 of the 75 instances this leads to a substantial improvement, while
for 2 instances, we observe a negative e�ect.
Adding the other improving cuts, however, leads to a massive reduction of computation

times across the board. Here, we can already witness the gigantic impact of our proposed
improvements. The arc separator formulation is still the clear favorite by far. And while
the MCF and RNS formulation still struggle with solving the large_voronoi and grid

instances within the time limit, there is a clear improvement for the voronoi instances
and, in case of the RNS, especially for the sparse instances. For the latter class, RNS∗

is now even the fastest method for 9 out of 10 instances, although the solution times are
generally much lower than for any other instance set.
To sum up, the clear winner of this comparison is the RAS formulation and the clear

loser the MCF. The RNS∗ seems particularly suited for sparse graphs but is relatively
useless for the other instance sets. Finally, the SCF∗ formulation is the only practical
alternative to RAS∗ but on our test instances, it is clearly dominated by RAS∗ and there
is no argument for using SCF∗ instead1.

5.6.4 The Impact of Coarse-to-Fine

Next, we evaluate the coarse-to-�ne approach and, as stated above, we only consider C2F
in combination with SCF and RAS. The average optimization times for our instance groups
are given in Table 5.3, instance-wise results are given in Table A.3 and Table A.4 in the
appendix.
Combined with the basic �ow formulation, C2F brings a slight advantage overall, but

1Spoiler alert: One might add the word �yet�, and prepare for a surprise in Chapter 6.
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Table 5.3.: Average computation times (in seconds) for di�erent variants of SCF and RAS
formulations without and with the coarse-to-�ne (C2F) model.

Instance set SCF +C2F SCF+z +C2F SCF* +C2F

voronoi 321.0 318.3 84.4 73.8 10.1 13.7
large_voronoi 3600.0 3600.0 2403.4 2876.9 201.2 1069.9
sparse_voronoi 3240.1 87.8 95.9 7.3 3.9 3.9
grid 3045.1 2960.2 1228.9 877.1 389.5 380.1

Instance set RAS +C2F RAS∗ +C2F

voronoi 8.8 9.7 3.6 4.6
large_voronoi 556.2 702.0 69.0 535.6
sparse_voronoi 6.0 3.6 2.1 4.7
grid 21.9 21.6 24.1 23.8

for the sparse instances, the di�erence is signi�cant. If we add z variables, the e�ect
is similar: A great improvement for sparse_voronoi, a slightly positive e�ect for the
voronoi instances, and a negative e�ect for large instances. When considering the best
�ow formulation SCF∗, however, the e�ect of C2F becomes mostly negative. There are still
some sparse instances that bene�t from the C2F formulation, but over the ten instances,
the advantage disappears.
The di�erence in the grid instances is surprising, to say the least. The only di�erence

between the grid graph and its coarse counterpart are the four �corners� of the grid, and
since the root is the central node of the grid, these nodes are, generally speaking, the most
unimportant ones. At closer look, the main issue of the grid instances is the dual bound.
And while one formulation does not provide a better bound than the other, the leaps in
closing the gap in Gurobi essentially determine the runtime. One could investigate this
further to better understand this behavior, but since grid instances are not the focus of
our work, we did not pursue this direction.
The combination of RAS with C2F does not have a clearly positive e�ect. While it

bene�ts the sparse instances and it also has a positive e�ect on some other instances, the
overall performance with C2F is worse than the original formulation. Again, with the
optimal parameter setting RAS∗, the C2F model is simply worse.
In conclusion, we can say that the C2F model can have a signi�cant e�ect when compared

with the basic variants. It seems, however, that all of our other improvements replace the
advantage that comes from this model.

5.6.5 The Impact of Con�icts

The evaluation of the e�ect of our con�ict cuts leads to similar results as for the C2F,
as Table 5.4 shows. When combined with the original models SCF and RAS, the �ltered
con�icts often help the solution process. As the detailed results in Tables A.5 and A.6 show,
the addition of con�icts to the basic model is better for the vast majority of instances.
The combination of con�ict cuts and the strengthened formulations SCF∗ and RAS∗,

however, leads to longer solution times. Still, there are single instances where the con�icts
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Table 5.4.: Average computation times (in seconds) for the basic and optimal variants of
SCF and RAS without and with the addition of (essential) con�ict pairs.

Instance set SCF +CP SCF∗ +CP

voronoi 321.0 205.6 10.1 10.8
large_voronoi 3600.0 3600.0 201.2 447.6
sparse_voronoi 3240.1 3240.1 3.9 5.2
grid 3045.1 2980.4 389.5 341.6

Instance set RAS +CP RAS∗ +CP

voronoi 8.8 7.6 3.6 3.9
large_voronoi 556.2 673.8 69.0 91.6
sparse_voronoi 6.0 7.0 2.1 2.4
grid 21.9 18.9 24.1 21.5

bring a signi�cant improvement, but mostly, they a�ect the solution process negatively.
This is not a surprise when we reconsider the solutions of the LP relaxations in Figure 5.7.

It is easy to believe that the merit of con�ict cuts is greater in a very weak LP relaxation
than in the strengthened formulation. Similar to the C2F approach, it seems as if our
other strengthening improvements dominate the con�ict cuts and, except for a few cases,
make them obsolete.

5.6.6 Computational Analysis

We tested numerous combinations of the parameters and in the following, we present the
setting that performed best overall and evaluate the impact of selected parameters.
For the best setting, we use the preprocessing with node �xing and removal, and we use

implied nodes, binary arc variables z for SCF and RNS, root ring cuts, and �ne path cuts.
Concerning the extended indegree cuts, we found EIC-2 to perform best, but below, we
also present results for EIC-3 and without EIC, i.e., only with indegree constraints. EIC-4
is mostly unnecessary for our instances and leads to extended running times. Finally,
adding the color range constraints (5.15) obtained in the preprocessing is also a slight
improvement, and evaluated below. As we have seen, the coarse-to-�ne approach and the
con�ict cuts do not help with this optimal setting
We point out that the preprocessing as well as the implied nodes have a limited, but still

slightly positive impact on our instances. The instances are simply not sparse enough for
node �xing to occur, and the capacity bounds are designed to mostly represent instances
after the preprocessing. This is completely di�erent when we consider the BRCMWCS as
a pricing problem in the next chapter, especially on real-world instances. In this case, the
preprocessing has an enormous impact on the computation time.
Our base variant for the evaluation is RAS∗ and Table 5.5 shows our selection of variants

and their average solution times. Here, �BC indicates that we do not use back-cuts in the
separation, �CR stands for the exclusion of color range constraints, and +EIC-3 describes
the inclusion of extended indegree cuts of level 3 to the RAS∗ setting. Consequently, �EIC
means the exclusion of any EIC, and, �nally, �SpC is the parameter setting of RAS∗ but
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Table 5.5.: Average computation times (in seconds) for di�erent variants of the optimal
RAS formulation: without back-cuts (�BC), without color range constraints
(�CR), with extended indegree cuts of level 3 (+EIC-3), without EIC (�EIC),
without separation per component (�SpC).

Instance set RAS∗ �BC �CR +EIC-3 �EIC �SpC

voronoi 3.6 3.5 3.8 3.7 6.0 6.1
large_voronoi 69.0 80.7 75.6 74.3 554.7 346.8
sparse_voronoi 2.1 2.0 1.8 1.9 4.6 15.1
grid 24.1 17.1 23.0 18.9 19.0 62.9

we compute a maximum r-v-�ow for every v with yv > 1 − ε instead of separating per
component as suggested in Section 5.1.3.
Starting with the last two columns, we observe that each of these proposed improvements

has a signi�cant impact on the runtime, and it is always better to use both options. The
drop-o�, in particular for large instances, is remarkable considering the fact that there is
only a single ingredient missing.
For the comparison of the other variants, we consider the instance sets separately, start-

ing with voronoi. While at �rst sight, it seems as if all variants perform similarly, the
instance-wise results in Table A.7 show that the times for the single instances actually vary
but balance over the set of 45 instances. What if we could determine the best parameter
setting for a given instance? To assess the potential of this approach, we take the minimum
time for each row and end up with an average runtime of 3.0 seconds. Interestingly, the
optimal decision between using back-cuts or not already leads to 3.2 seconds on average.
We did not study the prediction of optimal parameter sets from instance characteristics as
our test set is much to small for this purpose.
For the large_voronoi instances, the variance over the single instances is similar. In

this case, the best complement to the base variant is +EIC-3, as one of the two usually
has the best or close to the best runtime. Again, with the assumption of an oracle that
decides if we add EIC-2 as in the base model or EIC-3, the average runtime would drop to
61.8 seconds.
Concerning the sparse instances, all variants are very fast, with �CR having the slight

edge on these ten instances. For the grid instances, we �nd that �BC and +EIC-3 are the
two best variants. If we combine these two, i.e., we consider RAS∗ without back-cuts and
with EIC-3 constraints, this variant is even better on grid instances, achieving an average
runtime of 16.4 seconds.

Apart from the described variants, we also experimented with di�erent branching pri-
orities that are given to the solver. Our idea was that while �xing nodes or arcs far from
the root has strong implications, the other branch, i.e., removing these elements, does
often not a�ect the solution process. We experimented with branching �rst on nodes or
arcs close to the root, but in this case, the �xing has not so much impact. Finally, to
combine the advantages of both extremes, we tried to branch �rst on arcs that are moder-
ately close to the root. More speci�cally, we compute a minimum-cardinality cut between
S = {v : d(r, v) ≤ 1

4WL} and T = {v : d(r, v) ≥ 1
2WL}, and start the branching on these

arc variables. The motivation behind this is that both branches, i.e., to include or exclude
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this arc, have noticeable implications. This method, however, ignores the pro�ts of the
nodes, and our tests show that the innate branching strategy in Gurobi is better.

To end the computational study of the BRCMWCS, we conclude that our methods dras-
tically reduce the computation times across the board for the most important connectivity
formulation (i.e., RAS) and for the SCF. Especially for the latter, we improve the basic for-
mulation by orders of magnitudes. Concerning the RAS, the greatest e�ect comes from the
introduced extended indegree cuts, but the complementary improvements further support
the optimization procedure.

5.7 BRCMWCS on Trees

Many problems in combinatorial optimization are NP-hard in general but polynomially
solvable on simpler instances such as trees. To end this chapter, we study the BRCMWCS
with the condition that the given graph is a tree. This facilitates the connectivity condition
in the sense that there is now a unique path from the root to each node. On the other
hand, the tree structure is also very suited for a dynamic programming approach, and
we will present such an approach in Section 5.7.1. Finally, we explore and evaluate the
possibility of using the tree case as a primal heuristic for BRCMWCS on general graphs
and to provide the heuristic solution as a warm start.
We start, however, by noting that the BRCMWCS on a tree is still NP-hard. To see

this, recall that the complexity proof in Section 5.3 includes a reduction from the number
partition problem to a BRCMWCS instance on a star graph. Therefore, there is no hope
for a polynomial-time algorithm solving the BRCMWCS on a tree. The connectivity
formulation in the IP, however, can be simpli�ed.

IP Formulation for Connectivity: As mentioned in Section 5.5.1, every edge of a
tree induces an implied node inequality: Including the vertex v 6= r in any solution implies
the inclusion of the predecessor π(v) on the unique r-v-path. Magnanti and Wolsey [MW95]
prove that these implied node inequalities su�ce for a full description of the r-tree polytope
if G is a tree. More speci�cally, the following constraints describe conv(Yr):

yr = 1 (5.19a)

yv ≤ yπ(v) ∀v ∈ V K {r} (5.19b)

yv ≥ 0 ∀v ∈ V (5.19c)

Note that the integrality of the y variables is relaxed and that, hence, a rooted connected
subgraph of maximum weight can be computed with a linear program. Alternatively, the
rooted MWCS on a tree can also be determined with a dynamic program as we show next.

5.7.1 Dynamic Programming Approach

For the presentation of the dynamic program, we adopt the notation for rooted trees from
the approximation in Section 3.2.2.
A maximum weight r-subtree of an r-tree is usually determined by a dynamic program.

The basic idea of a dynamic program on a rooted tree T r is to recursively break down the
problem to subtrees. Following the presentation of [MW95] for a dynamic program solving
the rooted MWCS on a tree, we denote by H(v) the optimal value of the rooted MWCS
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in T rv . In a bottom-up approach we start by setting H(v) = max{0, pv} for every leaf node
v ∈ T r. Considering an arbitrary vertex v and assuming that H(u) is computed for all
successors u ∈ N+(v), we can determine H(v) as

H(v) = max{0, pv +
∑

u∈N+(v)

H(u)}.

Following this recursion, we can determine the optimal value H(r) in time O(|V |). An
optimal solution is now attained by computing the root component of T r−{v : H(v) = 0}.
Magnanti and Wolsey [MW95] also propose a dynamic programming approach for the

capacitated version, but only with unit weights and for the case WL = 0, i.e., without a
lower weight bound. In the following, we propose a dynamic program that is more suited
to the setting of BRCMWCS.
To this end, we need integer weights w ∈ NV≥0, and while this naturally restricts ∆,WL,

andWU to non-negative integers, the pro�ts can still be arbitrary. Our approach is derived
from the dynamic program for the partially ordered knapsack problem by Johnson and
Niemi [JN83]. This problem asks for a maximum-valued subset of vertices in a graph
whose total weight does not exceed a given knapsack capacity, and which, together with
any vertex v, contains every predecessor of v w.r.t. the given ordering. In our setting, the
problem is extended by a lower capacity bound and the balancing condition.
One key result from [JN83] is that the bottom-up approach stated above is suboptimal

and should be replaced by a �left-right� approach. The idea is to consider a smaller set of
subproblems for the dynamic program by traversing the tree in a speci�c order.
Therefore, let v1, . . . , vn be a DFS ordering of T r with v1 = r. By d(v) := |N+(v)| we

denote the number of children of node v. For j ∈ [n] and i ∈ {0, 1, . . . , d(vj)}, we denote
by T [vj , i] the subtree of T r containing all nodes vk with k ≤ j together with the �rst i
children of vj (in order of the indices) and all their descendants. Figure 5.16 depicts an
example for such a subtree.
For ease of exposition we de�ne

cv =

{
wv , if vj ∈ Vr
−wv , if vj ∈ Vb

.

For a given δ ∈ Z and ω ∈ N the subproblem dp[vj , i, δ, ω] is to �nd the maximum pro�t
subtree S ⊆ T [vj , i] such that v1, vj ∈ S, c(S) = δ, and w(S) = ω. The subproblems of

v1 = r

v2 v8

v3

v4

v7 v9 v10

v5 v6

T [v4, 1]

Figure 5.16.: A rooted tree with DFS ordering on V and the subtree T [v4, 1] = T [v5, 0]
highlighted.
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the dynamic program are solved in a DFS style beginning from the root node r. We set

dp[r, 0, δ, ω] =

{
pr , if δ = cr and ω = wr,

−∞ otherwise.

Let us next consider a node u together with its i-th child v. The solution of dp[u, i, δ, ω]
can either use v or not. The former is equivalent to dp[v, d(v), δ, ω] and the latter to
dp[u, i− 1, δ, ω]. Consequently,

dp[u, i, δ, ω] = max {dp[v, d(v), δ, ω], dp[u, i− 1, δ, ω]} .

Finally, we have the case dp[v, 0, δ, ω], i.e., we exclude all children of v 6= r from the
solution. Again, we assume that v is the i-th child of its parent u and obtain

dp[v, 0, δ, ω] = dp[u, i− 1, δ − cv, ω − wv] + pv.

The integer-weighted BRCMWCS on T r is now equivalent to

max
δ∈[−∆,∆], ω∈[WL,WU ]

dp[r, d(r), δ, ω],

and we need to consider O(n∆WU ) subproblems to solve it. Since each subproblem is
solved inO(1), the presented dynamic program runs in pseudo-polynomial time: O(n∆WU ).

We did, however, not implement this approach because, �rst, scaling our rational weights
to integers results in large values for ∆ and WU and, second, our tests show that the tree
IP (5.19) is so fast that no alternative is needed in practice.

5.7.2 A Primal Heuristic for BRCMWCS

Given a BRCMWCS on a general graph G, we can compute a spanning tree T of G and
solve the BRCMWCS on T . Clearly, any feasible solution on T is also feasible on G and,
hence, we can use this as a primal heuristic for the problem on G. Furthermore, we can
give this solution to the MIP solver as a warm start.

The �rst question is which spanning tree we use. For our approach, we use a BFS tree
as spanning tree T because, �rst, it is very simple to compute and, second, it minimizes
the number of implied nodes which has a positive e�ect on the number of feasible solutions
in T .

The quality of our heuristic solution together with the e�ect of using it as a warm start
is shown in Table 5.6. It is not perfectly clear how the quality of the heuristic solution
should be measured. Note that the BRCMWCS allows for negative objective values and
0 is not a natural lower bound. We still opt for the ratio of the objective values objT and
objG of the heuristic and exact approach, respectively, i.e.,

obj[%] =
objT
objG

.

In two cases this produces misleading values: For i-13 we have an optimum with value
-178.8 and a heuristic solution with objective -507.1, and for i-33 we have an optimal value
of 174.9 but a heuristic objective value of -3.1. All detailed results are given in Table A.8.
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Table 5.6.: Performance of the BFS heuristic: average runtime (H), objective gap, and
impact on the solution time if added to the optimal variants of RAS and SCF
as warm start.

Instance set H obj[%] RAS∗ +WS SCF* +WS

voronoi 0.1 84.2% 3.6 5.7 10.1 68.6
large_voronoi 0.6 84.0% 69.0 560.1 201.2 2293.3
sparse_voronoi 0.7 89.8% 2.1 5.0 3.9 87.5
grid 0.1 61.0% 24.1 19.1 389.5 964.3

Overall, we observe that the problem is indeed solved much faster on a tree and that
the heuristic mostly provides decent solutions. It is therefore surprising that the e�ect of
providing this solution to Gurobi as a warm start is somewhere between bad and catas-
trophic. Even for the 6 out of 10 sparse instances for which the heuristic �nds an optimal
solution, adding the warm start is clearly worse overall. At closer look, the warm start
solution negatively a�ects Gurobi's closing of the dual bound. In other experiments, we
added the heuristic objective value as a lower bound constraint instead of using the warm
start. The e�ects of this are, however, comparable to the warm start.



6
Designing Optimal Toll Sections

The time has come to tackle the problem that motivates our research: The Toll Section
Design Problem. We have given a rough description of this problem in the introduction but
here, more speci�cally in Section 6.1, we provide a more detailed motivation and a formal
de�nition. Since we model this problem as a districting problem, we revisit and adapt the
main solution approaches from Chapter 4 in Section 6.2. Pursuing the column generation
approach, we investigate the respective pricing problem in Section 6.3. The pricing boils
down to �nding a capacitated MWCS with a complex objective function. We take a novel
perspective and consider the pricing problem as a rooted MWCS for each possible center
of a template. The resulting formulation allows for a much simpler objective function
and we are able to transform this problem into the BRCMWCS. This enables us to apply
the powerful reduction techniques presented in Chapter 5, and we propose two algorithmic
enhancements for the column generation approach. In Section 6.4, we perform an extensive
computational study on 24 real-world and 75 arti�cial instances that mimic the former, and
show the tremendous e�ect of the proposed enhancements. After embedding the column
generation into a full-�edged branch-and-price approach in Section 6.5, we dismiss the
use of a primal heuristic for our covering problem in Section 6.6. We close the chapter
by demonstrating that the methods developed in this thesis translate to other districting
problems by employing our model to a districting problem from the literature.

6.1 The Toll Section Design Problem

Many countries rely on motorway tolls to fund growing investments for maintenance and
extension of the networks. In Germany, a truck toll on motorways was introduced in 2005
and today, every truck weighing 7.5 tonnes or more has to pay a fee for every trip based on
the traveled distance, the emission category of the truck, and its number of axles. In 2021,
all trucks covered a total distance of 41.8 billion kilometers on the toll network, resulting
in total revenues of over 7.5 billion euros [Bag; Bmd].
In contrast to many other toll systems that rely on toll stations at every entry and exit,

the German toll system is user-friendly as it avoids these barriers. Instead, every trip is
logged automatically with an on-board device via GPS or, alternatively, the drivers have
to manually book their trip at toll station terminals or over the internet in advance. The
toll enforcement is the responsibility of the German Federal O�ce for Goods Transport
(BAG) and for this purpose, they use a combination of automatic and mobile controls.
For the automatic control, around 300 cameras are installed at selected positions of the
14,000 kilometers spanning network but due to data protection, they are not always active
and only survey a small fraction of the tra�c. Complementary to the automatic control,
mobile control teams consisting of one or two inspectors patrol the network in search for
toll evaders.

87
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An ongoing research project between the BAG and the Zuse Institute Berlin that started
in 2010 studied di�erent aspects of optimizing the toll control. This includes the strategi-
cally optimal placement of cameras for automatic controls as well as the development of
strategies for an e�cient integrated planning of automatic and mobile controls. The core of
the project, however, is a model to optimize the duty planning of the mobile control teams
which is subject to a variety of legal constraints. A duty consists of di�erent parts, and in
every duty part the team patrols a certain subpart of the toll network, called section. It is
the decision of the control team where exactly the patrol is performed within the section.
When the inspectors suspect a truck of evading the toll, they can pull the truck over to
handle the case immediately.
For the optimization of the mobile tours, it is therefore not su�cient to �nd an optimal

assignment of teams to sections at certain times. We also have to address the issue of
designing the toll sections as this has a signi�cant e�ect on the performed control tours.
This e�ect was indeed shown in di�erent experiments that are not part of this thesis. We
computed optimal duty rosters based on the classical toll sections and our optimized sec-
tions. The objective of the rostering model is multi-dimensional but mainly, it maximizes
the expected number of controlled trucks. Our experiments showed that the objective with
our optimized toll sections was 30% higher than with the actual sections. This illustrates
the enormous potential that lies in the optimization of toll sections. It is also intuitively
clear that this design problem is just as important as the subsequent assignment problem.
If the sections are designed in a bad manner, an optimal assignment cannot �x this.
In order to formulate an optimization problem, however, we need more speci�c infor-

mation: What are the restrictions and what is the objective? From experience, inspectors
prefer roads with higher truck tra�c volume, as they expect more cases to handle. There-
fore, if a section contains roads with high tra�c volume but also other roads with rather
low volume, the inspectors will often ignore the latter part of the section which contra-
dicts an important objective of the toll control: the complete coverage of the network with
controls. For this reason, it is preferred to build sections consisting of roads with similar
tra�c volume. Apart from the objective of aiming for homogeneous sections, there are a
number of obvious conditions for the section design. Each section is subject to a lower and
an upper length bound such that the total length �ts to the typical time window of a duty
part. Furthermore, both directions of a road section have to belong to the same section,
allowing us to model the network as an undirected graph. Then, each section is obviously
required to be connected and, �nally, our sections have to cover the network, i.e., each
edge has to be part of at least one section.
The modeling process is illustrated in Figure 6.2. Before the transformation to the line

graph, we merge both directions of a road section to an edge. The length of such an edge
uv is the sum of the lengths of (u, v) and (v, u) while the tra�c volume is the average
of the two arc values. In practice, these two arcs usually have the same length and very
similar tra�c volume (as can be observed in Figure 6.1a) which justi�es this approach.
While the constraints on a possible section are clear, the objective of homogeneity needs

further speci�cation. In Section 4.1, we already discussed di�erent methods to model
homogeneity for vertex covering problems. Instead of transforming the measures to the
edge covering case, we simply transform our problem onto the line graph. Now, each vertex
v has a length wv and an average tra�c volume tv, and we measure the tra�c dissimilarity
duv between two vertices u and v as duv = |tu − tv|. Let us reconsider the measures for
homogeneity: The separation-based measures are not �tting because it is not important
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(a) Actual network embed-
ded in OpenStreetMap

(b) Network modeled as
undirected graph

(c) Instance transformed to
the line graph

Figure 6.1.: Modeling of the Toll Section Design Problem.

that a section's tra�c is di�erent to another section's tra�c, but that it is internally
homogeneous. Concerning the homogeneity-based measures, we dismiss the diameter and
the radius since they are too vulnerable to single outliers and they do not di�erentiate
between two sections with the same worst-case dissimilarity. Due to quadratically many
summands, the clique measure penalizes larger sections unnecessarily hard. We are thus
left with the star and sum-of-squares measure. The average tra�c of a section and the
quadratic penalization make the sum-of-squares measure hard to use in a MIP formulation.
The star objective, on the other hand, provides everything we want, especially in the

weighted case: Two outliers are penalized more than one outlier, but few outliers (especially
if they represent only a short subpart of the section) do not a�ect the overall penalty so
much. It does not unreasonably penalize large sections and it is simple to model within an
IP. Therefore, it is also widely used within the districting community to achieve compact
(�round-shaped�) districts. In this case, the district center, i.e., the node minimizing the
cumulated distance to all vertices, is the geographically central vertex of the district. In
Section 6.3, we will prove that with the star measure, the center of a section is the vertex
with (weighted) median tra�c within this section.

Figure 6.2.: Retransformed solution of the TSDP: An edge covering with homogeneous
connected subgraphs within a given length range.
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Before formally introducing the TSDP, we recall the result from Section 2.7 that it is
su�cient to consider trees for the vertex covering, instead of arbitrary connected subgraphs.

Toll Section Design Problem (TSDP)

Instance: G = (V,E), node weights w, t ∈ RV≥0, and numbers 0 ≤WL ≤WU

Problem: Find trees T1, . . . , Tk ⊆ G for some k ∈ N with WL ≤ w(Ti) ≤ WU for
i ∈ [k] and V =

⋃k
i=1 V (Ti) minimizing

∑k
i=1 p(Ti) where

p(T ) := min
u∈T

∑
v∈T

wv |tu − tv| for T ⊆ G.

Given WL and WU , we use the notation TL,U to denote the set of trees T in G with
WL ≤ w(T ) ≤WU . Let us �rst settle the complexity question.

Complexity: The TSDP is NP-hard. A reduction from the number partitioning
problem is straight forward. Given a multiset S = {s1, . . . , sn} of positive integers, the
partitioning problem asks for a partition into two subsets S1 and S2 whose elements sum
up to the same number. By considering a complete graph on S with vertex weights wi = si
and arbitrary t, and by settingWL = WU = 1

2

∑n
i=1 si, we can see that this TSDP instance

has a feasible solution i� the partitioning instance is feasible.
Note that the reduction exploits that we can set WL = WU . While the general case

remains open, we can prove NP-hardness under slightly modi�ed conditions. If the cardi-
nality k of a covering would be part of the input, we could reduce the bin packing problem
to this TSDP version without the use of a lower weight boundWL (cf. [CGP19]). This still
does not take the special objective function into account. Let us therefore assume that the
covering cardinality is not speci�ed and that the dissimilarities are given as a matrix (duv)
instead of the node induced dissimilarity. In this case, a reduction from bin packing is still
possible. Given a bin packing instance with item weights w1, . . . , wn and bin capacity W ,
we consider the accordingly weighted complete graph and set WL = 0 and WU = W . By
de�ning the dissimilarity matrix with values dvv = 1

wv
and 0 o� the diagonal, we attain

that every subgraph has a penalty of 1. Hence, the objective of this TSDP is to minimize
the number of covering trees, which is equivalent to the bin packing problem.

6.2 Column Generation (over Compact Model)

As our literature overview in Section 4.3 suggests, we can model the TSDP in di�erent
ways, namely, as a compact model or by dynamically generating feasible templates. In the
following, we will detail both approaches with respect to the TSDP, and we will motivate
our clear choice for the column generation approach.

6.2.1 Compact Model

As a compact model we could use the vertex-to-root formulation (VTR) and adapt it to
the present problem. To this end, we have to add connectivity constraints and we have
to incorporate our penalty function. Employing node separators for connectivity as in
formulation (5.6), the resulting model could be written as follows.
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min
x

∑
r∈V

∑
v∈V

wv |tr − tv|xrv (6.1a)

s.t. WL x
r
r ≤

∑
v∈V

wv x
r
v ≤ WU ∀r ∈ V (6.1b)∑

r∈V
xrv ≥ 1 ∀v ∈ V (6.1c)∑

w∈S
xrw ≥ xrv ∀v ∈ V K {r}, ∀S ∈ N (r, v), ∀r ∈ V (6.1d)

xrv ∈ {0, 1} ∀v, r ∈ V (6.1e)

The binary variable xrv indicates if vertex v belongs to the template rooted at node r,
and constraints (6.1c) ensure that every node is covered by a template. The lower capacity
constraints (6.1b) should only be enforced if r is actually a center of a chosen template, and
hence, the multiplication with xrr is necessary. In this instance, connectivity is modeled
with node separator constraints (6.1d).

However, there are some issues with this formulation. First, it prevents two templates
from having the same center. While this should not play a signi�cant role for practical
purposes, it can lead to suboptimal coverings. We could circumvent this by introducing
multiple variables per possible root, but this blows up the formulation to impractical sizes,
and we do not even know how many �copies� per root we would need. Second, and far more
problematic, we lose the possibility to �x a huge portion of all variables due to symmetry
as it was possible in the original VTR formulation. Note that due to our special penalty
function which is re�ected in the objective (6.1a), the root of a template is not easily
exchangeable anymore.

In order to assess its practical performance, we implemented the compact model de-
scribed in (6.1). As for the node separators for the pricing problem, we use the separation
routine by Fischetti et al. [Fis+17] which only checks integer solutions, and we use back
cuts. Our computational experiments on a sample set of instances con�rm the poor per-
formance of the compact model, compared to the column generation approach (also with
node separators for connectivity). Instances that are solved within few seconds with the
column generation approach take minutes with the compact model.

It is worth noting, however, that the results from the preprocessing described in Sec-
tion 5.4 carry over to this formulation. More speci�cally, for a �xed root r, we can easily
model discarded nodes (xrv = 0), �xed nodes (xrv ≥ xrr), or con�ict pairs (xrv + xrw ≤ 1).

6.2.2 Column Generation

A di�erent model that we already stated in Section 4.3 uses the classical covering IP
formulation. Instead of restating it here (see (4.1) if necessary), let us steer the presentation
towards the column generation approach for this problem. With pT = p(T ) we denote the
inhomogeneity penalty for template T and TL,U denotes the set of all feasible templates.
The LP relaxation of (4.1) is called the master problem (MP), but here, we consider a
subset T ′L,U ⊆ TL,U and restrict the (relaxed) covering problem to use only templates from
T ′L,U . This is called the restricted master problem (RMP) and can be stated as follows.
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min
x

∑
T∈T ′L,U

pT xT (6.2a)

s.t.
∑
T3v

xT ≥ 1 ∀v ∈ V (6.2b)

xT ≥ 0 ∀T ∈ T ′L,U (6.2c)

Note that we can relax xT ∈ {0, 1} to xT ≥ 0, since we have pT ≥ 0 and a minimization
problem. When introducing dual variables (πv) for the constraints (6.2b), we obtain the
following restricted dual LP.

max
π

∑
v∈V

πv (6.3a)

s.t.
∑
v∈T

πv ≤ pT ∀T ∈ T ′L,U (6.3b)

πv ≥ 0 ∀v ∈ V (6.3c)

Given an optimal solution x of (RMP) and corresponding dual values π, the reduced
costs for a template T are therefore pT −

∑
v∈T πv. We know from duality theory that no

template T ∈ T ′L,U has negative reduced costs. If we can show the same for all T ∈ TL,U ,
we can deduce that x is even optimal for (MP). If, on the other hand, we �nd a template
T ∈ TL,U KT ′L,U with negative reduced costs, we add a corresponding variable to (RMP) and
iterate. As |T ′L,U | increases with every iteration (also called pricing round), this process is
�nite and eventually leads to an optimal solution for the master problem. Since the newly
introduced variables are additional columns of the constraint matrix, this process is called
column generation. The task to check if there are templates with negative reduced costs
is called the pricing problem (PP). In our case, the corresponding optimization problem is

min
T∈TL,U

pT −
∑
v∈T

πv. (6.4)

As it is usual when employing a column generation approach, we not only add the single
template that minimizes (6.4) but all templates with negative reduced costs that are found
en route. While this increases the size of the RMP, it potentially reduces the number of
pricing rounds that are necessary. For all of our tests, the solution time for the RMP is
negligible compared to the optimization time of the PP.

Before we dive deeper into the pricing problem, let us brie�y discuss the initial covering,
i.e., the choice of T ′L,U . Here, we construct the initial covering with an adapted depth-�rst
search. Starting the DFS at a leaf (if possible), we create a template as soon as the lower
weight bound is met. Then, we proceed the DFS from the last node but preferentially
explore nodes that are not yet covered by any template. Again, whenever the lower weight
bound is reached, we create a new template and iterate. This basic approach clearly yields a
vertex covering with connected templates that satisfy the lower weight bound. In practice,
the upper weight bound is also respected because the di�erenceWU−WL is larger than the
sum of any two vertex weights. More sophisticated approaches for an initial covering are
discussed in Section 6.6 but overall, these are not better than the described DFS covering.
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To close this section, we emphasize that the column generation approach does not nec-
essarily provide an optimal solution to the TSDP. First, the LP (6.2) can obviously have a
fractional optimal solution which is not valid for the TSDP. A natural extension is to solve
the respective IP version with all templates that are part of the �nal LP. This provides a
feasible � however only heuristic � solution to the TSDP, as the column generation only
guarantees optimal columns for the LP. In order to obtain a provably optimal solution
to the TSDP, we have to extend the column generation to a branch-and-price approach.
Indeed, we follow this path in Section 6.5 but �nd that the column generation heuristic
essentially su�ces for our problem.

6.3 Solving the Pricing Problem

Let us take a closer look at the pricing problem. We are now searching for a single feasible
template that minimizes a combination of its penalty and the dual values on the vertices.
Resubstituting for pT yields

min
T∈TL,U

(
min
u∈T

∑
v∈T

wv |tu − tv|

)
−
∑
v∈T

πv.

We can tackle this problem in two di�erent ways. The vertex u that serves as center for
the template can either be variable, or we �x the center u and consider only templates for
which u is the center. Again, we precompute all di�erences duv := |tu − tv|.

Variable Center Formulation: The advantage of this method is that we can solve
the pricing with a single IP model. The drawback, however, is that the penalty term in our
objective function requires us to indicate if a node v is chosen while the node u is the center
of the resulting template. We can model this with a quadratic objective and use binary
variables for the nodes of the chosen subgraph and other binary variables that indicate
the single center. Equivalently, we can linearize the quadratic term from the objective and
obtain quadratically many variables. This results in a formulation similar to the compact
model (6.1) but with three major di�erences: First, the objective is di�erent, and we use

min
x

∑
r∈V

∑
v∈V

wv duv x
r
v − πv x

r
v. (6.5)

On the other hand, we have to drop the covering constraints (6.1c) as we are only looking for
a single template. Finally, the negative coe�cients in the objective lead to the necessity
of additional constraints that prevent the activation of too many roots or vertices. To
account for this, we add the following constraints.∑

r∈V
xrr = 1∑

v∈V
xrv ≥ xrr ∀r ∈ V

The latter constraints ensure that a root is active when another vertex is assigned to it,
and the �rst constraint enforces that only one root is chosen.
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Fixed Center Formulation: A second variant to solve the pricing problem is to
consider the problem for �xed centers (also called roots). As we will see, this signi�cantly
simpli�es the formulation. The question is, if it is better to solve one large optimization
problem or many smaller problems, i.e., one for every vertex.
If we �x a vertex r to be the (potential) root of the template, we no longer have a

quadratic term in the objective and, instead, obtain the following simpler IP formulation
where we use the r-tree polytope Yr from Chapter 5 for the rooted connectivity.

min
y

∑
v ∈V

(wv drv − πv) yv (6.6a)

s.t. WL ≤
∑
v∈V

wv yv ≤ WU (6.6b)

y ∈ Yr (6.6c)

The greatest di�erence in comparison to the variable center approach is clearly that
we get rid of the quadratically many variables, and focus on the y variables that deter-
mine the subgraph. In addition, the objective (6.6a) is also simpler, as it contains only
|V | coe�cients in contrast to the |V |2 coe�cients from (6.5). The combination of these
two simpli�cations makes the problem much more amenable. Indeed, we found that it is
far superior to solve a rooted IP (6.6) for every vertex, instead of solving the single, more
complex IP of the variable center formulation. Therefore, let us further investigate the
rooted formulation (6.6).
By de�ning cv := πv−wv drv and by replacing the objective (6.6a) with maxy

∑
v∈V cv yv,

we can transform the problem (6.6) into a maximization problem. Now, we are seeking
a connected subgraph of maximum weight c that contains some root node r and that is
capacitated from below and above with respect to vertex weights w. Note that c can take
negative values and, hence, this problem is already very close to the BRCMWCS that we
studied in the previous chapter.

6.3.1 Transformation into BRCMWCS

Let us take a closer look at the pricing problem with a �xed root r. Recall that r is the
root of a template T i� r ∈ arg min

u∈T

∑
v∈T

wv |tu − tv|. We will proceed to show that r has

the weighted median tra�c in T .

De�nition 6.1 (weighted median) Given elements t1 < · · · < tn with positive

weights w1, . . . , wn and Σw :=
∑n

i=1wi, element tk is a weighted median of (t, w) if

k−1∑
i=1

wi ≤
Σw

2
and

n∑
i=k+1

wi ≤
Σw

2
.

As for the median of an even number of values, the weighted median can be not unique. If
one of the inequalities is tight, there are two consecutive elements that satisfy the condition.
In this case, we accept both elements as a weighted median. However, we do not accept
any value in between the two. In particular, we do not take the arithmetic mean of both
values as the weighted median. Consequently, we have the following.
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Proposition 6.2 Let t1 < · · · < tn and w1, . . . , wn > 0.
Then, tu is a weighted median of (t, w) i� u ∈ arg min

u∈[n]

∑
v∈[n]

wv |tu − tv|.

Proof. Suppose that tu is a weighted median of (t, w) and consider some j ∈ [n], w.l.o.g.
j < u. De�ne ∆ := tu − tj and note that ∆ > 0. Now,∑

v∈[n]

wv |tj − tv| −
∑
v∈[n]

wv |tu − tv|

=

j∑
v=1

wv (tj − tu) +
u−1∑
v=j+1

wv (2tv − tj − tu) +
n∑
v=u

wv (tu − tj)

≥ −∆

j∑
v=1

wv −∆

u−1∑
v=j+1

wv + ∆

n∑
v=u

wv

= ∆

(
n∑
v=u

wv −
u−1∑
v=1

wv

)
≥ 0,

proving the �rst implication. For the reverse, note that if tj is not a weighted median of
(t, w), the �rst inequality is strict.

While the demands (tv) of a given TSDP instance are not necessarily pairwise di�er-
ent, we can transform the instance to an equivalent one with pairwise di�erent demands:
Whenever two demands are equal, we modify one of the two by a small ε. If those changes
are su�ciently small, we know that an optimal solution with the adjusted demands is also
optimal with respect to the original demands.
Also note that the dual values in the pricing objective do not a�ect the root of the

resulting tree to have weighted median demand, as the total dual costs depend only on the
resulting tree, and not on its root.
Now that we have established that the root node indeed has weighted median demand,

the transformation into a BRCMWCS instance is possible. Recall the de�nition of this
problem:

Balanced, Rooted, and Capacitated MWCS (BRCMWCS)

Instance: A graph G = (V,E) with V = Vb ∪̇Vr, node weights w ∈ RV≥0 and
c ∈ RV , as well as numbers 0 ≤ WL ≤ WU , ∆ ≥ 0, and a root node
r ∈ V .

Problem: Find V ′ ⊆ V such that G[V ′] is connected with w(V ′) ∈ [WL,WU ],
r ∈ V ′, and |w(V ′ ∩ Vb)− w(V ′ ∩ Vr)| ≤ ∆ while maximizing c(V ′).

While the graph G, the node weights w and c, and the root r directly carry over from
the pricing problem for a �xed root, we have to specify the remaining ingredients. We use
the node bipartition

Vb := {v ∈ V : tv ≤ tr}, Vr := {v ∈ V : tv > tr}.

Note that the root is colored blue, but in order to not mess up the weighted median, we
set ∆ := wr and then, wr := 0. We reduce the lower and upper weight bounds WL and
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WU by ∆ to account for the fact that the root weight was set to 0. Now, it is easy to prove
that r has weighted median demand in V ′ i� |w(V ′∩Vb)−w(V ′∩Vr)| ≤ ∆. Consequently,
we can solve the pricing problem as a BRCMWCS for every node.
It is, however, not necessary to force the balancing condition. If we construct a feasible

template T (feasible in terms of the TSDP) from r such that tr is not the weighted median
of the tra�c values in T , then Proposition 6.2 gives us∑

v ∈T
wv drv − πv > p(T )− π(T ).

The template T might still have a negative objective value (when considered from the
�wrong� root r) and could be added to the RMP in this iteration. When considering the
problem for the center of T as root, however, we are guaranteed to �nd T or another
feasible template that has even lower reduced costs. To prevent the multiple addition of
the same template in one pricing round, we maintain all templates in T ′L,U in a pre�x tree.
Note that the preprocessing routines that we developed for the BRCMWCS are inde-

pendent of c. Therefore, the preprocessing is independent of the dual values, and we can
setup the pricing problem for each root in the beginning, and in each pricing round, we
only have to adjust the coe�cients in the objective function. In particular, this allows us
to dismiss a considerable number of nodes as potential roots, since these will never have
a weighted median demand in any feasible template. Detailed results on this are reported
in Section 6.4.4.
Another advantage of the �xed center formulation is that it is simple to parallelize, as

we can solve the pricing for each possible root independently. With increasing numbers of
CPU cores, parallelization gains more signi�cance. Since our pricing problem is a MIP that
is already solved on multiple cores, we did not implement the parallel solving of di�erent
roots. For a large scale problem, however, this possibility is just another argument to use
the �xed center approach over the variable center formulation.

6.3.2 Spanning Tree Heuristic

In the pricing problem, our goal is to �nd templates with negative reduced costs. There is
no need, however, to �nd a template with minimal reduced costs. Only in order to prove
that no template with negative reduced costs exists, we have to optimally solve the pricing
problem. This insight gives rise to a common approach in column generation: We solve
the pricing problem heuristically, add the newly found templates to the RMP, and iterate.
Only if the heuristic does not �nd any templates of negative reduced costs, we have to
perform a �full pricing round� where we apply the exact formulation.
Consequently, let us investigate possibilities for an e�cient pricing heuristic. In Sec-

tion 5.7, we have seen that the BRCMWCS on trees allows for a much simpler IP formu-
lation for connectivity. While this approach works with any spanning tree, we choose one
that is particularly suited for the median objective. To this end, we consider a bidirected
version of G and set arc weights ϕu,v := |tv − tr| for arc (u, v). The chosen spanning tree
is now a shortest path tree from r with respect to ϕ.
We also experimented with di�erent spanning trees. In particular, we used a BFS tree

and also a shortest path tree from r with respect to the arc weights Φu,v = wv |tv− tr|−πv.
The latter, however, include dual values and, hence, the spanning tree is di�erent in every
pricing round and we have to rebuild the IP model. Without duals, on the other hand, we
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only have to adjust the objective function. Also note that the inclusion of the duals can lead
to negative arc weights (and cycles), and we have to adjust the shortest path computation.
Our experiments show that these trees provide no advantage over the shortest path tree
w.r.t. ϕ. We also followed the path of using multiple heuristics, i.e., if our standard
heuristic does not �nd any templates, we divert to another spanning tree as speci�ed
above. However, this approach also showed no improvements as the second heuristic was
not able to �nd new templates either.

6.3.3 Local Search

Recall that the reduced costs of subgraph S are p(S) := p(S) − π(S). We present a local
search method that aims at quickly identifying subgraphs of negative reduced costs by
adding or removing single nodes from an already promising subgraph. As such promising
subgraphs we use all graphs that were found in the current pricing optimization, since
these already have negative reduced costs. In addition, we perform the local search on
all graphs that were used in the current solution of the restricted master problem (RMP),
i.e., trees T with xT > 0 in the optimal RMP solution. Note that due to complementary
slackness, these subgraphs have reduced costs of 0.
In order to �nd good modi�cations of a subgraph S, we have to recompute reduced

costs of slightly changed graphs, and are therefore particularly interested in the change of
penalty. More speci�cally, given a tree T ∈ TL,U with penalty p(T ) and a node v, we need
to e�ciently determine p(T + v). Recomputing the weighted median and recalculating the
weighted sum of di�erences is ine�cient. With more stored information and suitable data
structures, however, one can e�ciently compute p(T + v) from p(T ). We refrain from the
technical details of this method, and instead focus on a di�erent approach. For a tree T
with weighted median tra�c t̂ and v /∈ T , we de�ne the potential of v as ϕ(v) := wv |tv− t̂|,
and note that

p(T + v) ≤ p(T ) + ϕ(v).

Thus, we overestimate the reduced costs as p̃(T + v) := p(T ) +ϕ(v)− π(T + v). The error
of this estimation can be as large as w(T ) |tv − t̂|, but shows to be small in practice if tv is
close to t̂.
For the local search, we consider a tree T and two parameters k+ and k−∈ N. Now we

iteratively determine the best k+ neighbors of T w.r.t. p̃. For any of the 2k
+
subsets S+, we

check if T +S+ is feasible, and after checking with a pre�x tree that the same set of nodes
is not already part of the template pool, we include it. Furthermore, we determine the
best k− nodes in T that can be feasibly removed from G[V (T )] (independently). Again,
for every subset S−, we include any feasible new graph T + S+ − S−.

6.4 Computational Study

Our computational study serves two main goals: We compare the di�erent connectivity
formulations from Chapter 5 in the context of the column generation approach, and we
measure the impact of three algorithmic enhancements that we proposed: The pricing
heuristic, the local search, and the preprocessing from Chapter 5 applied to the pricing
instances.
We start, however, with a detailed introduction of our test instance set, before we de-

scribe the test setting and our experiments in Section 6.4.2.
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(a) German motorways,
region around Hanover

(b) Random tree (c) Voronoi network

Figure 6.3.: Exemplary transit network instances for the three instance classes.

6.4.1 Test Instances

The basis for our study are 24 real-world instances that constitute the German motorway
network. These instances stem from the aforementioned research project on optimal truck
toll control with the German Federal O�ce for Goods Transport. In order to have more
instances, that can also be made publicly available, we analyzed the instances and generate
two types of random transit networks with arti�cial tra�c volume that resemble the real-
world instances: random trees and random networks based on Voronoi diagrams. Typical
instances for the three types are displayed in Figure 6.3. The code for our transit network
generator is made publicly available in a GitHub repository1 and the instances of this study
are also available online2.
As we transform the original instances to the line graph, we perform this transformation

also for the generated transit networks. In order to stress this fact, we label all instances
with _lg. Note that for trees, the line graph can lose the sparseness of the original network,
as the extreme example of a star graph mapping to a clique shows. Since induced paths
map to induced paths, however, the simple structure of the resulting tree_lg instances
mostly prevails (cf. Table 6.1).

German motorways: The German motorway network is divided into 24 districts and
each district is usually covered by 10 to 15 sections. We thoroughly analyzed these networks
and their tra�c distribution in order to generate realistic transit network instances. The
subnetworks are sparse and often tree-like. Denser networks can be found in the Ruhr
area, but are still planar and have a maximum degree of 4. As one would expect, the edge
lengths practically satisfy the triangle inequality.
The distribution of trips is not uniform, i.e., not equal for each origin-destination pair.

Instead, we found that it follows a shifted Pareto distribution. While for a detailed discus-
sion, we refer the reader to [Sch18], we note here that this distribution is also known as
the �80:20 rule� and is often used to describe the distribution of wealth in a society. With
respect to the tra�c distribution this roughly means that few origin-destination pairs make
up for the majority of the tra�c.
The ger_lg instances are grouped with respect to the magnitude of the computation

time for the single-commodity �ow formulation without any heuristics into four groups:
tiny, small, medium, and large.

1https://github.com/stephanschwartz/transit_network_generator
2https://github.com/stephanschwartz/transit_network_instances
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Table 6.1.: Selected properties of considered instance sets: # denotes the number of in-
stances, tw the treewidth, b [%] the average fraction of edges that are bridges,
and p [%] the fraction of instances that are planar. The values relate to the
actual instances, i.e., the line graphs of the described transit networks.

Instance set # |V | |E| tw b [%] p [%]

ger_lg_tiny 4 100.8 116.5 3.0 52.8% 100.0%
ger_lg_small 9 154.3 193.0 3.3 38.7% 77.8%
ger_lg_medium 9 207.8 270.0 3.9 36.9% 22.2%
ger_lg_large 2 245.5 341.5 5.0 26.4% 0.0%

tree_lg 25 199.0 242.6 2.8 47.0% 100.0%

voronoi_lg_medium 9 203.3 241.7 4.0 37.6% 11.1%
voronoi_lg_large 41 205.8 262.8 4.7 26.2% 7.3%

Random trees: To mimic sparser instances of the German motorways, we consider
25 random trees. We build a tree from random points in a rectangle by using Kruskal's
algorithm on the complete graph with Euclidean edge weights.
Concerning the arti�cial tra�c on the network, we consider two possibilities: In a gravity

model, we randomly choose a certain number of centers and assign a random population to
each center. Also, each center increases the population of neighboring nodes. The demand
of any origin-destination pair is now given by the product of the populations of the origin
and the destination, and we assume a shortest path. Alternatively, we can use random
tra�c for each origin-destination pair. Starting from every node, we randomly choose a
number of destinations and assign a random demand on the respective shortest path. In
addition, we boost the tra�c starting at leaf nodes to model the passage to neighboring
networks. For the tra�c demand in our transit networks, we use a combination of these
two models. Thereby, we account for the typical dominance of certain origin-destination
pairs as the Pareto distribution suggests and the results indeed look very realistic.

Voronoi networks: To mimic a denser transit network, we create Voronoi networks
as already described in Section 5.6.1. The resulting networks truly resemble typical mo-
torway networks and in order to add realistic tra�c �ow, we use a two-level approach. We
consider two nested Voronoi graphs, where one layer represents a priority network where
traveling is generally faster. For road networks, this is a di�erentiation between primary
and secondary roads while for public transit networks this can model the di�erence between
trains and buses. For the arti�cial tra�c within the Voronoi networks we use the same
combination of gravity model and random tra�c as for the trees. However, the shortest
paths are now computed with respect to the travel time which is assumed to be propor-
tional to the length but faster on the priority level (in our case twice as fast). This leads
to realistic results, as Figure 6.3 shows. We consider 50 of these Voronoi instances that are
split into two groups based on the computation time of the SCF without any heuristics.

Table 6.1 lists some key characteristics of the di�erent instance sets. The complexity of
an instance depends on multiple factors. Apart from the graph size, the complexity seems
to rise with increasing tree width, or decreasing fraction of bridges. Also, the problem
seems more amenable on planar graphs.
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Let us also brie�y consider the distribution of node weights. Concerning the German
motorway network instances, the mean weight is 7.7 with a standard deviation of 6.4. For
the arti�cial instances, the mean node weight is 3.3 and the standard deviation is 1.6. For
all instances, we set WL = 100,WU = 200.

6.4.2 Test Setting

For the experiments, we used the identical hardware as in Chapter 5, i.e., Intel Xeon
E3-1245 CPUs with 3.70GHz and 32GB RAM. Again, we used Gurobi 9.5 with default
settings3 as LP and MIP solver and our code is written in Python 3.8. In contrast to
the experiments from the previous chapter, we set a time limit of 24 hours and, again,
instances with memory errors are set to the time limit.
For the �xed center pricing, we actually create BRCMWCS instances and therefore,

almost all techniques discussed in Chapter 5 transfer to these experiments. Indeed, we
strengthen the SCF and RNS formulations with z variables combined with indegree and
2-cycle cuts. Whenever we activate the preprocessing, we also determine implied nodes, ex-
tended indegree cuts (EIC-2) and root ring cuts and add those to the respective BRCMWCS.
Note that all these concepts are independent of the pro�ts and can be determined before
the �rst pricing round. In each iteration of the column generation, we only have to adjust
the objective of the BRCMWCS depending on the current dual values that are given by
the RMP solution.
We performed numerous tests beyond the experiments reported here in order to �nd

the best parameter setting for the pricing. These tests revealed that while the pro�t
independent methods are bene�cial, the other methods, i.e., �ne path cuts and con�ict
pairs, are not helpful in the current form. Recall that we computed the �ne path cuts for
the ten nodes with highest pro�t. Already in Chapter 5, these cuts led only to a small
improvement but for the experiments here, it is not worth investing the time of determining
the cuts in each pricing round, as the problems are usually solved in fractions of a second.
The situation is similar for the con�ict pairs where the pro�ts are used for a �ltering of
essential con�icts. We have seen that these were not even helpful for the BRCMWCS
instances considered in the previous Chapter.
Our tests also revealed that it is better not to enforce the balancing condition. Therefore,

our pricing problem is not really a BRCMWCS, but a rooted and capacitated MWCS. The
best approach, however, is to treat the problem as a BRCMWCS for the preprocessing and
the generation of implied nodes and root rings, and then drop the balancing constraints in
the IP formulation. As discussed above, these constraints are not necessary to prove that
no templates of negative reduced costs exist. In the same spirit, it is also slightly better to
drop the color range constraints. We believe that in combination with the very important
decision to add suboptimal templates that were found on the way to the optimum, this
leads to the generation of more promising templates and, hence, to fewer pricing rounds.
Again, we stress that the solution time of the RMP is not relevant with regard to

the total time and, consequently, our methods aim to facilitate the pricing process. The
optimization procedure with algorithmic enhancements is depicted in Figure 6.4.
The focus of the experiments discussed next is the comparison of the connectivity models

in the context of the TSDP and the evaluation of the impact of our enhancements.

3Obviously, we use the dual simplex method for the RMP.
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setup RMP,
setup PP

PP preprocessing

(cf. Section 5.4)
solve RMP

local search (LS)

(cf. Section 6.3.3)
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columns
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(cf. Section 6.3.2)
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no
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Figure 6.4.: Column generation procedure with all algorithmic enhancements (in yellow)
integrated.

6.4.3 Comparison of Connectivity Models

We start by comparing the di�erent connectivity formulations for the pricing problem in
Chapter 5, but here, we report the total runtime of the column generation heuristic. The
quality of the formulations can vary from the results for the BRCMWCS because, �rst, the
actual pricing instances are di�erent from the instances considered in Chapter 5. Second,
we do not solve the actual BRCMWCS but drop the balancing constraint which can have
a di�erent e�ect on each connectivity formulation. And �nally, we are not only interested
in the optimal solution, but also use other feasible solutions found along the way. It is
possible that one connectivity formulation �nds more or better feasible solutions within
the process than the other formulations.

Since we want to study the performance of the connectivity formulations, we disable
the pricing heuristic which would otherwise dominate the solution process. However, we
enable the median induced preprocessing and add further templates via local search. In
addition, we compare the formulations in the best variant, i.e., with the pricing heuristic
enabled. The results are given in Table 6.2.

Concerning the upper table, i.e., without the pricing heuristic, we see that overall, RAS
is still the best formulation. However, the instance-wise results in Table B.1 show that for
selected instances, the SCF or RNS have a signi�cant advantage over the RAS. Detailed
tests show that the runtime is mainly in�uenced by the number of pricing rounds and for
a few instances, the SCF is able to exit the pricing loop earlier. Over the entirety of the
test set, however, the RAS formulation performs best.

This is surprising when compared to the results from [BSS23] where the SCF and, in
particular, the SCF+C2F formulation were superior to the RAS formulation. In that com-
parison, however, we did not consider z variables for SCF and RNS (but for SCF+C2F)
as introduced in Section 5.5.3. Also, we did not include any strengthening cuts introduced
in Section 5.5 and for RAS, we did separate for every vertex instead for every connected
component. As shown in the computational study in Chapter 5, the new improvements
essentially replace the C2F approach, and the extended indegree cuts as well as the sepa-
ration per component provide a huge boost for the RAS. This explains why in our tests,
the C2F approach loses its edge, and RAS is the new favorite.
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Table 6.2.: Average computation times (in seconds) for di�erent connectivity formulations
without and with the inclusion of the pricing heuristic.

�PL

Instance set RAS +C2F SCF +C2F RNS MCF

ger_lg_tiny 0.7 0.9 0.9 0.9 0.7 2.9
ger_lg_small 4.8 6.4 6.0 6.1 4.1 36.7
ger_lg_medium 42.1 39.9 40.0 43.6 40.9 643.6
ger_lg_large 311.8 396.1 452.8 454.7 1408.6 46816.6

tree_lg 20.9 29.5 34.7 32.5 19.1 346.3

voronoi_lg_medium 171.3 248.0 161.2 178.3 155.2 4294.9
voronoi_lg_large 239.3 384.2 274.7 325.1 263.2 66815.1

HPL

Instance set RAS +C2F SCF +C2F RNS MCF

ger_lg_tiny 1.2 1.4 1.3 1.3 1.2 2.3
ger_lg_small 5.2 5.6 5.2 5.1 4.9 15.7
ger_lg_medium 24.8 30.5 25.5 24.6 28.6 235.1
ger_lg_large 105.0 122.9 111.2 110.6 108.3 43756.7

tree_lg 17.9 19.9 19.2 19.1 17.8 73.5

voronoi_lg_medium 66.3 88.8 66.5 65.3 63.1 758.4
voronoi_lg_large 92.0 146.2 93.9 96.5 90.6 2199.8

Very interestingly, the advantage of the RAS formulation vanishes if the pricing heuristic
is activated, as shown in the lower table. Our extended tests show that for the vast majority
of instances, the number of full pricing rounds as well as the average time per full pricing
is similar for the RAS, SCF, and RNS formulations. When considering that RAS was the
clear champion for the BRCMWCS, it is indeed surprising that for the column generation
approach with optimal settings, all three formulations, RAS, SCF, and RNS, are on the
same level.

6.4.4 Algorithmic Enhancements

All of the applied techniques aim to reduce the time spent for the pricing optimization. Be
it with fewer full pricing rounds by the spanning tree heuristic, by the local search to reduce
the number of pricing rounds, or by the preprocessing on the pricing instances that reduces
the problem sizes considerably. Here, we measure the impact of the di�erent improvements.
Table 6.3 provides the respective computation times for the column generation heuristic
for the RAS and SCF formulation. Most remarkable is that the three improvements are
essentially independent, i.e., the reduction e�ects stack up if combined.

Pricing Heuristic: The aim of the pricing heuristic is to reduce the number of calls to
the exact formulation and, instead, �nd templates of negative reduced costs heuristically.
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Table 6.3.: Average computation times (in seconds) for the RAS and SCF formulation when
including combinations of the pricing heuristic (H), the preprocessing (P), or the
local search (L).

RAS

Instance set ��- �-L -P- H�- -PL H-L HP- HPL

ger_lg_tiny 5.1 2.8 2.4 2.5 1.4 2.1 1.4 1.2
ger_lg_small 50.8 24.5 14.0 24.1 7.3 10.3 8.4 5.2
ger_lg_medium 388.8 192.5 103.6 129.2 52.8 52.3 39.5 24.8
ger_lg_large 2549.6 1274.1 886.8 839.3 363.2 236.6 293.0 105.0

tree_lg 143.6 73.2 67.0 54.8 30.5 35.1 29.1 17.9

voronoi_lg_medium 846.2 466.4 287.9 147.7 198.3 78.5 79.5 66.3
voronoi_lg_large 1292.3 686.6 485.2 273.9 271.0 115.5 125.1 92.0

SCF

Instance set ��- �-L -P- H�- -PL H-L HP- HPL

ger_lg_tiny 5.5 3.5 2.6 2.6 1.6 2.4 1.5 1.3
ger_lg_small 45.0 22.2 17.0 19.7 8.6 10.3 9.5 5.2
ger_lg_medium 368.9 177.4 111.8 101.6 50.4 55.2 43.6 25.5
ger_lg_large 3835.2 2043.5 1087.0 589.0 500.9 218.6 278.2 111.2

tree_lg 283.9 154.5 94.1 59.6 44.6 43.0 25.8 19.2

voronoi_lg_medium 852.0 596.4 299.1 146.7 183.9 83.1 81.0 66.5
voronoi_lg_large 1872.8 1186.9 518.0 326.1 303.8 123.6 134.6 93.9

Indeed, the e�ect is just as desired: For the arc separator formulation, we reduce the
number of full pricing rounds by 72% for ger_lg, by 92% for tree_lg, and by 80% for
voronoi_lg. In many cases, the heuristic pricing already leads to the optimal solution.
In 29% of the ger_lg instances, in 100% of the tree_lg instances, and in 12% of the
voronoi_lg instances, the exact optimization was only called once to prove optimality.
Our comparison shows that the integration of the pricing heuristic has the largest overall
impact of the three improvements.

Preprocessing: With the �xed center formulation, we essentially solve a BRCMWCS
for every vertex of the graph in a single pricing round. The preprocessing routine in
Section 5.4 that exploits that the center (or root) of a template has weighted median tra�c
within the template has three potential bene�ts: First, it can eliminate potential roots by
proving that no balanced connected subgraph within the capacity range can be constructed
from this root. Therefore, this node cannot be the center of a feasible template and we can
ignore the node as potential root in the pricing problem. Second, for the remaining roots,
it can also shrink the relevant subgraph by discarding irrelevant nodes, leading to smaller
pricing problems. And third, it can �x nodes to further simplify the pricing problems.
Table 6.4 shows the e�ect of the preprocessing on these three aspects. On average,

our algorithm is able to exclude more than every third vertex as potential root for the
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Table 6.4.: E�ects of the median induced preprocessing.

Instance set roots eliminated discarded �xed

ger_lg_tiny 40.0 % 40.8 % 18.1 %
ger_lg_small 40.8 % 37.8 % 13.4 %
ger_lg_medium 37.7 % 30.3 % 7.0 %
ger_lg_large 27.8 % 12.4 % 1.1 %

tree_lg 34.9 % 38.5 % 9.6 %

voronoi_lg_medium 23.8 % 4.5 % 1.7 %
voronoi_lg_large 19.9 % 4.2 % 1.1 %

ger_lg and tree_lg instances, and over 20% of all vertices for the voronoi_lg instances.
While this alone leads to a signi�cant reduction in computation time, the routine discards
a considerable number of nodes in the relevant subgraph for the ger_lg and tree_lg

instances, and is also able to �x a fair amount of the remaining nodes. Concerning the
ger_lg instances with RAS, we observe that the preprocessing even has a larger e�ect than
the pricing heuristic.

Local Search: The local search aims at generating promising template graphs in or-
der to reduce the number of iterations in the column generation. For the model introduced
in Section 6.3.3 we opt for k+ = 6 and k− = 1, even though, for large problems, the choice
of a larger k+ , e.g., k+ = 10, was even better. Furthermore, our computations show that
it is most bene�cial to apply the local search after solving the restricted master problem
(for each subgraph used in the optimal solution) and after the pricing (for each subgraph
with negative reduced costs). With this setup, the number of iterations drops by 62% for
the ger_lg instances, by 31% for tree_lg, and by 49% for the voronoi_lg instances.

In conclusion of the computational study, we can state that all of the proposed enhance-
ments massively reduce the computation times. The choice of the connectivity model
(among RAS, SCF, and RNS) is not decisive anymore when the preprocessing and the
strengthening from Chapter 5, the pricing heuristic, and the local search are used. This
study, however, was only concerned with the column generation heuristic which solves the
TSDP restricted to all columns that were generated for its LP relaxation.

6.5 Branch-and-Price Approach

To assess the quality of the column generation heuristic, we expand it to a branch-and-
price approach. Our branching is along the decision, whether a speci�c template T ∈ TL,U
is in the solution or not. The resulting changes of the pricing problem are marginal. Since
with the condition xT = 1 all vertices in T are already covered, the corresponding covering
constraints (6.2b) are obsolete. Therefore, we set the respective dual variables to 0. Note
that this adjustment only changes the objective function of the pricing problem. With the
condition xT = 0, on the other hand, we have to make sure that T is not a feasible solution
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of the pricing problem anymore. We achieve this by including the constraint∑
v∈V (T )

yv −
∑

v∈N(T )

yv ≤ |V (T )| − 1,

where N(T ) are the neighbors of T in G. This assures that if all vertices of T are chosen,
at least one vertex outside of T is chosen as well.
In the branch-and-bound tree, we repeatedly select the node with the smallest objective

value, apply our branching, and solve both of the resulting subproblems. We employ the
most fractional branching, i.e., we select a template T with corresponding value closest
to 0.5 in the current solution and consider the two child nodes with xT = 0 and xT = 1,
respectively.

We implemented the described approach and tested it on all of our instances with the
RAS formulation for connectivity, all algorithmic enhancements enabled, and a time limit
of 24 hours. The results are presented in Table 6.5. A �rst observation is that many
instances only need few branching steps to prove optimality. We point out that the av-
erages for the number of branching nodes as well as the total branch-and-price time are
heavily in�uenced by few outliers. Again, we refer to the appendix (Table B.6) for detailed
results. We can also observe that the columns from the root relaxation already allow for
an excellent solution of the TSDP. As the last column shows, for 82 out of 99 instances,
all optimal templates for the TSDP are generated within the root LP; in 47 of these cases,
the optimality could even be proven in the root node. The listed gap is between the (best)
IP objective after the branch-and-price (or, respectively, with all columns generated in
the root) and the best LP objective after the branching. We see that the dual gaps are
very small over all instances. With respect to the root columns, the worst gap is at 2.3%
and for 94 out of the 99 instances, our solution has a gap of less than 1%. These results
substantiate the strength of the formulation.

We also experimented with a di�erent branching strategy that di�erentiates if two ad-
jacent vertices belong to a common template or not. While this approach proved to be
superior for the partitioning case (which is discussed hereafter), it has a major drawback
for the covering problem: In contrast to the partitioning case, we cannot merge two vertices
for one subbranch, as there may be optimal templates that contain only one of the two
vertices, while another template contains both.

Table 6.5.: Computational results for the branch-and-price approach.

Time [s] Gap

Instance set nodes B&P root B&P root # opt root

ger_lg_tiny 3.8 5.5 1.2 0.0% 0.0% 4/4
ger_lg_small 2.1 15.0 5.2 0.0% 0.0% 9/9
ger_lg_medium 67.2 2450.0 24.8 0.0% 0.0% 9/9
ger_lg_large 1.5 236.4 105.0 0.0% 0.0% 2/2
tree_lg 35.3 1377.1 17.9 0.0% 0.1% 21/25
voronoi_lg_medium 43.9 4014.9 66.3 0.0% 0.1% 8/9
voronoi_lg_large 81.6 9497.6 92.0 0.1% 0.2% 29/41
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6.6 No Primal Heuristic for TSDP

Many problems immensely bene�t from primal heuristics and, as we have seen in Sec-
tion 6.4.4, this is also the case for our pricing problem. Therefore, it seems natural to
explore a similar approach for the TSDP. Can we �nd a �good� initial covering to help the
solution process?
One idea is related to the graph coarsening method that we brie�y described in Sec-

tion 4.2: Multiple vertices are contracted to a single vertex, until a sought number of ver-
tices remains, or other optimization methods are applied to the coarsened graph [Bic11].
In our case, we can use the homogeneity for the coarsening. Whenever two adjacent ver-
tices u and v have very similar tra�c values tu and tv, they are likely put into the same
template. Hence, we contract the edge uv to the new vertex x with wx = wu + wv and
tx = wu tu+wv tv

wu+wv
. Note that these parameters do not a�ect the computation of a weighted

median.
Such an approach was carried out in [Sur20]. The goal was to iteratively merge two

su�ciently similar adjacent vertices, to obtain fairly homogeneous snippets. The iteration
stops if there are no su�ciently similar neighbors left, or if the snippets would exceed a
weight threshold after another merging. The covering problem is then solved on the coars-
ened graph which is signi�cantly smaller than the original instance. Using the resulting
templates as an initial covering for the column generation problem, however, did not prove
to have any advantage over our heuristic covering described in Section 6.2.2.
While we know from duality theory that we have optimal templates when there are no

templates with negative reduced costs, the converse is not true. In order to assess the
potential of a primal covering heuristic, we used an optimal solution of each instance as
initial covering. In addition, we used local search to add more �nearly optimal� templates
to the template pool, once with our standard parameters (LS1) and once with an aggressive
setting that generates even more similar templates (LS2). The results are discouraging, as
Table 6.6 shows. In many instances, optimal templates at the beginning have no or even a
negative impact on the running time. Contrary to our expectation, not even the number
of pricing rounds is reduced dramatically: On average over the 99 instances, it decreases
from 16.7 rounds to 15.4 with LS1, while 25 instances even need more pricing rounds than
without the optimal solution given initially. Now, if the optimal solution is not a good
starting point for the search, then it seems pointless to invest any more capacities into
�nding a good covering heuristically and, hence, the title of this section is justi�ed.

Table 6.6.: E�ects of di�erent initial coverings on optimization time (in seconds).

Instance set SCF optimal, LS1 optimal, LS2

ger_lg_tiny 1.3 1.2 1.3
ger_lg_small 5.2 4.9 5.7
ger_lg_medium 25.5 26.2 30.6
ger_lg_large 111.2 125.5 157.9

tree_lg 19.2 17.7 25.7

voronoi_lg_medium 66.5 57.6 62.0
voronoi_lg_large 93.9 87.7 98.3
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6.7 From TSDP to Districting

To close this thesis, we demonstrate that our approach for the TSDP extends to general
districting problems. The most important di�erence is the search for disjoint templates,
i.e., districting is primarily concerned with vertex partitioning. Furthermore, the number
of districts is usually given. We can adapt model (6.2) to account for these two changes:
The covering constraints (6.2b) become partitioning constraints by replacing the inequality
sign with an equality sign. This leads to dual variables without sign restriction, but the
sign of the dual variables is irrelevant in the further course. Furthermore, we add the
additional constraint ∑

T∈TL,U

xT = k

in order to �x the number of templates. This constraint changes the objective function of
the pricing problem, but when we consider a center inducing objective for the compactness
of the districts (e.g., star, radius, or sum-of-squares), it remains a rooted and capacitated
MWCS for every root in the �xed center formulation. Note, however, that the di�erences
for the compactness measure are not node induced, but based on the Euclidean distance
between two nodes. Therefore, we cannot apply our methods that exploit the balanc-
ing condition from Chapter 5, but whenever possible, we use their counterparts that are
based solely on the capacity bounds. For instance, we compute root rings until the root
component reaches the lower capacity bound, and add the corresponding root ring cuts.
All methods with regard to the rooted and capacitated MWCS directly translate to the
districting.

Publicly available districting instances are rare. We are aware of political districting
instances considered by Validi and Buchanan [VB22], and the commercial territory design
instances by Salazar-Aguilar, Ríos-Mercado, and Cabrera-Ríos [SRC11]. The former use
the cut objective while the latter consider the star (and the radius) objective. Therefore,
we detail the latter work that aims at partitioning a graph, representing a geographic area,
into a �xed number of business districts. Each district needs to be connected and two
capacity constraints with lower and upper bounds balance the number of customers and
the sales volume among the districts. Both of these numbers, however, may only deviate
by 5% from the average number of customers (or sales volume, respectively) per district.
The authors implement an exact and a heuristic model. The exact IP formulation,

called Median-Based Territory Design Problem (MTDP), was already proposed but not
implemented in [Seg+07]. The model is compact and uses a vertex-to-root formulation.
The connectivity is ensured by a special set of node separator inequalities. As there are
exponentially many of these inequalities, the MTDP is solved with branch-and-cut. Com-
plementary to this approach, the authors propose a vertex-to-cluster formulation which
becomes an integer quadratic problem because the center of each cluster has to be speci-
�ed as well (see [SRC11] for details). The resulting model, denoted by QMTDP, is solved
heuristically using DICOPT.
We apply our adapted approach to all large instances with 200 vertices from [SRC11]. A

typical instance is depicted in Figure 6.5. The tight capacity bounds and the partitioning
make it much harder to �nd a feasible solution as a base for the restricted master problem.
To circumvent this problem, we make use of an arti�cial base by constructing an arbitrary
partitioning of the vertices, which may lead to templates that do not meet the requirements
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Figure 6.5.: Exemplary districting instance from [SRC11].

of a district. However, we assign prohibitively large penalties to these templates, so that
none of them is part of an optimal solution. A similar method is used in [CGP19].
Since the integer version of the root LP has infeasibility issues, we use the described

branch-and-price algorithm. In contrast to the covering case, however, the branching is
done on the edges such that both endpoints are forced to be either in the same or in
di�erent districts. The advantage of the partitioning case is that we can either contract
or delete the edge in the subsequent branch. We do not follow a particular rule but select
any edge of an active template for the branching. After solving the LP relaxation of a
branching node, we also solve the IP version of the restricted master problem with all
previously generated districts. If we obtain an integer solution without templates from the
arti�cial base we terminate. Analogously to the TSDP, this means that our approach is
only heuristic but again, we �nd that the generated solutions are excellent.
We start with an �internal� comparison of our methods and di�erent settings. While

we considered the RAS, SCF, and RNS formulations with and without extended indegree
cuts (of depth 2) and root ring cuts, we only report on a subset of the results in Table 6.7.
Surprisingly, we �nd that the inclusion of extended indegree cuts has no positive e�ect.

Table 6.7.: Computation times (in seconds) for applying our heuristic approach to the in-
stances from [SRC11] with di�erent formulations and the inclusion of extended
indegree cuts (+EIC-2) or root ring cuts (+RRC).

Instance RAS RAS RAS SCF RNS
+EIC-2 +RRC +RRC +RRC

1 269.9 240.6 173.3 155.6 131.4
2 249.5 273.2 141.7 197.8 115.9
3 333.6 313.7 164.9 202.7 126.0
4 277.5 292.0 392.8 234.3 149.3
5 571.0 829.7 794.5 570.0 498.0
6 803.7 631.2 620.0 491.7 368.3
7 1017.2 711.4 371.9 1233.4 819.0
8 287.5 236.8 157.1 206.1 131.4
9 614.3 679.3 387.1 625.6 348.9
10 422.0 474.5 412.0 277.0 323.1
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The root ring cuts, on the other hand, really facilitate the optimization process. This is
not only the case for the RAS but also for the SCF and RNS formulation, although we
decided not to include the respective optimization times in favor of a clearer presentation.
We also �nd that the RAS and RNS formulations are best suited for the given instances,
and that the times drastically vary for single instances.

Now we compare the RNS+RRC variant to the results from [SRC11]. We did not reim-
plement the MTDP and QMTDP, but take the values from the paper. Table 6.8 contains
the objective values, the respective gaps to the MTDP objective, and the computation
times for the approaches from [SRC11] and our variant (denoted as B&P). The time limit
of two hours was introduced in [SRC11] but is not relevant for our heuristic approach. We
observe that our transformed branch-and-price approach is far superior to the QMTDP
heuristic in terms of quality and solution time. Note that for instance 9, the �rst solution
of the B&P (found after a few minutes) is even better than the incumbent of the exact
MTDP approach after two hours.
If we continue the branch-and-price procedure after the �rst solution, we �nd that closing

the gap is an issue, just as for the TSDP. The results are still positive: For each of the
six instances with a timeout for the exact approach, we are able to �nd better incumbent
solutions within the same time with B&P. Let us exemplarily consider instance 5 where
the �rst solution of the branch-and-price procedure is remarkably bad compared to the
other instances. After 1000 seconds, we �nd a solution with smaller objective value than
the QMTDP, and after 1500 seconds, we even dominate the incumbent of the MTDP after
two hours.
With regard to the LP bound, already our heuristic solution is excellent as it is provably

within 1% of the optimum for 7 of the 10 instances. At the end of the time limit, we have a
gap of less than 1% for all 10 instances, and while it is even below 0.5% for 8 instances, we
are able to prove the optimality only for instance 1. Unfortunately, we cannot compare our
LP bounds to the ones of the MTDP (for timeout instances) since we did not reimplement
the approach and the authors of [SRC11] do not report on the strength of their formulation.

Table 6.8.: Comparison of the exact (MTDP) and heuristic (QMTDP) solutions from
[SRC11] to the �rst feasible solution of the presented branch-and-price approach
on instances from [SRC11].

Inst Objective value Gap [%] Time [s]

MTDP QMTDP B&P QMTDP B&P MTDP QMTDP B&P

1 10422.0 11523 10422.0 10.6 0.0 1116 28 131
2 10646.1 11425 10657.9 7.3 0.1 7200 966 116
3 10846.8 11443 10880.9 5.5 0.3 1468 7200 126
4 11122.0 11443 11237.5 2.9 1.0 7200 3618 149
5 10878.1 11097 11374.6 2.0 4.6 7200 1193 498
6 10499.3 10746 10551.9 2.3 0.5 7200 1871 368
7 11061.0 11686 11276.4 5.7 1.9 7200 1088 819
8 10659.5 11205 10698.6 5.1 0.4 2641 592 131
9 11470.3 11648 11466.4 1.5 0.0 7200 1263 349
10 11043.8 11780 11044.8 6.7 0.0 1211 2349 323
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The performance of our adapted branch-and-price-and-cut procedure is impressive, es-
pecially, if we consider that our approach is not designed for this particular problem. For
example, we do not exploit the tight capacity bounds to exclude possible roots or reduce
the problem size of each pricing instance. Also, the local search does not provide a large
bene�t, as we did not adapt it to promote feasibility w.r.t. the capacities. We strongly
believe that such problem speci�c adaptions would lead to immense improvements for
the considered districting problem. Finally, there is room for improvement concerning
the branch-and-bound approach. A more sophisticated selection strategy and branching
decision as well as an e�cient implementation can boost the optimization as well.

But also without these adaptions and improvements, we are able to show that the newly
proposed approach, i.e, a column generation where we split the pricing problem into many
subproblems with �xed centers, can provide a great bene�t for general districting problems.
In particular, our approach is able to �nd excellent solutions very fast and is well suited
for larger districting problems. We have seen that various methods that we developed
with regard to the TSDP also carry over to this problem class. This shows that the
contributions of this thesis are able to advance the state of the art in the growing �eld of
districting problems.



A
Detailed Results for BRCMWCS

Welcome to the appendix of my thesis. In this �rst part, we provide instance-wise results
for experiments performed in Chapter 5, i.e., concerning the BRCMWCS. In particular,
we consider

� di�erent connectivity formulations for the BRCMWCS:

� for SCF, MCF, RAS, RNS as well as SCF+z and RNS+z in Table A.1,

� for SCF∗, MCF∗, RAS∗, RNS∗ in Table A.2,

� the impact of the coarse-to-�ne approach:

� for SCF, SCF+z, and SCF∗ in Table A.3,

� for RAS and RAS∗ in Table A.4,

� the e�ect of adding con�ict pairs:

� for SCF and SCF∗ in Table A.5,

� for RAS and RAS∗ in Table A.6,

� di�erent variants of the optimal RAS formulation in Table A.7,

� the e�ect of the warm start heuristic in Table A.8.

There is no accompanying text to describe the results. Instead, we refer to these detailed
results at several points in the thesis, e.g., to say that the computation times vary within
a single instance set. We believe that you, dear reader, are able to interpret the tables
by yourself. They are mainly provided for the sake of completeness, and to showcase the
variation within the single groups.

111
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Table A.1.: Computation times (in seconds) for di�erent connectivity formulations in the
basic variants and with z variables.

Instance SCF MCF RAS RNS SCF+z RNS+z

i�11 483.3 3600.0 10.0 3600.0 102.2 3600.0
i�12 958.2 3600.0 23.9 3600.0 165.0 3600.0
i�13 91.4 3600.0 14.1 3600.0 105.4 3600.0
i�14 151.3 3600.0 13.8 3600.0 79.0 3600.0
i�15 41.2 3600.0 9.3 3600.0 39.1 3600.0
i�16 63.0 3600.0 10.2 3600.0 102.2 3600.0
i�17 204.2 3600.0 16.3 3600.0 124.9 3600.0
i�18 131.0 3600.0 11.3 3600.0 97.2 3600.0
i�19 230.2 3600.0 8.0 3600.0 82.4 3600.0
i�21 64.5 1271.2 3.6 3317.0 87.0 3286.9
i�22 66.0 1880.2 3.5 1344.4 55.8 2814.9
i�23 34.6 2508.6 6.3 3600.0 10.2 3600.0
i�24 35.2 1473.0 6.5 3600.0 110.2 3600.0
i�25 34.3 3600.0 6.7 3600.0 23.9 3600.0
i�26 32.0 3600.0 5.1 1437.7 15.5 1519.9
i�27 132.9 3460.8 7.3 3600.0 78.6 3600.0
i�28 143.6 1476.0 8.3 3600.0 106.2 3600.0
i�29 144.0 3600.0 7.5 3600.0 60.1 3600.0
i�31 1817.2 3600.0 4.7 3600.0 75.2 3600.0
i�32 1367.0 3600.0 7.3 3600.0 108.5 3600.0
i�33 61.4 3600.0 9.3 3600.0 35.0 3600.0
i�34 485.7 3600.0 18.8 3600.0 113.1 3600.0
i�35 44.6 3600.0 11.8 3600.0 59.5 3600.0
i�36 80.1 3600.0 10.3 3600.0 114.1 3600.0
i�37 137.7 3600.0 8.8 3600.0 104.7 3600.0
i�38 244.5 3600.0 20.0 3600.0 110.4 3600.0
i�39 63.6 3600.0 7.2 3600.0 110.9 3600.0
i�41 182.2 3600.0 2.6 3600.0 69.9 3600.0
i�42 483.4 3600.0 7.0 3600.0 88.0 3600.0
i�43 65.0 2369.3 6.4 3600.0 41.4 3600.0
i�44 49.3 3600.0 9.2 3600.0 99.5 3600.0
i�45 42.1 2765.4 7.4 3600.0 66.6 519.5
i�46 37.8 2844.3 5.7 3600.0 25.7 2558.7
i�47 44.6 829.7 4.7 3600.0 68.4 742.3
i�48 350.5 3034.5 8.3 3600.0 126.9 3600.0
i�49 1367.0 3600.0 12.2 3600.0 146.6 3600.0
i�51 3600.0 3600.0 10.1 3600.0 291.5 3600.0
i�52 347.2 3600.0 4.9 3600.0 77.6 3600.0
i�53 86.0 3600.0 9.8 3600.0 90.0 3600.0
i�54 28.6 846.8 3.4 3600.0 19.6 3600.0
i�55 36.9 3600.0 7.6 3600.0 26.6 2448.4
i�56 33.1 3600.0 6.5 3600.0 34.2 536.6
i�57 212.9 2665.3 8.7 3600.0 87.3 3600.0
i�58 72.8 1816.2 3.6 3600.0 72.6 760.9
i�59 61.9 3350.2 6.2 3600.0 90.2 1159.4
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Instance SCF MCF RAS RNS SCF+z RNS+z

l�1 3600.0 3600.0 662.2 3600.0 2430.6 3600.0
l�2 3600.0 3600.0 741.7 3600.0 3600.0 3600.0
l�3 3600.0 3600.0 477.8 3600.0 3600.0 3600.0
l�4 3600.0 3600.0 626.6 3600.0 1771.0 3600.0
l�5 3600.0 3600.0 228.3 3600.0 1167.7 3600.0
l�6 3600.0 3600.0 625.3 3600.0 2306.9 3600.0
l�7 3600.0 3600.0 259.8 3600.0 950.1 3600.0
l�8 3600.0 3600.0 909.8 3600.0 3600.0 3600.0
l�9 3600.0 3600.0 332.0 3600.0 1007.8 3600.0
l�10 3600.0 3600.0 698.8 3600.0 3600.0 3600.0

s�1 3600.0 1274.3 3.0 421.5 80.5 419.3
s�2 3600.0 3600.0 8.7 3600.0 189.7 3600.0
s�3 3600.0 3600.0 7.1 3600.0 94.8 3600.0
s�4 1.1 78.5 2.5 3600.0 2.8 2.3
s�5 3600.0 3600.0 4.1 3600.0 54.0 3600.0
s�6 3600.0 3600.0 6.5 3600.0 77.5 3600.0
s�7 3600.0 3600.0 10.0 3600.0 159.4 3600.0
s�8 3600.0 3600.0 5.0 3600.0 83.4 3600.0
s�9 3600.0 3600.0 8.5 3600.0 150.4 3600.0
s�10 3600.0 3600.0 4.5 3600.0 66.6 35.7

g�1 3600.0 3600.0 30.4 3600.0 1461.7 3600.0
g�2 3600.0 3600.0 32.6 3600.0 3600.0 3600.0
g�3 3600.0 3600.0 13.2 3600.0 1090.0 3600.0
g�4 3600.0 3600.0 13.9 3600.0 714.0 3600.0
g�5 434.8 3600.0 5.1 3600.0 84.7 3600.0
g�6 3364.8 3600.0 20.5 3600.0 227.1 3600.0
g�7 3600.0 3600.0 17.6 3600.0 546.9 3600.0
g�8 1451.0 3600.0 17.4 3600.0 198.4 3600.0
g�9 3600.0 3600.0 55.2 3600.0 2933.4 3600.0
g�10 3600.0 3600.0 13.6 3600.0 1432.8 3600.0
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Table A.2.: Computation times (in seconds) for di�erent connectivity formulations in the
optimal variants.

Instance SCF∗ MCF∗ RAS∗ RNS∗

i�11 20.8 3600.0 6.4 32.5
i�12 105.6 3600.0 17.4 285.1
i�13 20.3 3600.0 9.2 57.5
i�14 11.7 3600.0 5.7 39.0
i�15 5.0 2102.5 3.8 2.2
i�16 6.4 3600.0 7.8 26.2
i�17 30.2 3600.0 10.6 165.7
i�18 10.9 2511.0 6.7 7.8
i�19 5.8 2496.7 3.4 17.4
i�21 0.3 46.7 0.2 0.2
i�22 2.7 184.9 1.0 1.0
i�23 3.6 1268.6 1.7 28.2
i�24 3.4 1304.6 2.2 1.5
i�25 1.6 404.7 1.4 1.1
i�26 1.1 434.1 2.0 3.2
i�27 2.0 255.3 1.1 1.0
i�28 3.0 202.4 1.5 1.7
i�29 3.7 355.2 1.9 2.2
i�31 11.4 3600.0 4.0 42.1
i�32 56.6 3464.2 6.6 3600.0
i�33 4.6 3309.9 4.8 140.2
i�34 13.1 3600.0 7.7 3600.0
i�35 4.3 437.1 1.4 1.1
i�36 2.2 1008.7 1.5 5.3
i�37 2.5 497.3 1.8 1.5
i�38 6.5 940.1 1.8 3.7
i�39 3.4 1034.9 1.9 2.7
i�41 5.6 3446.9 2.9 2.4
i�42 6.0 3600.0 2.8 5.5
i�43 3.1 1600.1 1.8 2.5
i�44 8.0 3505.3 3.9 36.6
i�45 4.0 1615.0 2.4 1.9
i�46 2.7 1017.9 1.4 2.3
i�47 5.0 553.2 1.3 1.7
i�48 7.5 2147.2 4.7 6.2
i�49 17.1 3600.0 4.6 42.4
i�51 16.1 3600.0 4.0 148.2
i�52 10.6 3600.0 2.0 27.6
i�53 4.9 3600.0 2.2 21.9
i�54 3.8 980.5 1.2 1.6
i�55 2.5 615.4 1.8 3.0
i�56 2.3 1358.9 1.2 2.2
i�57 3.6 1231.8 1.6 3.3
i�58 3.5 467.3 1.4 2.2
i�59 3.6 492.4 3.6 1.1
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Instance SCF∗ MCF∗ RAS∗ RNS∗

l�1 90.9 3600.0 90.0 3600.0
l�2 186.6 3600.0 96.8 3600.0
l�3 444.7 3600.0 56.0 3600.0
l�4 155.9 3600.0 90.3 3600.0
l�5 139.9 3600.0 26.1 3600.0
l�6 137.5 3600.0 93.2 3600.0
l�7 25.6 3600.0 8.7 65.8
l�8 514.2 3600.0 113.4 3600.0
l�9 117.6 3600.0 30.9 3600.0
l�10 198.7 3600.0 84.9 3600.0

s�1 8.5 1107.8 2.9 2.2
s�2 3.4 3600.0 2.0 1.8
s�3 2.7 3600.0 1.8 1.4
s�4 3.1 68.7 2.2 2.0
s�5 3.7 3600.0 1.8 1.7
s�6 3.1 3600.0 1.4 1.4
s�7 5.0 3600.0 3.2 2.7
s�8 1.6 3600.0 1.3 1.4
s�9 2.8 3600.0 2.3 1.5
s�10 4.5 3600.0 1.5 0.9

g�1 438.8 3600.0 46.6 3600.0
g�2 347.8 3600.0 30.0 3600.0
g�3 461.7 3600.0 11.2 3600.0
g�4 226.5 3600.0 25.8 3600.0
g�5 60.7 3600.0 9.1 3600.0
g�6 126.8 3600.0 25.8 3600.0
g�7 353.5 3600.0 6.8 3600.0
g�8 126.4 3600.0 17.7 3600.0
g�9 1360.2 3600.0 46.8 3600.0
g�10 392.9 3600.0 21.2 3600.0
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Table A.3.: Computation times (in seconds) for di�erent variants of the SCF formulation
without and with the coarse-to-�ne (C2F) model.

Instance SCF +C2F SCF+z +C2F SCF* +C2F

i�11 483.3 314.8 102.2 101.9 20.8 28.8
i�12 958.2 1558.0 165.0 259.0 105.6 147.6
i�13 91.4 72.6 105.4 70.2 20.3 27.3
i�14 151.3 241.4 79.0 93.8 11.7 19.7
i�15 41.2 32.4 39.1 23.0 5.0 4.5
i�16 63.0 50.0 102.2 89.7 6.4 6.8
i�17 204.2 317.7 124.9 125.5 30.2 29.6
i�18 131.0 144.9 97.2 100.9 10.9 10.2
i�19 230.2 303.5 82.4 82.1 5.8 11.6
i�21 64.5 73.2 87.0 91.8 0.3 0.4
i�22 66.0 60.7 55.8 35.4 2.7 1.9
i�23 34.6 31.2 10.2 9.7 3.6 4.3
i�24 35.2 31.2 110.2 76.1 3.4 3.2
i�25 34.3 24.7 23.9 20.3 1.6 1.5
i�26 32.0 37.6 15.5 13.5 1.1 1.6
i�27 132.9 139.8 78.6 74.8 2.0 2.0
i�28 143.6 107.1 106.2 98.8 3.0 3.1
i�29 144.0 126.7 60.1 66.5 3.7 4.0
i�31 1817.2 1186.2 75.2 64.7 11.4 11.0
i�32 1367.0 1019.3 108.5 104.1 56.6 100.4
i�33 61.4 76.2 35.0 29.3 4.6 5.9
i�34 485.7 418.8 113.1 96.2 13.1 28.4
i�35 44.6 47.7 59.5 35.0 4.3 3.1
i�36 80.1 85.7 114.1 76.9 2.2 3.1
i�37 137.7 273.7 104.7 92.5 2.5 4.1
i�38 244.5 347.7 110.4 79.8 6.5 6.0
i�39 63.6 123.0 110.9 68.7 3.4 5.3
i�41 182.2 503.8 69.9 56.5 5.6 8.1
i�42 483.4 765.4 88.0 81.1 6.0 9.2
i�43 65.0 65.4 41.4 56.3 3.1 5.0
i�44 49.3 40.8 99.5 86.7 8.0 5.6
i�45 42.1 32.6 66.6 33.1 4.0 4.0
i�46 37.8 35.4 25.7 19.7 2.7 2.4
i�47 44.6 52.9 68.4 65.5 5.0 5.1
i�48 350.5 237.2 126.9 73.7 7.5 6.1
i�49 1367.0 854.0 146.6 119.5 17.1 27.4
i�51 3600.0 3600.0 291.5 211.2 16.1 29.7
i�52 347.2 430.1 77.6 83.8 10.6 9.2
i�53 86.0 100.9 90.0 65.7 4.9 7.8
i�54 28.6 31.2 19.6 14.2 3.8 2.9
i�55 36.9 30.3 26.6 22.0 2.5 3.2
i�56 33.1 39.1 34.2 30.5 2.3 2.8
i�57 212.9 146.2 87.3 76.7 3.6 3.4
i�58 72.8 63.6 72.6 89.1 3.5 5.5
i�59 61.9 49.8 90.2 56.0 3.6 2.4
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Instance SCF +C2F SCF+z +C2F SCF* +C2F

l�1 3600.0 3600.0 2430.6 2722.5 90.9 1036.4
l�2 3600.0 3600.0 3600.0 3600.0 186.6 1588.8
l�3 3600.0 3600.0 3600.0 3600.0 444.7 1238.9
l�4 3600.0 3600.0 1771.0 2983.2 155.9 1224.4
l�5 3600.0 3600.0 1167.7 1504.8 139.9 248.3
l�6 3600.0 3600.0 2306.9 3600.0 137.5 1541.5
l�7 3600.0 3600.0 950.1 947.4 25.6 105.7
l�8 3600.0 3600.0 3600.0 3600.0 514.2 1711.9
l�9 3600.0 3600.0 1007.8 2626.8 117.6 823.2
l�10 3600.0 3600.0 3600.0 3584.7 198.7 1180.0

s�1 3600.0 15.3 80.5 4.0 8.5 3.4
s�2 3600.0 247.8 189.7 15.5 3.4 8.6
s�3 3600.0 128.4 94.8 11.6 2.7 4.8
s�4 1.1 1.7 2.8 1.2 3.1 1.2
s�5 3600.0 59.7 54.0 8.1 3.7 3.5
s�6 3600.0 85.8 77.5 5.6 3.1 3.1
s�7 3600.0 183.7 159.4 8.0 5.0 4.3
s�8 3600.0 113.7 83.4 8.0 1.6 3.6
s�9 3600.0 35.0 150.4 8.1 2.8 4.0
s�10 3600.0 6.7 66.6 2.9 4.5 2.5

g�1 3600.0 3600.0 1461.7 1226.2 438.8 324.3
g�2 3600.0 3600.0 3600.0 1123.0 347.8 425.4
g�3 3600.0 3600.0 1090.0 440.1 461.7 240.9
g�4 3600.0 3600.0 714.0 868.0 226.5 265.6
g�5 434.8 315.2 84.7 80.6 60.7 76.4
g�6 3364.8 2519.4 227.1 207.4 126.8 121.9
g�7 3600.0 3600.0 546.9 395.8 353.5 187.9
g�8 1451.0 1567.8 198.4 187.0 126.4 108.4
g�9 3600.0 3600.0 2933.4 3600.0 1360.2 1510.4
g�10 3600.0 3600.0 1432.8 643.3 392.9 539.6
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Table A.4.: Computation times (in seconds) for di�erent variants of the RAS formulation
without and with the coarse-to-�ne (C2F) model.

Instance RAS +C2F RAS∗ +C2F

i�11 10.0 20.0 6.4 10.1
i�12 23.9 55.1 17.4 26.1
i�13 14.1 33.3 9.2 8.5
i�14 13.8 17.9 5.7 8.3
i�15 9.3 13.3 3.8 4.2
i�16 10.2 9.7 7.8 5.4
i�17 16.3 17.7 10.6 10.9
i�18 11.3 13.2 6.7 6.6
i�19 8.0 5.0 3.4 4.1
i�21 3.6 3.4 0.2 0.3
i�22 3.5 2.8 1.0 1.8
i�23 6.3 5.7 1.7 1.8
i�24 6.5 5.0 2.2 3.3
i�25 6.7 7.5 1.4 1.9
i�26 5.1 6.4 2.0 1.8
i�27 7.3 5.8 1.1 1.3
i�28 8.3 5.6 1.5 2.1
i�29 7.5 8.1 1.9 2.9
i�31 4.7 8.4 4.0 3.7
i�32 7.3 6.2 6.6 8.1
i�33 9.3 9.7 4.8 6.2
i�34 18.8 16.1 7.7 9.7
i�35 11.8 11.8 1.4 1.8
i�36 10.3 10.3 1.5 2.0
i�37 8.8 7.2 1.8 3.1
i�38 20.0 9.8 1.8 3.2
i�39 7.2 6.8 1.9 3.1
i�41 2.6 4.6 2.9 3.4
i�42 7.0 5.9 2.8 3.3
i�43 6.4 6.3 1.8 2.7
i�44 9.2 6.5 3.9 2.7
i�45 7.4 6.1 2.4 3.4
i�46 5.7 7.2 1.4 2.7
i�47 4.7 3.1 1.3 1.6
i�48 8.3 8.7 4.7 4.9
i�49 12.2 9.5 4.6 6.0
i�51 10.1 11.2 4.0 13.8
i�52 4.9 2.5 2.0 2.6
i�53 9.8 8.5 2.2 5.5
i�54 3.4 5.8 1.2 2.9
i�55 7.6 6.2 1.8 1.8
i�56 6.5 6.4 1.2 2.5
i�57 8.7 5.6 1.6 2.5
i�58 3.6 3.8 1.4 1.4
i�59 6.2 5.6 3.6 2.2
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Instance RAS +C2F RAS∗ +C2F

l�1 662.2 789.3 90.0 632.5
l�2 741.7 1172.5 96.8 885.1
l�3 477.8 464.8 56.0 738.2
l�4 626.6 866.5 90.3 735.9
l�5 228.3 283.8 26.1 139.6
l�6 625.3 684.7 93.2 619.5
l�7 259.8 130.4 8.7 31.1
l�8 909.8 1213.3 113.4 735.2
l�9 332.0 280.8 30.9 189.2
l�10 698.8 1133.7 84.9 649.8

s�1 3.0 3.1 2.9 5.1
s�2 8.7 5.2 2.0 7.2
s�3 7.1 4.4 1.8 4.6
s�4 2.5 2.9 2.2 1.9
s�5 4.1 4.0 1.8 5.3
s�6 6.5 3.4 1.4 3.5
s�7 10.0 5.0 3.2 5.5
s�8 5.0 3.6 1.3 5.2
s�9 8.5 2.7 2.3 6.8
s�10 4.5 1.6 1.5 2.0

g�1 30.4 30.2 46.6 32.5
g�2 32.6 30.2 30.0 33.7
g�3 13.2 12.6 11.2 11.0
g�4 13.9 20.4 25.8 19.8
g�5 5.1 4.9 9.1 5.7
g�6 20.5 17.0 25.8 35.5
g�7 17.6 9.7 6.8 11.1
g�8 17.4 17.8 17.7 21.9
g�9 55.2 54.5 46.8 36.7
g�10 13.6 19.2 21.2 29.8
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Table A.5.: Computation times (in seconds) for the basic and optimal variants of SCF
without and with the addition of (essential) con�ict pairs.

Instance SCF SCF+CP SCF∗ SCF∗+CP

i�11 483.3 481.1 20.8 23.2
i�12 958.2 738.2 105.6 138.9
i�13 91.4 63.5 20.3 15.5
i�14 151.3 113.3 11.7 12.9
i�15 41.2 29.8 5.0 5.4
i�16 63.0 51.1 6.4 6.0
i�17 204.2 211.2 30.2 30.4
i�18 131.0 60.9 10.9 12.0
i�19 230.2 114.3 5.8 9.5
i�21 64.5 13.1 0.3 0.4
i�22 66.0 28.4 2.7 1.9
i�23 34.6 28.6 3.6 4.1
i�24 35.2 29.0 3.4 5.4
i�25 34.3 24.6 1.6 1.9
i�26 32.0 21.9 1.1 1.3
i�27 132.9 21.9 2.0 1.6
i�28 143.6 56.5 3.0 2.8
i�29 144.0 41.1 3.7 3.3
i�31 1817.2 1385.1 11.4 7.5
i�32 1367.0 947.7 56.6 29.2
i�33 61.4 61.6 4.6 4.4
i�34 485.7 193.7 13.1 21.9
i�35 44.6 27.1 4.3 3.9
i�36 80.1 38.6 2.2 3.0
i�37 137.7 40.4 2.5 2.3
i�38 244.5 75.3 6.5 5.7
i�39 63.6 65.2 3.4 3.0
i�41 182.2 397.9 5.6 6.0
i�42 483.4 386.4 6.0 6.7
i�43 65.0 74.1 3.1 4.0
i�44 49.3 52.8 8.0 6.4
i�45 42.1 32.5 4.0 4.0
i�46 37.8 32.8 2.7 3.0
i�47 44.6 38.2 5.0 5.1
i�48 350.5 200.9 7.5 8.8
i�49 1367.0 731.0 17.1 20.3
i�51 3600.0 1811.6 16.1 23.0
i�52 347.2 210.8 10.6 13.5
i�53 86.0 76.3 4.9 5.4
i�54 28.6 25.3 3.8 3.2
i�55 36.9 23.1 2.5 4.5
i�56 33.1 21.9 2.3 2.3
i�57 212.9 61.4 3.6 3.6
i�58 72.8 85.9 3.5 4.4
i�59 61.9 26.6 3.6 3.1
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Instance SCF SCF+CP SCF∗ SCF∗+CP

l�1 3600.0 3600.0 90.9 119.4
l�2 3600.0 3600.0 186.6 538.5
l�3 3600.0 3600.0 444.7 989.3
l�4 3600.0 3600.0 155.9 192.2
l�5 3600.0 3600.0 139.9 95.1
l�6 3600.0 3600.0 137.5 334.4
l�7 3600.0 3600.0 25.6 37.4
l�8 3600.0 3600.0 514.2 1587.7
l�9 3600.0 3600.0 117.6 240.3
l�10 3600.0 3600.0 198.7 341.2

s�1 3600.0 3600.0 8.5 12.9
s�2 3600.0 3600.0 3.4 6.7
s�3 3600.0 3600.0 2.7 4.2
s�4 1.1 1.5 3.1 4.4
s�5 3600.0 3600.0 3.7 4.8
s�6 3600.0 3600.0 3.1 4.1
s�7 3600.0 3600.0 5.0 4.9
s�8 3600.0 3600.0 1.6 2.3
s�9 3600.0 3600.0 2.8 4.5
s�10 3600.0 3600.0 4.5 2.9

g�1 3600.0 3600.0 438.8 301.9
g�2 3600.0 3600.0 347.8 360.7
g�3 3600.0 3600.0 461.7 513.6
g�4 3600.0 3600.0 226.5 393.5
g�5 434.8 393.2 60.7 62.3
g�6 3364.8 2941.4 126.8 109.8
g�7 3600.0 3600.0 353.5 243.3
g�8 1451.0 1269.8 126.4 103.1
g�9 3600.0 3600.0 1360.2 868.4
g�10 3600.0 3600.0 392.9 459.6
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Table A.6.: Computation times (in seconds) for the basic and optimal variants of RAS
without and with the addition of (essential) con�ict pairs.

Instance RAS RAS+CP RAS∗ RAS∗+CP

i�11 10.0 7.8 6.4 9.3
i�12 23.9 22.8 17.4 22.1
i�13 14.1 16.4 9.2 7.9
i�14 13.8 17.4 5.7 6.3
i�15 9.3 10.6 3.8 3.9
i�16 10.2 14.2 7.8 5.6
i�17 16.3 34.7 10.6 9.0
i�18 11.3 12.2 6.7 5.3
i�19 8.0 6.7 3.4 3.9
i�21 3.6 0.9 0.2 0.2
i�22 3.5 1.4 1.0 1.0
i�23 6.3 7.1 1.7 3.6
i�24 6.5 6.2 2.2 2.7
i�25 6.7 5.6 1.4 1.9
i�26 5.1 3.8 2.0 2.2
i�27 7.3 3.7 1.1 1.2
i�28 8.3 4.9 1.5 1.4
i�29 7.5 5.7 1.9 2.4
i�31 4.7 3.8 4.0 5.1
i�32 7.3 5.5 6.6 6.0
i�33 9.3 6.3 4.8 4.7
i�34 18.8 16.6 7.7 8.1
i�35 11.8 3.7 1.4 2.3
i�36 10.3 6.6 1.5 1.7
i�37 8.8 3.7 1.8 1.6
i�38 20.0 7.0 1.8 4.3
i�39 7.2 5.7 1.9 1.9
i�41 2.6 4.5 2.9 3.0
i�42 7.0 5.2 2.8 3.6
i�43 6.4 6.8 1.8 2.2
i�44 9.2 5.7 3.9 3.5
i�45 7.4 6.0 2.4 2.1
i�46 5.7 6.2 1.4 1.5
i�47 4.7 3.5 1.3 1.4
i�48 8.3 9.2 4.7 4.0
i�49 12.2 9.6 4.6 5.7
i�51 10.1 8.4 4.0 5.1
i�52 4.9 5.3 2.0 2.3
i�53 9.8 9.2 2.2 4.9
i�54 3.4 5.0 1.2 1.1
i�55 7.6 2.5 1.8 1.5
i�56 6.5 4.9 1.2 1.9
i�57 8.7 2.5 1.6 2.1
i�58 3.6 4.2 1.4 2.4
i�59 6.2 4.1 3.6 2.5
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Instance RAS RAS+CP RAS∗ RAS∗+CP

l�1 662.2 855.1 90.0 93.0
l�2 741.7 785.0 96.8 88.4
l�3 477.8 882.6 56.0 90.2
l�4 626.6 470.3 90.3 90.2
l�5 228.3 345.4 26.1 64.2
l�6 625.3 828.0 93.2 173.8
l�7 259.8 372.6 8.7 10.6
l�8 909.8 849.2 113.4 150.8
l�9 332.0 554.7 30.9 74.9
l�10 698.8 794.7 84.9 80.3

s�1 3.0 6.0 2.9 3.4
s�2 8.7 11.6 2.0 2.4
s�3 7.1 7.5 1.8 1.8
s�4 2.5 2.8 2.2 2.3
s�5 4.1 4.8 1.8 2.1
s�6 6.5 8.1 1.4 1.8
s�7 10.0 10.2 3.2 3.9
s�8 5.0 6.0 1.3 2.3
s�9 8.5 8.3 2.3 2.7
s�10 4.5 5.2 1.5 1.2

g�1 30.4 21.5 46.6 32.7
g�2 32.6 24.6 30.0 24.9
g�3 13.2 11.5 11.2 13.7
g�4 13.9 18.3 25.8 18.8
g�5 5.1 8.4 9.1 5.2
g�6 20.5 18.2 25.8 20.8
g�7 17.6 6.8 6.8 8.2
g�8 17.4 13.9 17.7 20.0
g�9 55.2 50.3 46.8 46.1
g�10 13.6 15.8 21.2 24.5
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Table A.7.: Computation times (in seconds) for di�erent variants of the optimal RAS for-
mulation

Instance RAS∗ �BC �CR +EIC-3 �EIC �SpC

i�11 6.4 7.2 9.8 5.9 8.0 9.7
i�12 17.4 15.2 19.1 18.2 23.1 27.3
i�13 9.2 10.6 9.0 9.9 15.3 16.0
i�14 5.7 6.1 8.2 6.8 12.0 13.7
i�15 3.8 3.7 4.6 3.8 7.4 12.9
i�16 7.8 4.1 6.1 4.4 9.6 10.8
i�17 10.6 11.7 8.0 12.2 14.3 19.5
i�18 6.7 5.8 6.8 7.1 10.3 9.1
i�19 3.4 2.7 2.2 4.4 9.9 13.4
i�21 0.2 0.2 0.2 0.2 0.8 0.3
i�22 1.0 1.0 1.0 1.2 1.6 1.4
i�23 1.7 2.0 2.1 1.7 5.2 2.4
i�24 2.2 2.3 2.0 2.5 3.1 2.2
i�25 1.4 1.3 1.6 1.5 3.1 2.4
i�26 2.0 1.7 0.9 2.4 3.9 2.2
i�27 1.1 1.2 1.7 2.1 1.4 1.8
i�28 1.5 1.4 1.6 1.5 2.1 1.7
i�29 1.9 1.5 1.5 1.5 3.4 2.3
i�31 4.0 3.8 6.2 3.3 5.9 9.6
i�32 6.6 4.4 7.0 5.0 6.7 6.4
i�33 4.8 4.1 4.9 5.7 8.5 7.8
i�34 7.7 8.3 8.5 7.8 13.9 13.1
i�35 1.4 2.1 1.4 2.5 3.4 2.7
i�36 1.5 1.4 1.6 1.4 3.5 2.0
i�37 1.8 1.8 1.5 1.5 2.5 2.5
i�38 1.8 1.6 2.7 2.1 4.2 3.4
i�39 1.9 1.8 2.0 2.4 3.2 5.0
i�41 2.9 2.8 2.9 3.0 3.3 4.7
i�42 2.8 2.9 3.0 3.3 4.7 5.1
i�43 1.8 1.8 2.2 3.5 5.8 3.5
i�44 3.9 2.0 2.0 3.0 6.5 4.8
i�45 2.4 2.2 2.3 2.8 6.9 3.9
i�46 1.4 1.7 1.8 1.8 4.0 3.5
i�47 1.3 1.0 1.0 0.9 2.3 2.5
i�48 4.7 3.7 4.5 4.5 7.6 7.3
i�49 4.6 5.8 5.2 7.4 8.4 7.6
i�51 4.0 4.8 5.5 5.3 5.4 5.1
i�52 2.0 1.6 2.4 2.3 3.6 3.1
i�53 2.2 3.8 3.9 2.3 7.2 2.2
i�54 1.2 2.1 1.1 1.4 2.4 2.4
i�55 1.8 1.6 1.5 1.4 2.5 2.3
i�56 1.2 2.2 2.2 1.9 3.8 3.8
i�57 1.6 2.1 1.7 1.6 3.4 6.3
i�58 1.4 2.5 2.5 0.9 1.8 1.5
i�59 3.6 2.6 2.1 1.8 3.1 5.5
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Instance RAS∗ �BC �CR +EIC-3 �EIC �SpC

l�1 90.0 63.1 92.3 82.7 655.5 515.3
l�2 96.8 120.7 101.6 108.6 588.0 575.1
l�3 56.0 101.4 64.7 57.1 492.1 346.8
l�4 90.3 113.2 82.6 54.7 632.4 191.5
l�5 26.1 26.6 38.5 58.6 274.1 103.7
l�6 93.2 101.3 82.3 91.2 699.9 426.3
l�7 8.7 5.8 8.9 8.3 332.2 44.2
l�8 113.4 148.2 145.8 86.3 751.5 798.6
l�9 30.9 43.5 59.9 80.8 386.8 187.7
l�10 84.9 82.9 79.4 115.1 734.4 279.1

s�1 2.9 2.4 1.8 2.3 3.3 6.4
s�2 2.0 1.9 2.2 2.1 6.5 13.5
s�3 1.8 1.9 1.1 1.7 6.3 12.9
s�4 2.2 2.3 1.6 1.8 1.9 11.4
s�5 1.8 1.8 1.2 1.8 3.8 5.1
s�6 1.4 1.4 1.2 1.4 6.3 26.9
s�7 3.2 3.2 3.4 3.2 5.6 26.1
s�8 1.3 1.4 1.9 1.9 3.6 3.9
s�9 2.3 2.4 2.3 2.2 6.9 38.6
s�10 1.5 1.5 0.9 1.0 2.1 5.9

g�1 46.6 22.5 26.9 28.6 30.4 71.2
g�2 30.0 21.2 27.2 40.1 21.7 63.3
g�3 11.2 13.2 17.6 13.2 17.0 45.0
g�4 25.8 15.5 20.9 12.9 16.7 51.3
g�5 9.1 4.8 5.0 3.6 4.9 33.1
g�6 25.8 21.5 23.9 18.1 21.6 89.2
g�7 6.8 8.5 15.3 7.8 5.5 37.3
g�8 17.7 11.1 16.9 9.1 14.5 68.0
g�9 46.8 33.7 54.8 41.0 38.6 118.0
g�10 21.2 18.7 21.3 15.1 18.9 52.5
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Table A.8.: Performance of the BFS heuristic: average runtime (H), objective gap, and
impact on the solution time if added to the optimal variants of RAS and SCF.

Instance H obj[%] RAS∗ +WS SCF* +WS

i�11 0.0 89.3% 6.4 5.3 20.8 126.0
i�12 0.1 54.7% 17.4 24.2 105.6 319.7
i�13 0.1 283.6% 9.2 12.2 20.3 111.5
i�14 0.1 88.5% 5.7 12.7 11.7 135.0
i�15 0.1 67.3% 3.8 5.4 5.0 15.3
i�16 0.1 90.5% 7.8 7.4 6.4 41.4
i�17 0.0 92.2% 10.6 18.4 30.2 114.7
i�18 0.1 79.8% 6.7 7.7 10.9 80.5
i�19 0.1 57.7% 3.4 3.6 5.8 81.5
i�21 0.0 72.7% 0.2 0.7 0.3 2.2
i�22 0.1 42.1% 1.0 2.2 2.7 13.0
i�23 0.0 100.0% 1.7 2.9 3.6 14.2
i�24 0.1 69.9% 2.2 2.9 3.4 105.7
i�25 0.0 88.8% 1.4 3.0 1.6 10.1
i�26 0.1 66.7% 2.0 4.1 1.1 7.3
i�27 0.0 76.5% 1.1 1.6 2.0 8.4
i�28 0.1 63.8% 1.5 2.2 3.0 65.7
i�29 0.1 100.0% 1.9 1.8 3.7 47.3
i�31 0.1 67.6% 4.0 4.1 11.4 70.3
i�32 0.1 80.6% 6.6 6.4 56.6 134.4
i�33 0.1 -1.8% 4.8 7.6 4.6 27.8
i�34 0.1 91.7% 7.7 27.4 13.1 144.9
i�35 0.1 82.7% 1.4 4.0 4.3 12.8
i�36 0.1 83.1% 1.5 3.7 2.2 29.6
i�37 0.1 70.4% 1.8 4.7 2.5 50.6
i�38 0.1 97.6% 1.8 2.8 6.5 72.7
i�39 0.1 87.7% 1.9 3.7 3.4 78.1
i�41 0.1 79.9% 2.9 3.3 5.6 56.0
i�42 0.0 80.3% 2.8 5.1 6.0 86.9
i�43 0.0 72.5% 1.8 3.4 3.1 30.4
i�44 0.1 92.5% 3.9 5.1 8.0 48.2
i�45 0.0 100.0% 2.4 3.1 4.0 32.4
i�46 0.1 85.1% 1.4 3.2 2.7 20.1
i�47 0.1 75.8% 1.3 2.5 5.0 57.4
i�48 0.1 92.8% 4.7 6.9 7.5 82.1
i�49 0.1 98.9% 4.6 7.9 17.1 164.8
i�51 0.0 80.2% 4.0 4.8 16.1 251.8
i�52 0.1 78.6% 2.0 4.6 10.6 76.3
i�53 0.0 79.0% 2.2 5.0 4.9 57.8
i�54 0.1 81.2% 1.2 4.2 3.8 21.7
i�55 0.1 85.3% 1.8 2.5 2.5 14.2
i�56 0.0 92.4% 1.2 3.5 2.3 25.0
i�57 0.0 83.4% 1.6 2.4 3.6 69.4
i�58 0.0 93.0% 1.4 2.6 3.5 48.7
i�59 0.0 92.8% 3.6 2.4 3.6 24.4
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Instance H obj[%] RAS∗ +WS SCF* +WS

l�1 0.8 74.1% 90.0 547.4 90.9 2283.0
l�2 1.1 79.5% 96.8 867.5 186.6 3600.0
l�3 0.4 96.9% 56.0 476.1 444.7 1533.9
l�4 0.8 85.9% 90.3 536.7 155.9 2637.9
l�5 0.5 84.3% 26.1 283.5 139.9 1617.8
l�6 0.3 94.4% 93.2 613.7 137.5 1179.8
l�7 0.6 72.7% 8.7 234.1 25.6 1174.0
l�8 0.6 84.0% 113.4 672.1 514.2 3600.0
l�9 0.4 84.8% 30.9 376.3 117.6 1706.9
l�10 0.8 83.8% 84.9 994.2 198.7 3600.0

s�1 0.9 100.0% 2.9 3.1 8.5 63.3
s�2 0.6 61.2% 2.0 8.0 3.4 117.2
s�3 0.9 92.5% 1.8 6.2 2.7 90.7
s�4 1.0 100.0% 2.2 1.7 3.1 10.1
s�5 0.7 100.0% 1.8 4.2 3.7 63.5
s�6 0.6 100.0% 1.4 5.0 3.1 169.8
s�7 0.7 54.3% 3.2 7.8 5.0 89.0
s�8 0.7 90.0% 1.3 5.5 1.6 68.5
s�9 0.8 100.0% 2.3 6.0 2.8 119.6
s�10 0.3 100.0% 1.5 2.1 4.5 83.3

g�1 0.0 57.3% 46.6 20.7 438.8 546.2
g�2 0.1 63.5% 30.0 28.9 347.8 2385.2
g�3 0.1 67.4% 11.2 16.8 461.7 761.2
g�4 0.1 61.6% 25.8 17.4 226.5 552.1
g�5 0.1 62.5% 9.1 5.0 60.7 68.9
g�6 0.1 56.4% 25.8 18.9 126.8 165.9
g�7 0.0 74.8% 6.8 13.8 353.5 588.6
g�8 0.1 59.7% 17.7 12.1 126.4 342.0
g�9 0.1 54.4% 46.8 38.0 1360.2 3600.0
g�10 0.0 52.2% 21.2 19.2 392.9 632.6





B
Detailed Results for TSDP

The second part of the appendix contains detailed results for the experiments carried out
in Chapter 6, i.e., regarding the Toll Section Design Problem. In particular, we report
instance-wise results for

� di�erent connectivity formulations for the TSDP:

� without the pricing heuristic in Table B.1,

� with usage of the pricing heuristic in Table B.2,

� the impact of di�erent enhancements (pricing heuristic, preprocessing, local search):

� for RAS in Table B.3,

� for SCF in Table B.4,

� the e�ect of the preprocessing algorithm,

� the branch-and-price approach.
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Table B.1.: Computation times (in seconds) for di�erent connectivity formulations when
the pricing heuristic is disabled (but with preprocessing and local search).

Instance RAS +C2F SCF +C2F RNS MCF

ger_lg_tiny_1 0.5 0.9 1.0 0.9 0.5 1.9
ger_lg_tiny_2 0.6 0.6 0.7 0.5 0.6 1.5
ger_lg_tiny_3 0.7 1.0 0.8 0.6 0.7 1.6
ger_lg_tiny_4 1.0 1.3 1.2 1.5 1.0 6.6

ger_lg_small_1 2.0 3.3 2.9 2.4 1.8 16.9
ger_lg_small_2 2.8 3.8 4.3 3.6 2.1 22.8
ger_lg_small_3 4.4 5.6 5.5 5.4 3.0 27.2
ger_lg_small_4 1.5 2.4 2.0 1.4 1.4 6.3
ger_lg_small_5 10.8 13.9 10.1 12.3 8.6 89.1
ger_lg_small_6 3.9 5.4 7.6 6.4 4.7 31.1
ger_lg_small_7 1.9 3.2 3.4 3.1 1.7 13.8
ger_lg_small_8 4.1 6.1 7.5 7.6 4.5 45.4
ger_lg_small_9 11.5 13.9 10.8 12.7 8.8 77.5

ger_lg_medium_1 12.3 13.4 20.2 16.5 13.0 202.1
ger_lg_medium_2 10.9 14.8 17.4 19.5 10.1 194.3
ger_lg_medium_3 19.4 21.5 23.3 23.6 14.0 227.3
ger_lg_medium_4 48.5 55.5 36.9 36.9 61.3 767.0
ger_lg_medium_5 46.3 61.3 77.7 62.3 63.2 1434.0
ger_lg_medium_6 21.5 28.6 27.3 26.1 25.7 318.6
ger_lg_medium_7 20.1 23.4 24.1 22.5 17.0 273.2
ger_lg_medium_8 175.2 116.4 102.0 150.4 141.9 2108.4
ger_lg_medium_9 24.9 23.9 31.3 34.2 22.1 267.5

ger_lg_large_1 138.3 253.9 216.3 218.5 183.8 7233.1
ger_lg_large_2 485.2 538.3 689.2 690.9 2633.4 86400.0

tree_lg_1 19.2 32.2 34.4 33.6 17.9 402.4
tree_lg_2 17.7 25.8 26.8 23.3 15.8 323.3
tree_lg_3 16.7 30.2 34.2 37.3 15.3 262.3
tree_lg_4 36.5 43.3 56.6 44.9 33.8 587.4
tree_lg_5 17.1 25.0 24.6 30.3 15.4 330.8
tree_lg_6 12.1 21.1 20.0 19.8 11.1 224.9
tree_lg_7 13.3 18.7 19.5 17.5 11.9 143.8
tree_lg_8 27.1 25.9 34.8 32.4 24.9 290.2
tree_lg_9 20.7 28.9 35.1 30.6 19.0 324.3
tree_lg_10 23.0 30.7 32.9 28.2 21.4 317.5
tree_lg_11 21.1 31.0 35.0 40.8 19.4 406.9
tree_lg_12 25.8 32.9 38.4 36.9 23.6 568.9
tree_lg_13 25.6 41.1 46.5 38.9 23.4 474.4
tree_lg_14 33.4 28.7 54.4 50.1 30.4 389.2
tree_lg_15 19.3 27.5 29.8 32.6 17.9 359.4
tree_lg_16 31.4 43.0 55.2 43.9 29.2 382.3
tree_lg_17 15.8 21.8 27.0 24.4 14.2 300.3
tree_lg_18 19.0 24.1 31.5 28.4 17.5 309.2
tree_lg_19 21.7 31.1 26.8 21.0 19.2 199.8
tree_lg_20 11.8 16.8 22.6 18.5 10.8 146.8
tree_lg_21 21.1 38.1 42.6 47.4 19.4 383.2
tree_lg_22 12.7 20.1 27.0 25.8 11.7 240.9
tree_lg_23 19.2 32.7 31.5 29.7 18.0 262.6
tree_lg_24 17.7 24.7 34.5 32.7 16.2 335.9
tree_lg_25 23.1 40.9 47.0 43.8 21.0 689.9
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Instance RAS +C2F SCF +C2F RNS MCF

voronoi_lg_medium_1 148.1 217.4 156.3 156.7 159.2 3200.8
voronoi_lg_medium_2 129.5 140.6 152.0 169.2 110.3 3895.6
voronoi_lg_medium_3 174.4 256.2 162.5 173.3 135.2 4417.3
voronoi_lg_medium_4 129.5 259.1 192.6 226.1 108.5 5266.4
voronoi_lg_medium_5 184.7 280.2 156.1 201.4 179.0 4720.5
voronoi_lg_medium_6 279.1 227.0 145.7 131.6 168.0 3795.6
voronoi_lg_medium_7 127.5 145.2 117.0 132.4 135.6 2086.2
voronoi_lg_medium_8 208.9 437.8 227.5 231.6 221.5 5858.7
voronoi_lg_medium_9 159.9 268.2 141.4 182.1 179.4 5413.3

voronoi_lg_large_1 414.4 653.7 553.1 665.7 481.7 86400.0
voronoi_lg_large_2 130.3 169.1 144.1 154.7 144.3 4432.8
voronoi_lg_large_3 111.4 185.9 132.9 117.1 133.4 3560.9
voronoi_lg_large_4 140.8 228.2 170.5 180.8 137.4 4858.9
voronoi_lg_large_5 96.7 174.8 177.8 165.2 90.9 5816.9
voronoi_lg_large_6 275.2 424.7 298.7 351.9 310.1 86400.0
voronoi_lg_large_7 153.6 289.7 194.2 231.7 142.5 86400.0
voronoi_lg_large_8 241.4 397.3 287.8 250.4 258.5 86400.0
voronoi_lg_large_9 162.2 204.1 166.8 174.1 148.7 5848.0
voronoi_lg_large_10 138.4 182.2 149.0 173.0 139.4 5620.3
voronoi_lg_large_11 193.4 314.2 269.0 284.1 234.3 86400.0
voronoi_lg_large_12 315.2 549.2 373.8 464.2 338.7 86400.0
voronoi_lg_large_13 334.3 570.9 472.8 462.0 964.7 86400.0
voronoi_lg_large_14 187.7 298.9 215.7 336.0 198.7 86400.0
voronoi_lg_large_15 168.5 290.7 179.0 202.7 156.5 86400.0
voronoi_lg_large_16 222.7 361.5 205.9 215.7 205.9 86400.0
voronoi_lg_large_17 380.6 711.2 379.6 357.5 346.5 86400.0
voronoi_lg_large_18 391.7 547.5 382.8 460.2 403.7 86400.0
voronoi_lg_large_19 434.3 746.3 586.2 599.9 621.1 86400.0
voronoi_lg_large_20 113.2 180.5 120.5 125.4 115.2 4296.2
voronoi_lg_large_21 388.9 498.0 349.7 470.0 285.0 86400.0
voronoi_lg_large_22 195.8 257.4 195.3 216.0 202.8 86400.0
voronoi_lg_large_23 219.4 325.0 259.4 372.3 213.3 86400.0
voronoi_lg_large_24 284.0 455.1 254.9 422.7 210.5 86400.0
voronoi_lg_large_25 473.3 676.3 522.8 605.2 773.4 86400.0
voronoi_lg_large_26 257.6 497.8 323.8 390.5 300.6 86400.0
voronoi_lg_large_27 129.7 214.2 123.6 214.1 102.7 5994.5
voronoi_lg_large_28 188.5 412.8 204.9 284.8 198.6 86400.0
voronoi_lg_large_29 115.1 259.5 193.2 321.6 103.7 86400.0
voronoi_lg_large_30 248.8 479.5 232.5 361.7 225.3 86400.0
voronoi_lg_large_31 306.9 613.3 471.7 506.2 358.9 15186.1
voronoi_lg_large_32 257.3 275.3 296.0 289.7 222.0 86400.0
voronoi_lg_large_33 293.4 425.5 330.9 369.1 263.0 86400.0
voronoi_lg_large_34 277.3 463.2 275.3 370.0 267.1 86400.0
voronoi_lg_large_35 263.9 350.5 229.7 261.4 234.1 5405.3
voronoi_lg_large_36 209.1 307.3 234.5 276.9 180.4 86400.0
voronoi_lg_large_37 262.8 373.1 289.8 263.0 253.3 86400.0
voronoi_lg_large_38 231.4 353.0 288.7 446.4 217.3 86400.0
voronoi_lg_large_39 239.0 458.9 241.5 329.8 186.3 86400.0
voronoi_lg_large_40 199.2 277.1 264.5 343.1 208.4 86400.0
voronoi_lg_large_41 164.0 299.2 221.6 241.3 211.3 86400.0
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Table B.2.: Computation times (in seconds) for di�erent connectivity formulations with
pricing heuristic, preprocessing and local search.

Instance RAS +C2F SCF +C2F RNS MCF

ger_lg_tiny_1 1.0 1.3 1.1 1.1 1.0 1.6
ger_lg_tiny_2 1.0 1.2 1.0 1.0 1.0 1.5
ger_lg_tiny_3 1.2 1.2 1.2 1.2 1.2 2.0
ger_lg_tiny_4 1.8 1.9 1.9 1.9 1.8 4.1

ger_lg_small_1 3.7 4.5 4.0 4.0 3.7 15.7
ger_lg_small_2 3.7 5.0 4.0 4.0 3.6 9.7
ger_lg_small_3 4.4 5.0 4.7 4.7 4.4 13.2
ger_lg_small_4 1.9 2.0 1.9 1.9 1.9 3.5
ger_lg_small_5 12.9 12.0 10.6 9.4 10.8 41.6
ger_lg_small_6 4.5 5.1 4.9 5.5 4.3 12.5
ger_lg_small_7 2.9 3.2 3.2 3.2 3.0 8.0
ger_lg_small_8 5.4 5.7 5.8 5.9 5.4 16.9
ger_lg_small_9 7.0 7.7 7.4 7.4 6.8 20.6

ger_lg_medium_1 13.0 16.1 13.8 13.1 12.7 79.5
ger_lg_medium_2 14.8 20.3 17.6 13.3 15.2 104.1
ger_lg_medium_3 12.1 15.5 13.3 13.4 12.1 62.3
ger_lg_medium_4 27.4 31.5 27.1 29.7 31.5 219.3
ger_lg_medium_5 25.6 28.5 28.0 27.8 26.1 317.3
ger_lg_medium_6 18.0 21.3 21.1 19.6 18.1 144.4
ger_lg_medium_7 15.8 20.3 16.8 17.2 14.9 108.5
ger_lg_medium_8 70.9 96.1 63.1 62.7 104.5 964.6
ger_lg_medium_9 26.0 24.6 28.6 25.0 22.7 116.3

ger_lg_large_1 60.1 81.4 71.5 72.8 57.4 1113.4
ger_lg_large_2 149.8 164.4 150.9 148.4 159.2 86400.0

tree_lg_1 21.0 24.9 22.9 22.3 20.8 84.6
tree_lg_2 14.1 15.3 15.3 15.3 14.2 59.4
tree_lg_3 18.2 19.7 19.6 19.5 18.2 61.0
tree_lg_4 24.1 28.0 25.8 25.6 24.1 96.6
tree_lg_5 15.2 16.0 16.2 16.1 15.0 60.9
tree_lg_6 12.1 13.3 13.2 13.1 12.0 46.4
tree_lg_7 11.2 12.6 11.9 11.8 11.0 45.0
tree_lg_8 17.4 20.9 18.6 18.4 17.3 62.0
tree_lg_9 21.0 25.5 22.5 22.5 20.8 88.6
tree_lg_10 18.7 20.4 20.2 20.1 18.7 74.8
tree_lg_11 17.1 19.7 18.6 18.4 16.9 69.8
tree_lg_12 20.3 22.4 21.7 21.6 20.1 95.1
tree_lg_13 21.8 23.2 23.4 23.2 21.9 81.0
tree_lg_14 20.1 21.4 21.7 21.5 19.9 101.6
tree_lg_15 17.9 19.3 19.2 19.3 18.0 67.4
tree_lg_16 21.6 23.7 22.7 22.5 21.2 84.0
tree_lg_17 14.8 16.1 16.2 16.0 14.8 66.4
tree_lg_18 17.8 19.2 19.1 19.2 17.6 71.7
tree_lg_19 17.1 18.7 17.6 17.6 16.8 58.2
tree_lg_20 12.2 13.5 13.4 13.3 12.3 50.2
tree_lg_21 20.8 22.0 22.5 22.4 20.8 91.1
tree_lg_22 14.9 16.8 16.0 15.8 14.6 61.3
tree_lg_23 19.3 20.3 20.1 20.3 19.2 68.7
tree_lg_24 16.3 18.3 17.5 17.4 16.1 80.8
tree_lg_25 22.7 27.4 24.2 24.6 22.6 110.0
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Instance RAS +C2F SCF +C2F RNS MCF

voronoi_lg_medium_1 72.9 144.6 74.2 86.3 70.6 933.9
voronoi_lg_medium_2 35.7 49.8 37.4 37.9 34.8 246.9
voronoi_lg_medium_3 52.6 74.4 48.4 52.5 50.3 755.1
voronoi_lg_medium_4 80.0 99.8 88.5 75.7 77.7 1329.6
voronoi_lg_medium_5 61.2 80.2 60.3 59.6 56.6 747.3
voronoi_lg_medium_6 51.8 55.6 50.1 48.0 50.3 329.4
voronoi_lg_medium_7 72.3 84.1 51.9 71.3 62.6 320.0
voronoi_lg_medium_8 81.4 107.0 102.0 82.4 78.9 1095.2
voronoi_lg_medium_9 88.8 103.4 85.4 73.6 85.9 1068.6

voronoi_lg_large_1 105.6 251.4 149.8 158.5 142.0 4913.1
voronoi_lg_large_2 74.8 113.0 79.3 64.4 70.5 1305.9
voronoi_lg_large_3 53.3 69.9 66.1 65.1 51.7 760.5
voronoi_lg_large_4 69.1 114.1 66.9 68.8 65.6 1045.5
voronoi_lg_large_5 39.6 48.6 44.3 45.7 39.6 353.0
voronoi_lg_large_6 125.6 274.9 116.0 126.0 121.1 3010.2
voronoi_lg_large_7 46.4 58.8 51.3 50.9 45.9 750.7
voronoi_lg_large_8 104.7 178.5 106.9 105.3 102.3 1824.7
voronoi_lg_large_9 84.0 211.0 115.8 119.9 91.9 2599.0
voronoi_lg_large_10 50.3 75.5 53.5 55.4 49.5 702.3
voronoi_lg_large_11 67.0 131.7 62.5 76.4 64.8 1640.5
voronoi_lg_large_12 196.7 264.3 126.3 165.2 130.3 5117.5
voronoi_lg_large_13 130.4 167.4 145.9 118.9 135.2 3962.6
voronoi_lg_large_14 60.9 124.1 63.1 65.9 58.3 941.9
voronoi_lg_large_15 80.1 118.0 65.4 72.2 62.6 2137.3
voronoi_lg_large_16 86.1 176.3 93.4 94.6 98.7 2095.8
voronoi_lg_large_17 127.6 354.2 156.4 162.5 121.3 3339.7
voronoi_lg_large_18 157.2 270.6 189.7 152.4 192.8 3144.1
voronoi_lg_large_19 214.5 465.3 176.0 215.8 265.6 6824.9
voronoi_lg_large_20 45.6 55.1 44.5 43.2 44.6 321.5
voronoi_lg_large_21 142.6 227.5 124.6 147.6 128.8 3933.1
voronoi_lg_large_22 56.7 67.7 56.6 56.6 57.4 944.5
voronoi_lg_large_23 87.8 84.1 86.4 76.4 83.8 1293.3
voronoi_lg_large_24 89.6 91.2 89.2 78.0 86.8 1982.4
voronoi_lg_large_25 222.1 280.8 224.7 188.1 204.6 7539.8
voronoi_lg_large_26 81.8 111.6 77.5 86.6 78.1 1482.0
voronoi_lg_large_27 46.5 55.8 50.9 53.5 44.7 773.7
voronoi_lg_large_28 47.2 67.7 49.3 49.2 46.6 570.0
voronoi_lg_large_29 67.8 96.2 76.6 88.4 64.3 1822.7
voronoi_lg_large_30 70.9 99.8 93.9 80.5 69.5 1673.5
voronoi_lg_large_31 114.1 217.2 103.9 153.1 117.8 3581.1
voronoi_lg_large_32 106.4 131.0 101.8 112.0 104.2 2259.4
voronoi_lg_large_33 86.3 111.6 91.7 112.5 84.9 2251.6
voronoi_lg_large_34 104.8 101.6 81.5 88.9 73.9 1988.9
voronoi_lg_large_35 105.3 133.2 89.8 68.9 102.9 1597.8
voronoi_lg_large_36 73.3 94.0 81.0 82.3 71.0 1547.8
voronoi_lg_large_37 71.7 89.6 77.5 75.1 70.9 1224.6
voronoi_lg_large_38 74.7 129.3 102.3 114.1 84.0 2235.9
voronoi_lg_large_39 90.7 145.4 90.7 91.2 78.0 1881.2
voronoi_lg_large_40 56.3 64.6 66.0 66.2 55.5 1579.9
voronoi_lg_large_41 56.1 73.1 59.2 59.1 53.3 1237.8
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Table B.3.: Computation times (in seconds) for RAS when including combinations of the
pricing heuristic (H), the preprocessing (P), or the local search (L).

Instance ��- �-L -P- H�- -PL H-L HP- HPL

ger_lg_tiny_1 3.5 2.1 2.4 2.0 1.1 1.6 1.2 1.0
ger_lg_tiny_2 3.5 2.1 2.0 1.9 1.2 1.7 1.2 1.0
ger_lg_tiny_3 4.0 2.9 2.0 2.2 1.4 1.9 1.3 1.2
ger_lg_tiny_4 9.4 4.3 3.2 4.0 2.0 3.3 2.0 1.8

ger_lg_small_1 17.7 7.6 7.0 7.3 3.7 6.0 4.3 3.7
ger_lg_small_2 19.5 12.4 10.3 9.3 4.4 5.3 3.9 3.7
ger_lg_small_3 40.5 24.9 10.8 18.7 6.7 9.8 7.5 4.4
ger_lg_small_4 9.1 4.2 6.2 4.4 2.5 2.9 3.0 1.9
ger_lg_small_5 104.6 46.1 32.4 33.5 15.4 22.8 20.6 12.9
ger_lg_small_6 47.8 20.6 11.6 15.1 6.0 10.2 5.9 4.5
ger_lg_small_7 13.5 9.4 6.4 9.1 3.4 4.8 3.8 2.9
ger_lg_small_8 109.7 45.1 18.6 104.3 6.9 11.5 17.9 5.4
ger_lg_small_9 94.6 50.6 22.4 14.9 16.3 19.3 8.4 7.0

ger_lg_medium_1 217.4 107.7 46.6 94.2 18.1 37.7 19.1 13.0
ger_lg_medium_2 106.6 61.3 29.0 70.5 15.8 21.7 14.2 14.8
ger_lg_medium_3 171.7 98.2 46.4 32.0 26.7 18.5 18.6 12.1
ger_lg_medium_4 763.8 298.0 148.2 238.1 64.5 93.8 63.6 27.4
ger_lg_medium_5 684.1 336.4 151.5 128.6 59.6 82.6 43.4 25.6
ger_lg_medium_6 248.0 114.8 64.1 115.8 29.4 28.3 19.9 18.0
ger_lg_medium_7 216.6 139.0 41.0 65.9 26.5 33.8 15.5 15.8
ger_lg_medium_8 786.2 451.8 326.9 328.7 199.4 105.8 125.4 70.9
ger_lg_medium_9 305.0 125.0 78.7 88.6 35.0 48.2 35.4 26.0

ger_lg_large_1 1178.9 493.4 414.1 368.5 177.4 73.6 201.8 60.1
ger_lg_large_2 3920.3 2054.8 1359.5 1310.1 549.1 399.5 384.1 149.8

tree_lg_1 150.7 77.5 57.6 61.6 29.8 38.3 33.0 21.0
tree_lg_2 123.8 69.3 59.1 52.6 26.0 28.3 23.2 14.1
tree_lg_3 165.5 74.8 58.3 60.8 24.7 40.2 28.9 18.2
tree_lg_4 222.9 81.4 105.3 71.9 51.7 39.1 43.2 24.1
tree_lg_5 160.6 65.4 52.7 47.5 25.3 37.0 24.6 15.2
tree_lg_6 126.0 56.0 34.3 43.1 18.4 29.3 19.0 12.1
tree_lg_7 120.2 50.3 38.1 50.6 19.3 26.2 17.5 11.2
tree_lg_8 141.7 88.6 77.9 54.8 37.5 36.7 28.1 17.4
tree_lg_9 143.0 79.9 69.2 55.7 32.0 36.1 42.0 21.0
tree_lg_10 167.6 67.6 73.7 54.4 34.3 33.6 34.0 18.7
tree_lg_11 120.2 51.9 52.5 50.4 31.4 30.7 28.7 17.1
tree_lg_12 119.0 74.0 69.6 42.8 36.0 32.7 25.9 20.3
tree_lg_13 159.0 86.0 86.8 58.8 39.2 48.4 32.9 21.8
tree_lg_14 183.3 78.0 124.5 71.3 45.3 40.3 33.5 20.1
tree_lg_15 178.9 94.0 76.0 54.6 28.7 37.2 28.7 17.9
tree_lg_16 164.3 109.8 78.5 54.0 42.5 37.4 42.5 21.6
tree_lg_17 113.1 78.1 56.2 54.3 23.7 31.0 23.7 14.8
tree_lg_18 119.7 81.9 54.1 51.4 27.8 34.8 27.9 17.8
tree_lg_19 130.4 69.9 46.6 50.6 29.5 35.6 29.6 17.1
tree_lg_20 92.1 45.8 41.9 41.4 18.6 24.2 18.6 12.2
tree_lg_21 136.6 67.9 72.0 59.5 32.4 38.7 32.5 20.8
tree_lg_22 119.7 59.2 45.7 53.4 19.9 29.6 20.0 14.9
tree_lg_23 128.6 68.1 65.0 40.7 28.3 33.9 28.4 19.3
tree_lg_24 148.9 72.5 92.9 59.3 27.2 35.5 27.3 16.3
tree_lg_25 154.8 83.0 85.6 73.7 33.9 42.0 33.9 22.7



135

Instance ��- �-L -P- H�- -PL H-L HP- HPL

voronoi_lg_medium_1 848.7 454.5 269.6 210.3 173.0 133.6 121.7 72.9
voronoi_lg_medium_2 787.7 375.5 302.8 68.2 156.5 45.4 49.2 35.7
voronoi_lg_medium_3 701.7 511.5 226.6 116.4 200.4 70.2 53.4 52.6
voronoi_lg_medium_4 989.1 519.3 303.1 149.8 158.2 70.1 71.0 80.0
voronoi_lg_medium_5 765.1 492.6 288.8 196.7 209.8 72.0 71.5 61.2
voronoi_lg_medium_6 812.4 490.1 286.5 87.2 313.2 63.2 57.1 51.8
voronoi_lg_medium_7 1172.7 456.2 270.7 151.7 149.0 70.5 97.2 72.3
voronoi_lg_medium_8 830.4 510.7 352.1 198.9 233.7 127.6 95.6 81.4
voronoi_lg_medium_9 708.0 387.3 290.9 149.9 190.9 54.0 98.8 88.8

voronoi_lg_large_1 2398.8 1042.9 824.0 322.5 471.0 208.4 221.5 105.6
voronoi_lg_large_2 848.6 447.6 278.8 230.0 154.4 92.2 92.3 74.8
voronoi_lg_large_3 795.2 385.3 299.4 154.8 140.4 66.4 84.1 53.3
voronoi_lg_large_4 901.4 493.2 327.1 213.9 164.5 89.2 83.2 69.1
voronoi_lg_large_5 936.5 480.9 247.1 88.9 122.7 49.1 42.9 39.6
voronoi_lg_large_6 1209.7 618.4 546.6 419.6 305.9 160.5 181.1 125.6
voronoi_lg_large_7 988.9 524.7 377.2 86.5 179.4 47.3 54.8 46.4
voronoi_lg_large_8 1058.5 642.2 484.8 273.1 273.9 118.7 126.7 104.7
voronoi_lg_large_9 1162.2 559.8 384.1 327.5 191.6 87.8 166.8 84.0
voronoi_lg_large_10 765.7 435.2 276.3 246.9 165.3 40.8 67.5 50.3
voronoi_lg_large_11 1003.6 757.7 463.7 214.2 222.5 88.5 86.5 67.0
voronoi_lg_large_12 1965.0 886.1 948.2 414.2 345.9 145.3 123.5 196.7
voronoi_lg_large_13 1873.1 889.7 740.4 336.8 372.1 162.9 199.9 130.4
voronoi_lg_large_14 968.9 528.1 387.7 196.8 216.6 136.1 160.1 60.9
voronoi_lg_large_15 1170.6 591.6 422.5 481.5 199.6 111.9 86.8 80.1
voronoi_lg_large_16 1208.4 747.8 431.3 555.4 250.8 112.7 181.9 86.1
voronoi_lg_large_17 1684.6 780.0 667.0 459.1 418.1 161.7 219.2 127.6
voronoi_lg_large_18 1712.5 877.9 715.7 452.5 436.9 186.1 246.3 157.2
voronoi_lg_large_19 2592.9 908.2 1537.7 730.3 480.2 244.8 272.1 214.5
voronoi_lg_large_20 841.1 437.5 231.5 88.1 132.2 48.3 46.3 45.6
voronoi_lg_large_21 1982.1 826.5 720.9 471.3 425.1 161.7 208.7 142.6
voronoi_lg_large_22 1472.0 603.9 385.4 193.2 224.0 93.4 67.9 56.7
voronoi_lg_large_23 1115.5 605.1 367.2 194.5 251.5 72.3 118.4 87.8
voronoi_lg_large_24 1633.1 712.6 426.3 206.3 315.6 120.8 118.4 89.6
voronoi_lg_large_25 2077.3 1158.4 998.5 486.8 525.8 328.1 266.9 222.1
voronoi_lg_large_26 1091.7 647.5 594.7 335.4 288.9 127.4 144.3 81.8
voronoi_lg_large_27 945.3 551.8 263.5 137.9 155.3 61.7 59.0 46.5
voronoi_lg_large_28 976.6 608.1 329.2 127.1 212.6 52.4 62.1 47.2
voronoi_lg_large_29 977.1 577.4 268.4 102.2 143.7 60.7 62.7 67.8
voronoi_lg_large_30 1139.4 880.5 381.8 174.5 281.3 98.1 92.7 70.9
voronoi_lg_large_31 1540.2 857.7 555.5 467.1 338.6 157.3 183.3 114.1
voronoi_lg_large_32 1051.8 667.6 424.0 241.7 289.3 90.2 120.8 106.4
voronoi_lg_large_33 1625.1 999.5 592.5 274.5 324.3 134.0 139.2 86.3
voronoi_lg_large_34 1289.2 714.5 513.8 195.7 309.7 84.4 132.8 104.8
voronoi_lg_large_35 1112.1 634.9 371.0 201.4 289.0 139.9 70.7 105.3
voronoi_lg_large_36 1041.6 608.4 340.6 122.9 242.4 66.3 82.8 73.3
voronoi_lg_large_37 887.6 651.6 352.0 86.3 296.5 68.4 74.4 71.7
voronoi_lg_large_38 1149.1 597.5 400.8 281.4 257.1 130.9 109.4 74.7
voronoi_lg_large_39 1159.5 839.3 327.2 214.3 269.2 96.2 97.2 90.7
voronoi_lg_large_40 1578.5 759.2 368.7 101.0 238.2 58.4 59.6 56.3
voronoi_lg_large_41 1052.0 615.0 319.9 321.8 188.4 173.0 113.9 56.1
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Table B.4.: Computation times (in seconds) for SCF when including combinations of the
pricing heuristic (H), the preprocessing (P), or the local search (L).

Instance ��- �-L -P- H�- -PL H-L HP- HPL

ger_lg_tiny_1 5.0 3.1 2.6 2.1 1.6 1.9 1.3 1.1
ger_lg_tiny_2 4.0 2.4 1.6 2.0 1.2 1.9 1.2 1.0
ger_lg_tiny_3 4.1 2.9 2.0 2.3 1.5 2.2 1.4 1.2
ger_lg_tiny_4 9.1 5.4 4.1 4.1 2.3 3.7 2.1 1.9

ger_lg_small_1 14.6 9.8 9.3 7.2 4.8 6.2 4.6 4.0
ger_lg_small_2 24.8 12.1 12.9 9.2 6.2 6.3 4.2 4.0
ger_lg_small_3 34.9 19.4 14.1 15.7 7.9 10.9 8.3 4.7
ger_lg_small_4 12.3 5.9 7.7 4.5 3.1 3.4 3.2 1.9
ger_lg_small_5 87.2 42.0 26.5 39.9 14.6 19.1 16.4 10.6
ger_lg_small_6 42.4 27.1 15.0 19.2 10.0 11.8 8.0 4.9
ger_lg_small_7 17.9 10.0 8.5 9.1 5.2 5.9 4.2 3.2
ger_lg_small_8 88.6 30.2 36.6 58.2 10.5 12.6 27.2 5.8
ger_lg_small_9 82.2 42.9 22.0 14.0 15.0 16.8 9.3 7.4

ger_lg_medium_1 175.7 107.4 46.8 47.4 26.2 41.8 23.4 13.8
ger_lg_medium_2 123.1 42.7 44.4 35.6 22.8 35.4 18.8 17.6
ger_lg_medium_3 192.5 102.9 53.9 28.0 30.2 19.6 21.3 13.3
ger_lg_medium_4 579.4 241.6 120.5 221.0 51.3 51.2 90.6 27.1
ger_lg_medium_5 826.8 452.4 219.2 103.8 92.4 71.0 54.6 28.0
ger_lg_medium_6 224.2 111.0 64.7 55.9 34.4 35.5 22.6 21.1
ger_lg_medium_7 163.8 102.5 52.5 50.6 30.8 32.2 17.7 16.8
ger_lg_medium_8 831.9 320.2 308.1 246.4 122.2 122.5 103.4 63.1
ger_lg_medium_9 202.4 115.9 96.2 125.4 43.4 87.6 39.7 28.6

ger_lg_large_1 1384.7 775.8 499.9 287.7 253.5 163.3 211.7 71.5
ger_lg_large_2 6285.8 3311.2 1674.2 890.3 748.2 273.8 344.7 150.9

tree_lg_1 281.0 161.2 91.7 65.8 44.6 46.4 31.0 22.9
tree_lg_2 235.0 139.3 68.9 57.4 34.8 35.6 19.6 15.3
tree_lg_3 301.7 155.1 77.3 66.1 42.3 48.9 24.0 19.6
tree_lg_4 407.5 191.6 158.0 77.5 70.4 48.4 37.0 25.8
tree_lg_5 241.0 119.9 84.3 51.8 32.7 45.3 22.3 16.2
tree_lg_6 219.9 116.1 62.4 46.8 26.7 35.7 18.1 13.2
tree_lg_7 234.2 134.4 61.5 54.2 25.4 32.1 15.2 11.9
tree_lg_8 368.3 189.2 84.8 60.5 44.6 45.1 22.9 18.6
tree_lg_9 303.2 173.6 120.6 60.8 46.6 44.6 32.7 22.5
tree_lg_10 272.7 140.6 104.1 58.0 44.5 40.1 28.7 20.2
tree_lg_11 218.4 119.1 86.3 53.7 45.1 37.7 25.4 18.6
tree_lg_12 249.5 124.4 105.7 46.3 49.0 39.6 23.5 21.7
tree_lg_13 351.8 217.5 145.8 64.4 59.4 59.0 29.0 23.4
tree_lg_14 330.1 190.8 115.3 78.5 67.3 50.5 31.7 21.7
tree_lg_15 274.5 156.2 91.4 59.2 39.7 44.9 27.5 19.2
tree_lg_16 276.3 199.7 113.0 59.7 66.3 45.8 30.8 22.7
tree_lg_17 234.2 98.8 107.5 58.3 35.3 38.4 19.7 16.2
tree_lg_18 226.1 149.0 69.5 56.0 40.5 43.0 25.3 19.1
tree_lg_19 273.8 149.1 72.2 53.9 34.8 43.1 25.6 17.6
tree_lg_20 236.6 116.9 56.8 46.4 29.8 30.3 16.1 13.4
tree_lg_21 349.5 201.9 105.9 66.0 54.5 47.2 27.8 22.5
tree_lg_22 227.5 132.1 75.3 56.9 35.1 35.7 23.1 16.0
tree_lg_23 198.7 134.7 72.8 45.0 41.0 40.9 24.1 20.1
tree_lg_24 440.4 165.0 101.0 65.5 44.6 43.7 24.1 17.5
tree_lg_25 345.6 187.0 120.4 80.6 59.3 52.4 39.5 24.2
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Instance ��- �-L -P- H�- -PL H-L HP- HPL

voronoi_lg_medium_1 715.6 550.5 285.6 203.0 179.7 133.9 122.1 74.2
voronoi_lg_medium_2 921.5 684.9 251.4 71.4 176.9 56.0 51.6 37.4
voronoi_lg_medium_3 851.5 607.4 233.4 116.6 183.0 82.8 55.8 48.4
voronoi_lg_medium_4 947.9 664.7 291.9 183.6 218.8 72.0 70.9 88.5
voronoi_lg_medium_5 979.8 735.2 280.6 196.0 180.1 80.3 65.1 60.3
voronoi_lg_medium_6 840.5 665.6 333.0 89.3 168.2 67.1 52.7 50.1
voronoi_lg_medium_7 778.5 422.4 295.8 155.0 136.2 71.4 115.8 51.9
voronoi_lg_medium_8 948.8 574.1 373.2 175.5 249.4 127.1 121.7 102.0
voronoi_lg_medium_9 684.1 463.0 347.4 129.7 162.4 57.6 73.3 85.4

voronoi_lg_large_1 4057.5 2000.8 924.9 472.0 601.1 212.0 223.5 149.8
voronoi_lg_large_2 1182.9 913.8 325.4 265.3 166.4 135.0 90.6 79.3
voronoi_lg_large_3 1027.1 497.0 280.3 169.0 158.4 77.7 85.8 66.1
voronoi_lg_large_4 1199.5 653.7 302.4 212.4 194.3 94.2 90.8 66.9
voronoi_lg_large_5 1057.8 567.7 343.1 88.1 204.8 57.6 46.4 44.3
voronoi_lg_large_6 1637.9 1117.3 624.6 372.1 328.6 167.6 184.0 116.0
voronoi_lg_large_7 1130.3 757.4 352.0 81.2 219.4 52.4 57.8 51.3
voronoi_lg_large_8 1666.0 1009.4 501.1 218.7 315.1 128.8 151.9 106.9
voronoi_lg_large_9 1747.1 796.0 400.2 274.5 188.4 100.4 208.1 115.8
voronoi_lg_large_10 1071.9 558.7 326.5 237.6 172.1 48.2 83.8 53.5
voronoi_lg_large_11 1373.3 803.0 471.2 270.6 296.3 102.6 91.6 62.5
voronoi_lg_large_12 2430.1 1823.8 828.5 578.4 404.3 181.0 164.8 126.3
voronoi_lg_large_13 1972.4 1341.3 725.2 279.3 508.5 177.6 147.3 145.9
voronoi_lg_large_14 1535.0 696.6 431.1 242.9 239.5 177.0 197.8 63.1
voronoi_lg_large_15 1519.5 1126.8 319.2 439.3 207.0 121.6 102.3 65.4
voronoi_lg_large_16 1908.9 1210.4 469.1 530.8 230.2 112.3 194.2 93.4
voronoi_lg_large_17 2744.9 1370.1 731.3 638.1 419.3 188.0 252.8 156.4
voronoi_lg_large_18 2750.8 1583.8 799.9 618.8 419.6 202.4 220.9 189.7
voronoi_lg_large_19 4039.0 2247.4 1073.4 833.9 631.0 243.1 311.6 176.0
voronoi_lg_large_20 1277.6 871.8 246.3 93.9 140.8 55.0 47.0 44.5
voronoi_lg_large_21 3225.1 1892.4 794.7 809.2 381.4 178.2 199.6 124.6
voronoi_lg_large_22 1414.3 1032.1 436.0 200.7 219.2 84.6 65.0 56.6
voronoi_lg_large_23 1985.7 1386.6 515.8 216.8 288.2 84.7 92.1 86.4
voronoi_lg_large_24 2106.7 1543.0 502.8 272.4 283.4 95.6 82.0 89.2
voronoi_lg_large_25 3373.9 2642.7 1109.3 964.5 571.5 212.0 281.3 224.7
voronoi_lg_large_26 1882.7 1417.5 697.4 428.8 357.2 125.8 178.0 77.5
voronoi_lg_large_27 1229.5 720.5 258.3 125.2 147.6 68.6 62.7 50.9
voronoi_lg_large_28 1477.6 975.5 401.4 145.8 229.5 61.9 63.5 49.3
voronoi_lg_large_29 1784.5 922.0 357.5 107.3 221.8 76.3 71.9 76.6
voronoi_lg_large_30 1599.6 1198.0 459.1 308.6 261.2 100.4 98.4 93.9
voronoi_lg_large_31 2598.4 1627.7 685.6 663.3 503.3 185.8 254.3 103.9
voronoi_lg_large_32 1560.3 813.9 444.9 246.8 327.0 105.7 170.4 101.8
voronoi_lg_large_33 1630.5 1247.6 562.1 323.2 360.6 146.0 126.5 91.7
voronoi_lg_large_34 2389.6 1285.3 528.3 269.8 304.4 147.4 143.6 81.5
voronoi_lg_large_35 1069.0 749.7 400.7 152.5 253.9 130.8 72.5 89.8
voronoi_lg_large_36 1377.3 1036.0 505.7 189.2 260.1 78.8 112.7 81.0
voronoi_lg_large_37 1592.0 974.6 505.6 110.1 320.5 75.8 78.0 77.5
voronoi_lg_large_38 1267.8 1207.2 421.5 255.5 312.9 126.4 116.1 102.3
voronoi_lg_large_39 1582.7 1564.5 410.8 291.0 267.2 112.6 105.7 90.7
voronoi_lg_large_40 2226.0 1228.0 425.4 105.7 297.8 70.6 69.1 66.0
voronoi_lg_large_41 2082.3 1251.6 338.1 265.0 243.8 164.9 122.7 59.2



138 Chapter B � Detailed Results for TSDP

Table B.5.: E�ects of the preprocessing algorithm.

Instance roots eliminated discarded �xed

ger_lg_tiny_1 42.5% 37.3 % 16.8 %
ger_lg_tiny_2 44.7% 35.8 % 17.6 %
ger_lg_tiny_3 39.6% 39.6 % 18.6 %
ger_lg_tiny_4 33.1% 47.0 % 18.7 %

ger_lg_small_1 34.4% 37.5 % 13.9 %
ger_lg_small_2 36.8% 42.5 % 17.0 %
ger_lg_small_3 47.9% 38.4 % 11.8 %
ger_lg_small_4 46.9% 29.0 % 17.6 %
ger_lg_small_5 40.0% 36.8 % 8.5 %
ger_lg_small_6 37.8% 38.6 % 14.5 %
ger_lg_small_7 34.4% 41.2 % 18.4 %
ger_lg_small_8 49.7% 39.6 % 13.0 %
ger_lg_small_9 38.9% 34.6 % 7.1 %

ger_lg_medium_1 44.1% 39.2 % 13.7 %
ger_lg_medium_2 41.4% 26.7 % 9.1 %
ger_lg_medium_3 45.4% 22.3 % 3.5 %
ger_lg_medium_4 33.6% 38.0 % 5.9 %
ger_lg_medium_5 25.3% 24.9 % 2.0 %
ger_lg_medium_6 28.1% 23.9 % 3.2 %
ger_lg_medium_7 43.3% 33.4 % 9.0 %
ger_lg_medium_8 35.1% 24.7 % 4.8 %
ger_lg_medium_9 43.3% 35.2 % 11.4 %

ger_lg_large_1 23.1% 8.9 % 1.4 %
ger_lg_large_2 32.4% 15.5 % 0.9 %

tree_lg_1 29.6% 38.6 % 8.6 %
tree_lg_2 37.2% 40.3 % 12.0 %
tree_lg_3 37.2% 40.5 % 10.7 %
tree_lg_4 33.2% 36.2 % 7.3 %
tree_lg_5 37.7% 41.9 % 8.9 %
tree_lg_6 38.7% 39.4 % 12.6 %
tree_lg_7 46.2% 42.6 % 11.1 %
tree_lg_8 33.7% 37.3 % 9.4 %
tree_lg_9 28.6% 38.2 % 9.5 %
tree_lg_10 31.2% 36.0 % 9.1 %
tree_lg_11 32.7% 37.2 % 8.3 %
tree_lg_12 33.2% 42.3 % 9.6 %
tree_lg_13 38.7% 37.8 % 6.9 %
tree_lg_14 38.7% 32.6 % 7.0 %
tree_lg_15 30.2% 38.4 % 9.2 %
tree_lg_16 32.2% 36.1 % 8.7 %
tree_lg_17 34.7% 45.1 % 11.5 %
tree_lg_18 35.7% 38.6 % 7.4 %
tree_lg_19 38.7% 40.3 % 11.6 %
tree_lg_20 37.7% 38.1 % 13.3 %
tree_lg_21 27.6% 33.0 % 8.7 %
tree_lg_22 38.2% 41.1 % 11.3 %
tree_lg_23 29.6% 36.7 % 8.8 %
tree_lg_24 38.7% 38.7 % 10.6 %
tree_lg_25 33.7% 38.1 % 9.1 %
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Instance roots eliminated discarded �xed

voronoi_lg_medium_1 27.9% 10.2 % 2.6 %
voronoi_lg_medium_2 23.2% 2.8 % 3.0 %
voronoi_lg_medium_3 30.5% 5.2 % 1.0 %
voronoi_lg_medium_4 11.3% 1.6 % 1.5 %
voronoi_lg_medium_5 17.7% 6.3 % 1.8 %
voronoi_lg_medium_6 32.0% 1.1 % 0.9 %
voronoi_lg_medium_7 36.1% 7.3 % 1.4 %
voronoi_lg_medium_8 19.1% 5.3 % 1.9 %
voronoi_lg_medium_9 16.7% 1.9 % 1.2 %

voronoi_lg_large_1 13.9% 0.8 % 0.6 %
voronoi_lg_large_2 25.2% 13.6 % 1.6 %
voronoi_lg_large_3 25.5% 4.5 % 2.3 %
voronoi_lg_large_4 19.5% 3.9 % 1.7 %
voronoi_lg_large_5 27.6% 5.0 % 1.7 %
voronoi_lg_large_6 17.0% 3.4 % 1.0 %
voronoi_lg_large_7 16.4% 1.0 % 0.5 %
voronoi_lg_large_8 14.1% 3.7 % 1.2 %
voronoi_lg_large_9 24.4% 11.3 % 1.9 %
voronoi_lg_large_10 21.6% 5.7 % 1.5 %
voronoi_lg_large_11 16.5% 11.8 % 1.7 %
voronoi_lg_large_12 15.5% 3.4 % 0.5 %
voronoi_lg_large_13 19.9% 0.7 % 0.4 %
voronoi_lg_large_14 22.9% 1.7 % 0.4 %
voronoi_lg_large_15 23.5% 3.0 % 0.7 %
voronoi_lg_large_16 21.8% 12.7 % 1.7 %
voronoi_lg_large_17 20.0% 0.8 % 0.6 %
voronoi_lg_large_18 19.8% 6.0 % 0.7 %
voronoi_lg_large_19 15.9% 0.7 % 0.8 %
voronoi_lg_large_20 28.1% 3.3 % 0.9 %
voronoi_lg_large_21 19.7% 4.6 % 0.5 %
voronoi_lg_large_22 25.2% 12.0 % 1.6 %
voronoi_lg_large_23 16.9% 4.2 % 1.6 %
voronoi_lg_large_24 21.8% 2.6 % 1.4 %
voronoi_lg_large_25 18.8% 0.8 % 0.6 %
voronoi_lg_large_26 18.4% 1.6 % 0.9 %
voronoi_lg_large_27 20.4% 7.8 % 1.1 %
voronoi_lg_large_28 17.2% 2.3 % 1.1 %
voronoi_lg_large_29 23.0% 0.6 % 0.6 %
voronoi_lg_large_30 17.5% 5.1 % 1.4 %
voronoi_lg_large_31 13.9% 6.2 % 1.0 %
voronoi_lg_large_32 24.8% 1.6 % 1.4 %
voronoi_lg_large_33 20.5% 1.1 % 0.8 %
voronoi_lg_large_34 15.5% 2.4 % 0.8 %
voronoi_lg_large_35 13.6% 8.0 % 1.5 %
voronoi_lg_large_36 16.6% 0.9 % 0.6 %
voronoi_lg_large_37 20.5% 1.3 % 1.5 %
voronoi_lg_large_38 17.5% 4.3 % 0.5 %
voronoi_lg_large_39 19.5% 2.6 % 1.4 %
voronoi_lg_large_40 21.2% 3.3 % 0.6 %
voronoi_lg_large_41 25.2% 5.5 % 1.2 %
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Table B.6.: Computational results for the branch-and-price approach.

Time [s] Gap

Instance nodes B&P root B&P root # opt root

ger_lg_tiny_1 10 15.0 1.0 0.0 0.0 1
ger_lg_tiny_2 3 4.1 1.0 0.0 0.0 1
ger_lg_tiny_3 1 1.1 1.2 0.0 0.0 1
ger_lg_tiny_4 1 1.7 1.8 0.0 0.0 1

ger_lg_small_1 1 3.6 3.7 0.0 0.0 1
ger_lg_small_2 1 3.8 3.7 0.0 0.0 1
ger_lg_small_3 1 4.9 4.4 0.0 0.0 1
ger_lg_small_4 1 1.9 1.9 0.0 0.0 1
ger_lg_small_5 1 13.3 12.9 0.0 0.0 1
ger_lg_small_6 8 49.7 4.5 0.0 0.0 1
ger_lg_small_7 1 3.0 2.9 0.0 0.0 1
ger_lg_small_8 1 5.8 5.4 0.0 0.0 1
ger_lg_small_9 4 48.6 7.0 0.0 0.0 1

ger_lg_medium_1 56 1027.9 13.0 0.0 0.0 1
ger_lg_medium_2 20 308.7 14.8 0.0 0.0 1
ger_lg_medium_3 1 12.6 12.1 0.0 0.0 1
ger_lg_medium_4 511 20284.0 27.4 0.0 0.0 1
ger_lg_medium_5 2 79.9 25.6 0.0 0.0 1
ger_lg_medium_6 1 18.8 18.0 0.0 0.0 1
ger_lg_medium_7 12 217.2 15.8 0.0 0.0 1
ger_lg_medium_8 1 72.9 70.9 0.0 0.0 1
ger_lg_medium_9 1 27.6 26.0 0.0 0.0 1

ger_lg_large_1 1 60.7 60.1 0.0 0.0 1
ger_lg_large_2 2 412.1 149.8 0.0 0.0 1

tree_lg_1 1 21.8 21.0 0.0 0.0 1
tree_lg_2 1 14.5 14.1 0.0 0.0 1
tree_lg_3 41 1309.2 18.2 0.0 0.2 0
tree_lg_4 1 25.4 24.1 0.0 0.0 1
tree_lg_5 504 15697.3 15.2 0.0 0.1 0
tree_lg_6 8 152.3 12.1 0.0 0.0 1
tree_lg_7 4 77.1 11.2 0.0 0.3 0
tree_lg_8 3 79.8 17.4 0.0 0.0 1
tree_lg_9 269 15719.1 21.0 0.0 0.0 1
tree_lg_10 1 20.1 18.7 0.0 0.0 1
tree_lg_11 17 532.1 17.1 0.0 0.0 1
tree_lg_12 1 21.1 20.3 0.0 0.0 1
tree_lg_13 1 23.0 21.8 0.0 0.0 1
tree_lg_14 1 21.3 20.1 0.0 0.0 1
tree_lg_15 1 19.4 17.9 0.0 0.0 1
tree_lg_16 1 22.5 21.6 0.0 0.0 1
tree_lg_17 2 42.9 14.8 0.0 0.0 1
tree_lg_18 2 49.7 17.8 0.0 0.0 1
tree_lg_19 1 17.4 17.1 0.0 0.0 1
tree_lg_20 1 12.7 12.2 0.0 0.0 1
tree_lg_21 1 21.5 20.8 0.0 0.0 1
tree_lg_22 15 365.6 14.9 0.0 0.0 1
tree_lg_23 2 53.4 19.3 0.0 2.3 0
tree_lg_24 1 17.0 16.3 0.0 0.0 1
tree_lg_25 3 91.7 22.7 0.0 0.0 1
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Time [s] Gap

Instance nodes B&P root B&P root # opt root

voronoi_lg_medium_1 4 374.0 72.9 0.0 0.0 1
voronoi_lg_medium_2 2 93.7 35.7 0.0 0.0 1
voronoi_lg_medium_3 204 18814.7 52.6 0.0 0.0 1
voronoi_lg_medium_4 1 81.1 80.0 0.0 0.0 1
voronoi_lg_medium_5 177 16089.2 61.2 0.0 0.6 0
voronoi_lg_medium_6 1 56.3 51.8 0.0 0.0 1
voronoi_lg_medium_7 1 76.0 72.3 0.0 0.0 1
voronoi_lg_medium_8 4 457.0 81.4 0.0 0.0 1
voronoi_lg_medium_9 1 92.3 88.8 0.0 0.0 1

voronoi_lg_large_1 1 109.5 105.6 0.0 0.0 1
voronoi_lg_large_2 62 5081.5 74.8 0.0 0.1 0
voronoi_lg_large_3 1 55.7 53.3 0.0 0.0 1
voronoi_lg_large_4 1 69.9 69.1 0.0 0.0 1
voronoi_lg_large_5 1 41.9 39.6 0.0 0.0 1
voronoi_lg_large_6 626 86400.0 125.6 0.5 0.8 0
voronoi_lg_large_7 251 17690.4 46.4 0.0 0.0 1
voronoi_lg_large_8 33 4298.7 104.7 0.0 0.5 0
voronoi_lg_large_9 3 268.0 84.0 0.0 0.5 0
voronoi_lg_large_10 55 4666.2 50.3 0.0 0.0 1
voronoi_lg_large_11 15 1381.6 67.0 0.0 0.0 1
voronoi_lg_large_12 2 383.1 196.7 0.0 0.0 1
voronoi_lg_large_13 107 19323.3 130.4 0.0 0.0 1
voronoi_lg_large_14 17 1573.2 60.9 0.0 0.0 1
voronoi_lg_large_15 86 13252.0 80.1 0.0 1.5 0
voronoi_lg_large_16 114 10756.1 86.1 0.0 0.1 0
voronoi_lg_large_17 5 829.0 127.6 0.0 0.0 1
voronoi_lg_large_18 473 86400.0 157.2 0.4 0.5 0
voronoi_lg_large_19 2 618.9 214.5 0.0 0.0 1
voronoi_lg_large_20 1 46.7 45.6 0.0 0.0 1
voronoi_lg_large_21 1 144.4 142.6 0.0 0.0 1
voronoi_lg_large_22 134 9534.9 56.7 0.0 0.1 0
voronoi_lg_large_23 964 86400.0 87.8 1.9 1.9 0
voronoi_lg_large_24 15 1578.4 89.6 0.0 0.5 0
voronoi_lg_large_25 1 227.2 222.1 0.0 0.0 1
voronoi_lg_large_26 10 1440.8 81.8 0.0 1.0 0
voronoi_lg_large_27 1 46.4 46.5 0.0 0.0 1
voronoi_lg_large_28 1 49.2 47.2 0.0 0.0 1
voronoi_lg_large_29 21 2296.0 67.8 0.0 1.9 0
voronoi_lg_large_30 1 71.5 70.9 0.0 0.0 1
voronoi_lg_large_31 63 7288.5 114.1 0.0 0.0 1
voronoi_lg_large_32 5 616.0 106.4 0.0 0.0 1
voronoi_lg_large_33 1 88.7 86.3 0.0 0.0 1
voronoi_lg_large_34 158 15213.4 104.8 0.0 0.0 1
voronoi_lg_large_35 9 804.3 105.3 0.0 0.0 1
voronoi_lg_large_36 1 75.5 73.3 0.0 0.0 1
voronoi_lg_large_37 1 73.4 71.7 0.0 0.0 1
voronoi_lg_large_38 1 75.3 74.7 0.0 0.0 1
voronoi_lg_large_39 98 10016.1 90.7 0.0 0.0 1
voronoi_lg_large_40 1 59.0 56.3 0.0 0.0 1
voronoi_lg_large_41 1 56.7 56.1 0.0 0.0 1
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Zusammenfassung

Das Problem, einen Graphen mit Untergraphen zu überdecken, ist ein grundlegendes Prob-
lem der Graphentheorie und kommt in verschiedenen Varianten in einer Reihe von praktis-
chen Optimierungsproblemen vor. Sei es bei der Konzipierung von Vertriebsgebieten eines
Unternehmens, von Schulbezirken oder Wahlkreisen, oder sei es der koordinierte Einsatz
mehrerer Roboter zum Säubern, Ernten oder zur Sicherheitsüberwachung eines Gebiets:
All diese Aufgaben beinhalten im Kern ein Überdeckungsproblem auf einem Graphen. Wie
man an den Beispielen bereits erkennen kann, gibt es eine Reihe von weiteren Nebenbe-
dingungen, die erfüllt sein müssen. Besonders hervorzuheben sind hier der (graphentheo-
retische) Zusammenhang eines Untergraphen und die Einhaltung mehr oder weniger en-
ger Schranken an die �Gröÿe� des Untergraphen, die je nach Anwendung zum Beispiel
die Anzahl an Kunden, Schülern oder Wahlberechtigten ist. In vielen Fällen ist es auch
vorgeschrieben, dass die Untergraphen disjunkt sind. In diesem Fall spricht man von einem
Partitionierungsproblem.
Auch das Ziel der Überdeckung ist abhängig von der Anwendung. Wenn die Anzahl

an Untergraphen für die Überdeckung vorgegeben ist, dann kann besipielsweise die Min-
imierung der durchschnittlichen Wegezeit zur Schule das Ziel sein, und anderenfalls könnte
eine Minimierung der Anzahl der Untergraphen angestrebt werden. Dies ist dann im
Beispiel von oben die Anzahl der Putzroboter, die benötigt wird, um das gegebene Gebiet
in einer bestimmten Zeit zu säubern.
Ein Hauptziel dieser Dissertation ist es, einen Überblick über das gesamte Gebiet der

Graphenüberdeckung (und -partitionierung) aus mathematischer Sicht zu geben. Wir be-
handeln unterschiedliche Varianten der Überdeckung und stellen jeweils die wichtigsten
Fragestellungen, Methoden und Ergebnisse vor. An verschiedenen Stellen erweitern wir die
bestehende Literatur durch eigene Ergebnisse zu Approximation oder neuen Formulierun-
gen.
Das zweite Hauptziel ist das Lösen eines konkreten Optimierungsproblems aus einem

Forschungsprojekt mit dem Bundesamt für Güterverkehr zur optimalen LKW-Mautkontrolle
auf deutschen Autobahnen. Dabei muss das Autobahnnetz mit Kontrollgebieten überdeckt
werden, auf denen mobile Kontrolleinheiten dann ihre Dienste verrichten. Wir modellieren
das Problem als mathematisches Optimierungsproblem und untersuchen verschiedene Lö-
sungsansätze. Besonders erfolgreich ist ein Ansatz, bei dem es eine Variable für jeden
möglichen Untergraph gibt. Da dies zuviele Variablen (in Matrixdarstellung: Spalten)
sind, verfolgen wir den Ansatz einer Spaltengenerierung (column generation). Der Un-
teraufgabe, einen weiteren geeigneten Untergraphen zu identi�zieren, kommt dabei eine
ganz besondere Bedeutung zu. Wir präsentieren verschiedene Algorithmen zur Verein-
fachung der Problemstruktur, zur heuristischen Lösung des Problems sowie zum Finden
unterschiedlicher Schnittebenen, die das Polyeder der zulässigen LP-Lösungen verkleinern,
ohne dabei ganzzahlige Lösungen abzuschneiden. In ausführlichen Testrechnungen auf
praxisrelevanten und künstlichen Instanzen zeigen wir, dass unsere Verbesserungen einen
enormen Mehrwert erzeugen. Erfreulicherweise beschränkt sich dieser Mehrwert nicht auf
das vorliegende Problem der Mautkontrolle, sondern wir können ihn auch auf andere Prob-
lemstellungen aus dem districting, also den oben beschriebenen Überdeckungsproblemen,
übertragen.
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