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Selbstständigkeitserklärung
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Kurzzusammenfassung

Im Rahmen dieser Arbeit wurden Laser-induzierte ultraschnelle Entmagnetisierungs- und
Schaltungsdynamiken von magnetisch geordneten Materialien mittels atomistischer Spindy-
namik-Simulationen durchgeführt. Dazu wurde ein semiklassisches Spinmodell verwendet,
dessen Dynamik mit Hilfe der stochastischen Landau-Lifshitz-Gilbert-Gleichung berechnet
wurde. Die Ergebnisse wurden mit experimentellen Messungen verglichen, die von Mit-
arbeitern der University of California in Berkeley und des Fritz-Haber-Instituts in Berlin
durchgeführt wurden, sowie mit anderen, bereits veröffentlichten Daten.
Zunächst wurden verschiedene ferrimagnetische GdFeCo-Legierungen untersucht. Diese sind
von besonderem Interesse, da seit etwa 15 Jahren bekannt ist, dass sich GdFeCo besonders
gut für ultraschnelles Schalten eignet. Dabei wird die Magnetisierung innerhalb kürzester
Zeit nach Anregung durch einen kurzen Laserpuls (≈ 100 fs) invertiert.
Von großem technischen Interesse ist das Schalten mittels elektrischer Pulse, die jedoch
deutlich länger sind (5-6 ps). Deswegen wurde ein breites Spektrum von Pulsdauern auf
ihre verursachten Schaltungsdynamiken untersucht und mit experimentellen Ergebnissen
verglichen. Es wurde festgestellt, dass das voll-optische Schalten für Pulsdauern über zwei
Größenordnungen möglich ist, und dass das verwendete Modell in der Lage ist, das experi-
mentell gemessene Schaltverhalten über größere Zeitskalen quantitativ korrekt zu beschreiben.
Des Weiteren wurde erstmals die Heusler-Legierung Mn2RuxGa mit Hilfe eines atomistischen
Spinmodells modelliert. Das erst kürzlich experimentell gefundene Schaltverhalten dieser
Legierung konnte in Computersimulationen reproduziert werden. So wurde gezeigt, dass das
erarbeitete Modell das von Banerjee et al. [1] gemessene Schaltverhalten nach Anregung mit
einem einzigen Laserpuls reproduziert.
Nach der Simulation dieser beiden Ferrimagnete wurde eine allgemeine Studie über das Schal-
ten und die Magnetisierungsdynamik in ferrimagnetischen Materialien durchgeführt. Dabei
wurde ein allgemeines makroskopisches Modell für die Magnetisierungsdynamik nach Anre-
gung durch einen Femtosekundenlaser hergeleitet. Die Theorie ist in der Lage, alle Phasen des
in Experimenten beobachteten Schaltvorgangs in Ferrimagneten zu reproduzieren. Des Wei-
teren wurde festgestellt, dass die Magnetisierungsdynamik während des Schaltprozesses von
einem relativistischen Relaxationspfad zu einem Austausch-dominierten Bereich übergeht,
was auf die dominierende Verstärkung der Austauschrelaxation zurückzuführen ist.
Anschließend wurde der Spezialfall eines Antiferromagneten betrachtet. Dazu wurde das
zuvor entwickelte makroskopische Modell auf Antiferromagneten angewandt und eine Be-
wegungsgleichung für die magnetische Ordnung hergeleitet. Mit Hilfe atomistischer Spin-
simulationen und des makroskopischen Modells wurde eine bisher nur vermutete schnellere,
Austausch-verstärkte Magnetisierungsdynamik von Antiferromagneten festgestellt und sys-
tematisch untersucht.
Um das Schalten von magnetischen Materialien besser zu verstehen, sind auch andere Sys-
teme, wie etwa das Elektronen- und das Phononensystem von großer Bedeutung. Deswe-
gen wurden Spindynamik-Simulationen in Nickel, Kobalt und Eisen unter Verwendung von
Ab-initio-Berechnungen durchgeführt, mit dem Ziel, experimentell gemessenene Gitterdy-
namiken besser zu verstehen. Dabei wurde festgestellt, dass der Energiefluss zum und
vom Spinsystem von zentraler Bedeutung ist und einen verlangsamenden Effekt auf die
Phononendynamik hat. Der Vergleich mit experimentellen Daten zeigt, dass die atomistis-
chen Spindynamik-Simulationen eine konsistente quantitative Beschreibung aller drei Teilsys-
teme liefern, was eine Verbesserung bekannter Modelle, wie etwa des Drei-Temperaturmodells
darstellt.





Short Summary

In this work the laser-induced ultrafast demagnetization and switching dynamics of magneti-
cally ordered materials were simulated by means of atomistic spin-dynamics simulations. The
dynamics of the system were calculated numerically using the stochastic Landau-Lifshitz-
Gilbert equation. The obtained results were compared with experimental measurements
performed by collaborators from the University of California in Berkeley and at the Fritz-
Haber Institute in Berlin, as well as with previously published data.
First, various ferrimagnetic GdFeCo alloys were investigated as they are particularly well
suited for all-optical switching. During this process, the magnetization is reversed within a
few picoseconds of excitation by an ultrashort short laser pulse (≈ 100 fs). Of great technical
interest is switching using electrical pulses, which are, however, significantly longer (5-6 ps).
Therefore, a wide range of pulse durations were simulated in order to investigate their ability
to switch various GdFeCo alloys. It was found that single pulse all-optical switching is pos-
sible for pulse durations that span two orders of magnitude. The same underlying physics,
based on atomistic spin-dynamics simulations, is able to describe switching within hundreds
of femtoseconds as well as tens of picoseconds. Furthermore, element-specific damping was
found to be a key parameter for switching using longer pulse durations. The simulation re-
sults were compared to experiments, yielding a quantitative agreement when including local
Gd-concentration inhomogeneities.
Furthermore, the Heusler alloy Mn2RuxGa was modeled. The derived model was able to
reproduce various key material properties, such as the Curie temperature, the magnetization
curve or the Ru-concentration dependence of the magnetization-compensation temperature.
Moreover. the model was able to quantitatively reproduce the magnetization dynamics of
single pulse toggle switching as measured by Banerjee et al. [1]. It was also demonstrated
that, contrary to previous understanding coming from rare-earth transition metal alloys,
toggle switching in Mn2RuxGa is possible even when both Mn sublattices demagnetize at
very similar rates.
After simulating these two ferrimagnets a general study of switching and magnetization dy-
namics in ferrimagnetic materials was carried out. A general macroscopic theory for the
magnetization dynamics of ferrimagnetic materials driven by femtosecond laser photo exci-
tation was derived. The theory reproduces all stages of the switching process observed in
experiments. It was found that during the switching process the magnetization dynamics
transitions from a relativistic relaxation path to an exchange-dominated regime due to the
strong enhancement of the exchange relaxation.
Next, the special case of an antiferromagnet was considered. The previously developed
macroscopic model was applied to antiferromagnets and an equation of motion for their
magnetic order were derived. With the help of atomistic spin simulations, a faster, exchange-
enhanced magnetization dynamic of antiferromagnets was found and systematically inves-
tigated, which was previously only suspected. Notably, the found exchange enhancement
depends strongly on the number of neighboring spins of the other sublattice.
In order to better understand switching of magnetic materials, other systems such as the
electron and the phonon system are also of great importance. Therefore, spin dynamics sim-
ulations in nickel, cobalt and iron were performed using ab initio calculations with the aim
of better understanding experimentally measured lattice dynamics. It was found that the
energy flow to and from the spin system is of great importance and has a slowing effect on
the phonon dynamics. Comparison with experimental data showed that the atomistic spin
dynamics simulations provide a consistent quantitative description of all three subsystems,
which is an improvement on previously used models such as the three-temperature model.
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Chapter 1

Introduction

1.1 Motivation

The amount of data processed by the world is increasing exponentially and doubles roughly
every three years. We witnessed another huge increase at the start of the pandemic in
2020 [2]. Naturally, this amount of data demands ever larger and faster processing and stor-
age capabilities.
In magnetic hard drives information is stored using small ferromagnetically aligned areas, so-
called magnetic domains, that contain the information of a single bit. The main advantages
over other types of data storages, such as solid-state drives, are the longevity and price, but
magnetic hard drives fall short on reading and writing speed. Typically bits are written by
applying a magnetic field in the desired direction, switching the domain to the desired state.
However, this process is fairly slow since the reorientation time depends on the strength of
the applied field and is limited to approximately 1 ns.
Only small improvements, such as heat-assisted magnetic recordings, have been found in
this area [3, 4]. In order to keep up with the ever increasing need for data processing and
information storage fundamentally new approaches need to be explored.

Recent developments in magnetism are approaching the limits of spin dynamics on the or-
der of picoseconds. Pioneering works in this field show that even switching of ferrimagnetic
domains on these timescales is possible, promising a new fast and energy-efficient way of
writing data [5, 6]. However, many fundamental questions in this new research field of ul-
trafast magnetization dynamics are not fully understood yet.

In this work, laser-induced ultrafast demagnetization and switching of magnetically ordered
materials are investigated using atomistic spin-dynamics simulations. During the computer
simulations the classical Heisenberg model and the stochastic Landau-Lifshitz-Glibert equa-
tion are used and solved numerically. The simulation results are compared to experimental
measurements from coworkers and a phenomenological analytical model is derived and com-
pared to the numerical results.

In the following chapter an overview of the current state of ultrafast magnetization dynamics
will be given and the most relevant findings in this field will be briefly presented.
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1.2 Introduction to ultrafast magnetization dynamics

1.2.1 Ultrafast demagnetization

The first pioneering works in the field of ultrafast magnetization dynamics were performed in
thin nickel films during the 1980s. At that time experiments found typical demagnetization
times between 1 and 40 ns [7]. In the early 1990s Vaterlaus et al. measured the spin-lattice
relaxation time of gadolinium to be about 100 ± 80 ps [8]. This result was in agreement
with the theoretically estimated demagnetization time of 48 ns by Hübner and Bennemann,
that was published shortly after [9]. They based their theoretical prediction on spin-lattice-
relaxation only, as it was believed, that spins only couple weakly to the light of an incoming
laser pulse. This assumption was based on the fact that, in thermodynamic equilibrium the
spin-orbit interaction is only a small relativistic correction to the electronic Hamiltonian. In
the mid-1990s it was therefore concluded, that demagnetization upon laser heating proceeds
on typical timescales of 50 ps up to 1 ns driven by spin-lattice relaxation.
In 1996, due to the development of lasers with pulse durations of only a few fs, Beaurepaire
et al. were able to measure the magnetization dynamics of face-centered cubic Ni after ex-
citation with a 60 fs laser pulse [5]. Using the magneto-optical Kerr effect (MOKE) they
found that the magnetization drops to 55 % of its saturation value within only 100 fs, ques-
tioning the previous understanding. The results of their famous experiment are shown in
figure 1.2.1. As outlined previously, these results came as a surprise at the time and thus

Figure 1.2.1: The first measured
ultrafast magnetization dynamics of
face-centered cubic nickel measured
by Beaurepaire et al. Figure taken
from Ref. [5].

the term ultrafast demagnetization was coined. Within the publication of Beaurepaire et al.
the results could only be explained by introducing a direct, dominant electron-spin coupling
alongside the much weaker spin-lattice coupling, forming the so-called three temperature
model. The three-temperature model assumes different temperatures for the involved sub-
systems, namely electrons, spins and phonons and various coupling constants to exchange
energy between the subsystems.
Upon excitation with an ultrafast laser the electron subsystem absorbs all of the energy,
which leads to a rapid increase of the electron temperature. This added energy then gets
distributed to the spin and phonon subsystem via the electron-spin coupling and the electron-
lattice coupling, until eventually a new equilibrium temperature is reached.
In the following years, the results of Beaurepaire et al. were reproduced and confirmed many
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Figure 1.2.2: Superdiffusive spin transport
at a Ni/Al interface. After laser excitation of
the nickel layer more majority spin electrons
diffuse into the Al-substrate, while minority
spin electrons stay within the Ni-layer. This
then causes a reduction in the magnetization
in the Ni-layer. Figure taken from Ref. [16].

times [10, 11, 12]. Today it is understood that the pump pulse excites the electron system,
and the excited non-thermal hot electron distribution becomes thermalized on time scales of
several hundred femtoseconds [13]. During this process the energy of the electron subsystem
is transferred to the spin subsystem (a different degree of freedom of the electrons). On
longer timescales of up to 10 ps the energy is then transferred to the lattice, until all three
subsystems return to equilibrium.
However, the exact mechanisms underlying this rapid demagnetization are still unclear and
disputed today. In particular the fast vanishing of angular momentum on these extremely
short time scales still remains open. Koopmans et al. argued that Elliott-Yafet-type scat-
tering is responsible for the rapid demagnetization [14]. By emitting or absorbing a phonon
an electron has a chance to flip its spin and thus the demagnetization process conserves its
total angular momentum [15].
An alternative explanation was provided by Battiato et al. [16, 17]. They argue that so-called
superdiffusive spin currents are responsible for the ultrafast demagnetization process. This
model relies on different spin-dependent transport properties of hot electrons. This causes
more majority spin electrons to diffuse into the substrate, while minority spin electrons stay,
due to their larger scattering cross section, within the magnetic layer. This leads to a reduc-
tion of the magnetization. The process is illustrated in figure 1.2.2.
The predicted superdiffusive spin currents where measured shortly after by Rudolf et al. [18]
and Turgut et al. [19] in Ni/Fe multilayer samples divided by insulating spacer materials such
as Ni/Ru/Fe on a timescale of several hundred femtoseconds. Furthermore, Graves et al.
looked at ferrimagnetic GdFeCo after laser excitation, finding enhanced demagnetization and
switching dynamics driven by a non-local transfer of angular momentum between Gd-rich
and Fe-rich regions [20].
On the other hand, there have been a number of works that find no meaningful contribution
of superdiffusive spin transport to the demagnetization process. Moisan et al. looked at
CoPt and CoPd domain patterns finding no change in demagnetization time as function of
the domain structure [21]. In contrast to Graves et al., they concluded that inter-domain
hot electron spin transfer only contributes negligibly to the demagnetization dynamics in
this system. Further joined experimental and theoretical studies by Shokeen et al. in Ni and
Co films found no significant contribution of superdiffusive spin transport in these materials
and instead concluded that spin flips play the most significant role during demagnetization
in Ni and Co [22].
However, ultrafast demagnetization has also been found in magnetic samples on insulat-
ing substrate materials [23]. Therefore, superdiffusive spin transport should be considered a
supporting mechanism and cannot be the only mechanism behind ultrafast demagnetization.

3



Chapter 1. Introduction

Thus the explanation provided by Koopmans et al. based on Elliott-Yafet-type scattering
remains the best theory for the observed rapid demagnetization.

1.2.2 Ultrafast magnetization switching

In 2007 Stanciu and coworkers used laser pulses on a femtosecond scale with different po-
larizations to manipulate the magnetization of ferrimagnetic GdFeCo in the absence of an
applied magnetic field [24]. This discovery became known as helicity-dependent all-optical
switching. When using right-handed circular polarized laser pulses they could write a spin-up
domain and when using left-handed circular polarized light, domains in a spin-down state
were written. Linear polarized light resulted in thermal demagnetization without determin-
istic switching. Figure 1.2.3 shows the results of this experiment in two MOKE before-
and after pictures of the sample. Besides in GdFeCo alloys, helicity-dependent all-optical

Figure 1.2.3: MOKE images of the helicity-dependent writing process. Subfigure a) shows
the before state with white and black areas corresponding to M+ and M− magnetic domains,
respectively. Subfigure b) shows the same sample after exposure with a femtosecond laser.
The exposure with right-handed circular polarized light caused a domain to be written in a
spin-up state (σ+ top), after exposure with left-handed circular polarized light the domain
was imprinted in a spin-down state (σ− bottom) and for linear polarized light only thermal
demagnetization without deterministic switching was observed (L middle). Figure taken
from Ref. [24].

switching was found in a broad range of ferrimagnetic rare-earth-transition-metal structures,
such as FeTb [25], TbCo multilayers [26] as well as in ferromagnets such as CoPt or FePt
nanoparticles [27, 28].
Possible explanations for this phenomena utilize the inverse Faraday effect [29, 30, 31]. The
Faraday effect describes a rotation in the polarization that is proportional to the projection
of the magnetic field along the propagation direction of the light wave. The inverse Faraday
effect describes the opposite effect, whereby magnetization is induced via the electric field of
an incoming light wave and the induced magnetization depends on the polarization of the
light wave. By demagnetizing the probe with a high-intensity laser pulse and inducing an
additional magnetization ∆M via the inverse Faraday effect, single pulse helicity-dependent
all-optical switching can be explained.
However, the origin of all-optical helicity-dependent switching is still being debated and

4
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Figure 1.2.4: Magnetization switching dynamics of Gd25Fe65.6Co9.4 after excitation with a
60 fs laser pulse. XMCD measurements of Gd are shown as red points and Fe measurements
are shown as blue points. The solid lines are fits according to a double exponential function.
Subfigures (a) and (b) show the results of the experiments on different timescales. Figure
taken from Ref. [6]

other mechanisms, such as magnetic circular dichroism have been proposed, where the ab-
sorption of a light wave depends on its polarization [27]. In the years after the experiments
of Stanciu and coworkers [24] it was found that linearly polarized light is also able to toggle
switch GdFeCo compounds [6, 32]. Contrary to helicity-dependent all-optical switching the
magnetic state was not overwritten, but instead the magnetization was just toggle-switched
with a single linearly polarized laser pulse.

Thermally induced all-optical switching

Thermally induced all optical switching was discovered by Radu et al. in 2011. They used a
60 fs linear polarized laser pulse on amorphous Gd25Fe65.6Co9.4 films and X-ray magnetic cir-
cular dichroism (XMCD) to record element-specific magnetization dynamics of both Gd and
Fe. Figure 1.2.4 shows the results of these measurements on two different time scales. This
breakthrough experiment revealed two key findings. First, the Fe sublattice demagnetizes
four times faster than the Gd sublattice and second, the discovery of a transient ferromag-
netic like state. After approximately 250 fs, while the Gd-sublattice is still demagnetizing,
the Fe-sublattice aligns itself in parallel with the Gd-sublattice for a short time, despite the
antiferromagnetic coupling between them. This short parallel alignment between the sub-
lattices is not allowed in equilibrium due to the strong antiferromagnetic coupling and it is
thus called a transient ferromagnetic-like state. After approximately 1 ps, the system starts
to cool down again and the sublattices return to a ferrimagnetic state and remagnetize to a
new equilibrium temperature.
Atomistic spin-dynamics simulations provide an excellent theoretical framework for studying
experiments like these. Ostler and coworkers used them to show that in fact the thermal
stimulus alone is sufficient for switching [32, 33]. Figure 1.2.5, recorded by Ostler et al., dis-
plays magneto-optical images of a Gd24Fe66.5Co9.5 film of the initial state and after exposure
to several consecutive 100 fs-long laser pulses. These experiments show that each linear po-

5
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Figure 1.2.5: Magneto-optical images of a Gd24Fe66.5Co9.5 film of the initial state and
after several consecutive 100 fs-long laser pulses. The first and second row differ in the
initial magnetization direction. Figure adapted from Ref. [32].

larized pulse toggle-switches the magnetization deterministically. This confirms the results
shown in figure 1.2.4 and the switching process is deterministically driven by the thermal
energy of the pulse alone.
Contrary to the helicity-dependent experiments by Stanciu et al. discussed in Chapter 1.2.2,
the current magnetic state of GdFeCo is not overwritten. Instead the magnetization is only
toggle-switched.
This type of switching was therefore called helicity-independent all-optical switching. These
findings motivated research into new excitation mechanisms, away from ultrashort, femtosec-
ond scale laser pulses. Experiments used the thermal stimulus of picosecond scale electric
pulses as well as laser pulses of up to 15 ps to switch GdFeCo [34, 35, 36, 37]. This slower,
picosecond-scale switching was unexpected, since the commonly accepted driving mechanism
is based on faster exchange of angular momentum between sublattices than magnetization
relaxation to the medium. Therefore, the efficiency of such a switching mechanism should be
drastically reduced on longer time scales. These slower, picosecond-scale mechanisms open
the door for electric pulses as stimuli as they are of particular technological interest.
Single pulse toggle-switching in ferrimagnets has also attracted a lot of attention as a promis-
ing solution for low-energy, faster-memory applications [38, 39, 40]. For the last decade,
all-optical switching was only observed in specific rare-earth-transition-metal ferrimagnetic
alloys such as GdFeCo, GdTbCo alloys [41, 42], Tb/Co stacks [43], or multilayered stacks of
Pt/Gd/Co [44].
In 2020 a second class of materials showing all-optical switching capabilities was found,
Mn2RuxGa Heusler alloys [45, 46]. This raises the question of how much of the under-
standing of GdFeCo carries over to this new material class, since for Mn2RuxGa so far
only a handful of experimental works show ultrafast magnetization dynamics and switch-
ing. In particular, switching in rare-earth-transition-metal ferrimagnetic alloys is not fully
understood either. For example it is currently unclear why for RE-TM alloys containing
Gd switching can be observed, whereas Tb-based alloys without Gd, such as TbFeCo, do
not show helicity-independent switching despite the presence of a transient ferromagnetic
state [47]. While the ferromagnetic-like state lasts for more than 20 ps, the magnetization
reverses back to its initial state. On the other hand, Tb-based alloys featuring a minuscule
amount of Gd, such as Gd4Tb18Co78 do switch upon heat excitation [41, 42].
Besides the question about classes of materials fit for switching, other parameters, such as
the influence of the initial starting temperature and the impact of the ferrimagnetic compen-
sation temperature, and their impact on switching are also subject of ongoing research [46].
Furthermore, the maximum duration of the switching stimulus and factors impacting this
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duration are investigated. Also, an understanding of single-pulse switching is missing due to
the lack of an established theory accurately describing the transition to the nonequilibrium
reversal path induced by femtosecond laser photoexcitation.

7



Chapter 1. Introduction

1.3 Outline of the thesis

This introductory chapter gives a brief introduction into ultrafast magnetization dynamics,
starting from the first experimental discoveries in nickel towards thermally stimulated mag-
netization switching in GdFeCo. The suggested driving mechanisms behind these ultrafast
processes have been presented briefly, such as Elliott-Yafet-type scattering and superdiffusive
spin transport.

In Chapter 2 a brief introduction into the experimental methods of investigating ultrafast
magnetization dynamics will be presented, namely the magneto-optical Kerr effect and X-ray
magnetic circular dichroism to measure the dynamics of the spin subystem. Furthermore,
additional methods will be presented to investigate the other involved subsystems, such as
electrons and lattice. Angle-resolved photoemission spectroscopy allows the measurement of
the band structure and the determination of the electron temperature. Femtosecond electron
diffraction makes it possible to observe the evolution of the phonon temperature.
Afterwards a short introduction to the fundamental principles of density functional theory
will be given with the goal of motivating the use of a localized electron-spin picture for itin-
erant ferromagnetic metals and the use of atomistic spin-dynamics simulations.
At last, the fundamentals of atomistic spin-dynamics simulations will be presented, starting
with the classical Heisenberg-spin model from which the equilibrium state of the spin system
can be derived. The stochastic Landau-Lifshitz-Gilbert equation describes the dynamics of
atomistic spins at finite temperatures and will be introduced afterwards.
Since laser induced magnetization dynamics also rely on the simulation of the electron- and
phonon temperature dynamics, the modeling of the laser excitation and their connection to
the spin system will be discussed.
This work mostly focuses on a numerical simulation of the Landau-Lifshitz-Gilbert equation
and thus a short overview of the numerical methods will be presented. At the end, a short
overview over commonly used, phenomenological spin models will be given.

In Chapter 3, simulations of femtosecond laser-induced switching of the magnetization in the
ferrimagnetic alloy GdFeCo are presented. One of the main questions investigated in this
work was the impact of the laser pulse duration on the switching behavior. Phenomenological
models suggest a femtosecond scale exchange relaxation between sublattice magnetization
as the driving mechanism for switching. However, recent observations of thermally induced
switching in GdFeCo by several picosecond optical laser pulses as well as electric current
pulses have questioned this assumption. To that end, atomistic spin-dynamics simulations
have been performed for a wide range of system parameters, such as composition, laser power
and pulse duration. They are compared within this chapter with experimental results by J.
Gorchon and coworkers from the University of California at Berkeley (US).

In Chapter 4, a new material showing helicity-independent all optical switching, namely
Mn2RuxGa, is simulated using atomistic spin-dynamics simulations. The Heusler alloy
Mn2RuxGa has recently attracted a lot of attention, as in 2020 it was shown by Baner-
jee and coworkers, that this material can be switched all optically, making it a member of a
second class of materials showing this behavior, besides rare-earth-transition-metal-alloys.
In this chapter, the spin Heisenberg Hamiltonian of Mn2RuxGa is modeled based on experi-
mental measurements and the discovered all-optical switching will be reproduced. Based on
many years of experience coming from rare-earth-transition-metal-switching it was believed,
that very different element-specific demagnetization dynamics are one of the requirements
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for switching. This is fulfilled in alloys such as GdFeCo as they are composed of two different
ions with different properties. However, the discovery of all-optical switching in Mn2RuxGa
Heusler alloys questions this understanding since both sublattices consist of Mn. Therefore
the necessity for two different materials with different properties will be investigated.

Despite the experimental and theoretical demonstration of all optical switching in GdFeCo
and Mn2RuxGa, a complete understanding of single-pulse all-optical switching is still miss-
ing. This is due to a lack of an established theory accurately describing the transition to the
nonequilibrium reversal path induced by femtosecond laser photoexcitation. In Chapter 5, a
general macroscopic theory for the magnetization dynamics of ferrimagnetic materials upon
femtosecond laser excitation will be developed.
The model will be tested against atomistic spin-dynamics simulations of GdFeCo and the
Mn2RuxGa model developed in Chapter 4.

Chapter 6 will focus on the different magnetic response of antiferromagnets (AFMs) com-
pared to ferromagnets (FMs). The exact behavior of AFMs under laser excitation is not fully
understood due to the missing net magnetization of AFMs. Although scarce, experiments in
AFMs suggest a faster response of the magnetic order parameter compared to FMs, such as
studies in rare-earth Dy using femtosecond x-ray diffraction measuring FM and AFM-spin-
helix states. It is assumed, that the exchange of angular momentum between sublattices in
AFMs speeds up their dynamics, a process that is absent in ferromagnets. However, evidence
of this exchange-enhancement of the ultrafast magnetization dynamics in AFMs is scarce due
to the difficulties of conducting a systematic comparison on the same system with a FM and
AFM magnetic order.
In Chapter 6 the exchange-enhancement of the antiferromagnetic order dynamics will be
investigated theoretically in a variety of different scenarios. Furthermore, an equation of mo-
tion for the magnetic order dynamics will be derived from the developed model of Chapter 5
and validated by computer simulations using atomistic spin-dynamics simulations.

Since the discovery of ultrafast demagnetization in nickel most research focused on the spin
and electron systems. However, ultrafast magnetization dynamics are governed by the inter-
play of electrons, spins and phonons and information on the response of all three subsystems
is required. A consistent description of the demagnetization and microscopic energy flow in
transition metals is still missing and common phenomenological models, such as the three-
temperature model, are used.
Therefore, the last two chapters examine the magnetization dynamics of transition metals
and the energy dynamics between electrons, phonons and spins after excitation with a fem-
tosecond laser pulse. To that end, an energy-conserving atomistic spin model is developed
that utilizes ab initio calculations of electron-phonon interactions. The modeled dynamics of
the phonon system are compared to femtosecond electron-diffraction experiments performed
by D. Zahn and coworkers at the Fritz-Haber Institute in Berlin, as well as previously re-
ported electron and magnetization dynamics. Chapter 7 focuses hereby on nickel, whereas
Chapter 8 deals with the transition metals iron and cobalt.

In the end, a brief summary of the most important results as well as an outlook will be
given.
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Chapter 2

Fundamentals

2.1 Experimental techniques

Even though this work focuses primarily on computational methods and theory, a basic
understanding of the experimental techniques used in ultrafast magnetization dynamics is
required in order to compare the theoretical results with experiments.
To that end, pump-probe experiments are most commonly used to investigate the response
of a magnetic sample to a femtosecond laser pulse. In these experiments the magnetization
is first taken out of equilibrium via a pump pulse. Afterwards, the response of the different
subsystems, namely the magnetic spin system, the electron system or the phonon system is
measured with a probe pulse. The spin system can be investigated with the magneto-optical
Kerr effect or with the X-ray magnetic circular dichroism. The response of the electron
system can be measured with angle-resolved photoemission spectroscopy and the phonon
system via femtosecond electron diffraction. These experimental methods will be explained
in more detail in the following.

2.1.1 The magneto-optical Kerr effect

The magneto-optical Kerr effect (MOKE) and the Faraday effect describe a change of the
polarization state of light interacting with matter. Whereas the Faraday effect describes
a polarization change upon transmitting light through a sample, the Kerr effect describes
the change of polarization when the light is reflected from the surface of the sample. The
polarization change upon reflection can be described by a complex Kerr angle

ΘK = θK + iϵK , (2.1.1)

where the real part θK is the Kerr rotation and the imaginary part ϵK is the Kerr ellipticity.
ΘK describes the difference of the polarization angles of the reflected light ΘR and the initial
incident light Θi.
The linear optical response of a material to an electric field E is described by the first order
induced polarization vector P:

P =

∫
χ(1)(r, r′) ·E(r′)dr′. (2.1.2)

Here χ(1)describes the first order optical susceptibility tensor, that itself depends on the
dielectric tensor ϵ via

ϵi,j = δi,j + 4πχ
(1)
i,j . (2.1.3)
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Figure 2.1.1: Illustration of three possible configurations of the magneto-optical Kerr
effect: (a) polar Kerr effect with the magnetization pointing out of the sample (PMOKE),
(b) longitudinal Kerr effect with the magnetization in plane and in the plane of incident
(LMOKE) and (c) transverse Kerr effect with in plane magnetization but perpendicular to
the plane of the incoming light (TMOKE).

For a non-magnetic material, the dielectric tensor only contains diagonal elements as these
elements are independent of the magnetization m. For a magnetic material the dielectric
tensor features off-diagonal elements Qϵijkmk with a material dependent parameter Q, (more
details in Ref. [48]).
From the dielectric tensor ϵ a 2×2 reflectivity matrix rij(m) can be calculated. This matrix
describes how the initial polarization state is transformed onto the reflected one

Er,i = rij(m)Ej
i . (2.1.4)

Here Ei,j and Er,j are the s- and p-amplitudes of the incoming and reflected light. From
this the polarization angles can be calculated via Θi = arctan(Ei,s/Ei,p) for the incident
light and as Θr = arctan(Er,s/Er,p) for the reflected light. Since the Kerr angle ΘK depends
on the magnetization-dependent off-diagonal elements, it becomes possible to calculate the
sample’s magnetization by measuring θK and ϵK .
There are three possible Kerr effect configurations, shown in figure 2.1.1. The polar Kerr
effect (PMOKE) appears for a magnetization saturated out-of-plane (figure 2.1.1a). This
case has the largest Kerr-sensitivity. In case of the longitudinal Kerr effect (LMOKE) the
magnetization is aligned in plane while also being in the plane of incident (figure 2.1.1b) and
in the transverse Kerr effect (TMOKE) the magnetization points in plane and perpendicular
to the plane of incident (figure 2.1.1c).

The time-resolved magneto-optical Kerr effect

The magnetization dynamics induced by a laser can be measured using the time-resolved
magneto-optical Kerr effect (TRMOKE). In a typically setup, a pump-probe scheme is used,
where a laser pulse is split into a high-power pump pulse and a much weaker probe pulse. The
probe pulse gets delayed via an adjustable delay line and linearly polarized [49, 50]. Both
pulses are focused on the same spot of the sample and the delayed reflected probe pulse is
analyzed to measure the magnetic response induced by the pump pulse. Besides femtosecond
laser pulses it is also possible to use other pump mechanisms, such as short magnetic-field
pulses [51, 52]. In order to perform time-resolved measurements the delay between the pump
and probe pulse is changed step-by-step and the acquired Kerr signal is analyzed for each
step. Since the sample reacts to the incoming pump pulse the time-resolved response of the
sample can be measured this way.
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Figure 2.1.2: (a) Schematics of the electron transition of XMCD in a transition metal
showing the 2p → 3d core-level excitation at the L2,3 edges. Because of a lack of free d-states
at the Fermi level of the majority band (shown in blue), only minority spins photoelectrons
(shown in green) can be excited to the valence band. (b) X-ray absorption spectra (XAS)
and XMCD spectra for the Co L2,3 edge, showing the right (µ+) and left (µ-) circular
polarization, along with their average (absorption spectrum) and the difference spectrum
(XMCD). Figure adapted from Ref. [57].

An example application of MOKE is shown in figure 1.2.1, where Beaurepaire et al. measured
the first ultrafast demagnetization of nickel using TRMOKE.

2.1.2 X-ray magnetic circular dichroism (XMCD)

X-ray magnetic circular dichroism (XMCD) is in many ways analogous to the time-resolved
magneto-optical Kerr effect. This method uses a shorter wavelength in the X-ray range.
It detects the magnetic contrast through X-ray absorption, which depends on the relative
orientation of the local magnetization and the light’s polarization vector. Both the size and
the direction of the magnetic moments can be measured element selectively. A big advantage
of this method is the high time resolution of less than 100 fs, which makes it an excellent
technique for studying ultrafast spin dynamics. The element-specific probing of materials
makes it particularly interesting for the study of ferrimagnetism and it even allows the study
of individual spin-, orbital- and dipolar moments and the magnetocrystalline anisotropy [53].
It is therefore an extremely versatile and often used experimental technique in the field of
magnetic materials research [6, 54, 55, 56]. However, the major downside of this technique
is its high effort as it requires X-rays with specific frequencies. These can only be achieved
at electron synchrotron facilities. Figure 2.1.2 shows the basic process of XMCD for a tran-
sition metal. In the illustrated case the 2p core states are filled while the 3d states are only
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half filled, which creates the net magnetic moment for transition metals. Spin-orbit coupling
causes the 2p core states to split in a j = 3/2 level (L3 edge) and a j = 1/2 level (L2 edge)
with a small energy difference between them (l + s and l − s, respectively). In order to
describe XMCD, it is easiest to follow the two-step picture presented by Stöhr [53, 58].
In a first non-magnetic step right- or left-circularly polarized photons transfer their angular
momentum to the excited electrons. Since right- or left-circularly polarized photons transfer
different angular momenta, +ℏ and −ℏ, respectively, the excited electrons have opposite
spins depending on the absorbed photon. Since the core states p3/2(L3) and p1/2(L2) have
opposite spin-orbit couplings, the spin polarization will be different depending on the edges.
In a second step the excited electron scatters to an available unoccupied valence 3d states.
Owing to the spin polarization of the valence states, there is a different number of spin-up
and spin-down holes available, as indicated in figure 2.1.2 a). Therefore, the absorption
cross section of the two polarizations is different, resulting in the magnetic dichroism effect.
Stöhr refers to the spin-split valence shell as a ’detector’ for the spin of the excited photoelec-
trons [58]. The results of such a measurement can be seen in figure 2.1.2 b) where the XMCD
spectra for the Co L2, L3 edge is shown for right (µ+) and left (µ-) handed polarization, along
with their average (top) and difference (bottom). If there are less spin-up than spin-down
holes available, the XMCD spectrum has a net negative L3 peak, and a positive L2 peak.
However, this simplified picture only describes s-shell excitations accurately. For 2p core
states some spin-flip transitions are allowed. Thus contrary to the picture above, polarized
X-rays are allowed to excite some spins of the opposite polarization. For example, for the
L2 edge left circular polarized light excites 25% spin-up and 75% spin-down electrons [53].
For rare-earth metals, the equivalent to the L2, L3 edges are the M4 and M5 edges, yielding
excitations of 3d3/2 and 3d5/2 core states to unoccupied 4f-states [59]. One of the most
prominent applications of XMCD in the field of ultrafast magnetism has been shown pre-
viously in figure 1.2.4 by Radu et al. [6], where XMCD was used to record element-specific
magnetization switching in Gd25Fe65.6Co9.4.

X-ray magnetic linear dichroism (XMLD)

Besides using circular polarized light for X-ray absorption spectroscopy, it is possible to
use linear polarized light. In this case, the effect is called X-ray magnetic linear dichroism
(XMLD) and it is based on the different X-ray absorption cross sections of the E-vector
of linear polarized X-rays, depending on its orientation in comparison to the magnetic mo-
ments. It is a second order effect, that depends on the magnetization ⟨M2⟩ and on the
magneto-crystalline anisotropy. The XMLD signal is therefore much smaller than XMCD
and it is thus less commonly used for the investigation of transition metals [60, 61]. However,
it still finds application in the investigation of antiferromagnets, such as NiO [62, 63], or in
the measurement of magneto-crystalline anisotropy [64, 65].

2.1.3 Other experimental techniques

In order to fully understand the dynamics of the magnetic spin system, other subsystems
and their interactions, such as the electron and the phonon system, need to be considered
too. In Chapter 1.2.1 the experiments by Beaurepaire et al. were presented that measured
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for the first time ultrafast demagnetization of nickel [5]. In order to explain their measure-
ments they used the three-temperature model, that assumes different temperatures for the
involved subsystems, namely electrons, spins and phonons and various coupling constants
to exchange energy between the subsystems. Theoretical models like the Koopmans’ model,
that explain rapid spin relaxation via Elliott-Yafet-like processes, also model the involved
electron and phonon subsystems [14]. In order to understand ultrafast spin dynamics, it is
therefore essential to also understand the electron and phonon subsystems.

Angle-resolved photoemission spectroscopy (ARPES)

The electron subsystem can be measured with methods such as angle-resolved photoemis-
sion spectroscopy (ARPES) [66, 67]. This method allows for the measurement of the band
structure of a solid and is based on the photoelectric effect. During the experiment, a
monochromatic laser beam, typically in the ultraviolet or higher spectral range is used. If
the incoming photon provides sufficient energy to overcome the necessary work ϕ, electrons
are emitted from the sample. The kinetic energy ϵkin of such an electron can be written as

ϵkin = ℏω − ϕ− |ϵk|. (2.1.5)

Here ω describes the angular frequency of the incoming photon and ϵk stands for the binding
energy in regard to the Fermi level ϵF . Equation 2.1.5 makes it possible to relate the kinetic
energy of the emitted electron to its initial binding energy. The amount of detected electrons
is furthermore proportional to their emission probability, which is related to their density of
states. By measuring the emission angle of the emitted electrons it is possible to calculate
their in-plane momentum and thus obtain an understanding of the band structure.

Femtosecond electron diffraction (FED)

In order to measure the phonon system, femtosecond electron diffraction (FED) (or some-
times ultrafast electron diffraction) can be used. FED combines a temporal resolution of
hundreds of femtoseconds with real-space structural information of the lattice on the atomic
scale and it is therefore an excellent tool for measuring the lattice and phonon response to
an incoming short laser or heat pulse.
Similar to other methods in the field of ultrafast magnetization dynamics it uses a pump-
probe scheme. However, in order to probe the lattice an electron- instead of a laser pulse
is used. An in-depth explanation of this experimental setup and details can be found in
Ref. [68] and is here summarized briefly.
After exciting the sample with a laser pump pulse the lattice response is measured with an
electron probe pulse. This causes the electron pulse to diffract and the resulting diffraction
patterns are detected with an electron camera. The recorded diffraction pattern contains
structural information of the sample. By tracking the relative change of the intensity of
selected Bragg peaks, as well as the change of the integrated background intensity for differ-
ent pump-probe delays, the temporal response of the lattice can be measured. Figure 2.1.3
shows an example of a radial average obtained by angularly integrating the diffraction im-
age shown in the insert. Immediately after photoexcitation, energy is transferred from the
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Figure 2.1.3: The radial average ob-
tained by angularly integrating the
diffraction image of titanium shown in
the insert. The image was averaged
from over 2500 electron pulses with an
energy of 100 keV. Three Bragg peaks
are marked with a square. Figure
adapted from Ref. [68] and Ref. [69].

electron subsystem to the phonon system, which moves towards a new higher thermal equi-
librium temperature. This causes the Debye-Waller factor and therefore the relative height of
the Bragg-peaks to decrease, which is caused by an increase of the mean square displacement
⟨u2⟩ of the atoms around their equilibrium positions. The background also increases due to
inelastically scattered electrons. The tracked change in mean square displacement can then
be correlated with the phonon temperature (see Chapter 7).
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2.2 Atomistic spin dynamics from ab initio theory

In this chapter a brief introduction of density functional theory (DFT) is presented following
Refs. [70] and [71]. The goal of this section is to shortly introduce fundamental principles of
density functional theory in order to motivate and justify the use of atomistic spin-dynamics
simulations for ultrafast magnetization dynamics.
For example, as spin systems are inherently quantum systems, it is not intuitively clear, why
the semiclassical approach made by atomistic spin-dynamics simulations compare well to
experimental measurements [72]. Furthermore, it requires some explaining, why the Heisen-
berg model that assumes localized spins or insulators can be used for transition metals that
feature an electron gas with itinerant electrons. Thus, the goal of this chapter is to estab-
lish the groundwork for atomistic spin-dynamics simulations from first-principle calculations.

The tremendous complexity of solving the Schrödinger equation for many interacting elec-
trons is the core problem that DFT is trying to solve. The non relativistic Hamiltonian Ĥ
for such a case can be written as:

Ĥ = −ℏ2
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where the indices i, j describe electrons with mass m and charge e, I, J indicate atomic nuclei
with their masses MI . RI and rI describe nuclei and electron coordinates, respectively, and
ZI is the atomic number. Since the nuclei are much heavier than electrons, the Born-
Oppenheimer approximation can be used, assuming fixed nuclei while treating the electrons
as dynamic objects. This simplifies the Hamiltonian to:
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= T̂ + Ŵ + V̂ext. (2.2.2)

Here, T̂ is the kinetic energy operator of the electrons, Ŵ is the operator determining the
Coulomb energy of electron-electron interactions and V̂ext is the external potential accounting
for the Coulomb interaction between electrons and nuclei. The total energy is the expectation
value of Ĥ

E = ⟨Ψ|Ĥ|Ψ⟩ = T +W +

∫
d3rVext(r)n(r), (2.2.3)

with T and W describing the expectation values of T̂ and Ŵ and n(r) being the electron
charge density. Hohneberg and Kohn showed, that the total energy of a system is a unique
functional of the ground-state electron density [73]. The expressions for the kinetic energy
and the electron-electron interaction are the same for any system, it is thus the external
potential that makes the Hamiltonian unique and hence specifies it [70]. Therefore, DFT
assumes that knowing ngs(r), the ground state electron density,

ngs(r) =
N∑
i=1

∫
d3ri|Ψgs(r1, r2, ...rN )|2δ(r− ri) (2.2.4)

implies that the potential used in the Hamiltonian is known. The full Hamiltonian and all
of its states including the excited ones are specified. This makes the charge density n(r) a
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key quantity in describing the ground state of the system and replacing the need for a many-
electron wave function. The energy of the ground state can be expressed via the ground-state
electron-charge density

E[n(r)] = T [n(r)] +W [n(r)] + Vext[n(r)]. (2.2.5)

and finding the exact ground-state density minimizes this energy. For an explicit form of
E[n(r)] one could minimize the expression in equation 2.2.5 with respect to n(r). In practice
this is challenging, especially for T [n(r)] and W [n(r)]. The solution of this problem was
attempted by Kohn and Sham [74].

2.2.1 The Kohn-Sham approach

For the Kohn-Sham approach it is first assumed that W , the electron-electron interaction
part of equation 2.2.5, is absent. In that case electrons moving in the field of an external
potential Veff can be described by the one-electron Schrödinger equation:(

−1

2
∇2 + Veff(r)

)
Ψi(r) = ϵiΨi(r). (2.2.6)

This equation is also referred to as the Kohn-Sham equation in the context of density-
functional theory calculations. The solutions of this equation can be used to calculate a
one-particle density by summing over all occupied states:

nop(r) =
∑
occ

|Ψ(r)|2. (2.2.7)

The basic principle of the Kohn-Sham approach is the assumption, that one can find an
effective potential Veff, such that the density nop is the same as the ground-state density
of the fully interacting system, ngs. It can be proven that this is true for a homogeneous
electron gas, but not in general. However, this is an efficient way to get an approximation
of the ground state electron density of a fully interacting system by carefully selecting an
effective potential, even if it results from a one-particle system.
The challenge is to find Veff so that nop(r) becomes equal to ngs(r). This can be done by
using the Hartree electrostatic interaction instead of the full electron-electron interaction. To
account for the error made by this approximation, one introduces the exchange-correlation
energy density ϵxc[nop(r)] and one can deduct an expression for Veff (more details on this in
Refs. [70, 75, 76]):

Veff(r) = Vext(r) +

∫
nop(r

′)
|r− r′|d

3r′ + ϵxc[nop(r)] + nop(r)
∂{ϵxc[nop(r)]}

∂nop(r)
. (2.2.8)

The Kohn-Sham equation (equation 2.2.6) can now be solved with the effective potential
introduced in equation 2.2.8. Since the effective potential of equation 2.2.8 depends on the
electron density, which is the property one is trying to derive, a self-consistent calculation has
to be performed, where an initial electron density is first guessed and then used to calculate
Veff. This Veff is then used to solve the Kohn-Sham equation which in return yields a new
electron density via equation 2.2.7, which is then used to calculate a new effective potential
Veff in equation 2.2.8. This is repeated until convergence is obtained. Since the electron
density is a key quantity in the DFT approach, other properties, such as the energy of the
ground state, can be calculated from it.
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2.2.2 Deducting magnetic properties

For magnetic materials, spin-up and spin-down electrons experience different effective po-
tentials V ↑

eff and V ↓
eff and therefore, one must treat the Kohn-Sham equation (equation 2.2.6)

separately for spin-up and spin-down states. That difference amounts to a constant shift
between the electron states of the two spin channels, which is referred to as exchange split-
ting. With this, important parameters of magnetic materials can be calculated, such as
the magnetic moment. Furthermore, it is possible to calculate the band structure or band
dispersion and the energy-resolved density of states, as well as atomic magnetic moments
and the interatomic exchange interactions. Therefore DFT calculations are performed for
k-points in the irreducible part of the first Brillouin zone. To that end, the Kohn-Sham
equation must be solved for the selected k-point.
One commonly used approach is to expand the unknown wave function Ψk(r) in a set of
basis functions χlk:

Ψk(r) =

lmax∑
l

clkχlk(r). (2.2.9)

In this sum, l is referring to an index that involves the principle quantum number, the
orbital quantum number, and the magnetic quantum number. There are different choices
for a set of basis functions χlk, giving rise to different electronic structure methods, such as
LCAO (linear combination of atomic orbitals), LAPW (linearized augmented plane waves)
or LMTO (linear muffin tin orbitals).
Based on equation 2.2.9, a system of equations can be deducted whose eigenstates Ψα,k can
be used to calculate the one-electron density (see Ref. [71] and Ref. [70] for more details).
This is done by summing over all possible k-vectors and occupied eigenstates for each spin
channel separately:

n↑(r) =
occupied∑

i

∑
k

∣∣∣Ψ↑
ik(r)

∣∣∣2 (2.2.10)

n↓(r) =
occupied∑

i

∑
k

∣∣∣Ψ↓
ik(r)

∣∣∣2 (2.2.11)

from which the electron and the magnetization densities (m(r)) are obtained through

n(r) = n↑(r) + n↓(r) (2.2.12)

m(r) = n↑(r)− n↓(r). (2.2.13)

Plotting the eigenvalues of the Kohn-Sham equation as function of k yields a band structure
plot. Figure 2.2.1 shows the band structure of bcc Fe for spin-up electrons on the left and
spin-down electrons on the right. The figure shows, that the eigenvalues strongly depend
on k, known as band dispersion. Furthermore, the exchange splitting is clearly visible,
meaning the spin-down states are shifted up in energy compared to the lower spin-up states.
Therefore, a higher number of spin-up states is occupied than spin-down states, yielding a net
magnetization. The exchange splitting is particularly noticeable around the Fermi level, as
these energy bands are dominated by the Fe 3d orbitals, which experience the largest effect
of the exchange interaction and hence have the largest exchange splitting. The magnetic
spin moment, based on the data shown in figure 2.2.1, coincides almost perfectly with the
experimentally measured magnetic moment.
Density functional theory can also be used to calculate the density of states of an electronic
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Figure 2.2.1: Band structure of bcc Fe. The band structure of spin-up electrons is shown
on the left and of spin-down electrons on the right-hand side (dashed). The Fermi energy is
marked as a line at 0 eV. Figure adapted from Ref. [77].

structure as well as to calculate the spin anisotropy coming from spin-orbit coupling. This
anisotropy locks the magnetization direction on specific crystalline orientations. More on
this will be discussed in Chapter 2.3.1.

2.2.3 From density functional theory to atomistic spin-dynamics simula-
tions

One of the most interesting results coming from DFT calculations for atomistic spin-dynamics
simulations is the magnetization density m(r). Figure 2.2.2 a) shows the magnetization den-
sity of bcc Fe. Darker areas indicate an increase in magnetization density, lighter areas an
absence of magnetization. The nuclei of the system, positioned at the corners of the image,
have most of the magnetization in their vicinity since the 3d orbitals are centered on these
atoms. Figure 2.2.2 b) shows the same magnetization density calculation for a larger area.
This magnetization localization is not unique to bcc Fe, but is found in most magnetic ma-
terials. This is caused by the mentioned exchange splitting of the delocalized electron states
with significant band dispersion, as shown in figure 2.2.1.
Since the areas of high magnetization density are located around the nuclei, and the intersti-
tial regions only contribute negligibly, the quantum mechanical description can be replaced
by an atomistic description of magnetism. Instead of using densities of spin-up and spin-
down electrons, the relevant information is replaced by an integrated property, such as a
magnetic moment. The magnetic moment of a single atom can therefore be treated as a
single spin in the Heisenberg model, as illustrated in the insert of figure 2.2.2 b).
The magnetization density shown in figure 2.2.2 is generated by electrons moving through the
material. If the time-dependent DFT (not discussed here) had been used to calculate this,
fluctuations around the time-independent densities would be visible in figure 2.2.2. With-
out an external driving stimulus, such as a laser, the frequency of such fluctuations must
come from the electrons traveling through the lattice. They spend some time at one atomic
site before jumping over to the next one. The exact frequency of this is material dependent.
They can be estimated to be between 10-100 fs for most materials, based on an estimation on
drift velocity and average atomic distance. Therefore, the description of the magnetization
dynamics of atomic spins using averaged atomistic moments is valid on time scales larger
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Figure 2.2.2: (a) Magnetization density of bcc Fe in real space. Darker areas indicate an
increase in magnetization density, lighter areas indicate a lower magnetization density. The
nuclei of the system are located at the corners of the image.
(b) Schematic illustration of multiscale spin modeling. Like in subfigure (a) darker areas
indicate an increase in magnetization density with subfigure (a) on a larger scale. Since the
areas of high magnetization density are located around the nuclei, they can be treated as a
single spin in the Heisenberg model and in atomistic spin-dynamics simulations. This step
is indicated in the top right. Image adapted from Ref. [70].

than 10–100 fs. In this case, the smaller, faster fluctuations of the magnetization density can
be ignored and a Born–Oppenheimer-like (adiabatic) approximation can be adopted for the
magnitude and direction of the atomic spins.
The new atomistic description of magnetism uses a Heisenberg Hamiltonian that takes the
form

H = −
∑
i ̸=j

Ji,jSi · Sj , (2.2.14)

where Ji,j is the exchange interaction between the magnetic moments Si and Sj at sites i
and j (more on this in Chapter 2.3.1).
The connection between DFT and the atomistic Heisenberg model was made by Liechtenstein
et al. [78, 79]. They mapped the electronic structure onto a Heisenberg pair interaction
potential Ji,j using the magnetic force theorem. They found that for any two spins, for a
small angle deviation from the ground state θ, the total energy changes proportional to θ2.
Using multiple scattering theory, an expression was found for Ji,j

Jij =
Im

4π

∫ EF

−∞
Tr

[
δi(E)G↑

ij(E)δj(E)G↓
ji(E)

]
dE, (2.2.15)

where the trace is over orbital indices. EF is the Fermi energy, δi(E) yields the local exchange
splitting between spin-up and spin-down states at site i and Gσ

ij(E) is the Green function
that connects site i and j for electrons with spin σ. An in depth explanation and derivation
of this result is found in Refs. [78] and [79] and it is just introduced here for completeness.
It is worth noting, that equation 2.2.15 was derived for a collinear spin alignment, it is thus
in principle not relevant at finit temperatures. Despite this, equation 2.2.15 can still be
treated as a good approximation for the Heisenberg exchange at finite temperature [70].
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2.3 Modeling ultrafast magnetization dynamics with atom-
istic spin-dynamics simulations

This chapter presents the basic model used in this thesis, atomistic spin-dynamics (ASD)
simulations. It relies on the Heisenberg model, that uses classical spins whose dynamics is
described by the stochastic-Landau–Lifshitz–Gilbert equation.
The connection between DFT-based methods to ASD was already presented in the previ-
ous chapter. Even though spin systems are quantum systems, the semiclassical approach
made by ASD yields good agreement with experimental measurements for the description of
magnetic systems at elevated temperatures [72]. The simplifications made by the atomistic
model are necessities for a numerical approach, since even simulating only few atoms over
short times using a full quantum-mechanical picture and the time-dependent DFT requires
enormous computational resources [80].
The choice of an atomistic description of magnetization dynamics over a continuous vector
field, as is done in micromagnetic simulations, has several advantages. First, the building
block of materials is the atom, and hence a description of magnetism in an atomistic way is
very natural and allows for an interpretation of experimental results in a deeper and clearer
way. The stochastic Landau–Lifshitz–Gilbert equation is able to simulate magnetic mate-
rials at elevated temperatures. This makes it an excellent tool to simulate many ultrafast
effects and phenomena such as ultrafast demagnetization of transition metals or magnetiza-
tion switching, as introduced in Chapter 1.2. As shown in Chapter 2.2, many parameters
such as the Heisenberg exchange can be derived from first principles using density-functional
theory, without the need of using experimental results as input for simulations. Further-
more, atomistic spin-dynamics simulations are able to reproduce a wide range of magnetic
phenomena, from ferro-, antiferro- and ferrimagnets to domain walls and skyrmions.

2.3.1 The Heisenberg model

The Heisenberg model was originally proposed by Werner Heisenberg in 1928 [81]. It assumes
classical spins S normalized via the atomic spin moment µs. The spin moment µs is related
to the saturation magnetization via

µs =
Msa

3

n
, (2.3.1)

where Ms is the saturation magnetization at 0 K, a is the size of the unit cell, and n is the
number of atoms per unit cell. µs is typically given in multiples of the Bohr magneton µB

owing to its electronic origin.
Each spin interacts with its neighbouring spins via the Heisenberg exchange interaction J
and the Heisenberg Hamiltonian becomes:

Hexc = −
∑
i ̸=j

JijSi · Sj . (2.3.2)

Here Si = µi/µs,i represents a classical, normalized spin vector at site i. Si, couples to its
neighboring spin Sj via the coupling constant Jij with Jij > 0 for ferromagnetic coupling
and Jij < 0 for antiferromagnetic coupling.
Heisenberg assumed that the exchange between two spins comes from the overlapping of
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the atomic orbitals and thus only includes nearest-neighbour interactions. However, this is
only true for insulators or localized spins. In metals electrons have itinerant character and
the Heisenberg exchange in these materials is caused by Coulomb interaction and Pauli’s
exclusion principle for fermions [82].
As described in Chapter 2.2, it is possible to calculate the Heisenberg exchange J from first
principles using density functional theory. A second possibility for calculating the exchange
interaction J is using experimental parameters such as the Curie temperature Tc. For a
generic atomistic model with z nearest neighbour interactions, the exchange constant can be
derived from the mean-field expression [83]:

J =
3kBTc

z · ϵ . (2.3.3)

Here kB is the Boltzmann constant and ϵ is a correction factor which arises from magnon-
magnon interaction in the 3D Heisenberg model [84].
Even though the original model by Heisenberg only considered nearest-neighbour exchange,
more complex spin structures can be modeled using frustrated exchange interactions over
many neighbours, such as spin spirals or Skyrmions [85].

Additional contributions

The Heisenberg exchange alone is fully isotropic and yields magnetic ordering on an atomic
level. The magnetic anisotropy is a second important contribution to the Hamiltonian.
It is responsible for the alignment along a preferred spatial direction. There are several
effects which give rise to anisotropy, but the most important one is the magnetocrystalline
anisotropy coming from spin-orbit coupling which connects the spin degrees of freedom with
the electronic orbitals, i.e. the crystal lattice.
The contribution of the anisotropy reads as:

Hani = −dz
∑
i

S2
i,z. (2.3.4)

Depending on the sign of the anisotropy constant dz, the term denotes either an easy axis,
which lowers the internal energy if the magnetization aligns itself in this direction, or a hard
axis, which causes an energy increase.
Like the Heisenberg exchange, the magnetocrystalline anisotropy can be calculated from first
principles using DFT [70]. The anisotropy only plays a minor role in ultrafast magnetiza-
tion dynamics since its contribution to the total energy of the Hamiltonian is typically just
around 1% of the exchange contribution. However, it can play an important role during the
remagnetization after the initial excitation, as it causes the magnetization to realign itself
with the easy axis of the system. This process typically happens on timescales of several
picoseconds up to the nanosecond range.
At last the energy of an external field must be considered in the Hamiltonian. This is done
via the Zeeman energy term that can be written as

HZee = −µs

∑
i

Si ·B. (2.3.5)

This term makes it energetically more favourable for the spins to align themselves parallel
to the applied external magnetic field B.
The total energy of the system is therefore the sum of all contributions introduced:

H = Hexc +Hani +HZee. (2.3.6)
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Furthermore, additional effects such as long ranging dipole-dipole interaction or Dzyaloshin-
skii–Moriya interaction, can be added to the Hamiltonian. However, dipole-dipole interaction
is not included here, as it is of limited importance for ultrafast spin dynamics and including
it comes with a large computational cost.

2.3.2 Magnetic ordering phenomena

Ferromagnetism

The simplest magnetically ordered state is a ferromagnet (FM). Typical examples are the
transition metals iron, nickel and cobalt as well as some of the lanthanide metals [82]. In a
ferromagnet, the magnetic moments of individual atoms are aligned in parallel to each other
in small regions, so-called domains. This parallel ordering of magnetic moments is illustrated
in figure 2.3.1 a). In an unmagnetized state adjacent domains are statistically distributed

Figure 2.3.1: Illustrations of typical magnetically ordered states. (a) Ferromagnetism, (b)
Ferrimagnetism, (c) Antiferromagnetism.

and have different magnetic net moments (the sum of all individual magnetic moments)
pointing in different directions. If a magnetic field is applied the individual domains can
align themselves with the external field becoming a permanent magnet. Above the Curie
temperature Tc a ferromagnet looses its magnetic ordering and becomes paramagnetic.

Ferrimagnetism

In ferrimagnets the magnetic moments of adjacent spins µA and µB are of different size and
point in opposite directions since they couple antiferromagnetically. This means the Heisen-
berg exchange in equation 2.3.2 is negative.
Figure 2.3.1 b) shows an illustration of a ferrimagnetic ordering of spins. In general the mag-
netic moments of both sublattices do not fully cancel each other, however, depending on the
two sublattices and their respective material parameters, ferrimagnets can feature a so-called
magnetization compensation temperature TM. TM < Tc is referring to the temperature at
which the magnetization of both sublattice cancels each other, so that the total magnetiza-
tion becomes zero. For temperatures different to TM a net-magnetization can be measured.
Depending on the exact ratio of magnetic moments, ferrimagnets can feature ferromagnetic
like behaviour µA ≪ µB or an antiferromagnetic like behaviour µA ≈ µB. Typical examples
of ferrimagnets are GdFeCo or Mn2RuxGa.
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Antiferromagnetism

An antiferromagnet is a ferrimagnet where the magnetic moments of both sublattices are
of equal size µA = µB. They therefore compensate each other completely and no net mag-
netization can be measured. An illustration of an antiferromagnetic alignment of spins is
shown in figure 2.3.1 c). The equivalent to the Curie temperature of a ferromagnet, is called
Néel temperature, TN for antiferromagnets. It describes the temperature at which an anti-
ferromagnet becomes paramagnetic and no magnetic order can be found. An example of an
antiferromagnetic material is MnO [82].

Paramagnet

Due to the finite Heisenberg exchange strength between magnetic moments, the magnetic
order will eventually undergo a second order phase transition from an ordered state to an
unordered paramagnetic state. This critical temperature is called Curie temperature Tc for
ferro- and ferrimagnets and Néel temperature, TN for antiferromagnets.

2.3.3 The stochastic Landau-Lifshitz-Gilbert equation

In the previous section the classic Heisenberg Hamiltonian was introduced. It describes
the equilibrium state of the spin system and its magnetic properties. In order to simulate
non-equilibrium scenarios the equation of motion of each spin, the Landau-Lifshitz-Gilbert
equation

∂S

∂t
= − γ

(1 + α2)µs
Si ×Hi −

γα

(1 + α2)µs
Si × (Si ×Hi) , (2.3.7)

needs to be solved. In this work this is done numerically for millions of spins which yields
the non-equilibirum dynamics of the entire spin ensemble.

Spin dynamics

The equation of motion of an electron can be derived using the quantum-mechanical Heisen-
berg equation of motion:

iℏ
∂⟨s̃(t)⟩

∂t
= ⟨[s̃(t), H̃]⟩ (2.3.8)

Here s̃(t) denotes the quantum-mechanical angular momentum operator and H̃ the Hamil-
tonian. Assuming that H̃ is composed of a polynomial of angular momentum operators s̃,
the commutator [s̃(t), H̃(s̃(t))] can be developed in ℏ:

[s̃(t), H̃(s̃(t))] = −iℏ
(
s̃(t)× ∂

∂s̃

)
H̃(s̃(t)) +O(ℏ2). (2.3.9)

Therefore, the equation of motion can be written as:

iℏ
∂⟨s̃(t)⟩

∂t
= −iℏ⟨

(
s̃(t)× ∂

∂s̃

)
H̃(s̃(t))⟩+O(ℏ2). (2.3.10)
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For ℏ → 0 this quantum-mechanical equation of motion transitions into the classical limit
case

∂si
∂t

= −
(
si ×

∂

∂si

)
H(si) (2.3.11)

The quantum-mechanical expectation values ⟨s̃⟩ and ⟨H̃⟩ become the ‘classical’ quantities s
and H according to the Ehrenfest theorem [86]. The spin si of an atom i is related to the
magnetic moment by means of the gyromagnetic ratio γ = gµB/ℏ:

si =
µi

γ
=

µs

γ

µi

µs
=

µs

γ
Si. (2.3.12)

The factor µs was introduced in equation 2.3.1 and Si =
µi
µs

is a normalized spin vector.
The derivative of the Hamiltonian

−∂H(si)

∂si
=: Hi (2.3.13)

is referred to as the effective field Hi, which can be used to write equation 2.3.11 as

∂Si

∂t
= − γ

µs
Si ×Hi. (2.3.14)

This equation is the dissipationless Landau-Lifshitz equation [87] and it describes the pre-
cessional motion of a normalized, magnetic moment in an effective field. However, this
equation is fully energy conserving and an excited spin described by this equation would
precess forever due to a missing damping term. Therefore Landau and Lifshitz introduced a
phenomenological damping parameter αLL yielding the Landau-Lifshitz (LL) equation [87]:

∂Si

∂t
= − γ

µs
Si ×Hi −

αLL

µs
Si × (Si ×Hi). (2.3.15)

It is a differential equation describing the temporal behavior of spins under the action of
an effective magnetic field. The first summand on the right-hand side of equation (2.3.15)
describes the precession of the spin around Hi, while the second part of the right-hand side
accounts for the dissipation, eventually leading to a parallel alignment with Hi. Figure 2.3.2
illustrates the motion of a spin around the field Hi. The propagation motion is shown in red
and the relaxation movement in green.
However, the Landau-Lifshitz equation leads to an unphysical behavior for the limiting case
of a large damping, αLL → ∞. Therefore, in 1955, T. L. Gilbert proposed an alternative
damping term yielding the Landau-Lifshitz-Gilbert (LLG) equation [88]:

∂Si

∂t
= − γ

µs
Si ×Hi + αSi ×

∂Si

∂t
. (2.3.16)

Similar to the Landau-Lifshitz equation α denotes a phenomenological damping constant,
but it is not identical to αLL. For practical reasons it is easier to write equation (2.3.16) in
an explicit form. This is done by applying it once to itself and making use of |Si| = 1 which
yields

∂S

∂t
= − γ

(1 + α2)µs
Si ×Hi −

γα

(1 + α2)µs
Si × (Si ×Hi) . (2.3.17)

In the explicit form of the LLG equation the gyromagnetic ratio γ is renormalized via

γL =
γ

(1 + α2)µs
(2.3.18)
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Figure 2.3.2: Illustration of the motion of a
spin in an effective field Hi. The motion is
composed of a propagation motion (red) and
a relaxation motion (green).

with the scalar isotropic Gilbert damping α. This renormalization of the gyromagnetic ratio
is a consequence of expressing the Landau–Lifshitz–Gilbert equation in the same form as the
Landau–Lifshitz equation. In the case of small damping, α ≪ 1, it becomes clear, that the
two equations are equivalent [89].

In the context of magnetization dynamics, and in particular ASD simulations, any effects
that dissipate energy and angular momentum out of the spin system to the environment are
denoted as ‘damping’ and are part of the Gilbert damping α. The most important damping
mechanism is magnon-phonon scattering at elevated temperature, with associated spin-flip
scattering. First-principle calculations of damping typically only deal with this dominant
mechanism [70].
This is the basic mechanism behind the spin-transfer torque, which can lead to damping
or anti-damping in the LLG. In addition to that, a dynamic magnetic system radiates elec-
tromagnetic waves as described by Maxwell’s equations, which also can involve angular
momentum transfer [70]. In a more general form of the LLG the isotropic Gilbert damping
α is replaced by a 3× 3 damping tensor α̃(m).
In this general form, the damping also depends on the magnetization direction m. Like
with other parameters of atomistic spin-dynamics simulations the Gilbert damping can be
calculated from first principles. It is either possible to calculate it using the breathing Fermi
surface model and the torque correlation model [90, 91, 92] or using scattering theory from
linear response [93, 94, 95].
However, most of the time, the damping tensor is assumed to be isotropic and scalar, replac-
ing the full tensor with a scalar parameter α. This is mostly done for simplicity and ease of
use. Especially in atomistic spin-dynamics simulation the Gilbert damping is often treated
as the only free parameter, after using ab initio values and/or experimental values to fix all
other simulation parameters.
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Langevin dynamics

Since the Gilbert damping dissipates energy and angular momentum, in this context it is
understood as the coupling strength between the spin-system and the lattice heat bath.
Yet the LLG in the form of equation (2.3.17) only describes the behavior of spins without
thermal fluctuations at T = 0 K. Thermal effects cause thermodynamic fluctuations of the
spin moments. For high enough temperatures, they can be stronger than the Heisenberg
exchange interaction giving rise to a ferromagnetic-paramagnetic transition.
These effects can be taken into account using Langevin dynamics. This approach was devel-
oped in 1963 by William F. Brown. The basic idea is to assume that the thermal fluctuations
on each atomic site can be represented by a Gaussian white noise term [96]. This is done by
adding a stochasic field ζi(t) to the effective field Hi so that

H′
i = ζi(t)−

∂H
∂Si

. (2.3.19)

The thermal noise ζ is characterized by white noise distributed according to a Gaussian with

⟨ζi(t)⟩ = 0 and ⟨ζνi (t)ζθj (t′)⟩ = 2
αµs

γ
kBTδi,jδν,θδ(t− t′). (2.3.20)

Here the indices i and j represent grid locations and ν, θ Cartesian coordinates. T is the
electron temperature and the coefficient in front of the delta function in equation 2.3.20 is
determined by the fluctuation dissipation theorem.
It is important to note, that the noise scaling in equation 2.3.20 directly depends on the
Gilbert damping α. At first, this is unsurprising since the Gilbert damping dissipates energy
out of the spin system and thus, in order to maintain an equilibrium more energy needs to
be introduced via ζi(t). On the other hand the noise scaling with α also means a direct
coupling to the electron heat bath governed by α, since equation 2.3.20 also scales with the
electron temperature T . The reaction speed of the spin system to a rapid electron temper-
ature change, therefore directly scales with α and thus the Gilbert damping also represents
the coupling strength between the electron and the spin subsystem.

The used Langevin dynamics fall short on very short timescales. On one hand they re-
quire a well-defined electron temperature, which is typically not the case in the first 100
fs after excitation with a femtosecond scale laser pulse. On the other hand ζi(t) describes
white noise uncorrelated in time and space for short timescales, however, the thermal fluctu-
ations are correlated in time, coming from the dynamic interactions between the atoms and
lattice/electron system and thus the noise is coloured [97].
For very large systems and/or long timescales, numerical feasibility limits the use of ASD
simulations and the Landau-Lifshitz-Gilbert equation. In many cases it is simply too time
consuming to solve the LLG for millions of spins over several hundred picoseconds. Instead
it is easier to use a different model such as the Landau-Lifshitz-Bloch equation or micro-
magnetic simulations. Atomistic spin-dynamics simulations bridge the gap between ab initio
methods and micromagnetic simulations on the nanometer and picosecond scale.
The Landau–Lifshitz equations for interacting spin systems are coupled non-linear differen-
tial equations. There are only a few special cases for which analytical solutions exist, such
as for a two-spin system or for a coherent rotation of coupled spins in an external magnetic
field.
There are a number of conservation relations that can be derived analytically, that also apply
for general numerical simulations [70].
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In the simplest case with T = 0 K and α = 0 the total energy of the spin system is conserved
as there is no channel through which energy is able to leave or be added to the system. In
this case the total angular momentum is also conserved for an isotropic Heisenberg exchange,
as no external torque acts on the system.
However, as soon as α > 0 the Landau-Lifshitz-Gilbert equation is no longer energy or an-
gular momentum conserving. Regardless of this, the length of individual spins is always
conserved independent of other parameters such as damping or temperature. In the typical
case for atomistic spin-dynamics simulations T > 0 and α > 0 the length of individual spins is
in fact the only preserved quantity. In this case, all other quantities are derived by averaging
over the entire spin bath after solving the Landau-Lifshitz-Gilbert equation numerically.

2.3.4 A basic overview over the numerical methods

The atomistic spin-dynamics simulation of this work are largely performed on graphics pro-
cessing units (GPUs) working in tandem with a central processing unit (CPU). The simula-
tion of the complete spin system, especially the numerical solution of the Landau-Lifshitz-
Gilbert equation is done on the GPUs while the CPU controls all parameters of the simula-
tion. This is done since GPUs are designed to compute the same instructions with different
data sets simultaneously [98]. The code was in large parts developed by A. Donges in the
group of U. Nowak at the University of Konstanz. More details on the numerics and the
program can be found in Ref. [99].
The spin simulations are performed on a 3-dimensional grid, where each grid site is occupied
by a spin of one of the sublattices. The grid is extended in each direction by a halo, in which
the boundary conditions are applied (such as open- or periodic boundary conditions) [99].
The time evolution of the spin system is simulated on the GPUs and only the temperature
evolution of the electron and phonon systems are computed on the CPU. Thermal noise for
the electron and phonon heat baths is generated using the host-API of the CuRAND library
routines [99, 100].
The Landau-Lifshitz-Gilbert equation belongs to the class of ordinary differential equations
of first order and can thus be solved numerically with the help of a one-step method for given
initial conditions.
The Heun method [101] uses a predictor-corrector method which matches the Stratonovich
interpretation of the stochastic process. This algorithm first calculates a predictor value as
an approximation, which is then used to calculate the final approximation in a second step.
In addition, discrete time steps ∆t are used for the temporal evolution in the method, so
that tn = n · ∆ t. In the following, the shorthand notation Sn = S(tn) is used. For a
one-dimensional differential equation of the form

∂S(t)

∂t
= f (S(t), H(t), t) + g (S(t), t) · ζ(t) (2.3.21)

the predictor Sn+1 is first determined starting from the value Sn using an Euler integration
method:

S̄n+1 = Sn + f(Sn, Hn, tn)∆t+ g(Sn, tn) · ζ̄n (2.3.22)
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ζ(t) represents the white noise introduced in section 2.3.3. Afterwards, in a second step, the
value Sn+1 after (n+1) time steps is derived as

Sn+1 = Sn +
1

2

(
f(Sn, Hn, tn) + f(S̄n+1, H̄n+1, tn+1)

)
∆t

+
1

2

(
g(Sn, tn) + g(S̄n+1, tn+1)

)
· ζ̄n

(2.3.23)

The deterministic error convergence of this method is 2, which means that the error goes to
zero with the square of the step size.

2.3.5 Modeling laser excitations of magnetic materials

The equilibrium state of an electron system in a metal can be described by an electron tem-
perature Tel and a corresponding Fermi-Dirac distribution of the electron energy.
When the metal is excited by a laser, almost all of the energy is absorbed by the electron sys-
tem by exciting electrons to higher energy levels, whereas the lattice system remains mostly
unaffected. On a timescale of a few hundred femtoseconds electron-electron scattering leads
to a thermalization back to a Fermi-Dirac distribution of a new, higher electron temperature.
Due to the small specific heat of the electrons this temperature can reach up to several thou-
sand Kelvin. So far the phonon system remained unaffected by the laser and its temperature
Tph remains similar to its initial temperature. However, electron-phonon scattering slowly
leads to an equilibration of the two heat baths over the next picoseconds.
All of these processes can be described in a simple way by the two-temperature model
(TTM). It was first proposed by Kaganov et al. [102] and is commonly used in atomistic
spin-dynamics simulations. At its core it is a simple version of the three-temperature model
used by Beaurepaire et al. to describe ultrafast demagnetization in nickel [5] without the
spin system, which is simulated separately using ASD.

The two-temperature model

The two-temperature model can be expressed as two coupled differential equations:

Cel
∂Tel

∂t
= −gep (Tel − Tph) + Pl(t) (2.3.24)

Cph
∂Tel

∂t
= +gph (Tel − Tph) , (2.3.25)

where Cel is the electron specific heat, Cph describes the specific heat of the phonons and
Pl(t) characterizes the energy coming from the laser. In ultrafast magnetism Pl(t) is typically
assumed to be Gaussian shaped with a full width at half maximum between ≈ 50 − 500 fs.
Cel, Cph and gep are highly material-dependent and can be calculated from ab initio calcu-
lations or determined in experiments.

The electron specific heat Cel(T ) can be derived via the internal energy density u using
Cel(T ) =

du
dT . Using the Sommerfeld expansion of Drude’s free electron gas yields [82]:

Cel(T ) =
du

dT
≈ π2k2B

3
Tg(εF ) = γT. (2.3.26)
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Figure 2.3.3: An example of the electron temperature evolution (red) and the phonon
temperature (blue, dashed) after excitation with a laser at t = 0 (grey a.u.) following the
two-temperature model.

Here kB is the Boltzmann constant and g(εF ) describes the density of states. γ is defined

as γ =
π2k2B
3 g(εF ) and thus the electronic specific heat increases linearly with the temperature.

The phonon specific heat Cph can be calculated in the same way, using the internal en-

ergy via Cph(T ) =
duph

dT . This energy term itself can be modeled using the Debye- or the
Einstein model [103, 104]. For elevated temperatures both models yield very similar results
and the Einstein model only falls short for very low temperatures. However, unlike for the
Debye model, an explicit analytically solvable expression can be given for the Einstein model:

Cph(Tph) ≈ 3nkB

(
TE

Tph

)2 eTE/Tph

(eTE/Tph − 1)2
, (2.3.27)

with TE being the Einstein temperature and n the atom density.

The electron phonon coupling gep describes the energy transfer rate between the electron
and phonon systems and can be calculated via [105]:

gep(Tel) =
−πk3BλepT

2
D

2ℏD(εF )

∫ ∞

−∞
D2(ε)

∂f

∂ε
dε, (2.3.28)

with TD being the Debye temperature and λep being a dimensionless coupling constant.
Figure 2.3.3 shows an example simulation of the two-temperature model. The dynamics of
the electron temperature Tel is shown in red and the phonon temperature Tph in blue, after
excitation with a 100 fs laser pulse at t = 0. Figure 2.3.3 shows a rapid increase of the
electron temperature during the laser excitation. After ≈ 300 fs Tel reaches its maximum
and equilibrates with the phonons over the next 2-3 ps until a new common equilibrium
temperature is reached.
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Linking the two-temperature model and the spin system

Atomistic spin-dynamics simulations are not energy conserving except in some special cases,
such as in the absence of damping. However, it is possible to link the electron-phonon
subsystems, modeled via the two-temperature model, with the spin subsystem, modeled
using atomistic spin-dynamics simulations, and thus make the whole system, consisting of
these three subsystems, energy conserving.
This is done by monitoring the energy change ∆Es of the spin system between two timesteps
following Ref. [106] via:

∆Es =
s2

s · (s+ 1)
(H{Si(t+∆t)} −H{Si(t)}) (2.3.29)

H is referring to the Heisenberg Hamiltonian (equation 2.3.6), ∆t is the numerical timestep

and s the spin quantum number s. The factor s2

s·(s+1) accounts for the fact that the spins

are quantized (for example s ≈ 1/2 for nickel), but the classical Heisenberg Hamiltonian
assumes s = ∞ which, if uncorrected, yields a false spin energy.
For nickel with s ≈ 1/2 this yields a correction factor of s2

s·(s+1) = 1/3, for cobalt with s ≈ 3/2

the correction factor is 0.6 and for iron with s ≈ 2 the correction factor becomes 2/3.
In order to couple the energy change of the spin system to the two-temperature model, ∆Es

is subtracted from the energy subsystem via a modified TTM:

Cel
∆Tel

∆t
= −gep (Tel − Tph) + Pl(t)−

∆Es

∆t
. (2.3.30)

This assumes, that the spin system receives all of its energy from the electron subsystem.
Furthermore, when the spin system remagnetizes, which corresponds to a decrease in energy,
the energy of the spin system is transfered back to the electron system.
Direct spin-phonon coupling is not considered here, which, is a reasonable approximation in
transition metals, due to the fast time scales of the demagnetization dynamics [14, 107] and
the low magnetocrystalline anisotropy of transition metals, such as nickel [108]. However, in
rare-earth elements such as terbium, a direct spin-phonon coupling might be necessary to be
included [109].

The two-temperature model and its shortcomings

Due to its simplicity, the TTM has several severe shortcomings that will be addressed briefly.
First, while the electron system only takes a couple of hundred femtoseconds to thermalize
and follows a Fermi-Dirac distribution, it is in a non-equilibrium state during this time and
assigning an electron temperature Tel during this time is not possible. It remains challeng-
ing to model this non-equilibrium state, but there have been different additions proposed
to address this problem, for example by delaying the electron heating via a phenomenolog-
ical thermalization time [110]. Another proposed idea is to divide the electronic system in
a thermal bath that contains the majority of thermal electrons at temperature Tel and a
second non-thermal electron bath, that contains a laser-excited distribution, which relaxes,
driving energy into the thermal distribution through electron-electron and electron-phonon
interactions [111].
Similar to the electron system, the phonon system also remains in a non-thermal state for
several tens of picoseconds after laser excitation, which also makes assigning a temperature
during this time problematic.
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2.3. Modeling ultrafast magnetization dynamics with atomistic spin-dynamics simulations

To address this problem a division of the lattice in N independent phonon subsystems has
been proposed, that interact with one another through phonon-phonon scattering and with
the electrons via electron-phonon scattering. Therefore, these phonon subsystems evolve in-
dependently and a separate ”lattice temperature” for each of them can be defined [112, 113].
Furthermore, without any additions, the spin degree of freedom is not addressed in the TTM
model. A way to directly tie the spin system to the TTM model was presented in Chap-
ter 2.3.5 or can be found in Ref. [114, 109].
The TTM assumes the electron-phonon coupling gep to be constant and the electronic specific
heat to increase linearly via Cel(T ) = γT . In many cases this is a valid approximation, but
many parameters of the TTM itself are temperature dependent [115, 105]. It is possible to
include these temperature dependencies into the model, however, they are highly material-
dependent and require extensive ab initio calculations or experimental measurements of the
simulated material. At last, additional temperature effects such as surfaces or heat diffusion
are not considered, but can be included if necessary within the general TTM framework.
For ASD it is in most cases sufficient to simply calculate the presented simple version of the
TTM. Most corrections are either still under development, rely heavily on ab initio calcu-
lations or experimental measurements, and are often just small corrections to the existing
model. These additions have often only limited impact on the spin-dynamics simulations
itself, and thus do not justify the effort it takes to adapt them. The two-temperature model
therefore remains the most commonly used model to describe electron and phonon tempera-
ture dynamics for ASD and ultrafast demagnetization dynamics and corrections or additions
are only included if they are needed for a specific problem.

2.3.6 Phenomenological spin models

Since atomistic spin dynamic models typically require large numerical efforts, it is of great
interest to find phenomenological models that compare well to ASD simulations with as little
loss of accuracy as possible. These models should be well suited to describe typical ultrafast
phenomena, such as rapid demagnetization and switching of ferrimagnets. This is typically
done by using micromagnetic simulations and macrospin models. The idea is to combine
a large number of atomistic spins into a single large macrospin and find new equations of
motion for these macrospins.
To that end, two models are briefly presented here, at first a short introduction to mean-field-
spin models as they often are building blocks for other, more sophisticated phenomenological
models and second, the Baryakhtar model proposed by Mentink and co-workers [116].

Mean-field-spin model

The mean-field approximation (MFA) assumes that all spins are statistically equivalent and
each spin interacts with a similar effective field surrounding it. This effective field is based on
an averaged equilibrium distribution surrounding the spin and by doing this all interactions
of individual spins like in the Heisenberg model are replaced with a single spin coupled to
an effective field.

Si · Sj → Si · ⟨S⟩ (2.3.31)
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This reduces the many-body problem to an effective one-body problem which can be solved
at much lower computational cost. Thus the mean-field Hamiltonian can be written as [82]:

HMF = −
∑
i

Si · (zJ⟨S⟩) . (2.3.32)

Here z is the number of nearest neighbor sites of spin i and J is the Heisenberg exchange
coupling. The expression in the brackets on the right-hand side does not depend on any
lattice site and can thus can be written as a magnetic field:

µsHMF = zJm. (2.3.33)

Here the average magnetization m =
∑

i
Si
N was used, with N being the number of spins.

For a ferrimagnet with sublattices a and b with exchange constants Jaa between sublattice
a spins, Jbb between sublattice b spins and Jab as coupling between sublattice a and b spins,
the mean field becomes

µaH
MFA
a = zaJaama + zabJabmb. (2.3.34)

Here za and zab are the numbers of first nearest neighbours of type a and b, respectively,
µa is the magnetic moment of spin a. The element-specific equilibrium magnetization can
be calculated via the self-consistent solution of ma = L(βµaH

MFA
a ) and mb = L(βµbH

MFA
b ).

Where L(x) is the Langevin function and β = 1/kBT and T is the electron temperature.

Baryakhtar model

A simple model for describing element-specific magnetization dynamics and switching in
ferrimagnets with sublattices a and b was proposed by Mentink and co-workers [116]. Longi-
tudinal spin dynamics, describing the change along the initial magnetization direction or an
applied field (typically defined as the z-axis), were derived from the Onsager relations [117]

µa

γa

dma

dt
= αB

a µaHa + αexc(µaHa − µbHb) (2.3.35)

µb

γb

dmb

dt
= αB

b µbHb + αexc(µbHb − µaHa). (2.3.36)

Here, αB
a,b are relativistic relaxation parameter, which dissipate angular momentum out of the

spin system, and αexc is the exchange relaxation parameter describing the rate of dissipation
of angular momentum between the sublattices. Ha(b) is an internal effective field described
later. Equations 2.3.35 and 2.3.36 are set up so that the total angular momentum is
conserved. Within this model, the values for αB

a,b and αexc are not further specified, but
used as fitting parameters when comparing to experiments. They are typically assumed to
be constant. The internal effective field Ha(b), acting on sublattice a(b), are derived from a
non-equilibrium mean-field approximation,

µaHa = −β−1L−1(ma) + µaH
MFA
a , (2.3.37)

where, L−1(x) is the inverse Langevin function, β = 1/kBT and T is the electron tempera-
ture. At equilibrium, the effective field is Ha = 0, as ma = L(βµaH

MFA
a ) and thus the right-

hand side of equation 2.3.37 vanishes. By solving equations (2.3.35) and (2.3.36) together
with the two-temperature model, describing the electron and phonon temperature dynamics
and explained in more detail in Chapter 2.3.5, ultrafast magnetization dynamics similar to
atomistic spin-dynamics simulations can be obtained. It is furthermore possible to use this
approach to discuss element-specific demagnetization and switching dynamics [118, 119].
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Chapter 3

Unifying femtosecond and
picosecond single-pulse magnetic
switching in GdFeCo

The results of this chapter have been published in

� F. Jakobs, T. A. Ostler, C.-H. Lambert, Y. Yang, S. Salahuddin, R. B. Wilson, J.
Gorchon, J. Bokor, and U. Atxitia, Unifying femtosecond and picosecond single-pulse
magnetic switching in Gd-Fe-Co, Physical Review B 103 p. 104422, (Mar 2021).

and the content of this chapter is in large parts identical with the published work. All exper-
iments have been performed by J. Gorchon and coworkers from the University of California
in Berkeley.

The published version can be found at https://doi.org/10.1103/PhysRevB.103.104422

3.1 Introduction

The speed of switching between two stable magnetic states has become a major bottleneck
for future advancement of magnetic-based information technologies. The use of femtosecond
laser pulses emerged as a promising solution for the ultrafast control of magnetism by the
demonstration of subpicosecond spin dynamics in nickel [5, 14]. The number of potential
applications of this ultrafast spin dynamics quickly increased after the discovery of single
pulse switching of the magnetic polarity in ferrimagnetic GdFeCo alloys [24, 6, 32, 26]. Fur-
ther development of devices based on single-pulse switching, e.g. magnetic tunnel junctions,
needs of not only a complete understanding of the switching mechanisms but also providing
computational means for realistic design of, for example, spintronics operations using ferri-
magnets, such as the energy efficient spin-orbit switching [120, 121, 122] and high velocity
domain wall motion driven by fields [123], electric currents [124] and thermal gradients [125].
It was shown that the heat provided by the femtosecond optical pulse alone is already a
sufficient stimulus to switch the magnetization [32, 33, 126]. Since the commonly accepted
driving mechanism is based on faster exchange of angular momentum between sublattices
(∼ 100 fs) than magnetization relaxation to the medium, the efficiency of such a mechanism
should be drastically reduced at longer time scales [126]. This picture was contested by

https://doi.org/10.1103/PhysRevB.103.104422


Chapter 3. Unifying femtosecond and picosecond single-pulse magnetic switching in
GdFeCo

the observation of both thermal single-pulse AOS in GdFeCo alloys using laser pulse dura-
tions ranging from 50 fs up to 15 ps [37, 36] and by the heat produced by picosecond electric
pulses [35]. Despite intense research to establish a robust theoretical framework for the quan-
titative description of thermal single-pulse (optical or electrical origin) AOS in GdFeCo, a
unified picture is missing[126, 127, 128, 129, 127, 130, 38]. It is furthermore unclear, whether
the proven theoretical models for fs-pulse switching are able to describe the (up to two or-
ders of magnitude larger) picosecond scale pulse switching. Recent experimental/theoretical
work using phenomenological models suggested distinguished different relaxation pathways
for femtosecond- and picosecond pulses [131].
One of the most promising techniques for achieving a unified picture are atomistic spin dy-
namics (ASD) methods. They have demonstrated the ability to adequately describe the
equilibrium properties of GdFeCo alloys [132] and to describe the non-equilibrium dynam-
ics upon femtosecond laser excitation qualitatively, such as a transient ferromagnetic-like
state [6], thermal single-pulse AOS [32], rapid magnon localization and coalescence [133].
Furthermore, ASD methods have provided a range of predictions about the behaviours of
the switching as a function of Gd concentration, ambient (or initial) temperature, and laser
fluence [134, 135]. In the present work we provide a unified picture of the single-pulse
all-optical switching induced by pulses with durations spanning three orders of magnitude,
from femtoseconds to picoseconds. To do so, we use atomistic spin dynamics methods and
pump-probe experiments of single-pulse all optical switching in GdFeCo alloys. We show
that quantitative agreement between theory and experiment is achieved when element spe-
cific damping parameters are considered in the model. These combined studies allow us to
uncover the underlying physics behind magnetic switching using heat pulses up to several
picoseconds in duration. Further, based on our model, we find optimal conditions for laser
and material to allow switching of pulse durations up to 15 picoseconds.

3.2 Experimental Setup and Model

3.2.1 Experimental set up

The experiments were carried out on a series of Gdx(Fe90Co10)100−x films of concentrations
from x = 24% to 32% grown by co-sputtering of the following stacks (in nm):
Si/SiO2(100)/Ta(5)/GdFeCo(20)/Pt(5). The sample is not crystallized and instead has
an amorphous structure. Hysteresis loops were measured using magneto-optic Kerr effect
(MOKE) at room temperature (Fig. 3.2.1 a)). All samples exhibited perpendicular magnetic
anisotropy, and the coercivity Hc are extracted from the hysteresis loops (Fig. 3.2.1 a)).
The coercive field Hc increases and the polarity of the hysteresis loops reverse in sign at
concentration values of around x = 28% and 29% Gd, which indicates the existence of a
magnetization compensation point at those concentrations at 300 K (Fig. 3.2.1 b)).

An amplified 250 kHz Ti:sapphire laser with 810 nm center wavelength was used for gen-
erating the high energy pulses and as a time-resolved probe (Coherent RegA). The laser
pulse duration FWHM was tunable from ∆t = 55 fs to ∆t = 15 ps by adjusting the final
pulse compressor in the chirped pulse amplifier. Individual single-shot laser pulses could
be obtained from our laser system. A MOKE microscope was used for imaging the sample
magnetization after each single laser pulse shot and check for the reversal at various pulse

36



3.2. Experimental Setup and Model

Figure 3.2.1: a) Magnetic hysteresis of different FeGd-alloys between 27-31 % Gadolinium
probed by the magneto optical Kerr rotation at 300 K. The use of an objective lens that
is close to the electromagnet’s gap induces an additional slope on the Kerr hysteresis data,
due to a Faraday effect in the lenses’ glass. This slope, which is independent of the sample,
was numerically removed from this figure. The polarity of the hysteresis changes as the
system crosses the compensation. The coercivity diverges as the Gd-concentration approach
the compensation point. b) The experimentally measured coercive field Hc of subfigure a)
as function of the Gd concentration. The line is guidance to the eye. c) The simulated
total magnetization of the FeGd-alloy at 300 K as function of the Gd concentration. The
simulated magnetization compensation temperature is slightly lower (between 25 % -26 %)
than the experimental one with the drawn line being guidance to the eye.

energies. The system also allows one to obtain time-resolved MOKE data in a pump/probe
fashion. However, when stretching the pulse duration for the pump, the probe stretches
equally, reducing the experimental time-resolution. The probe was focused through a 50x
objective down to a size of about 1 − 2µm. The pump was focused via a 15 cm lens. We
note that pump/probe experiments demonstrating switching dynamics require an external
applied out-of-plane magnetic field of around 10 mT in order to reset the magnetization after
each pulse event. Details of the pump-probe and microscope setup can be found in Ref. [136].

37



Chapter 3. Unifying femtosecond and picosecond single-pulse magnetic switching in
GdFeCo

3.2.2 Model

We use an atomistic spin model based on the classical Heisenberg spin Hamiltonian:

H = −
∑
i ̸=j

JijSi · Sj −
∑
i

dzS
2
z . (3.2.1)

Si = µi/µs,i represents a classical, normalized spin vector at site i with µs,i being the atomic
magnetic moment of each sublattice. The spin at site i, Si, couples to the neighboring spin,
Sj via the coupling constant Jij . The second term of the Hamiltionian describes the on-site
anisotropy with easy-axis along the z axis with constant anisotropy energy, dz. The lattice
structure of GdFeCo is amorphous and thus difficult to fully characterize [6]. Similar to
previous works, we model GdFeCo alloys as a two sub-lattice system with FeCo being rep-
resented by a generic transition metal (TM) sublattice and Gd as a second sublattice that is
randomly scattered throughout the TM. The simulation of FeCo as one sublattice is justified
by the parallel alignment of Fe and Co up to the Curie temperature and the delocalized
nature of their spins. The spin dynamics are described by the atomistic stochastic-Landau-
Lifshitz-Gilbert equation (sLLG) [72]

(1 + α2
i )µs,i

γ

∂Si

∂t
= − (Si ×Hi)− αi (Si × (Si ×Hi)) . (3.2.2)

where γ is the Gyromagnetic ratio and µs,i represents the magnetic moment of sublattice i.
The phenomenological, material-dependent parameter αi determines the rate of transfer of
energy and angular momentum in and out of the magnetic system and gives rise to a damping
of the spin dynamics. The damping parameter is included phenomenologically and is strongly
material dependent [72]. By including a Langevin thermostat, statistical - equilibrium and
non-equilibrium thermodynamic properties can be obtained. This is achieved by adding an
effective field-like stochastic term ζi to the effective field Hi = ζi(t)− ∂H

∂Si
, with white noise

properties [97]:

⟨ζi(t)⟩ = 0 and ⟨ζi(0)ζj(t)⟩ = 2αikBTelµs,iδijδ(t)/γ. (3.2.3)

The noise represents the effect of the hot itinerant electrons onto the two sub-lattices of
localized spins. The electron temperature Tel is therefore used to scale the noise and has
an indirect impact on the spin dynamics via the stochastic field ζ(t) entering the sLLG.
Throughout all simulations no external magnetic field was applied. It is a fair approxima-
tion to neglect the applied magnetic fields in our model as the energy scale of the Zeeman
interaction is much smaller than the exchange interaction which drives the demagnetization
and switching processes. Only on longer much longer timescales does the magnetic field
become important.
In our computational model, we consider a spin simple cubic lattice composed of two spin
sublattices, Fe and Gd with dimensions of N = 160 × 160 × 160 ≈ 4 000 000 spins. This
system size yields minimal boundary effects and provides a large enough number of spins
for calculating and averaging macroscopic parameters. To handle the computational effort
of solving the sLLG for over four million spins, the simulations were performed on GPUs
making use of the Nvidia CUDA C-API [137].
We use the so-called two temperature model (TTM) to describe the temporal changes in the
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Table 3.1: Table of the Heisenberg spin Hamiltonian parameters (left) and the two tem-
perature model (TTM) (right). Values are taken from Ref. [135].

H Value Units TTM Units

JFe-Fe 3.46 ×10−21 [J] Cph 3× 106 [J/Km3]
JGd-Gd 1.389 ×10−21 [J] Cel γel · Te

JFe-Gd − 1.205 ×10−21 [J] γel 700 [J/Km3]
γFe/Gd 1.76 ×10−21 [ 1

Ts ] gep 6× 1017 [J/sKm3]

dz 8.072 ×10−22 [J]
µs,Fe 1.92 [µB]
µs,Gd 7.63 [µB]
αGd 0.01
αFe varied

electron- and phonon temperature (Tph) [102, 110],

Cel
∂Tel

∂t
= −gep (Tel − Tph) + Pl(t) (3.2.4)

Cph
∂Tph

∂t
= +gep (Tel − Tph) . (3.2.5)

Cel and Cph represent the specific heat of the electron- and phonon system. Here, Pl(t)
represents the absorbed energy by the electron system, coming from the laser. All of the
material parameters used in this study are listed in table 3.1 and are taken from Ref. [135].

Fig. 3.2.2 b) shows an example of the resulting Tel and Tph dynamics upon application of a
100 fs laser pulse. Due to the low heat capacity of the electrons, the Tel increases within the
same time scale of the laser pulse (shaded area) and can reach up to several thousand Kelvin.
When Tel and Tph are out of equilibrium, the electron-phonon coupling drives a transfer of
energy from the electrons to the phonons, cooling the hot electron system and heating the
lattice within a couple of picoseconds. As the pulse duration increases, the situation slowly
changes until the time scales of the laser excitation and electron-phonon relaxation processes
become similar. Fig. 3.2.2 a) shows, as an example, the Tel and Tph dynamics for a laser
pulse duration of 1 ps. In this case, the energy transfer from the electrons and phonons acts
on almost the same time-scale as the energy load from the laser to the electrons. The direct
consequence is that for the same absorbed energy, the maximum temperature reached by the
electron system is reduced as the pulse duration increases. Ultimately, for very long pulses
the dynamics of the electron and phonon temperature becomes the same and the steep Tel

increase disappears.

Fig. 3.2.3 shows the corresponding magnetic response of the Fe and the Gd sublattices to
the discussed 1 ps pulse for different fluences (a-c). We note that in the simulations a new
equilibrium state is reached fairly quickly after about 7-8 ps after the initial excitation.
At that point Tel and Tph are equilibrated and both sublattices have adjusted to the new
electron temperature. Additional effects that slow down the reordering process, such as
domain formation, or heat transport are not considered.
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Figure 3.2.2: The temperature dynamics of the Tel (solid red) and Tph (blue dotted) for a
pulse duration of a) 1 ps and b) 100 fs. The total energy of the pulse is the same for both
pulse durations. c) and d) atomistic spin dynamics simulations (red dotted lines) and exper-
imental measurements (large green dots) of the magnetization dynamics of the Fe-sublattice
for a range of Gd-concentrations at 300 K. The experimental normalized magnetization is
obtained through a shifting and normalization of the measured pump-induced change in
magnetization (Ms +∆Mz)/Ms, where Ms is the saturation magnetization. The simulated
normalized magnetization is obtained by dividing the averaged magnetic moment by the
average magnetization at 300 K of each sublattice. The plots for each Gd-concentration
are shifted by an offset of 1 among each other. The simulations correspond to a Gaussian
weighted average of multiple simulations of different Gd concentrations with a variance of
σ2 = 5.76 %. The grey area between the dotted red lines indicate a variation in the laser
fluence of ≈ ±0.5 % of a chosen mean fluence. Due to the overlapping of pump and probe
pulse in the experiment and for direct comparison, the dynamics coming out from the sim-
ulations are convoluted with a 800 fs probe pulse, and the simulations for the 100 fs pulse
are convoluted using a 250 fs probe pulse.

3.3 Quantitative comparison between experiments and simu-
lations

Fig. 3.2.2 c) shows a direct, quantitative description of the dynamics of thermal single-pulse
magnetic switching of GdFeCo alloys using femtosecond- and picosecond pulse durations.
The figure depicts the z component of the normalized magnetization m of the Fe sublattice
for a pulse duration of 1 ps (left) and 100 fs (right) with experimental measurements being
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Figure 3.2.3: The (normalized) magnetization dynamics for Fe (green) and Gd (black)
after excitation by different fluences of a 1 ps laser pulse. a) the magnetization dynamics for
a weak 1 ps pulse that does not switch the alloy. b) the dynamics for an increased fluence
that does switch GdFe. c) the dynamics for a high fluence that demagnetizes the alloy. The
dynamics of the two temperature model for a similar laser excitation is shown in Fig. 3.2.2 a).

shown as green points and computer simulations in red 1. The laser fluence used is sufficient
to achieve AOS for the Gd concentrations between 26 % and 30 % (Fig. 3.2.2 c),d)) for
both pulse durations. We estimate the absorbed fluence to be around 1.5mJ/cm2 (assuming
a 30% absorption, Ref. [36]), which corresponds to about 5 · 108 J/m3 for our 30 nm-
thick metallic film. We note that an important distinction between the experiments’ and
simulations’ energy absorption scenarios, is that in the experiments we find an exponentially
decaying absorption profile, whereas in the simulations the full magnetic layer can be set
to absorb a homogeneous energy density. To account for potential fluctuations of the laser
fluence during data acquisition, two different results from simulations for laser fluences with
a variation of 0.5% are shown as red dotted- and dashed lines in Fig. 3.2.2 c) and d).
Importantly laser and material parameters in this section were kept constant throughout all
simulations. The intrinsic damping parameters αFe and αGd for the Fe and Gd sublattices
were set to αFe = 0.06 and αGd = 0.01. The inclusion of the element specific nature of the
damping in our model is one of the key factors that allowed us to quantitatively describe
our experimental measurements. In a recent work on single-pulse AOS in TbGdFeCo alloys,
similar conclusions have been drawn about the role of distinct damping parameters in AOS
[138]. These damping parameters are in agreement with the ultrafast spin dynamics measured
in the respective pure materials [139, 140]. While Fe and Co demagnetize on time scales of

1In our setup it is not possible to measure the pulse duration after the objective (because we need a
collimated beam for the autocorrelator), so we do not have a measure of the probe pulse duration after the
objective. We estimate the pulse to stretch by about 160fs to 240fs after the objective based on the 50nm
bandwidth of the laser and assuming 3 to 4.5cm of UV fused silica glass for the optics. Based on this we
estimate the probe pulse to 100 fs + 200 fs = 300fs and 1 ps - 200 fs = 800 fs in the two experimental
conditions of Fig. 3.2.2
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hundreds of femtoseconds, the rare-earth Gd responds much slower to optical excitation [6].
It has been argued that the reason behind these slow dynamics is the localized character
of the 4f spins and the absence of orbital angular momentum [114]. In previous works the
same damping value is consistently used for both sublattices. However, the good quantitative
agreement between our experiments and the model suggests, that the damping parameter for
RE-metals used in sLLG models should be lower than the one used in transition metals. This
picture of larger damping for FeCo than for Gd aligns with recent observations on magnetic
domain wall mobility in GdFeCo [141]. Our choice of larger damping value for FeCo than
for Gd, is in agreement with those observations. We note that since the laser probes areas
of tens of micrometres, it is important to consider the chemically inhomogeneous nature of
the experimental samples with locally varied Gd-concentrations [20]. The switching behavior
within these chemical inhomogenities strongly depends on local system parameters, especially
the Curie temperature Tc, which varies with the Gd-concentration. For example a Fe75Gd25
alloy shows a Tc ≈ 560 K while a Fe66Gd34 alloy only has a Tc ≈ 500 K. The influence of
such chemical inhomogenities is especially relevant when working close to the critical laser
fluence, which marks the energy threshold for switching and non-switching behavior. Close
to this fluence level one region with a Gd-concentration might switch for a given fluence while
another Gd-concentration does not switch for the same fluence (see Fig. 3.2.3). Therefore we
take a weighted (Gaussian) average of independent simulations of different Gd concentrations
with a variance of σ2 = 5.76% Gd, which yielded the best agreement with our experiments.
The expectation value µ of the distribution was set to the experimentally indicated one
(µ = x for an Fe1−xGdx alloy). The actual distribution variance in our experiments is
unknown, however we explored values around the experimentally measured ones by Graves
and co-workers[20]. This agreement is robust, varying σ by 10% - 20% yielded similarly
good agreement. As discussed in the previous section and shown in Fig. 3.2.2 c) and d),
the magnetization dynamics in the simulations reach an equilibrium state after a couple of
picoseconds. Additional effects, relevant on longer timescales such as domain formation, heat
transport or small applied magnetic fields used in the experiments are not considered in this
model. Therefore, a comparison to experimental results on time scales of several hundred
picoseconds is beyond the scope of the present work. To conclude this section we found, that
atomistic spin models are sufficient for a quantitative description of our experiments for a
wide range of pulse durations and Gd-concentrations with only a single set of parameters for
all of them.

3.4 Optimal conditions for picosecond pulse switching

In this section we investigate the robustness of our findings and explore the ideal material
and laser conditions necessary for energy-efficient switching in GdFeCo. Previous models
have suggested, that a distinct demagnetization time τ is necessary to achieve switching.
The damping αi at site i is one of the key parameters for controlling τi as previous works
in ferrimagnets suggest a τi ∝ µi/αi scaling [118]. Based on the same arguments, one could
imagine that the maximum pulse duration within the used model also depends on the intrin-
sic demagnetization time scales. Indeed, a detailed understanding about the role of damping
parameters on switching efficiency could be used to tailor optimized dissipative paths in
engineered heterostructures. Thus, in the following we study the dependence of the critical
fluence and the maximal pulse duration on the intrinsic damping.
In the previous section we used αFe = 0.06 and αGd = 0.01. However these values are
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Figure 3.4.1: Simulation results for a) critical laser fluence of a 350 fs pulse as function
of the Gd concentration (αGd = 0.01 constant) for αFe = 0.03 (blue triangles), 0.06 (green
boxes), 0.09 (black crosses). The lines represent an x2 fitting and serve only as a guide to
the eye. b) Maximum pulse duration achieved in the model as function of the Gd-damping
αGd (αFe = 0.01 constant) for an Fe75Gd25 alloy.

of phenomenological origin, chosen to match our experiments. In the following we explore
switching behavior for damping values of higher and lower αFe while keeping αGd constant.
Furthermore, the data gained from computer simulations that we show in the following corre-
spond to a fixed Gd concentration. In comparison, when we compare the results of the model
and those of the experiment, we accounted for the chemical inhomogeneity of the samples by
averaging the magnetization dynamics data over a range of concentrations. Consequently,
their dynamics are not directly comparable.
Fig. 3.4.1 a) shows the critical fluence found in simulations as function of the Gd-concentration
for different αFe in the range of αFe = 0.03 − 0.09 while keeping a fixed αGd = 0.01. With
an increasing damping αFe from 0.03 to 0.09 which speeds up the Fe-spin dynamics, we
observe a shift of the critical fluence minimum towards lower Gd-concentrations from 29%
(αFe = 0.03) to 25% (αFe = 0.09). Furthermore Fig. 3.4.1 shows a x2-fit as a guide to the
eye of the shift of the critical fluence for each Gd-concentration. We observe not just a shift
of the critical fluence minimum from 29 % Gd to 25 % Gd, but also a shift of the general
switching window in the same direction.

Impact of the pulse duration.– Magnetic switching driven by electric pulses is of interest
for future technological applications. However, generating electrical pulses shorter than a few
picoseconds is extremely difficult. Therefore finding switching conditions to achieve single-
pulse AOS with the longest possible pulses becomes a challenge. Previous experimental
results estimated that laser pulses with durations of up to 10 ps were able to switch the
magnetization for a very especific Gd-concentration, Gd27FeCo alloys [36]. For different Gd-
concentrations the maximum pulse duration within the model decreases notably, such as for
xGd = 24 % the maximum pulse duration reduces to 1 ps [36]. Here we show that in order
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to describe single-pulse AOS, ASD simulations and the physics described by them, remain
valid on timescales of up to 15 ps. Fig. 3.4.1 b) shows the maximum pulse duration of an
Fe75Gd25 alloy as function of the Gd-damping αGd while keeping αFe = 0.01 constant. We
find a linear increase of the maximum possible pulse duration that is able to switch the alloy
with a decreasing Gd-damping αGd. Decreasing αGd slows down the Gd dynamics compared
to the Fe-sublattice which seems to increase the maximum pulse duration. For αFe = 0.01 and
αGd = 0.001 we were able to switch an Fe75Gd25 alloy in our simulations with a pulse of more
than 6 ps. This is far longer than what we found in our own experiments (see Fig. 3.4.3) but is
only slightly longer than the maximum pulse duration for that alloy found in Ref. [131]. Since
the maximum pulse duration is highly susceptible to the ratio between dampings, αFe/αGd,
the difference between our experiments and those in Ref. [131] could be related to a somewhat
smaller damping ratio in our experiments, owning for instance to slight differences in the
growing conditions. We performed further simulations with different absolute values of αFe

and αGd, while keeping a constant ratio αFe/αGd. These simulations have shown that the
position of the critical fluence minimum with respect to the Gd-concentration varies much
with the ratio αFe/αGd, but only slightly with the absolute values of αFe and αGd.
This seems to indicate that switching with ps-pulses works best when the damping difference
between the sublattices is as large as possible.
To gain further insight into this process, we conduct computer simulations on a large set
of Gd-concentrations, laser fluences and pulse durations. The goal here was to find the
maximum pulse duration that switches the alloy for a given set of Gd-concentrations and
pulse energies. In order to do so, we first define a switching criteria: Starting from mz,Fe > 0
every simulation could end up in one of the three possible states: i) recovery (mz,Fe ≥
0.12 ) (see Fig. 3.2.3 a)), ii) switching (mz,Fe ≤ −0.12 ) (Fig. 3.2.3 b)) and iii) thermal
demagnetization (0.12 > mz,Fe > −0.12) (Fig. 3.2.3 c)). The state of the system is evaluated
20 ps after the laser excitation in order to give the spin system time to equilibrate to the
final temperature. This duration should be sufficient as the system size is relatively small
compared to larger domain-size features, which are important on much longer time-scales.
Before we present the full result as a 2D color map we first focus on two subsets of the full
result.
Fig. 3.4.2 a) shows the maximum possible pulse duration for a fixed total absorbed energy
density of 5 · 108 J/m3 that still switches the system with αFe = 0.03 and αGd = 0.01.

Increasing the Gd-concentration allows for longer pulses to switch the system up to approx-
imately 31.0 % Gd when the fixed total energy density of 5 · 108 J/m3 causes the system
to completely demagnetize. This is due to the decreasing Curie temperature of the sample
as the Gd concentration increases. In Fig. 3.4.2 b) the Gd concentration is set to 28% and
the total absorbed energy density is varied. In order to switch this Fe72Gd28 alloy with
longer pulses one needs to linearly provide more energy via the laser. This is related to the
electron-phonon coupling, which is already significately acting for longer pulses while the
laser pulse is still pumping energy into the electron system. This cools down the electron
system temperature at a faster rate than for femtosecond laser pulses. Thus more energy
input from the laser is needed, as more energy is translated to the phonon system during the
laser pulse.

Fig. 3.4.3 shows the full result by combining all simulations with the color representing the
maximum pulse duration as a function of the Gd-concentration (x-axis) and total absorbed
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Figure 3.4.2: a) Maximum possible pulse duration gained from simulations as a function
of the Gd-concentration for a fixed laser energy. b) Simulated maximum pulse duration as a
function of the absorbed energy for a fixed Gd-concentration of 28%.

energy density (y-axis). Red colors refer to the possibility of switching the system with
longer pulses (up to 6 ps for the chosen damping parameters), while areas with blue colors
only allow for switching with short pulses. The top right corner with high absorbed energy
densities and high Gd-concentrations completely demagnetizes once a certain threshold is
crossed. This area increases linearly as the Gd-concentration increases, due to the linearly
decreasing Curie temperature. For longer pulse durations the allowed set of parameters that
switches the FeGd alloy reduces to a much narrower set (or switching window). For example,
only Gd-concentrations between ≈ 26% Gd and 32% Gd are able to be switched with 5 ps
pulses and require a precise laser energy. Otherwise the alloy either demagnetizes completely
or recovers without switching. The experimental measurements of the maximal achievable
pulse duration are shown as white circled points with the color indicating their maximum
pulse duration. The overall agreement between our experiments and our model is good.
However for the 31% and the 25% Gd concentration the maximum measured pulse duration
was only about 220 fs and disagrees with the results of our model (31% Gd-measurement
not shown). The experimental results of Ref. [131] with ps-scale switching even up to 23%
Gd agree quite well with our simulations. Ref. [131] also finds a similar linear increase of the
switching duration as the Gd-concentration increases. In our analysis we used a threshold
of mz,Fe < −0.12, that divides switching from demagnetization. This chosen threshold
value affects the maximum pulse duration. Reducing this threshold, increases the maximum
pulse duration for switching. However, the shape of the different areas in Fig. 3.4.3 are not
affected by the chosen threshold value. For simplicity, in our model we neglected any heat
dissipation of the GdFeCo alloy towards the substrate. The heat dissipation in the first
couple of picoseconds barely affects the overall behaviour of the magnetization dynamics,
and, consequently the switching behavior. Considering mz,Fe < 0 as the switching criteria in
the absence of cooling is problematic as this state can also be considered as a pure thermal
demagnetized state. Further studies could include the effect of the substrate.
Furthermore, as found in the previous section, the maximum switching duration depends
on the damping ratio αFe/αGd (compare fig. 3.4.1 b)). In the simulations for Fig. 3.4.3
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Figure 3.4.3: Maximum laser pulse duration (as color) as function of the Gd concentration
(x-axis) and absorbed power density (y-axis). Red color areas correspond to longer laser
pulses, while blue areas only switch for short pulse durations. The damping parameters for
this set of simulations were set to αFe = 0.03 and αGd = 0.01. For high laser fluences and high
Gd-concentrations the system gets completely demagnetized (top right). The experimental
measurements of the maximal achievable pulse duration are shown as white circled points
with the color indicating their maximum pulse duration.

we used moderate values of αFe = 0.03 and αGd = 0.01. Using a higher ratio of αFe/αGd

would most likely result in longer switching durations than those seen in Fig. 3.4.3. Notably,
previous experimental measurements have shown switching for pulse durations up to 15 ps for
compositions close to the magnetic compensation. Our model is also capable of reproducing
such a switching duration with up to 15 ps by combining the results of this section. By
selecting a high ratio between the element specific damping parameters αFe = 0.01 and
αGd = 0.001 and choosing optimal parameters from Fig. 3.4.3 for the pulse energy, we were
able to switch a Gd29Fe71-alloy using a 14 ps pulse with an absorbed laser energy density of
5.95 · 108 J/m3.

3.5 Conclusions

To summarize, we have conducted a joint theoretical and experimental study of single pulse
switching of various GdFeCo-alloys using a wide range of pulse durations, from a few fem-
toseconds up to 15 picoseconds. Our results show that switching is possible for this wide
range of pulse durations of two orders of magnitude, however the available material param-
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eters that allow for switching reduce as the pulse duration increases. We demonstrate, that
the same, underlying physics utilized by atomistic spin dynamics simulations is able to de-
scribe switching within hundreds of femtoseconds, as well as tens of picoseconds.
In our experiments, the magnetization dynamics are measured using time resolved magneto-
optical Kerr measurements, which provide information on the Fe-spin sublattice dynamics.
We were able to quantitatively reproduce those measurements using atomistic spin dynam-
ics simulations (ASD) for all pulse durations used in our experiments, and a wide range
of Gd-concentrations between 24% Gd up to 32%. We have kept the same set of mate-
rial parameters throughout all simulations, e.g. atomic magnetic moments, exchange and
anisotropy constants, which demonstrates the robustness of our model. The results of this
approach demonstrate that atomistic spin dynamics methods and the physics described by
them in the context of single laser pulse all-optical switching still remain valid on timescales
of up to 15 ps. One consequence of our study, based on the quantitative agreement between
theory and experiment, is the necessity to consider distinct element-specific damping con-
stants. This is in striking contrast to previous works, where only qualitative comparisons
were performed. In order to achieve this quantitative agreement, we also needed to consider
material inhomogeneities with respect to the Gd-concentration in the model.
As for technological applications of single pulse switching, establishing conditions for steer-
ing pulse duration able to switch magnetization in GdFeCo alloy could foster picosecond
electric pulse as switching stimulus for spintronic applications. The first works utilizing
picosecond electic pulses have already shown promising results [35], but quantitative compu-
tational modelling is still missing. Therefore, we believe, that the insights provided by the
modeling work presented here will help to better understand the conditions necessary for
electric pulse switching. To explore this possibility, we have investigated computationally
the optimal system parameters to achieve the longest possible pulse duration able to switch
GdFeCo. In agreement with recent works on single-pulse AOS in TbGdFeCo alloys, we found
a large discrepancy between the distinct element specific damping parameters to be a key
parameter for longer pulse duration switching [138]. Furthermore our results show, that for
long pulse durations the set of available parameters of Gd-concentrations and laser fluences,
– the so-called switching window – reduces continuously as the pulse duration increases.
Using a well defined, ideal set of parameters by combining various results of our work, al-
lowed us to switch a Gd29Fe71-alloy in an ASD-simulation using a 14 ps pulse. Ref. [142]
showed that single pulse AOS is not limited to alloys but it is also possible in ferrimagnetic
multilayers. These kind of heterostructures are better suited for technological applications
as they allow for each layer to be tailored individually. Atomistic spin dynamics methods
have been used in previous works to model ferrimagnetic multilayers and investigate the
conditions for AOS using femtosecond laser pulses [143, 144, 33]. Our results provide a first
quantitative prediction of how composition affects single-shot switching for different material
properties through varying the composition. By varying the composition, the effective ex-
change between antiferromagnetically coupled species is varied. One should be able to draw
equivalences between this and, for example, a multilayer structure of Gd/Fe with different
thicknesses and/or number of repeats of theses layers. However, this task goes beyond the
aim of the present work. Our results can furthermore help to understand AOS in other
material such as the recently observed switching in Mn2RuxGa Heusler alloys [45].
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Chapter 4

Atomistic spin model of single
pulse toggle switching in
Mn2RuxGa Heusler alloys

The results of this chapter have been published in

� F. Jakobs, and U. Atxitia, Atomistic spin model of single pulse toggle switching in
Mn2RuxGa Heusler alloys, Applied Physics Letters 120 p. 172401, (Apr 2022).

and the content of this chapter is in large parts identical with the published work.

This chapter is not printed in the online version.
The published version can be found at https://doi.org/10.1063/5.0084846
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Chapter 5

Universal Criteria for Single
Femtosecond Pulse Ultrafast
Magnetization Switching in
Ferrimagnets

The results of this chapter have been published in

� F. Jakobs, and U. Atxitia, Universal Criteria for Single Femtosecond Pulse Ultrafast
Magnetization Switching in Ferrimagnets, Physical Review Letters 129, p. 037203,
(Jul 2022).

and the content of this chapter is in large parts identical with the published work. Large
parts of the macroscopic model presented in this chapter were developed by U. Atxitia with
the numerical simulations for GdFeCo and MnRuGa developed and performed as part of this
thesis.

The published version can be found at https://doi.org/10.1103/PhysRevLett.129.037203

Ultrafast magnetization switching induced by a single femtosecond laser pulse has at-
tracted a lot of attention as a promising solution for low energy, faster memory applica-
tions [24, 6, 32, 158, 20, 145, 159, 44, 160, 142, 133, 38, 161, 162, 46]. Until recently only
GdFeCo alloys and synthetic ferrimagnets [44], presented the ability to switch under either
optical femtosecond laser- [32, 158, 44] or electric picosecond current-pulses [35, 39]. Al-
though several micro- and macroscopic models have reproduced single-pulse switching in
GdFeCo ferrimagnets [163, 126, 135, 128, 127, 116, 164, 165, 129, 166, 167, 33, 130, 168, 169,
131], complete understanding of the role of electrons, lattice and spin sublattices and their
mutual interactions remains a challenge [170]. The existing criteria for switching rely on the
existence of two antiferromagnetically coupled magnetic sublattices showing distinct dynam-
ical response to femtosecond laser photo-excitation. While in single species ferromagnets
such as 3d transition metals, relaxation of angular momentum occurs via dissipation into
other degrees of freedom – relativistic relaxation – in two-sublattice magnets, additionally,
relaxation can occur via angular momentum exchange between sublattices – exchange relax-
ation. By driving the spin system into a non-equilibrium state where exchange relaxation
dominates, a non-equilibrium ultrafast reversal path opens. One of the most outstanding,

https://doi.org/10.1103/PhysRevLett.129.037203


Chapter 5. Universal Criteria for Single Femtosecond Pulse Ultrafast Magnetization
Switching in Ferrimagnets

open questions is about the conditions or criteria for the onset of the exchange dominated re-
laxation regime. Crucially, it is unclear how previous understanding gained from observation
in GdFeCo translates into the recent discovery of single-pulse switching in the ferrimagnetic
Heusler alloy Mn2RuxGa [45], where the two antiferromagnetically coupled Mn atoms are of
the same kind in comparison to Gd and FeCo.
In this work we present a general theoretical framework for the description of single pulse
switching of ferrimagnets. We provide explicit expressions for the relativistic and exchange
relaxation parameters as a function of microscopic material parameters, including their de-
pendence on temperature and non-equilibrium sublattice magnetization. This allows us to
uncover the criteria for the onset of the exchange-dominated relaxation regime and switching.
We verify the validity of the model by direct comparison to atomistic spin model simulations
of both GdFeCo and Mn2RuxGa alloys.
We shall describe each magnetic atom at site i as a classical spin vector s of a unit length.
The magnetic and mechanical moments of each atom/element are given by µ = µss and
S = µss/γ where µs is the magnetic moment and γ is the gyromagnetic ratio. We consider
a classical Heisenberg spin Hamiltonian[72]:

H = −
∑

i ̸=j⟨ij⟩
Jijsi · sj −

∑
i

dzi (s
z
i )

2. (5.0.1)

To model a ferrimagnet, one needs to consider two sublattices with different and antipar-
allel magnetic moments µa and µb, with three different exchange coupling constants. Two
ferromagnetic couplings for each sublattice coupling with itself (Ja and Jb > 0) and a third
for the antiferromagnetic interaction between them, Jab < 0 [132]. The second term in Eq.
(5.0.1) describes the contribution to the energy of on-site uniaxial anisotropy with easy-axis
in z-direction and anisotropy constant, dzi .
The macroscopic model we propose is derived from a microscopic spin model, where the
equation of motion for the spin dynamics of each atomic spin is the stochastic Landau-
Lifshitz-Gilbert (LLG) equation [72]:

∂si
∂t

= − |γ|
(1 + λ2)µi

[(si ×Hi)− λ (si × (si ×Hi))] . (5.0.2)

λ is the local intrinsic atomic damping, the effective field Hi = ζi − ∂H
∂si

, where thermal
fluctuations are represented by the stochastic field ζi.
The non-equilibrium macroscopic magnetization dynamics of the element-specific angular

momentum Sa = µa⟨sa⟩/γ, where ma = ⟨sa⟩ is the first moment of the non-equilibrium
distribution function, can be described by [126]:

dSa

dt
= αaµaHa + αex(µaHa − µbHb) (5.0.3)

where a ̸= b. The macroscopic relativistic damping parameter in Eq. (5.0.3) reads [171]

αa = 2λa
L(ξa)

ξa
. (5.0.4)

Here, L(ξ) stands for the Langevin function. The relaxation parameter strongly depends
on temperature and non-equilibrium magnetization state through the thermal field ξa =
βµaH

MFA
a . In the exchange approximation, the MFA field acting on sublattice a is:

µaH
MFA
a = zaJaama + zabJabmb. (5.0.5)
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electrons 

lattice 

Figure 5.0.1: Degrees of freedom involved in single-pulse switching; electrons, lattice and
element-specific spin systems. Electrons act as heat-bath to the spin system with an element-
specific coupling strength given by αa(b). Exchange relaxation rate αex ∼ αa/ma + αb/mb,
where ma(b) are the normalized sublattice magnetization magnitude.

Here, za is the number of nearest neighbours (n.n.) of spins of type a, and zab is the amount of
n.n. of type b. The macroscopic damping increases with temperature up to a value αa = 2/3
at the critical temperature [171]. The exchange relaxation parameter αex is given by

αex =
1

2

(
αa

zabma
+

αb

zabmb

)
. (5.0.6)

This expression is the extension of the non-local exchange relaxation in ferromagnets to
local exchange relaxation in ferrimagnets. The role of αex, αa and αb as the coupling be-
tween the sublattices and heat baths is visualized in Fig. 5.0.1. In single species ferro-
magnets, sublattices a and b represent the same spin lattice, hence αa = αb. Therefore,
αex = αa/(zma), and µaHa − µbHb = µaHexa

2
0∆ma, with a0 representing the lattice con-

stant. Hence, Γnon−loc.
ex = αex(µaHa − µbHb) = αa(A/Ma(T ))∆ma, where A is the so-called

micromagnetic exchange stiffness [172]. Ma(T ) = (µa/υa)ma is the magnetization density
at temperature T , where υa is the unit cell volume. Non-local exchange relaxation plays a
minimal role in the field of ultrafast magnetization dynamics since ∆ma ≪ 1.
The non-equilibrium fields (µaHa = 0 at equilibrium) are given by

µaHa =
(ma − L(ξa))

βL′(ξa)
. (5.0.7)

where, L′(ξ) = dL/dξ. Note that they are different to the MFA fields in Eq. (5.0.5), and have
been derived previously [173, 171]. As the magnetic system approaches thermal equilibrium,
the non-equilibrium fields can be cast into Landau-like expressions [126, 171]. Equation
(5.0.3) has been proposed before based on symmetry arguments [126, 116] as a direct gener-
alization of the Landau-Lifshitz equation with longitudinal relaxation terms. These models
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Figure 5.0.2: Normalized exchange relaxation parameter αex/λ as function of the sublattice
magnetization ma and mb, at T = 600 K. System parameters correspond to GdFeCo. λa =
λb = λ = 0.01. The dotted black line corresponds to αex = αa. The white dot represents
the starting sublattice magnetization (ma,mb). The closed dashed orange line describes a
trajectory meeting a no-switching criteria. The open solid white line describes a trajectory
meeting a switching criteria.

have introduced the relaxation parameters at a purely phenomenological level and to some
extent their values are arbitrary. Moreover, since they were taken as constant values, most
of the non-equilibrium spin physics was not taken into account. Our model overcomes these
assumptions by providing expressions for the relativistic and exchange relaxation parameters
as a function of the sublattice specific atomic relaxation parameter, λa(b), and normalized
magnetization ma(b).
This insight is paramount to find the criteria for the onset of a exchange relaxation dom-

inated state. In Fig. 5.0.2 we present a diagram of the normalized exchange relaxation
parameter αex/λ for GdFeCo alloy parameters as a function of ma and mb at a fixed temper-
ature, T = 600 K, which corresponds to the Curie temperature of the alloy. We observe that
the exchange relaxation parameter strongly depends on the magnitude of sub-lattice magne-
tization and its value ranges over three orders of magnitude, αex/λ = 0.1− 10. Importantly,
only when magnetic states reduce significantly, does the exchange relaxation dominates over
relativistic relaxation.
So far only two classes of ferrimagnets have shown single-pulse switching, Gdx(FeCo)1−x

alloys and Mn2RuxGa. Switching in GdFeCo has been thoroughly studied both experimen-
tally [24, 6, 32, 158, 20] and theoretically [32, 135, 127, 128, 116, 168, 133, 169], whereas in
Mn2RuxGa has been only recently demonstrated for a range of Ru concentrations (x ≥ 0.9)
[45]. In GdFeCo alloy, switching is characterised by a fast response of the Fe sublattice
and slower response of the Gd sublattice to femtosecond laser photo-excitation. This differ-
ence roots to their distinct magnetic moment, µGd = 7.6µB and µFe = 1.92µB. Differently to
GdFeCo, antiferromagnetically coupled Mn spins in Mn2RuxGa have similar atomic magnetic
moments. We demonstrate the universality of our theory by direct comparison of the photo-
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Figure 5.0.3: Element-specific magnetization dynamics of single-pulse switching in ferri-
magnets using an atomistic spin dynamics model (symbols) and a macroscopic model (solid
lines) for Mn2Ru0.86Ga (a) and Gd25FeCo (b). The red area corresponds to the critical
values (mc

a,m
c
b) to enter exchange relaxation regime. The blue area corresponds to the time

lapse where relativistic relaxation dominates. Different contributions to the element-specific
magnetization relaxation for the single-pulse switching dynamics in Mn2Ru0.86Ga (c) and
Gd25FeCo (d). Γr

a(b) stands for the relativistic relaxation rate of sublattice a = 4a (c) and

a =Fe (d), and b = 4c (c) and b =Gd (d). Γex is the exchange relaxation rate, which is the
same for both sublattices. λa = λb = λ = 0.01.

induced magnetization switching to computer simulations based on atomistic spin dynamics
(Eq. (5.0.2)) for GdFeCo (disordered spin structure) and Mn2RuxGa (ordered spin struc-
ture). Their magnetic properties such as magnetic moments and exchange interactions differ
substantially. We consider two typical compositions, that show switching, Gd25(FeCo)75 al-
loys and Mn2Ru0.86Ga. It is noteworthy; that while for GdFeCo atomistic spin models have
been used thoroughly, in Mn2Ru0.86Ga similar simulations are missing. We derive the neces-
sary material parameters based on experimental measurements [149, 150, 156, 152, 148]. We
find that for Mn2Ru0.86Ga the atomic magnetic moments, µ4a = 2.88 µB and µ4c = 4.05 µB,
and the exchange parameters, Ja = 1.28× 1021 J, Jb = 4.0× 1022 J and Jab = −4.85× 1022

J describe the equilibrium magnetization well as function of temperature. Using these pa-
rameters the Curie temperature becomes Tc = 600 K and the compensation temperature
TM ≈ 300 K. We note that in the experimental samples, those temperatures are sensitive to
the growth conditions as well as material composition. However our temperatures are within
the reported range of experimentally found temperatures [149, 150, 156, 152, 148]. We use
the so-called two-temperature model (TTM) to describe the dynamics of the electron and
phonon systems[102, 110]. For both materials we use the same parameters in the TTM and
thus the electron and phonon temperatures are the same for the same fluence in both materi-
als [148]. In the TTM, we use the values ce = γeTe(γe = 600 J/Km)3 for the electron specific
heat, cph = 3.8× 106 J/Km3 for the phonon specific heat, and ge−ph = 7× 1017 J/sKm3 for
the electron-phonon coupling. The heat-bath to which the spins are coupled is represented
by the electron system. Figures 5.0.3 (a) and (b) show excellent agreement between our
macroscopic model and atomistic spin dynamics simulations for both alloys for all stages
of the magnetization dynamics leading to switching, from fast demagnetization, transient
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ferromagnetic-like state, to magnetization recovery. Interestingly, the switching dynamics
in Mn2Ru0.86Ga (Fig. 5.0.3 (a)) differs to GdFeCo (Fig. 5.0.3 (b)), both Mn sublattices
demagnetize at similar rate and switch almost simultaneously. Although demagnetization
timescales are similar in Mn2Ru0.86Ga and GdFeCo, the recovery of the magnetization in
Mn2Ru0.86Ga is significantly slower. The relaxation of the sublattice magnetization (Eq.
5.0.3) can be split into two contributions, the relativistic relaxation: Γr

a = αaµaHa, and ex-
change relaxation Γex = αex(µaHa−µbHb) (see Fig. 5.0.3(c) and (d)). For both ferrimagnetic
alloys, Γr

a drives the dynamics in the first hundreds of femtoseconds, until sublattice mag-
netization reduces sufficiently to enter the exchange relaxation dominated region Γex > Γr

a

(Fig. 5.0.2). In this regime, the exchange relaxation steers the systems towards an inter-
mediate metastable state defined by the condition µaHa = µbHb. Under some conditions
this intermediate state precede switching. It is cumbersome however to directly analyse Eqs.
(5.0.7) due to its highly non-linear character. Therefore in the following we investigate some
limiting scenarios.
In the high temperature limit, ξa = βµaH

MFA
a → 0, Γr

a = 2λakBTma, which is the so-called
thermal fluctuation field. The corresponding relaxation time, τa = µa/(γ2λakBT ), associated
to relativistic relaxation, has been discussed before [126, 118]. Similarly, we can estimate the
high-temperature limit of the exchange relaxation rate

Γex
∞(ma,mb) = λ

kBT

z

(ma +mb)(m
z
a −mz

b)

mamb
. (5.0.8)

High temperature limits are valid when the temperature is larger than the exchange energy
acting on the spins. Otherwise, intermediate-to-high temperature limit are necessary. This
limit adds corrections to previous estimations. For instance, µaHa − µbHb = 3kB((T −
T a
c )ma + (T − T b

c )mb), where J0,a + J0,ab = 3kBT
a
c . The exchange relaxation rate is

Γex
T (ma,mb) = Γex

∞

(
1− 1

T

T a
c ma + T b

cmb

ma +mb

)
(5.0.9)

For element-specific critical temperature T a
c ≈ T b

c , the correction can be cast as Γex
T =

Γex
∞(T −T a

c )/T .Since the relativistic relaxation rate is also modified as Γr
a = Γr

a,∞(T −T a
c )/T ,

we can fairly investigate the crossover from relativistic to exchange dominated regime by com-
paring Γex

∞ and Γr
a,∞. Two cases of interest exist, i) one sublattice is faster than the other,

and ii) both sublattices demagnetize at the same rate.
In the first case, τa ≪ τb, sublattice a demagnetizes faster than sublattice b. This corre-
sponds to GdFeCo (Fig. (5.0.3)(b)). Soon after the application of a fs laser pulse, ma ≪ mb,
and consequently, Γex ≈ λkBTmb/(zma) (cf. Eq.(5.0.8)). We estimate the conditions for
the transition from relativistic to exchange-dominated regimes (see Fig. (5.0.3)(d)): From
Γex > Γr

a, ma <
√

mb/2zab ≈ 0.288
√
mb, and from Γex > Γr

b and ma ≤ 1/2z = 0.0833 (red
colored area in Fig. 5.0.3 (b)). A second case, τa ≈ τb, might also arise when demagneti-
zation times of both sublattices are similar. This is the case of Mn2Ru0.86Ga alloys (Fig.
(5.0.3)(c)). One can estimate the conditions for the transition Γex = Γr

a. This happens for
both sublattices when ma,b = (ma(0) + mb(0))

2/(ma(0)mb(0))/2zab. Assuming a realistic
value of mb(0)/ma(0) = 0.9, the exchange-dominate regime is reached when ma,b = 0.334
(red colored area in Fig. 5.0.3 (c)). Notably, this condition only depends on the initial
values of the magnetization, ma(b)(0). These results are simple and general, and one of
the main result of the present work. One can interpret the transition from relativistic to
exchange-dominated regime as follows: as the magnetization of one sublattice decreases, the
phase space of available states for the spins of the other sublattice to switch by exchange of
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angular momentum dramatically increases. While switching spin via coupling to an external
bath becomes increasingly difficult as the magnetization reduces.
Once the system has entered the exchange dominated regime the dynamics follows a path
where total angular momentum is conserved towards a magnetic state where µaHa = µbHb.
In the high temperature limit, this condition reduces to mz

a = mz
b , meaning that the ex-

change relaxation drives the magnetization of both sublattices into the same polarity, i.e. a
ferromagnetic-like state [6]. From this condition arises, that in order to have a final mz

a < 0
the following condition is necessary: Sex

a + Sex
b < 0. Here Sex

a(b) stands for the angular mag-
netic moment when the system enters the exchange dominated regime. For example, in
Mn2RuxGa, since Mn spins are assumed to demagnetize at the same rate, this condition
reduces to Sex

a + Sex
b ≈ (Sa(0) + Sb(0)) exp(−t/τa) < 0. Namely, only for a starting tem-

perature below the compensation temperature, Sa(0) + Sb(0) < 0, conditions for switching
are fulfilled, in complete agreement to experimental observations [45]. Yet, the exchange
relaxation regime needs to be active for a significant time in order for the magnetization to
switch. We compare the time scales associated to both the relativistic and exchange relax-
ation. Relativistic relaxation rate follows Γr

a = 2λakB(T −T a
c )m

z
a, which is strongly reduced

by the ultrafast dynamics of mz
a, in only a few hundred of femtoseconds Γr

a → 0. Whereas
Γex rather follows the dynamics of the temperature T , and therefore decays slower than Γr

a

(Fig. (5.0.3)(c) and (d)).
The characteristic time scale of the electron and lattice temperature is described by the TTM
and for common parameter values in the range of 2 − 3 ps. As the temperature reduces, the
exchange relaxation drives the system towards (T −T a

c )m
z
a = (T −T b

c )m
z
b . For T

b
c < T < T a

c ,
the exchange relaxation drives the system back into an antiferromagnetic, but switched sate.
As the magnetization builds up in the opposite direction, Γex, decreases and the relativistic
relaxation takes over. Interestingly, our theory predicts that for systems where T a

c ≈ T b
c

switching would be unlikely, which has been recently demonstrated in rare-earth free syn-
thetic ferrimagnets [174]. Further, one can accelerate the transition from exchange relaxation
dominated to the relativistic regime, and speed up complete switching by increasing differ-
ence between T a

c and T b
c , an effect which has been observed by the substitution of Fe by Co,

namely, GdFe by GdCo [41]. While GdFe recovers in tens of picoseconds, GdCo alloys only
need of a couple of picoseconds.
To summarize, in this work we have proposed a general macroscopic theory for the magne-
tization dynamics of ferrimagnetic materials driven by femtosecond laser photo-excitation.
Our theory reproduces quantitatively all stages of the switching process observed in ex-
periments. Notably, we have directly compared our theory to computer simulations using
atomistic spin dynamics methods for both GdFeCo and Mn2RuxGa alloys. The magnetiza-
tion dynamics transits from a relativistic relaxation path to an exchange dominated regime
due to the strong enhancement of the exchange relaxation. We demonstrate that switching
occurs when the sublattice magnetization reaches a threshold value. These criteria substi-
tute previous ones and pave the way for the discovery of new class of ferrimagnets showing
switching.
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Chapter 6

Exchange-enhancement of the
ultrafast magnetic order dynamics
in antiferromagnets

The results of this chapter have been submitted to Physical Review Letters and is currently
being reviewed. A preprint has been uploaded to arXiv.org

� F. Jakobs, and U. Atxitia, Exchange-enhancement of the ultrafast magnetic order dy-
namics in antiferromagnets, arXiv:2206.05783, (Jun 2022).

and the content of this chapter is in large parts identical with the published work.

6.1 Introduction

Ultrafast optical control of the magnetization promises faster data processing and storage
[5, 175, 14, 6, 32, 176]. Antiferromagnets (AFMs) show advantages over ferromagnets (FMs),
such as faster magnetization dynamics [177, 178, 179, 180, 181, 182, 183]. In AFMs, the fre-
quency of the magnetic oscillations around the anisotropy field in FMs (ωfm ∼ HA) are
exchange-enhanced by the antiferromagnetic coupling (HE) between the spins at different
sublattices, leading to a higher oscillation frequency in AFMs, (ωafm ∼ √

HEHA), orders of
magnitude higher than in FMs [184, 185]. Femtosecond laser photo-excitation can induce
subpicosecond magnetic order quenching in both FMs and AFMs [5, 186, 187]. The speed
of ultrafast quenching of the magnetic order is determined by the strength of the exchange
interaction (1/τfm ∼ αfmHE), and the FM damping, αfm [188]. This raises the fundamental
question of whether the ultrafast magnetic order dynamics in AFMs is exchange-enhanced
with respect to its FM counterpart. We find that the AFM magnetic order responds faster
than the FM one to a sudden temperature change due to the exchange-enhancement of the
effective AFM damping, 1/τafm ∼ αafmHE. We show that, contrary to FMs, the effective
AFM damping depends on the number of neighbours to which spins are exchange coupled.
Thus, low dimension magnets, such as 2D magnets [189], show a more pronounced speed
up. As the system approaches the critical temperature, both the FM and AFM present a
critical slow down of the relaxation process, however, the AFM critical exponent is smaller
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Figure 6.1.1: (a) Electron and phonon temperature dynamics after an excitation by a 50 fs
laser at t = 0. (b) The magnetic order dynamics of a FM, mz (red solid line), and an AFM,
nz (blue dashed line) as a response to the electron temperature dynamics in (a).

than the FM one. In the temperature dominated regime T ≫ Tc, our model predicts in-
trinsically different relaxation dynamics for AFMs and FMs. This scenario corresponds to
experiments using powerful femtosecond laser pulses. For FMs, magnetic order quenching
slows down as the magnetization reduces, while for AFMs speeds up. We demonstrate the
validity of our model by direct comparison to computer simulations using atomistic spin dy-
namics within an atomistic spin dynamics (ASD) model. Evidence of exchange-enhancement
of the ultrafast magnetization dynamics in AFMs is scarce due to the difficulties to conduct a
systematic comparison on the same system presenting FM and AFM magnetic order. Stud-
ies in rare-earth Dy using femtosecond time-resolved resonant magnetic x-ray diffraction
have measured the dynamics of its FM and AFM-spin-helix states. These investigations
have shown that the dynamics of the order parameter in the AFM phase is faster than in
the FM phase [187]. Laser induced ultrafast magnetization dynamics in FMs have been
modeled using computer simulations based on different approaches, from ASD models to
macroscopic phenomenological approaches [5, 14, 188]. Within these approaches magneti-
zation dynamics are explained on thermodynamic grounds. When the temperature of the
heat-bath is rapidly modified, the magnetic order changes according to Ṁ ∼ αfmH, driven
by an effective field H = −∂F/∂M at a rate αfm, towards minimal free energy values, F (M)
[116]. The thermodynamic argument explains demagnetization and magnetization recovery
when the system temperature increases and decreases, respectively. It can be expected to
hold for other magnetic structures, such as antiferromagnets, as well. In AFMs however, an
additional channel for angular momentum dissipation opens, by direct exchange of angular
momentum between sublattices. For a two sublattice AFM, the dynamics of sublattice a
can be expressed as : Ṁa ∼ αaHa + αex(Ha − Hb), where αex represents the rate of inter-
atomic transfer of angular momentum between sublattices a and b. In the simplest AFM
case, both sublattices are equivalent, such that Ha = −Hb is a valid approximation, leading
to Ṁa ∼ (αa + 2αex)Ha = αafmHa, where αa and αex are the Onsager coefficients describ-
ing exchange and relativistic relaxations. For FM and AFM systems defined by the same
parameters, αafm > αfm, and consequently the AFM is faster than the FM.
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6.2 Exchange-enhancement of the magnetic order dynamics
in antiferromagnets

By using ASD simulations, we first demonstrate the existence of exchange-enhancement on
the AFM dynamics in conditions similar to experiments (see appendix). A high temperature
regime, T ≫ Tc can be accessed by suddenly heating the electron system using a femtosec-
ond laser pulse (Fig. 6.1.1 (a)). Using the two temperature model (TTM) the electron
temperature will rise far above Tc on a timescale of 100 fs (see appendix). The magnetic
system responds to this temperature change by reducing its magnetic order on similar time
scales. The electron-phonon coupling allows energy transfer from the hot electrons to the
lattice in the time scale of only a couple of picoseconds. This allows for the investigation not
only of the magnetic order quenching but also its recovery. Figure 6.1.1 (b) shows that the
demagnetization in the AFM is larger than in FM, owning to a faster response when excited
by the same temperature profile (Fig. 6.1.1 (a)). The magnetic order recovery of the AFM
is on the same time scale as the electron-phonon temperature relaxation time, while it takes
the FM more time to relax. The exchange-enhancement of the AFM magnetic damping is
at the origin of this speed up as we shall demonstrate. The non-equilibrium macroscopic
magnetization dynamics of the sublattice can be described by [126]:

1

γ

dma

dt
= αaHa + αex(Ha −Hb) (6.2.1)

where a ̸= b. The macroscopic damping parameter in Eq. (6.2.1) is defined as, αa =
2λL(ξa)/ξa, here, λ is the atomic damping parameter. Here, L(ξa) stands for the Langevin
function, with the argument ξa = βµaH

MFA
a and β = 1/kBT [173]. In the mean field

approximation (MFA), the field acting on sublattice a is µaH
MFA
a = J0mb, where J0 = zJ

and z is the number of nearest neighbours of spins of type b and J is the exchange interaction
energy. Moreover, in the exchange approximation, one can fairly assume that ma = mb = m,
and therefore αa = αb. Under these assumptions, the exchange relaxation parameter can be
written as αex = 4αa/(zm) (see Chapter 5). One can recover the equation of motion for the
FM case for αex = 0 (Eq. (6.2.1)), in that case, αfm = αa. The non-equilibrium effective
fields are given by

Ha =
(ma −m0,a)

µaβL′(ξa)
. (6.2.2)

where, L′(ξ) = dL/dξ and m0,a = L(ξa) [173, 171]. For the two sublattice AFM considered
here, Ha = −Hb = Hn, where Hn = (n− n0)/µaβL

′(ξ). It follows that the dynamics of the
Néel order parameter is given by

1

γ

dn

dt
= αafmHn. (6.2.3)

This demonstrates that the origin of exchange-enhancement of the AFM dynamics can be
traced back to the effective AFM damping parameter,

αafm = αfm

(
1 +

4

z|n|

)
. (6.2.4)

We first address the differences and similarities between AFM and FM near thermal equi-
librium, where the non-equilibrium fields can be cast into Landau-like expressions [126, 171],
Hn = (µat/2χ̃∥)δn2/n2

e. Here χ̃∥ is the longitudinal susceptibility of the Néel vector at zero
field

χ̃∥ =
µat

J0

βJ0L
′

1− β|J0|L′ . (6.2.5)
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Figure 6.2.1: (a) Magnetic order dynamics of a FM and an AFM after a step-like tem-
perature increase, Ti/Tc = 0.07 and final temperature Tf/Tc = 0.33. (b) Magnetic order
relaxation time in FMs and AFMs as a function of Tf/Tc. Symbols correspond to ASD
simulations, solid lines to MFA, and dashed lines are a fit of the scaling law, (1 − T/TN)

ν

with ν = −1.017(7) for τ1,fm and ν = −0.64(2) for τafm. The light red area around the FM
data indicates the statistical uncertainty coming from over 50 simulations. For AFMs is not
shown since it is around 2-4% at maximum close to TN. (c) The relaxation time for different
lattice structures (sc, bcc, fcc and a 2D square). Symbols correspond to ASD simulations
and lines to MFA.

For small deviations δne of the order parameter n, from equilibrium (δne ≪ ne), Eq. (6.2.3)
can be expanded around the equilibrium state ne. The resulting first order linear differential
equation in n can be easily solved analytically as an exponential decay, with relaxation time
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given by τafm = χ̃∥/γαe
afm, where αe

afm is calculated for n = ne. At low temperature, where
ne ≈ 1 the ratio between AFM and FM relaxation time is just given by αafm/αfm = 1+4/zne,
which equals to 1 + 4/z (5/3 for simple cubic) at strictly T = 0 K. In striking contrast to
the FMs, the effective AFM damping depends on the number of nearest neighbours z. For
the MFA limit, z → ∞, the exchange-enhancement vanishes (αafm = αfm) whereas for
systems with low coordination number increases, for example a spin chain with z = 2,
αafm = 3αfm. Another relevant example would be the metallic antiferromagnet Mn2Au
[190, 191, 192], the most promising candidate for future spintronic and memory applications,
in which each Mn spin is antiferromagnetically exchange coupled to five neighbours, and
thus a speed up of a factor 1 + 4/5 = 1.8 is expected. At temperatures approaching Tc(N),
the order parameter reduces, ne ≈ 0, and consequently, αafm/αfm ∼ 1/ne diverges. In
the MFA, close to Tc(N), the order parameter at equilibrium scales with temperature as

ne ∼ (1 − T/Tc(N))
1/2. Hence the critical behaviour of the AFM damping parameter is

αafm ∼ (1− T/TN)
−1/2. While the longitudinal susceptibility increases with temperature up

to the critical temperature where it diverges, χ̃∥ ≈ (1 − T/Tc(N))
−1. Thus, the relaxation

time in AFMs scales as τafm ∼ (1 − T/TN)
−1/2, which differs from the scaling for FMs

τfm ∼ (1− T/Tc)
−1. Although both AFMs and FMs show the so-called critical slow down

near Tc(N), the effect of the exchange-enhancement of the AFM dynamics is to lower the
critical exponent. In general, the MFA scaling laws are known to differ from the actual
critical scaling exponents, τ ∼ (1− T/Tc)

−ν . We conduct ASD computer simulations to
verify qualitatively these theoretical predictions, i) to find different critical exponents, ν,
for AFMs and FMs, and ii) to demonstrate the dependence on the number of exchange
links between spins of the relaxation time in AFMs. To do so, we compute the relaxation
time under the same conditions, namely, for small deviations from equilibrium, δne/ne ≪ 1.
This is achieved by applying a step-like temperature increase, ∆T = Tf − Ti, such that
δn = ne(Ti)−ne(Tf) = 0.1ne(Ti) for all initial/final temperatures Ti/Tf . An example of such
magnetization dynamics for the z−component of the order parameter for FM and AFM
orderings for a simple cubic lattice (z = 6) are shown in Fig. 6.2.1 (a). We find that for FMs
the relaxation dynamics is defined by two characteristic times, τ1,fm and τ2,fm, associated to
a fast and a slow relaxation process, respectively and for the AFM a single τafm is enough to
describe the demagnetization process. Fig. 6.2.1 (b) shows the relaxation times τ1,fm, τ2,fm
and τafm as function of the reduced temperature Tf/Tc in comparison to the MFA analytical
expression derived from Eq. (6.2.3). Interestingly, we find that for all temperatures the slow
relaxation time τ2,fm is related to fast one τ1,fm as τ2,fm = 12τ1,fm. The faster time decay is
related to the relaxation of the magnetic order, while the slower one with the relaxation of
short-wavelength spin waves[116]. Differently to this characteristic bi-exponential relaxation
decay in the FMs, the relaxation process in AFMs is defined by only one, fast characteristic
time, τafm. The relaxation time of the AFM order parameter τafm is faster than τ1,fm, for
the same microscopic magnetic parameters. In particular, at low temperatures, the ratio
between the relaxation times, τ1,fm/τafm is close to 5/3, like our predicted theory value for
a sc lattice. The absence of a second, slow relaxation process makes that the AFMs reach
the final, equilibrium state much faster than in FMs, indeed the characteristic times, in
FMs and AFMs, are related as τ2,fm ≈ 12(1 + 4/z)τafm, which ranges from 12 for z → ∞
to 36 for z = 2. As the final system temperature Tf approaches the critical temperature,
TN , the magnetization dynamics slows down both for AFMs and FMs. Figure (6.2.1)(b)
shows the good agreement between our model (MFA-solid lines) and ASD (symbols) for
both the AFMs and FMs. The critical behaviour of the relaxation time can be also captured
by a temperature scaling function, τ∥ ∼ (1 − T/TN)

−ν (dashed lines in Fig. 6.2.1(b)). By
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fitting our ASD simulation results, we find that for the FM system, νfm = 1.017(7), whereas
for the AFM system, νafm = 0.64(2), in qualitative agreement with the prediction of our
theory, the critical exponent in AFMs is smaller than in FMs. We note that for the AFM
fit, the critical exponent is obtained by taking only the data close to TN into account, where
the second term in Eq. (6.2.4) dominates and therefore it coincides with our theoretical
analysis. Another fundamental difference between FMs and AFMs is the dependence of the
relaxation time on the number of neighbours z to which each spin is coupled. Figure 6.2.1(c)
shows the temperature dependence of the τafm for three different lattice structures in 3D, sc
(z = 6), bcc (z = 8), and fcc (z = 12), and in 2D, a square lattice (z = 4). Lines in Fig.
6.2.1(c) correspond to the analytical estimation based in our model and symbols to the ASD
simulations. We stress that the lattice structure dependence of τafm only exists for AFMs.
Relaxation time in FMs is independent of the lattice structure. One question remains, how
could signatures of these exchange-enhanced dynamics in AFMs be found in experiments? To
address this problem, we first validate our model by comparing directly the dynamics of an
AFM calculated via ASD simulations and Eq. (6.2.3) for three different temperature profiles
(see Fig. 6.2.2(a)). One temperature profile corresponds to a step function and the others
to the TTM with two sets of parameters. The agreement between ASD simulations and our
model is very good. We note that for quantitative comparison between ASD simulations and
MFA models, one needs to slightly rescale the exchange parameter, J (for more detail we refer
to the appendix sec. A6.4.2). We find that Eq. (6.2.3) describes ASD simulations as far as
the microscopic spin configurations are homogeneous, as expected from the MFA grounds of
our model (see details in appendix, Sec. A6.4.3). By directly comparing the dynamics of FMs
and AFMs under laser pulses, for instance see Figs. 6.1.1 and 6.2.2, one can barely discern the
effect of the exchange-enhancement in AFM dynamics. However, our model predicts striking
differences between FMs and AFMs in the magnetic order dynamics in the limit of high-
temperatures, T ≫ Tc, and small magnetic order parameter (ξ = βJ0m → 0). This scenario
corresponds to experiments using powerful femtosecond laser pulses. For FMs, Eq. (6.2.1)
approximates to a linear equation: (µat/γ)ṁ = 2λkBTm. Thus, the dynamics is described by
an exponential decay, namely, it slows down as the magnetization m reduces. In contrast, in
the same limit, for AFMs, Eq. (6.2.1) approximates to (µat/γ)ṅ ≈ 4(4/z)λkBT , independent
of n, which speeds up the AFM dynamics. This different dynamic directly emerges by
increasing the laser fluence so that the electron temperature reaches very high temperatures
and the magnetic reduces. In Fig. 6.2.3(a) one can observe the diverse behaviour of the
maximum demagnetization (∆maxm(n)) as a function of the reduced maximum electron
temperature Tel/Tc for both AFMs and FMs. We note that since the results depend on
the chosen TTM parameters, the results are drawn as a function of Tel/Tc instead of laser
intensity. Figure 6.2.3(a) shows that for FMs the shape of ∆maxm(Tel) is convex, while for
the AFM, ∆maxn(Tel) is concave. These findings align with an experimental work comparing
the magnetic order dynamics of the AFM and FM phases in Dy [187], where for comparable
laser powers, the maximum demagnetization in AFMs was larger than in FMs [187]. It was
also found that by increasing the laser intensity, the maximum demagnetization rate Γmax

increased in AFMs is much stronger than in FMs. Figure 6.2.3 (b) shows how the maximum
demagnetization rate increases faster for AFMs than for FMs, in qualitative agreement with
experiments conducted in Dy. The different slope of Γmax is directly related to the exchange-
enhancement of the effective AFM damping (Eq. (6.2.4)), 1 + 4/z, for sc used here, Γafm

max =
(5/3)Γfm

max.
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Figure 6.2.2: (a) Temperature step function (Ti = 0.06TN and Tf = 0.7TN ) and two
different Tel profiles for the same laser fluence and gep = 6 × 1017J/sKm3 for two sets of
parameters (TTM1: γ = 700 J/K2m3, cph = 3× 106 J/Km3, and TTM2: γ = 2000 J/K2m3,
cph = 5× 105 J/Km3). (b) The magnetic order dynamics as a response to the temperature
profiles in panel (a). The symbols correspond to ASD simulations and the lines to the
numerical solution of Eq. (6.2.3), (λ = 0.01).

6.3 Summary

To summarize, we have shown that the ultrafast magnetic order dynamics in antiferromagnets
is exchange-enhanced in comparison to ferromagnets with the same system parameters. The
origin is the exchange-enhancement of the effective AFM damping. We have provided an
equation of motion for the AFM magnetic order and predicted that AFMs have intrinsic
faster dynamics and distinct critical dynamics than FMs. Notably, we have found that the
exchange-enhancement strongly depends on the number of neighbours to which spins are
exchange coupled, for instance in 2D magnets, the speed up of the dynamics is larger. In
the very high temperature regime, we have predicted a transition from exponential to linear
decay when the magnetic order reduces. We propose a method to discern this effect in
experiments using powerful femtosecond laser pulses. We have demonstrate the validity of
our model by direct comparison to atomistic spin dynamics simulations.
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Figure 6.2.3: (a) Maximum magnetic order quenching Max ∆mz = Max|m0 − mz(t)|
(∆nz = Max|n0−nz(t)| for AFM) as function of the reduced peak electron temperature Max
Tel/Tc. (b) Maximum demagnetization rate as function of the peak electron temperature.
Dots, AFM (blue) and FM (red), represent ASD simulations and dashed lines the numerical
solution of Eq. (6.2.3). Results for a laser pulse of 50 fs duration and λ = 0.01 in the ASD
simulations.

A6.4 Appendix to ”Exchange-enhancement of the ultrafast
magnetic order dynamics in antiferromagnets”

A6.4.1 Methods

The dynamics of the magnetic order parameter (in FMs and AFMs) are calculated within
the framework of a classical, atomistic spin model. The Hamiltonian reads

H = −J

2

∑
⟨i,j⟩

sisj − dz
∑
i

(szi )
2 . (A6.4.1)

The unit vectors, si = µi/µat, represent the normalized magnetic moment of the lattice
site i with magnetic moment µat = µB. The first term describes nearest neighbors exchange
coupling, with J = ±3.450×10−21 J for the FM (+) and AFM(-). The second term represents
the uniaxial anisotropy, with dz = 1×10−22 J for both AFM and FM. The dynamics at finite
temperatures are described by the stochastic Landau-Lifshitz-Gilbert (s-LLG) equation,

dsi
dt

= − |γ|
(1 + λ2)

si × [Hi − λ (si ×Hi)] . (A6.4.2)

Here, γ is the gyromagnetic ratio. The first term represents a precession of the magnetic
moments around an effective field Hi = −(1/µat)(∂H/∂si), while the second term represents
the transverse relaxation. A phenomenological damping constant λ defines the rate of the
relaxation. In order to include the effects of finite temperature, we couple the spin system
to a Langevin thermostat which adds an effective field-like stochastic term ζi to the effective
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Figure A6.4.1: Equilibrium magnetization of a sc-lattice as a function of temperature from
ASD simulations (red dots), mean field approximation (blue dashed line) and from the MFA
model including a temperature dependent rescaled Heisenberg exchange constant J(T ) (Eq.
(A6.4.6)), (red line).

field with white noise properties [97]. The dynamics of the electron temperature Tel and the
phonon temperature Tph can described via the two-temperature model (TTM) [102, 110],

Cel
∂Tel

∂t
= −gep (Tel − Tph) + Pl(t) (A6.4.3)

Cph
∂Tph

∂t
= +gep (Tel − Tph) . (A6.4.4)

where gep = 6×1017 J/sKm3 is the electron-phonon coupling constant, Cph = 3×106 J/Km3

and Cel = γeTel (γe = 700 J/K2m3) represent the respective specific heats of the electron-
and phonon system. Although we use standard values for metals, these values are material-
dependent. Pl(t) is Gaussian shaped and represents the absorbed energy of the electron
system coming from the laser.

A6.4.2 Rescaling of the exchange constant for quantitative comparison
between MFA and ASD simulations

In the main text, our analytical model for the magnetic order dynamics is based in the mean
field approximation (MFA). The equilibrium magnetization as a function of temperature
calculated using the MFA slightly differs from the ASD simulations. Fig. A6.4.1 shows the
MFA results as a blue dashed line and the ASD simulations as red points for a sc-lattice
using J = 3.450 × 10−21 J. For the MFA case, we have rescaled the exchange constant,
Jmfa = 0.73Jasd, to obtain TMFA

N = TASD
N . We have estimated the ASD critical temperature

by calculating the temperature at which the magnetic specific heat diverge. The equilib-
rium magnetization as a function of temperature using the MFA start to deviate from ASD
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simulations in the intermediate-to-high temperature region, TN/2 < T < TN . In order to
quantitatively compare our model to ASD simulations we resolve this discrepancy by intro-
ducing a temperature dependent Heisenberg exchange modulation J(T ) = J0+J ′(T ), where
J0 describes the original MFA Heisenberg exchange constant, Jmfa = 0.73Jasd, J

′(T ) > 0 is a
temperature dependent modulation that needs to be determined. We determine it by forcing
the equality the equilibrium magnetization calculated through ASD, me = (1 − T/TN )1/3

(1/3 for a sc-lattice), and the MFA, me = L(βJ(T )me). Thus, the temperature dependent
Heisenberg exchange J(T ) can be calculated from

(1− T/Tc)
1/3 = L

(
(J0 + J ′(T ))m

kBT

)
(A6.4.5)

which can be solves as

J ′(T ) =
1

βm
L−1((1− T/Tc)

1/3)− J0. (A6.4.6)

L−1 describes the inverse Langevin function for which no analytical expression is known.
However there have been numerous attempts at finding a simple and accurate approxima-
tion [193, 194]. In this work we have used the equation proposed by Nguessong et al. [194]
to approximate the inverse Langevin function numerically.
We note, that by using Eq. A6.4.6 J(T ) becomes independent of the numerical value of
J0 and is instead directly calculated from the magnetization curve m(T ) via the inverse
Langevin function. For a sc-lattice me(T ) = (1− T/Tc)

1/3 agrees well with the atomistic re-
sults. However for other lattices (fcc, 2D or bcc), a different analytical expression for me(T )
is needed to describe me(T ).
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Figure A6.4.2: ASD simulations of AFMmagnetic order dynamics for different laser powers
(λ = 0.01) (dots) in comparison to our analytical model (Eq. (6.2.3)) (lines). Higher laser
powers yields larger demagnetization and the underlying MFA assumptions of Eq. (6.2.3)
stops being a valid approximation. On the right different states of the spin system are
shown, shortly after the excitation with a laser pulse.

A6.4.3 Breakdown of the MFA model for high fluence laser excitation

As discussed in the main text, our model is based in the MFA. This means that better
agreement between ASD and MFA would be expected when the microscopic spin configura-
tions remain close to the MFA assumptions, when each atomic spin sees the same interactions
from the neighbouring ones. When magnetic domains are be nucleated, our MFA macroscpin
model no longer describes the spin state correctly. Figure A6.4.2. shows the magnetic order
dynamics for a range of laser fluences, where symbols correspond to ASD simulations and
lines to the macrospin model. For higher fluences the agreement between the two models
diminishes. The right side shows snapshots of the microscopic spin configuration at different
time delays corresponding to the a time range where maximum demagnetization is achieved.
When the laser fluence is only the 73 % of the maximum fluence simulated, the microscopic
spin configuration is homogeneous. In that case, the agreement between theory and simula-
tions is very good. As the laser fluence increases, magnetic domains start to nucleate and
the theory and simulations to deviate. For the maximum laser fluence that we simulate 100
%, large magnetic domains are nucleated and the MFA breaks down. The theory is not able
to describe this situation. For those cases, a micromagnetic model should be developed.
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Chapter 7

Lattice dynamics and ultrafast
energy flow between electrons,
spins, and phonons in a 3d
ferromagnet

The results of this chapter have been published in

� D. Zahn, F. Jakobs, Y. W. Windsor, H. Seiler, T. Vasileiadis, T. A. Butcher, Y. Qi,
D. Engel, U. Atxitia, J. Vorberger, and R. Ernstorfer, Lattice dynamics and ultrafast
energy flow between electrons, spins, and phonons in a 3d ferromagnet, Physical Review
Research 3 p. 023032, (Apr 2021).

and the content of this chapter is in large parts identical with the published work.
Large parts of the theory and in particular all atomistic spin dynamics simulations have been
performed as part of this thesis. All experiments were done by D. Zahn and coworkers from
the Fritz-Haber-Institut. The density functional theory calculations have been performed by
T. A. Butcher and J. Vorberger.

The published version can be found at https://doi.org/10.1103/PhysRevResearch.3.

023032

7.1 Introduction

The discovery of ultrafast demagnetization in ferromagnetic nickel in 1996 by Beaurepaire
et al. [5] induced a paradigm shift in the field of magnetism. The experiment proved that
magnetic order can be manipulated on femtosecond time scales, therefore offering new per-
spectives in data storage. Since then, researchers have worked towards a microscopic under-
standing of the phenomenon [5, 175, 14, 16, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204].
To acquire microscopic insights into the processes governing the ultrafast demagnetization in
itinerant 3d ferromagnets, knowledge about the response of electronic, magnetic and lattice
degrees of freedom to laser excitation is required. Most of the experimental work in litera-
ture focuses either on the magnetization dynamics using the time-resolved magneto-optical
Kerr effect (tr-MOKE) [5, 205, 206, 207, 14, 208, 209, 127, 23, 107] or time-resolved X-ray
magnetic circular dichroism (tr-XMCD) [210, 211, 55], or on the electronic response using

https://doi.org/10.1103/PhysRevResearch.3.023032
https://doi.org/10.1103/PhysRevResearch.3.023032
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time-resolved photoemission methods [205, 203, 66, 212]. In contrast, the lattice response has
received only limited attention [213, 214, 215, 216, 115]. Knowledge of the lattice dynamics
is essential, as it plays several important roles in the dynamics of the system: First of all,
it serves as a sink for angular momentum [213]. Second, in addition to receiving angular
momentum, the lattice is also an energy sink: it drains energy from the electronic system
on ultrafast timescales via the creation of phonons. Hence, the electron-phonon coupling
strength strongly influences the energy content of the electronic system and consequently
also the magnetization dynamics. Finally, the lattice response is in turn also influenced by
the magnetization dynamics, both during the demagnetization and the magnetization recov-
ery (remagnetization). The demagnetization of an isolated sample requires spin excitations,
e.g. spin flips and/or magnons, which cost energy. This is also visible in the equilibrium
heat capacity, which shows a divergence at the Curie temperature [217]. Due to this energy
cost, ultrafast demagnetization reduces the energy content in the electronic system and thus
indirectly influences the lattice dynamics as well.
Several models have been developed and used to describe the magnetization dynamics of
3d ferromagnets following laser excitation [5, 14, 16, 196, 197, 218, 219]. In addition to
the magnetization dynamics, however, a consistent model should also describe the electronic
and lattice responses correctly. In particular, due to the relatively large heat capacity of the
lattice, an accurate description of electron-lattice equilibration is important. Nonetheless,
literature values for the electron-phonon coupling parameter Gep of nickel vary by more than
an order of magnitude [220, 5, 221, 222, 223, 105, 14, 224, 225, 226, 66, 215]. So far, experi-
mental studies of ultrafast lattice heating in nickel have mostly employed optical techniques
[227, 222, 223], which are sensitive to both the electronic and the lattice responses. The most
direct technique to study the lattice is diffraction, but there are only few studies that mea-
sured the lattice heating directly with time-resolved diffraction [216, 115]. In addition, the
electron-phonon coupling was often deduced from observables without considering the energy
cost of demagnetization [220, 222, 223, 14, 226]. The large spread in literature values for Gep

can manifest itself in an imprecise description of the electron-lattice equilibration and makes
different models less comparable. To obtain a consistent model for the microscopic energy
flow and the magnetization dynamics, it is paramount to compare theoretical results to the
response of all three subsystems, including the lattice. At the same time, the energy flow
dynamics between the subsystems need to be described consistently. In particular, energy
flow to and from magnetic degrees of freedom needs to be considered. Regarding the existing
demagnetization models, the microscopic three-temperature model (M3TM) introduced by
Koopmans et al. [14] as well as conventional micromagnetic and atomistic spin dynamics
simulations [228, 229, 230, 201] disregard the energy flow associated to the magnetization
dynamics. In contrast, the three-temperature model (3TM) introduced by Beaurepaire et al.
takes energy flow to and from the spin system into account [5, 231]. However, to deduce the
three different coupling constants of the 3TM reliably from experimental data, information
on the response of more than one subsystem is required. In addition, the 3TM describes the
spin system based on its properties in thermal equilibrium, which is a questionable assump-
tion on short time scales after laser excitation [197, 66]. Similarly, a modified version of the
M3TM includes energy flow to and from the spin system, but also assumes a thermalized
spin system [208]. Dvornik et al. introduced an energy-conserving model that goes beyond
a thermal description of the spin system by employing micromagnetic simulations [225], but
no direct comparison with experimentally measured lattice dynamics has been made yet.
In this work, we fill this gap by providing a comprehensive experimental and theoretical
description of the lattice dynamics in ferromagnetic nickel. We use femtosecond electron
diffraction (FED) to directly measure the lattice response to laser excitation. In Section
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II we provide an overview of the electron diffraction experiment and the experimental re-
sults. The excellent time resolution of our electron diffraction setup allows us to resolve the
lattice heating in nickel on femtosecond time scales. Section III discusses the comparison
between the experimental results and energy flow models of increasing complexity. For this
comparison, we perform spin-resolved density functional theory (DFT) calculations to ob-
tain the electron-phonon coupling parameter Gep as well as the electronic and lattice heat
capacities. In Section III.A, we compare the experimental results to the commonly used two-
temperature model (TTM) and a modified TTM with strong electron-spin coupling (s-TTM).
The latter is the minimal extension of the TTM that considers magnetic degrees of freedom.
This comparison reveals that energy transfer to and from magnetic degrees of freedom has a
strong impact on the lattice dynamics. In Section III.B, we go a step further and aim for a
quantitative description not only of the lattice dynamics, but of all three subsystems using
energy-conserving atomistic spin dynamics (ASD) simulations. This hybrid approach of spin
dynamics simulations and energy flow model is shown to provide a consistent description of
both the non-equilibrium dynamics of the spin system as well as the energy flow between
the different subsystems. Section IV provides a summary of the key findings.

7.2 Experiment

The samples were freestanding, polycrystalline nickel films with a thickness of 20 nm sand-
wiched between 5 nm layers of Si3N4 on both sides to avoid oxidation. They were prepared on
NaCl crystals by magnetron sputter deposition at room temperature. To obtain freestanding
samples, the thin films were transferred onto standard TEM grids using the floating tech-
nique [232]. The samples were not exposed to a magnetic field before the measurements. To
study the ultrafast structural dynamics of nickel, we used the compact femtosecond electron
diffractometer described in Ref. [68]. The samples were excited using ultrashort (ca. 50-80 fs
FWHM) laser pulses with different wavelengths (2300 nm, 770 nm and 480 nm), at 4 kHz
repetition rate. The measurements were conducted at room temperature (295 K). The struc-
tural response of the sample was probed in transmission using short electron pulses. The
kinetic energy of the electrons was 65-77 keV, depending on the experiment. In total, the
temporal resolution achieved in the experiments was around 170 fs. Figure 7.2.1(a) illus-
trates the measurement principle and shows a diffraction pattern of our polycrystalline nickel
sample. To analyze the changes in the diffraction pattern after laser excitation, the recorded
images were radially averaged. A typical radial average of our nickel samples is displayed
in Fig. 7.2.1(b) (solid blue line). Next, we performed a fit to the radial averages. Here we
apply a global fitting approach [233], which extracts the lattice dynamics based on the full
diffraction pattern instead of individual Bragg reflections as conventionally done [234, 235].
In the first step of the fitting routine (static fit), we fitted the average of all radial averages
before laser excitation to a function consisting of Lorentzian peaks plus a background func-
tion, all convolved with a Gaussian. The peak amplitudes of the Lorentzians were adjustable
but the peak positions were fixed in the fit, except for a parameter for the conversion of
pixels to scattering vector, a parameter accounting for aberrations of the electron lens and
small correction factors for the individual peaks (≤5% deviation). The peak width was one
fit parameter, i.e. it was the same for all peaks. The fit result is displayed in Fig. 7.2.1(b)
(dashed black line). We used the range from the Bragg reflections (111) to (511), as shown.
From the Bragg reflection intensities, we deduce that the sample has a preferred orientation,
but this does not affect our analysis of the lattice dynamics. In the second step of the fitting
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probe pulse
(electrons) 

pump pulse
(vis/IR light)

sample: nickel 
(20nm) 

diffraction pattern 
in transmission

Figure 7.2.1: Details of the femtosecond electron diffraction experiment. (a) Schematic
diagram of the experiment. The electrons in the sample are excited using a visible or infrared
laser pulse. The excited electrons transfer energy to the spins as well as to the lattice, de-
pending on the respective coupling strengths (black arrows). The lattice response is probed
using an ultrashort electron pulse, which diffracts off the sample. Diffraction patterns are
recorded in transmission. b) Radial average of the diffraction pattern (solid blue line) before
laser excitation. The dashed black line is a fit to the data (static fit). The background
contribution obtained from the static fit was subtracted. c) Differences of the radial aver-
ages at several pump-probe delays (solid lines) compared to the radial average before laser
excitation. The dashed black line shows the fits to the data (dynamic fit). The details of the
fits are described in the text.

routine, which yields the lattice dynamics after laser excitation (dynamic fit), we fixed all
parameters of the fit function at the values obtained from the static fit, except the change
in atomic mean-squared displacement (MSD), the lattice expansion and the background pa-
rameters, and fitted all the radial averages of the measurement. The MSD is related to the
peak intensities as follows [236]:

I(t)

I0
= exp{−1

3
q2 ⟨u2⟩ } (7.2.1)

Here, q is the scattering vector, ⟨u2⟩ is the MSD and I0 is the intensity before laser excitation.
Figure 7.2.1(c) shows changes of the radial averages after laser excitation for several pump-
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Figure 7.2.2: Time evolution of the mean squared displacement (MSD) and the lattice
temperature after laser excitation with 2300 nm light. In this measurement, the absorbed
energy density was 1230 J

cm3 . The black dots show the experimental data and the black
line is a fit with a single exponential function, convolved with a Gaussian (FWHM: 170 fs)
to account for the time resolution. The grey shaded area represents the standard errors
of the data points, obtained from the fit of the radial averages. The inset shows the time
constants (fit result) for different excitation densities. The error bars represent the standard
errors of the single exponential fits. The dotted red line is a linear fit to the data (τ =
a · (Tfinal − 295 K) + b), with a = 0.336 ± 0.06 fs

K and b = 360 ± 20fs. The errors of a and b
are the standard errors from the fit.

probe delays together with the fit results of the dynamic fit (dashed black lines). The fit yields
the evolution of the MSD as a function of pump-probe delay, which is then converted into
lattice temperature using the tabulated Debye-Waller factor of Ref. [236]. The deviations
of the fit results from the experimental data are caused by secondary scattering effects
and the limitations of the phenomenological background function. They do not influence
the timescales of the extracted lattice dynamics. The precision of the lattice dynamics is
determined using the standard error from the fit. The corresponding error bars are shown as
grey shaded areas in all figures. Further details about the global fitting routine are described
in Ref. [233]. Figure 7.2.2 shows the evolution of the MSD and the lattice temperature as a
function of pump-probe delay for a pump wavelength of 2300 nm (0.54 eV). The temperature
rise can be well described by a single exponential function, convolved with the instrument
response of ∼170fs. The inset of Fig. 7.2.2 shows the time constants of the single exponential
function (fit results) for different fluences. The time constant is found to increase linearly
with excitation density (dotted red line). Our time resolution of around 170 fs enables us
to resolve the lattice heating. We observe time constants that are significantly faster than
previous electron diffraction reports [115, 216]. The experimental data as well as the results
for the MSD and lattice temperature dynamics are available on a data repository [237]. The
TTM and s-TTM results discussed in the next section are also available there.
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7.3 Results and energy flow models

7.3.1 Two-temperature models

To go beyond a phenomenological description of the lattice dynamics and connect our ob-
servations to microscopic quantities, a model is required. For non-magnetic materials, a
frequently used model is the TTM [238, 239], which describes the time evolution of the sys-
tem by considering the lattice and the electrons as two coupled heat baths. In magnetic
materials, such an approach neglects the magnetic degrees of freedom. However, they have
a non-negligible contribution to the total heat capacity, as shown in Fig. 7.3.1(a). Several
approaches have been introduced to take into account energy flow to and from magnetic
degrees of freedom [5, 115, 225]. Here, we follow the approach of Refs. [115, 66] and consider
electronic and magnetic degrees of freedom as one heat bath with a common temperature. In
the following, we refer to the magnetic contribution as ”spins” for simplicity. Note that this
includes the orbital magnetic moment. The TTM equations are modified in the following
way:

cl(Tl) ·
dTl

dt
= Gep(Tes) · (Tes − Tl) (7.3.1)

[ce(Tes) + cs(Tes)] ·
dTes

dt
= Gep(Tes) · (Tl − Tes) + S(t), (7.3.2)

with Gep: electron-phonon coupling, Tl: lattice temperature, Tes: temperature of electrons
and spins, cl: lattice heat capacity, ce: electron heat capacity, cs: spin heat capacity, S(t):
source term (laser excitation). Figure 7.3.1(c) shows a schematic diagram of this modified
TTM (s-TTM) and figure 7.3.1(d) visualizes the regular TTM for comparison. The only
difference between the two models is that in the case of the s-TTM, the spin heat capacity
is added to the electronic heat capacity. For this we used the combined heat capacity of
electrons and spins provided by Ref. [217] (blue curve of Fig. 7.3.1(a)). The electron-
phonon coupling parameter Gep, shown in Fig. 7.3.1(b), as well as the heat capacity of the
lattice (grey curve of Fig. 7.3.1(a)), were obtained using spin-resolved DFT calculations.
The details of the calculations are described in Appendix A. For the comparison of the s-
TTM to a regular TTM we also calculated the heat capacity of the electrons from the DFT
calculations (orange curve of Fig. 7.3.1(a)). To compare the two models to the experimentally
measured lattice response, we determined the absorbed energy densities based on the lattice
temperature in the range 1.5-4 ps and the heat capacities. The arrival time of the laser pulse
was determined from the exponential fits described earlier. Figure 7.3.2 presents the results
for the s-TTM (blue curves) and the regular TTM (orange curves) for a range of fluences
alongside experimental results (black dots). The regular TTM predicts a lattice response that
is faster than the experimental results and is therefore inadequate for describing the dynamics
of the system. In contrast, the s-TTM yields remarkable agreement with the experimental
results, in particular since the lattice response in this model is determined by ab initio results
and literature values, without any fit parameters. Clearly, the s-TTM describes the phonon
dynamics much better than the regular TTM. This is an indication that a non-negligible
amount of energy flows to the spin-system, in agreement with the results of Ref. [66]. This
energy transfer leads to a significantly lower transient electronic temperature compared to the
regular TTM (see Fig. 7.3.2(e)), which results in a slower electron-lattice-equilibration (see
Equations 7.3.2,7.3.2). Note that in general, non-thermal electron and phonon distributions
can also lead to a slow-down of the electron-lattice-equilibration. We found that for nickel,
non-thermal distributions cannot explain our observations (see Appendix B for details). In
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Figure 7.3.1: Temperature-dependence of model parameters and schematic diagrams of
the models. (a) Heat capacities of the electron (orange) and lattice subsystems (grey) as
well as the combined heat capacity of electrons and spins (blue). Electronic and lattice
heat capacities are calculated based on the spin-resolved DFT results. Since the magnetic
contribution to the heat capacity cannot be calculated using DFT, we use the combined
heat capacity of electrons and spins determined from experiments [217] for the s-TTM. The
magnetic contribution peaks at the Curie temperature Tc (vertical dotted line). The light
blue shaded area corresponds to the error estimate. (a) Electron-phonon coupling parameter
Gep as a function of electron temperature, obtained from the spin-resolved DFT calculations.
The sum of majority and minority Gep is shown. Panels (c), (d) and (e) are schematic
diagrams of the s-TTM, the regular TTM and the ASD simulations, respectively (see text
for details).

conclusion, the s-TTM is able to capture the main features of the energy flow to and from
magnetic degrees of freedom. It therefore provides a good description of the lattice response.
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Figure 7.3.2: Comparison of the experimental results with the regular two-temperature
model (TTM) and the modified two-temperature model with infinitely strong electron-spin
coupling (s-TTM). The lattice temperature predicted by the regular TTM (solid orange
lines) and the s-TTM (solid blue lines) is displayed together with the experimental data
for different energy densities (excitation wavelength: 2300 nm). Panel (c) also shows the
evolution of the electronic temperatures for the two models (dashed lines). The grey areas
represent the standard errors of the experimental data points. Both the TTM and the s-TTM
results for the lattice temperature are convolved with a Gaussian (FWHM: 150fs) to account
for the pulse duration of the electron pulse. Note that this is less than the convolution width
for the single exponential fits of Fig. 7.2.2 because the pump pulse duration of ∼80 fs is
already included in the TTM and s-TTM. The displayed energy densities correspond to the
absorbed energy densities of the s-TTM.
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However, a shortcoming of the s-TTM is that it implies quasi-instantaneous demagnetization
dynamics, in disagreement with experimental results [14, 107]. To add a realistic description
of the magnetization dynamics, an explicit treatment of the spin system is required, which
will be discussed in the next subsection.

7.3.2 Atomistic spin dynamics simulations

Model and comparison with the experiment

In order to consistently describe the evolution of all three subsystems, we employ ASD
simulations. These describe the spin system based on a classical Heisenberg model and the
stochastic Landau-Lifshitz-Gilbert (s-LLG) equation. The evolution of electron and lattice
temperature is based on the TTM with an additional coupling of the spin system to the
electron system via the stochastic term of the s-LLG equation. A schematic diagram of the
model is displayed in Fig. 7.3.1(e) and further details about the simulations are described
in Appendix C. Commonly, ASD simulations disregard the energy cost of exciting the spin
system since the electron system is considered as a heat bath that acts on the spins. However,
in order to account for energy flow between the electron and spin system, the ASD simulations
need to be energy-conserving. This was achieved following a similar approach as described
in Ref. [106]. The energy H{Si(t)} of the spin system was monitored during each time step
∆t of the ASD simulation and the spin energy change ∆Es was calculated:

∆Es =
1

3
(H{Si(t+∆t)} −H{Si(t)}). (7.3.3)

Here, Si are the individual spins of the simulation and the factor 1
3 is a correction factor

that accounts for the quantized nature of the spins (see Appendix C for details). The energy
change ∆Es of the spin system was subtracted from the electron system, thus coupling the
two systems in an energy-conserving way. We note that in our model direct spin-phonon
coupling is not considered, which is a reasonable approximation due to the fast time scales of
the demagnetization dynamics [14, 107] and the low magnetocrystalline anisotropy of nickel
[240]. We therefore modify the TTM equation describing the evolution of the electronic
temperature in the following way:

ce
∆Te

∆t
= Gep (Tl − Te) + S(t)− ∆Es

∆t
. (7.3.4)

Figure 7.3.3(a)-(e) compares the results of the ASD simulations (solid red lines) using this
approach with our experiments (black dots). Similar to the s-TTM, the ASD simulations
maintain the excellent agreement with the experimentally measured lattice dynamics, con-
firming the strong influence of the magnetization dynamics on the lattice dynamics. Note
that also in this model, the electron-phonon coupling is not a fit parameter but stems from the
spin-resolved DFT calculations. The main advantage of the ASD simulations is the improved
description of the spin system and its magnetization dynamics compared to the s-TTM. This
is shown in Fig. 7.3.3(f), which compares the magnetization dynamics from the ASD simu-
lations with experimental results from Ref. [107]. Also for the other fluences, a much better
description of the magnetization dynamics is obtained, as shown in figure 7.3.5(a). In ad-
dition to the magnetization dynamics, the ASD simulations also yield good agreement with
previously reported time- and angle-resolved photoemission (tr-ARPES) measurements of
the electronic temperature [66], shown in Fig. 7.3.3(g). Regarding the lattice dynamics, we
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find that for very high fluences (Fig. 7.3.3 (d) and (e)), the agreement of the ASD simulations
with the experiments is less good. This can be due to pump-induced changes of the electronic
band structure, which are not included in the model and become more pronounced at higher
fluences. The results from DFT calculations describe the ground state properties. Hence,
the thus obtained electronic band structure and the electron-phonon coupling best describe
the weakly perturbed system as produced by low excitation fluences. In addition, the ASD
simulations overestimate the spin heat capacity, in particular for high spin temperatures.
This leads to an overestimation of the initial energy flow to the spins during demagnetiza-
tion as well as the energy flow back from the spin system, especially for high fluences. In
comparison to the s-TTM, the ASD simulations reach lower quantitative agreement with
the high-fluence lattice dynamics. However, the overall agreement with the dynamics of all
subsystems is significantly improved for all fluences. For low and moderate absorbed en-
ergy densities from 80 J

cm3 to 540 J
cm3 , the ASD simulations yield excellent agreement with

the lattice response. The comparison with the electronic, magnetic and lattice responses
shows that beyond describing the lattice dynamics, the ASD simulations offer a consistent
description of the dynamics of all three subsystems.

Energy flow dynamics

To highlight and discuss some of the key advantages of the ASD simulations and to gain
further insights into the energy flow between the different subsystems, we now discuss the
details of the temperature and energy dynamics. For this discussion, we also calculate a spin
temperature (see Appendix C for details). Note that the spin system is not always in internal
thermal equilibrium during the simulations, as will be discussed later. Figure 7.3.3(c) displays
the temperature dynamics of electrons (blue), phonons (red) and spins (green) after the
initial laser excitation for an absorbed energy density of 540 J

cm3 . The electron temperature
increases rapidly when the laser pulse excites the sample. Contrary to the assumptions
made for s-TTM, however, the spin temperature does not follow the electron temperature
instantly. Instead, the spin temperature increase is slower and delayed due to the finite
coupling between electrons and spins. After ∼160 fs, the two subsystems have reached a
similar temperature, and they cool down at similar rates while the lattice still heats up.
Finally, thermal equilibrium is reached after ∼ 2-2.5 ps. In addition to the temperatures,
the ASD simulations also provide the energy dynamics of the different subsystems, shown in
Fig. 7.3.4(a). After the initial laser excitation, the total additional energy in the system (solid
black line) stays constant and energy is only transferred between subsystems. Initially, the
electron system (solid blue line) absorbs all of the deposited energy. The rise of the electronic
temperature initiates the demagnetization dynamics and energy immediately starts flowing
to the spin system (solid green line). Here, we identify the key feature that is not captured by
the regular TTM: Already shortly after excitation, the spin system contains more energy than
the electron system, which leads to the significant slow-down of the lattice dynamics. The
energy flow during demagnetization is schematically depicted in Fig. 7.3.4(b). In addition to
the energy flow to the spin system, energy also flows to the lattice (solid red line), although
at a lower rate. After ∼150 fs, the energy flow to the spin system stops due to the lower
electronic temperature. This initiates the remagnetization dynamics. Energy starts flowing
back from the spin system to the electrons, which is visualized in Fig. 7.3.4(c). Energy also
flows from the electrons to the lattice, such that in total, the electrons lose further energy,
although at a much slower rate than during the demagnetization (see Fig. 7.3.4(a)). Note
that there is no direct energy flow from the spins to the lattice in the model, but the net
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Figure 7.3.3: Atomistic spin dynamics (ASD) simulations and comparison with the exper-
iment. Panels (a)-(e) show the comparison between ASD simulations (solid red lines) and
experiments (black dots) for different absorbed energy densities. The energy densities are
slightly different compared to Fig. 7.3.2 due to the different spin heat capacity in the ASD
simulations. In the simulations, the pump pulse has a FWHM of 80 fs. The results for the
lattice temperature are convolved with a Gaussian (FWHM: 150 fs) to account for the pulse
duration of the electron pulse. The electron-lattice interaction in the simulations is described
based on spin-resolved DFT calculations, without fit parameters. Panel (c) additionally dis-
plays the evolution of the electronic (solid blue line) and the spin temperature (solid green
line). Panel (f) displays the magnetization dynamics predicted by the ASD simulations
(solid green line), normalized to the magnetization at Ts = 0 K, as well as experimental
results from Ref. [107] for the same absorbed energy density (dashed black line). Panel (g)
compares the evolution of the electronic temperature in the ASD simulations (solid blue
line) to experimental data from Ref. [66] (black dots). In this case, we assumed a shorter
pump pulse duration in the simulations (FWHM: 30 fs). Note that the sample geometry
(film thickness and substrate) was different in the measurements from Refs. [107, 66]. The
grey shaded areas of Panels (a)-(e) represent the standard errors of the data points. The
grey shaded area of Panel (g) represents the errors of the experimental data points from Ref.
[66].
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electrons lattice

spins

electrons lattice

spins

Figure 7.3.4: Microscopic energy flow between electronic, magnetic and lattice degrees
of freedom according to the atomistic spin dynamics (ASD) simulations. Panel (a) shows
how the additional energy after laser excitation is distributed between the three different
subsystems as a function of time. The black line corresponds to the total additional energy
in the material, demonstrating that energy is conserved in the model. Panel (b) visualizes
the energy flow during the demagnetization. There is a large energy flow from the electrons
to the spin system and as well as energy flow from electrons to the lattice. Panel (c) shows
the energy flow during remagnetization. Energy flows back from the spins to the electrons.
In addition, energy flows from the electrons to the lattice, such that the electron as well as
the spin energy decreases while the lattice energy increases.

energy flow from spins to the lattice is indirect via the electrons. These processes continue
until thermal equilibrium is established. Note that the experiments on the three different
subsystems in Fig. 7.3.3 were performed under different experimental conditions. Therefore,
the deviations of the experimental data from the simulations cannot be directly interpreted
in terms of energy flow.

Non-thermal spin dynamics

Next, in order to gain further insights into the non-equilibrium behavior of the spin system,
we analyze the ASD simulation results for the spin system in detail. The simulations provide
the spin temperature, the spin energy as well as the magnetization simultaneously. By com-
paring these three quantities, further conclusions on the non-equilibrium spin system can be
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Figure 7.3.5: Non-equilibrium spin dynamics. (a) Magnetization dynamics from the ASD
simulations for several excitation densities of our experiments. (b) Energy content of the
spin system as a function of pump-probe delay for several excitation densities (solid lines).
For comparison, the dashed lines show the energy content of a hypothetical, thermalized spin
system with the magnetization dynamics from the ASD simulations (shown in Panel (a)).

drawn. First of all, note that despite the fact that the spin temperature in Fig. 7.3.3(c) rises
above the Curie temperature, the system does not demagnetize completely, as displayed in
Fig. 7.3.3(f). This demonstrates that on short time scales after laser excitation, the spin
system is not in internal thermal equilibrium. To understand the characteristics of this
transient non-thermal state, we analyze the magnetization and energy content of the spin
system. The magnetization dynamics following laser excitation are displayed in Fig. 7.3.5(a)
for several excitation densities. The corresponding additional spin energy content is shown
in Fig. 7.3.5(b) (solid lines). We compare the evolution of these two quantities after laser
excitation to the case in which the spin system is heated quasi-statically. The latter case is
obtained from the ASD simulations by increasing the energy of the system in small steps and
waiting for the system to reach equilibrium after each step (see Appendix C for details on
heat capacities and statistics). By comparing the simulations of the laser-excited dynamics
to the equilibrium relationships, we find that on short time scales after laser excitation, the
ASD simulations predict a spin energy content that is higher than in equilibrium for the
same magnetization. This is visualized by the dashed lines in Fig. 7.3.5(b), which represent
the energy content of a hypothetical, thermalized spin system undergoing the magnetization
dynamics predicted by the ASD simulations (shown in Fig. 7.3.5(a)). The comparison with
the actual spin energy indicates that on short timescales, the spin system is in a transient
non-thermal state with a large amount of high-energy spin excitations, in agreement with
previous experimental results [66]. This behavior is analogous to non-thermal phonon dis-
tributions: In cases in which high-energy phonons couple strongly to the lattice, the atomic
displacements can be relatively small compared to the lattice energy content on short time

97



Chapter 7. Lattice dynamics and ultrafast energy flow between electrons, spins, and
phonons in a 3d ferromagnet

scales [241], because the equilibrium relationship between atomic displacements and lattice
energy content is not applicable. Similarly, if the distribution of spin excitations differs from
thermal equilibrium, the equilibrium relationship between magnetization and energy con-
tent of the spin system is not applicable. In the ASD simulations, the energy transfer from
electrons to the spin system creates mostly high-energy spin excitations due to the local-
ized nature of the electron-spin interaction. During the thermalization of the spin system,
these excitations then decay into more delocalized spin waves with a larger magnetization
reduction per energy. The lifetime of a spin wave mode can be estimated by τ ≈ 1

2αω [242],
where ω is the angular frequency of the spin wave and α is the Gilbert damping. In nickel,
for the high-energy spin waves at the Brillouin zone boundary [243], this corresponds to a
lifetime of ∼70 fs. Consequently, the relationship between magnetization and spin energy re-
laxes towards the thermal relationship within a few hundred femtoseconds. On longer time
scales, the behavior of the magnetization reverses: the magnetization recovery is delayed
compared to the energy flow out of the spin system, particularly for high fluences. We find
that if the magnetization is strongly reduced, the spin-system remains non-thermal for sev-
eral picoseconds. This behavior is in agreement with previous ASD simulation results and
was attributed to domain formation [197]. The comparison of the laser-induced dynamics
to quasi-static heating highlights a main advantage of the ASD simulations: in contrast to
temperature models, non-thermal states of the spin system can also be described, since the
evolution of the spins is simulated directly. The non-equilibrium behavior of the spin system
predicted by the ASD simulations results in good agreement of the model with the experi-
mentally measured lattice dynamics as well as the magnetization dynamics. Consequently,
using ASD simulations we have improved the theoretical description in two key aspects com-
pared to the s-TTM: First, the magnetization dynamics are described realistically since we
no longer assume infinite electron-spin coupling, which leads to instantaneous demagneti-
zation. Second, we no longer use the equilibrium spin heat capacity to describe the spin
system in this highly non-equilibrium scenario. Instead, we directly calculate the energy
content of the spin system in the ASD simulations. These improvements allow for an excel-
lent quantitative description of the experimentally measured lattice dynamics and provide
a consistent model for the dynamics of the three subsystems after laser excitation. Unlike
many previous demagnetization models, our approach has the advantage that the parameters
for the ASD simulations stem either from ab-initio DFT calculations or are directly linked
to measurable quantities, such as the Curie temperature. The avoidance of fit parameters,
in combination with the comparison of the model to measurements of all subsystems, is the
key to a consistent description of the laser-induced dynamics. The sole parameter that is
only indirectly accessible through experiments is the Gilbert damping parameter α. Here,
we use α=0.01, which yields good agreement with the lattice dynamics and is consistent
with literature [244, 245]. We tested different values for α from 0.005 to 0.02, shown in
Appendix C, and found good overall agreement to the experimental data, therefore showing
the robustness of the model regarding variations of α. Since experimental results can always
be influenced by transport or sample-specific effects, a more precise result for α could be
obtained by measuring the dynamics of several subsystems on the same sample, ideally on a
freestanding thin film. Furthermore, since α is a phenomenological constant that comprises
several microscopic effects, additional accuracy could be gained by disentangling these mi-
croscopic effects in a future model.
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7.4 Summary and conclusions

In this work, we combined direct experimental measurements of the lattice response with
first-principles calculations of the electron-phonon interaction and atomistic spin dynamics
(ASD) modelling in order to obtain a full picture of the dynamics in ferromagnetic nickel
following laser excitation. The combination of theory and experiment enabled us to study the
influence of the energy cost of demagnetization on the lattice dynamics. We found that energy
flow to and from the spin system leads to a significant slow-down of the lattice dynamics.
The spin system is the dominant heat sink in the initial few hundreds of femtoseconds.
Consequently, it is paramount to include the energy flow to and from the spin system in any
description of the laser-induced dynamics. In case only the lattice dynamics are of interest,
a modified TTM employing electron-phonon coupling from first-principles calculations and
incorporating infinitely strong electron-spin coupling (s-TTM) suffices. The agreement of the
s-TTM with the measured lattice dynamics proved to be vastly superior to that of the regular
TTM. A consistent description of the coupled energy flow between all three subsystems and
of the magnetization dynamics is obtained with energy-conserving ASD simulations. Like the
s-TTM, the ASD simulations are based on first-principles calculations, thus minimizing the
use of fit parameters. The comparison with available experimental data for the electronic,
lattice and spin dynamics shows that the ASD simulations achieve a quantitative description
of all three subsystems. In the future, the precision of this comparison could be improved
further by measuring the response of all three subsystems on identical samples. Both the
s-TTM and the ASD simulations unambiguously demonstrate the strong influence of the
magnetization dynamics on the lattice dynamics, highlighting the importance of considering
their coupling in a full description of the material’s response to laser excitation. In addition,
the ASD simulations predict that shortly after excitation, the spin system is in a transient
non-thermal state and absorbs more energy compared to thermal equilibrium. This finding
is corroborated by the excellent agreement of the ASD simulations to the lattice, the electron
and the magnetization dynamics. Therefore, our findings indicate that in order to describe
both the microscopic energy flow and the magnetization dynamics accurately, an approach
that considers non-thermal spin dynamics is necessary. We expect our findings to be valid
for other magnetic metals as well, in particular for other itinerant 3d ferromagnets, but also
for antiferromagnetic or ferrimagnetic metals. Furthermore, a quantitative description of
the microscopic energy flow in ferromagnetic metals is valuable for the design of high-speed
spintronic structures, since the functionality of magnetic heterostructures depends on their
behavior in non-equilibrium states. This, in turn, is governed by the microscopic energy flow
and magnetization dynamics within each component as well as interfacial coupling.

Appendix A: DFT calculations

The calculations of the electron-phonon energy transfer rates were performed using the DFT
code ABINIT [246, 247, 248, 249, 250]. The norm-conserving electron-ion pseudopotential
was generated using the FHI package [251] and is of GGA-PBE type [252]. 10 electrons
were treated explicitly and 18 electrons were frozen in the core. The plane wave expansion
of the electronic wavefunction had a cutoff of 50 Ha. 20 electronic bands were calculated.
These bands are calculated with Fermi occupation featuring a smearing of 0.001 Ha. An
unshifted k-point grid of 32 × 32 × 32 points was used. The experimental lattice constant
of the fcc lattice of d = 6.6594 aB (= 3.5240 Å) was used. Figure 7.4.1(a) shows the result
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Figure 7.4.1: Spin-polarized electronic density of states (DOS) and electron phonon cou-
pling of nickel, calculated using spin-resolved DFT. (a) Electronic DOS. The Fermi level is
marked with a dashed black line. (b) Electron-phonon-coupling parameter Gep as a function
of electron temperature. The majority Gep (blue), the minority Gep (red) and their sum
(black) is displayed.

for the spin-polarized electronic DOS. The DFT calculation predicts a magnetic moment of
0.815 µB, which is larger than the experimentally measured value of 0.616 µB [253]. This
overestimation mainly affects the minority DOS at the Fermi level. We therefore tested its
effects on our models by shifting the minority DOS to lower energies in several steps, until
the maximum of the minority DOS coincides with the Fermi level. We then calculated TTM
results based on these shifted DOS. Since the differences in the lattice responses are small,
we conclude that the overestimation of the magnetic moment has no significant effect on
our results. Regarding the phonons, the shape and energy range of the calculated phonon
DOS (not shown) agree well with neutron scattering experiments [254]. The phonon DOS is
used to calculate the lattice heat capacity, resulting in excellent agreement with experimental
results [217]. To obtain the electron-phonon coupling Gep, the spin-resolved electron-phonon
matrix elements were computed as described in Ref. [255] for a 8 × 8 × 8 grid of q-points.
From the results, we extracted the Eliashberg functions (also phonon-branch resolved) for
majority and minority electrons. The electron-phonon couplings as well as the electronic heat
capacities were then calculated as in Ref. [241]. The result for the electron-phonon coupling
is displayed in Fig. 7.4.1(b). In the calculation of the spin-resolved electron-phonon coupling
and electronic heat capacities, we assume that the particle number is conserved within each
spin type. In practice, for the electron temperatures reached in our experiments, the chemical
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potential shifts are small, and thus the differences between assuming two separate chemical
potentials or assuming a common chemical potential are small. For the temperature models
as well as the ASD simulations, we use the sum of majority and minority Gep (black curve of
figure 7.4.1(b)). Correspondingly, the electronic heat capacity used in the models is also the
sum of minority and majority electronic heat capacity. The results of the DFT calculation are
available on a data repository [256]. We note that our result for the electron-phonon coupling
is significantly larger compared to results by Lin et al. [105], but similar to a spin-resolved
calculation by Ritzmann et al. [215]. We also find significant differences compared to the
values used in existing demagnetization models: In the original 3TM by Beaurepaire et al.
[5], a much smaller value of 8 · 1017 W/(m3K) is used, resulting in a slower lattice response
compared to our experiments. In the M3TM [14], the value for Gep is 4.05 · 1018 W/(m3K),
which differs from our result by more than a factor of 2. In addition, the heat capacities are
different. In the µT model [196], the same Gep of 1 · 1018 W/(m3K) is used for majority and
minority carriers, whereas the Gep from our ab initio calculations shows significant differences
between majority and minority carriers.

Appendix B: The influence of non-thermal electron and phonon
distributions

The TTM relies on the assumption that electrons and phonons are each in a thermal state,
which is not necessary fulfilled shortly after laser excitation. For electrons, in metals, ther-
malization is typically rather efficient due to the large phase space for electron-electron
scattering. In the case of nickel, there is experimental evidence for efficient electron-electron
scattering [66]. In addition, to test if our measured lattice dynamics are influenced by non-
thermal electrons, besides the experiments with 2300 nm, we also performed experiments
with 800 nm and 480 nm excitation wavelength and compared the lattice dynamics. Fig-
ure 7.4.2(a) shows the time constants of a single exponential fit to the lattice temperature
for these three wavelengths and different excitation densities. No dependence of the lattice
dynamics on the wavelength is observed. From this, we conclude that electrons thermalize
on timescales significantly faster than the timescales of electron-phonon equilibration. Oth-
erwise, we would expect an influence of the photon energy on the lattice dynamics, since
different initial states are excited and different electronic states have different lifetimes for
electron-phonon scattering. Hence, we conclude that it is justified to assume a thermalized
electron distribution in our models. On the other hand, for phonons, the assumption of
a thermalized distribution is often more problematic [215, 241]. We investigated the influ-
ence of non-thermal phonon distributions on our observable, the MSD, using a non-linear
lattice model (NLM) [241]. The three different phonon branches are treated as individual
subsystems in order to account for energy redistribution between them. For this, we cal-
culate the branch-projected phonon DOS and Eliashberg functions, shown in the inset of
7.4.2(b). We don’t take into account direct phonon-phonon coupling, which means that the
equilibration between the phonon branches is mediated by electron-phonon coupling only.
The comparison between TTM and NLM is displayed in Fig. 7.4.2(b) and shows only small
differences between the lattice temperatures predicted by the two models. In addition, a
previously reported model predicts only minor deviations of the electronic temperature evo-
lution compared to a TTM for nickel [215]. There are experimental observations of phonon
thermalization processes in nickel [214], mostly observed in the range of 1-4 ps after laser
excitation. Since we don’t observe any significant MSD changes during this period (see
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Figure 7.4.2: Experimental and theoretical results regarding electron and phonon ther-
malization. (a) Time constants of electron-lattice equilibration for different excitation wave-
lengths, obtained by single-exponential fits of the experimental data. The grey dots are the
same data as in the inset of 7.2.2, shown again for comparison. The error bars represent the
standard errors from the single exponential fits. (b) Comparison of two-temperature model
(TTM) results with non-thermal lattice model (NLM) results for two different fluences. Ex-
perimental data for 2300 nm excitation wavelength are also shown. The grey shaded areas
represent the errors of the experimental data. The inset shows the Eliashberg function (solid
lines, sum of majority and minority Eliashberg function) and the phonon DOS (dashed lines)
projected onto the three phonon branches.

figure 7.2.2), we conclude that the effect of these phonon thermalization processes on the
MSD is small, and that the sub-picosecond dynamics that we observe correspond to electron-
phonon equilibration. Based on these theoretical and experimental results, we conclude that
in the case of nickel and for the purpose of describing energy flow between electrons and the
lattice, a thermalized phonon population is a reasonable approximation.
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Appendix C: Atomistic spin dynamics simulations

In the ASD simulations, the spin system is described using a classical Heisenberg Hamilto-
nian:

H = −
∑
i<j

JijSi · Sj −
∑
i

dzS
2
z . (7.4.1)

Here Si represents a unit vector describing the direction of the local magnetic moment at
site i. Each spin Si, couples to its neighboring spins Sj via the exchange constant Jij =
2.986 · 10−21 J. We use a simple cubic lattice structure with a spin volume of Vs = 10.94
Å3. We tested different lattice structures and found that this has no significant effect on our
results. To obtain the correct spin energy from Equation 7.4.1, a correction factor of 1/3 is
necessary (see Equation 7.3.3). This accounts for the fact that the spins are quantized in
reality (s ≈ 1/2 for nickel), but described with the classical Heisenberg Hamiltonian (s=∞).
The relationship between the exchange constant Jij and the Curie temperature Tc depends
on the quantum number s. For a simple cubic system with only nearest neighbor interaction
[257],

J =
s2

s(s+ 1)
· 3kB
Tc

. (7.4.2)

Consequently, to obtain a good description of both the Curie temperature and the energy
content of a spin system with finite s, a factor of s2

s(s+1) (
1
3 for s = 1

2) needs to be considered.
The second term of Equation 7.4.1 describes the on-site anisotropy with easy-axis along the z
axis and a constant anisotropy energy, dz = 5 · 10−24 J. The ASD-simulations are performed
by solving the stochastic-Landau-Lifshitz-Gilbert equation (s-LLG) numerically using the
Nvidia CUDA C-API [137, 72].

(1 + α2)µs

γ

∂Si

∂t
= − (Si ×Hi)− α (Si × (Si ×Hi)) . (7.4.3)

γ = 1.76 · 1011 is the gyromagnetic ratio and Hi is the effective field (see below). For
the magnetic moment µs we use the literature value of 0.616 µB [253], which contains the
spin as well as the (smaller) orbital contribution. The phenomenological Gilbert damping
α determines the coupling strength of the spin system to the electron system and thus the
energy transfer rate between these two subsystems. A Langevin thermostat is included, by
adding a field-like stochastic term ζi to the effective field Hi = ζi(t)− ∂H

∂Si
. The added noise

term has white noise properties [97]:

⟨ζi(t)⟩ = 0 and ⟨ζi(0)ζj(t)⟩ = 2αkBTelµsδijδ(t)/γ. (7.4.4)

The electron temperature Tel is therefore used to scale the noise and has a direct impact
on the spin dynamics via the stochastic field ζ(t) entering the s-LLG. The s-LLG is solved
for system sizes of several million spins. These large systems yield minimal boundary effects
and provides a large enough number of spins for calculating macroscopic parameters. While
showing excellent qualitative agreement with experiments, due to their classical character
ASD simulations are typically unable to quantitatively reproduce thermodynamic properties
such as the heat capacity or the temperature-dependent equilibrium magnetization. To
counteract this shortcoming, we make use of a rescaled temperature model [230]. A modified
electron temperature Tsim, based on Tc and a material dependent factor β = 2.322 is used:

Tsim = Tc

(
Tel

Tc

)β

. (7.4.5)
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This correction allows us to reproduce experimentally measured quantities such as the
temperature-dependent equilibrium magnetization curve and the heat capacity (see fig-
ure 7.4.3(a) and (b)). For the temperature-dependent equilibrium magnetization (figure 7.4.3(b))
we obtain excellent agreement with experimental values. The spin heat capacity (figure 7.4.3(a))
is overestimated due to the classical nature of the spins in the ASD-simulations. The spin
temperature in ASD simulations can be calculated through the instantaneous spin configu-
ration following Ref. [258]:

Ts =
µs

〈∑
i |Si ×Hi|2

〉
2kB⟨

∑
i Si ·Hi⟩

. (7.4.6)

Here Si and Hi represent the normalized spin variable and effective field at the lattice site
i. The spin temperature in Equation (7.4.6) is defined as the ratio between the entropy
and energy of spin degrees of freedom, Si × Hi and Si · Hi, respectively. Note that de-
spite this definition of a spin temperature, the spin system is not always in internal thermal
equilibrium during the simulations. The values for the electronic heat capacity, lattice heat
capacity and electron-phonon coupling are taken from the DFT calculations described ear-
lier. The laser pulse is assumed to be Gaussian, with a FWHM of 80 fs and its peak intensity
at t = 0. Figure 7.4.3(c)-(d) shows the ASD simulation results for different values of the
Gilbert damping parameter α. Figure 7.4.3(c) displays the lattice temperature according
to the ASD simulations alongside our experimental result while figure 7.4.3(d) shows the
magnetization dynamics from the simulations together with experimental results from Ref.
[107]. Figure 7.4.3(e) presents the evolution of the electronic temperature according to the
ASD simulations.
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Figure 7.4.3: Atomistic spin dynamics (ASD) simulation results for equilibrium and non-
equilibrium conditions. (a) Comparison between experimentally measured equilibrium heat
capacity (black circles) and the simulated equilibrium heat capacity (yellow line). The ex-
perimentally measured spin heat capacity corresponds to the heat capacity of electrons and
spins [217] minus the electronic heat capacity from our DFT calculations. (b) Comparison
between the experimentally measured magnetization curve as a function of temperature from
Ref. [259] (black circles) to the simulation (yellow line). (c) Experimentally measured lattice
dynamics (black dots) and ASD simulation results (solid lines) for different values of the
Gilbert damping parameter α. The absorbed energy density is 540 J

cm3 . The grey shaded
area represents the errors of the experimental data. (d) Magnetization dynamics predicted
by the ASD simulations for different values of α (solid lines). The dashed black line corre-
sponds to the experimental magnetization dynamics for the same absorbed energy density
of 540 J

cm3 from Ref. [107]. (e) Evolution of the electronic temperature for different values
of α according to the ASD simulations. Note that in addition to α, the initial rise of the
electronic temperature also depends on the pump pulse duration (here: 80 fs FWHM).
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Chapter 8

Intrinsic energy flow in
laser-excited 3d ferromagnets

The results of this chapter have been published in

� D. Zahn, F. Jakobs, H. Seiler, T. A. Butcher, D. Engel, J. Vorberger, U. Atxitia, Y.
W. Windsor, and R. Ernstorfer, Intrinsic energy flow in laser-excited 3d ferromagnets,
Physical Review Research 4 p. 013104, (Feb 2022).

and the content of this chapter is in large parts identical with the published work.
Large parts of the theory and in particular all atomistic spin dynamics simulations have been
performed as part of this thesis. All experiments were done by D. Zahn and coworkers from
the Fritz-Haber-Institut. The density functional theory calculations have been performed by
T. A. Butcher and J. Vorberger.

The published version can be found at https://doi.org/10.1103/PhysRevResearch.4.

013104

8.1 Introduction

Ultrafast manipulation of magnetic order with light promises pathways to new applications
in magnetic data storage and spintronics [175]. Femtosecond laser excitation can change
magnetic order in various ways - for example, it can induce ultrafast demagnetization [5],
switch the magnetization direction [6, 260], and induce spin reorientation [261]. The micro-
scopic mechanisms governing the response of magnetic materials to laser excitation continue
to be a topic of current research [14, 16, 55, 195, 202, 203, 66, 107, 213]. An important factor
governing the response of a material to laser excitation is the intrinsic energy flow between
electronic, magnetic, and lattice degrees of freedom. When Beaurepaire et al. discovered ul-
trafast demagnetization in Ni, they introduced a phenomenological three-temperature model
(3TM) to describe the observed magnetization dynamics [5]. While the 3TM offers an intu-
itive explanation for the observed dynamics, recent studies suggest that it falls short of a full
description of ultrafast demagnetization. In particular, there is experimental and theoretical
evidence that the spin system is not in a thermal state on ultrafast timescales [66, 197, 207],
suggesting that a more detailed description of the magnetic degrees of freedom is necessary.
To obtain a full quantitative description of a material’s response to laser excitation, any
proposed model must be verified by comparison to experimental data of the responses of

https://doi.org/10.1103/PhysRevResearch.4.013104
https://doi.org/10.1103/PhysRevResearch.4.013104
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electronic, magnetic, and lattice degrees of freedom. The lattice plays a major role in the
dynamics of 3d ferromagnets, since it drains energy from the electrons via electron-phonon
coupling on similar timescales compared to the demagnetization, thus reducing the temper-
ature of the electron system. On the other hand, lattice dynamics are also influenced by
magnetization dynamics, even if the coupling is only indirect via the electron system. Our
previous work on Ni demonstrated that energy flow into and out of the spin system leads
to a significant slow-down of the lattice dynamics (see Chapter 7). This suggests that ac-
counting for this energy flow is integral to any model quantitatively describing the responses
of all three subsystems in 3d ferromagnets. Despite their significant role in the energy flow
dynamics, the lattice dynamics of 3d ferromagnets are less studied compared to electron
and spin dynamics [207, 14, 202, 203, 212, 262]. Time-resolved diffraction offers the most
direct way to study lattice dynamics since it is only sensitive to the lattice. Hitherto, only
two studies of the sub-picosecond lattice dynamics of Co or Fe with time-resolved diffrac-
tion exist [263, 264] and neither of them focuses on the lattice heating in the ferromagnet.
Furthermore, literature values for the electron-phonon coupling parameter Gep vary signif-
icantly, from 6 × 1017 to 4.05 × 1018 W

m3K
for Co [265, 14, 215, 266] and from 7 × 1017 to

5.48 × 1018 W
m3K

for Fe [267, 215, 268, 269, 270, 271]. In addition, there are several lit-
erature values for the electron-phonon coupling parameter λ, which is related to Gep (see
for example Ref. [105]), and also varies significantly [272, 273, 274, 255]. In ferromagnets,
extracting the electron-phonon coupling solely from experiments is particularly challenging
because three different subsystems contribute to the observed dynamics. Here, we measure
the lattice dynamics of Co and Fe directly using femtosecond electron diffraction. Instead of
extracting Gep from experiments, we perform spin-resolved density functional theory (DFT)
calculations, which yield Gep as well as the heat capacities of the electrons and the lattice
[241] (see Chapter 7). Based on the experimentally measured lattice dynamics and the DFT
results, we study the intrinsic energy flow between electronic, magnetic, and lattice degrees
of freedom. We employ energy-conserving atomistic spin dynamics (ASD) simulations [106]
(see Chapter 7), a hybrid model which combines conventional ASD simulations with a de-
scription of the energy flow between all subsystems. By directly simulating the evolution
of the spin system, ASD simulations have the advantage that they are not constrained to
thermal descriptions of the spin system. Previously, we applied this approach to Ni with
excellent agreement between theory and experiment (see Chapter 7). Here, we demonstrate
that the same considerations hold also for Co and Fe, thus generalizing our approach to all
three elemental 3d ferromagnets. To demonstrate the strong influence of the magnetization
dynamics on the lattice dynamics, we compare results of the conventional two-temperature
model (TTM), which does not consider the spin system, to results of the energy-conserving
ASD simulations. With the latter, we obtain excellent agreement with the lattice dynamics
of Co and Fe as well as a good description of the magnetization dynamics. This demon-
strates that ASD simulations offer a consistent description of the laser-induced dynamics in
all three elemental 3d ferromagnets. In Section 8.2, we describe the experiment and the data
analysis. Section 8.3 presents both experimental results for the lattice dynamics as well as
model results. Based on the ASD simulation results, in Section 8.4 we discuss the intrinsic
energy flow between electrons, spins, and the lattice in detail. Section 8.5 summarizes the
main findings.
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8.2 Time-resolved diffraction experiment

The samples of our experiments are freestanding thin films of Co or Fe with a thickness
of 20 nm, sandwiched between 5 nm-thick layers of silicon nitride. They were grown on a
single crystal of NaCl by magnetron sputtering, resulting in polycrystalline films. Next, they
were transferred onto a transmission electron microscopy (TEM) grid by floating the films
on water. The samples were not subjected to a magnetic field before the experiment, i.e.
different magnetic domains are likely present in the sample.

laser pulse
(pump)

transmission
diffraction pattern

sample 
on TEM grid

electron pulse
(probe)

Figure 8.2.1: The femtosecond electron diffraction experiment. (a) Schematic illustration
of the measurement. The samples are thin, freestanding films on transmission electron
microscopy (TEM) grids, which are excited by ultrashort laser pulses. The lattice response is
probed using ultrashort electron pulses, which diffract off the sample. Diffraction patterns are
recorded in transmission. In the case of polycrystalline samples such as the samples studied
in this work, the diffraction patterns consist of rings. A diffraction pattern of our Co sample
is shown. (b) Diffraction pattern of Co and time-resolved changes. The upper part shows the
azimuthally averaged diffraction pattern (radial profile, RP) of Co. Here, the background-
subtracted pattern is shown for illustrational purposes, however, note that in the analysis
of the diffraction patterns, fits are performed to background and rings simultaneously. The
lower part shows the differences of the RPs compared to the RP before laser excitation for
several pump-probe delays (solid curves). The dashed black lines show the fit results of the
global fitting routine described in Sec. 8.2 and in detail elsewhere [233]. (c) Same as (b), but
for Fe.

To directly access the lattice dynamics after laser excitation, we employ femtosecond electron
diffraction, using the setup described in Ref. [68]. A schematic illustration of the experiment
is presented in Fig. 8.2.1(a). In the electron diffraction experiment, the thin films are excited
with an ultrashort laser pulse. The lattice response to laser excitation is probed using an
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ultrashort high-energy electron pulse. The electrons diffract off the sample and are recorded
in transmission. The electron energy was 70 keV for the experiments on Co and 60 keV for
the experiments on Fe. All experiments were performed at room temperature (295 K). Since
the samples are polycrystalline, the diffraction patterns consist of Debye-Scherrer rings, as
shown exemplarily in Fig. 8.2.1(a) for our Co sample. Our main observables are changes in
the intensities of the diffraction rings following laser excitation. These are directly related
to the change in atomic mean-squared displacement (MSD) [236]:

I(t)

I0
= exp{−1

3
q2 ∆⟨u2⟩ }. (8.2.1)

Here, q is the scattering vector of the diffraction ring (q = 4π sin(θ)/λ), ∆⟨u2⟩ = ⟨u2⟩(t) −
⟨u2⟩(t < 0) is the MSD change, I(t) is the intensity as a function of pump-probe delay and
I0 is the intensity before laser excitation. To extract the MSD dynamics from the diffraction
patterns, we employ a global two-step fitting routine [233]. In brief, the first step is a fit
to the diffraction pattern before laser excitation. The fit function consists of a background
function plus Lorentzians for the diffraction rings, all convolved with a Gaussian to account
for the finite coherence of the electron beam. In the second step, the time-dependent changes
are extracted. For this, we fix most parameters of the fit function and allow only changes
of the lattice constant (i.e. expansion/contraction of the lattice), changes of the MSD, and
changes of the background parameters. The lattice dynamics are extracted from the full
diffraction pattern instead of individual diffraction rings, which increases the reliability of
the results. Further information on the global fitting routine is available in Ref. [233].

8.3 Results

8.3.1 Experimental results for the lattice dynamics

Experiments were performed on Co and Fe for several excitation densities each. For every
excitation density, several delay scans were recorded and the results were averaged before
applying the two-step fitting routine. Examples for the resulting MSD dynamics of Co
and Fe are presented in Fig 8.3.1(a) and (b), respectively. For the conversion of MSD to
lattice temperature, we calculated the temperature-dependent Debye-Waller factors for Fe
and Co based on the phonon density of states from DFT (see Appendix A). We performed
fits to the experimental data using a single exponential function, convolved with a Gaussian
of 250 fs (FWHM) to account for the time resolution. The time constant of the single
exponential function, the amplitude, and the onset (time zero) were fit parameters and the
fit range was from -0.5 to 4 ps. The results for the time constants are shown in Fig. 8.3.1(c)
for different excitation densities. For Co, we find that the time constant increases with
increasing excitation density. For Fe, no clear trend is observed.

8.3.2 Comparison of the experimental results to energy flow models

Two-temperature model

In the next step, our goal is to analyze the intrinsic energy flow between electronic, magnetic,
and lattice degrees of freedom. For this, we compare our experimental data to models
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Figure 8.3.1: Experimental results for the lattice dynamics and single exponential fits. (a)
Evolution of the atomic mean-squared displacement (MSD) and corresponding lattice tem-
perature for Co. (b) MSD evolution and corresponding lattice temperature for Fe. The solid
lines in (a) and (b) are the results of fits of the experimental data with a single exponential
function, convolved with a Gaussian (250 fs FWHM) to account for the time resolution of the
experiment. The excitation wavelength was 2300 nm. (c) Fit results for the time constant
of the single exponential function for different excitation densities, yielding different final
lattice temperatures.

for the energy flow. In order to minimize the number of free parameters in the models,
we use spin-resolved DFT to obtain the (electron-temperature-dependent) electron-phonon
coupling parameter as well as the electron and lattice heat capacities. The results for the
heat capacities and the electron-phonon coupling parameters are presented in Fig. 8.3.2(a)
and (b). All electronic heat capacity and Gep curves presented in Fig. 8.3.2 are the sum
of majority and minority carrier contributions. Details about the DFT calculations are
described in Appendix A. Having obtained the input parameters for the models from DFT,
we start with the conventional TTM [238, 239], which considers only the electronic and
lattice degrees of freedom but disregards the spin system. The system is modeled as two
heat baths, electrons and the lattice, which are coupled by the electron-phonon coupling
parameter Gep. The evolution of the electron temperature (Te) and the lattice temperature
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Figure 8.3.2: Heat capacities, electron-phonon coupling parameters, and schematic illus-
trations of the employed energy-flow models. (a) Electronic (dashed curves) and lattice (solid
curves) heat capacities, and (b) electron-phonon coupling parameters Gep as a function of
electron temperature calculated from spin-resolved DFT results.

(Tl) is then described by two coupled differential equations:

cl(Tl) ·
dTl

dt
= Gep(Te) [Te − Tl] (8.3.1)

ce(Te) ·
dTe

dt
= Gep(Te) [Tl − Te] + P (t). (8.3.2)

Here, ce and cl are the electronic and lattice heat capacities, and P (t) is the source term, i.e.
the energy input to the electronic system due to the laser excitation. The laser excitation
is modeled as a Gaussian with a FWHM of 80 fs. Its maximum (time zero) is determined
from the single exponential fits described earlier. The energy deposited by the laser is
determined from the lattice temperature after electron-lattice equilibration (in the range
from 1.5-4 ps after laser excitation) and the heat capacity (sum of electron and lattice
contribution). Hence, there are no fit parameters in this TTM. The comparison between
the TTM and the experimental results for the lattice dynamics is shown in Fig. 8.3.3 for
both materials and several fluences each (dashed curves). We find that for both Fe and Co,
the lattice temperature rise predicted by the TTM is faster compared to our experimental
results. This finding agrees with previous results on Ni (see Chapter 7). A major source of
this disagreement is the fact that the TTM does not consider magnetic degrees of freedom.
Therefore, also the energy associated with magnetization dynamics is neglected. However,
as we showed previously for the case of Ni, energy flow into and out of magnetic degrees of
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freedom has a profound influence on lattice dynamics (see Chapter 7). Hence, a model which
takes the spin system into account is needed.
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Figure 8.3.3: Experimentally measured lattice dynamics and model predictions. (a)-(d)
Lattice temperature as a function of pump-probe delay in Co for different absorbed en-
ergy densities. The experimental data are shown as black circles. The results of the two-
temperature model (TTM) are shown as dashed curves and the results of the atomistic spin
dynamics (ASD) simulations are shown as solid curves. The TTM and ASD results were
convolved with a Gaussian with a FWHM of

√
2502 − 802fs ≈ 237fs, which accounts for

the temporal broadening induced by the probe pulse (the effect of the pump pulse width is
already included in the model itself). The grey shaded areas represent the standard errors of
the experimental data, obtained from the fitting routine described in Section 8.2. The dis-
played energy densities correspond to the absorbed energy densities in the ASD simulations.
(e) Magnetization dynamics of Co predicted by the ASD simulations. (f)-(i) Experimental
results for the lattice temperature in Fe alongside results of the TTM and the ASD simula-
tions. (j) Magnetization dynamics of Fe predicted by the ASD simulations.

Atomistic spin dynamics simulations

In order to include the spin system in our model of the energy flow dynamics, we use energy-
conserving ASD simulations, which simulate the dynamics of the spin system based on a
Heisenberg model and the stochastic Landau-Lifshitz-Gilbert (s-LLG) equation. The cou-
pling of electron and phonon system is described with a TTM based on the DFT results
(see Fig. 8.3.2(a) and (b)), as in the previous subsection. Energy conservation is achieved by
monitoring the energy content of the spin system and subtracting/adding the change in spin
energy from/to the electron system at each time step of the simulation. The TTM equation
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for the electron temperature (Eq. 8.3.2) is thus modified as follows:

ce
∆Te

∆t
= Gep (Tl − Te) + S(t)− ∆Es

∆t
. (8.3.3)

Here ∆Es corresponds to the change of spin energy in the time step ∆t. It is calculated as
follows:

∆Es =
s2

s(s+ 1)
(H{Si(t+∆t)} −H{Si(t)}). (8.3.4)

Here, the Si are the individual spins of the ASD simulation and the factor s2/ [s(s+ 1)]
accounts for the quantized nature of the spins (s ≈ 3

2 for Co and s ≈ 2 for Fe). Note that
direct spin-lattice coupling is not included in the model. The fast demagnetization timescales
in 3d ferromagnets suggest that the magnetization dynamics are dominated by electron-spin
coupling. In nickel, spin-lattice coupling was estimated to be an order of magnitude smaller
than other coupling constants [5]. More details about the energy-conserving ASD simulations
are described in Chapter 7 and the material-specific simulation parameters for Co and Fe
are stated in Appendix B. With this model, both the nonequilibrium spin dynamics as well
as the energy flow between electrons, spins, and the lattice can be described. The coupling
between electrons and spins in the ASD simulations is governed by the damping parameter
α. It determines how fast the spins react to the stochastic field of the s-LLG equation, whose
amplitude in turn depends on the electronic temperature. Here, we use α = 0.01 for Co and
α = 0.005 for Fe, which yields a good description of the experimentally measured lattice dy-
namics at low excitation densities as well as realistic magnetization dynamics. These values
are in good agreement with recent experimental results for α [275]. Fig. 8.3.3 presents the
ASD simulation results for both Co and Fe. First, we focus on the results for Co, shown
in Fig. 8.3.3(a)-(e). We find excellent agreement with the experimentally measured lattice
dynamics for all excitation densities. Clearly, the agreement is much better than obtained
with the TTM. This finding highlights the importance of considering energy flow into and
out of magnetic degrees of freedom, in agreement with our previous results for Ni presented
in Chapter 7. The ASD simulation results for the magnetization dynamics of Co are pre-
sented in Fig. 8.3.3(e). The general shape of the magnetization dynamics, in particular the
pronounced drop and relatively fast recovery of the magnetization, agrees well with recent
experimental results [266, 276]. Regarding the demagnetization dynamics in the first hun-
dreds of femtoseconds, the ASD simulation results reach the minimal magnetization roughly
100-200 fs faster than in reported experiments [266, 276, 14]. This could be due to devia-
tions of the electronic distribution from a Fermi-Dirac distribution at early times after laser
excitation, and due to the phenomenological electron-spin coupling in the ASD simulations.
In addition, the ASD simulations describe an idealized system without defects or surface
effects and assume homogeneous excitation, which can also contribute to the observed dis-
crepancies. Regarding the magnetization recovery, we observe good agreement with results
from Ref. [266] while the recovery measured by Refs. [276, 14] is slower than the ASD sim-
ulation results. It should be noted that there is some spread in the experimental results
for the magnetization dynamics, even when only thin films on non-metallic substrates are
considered [276, 14, 266, 199, 23, 275]. On short timescales, the measured results can contain
artifacts from state-filling effects when probing optically [277, 278]. On longer timescales,
magnetization dynamics can be influenced by transport effects (of electrons and phonons out
of the probed region), which depend on the sample geometry. Also other macroscopic sample
properties may play a role in the magnetization response. A recent study found differences
in the ultrafast response depending on the orientation of the magnetization relative to the
crystal lattice [266]. In principle, both the demagnetization as well as the magnetization
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recovery contain valuable information on the coupling strength between electrons and spins.
For example, reducing α in the ASD simulations leads to a slower demagnetization, but also
to a less pronounced magnetization recovery because the spin system heats less (and thus
absorbs less energy) during the time when the lattice is still cold. A more precise compar-
ison of model results to the responses of all subsystems could be obtained by measuring
the lattice, magnetization, and electron dynamics on identical samples. Next, we focus on
the ASD simulation results for Fe, shown in Fig. 8.3.3(f)-(j). For low fluences, we obtain
excellent agreement with the experimentally measured lattice dynamics, again corroborating
the strong influence of the spin dynamics on the lattice dynamics. However, the quality of
agreement is not as high as for Co. Specifically, for high fluences, the simulations predict
lattice dynamics that are slower than the experimental observations. In the following, we
discuss possible reasons for these deviations. In our ASD simulations, the strength of the
electron-spin coupling described by the damping parameter α is constant. At higher excita-
tion densities, however, the electron-spin coupling could react to the laser-induced changes of
the electronic structure. Since Fe has the largest spin heat capacity of all three elemental 3d
ferromagnets at room temperature in combination with a rather low electronic heat capacity,
its lattice dynamics are most sensitive to energy flow into and out of the spin system. There-
fore, it is plausible that deviations between ASD simulations and experiments performed at
high fluences are larger for Fe compared to Ni or Co. Furthermore, transient nonthermal
electron and phonon distributions could contribute to the observed lattice dynamics for both
Fe and Co [215, 279]. Experimentally, we observed a small apparent shift in time zero by
tens of fs for high excitation densities. This could be caused by electron thermalization,
which is more efficient at high excitation densities and typically enhances energy transfer
to the lattice [224]. Nonthermal distributions of electrons and phonons are not accounted
for by our models and including them might change the optimal α towards lower values. In
addition, direct spin-lattice coupling is not included in our model, as mentioned above. Even
though we expect this coupling to be weak, it constitutes another channel for energy flow
to the lattice and could enhance in particular the energy flow out of the spin system. Fi-
nally, DFT calculations are ground-state calculations. After laser excitation, band structure
changes (for example a transient reduction of the exchange splitting) can occur [66], which
lead to changes of the electronic heat capacity and the electron-phonon coupling, especially
for higher fluences. Hence, ASD simulations are expected to be most accurate for low ex-
citation densities in general, which we observed also for Ni (see Chapter 7). Nevertheless,
for low and moderate fluences, our ASD simulations offer an excellent description of the
laser-induced lattice dynamics for all three 3d ferromagnets. Regarding the magnetization
dynamics of Fe, the ASD simulation results are presented in Fig. 8.3.3(j). The initial demag-
netization rate agrees well with experimental results [276]. For the magnetization recovery,
different results are reported in literature [276, 151, 207, 202, 278, 262, 275], from very little
or no recovery [276, 278] to almost complete recovery [151] on few-picosecond timescales.
Only thin films on non-metallic substrates are considered here, which are expected to have
the least transport effects. Due to the large spread of literature results, as in the case of
Co, a more precise comparison of the model to the results of all three subsystems would
require measuring their responses on identical samples. Based on the available experimental
data, we conclude that our simulations provide a realistic description of the magnetization
dynamics. Energy-conserving ASD simulations thus offer a description that is consistent
with the responses of the lattice and the magnetization, which is an important step towards
a complete, consistent description of the laser-induced dynamics of 3d ferromagnets.
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Figure 8.4.1: Intrinsic energy flow between electrons, spins, and the lattice for (a) Co and
(b) Fe. Here, results with the same excitation density as in Fig. 8.3.3(b) (Co) and Fig. 8.3.3(g)
(Fe) are presented. The additional energy density ∆E in the system is displayed. After
laser excitation, the total energy (black) stays constant and energy is redistributed between
electronic (blue), magnetic (green), and lattice (red) degrees of freedom.

8.4 Discussion

The good agreement of the ASD simulations with our experiments and the disagreement of
the TTM show that energy flow into and out of the spin system has a significant impact
on the lattice dynamics of Co and Fe. Based on the ASD simulation results, we are now
able to analyze the intrinsic energy flow between electronic, magnetic, and lattice degrees of
freedom in detail. The distribution of the absorbed energy between the three subsystems is
presented in Fig. 8.4.1. After laser excitation, the total energy in the system stays constant,
which is visualized by the black curve. From then on, energy is only redistributed between
the different degrees of freedom. The laser pulse excites the electrons (blue curve), which
initiates the energy flow from the electrons to the spin system (green curve). Already shortly
after excitation, the spin system contains more of the additional energy than the electron
system. Once spins and electrons have equilibrated and the electrons cool down further due
to electron-phonon coupling, energy starts flowing back from the spin system to the electrons.
In addition, energy also flows from the electrons to the lattice, such that in total, energy
flows out of the electron system, although at a lower rate than during the demagnetization.
Finally, thermal equilibrium is established after several picoseconds. Similar to our previous
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Figure 8.4.2: Nonthermal spin dynamics for (a) Co and (b) Fe. The solid curves show
the additional energy content of the spin system ∆Es as a function of pump-probe delay for
the same fluences as in Fig. 8.3.3. In contrast, the dashed curves show the additional spin
energy content of a hypothetical, thermalized spin system with the magnetization dynamics
from the ASD simulations, which was calculated using the equilibrium relationship between
spin energy and magnetization. Differences between the solid and dashed curves indicate
a nonthermal spin system. Note that the very small differences that persist on time scales
larger than 3 ps are numerical artifacts, which could stem from the finite time steps in the
nonequilibrium simulations or the larger α employed in the simulations of quasi-static heat-
ing. The insets show the equilibrium relationships between spin energy and magnetization.

results for Ni, we find that also for Fe and Co, the ASD simulations predict a nonthermal
spin system on short time scales after laser excitation. This is presented in Fig. 8.4.2. The
additional spin energy in the system is shown as solid curves (the absorbed energy densities
are the same as in Fig. 8.3.3). In addition, the dashed curves show how a thermalized spin
system would behave. The thermalized case is based on the equilibrium properties of the
spin system and the magnetization dynamics from the nonequilibrium simulation. We use
the equilibrium relationships between magnetization and spin energy, shown in the insets of
Fig. 8.4.2, to translate the magnetization dynamics from the simulations into spin energy
dynamics. Comparing this result to the spin energy dynamics obtained directly from the
simulations allows to identify deviations from thermal behavior: Whenever the two quantities
do not coincide, the spin system is in a nonthermal state. On short time scales below ca.1̃ ps,
dashed and solid curves differ, which indicates that the spin system is in a nonthermal state
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during this period. This nonthermal state is characterized by a relatively high spin energy
content compared to the demagnetization amplitude, as the comparison between dashed and
solid curves directly shows. This is analogous to our ASD simulation results for Ni and indi-
cates that relatively many spin excitations with significant misalignment of neighboring spins
are present compared to thermal equilibrium, which cost a lot of energy per magnetization
reduction. The finding is corroborated by inspecting the simulated spin configuration at
short time delays (see Appendix B), which exhibits disorder on small length scales, i.e. also
between spins that are close to each other. For the fluences reached in our experiments, the
spin system thermalizes within the first picosecond after laser excitation. In contrast, for Ni,
we observed a prolonged nonthermal behavior for higher fluences. These differences between
Fe, Co, and Ni are caused by their different Curie temperatures. Ni has a Curie temper-
ature of only 631 K, while the Curie temperatures of Fe and Co are 1044 K and 1390 K,
respectively [259]. As a consequence, for the same absorbed energy density, Ni demagnetizes
much more than Fe or Co [276]. For stronger demagnetization of Fe or Co, a prolonged
nonthermal behavior is observed as well, as shown exemplarily for Fe in Appendix B. The
prolonged nonthermal behavior is found to be caused by domain formation during the re-
magnetization process, in agreement with previous results by Kazantseva et al. [197]. The
ASD simulation results thus suggest that in particular for strong demagnetization, a thermal
description of the spin system is not adequate to describe nonequilibrium dynamics of ferro-
magnets. In summary, according to the ASD simulations, two key aspects of ultrafast energy
flow dynamics in ferromagnets are apparent: the slow-down of the lattice response caused by
energy flow into and out of the spin system, and the nonthermal behavior of the spin system
on short timescales. The first effect can be qualitatively reproduced with a simple 3TM as
well (depending on the coupling constants, which are typically fit parameters). However,
the second key aspect, the transient nonthermal excitation of the spin system, cannot be
modeled with a 3TM. Therefore, we expect worse quantitative agreement of a 3TM with the
ultrafast dynamics of all subsystems. Besides the ASD simulations presented here and the
3TM, another model describing the coupled energy flow dynamics of electrons, spins, and the
lattice is the spin-lattice-electron dynamics (SLED) model by Ma et al. [218]. In contrast to
our simulations, the SLED model employs the effective spin temperature [258] to calculate
the energy flow dynamics. In order to investigate differences between the two descriptions,
a comparison analogous to Fig. 8.4.2 can be made for the effective spin temperature. In
our simulations, we find that on short timescales the energy content calculated using the
effective spin temperature can differ from the energy of the spin system calculated using the
spin Hamiltonian (see Eq. 8.3.4), in particular for iron and nickel and for high fluences. Such
deviations from equilibrium relationships indicate a nonthermal behavior of the spin system,
as discussed earlier. An additional difference between our model and the SLED model is that
the latter includes direct spin-lattice coupling. For these two reasons, we expect qualitatively
similar results for the energy flow dynamics, but quantitative differences between these two
models.

8.5 Summary and conclusions

In this work, we investigated the ultrafast lattice dynamics of ferromagnetic Co and Fe us-
ing femtosecond electron diffraction. To model the intrinsic energy flow between electronic,
magnetic, and lattice degrees of freedom, we combined spin-resolved DFT calculations of the
electron-phonon coupling with energy-conserving ASD simulations. We found that for both
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Co and Fe, the ultrafast spin dynamics have a profound impact on the lattice dynamics,
slowing down the lattice heating due to energy transfer into and out of magnetic degrees
of freedom. These findings generalize our previous results for Ni presented in Chapter 7,
highlighting the prominent role of the spin system in the energy flow dynamics of all three
elemental 3d ferromagnets. For a full description of the laser-induced dynamics, it is thus
essential to take energy flow into and out of the spin system into account. This is achieved
with energy-conserving ASD simulations, which simulate the spin dynamics while also ac-
counting for the intrinsic energy flow between electrons, spins, and the lattice. For low
and moderate fluences, the ASD simulations yielded excellent agreement with the measured
lattice dynamics, as well as a good description of the magnetization dynamics for both Co
and Fe. They are thus an important step towards a model for ultrafast demagnetization
that is consistent with the responses of electronic, magnetic, and lattice degrees of freedom.
Furthermore, we found that the ASD simulations predict a nonthermal spin system for both
Co and Fe on short time scales after laser excitation. For high fluences, the nonthermal
state of the spin system can last for several picoseconds, suggesting that particularly for
strong excitations, a thermal description of the laser-induced spin dynamics is not sufficient.
Our findings are also of relevance for other demagnetization models, since they enable the
comparison to the experimental lattice dynamics for all three elemental 3d ferromagnets and
highlight the importance of a consistent description of the energy flow dynamics. The com-
bination of experiment and theory presented in this work can also be applied to gain insight
into the ultrafast energy flow dynamics in other technologically relevant magnetic materials,
e.g. magnetic oxides and layered van der Waals materials. In addition, the incorporation of
the energy exchange of the spin system in the ASD simulations may prove to be invaluable
for the explanation of the behavior of more complex materials and heterostructures in the
future.

Appendix A: DFT calculations

The calculations of the electron-phonon energy transfer rates were performed using the DFT
code ABINIT [246, 247, 248, 249, 250]. The optimized norm-conserving Vanderbilt pseu-
dopotentials were generated using the method of Ref. [280] and are of generalized-gradient-
approximation (GGA) Perdew-Burke-Ernzerhof (PBE) type [252]. 16 electrons were treated
explicitly for Fe, and 17 electrons were explicitly taken into account for Co. The plane-wave
expansion of the electronic wave function had a cutoff of 40 Ha for Fe and 50 Ha for Co.
22 electronic bands were calculated for Co and 15 for Fe. These bands were calculated with
Fermi occupation featuring a smearing of 0.001 Ha. An unshifted k-point grid of 32×32×32
points was used for both elements. The lattice constant for bcc Fe was set to 2.756 Å, which
was obtained by relaxing the structure. For hcp Co, we used the experimental lattice con-
stants a = 2.5071 Å and c = 4.0695 Å [281]. To obtain the electron-phonon coupling Gep, the
spin-resolved electron-phonon matrix elements were computed as described in Ref. [255] for a
8×8×8 grid of q-points. From the results, we extracted the Eliashberg functions for major-
ity and minority electrons. The electron-phonon couplings and the electronic heat capacities
were then calculated as described in Ref. [241]. Following Chapter 7, we take chemical po-
tential shifts into account and assume particle conservation within each spin type. Band
shifts according to the Stoner model are not considered, since our description of magneti-
zation dynamics with ASD simulations is based on the Heisenberg model. The results for
the electronic densities of states (eDOS), the Eliashberg functions, and the electron-phonon
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couplings are presented in Fig. 8.5.1. The magnetic moments calculated from the spin re-
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Figure 8.5.1: Results of the spin-resolved DFT calculations. (a) Spin-split electronic den-
sity of states (eDOS) of Co. The position of the Fermi level is shown as a grey line. The
majority (majo) DOS is shown in dashed blue and the minority (mino) DOS is shown in
red. Note that hcp Co has two atoms per primitive unit cell. (b) Spin-split eDOS of Fe. (c)
Majority and minority Eliashberg functions α2F for Co (blue) and Fe (green). The dashed
curves correspond to the majority Eliashberg functions and the solid curves represent the
minority Eliashberg functions. (d) Majority and minority electron-phonon coupling param-
eter Gep for Co and Fe.

solved eDOS, 1.95 µB per atom for Co and 2.40µB per atom for Fe, are larger than the
experimental results of 1.72µB and 2.22µB per atom [282]. Based on the phonon densities of
states (vDOS), we also calculated the MSDs as a function of temperature, as described in
Ref. [236]. To increase the accuracy of the calculation, we replaced the vDOS in the region
below 5 meV by a fit with the function f(x) = ax2 + bx3. This ensures that the dominat-
ing term for very small phonon wavevectors is quadratic, which corresponds to the correct
long-wavelength limit. The results were used to convert transient MSD changes to lattice
temperatures (see Fig. 8.3.1(a) and (b)).
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Figure 8.5.2: ASD simulation results for equilibrium relationships and comparison to lit-
erature results. (a) Spin heat capacity of Co. The ASD simulation result (ASD sim.) is
shown as a solid blue curve and the experimental result (exp.) is shown as a dashed black
curve. The experimental result was obtained based on measurements of the total heat ca-
pacity from Ref. [283], which were dilation-corrected using the expansion coefficients from
Ref. [284]. To obtain the spin heat capacity, the DFT results for the electronic and lattice
contributions were subtracted. (b) Same as (a) but for Fe. (c) Magnetization as a function
of temperature for Co. The solid curve shows the ASD simulation result. The dashed black
curve is a literature result from Ref. [259]. The magnetization is normalized to its value at
0 K. (d) Same as (c), but for Fe.

Appendix B: Atomistic spin dynamics simulations

Atomistic spin dynamics simulations use a classical Heisenberg spin model:

H = −
∑
i<j

JijSi · Sj −
∑
i

dzS
2
z . (8.5.1)

with Si representing a classical, normalized spin vector at site i. Each spin couples to its
neighboring spin vectors Sj via the coupling constant Jij . The second term of the Hamil-
tonian (Eq. 8.5.1) describes the on-site anisotropy with an easy-axis along the z-axis and
constant anisotropy energy. All parameters are material-dependent and listed in Table 1.
Except α, they are based on Ref. [83]. The simulations are performed on a simple cubic (sc)
lattice. This has no significant effect on the energy flow or magnetization dynamics, which
was verified directly by comparing simulations of body-centered cubic (bcc) and sc Fe. The
reason is that for a given Curie temperature, the different number of neighbors in each case
is compensated by a different value of J . Note that in contrast to the samples employed
in the diffraction experiments, the ground state in the ASD simulations is a single-domain
state. Due to the typical time and energy scales of domain wall dynamics, we don’t expect

121



Chapter 8. Intrinsic energy flow in laser-excited 3d ferromagnets

0 1 2 3 4 5 6 7 8 9
Time delay [ps]

0

0.5

1

M
/M

0

0

500

1000

E
s [J

/c
m

3
]

Fe

t
1

t
2

t
3

t
4

t
5

1930 J/cm3 spin energy in the ASD simulation
spin energy of a thermalized spin system

0

-1

1t
2

t
3

t
4

t
5

t
1

S
z

S
x

Figure 8.5.3: Details about the spin configuration at selected time delays from an ASD
simulation of Fe at a high excitation density. The upper panel shows the additional spin
energy as a function of pump-probe delay (solid curve) for an absorbed energy density of
1930J/cm3. The dashed curve corresponds to the energy content of a thermalized spin
system with the magnetization dynamics from the ASD simulations (shown directly below),
analogous to Fig. 8.4.2. Note that for illustration purposes, we used a higher damping
parameter of α = 0.1 for the simulations shown here, and a spin system consisting of 100×
100 × 100 spins. Due to the relatively high fluence, the spin system exhibits a nonthermal
behavior also on few-picosecond timescales. The lower part of the figure shows the spin
configurations at different pump-probe delays. The spin components Sx and Sz are displayed,
normalized to 1. Sy behaves analogously to Sz for symmetry reasons. Here, only the surface
of the cube is visible. The inside of the cube displays an analogous behavior to the surface.

Table 1: ASD simulation parameters for Co and Fe.

Co Units Fe Units

J 6.324 ×10−21 [J] 4.8 ×10−21 [J]
dz 0.67 ×10−23 [J] 0.5 ×10−23 [J]
µs 1.72 [µB] 2.2 [µB]
α 0.01 0.005

a significant influence of the domain structure on the intrinsic energy flow dynamics studied
here. By solving the stochastic-Landau-Lifshitz-Gilbert (s-LLG) equation

(1 + α2)µs

γ

∂Si

∂t
= − (Si ×Hi)− α (Si × (Si ×Hi)) (8.5.2)

numerically, the dynamics of the system are calculated [72]. Here γ = 1.76 · 1011 1
Ts refers

to the gyromagnetic ratio and Hi describes the effective field derived via Hi = − ∂H
∂Si

. The
material-dependent and phenomenological damping parameter α determines the coupling
strength of the spin system to the electron system and thus the energy transfer rate between
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the two heat baths. In order to simulate the effects of finite temperatures, a Langevin
thermostat is included by adding a field-like stochastic term ζi to the effective field Hi =
ζi(t)− ∂H

∂Si
. The added noise term has white noise properties [97]:

⟨ζi(t)⟩ = 0 and ⟨ζi(0)ζj(t)⟩ = 2αkBTelµsδijδ(t)/γ. (8.5.3)

In order to better reproduce experimentally measured equilibrium properties such as mag-
netization and heat capacity, we make use of a rescaled temperature model, which utilizes
a slightly modified electron temperature Tsim for the noise generation. In addition to the
equilibrium properties, the rescaled temperature model also yields a better description of
nonequilibrium dynamics [230]. Further details are available in Ref. [230] and Chapter 7. A
major advantage of ASD simulations is that they are not limited to a thermal description
of the spin system, since the spins are simulated directly. Fig. 8.5.3 shows the evolution
of the spin energy content and a direct visualization of the simulated spin dynamics for a
relatively high fluence of 1930J/cm3. In addition, for illustration purposes, a simulation
with a higher damping of α = 0.1 is shown. A higher damping leads to a larger disorder
of the spin system directly after excitation, however, the qualitative behavior displayed in
Fig. 8.5.3 is also observed for lower values of the damping parameter at high fluences. The
comparison of the simulated spin energy content (solid curve) to the energy content of a
thermalized spin system with the simulated magnetization dynamics reveals that the spin
system remains in a nonthermal state for several picoseconds. At short time delays, the
nonthermal state is characterized by a relatively large spin energy content compared to the
demagnetization amplitude. The behavior reverses on longer time scales. Further insights
on these nonthermal states can be gained from the visualization of the spin dynamics. The
instantaneous spin configuration is illustrated exemplarily for several delays after excitation.
During and directly after excitation, e.g. at t1 = 0 ps, there is significant short-range disorder
in the spin system, i.e. significant misalignment between neighboring spins. According to
the Heisenberg Hamiltonian, this comes with a significant energy cost and thus leads to the
relatively large energy content of the spin system. On longer time scales, the magnetization
recovers. However, for high fluences/strong demagnetization, domains form. This is already
visible at t2 = 0.75 ps. There are areas with significant magnetization in which the spins
point predominantly in the x- or y-direction (note that in Fig. 8.5.3, each spin is normalized
such that S2

x + S2
y + S2

z = 1). This behavior is similar to spin simulation results reported in
Ref. [197]. Within a domain, spins are parallel. Therefore, the energy cost of this spin con-
figuration is relatively low. Nevertheless, due to the different directions of the magnetization,
the global magnetization is reduced. In the beginning, the domains are relatively small. As
time progresses, the domains become larger (see t3 = 1.5 ps and t4 = 4.5 ps) and eventually
disappear (see t5 = 9 ps) as the spin system approaches thermal equilibrium. Note that for
low fluences, domain formation as illustrated in Fig. 8.5.3 doesn’t occur, since it requires
significant initial disordering of the spin system. The initial nonthermal disorder of the spin
system, visualized in Fig. 8.5.3 for t1 and characterized by a large number of high-energy
spin excitations, occurs for all fluences (see also Fig. 8.4.2).
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Chapter 9

Summary and Outlook

In this thesis, laser-induced ultrafast demagnetization and switching dynamics have been
studied by means of atomistic spin-dynamics simulations utilizing a semiclassical spin model.
The dynamics of the model have been calculated numerically using the stochastic Landau-
Lifshitz-Gilbert equation of motion. The obtained results have been compared with ex-
perimental measurements performed by collaborators from the University of California in
Berkeley and at the Fritz-Haber Institute in Berlin, as well as with previously published
data.

In Chapter 3, simulation results are presented on switching of various ferrimagnetic GdFeCo-
alloys using a wide range of pulse durations. It was found that single pulse all-optical switch-
ing is possible for pulse durations over two orders of magnitude. However, the available pa-
rameter space in terms of energy and Gd concentrations shrinks for longer pulse durations.
Furthermore, element-specific damping was found to be a key parameter for switching us-
ing longer pulse durations. The same underlying physics, based on atomistic spin-dynamics
simulations, is able to describe switching within hundreds of femtoseconds as well as tens of
picoseconds.
Furthermore, the simulation results have been compared to TR-MOKE measurements, yield-
ing quantitative agreement for different pulse durations and over different alloy compositions
when including local Gd-concentration inhomogeneities. Using an ideal set of parameters,
switching durations of up to 14 ps could be achieved. The performed studies help to better
understand the conditions necessary for electric pulse switching for possible technological
applications, as these electric stimuli cannot be generated on a femtosecond scale.

In Chapter 4, results on the investigation of the Heusler alloy Mn2RuxGa, based on an atom-
istic spin model, which was developed within this thesis, are presented. The work consisted of
two parts, where at first the material itself and its equilibrium properties were modeled based
on various previously reported experimental measurements. The derived model is able to
reproduce various key material properties, such as the Curie temperature, the magnetization
curve or the Ru-concentration dependence of the magnetization-compensation temperature.
In the second part the switching of Mn2RuxGa was investigated using the previously derived
material parameters. The model has been shown to be able to quantitatively reproduce the
magnetization dynamics of single pulse toggle switching as measured by Banerjee et al. [1].
It was also demonstrated that, contrary to previous understanding coming from rare-earth
transition metal alloys, toggle switching in Mn2RuxGa is possible even when both Mn sub-
lattices demagnetize at very similar rates.
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However, right now theoretical modeling of Mn2RuxGa still suffers from uncertainties on
the material parameters. As described in Chapter 4, important parameters, such as the
Curie temperature vary by up 50 %, which is not the case for GdFeCo. This makes it
hard to model and understand this alloy completely. For further theoretical work and for
an improved modeling more reliable parameters, determined in experiments or via ab-initio
calculations, are needed.

After investigating the ferrimagnets GdFeCo and Mn2RuxGa a general study of switching and
magnetization dynamics in ferrimagnetic materials was performed. A general macroscopic
theory for the magnetization dynamics of ferrimagnetic materials driven by femtosecond laser
photo excitation was derived. The results are presented in Chapter 5. The theory reproduces
all stages of the switching process observed in experiments. The developed model has been
directly compared to atomistic spin-dynamics simulations for GdFeCo and for Mn2RuxGa
alloys utilizing the parameters derived in the previous chapter. It has been established that
during the switching process the magnetization dynamics transits from a relativistic relax-
ation path to an exchange-dominated regime due to the strong enhancement of the exchange
relaxation. Furthermore, it has been shown that switching occurs when the sublattice mag-
netization reaches a threshold value.

Chapter 6 focuses on the different magnetic responses of antiferromagnets and ferromag-
nets. In experiments it is difficult to systematically compare the magnetic response of the
two magnetic orderings in the same system. Therefore, atomistic spin-dynamics simulations
have been used, as they allow for the manipulation of the Heisenberg exchange by simply
reversing the sign of the exchange while keeping all other material parameters unchanged.
Furthermore, the previously developed macroscopic model for ferrimagnets was applied to
antiferromagnets, as a special case of ferrimagnets. This yielded in an equation of motion
for the antiferromagnetic magnetic order that predicted an intrinsic faster dynamics of anti-
ferromagnets compared to ferromagnets. By means of atomistic spin-dynamics simulations
it has been demonstrated that the ultrafast magnetic order dynamics in antiferromagnets is
exchange-enhanced compared to ferromagnets with the same system parameters. Notably,
the exchange enhancement strongly depends on the number of neighboring spins of the other
sublattice to which a spin is coupled. For instance, a noticeable difference was found between
the demagnetization speed of 2D antiferromagnets compared to a fcc antiferromagnet.
This finding raises the question of how the number of neighboring ferrimagnetic spins affects
the ease of switching. The discovered demagnetization-speed differences in antiferromagnets
suggest that the ability to switch a ferrimagnet also depends on the number of neighboring
spins. In the future, atomistic spin-dynamics simulations could be used again to investigate
this problem, as they allow for the simulation of materials with identical system parameters
but with a different number of neighbors.

In the last two chapters, results are reported on spin-dynamics simulations of nickel, cobalt
and iron utilizing ab-initio calculations of electron-phonon interactions. The resulting dy-
namics has been compared to experimental measurements of the lattice response in order
to obtain a full picture of the dynamics in ferromagnetic nickel following laser excitation.
It was found that the energy flow to and from the spin system leads to a significant slow-
down of the lattice dynamics. The spin system is the dominant heat sink in the initial few
hundreds of femtoseconds. Consequently, it is paramount to include the energy flow to and
from the spin system in any description of the laser-induced dynamics. The comparison
with available experimental data for the electronic, lattice and spin dynamics shows that
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the atomistic spin-dynamics simulations achieve a quantitative description of all three sub-
systems. The study presents a consistent description of the coupled energy flow between all
three subsystems and of the magnetization dynamics and represents an improvement on the
three-temperature model used by Beaurepaire and Koopmans [5, 14].
In the future, the precision of this comparison could be improved further by measuring the
response of all three subsystems on identical samples.
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Chapter 10

Appendix

A10.1 Bridging atomistic spin-dynamics methods and phe-
nomenological models of ingle pulse ultrafast switching
in ferrimagnets

The results of this chapter have been published in

� F. Jakobs, and U. Atxitia, Bridging atomistic spin dynamics methods and phenomeno-
logical models of single-pulse ultrafast switching in ferrimagnets, Physical Review B
106, p. 134414, (Oct 2022).

and the content of this chapter is in large parts identical with the published work.
Since most of the concepts explored in this work have already been presented previously in
chapter 2 and chapter 5 this work was moved to the appendix.

The published version can be found at https://doi.org/10.1103/PhysRevB.106.134414

A10.1.1 Introduction

Since its experimental discovery [24], the theoretical description of laser induced all-optical
switching (AOS) of the magnetization in GdFeCo ferrimagnetic alloys has remained a chal-
lenge. Despite intense experimental and theoretical research in the field [24, 163, 6, 32, 126,
158, 20, 135, 116, 165, 127, 26], an established and unified picture of the process is still miss-
ing. Experimental findings are mostly compared or interpreted in terms of atomistic spin
dynamics simulations [132, 128, 285, 41] (see chapter 3), multisublattice spin dynamics based
on symmetry arguments [126, 118, 119], and based on the Landau-Lifshitz-Bloch equation
[171, 286, 134]. The main goal of the present work is the revision, extension and merging of
these approaches into a unified model.

Atomistic spin dynamics (ASD) models have been used before to quantitatively describe
ultrafast dynamics in 3d transition metals (see chapter 7 and chapter 8) and 4f rare-earth
ferromagnets [114, 109]. They have also been used in GdFeCo, to describe the equilib-
rium thermal properties [132], the thermal character of AOS [32], the so-called transient
ferromagnetic-like state [6], the demonstration of spin-current-mediated rapid magnon local-
isation and coalescence [133] and the possibility of AOS using picosecond-long laser pulses

https://doi.org/10.1103/PhysRevB.106.134414
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(see chapter 3). Results from atomistic spin models also compare qualitatively well to an
analytical theory based on the excitation of spin-wave exchange modes [135], provide insights
for optimal electron, phonon and magnetic characteristics for low energy switching [287] and
predict maximum repetition rate using two consecutive laser pulses [288]. More sophisticated,
orbital-resolved atomistic models provide insights on the role of the intra-exchange coupling
between 4f and 5d electrons in the dynamics of GdFeCo alloys[128]. Atomistic models can
naturally describe switching in Gd/Fe multilayers composed of very thin layers [144, 33]. Re-
cent observations [45, 1] of single pulse switching in Mn2RuxGa alloys are also well-described
by ASD methods (see chapter 5). Despite the demonstrated success in modeling AOS, ASD
simulation results are cumbersome to interpret without an analytical model that unveils the
role of the different processes and interactions during the switching process. This potential
semi-analytical model has to capture most of the features of the ASD simulations. Semi-
phenomenological models describing switching already exist. A macroscopic theory for the
description of the dynamics and relaxation of the macroscopic (sublattice) magnetization of
ferromagnets and antiferromagnets was developed originally by Baryakhtar [289, 116]. An
extension of such phenomenology to ferrimagnets in the context of ultrafast spin dynamics
was introduced in Ref. [126]. At the ultrafast scale, magnetization dynamics are dominated
by atomic scale spin excitations, these spin dynamics are driven by dissipative processes
which in ferrimagnets are two-fold, relativistic and exchange driven. Relativistic processes
allow for exchange of angular momentum between the spins and lattice degree of freedom
due to the presence of spin-orbit interaction connecting them. Exchange processes can arise
due to transport of spin angular momentum – spin and magnon transport – which is the only
mean to exchange angular momentum in ferromagnets. In multisublattice magnets another,
different pathway opens, namely, local exchange of angular momentum. To account for such
local exchange processes in ferrimagnets, the equation of motion for the magnetization dy-
namics proposed by Landau and Lifshitz [87] is enhanced by an exchange relaxation term
[126, 119, 116, 290]. Within this macroscopic model, the exchange relaxation dominates the
dynamics when the magnetic sublattices are driven into mutual non-equilibrium. Qualitative
agreement to experiments in two-sublattice magnets has been demonstrated [119], such as
AOS in ferrimagnetic GdFeCo using fs laser pulses [126] and ps laser pulses [131], AOS in
Heusler semimetals Mn2RuxGa [46], or element-specific demagnetization of ferromagnetic
NiFe alloys [118]. Quantitative comparison of this model to neither experiments nor ASD
simulations have been conducted so far. While the arguments behind such phenomenology
are robust, the range of applicability and the validity of the model parameters could be ques-
tioned. For instance, the parameters defining the relativistic and exchange relaxation are
assumed to be constant and of the same order. The magnetic free energy functional is cal-
culated for near thermal equilibrium states. This implies a relatively strong coupling to the
heat-bath, while switching conditions are supposedly fulfilled when exchange relaxation be-
tween sublattices dominates over the relaxation to the heat-bath. An alternative macroscopic
model directly derived from an atomistic spin model has also been proposed. This model is
based in the Landau-Lifshitz-Bloch (LLB) equation of motion [173, 291, 171, 292, 293]. The
LLB model for two-sublattice magnets [171, 292] has been used in the context of AOS in
GdFeCo, e.g. the element-specific demagnetization rates compare well to experiment, and it
predicts that near the magnetic phase transition the otherwise slower Gd sublattice becomes
faster than Fe [134], as recently observed [294]. The LLB model has been demonstrated to
provide accurate analytical expressions for the temperature dependence of the relativistic
relaxation parameter as well as for the non-equilibrium effective fields below and above the
critical temperature [292]. Moreover, the LLB model also describes the transverse motion
of the magnetization. This makes it the preferred model for computer simulations of heat-
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assisted magnetic recording [169] and realistic description of all-optical switching [295], and
ultrafast spintronics, such as domain wall motion [296, 297] or skyrmion creation by ultrafast
laser pulses [298]. So far the LLB model and Baryakhtar-like models have been considered
as complementary approaches. Here, we merge them into one unified approach. In this work
we address the issues discussed above by directly comparing both phenomenological models
to ASD simulations. We do so since ASD simulations have been already quantitatively com-
pared to experiments in literature. We find that quantitative comparison between ASD and
both phenomenological models is partially possible for laser excitation producing small devia-
tion from equilibrium. However, those models hardly reproduce magnetic switching using the
same parameter values describing the relaxation of small perturbations. Here, based upon
those phenomenological models, we propose a macroscopic model that compares precisely
to the magnetization dynamics calculated using ASD simulations, including element-specific
magnetization relaxation and switching. This model bridges atomistic spin dynamics based
models and previously proposed phenomenological models. Notably, it provides a deeper un-
derstanding to the parameters entering the phenomenological models and sheds some light
into the process of ultrafast switching in ferrimagnets. The work is broken down in the fol-
lowing way: in Sec. A10.1.2, we present the atomistic spin model for the calculation of the
magnetic equilibrium properties and non-equilibrium dynamics. The equilibrium properties
are compared to a mean field model. We then provide atomistic calculations of the ultrafast
magnetization dynamics with input from the two temperature model. These results are the
basis for the comparison to the phenomenological models presented in Sec. A10.1.3. Firstly,
we present the Baryakhtar model and the Landau-Lifshitz-Bloch model. Secondly, we com-
pare the ultrafast magnetization dynamics calculated with those models to the atomistic spin
dynamics results. Finally, in Sec. A10.1.3 we present the unified phenomenological model, a
hybrid model combining Baryakhtar and LLB models, and its comparison to atomistic spin
dynamics.

A10.1.2 Atomistic Spin Model

Ferrimagnetic materials characterise by spontaneous magnetization as a resultant of two or
more components of non-parallel magnetic moments [40]. Atomistic spin models based on
the Heisenberg Hamiltonian can be considered one of the simplest microscopic models able
to reproduce the equilibrium properties of ferrimagnets. The spin system energy due to only
the exchange interactions can be described by an effective Heisenberg model:

H = −
∑
i ̸=j

JaSa,i · Sa,j −
∑
i ̸=j

JbSb,i · Sb,j −
∑
i ̸=j

JabSa,i · Sb,j (A10.1.1)

where Ja(b)(ab) is the exchange constant between neighboring sites represented by two clas-
sical spin vectors Si and Sj (|S| = 1). Further, we include magnetic anisotropy terms to
Eq. (A10.1.1) to set a preferential axis for the magnetization to switch about. However,
since the anisotropy energy is relatively low in comparison to the exchange energy, at the
picosecond time scale it plays a marginal role in the switching process. This makes for a sim-
pler Hamiltonian and a more direct comparison to the phenomenological models. To model
a ferrimagnet, one needs to consider two alternating sublattices of unequal and antiparal-
lel moments, with three exchange coupling constants: ferromagnetic for each sublattice (Ja
and Jb) and a third for the antiferromagnetic interaction between them, Jab. For instance,
GdFeCo alloys are composed of a transition metal FeCo and a Gd rare-earth sublattices. We
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Figure A10.1.1: Equilibrium magnetization of a GdFeCo alloy for Gd concentration,
xGd = 25%. Element-specific normalized equilibrium magnetization and net equilibrium
magnetization, M(T ) = xGdµGdmGd − xFeµFemFe, where µGd(Fe) is the atomic magnetic
moment of Gd(Fe). Lines correspond to the mean-field approximation with renormalized
exchange parameters. Symbols correspond to atomistic spin dynamics simulations.

model the Fe and Co spins as only one magnetic sublattice, and we assume a common atomic
magnetic moment of µFeCo = 1.94µB. In these alloys the rare-earth impurities add localised
4f spins to the system assumed to be, µGd = 7.6µB. The amorphous nature of GdFeCo is
modelled by using a simple cubic lattice model but with random placements of Gd moments
within the lattice to the desired concentration. The applicability of the Heisenberg approxi-
mation relies on the stability of local moments under rotation and at high temperature where
Stoner excitations are generally weak [229]. It is assumed that the electronic properties are
temperature-independent in the range where the system is magnetically ordered.

Atomistic spin dynamics

Equilibrium and non-equilibrium element specific magnetic properties of a ferrimagnet are
calculated using atomistic spin dynamics simulations which are based in the stochastic-
Landau-Lifshitz-Gilbert equation (s-LLG) [72]

(1 + λ2
i )µs,iṠi = −γSi × [Hi − λi (Si ×Hi)] , (A10.1.2)

where γ is the gyromagnetic ratio, and λi is the so-called phenomenological sublattice spe-
cific damping parameter. By including a Langevin thermostat the spin dynamics including
statistical – equilibrium and non-equilibrium thermodynamic properties can be obtained.
An effective field-like stochastic term ζi is added to the effective field Hi = ζi(t) − ∂H

∂Si
,

with white noise properties [97]: ⟨ζi(t)⟩ = 0 and ⟨ζi(0)ζj(t)⟩ = 2λikBTµs,iδijδ(t)/γ. The
variance of the Langevin noise is chosen such that the fluctuation-dissipation theorem is full
filled.

134



A10.1. Bridging atomistic spin-dynamics methods and phenomenological models of ingle
pulse ultrafast switching in ferrimagnets

Mean-field approximation

Exact analytical expressions for the M(T ) curve are cumbersome to derive due to the many
body character of the problem. Here we resort the mean field approximation (MFA), already
used in previous works [132, 135, 299]. We note that to be able to apply the MFA for the
GdFeCo impurity model, and thus translation non-symmetric with respect to spin variables
Si, we need to transform the Heisenberg Hamiltonian to a symmetric one. We use the
spin analogy of the virtual crystal approximation (VCA) to transform the disordered lattice
Hamiltonian H to a symmetric VCA Hamiltonian HVCA. Within the VCA we evaluate the
effective sublattice exchange parameters, given by the sum of the exchange interactions of a
given spin at a site ri of sublattice i with all other atoms of this sublattice. This involves
weighting the exchange parameters by the relative composition, xi ≡ concentration species i
[135],

Ji =
∑
ri,r′i

J(ri, r
′
i) ≡︸︷︷︸

VCA

xiJ(ri, r
′
i) intrasublattice (A10.1.3)

whereas the intersublattice effective exchange reads

Jij =
∑

ri,r′j /∈Ai

J(ri, r
′
j) ≡︸︷︷︸

VCA

xiJ(ri, r
′
j) intersublattice (A10.1.4)

Thus the VCA Hamiltonian reads

HVCA =
∑
j∈Ai

JiSi · Sj +
∑
j /∈Ai

JijSi · Sj (A10.1.5)

where Ai represent the magnetic sublattice of the spin Si. In the exchange approximation
we define the MFA field as

µaH
MFA
a = zaJaama + zabJabmb (A10.1.6)

The element-specific equilibrium magnetization is calculated via the self-consistent solution
of ma = L(βµaH

MFA
a ) and mb = L(βµbH

MFA
b ). za and zab correspond to the number of first

nearest neighbours of type a and b, respectively. It is well-known that the MFA overestimates
the value of the critical temperature TC . However, a very good agreement between ASD
and MFA can be obtained by using a reduced value for the exchange parameters, even for
multilattice magnets [299]. Figure A10.1.1 shows element-specific Ma = xaµama(T ) using
ASD simulations and renornalized MFA for xGd = 25%. Net magnetization is also shown in
Fig. A10.1.1, which is defined as M(T ) = xGdµGdmGd−xFeµFemFe. The agreement between
ASD and MFA is good enough for all the temperature regions. We observe the presence of
compensation temperature TM at room temperature for xGd = 25% at which the thermally
average magnetization of both sublattices are equal but opposite, so that the magnetization
of the system is equal to zero M(TM) = 0. The mapping of the atomistic spin model and
the corresponding mean-field approximation turns out to be necessary for a quantitative
comparison to the phenomenological models, and thereby paramount for the unification of
both pictures.

Two Temperature Model

Single pulse all-optical switching has been demonstrated to be a thermal process in ferri-
magnetic GdFeCo alloys [32] and in Mn2RuxGa Heusler semi-metals [45]. Ultrafast heating
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by optical or electric means are sufficient to achieve switching in specific GdFeCo alloys [35].
Although the minimum achievable duration of the electric pulses are limited to picoseconds,
those are better suited for potential integration into applications. Laser pulses can be as
short as only a few femtoseconds, which permits to excite the electron system in timescales
of the order of the exchange interaction allowing for the investigation of fundamental physics
governing switching. In this work, we center in excitation of the ferrimagnetic GdFeCo using
femtosecond laser pulses. When a metallic ferrimagnetic thin film is subjected to a near
infrared laser pulse, only the electrons are accessible by the photon electric field. Initially,
the absorbed energy is barely transferred to the lattice and consequently the electron system
heats up. The electron and phonon temperatures are decoupled for up to several picoseconds
until the electron-phonon interaction equilibrates the two heat-baths. This phenomenology
is well captured by the so-called two-temperature model (2TM) [102, 110] which can be
written as two coupled differential equations:

Cel
∂Tel

∂t
= −gep (Tel − Tph) + Pl(t) (A10.1.7)

Cph
∂Tph

∂t
= +gep (Tel − Tph) . (A10.1.8)

Cel = γelTel where γel = 6× 102 J/m3K2, and Cph = 3.8× 106 J/m3K represent the specific
heat of the electron- and phonon system. The electron-phonon coupling is taken temperature
independent, Gep = 7× 1017 J/m3K. Here, P (t) is a Gaussian shaped pulse with a duration
of 55 fs. The exact values of the parameters entering the TTM in GdFeCo are still unknown.
The values we use here are close to the commonly used, e.g. Refs. [135, 32] (also see
chapter 5).

Ultrafast magnetization dynamics using ASD

Element-specific magnetization dynamics induced by a femtosecond laser pulse are calculated
by combining the atomistic s-LLG equation for the spin dynamics (Eq. (A10.1.2)) and the
2TM for the electron temperature (Eq. (A10.1.7)). The electron system acts as heat-bath
for the atomic spins. We consider a lattice with N = 50 × 50 × 50 spins, and damping
parameters, λGd = 0.01 = λFe. Figure (A10.1.2) shows, for t < 0, the dynamics of the
element-specific magnetization from an initial saturated state (T = 0 K), towards thermal
equilibrium with the heat-bath which is set to T = 300 K. The relaxation dynamics of Fe
sublattice is faster than those of the Gd sublattice. This comes out naturally as the element-
specific dissipation of angular momentum scales as ṁz ∼ γλ/µs, in Gd (µGd = 7.6µB)
is slower than in Fe sublattice (µGd = 1.94µB). Once the magnetic system is in thermal
equilibrium with the heat-bath, we apply the laser pulse, t > 0, which introduces energy into
the electron system and induces ultrafast magnetization dynamics. To illustrate the switching
and no switching dynamics we consider two limiting cases, dynamics induced by low laser
power, P0, and large laser power, 2P0. The electron temperature increases up and above the
Curie temperature in time scales of a few hundreds of femtoseconds Fig. (A10.1.2) (a). This
reflects in the magnetic system as a fast demagnetization of both Fe and Gd sublattices. For
relatively low laser power, P0, the magnetization of both sublattices reduces while the electron
temperature remains relatively high. Once the electron temperature reduces and equalizes
to the lattice temperature, they can be considered to be in a new, thermal quasi-equilibrium.
The magnetization recovers to the thermal state given by the heat-bath temperature, which
is higher than initially (T = 300 K). This is why the final magnetization value is smaller
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Figure A10.1.2: (a) Electron and lattice temperature dynamics for two laser pulse power
values, P0 and 2P0. Both electron and lattice temperature are kept constant, T = 300K,
for t < 0. At t = 0 a laser pulse is applied and the dynamics of the electron and lattice
temperature heat up. The dynamics of those temperatures are theoretically described by the
two-temperature model. (b) Element-specific magnetization dynamics induced by the heat
profile at (a). The dynamics are calculated using atomistic spin dynamics methods. For lower
laser powers P0, the magnetization of both sublattices demagnetize rapidly and remagnetize
towards the new equilibrium. For laser power 2P0, the magnetization of both sublattices
demagnetizes and switches. After switching they relax towards the thermal equilibrium
state. GdFeCo alloys with xGd = 25% are calculated.

than the initial one. For higher laser powers, 2P0, the magnetization of both sublattices
reduces quickly. The Fe sublattice faster than the Gd one. Once the magnetization of the Fe
sublattice hits zero, instead of remaining demagnetized, the magnetization starts to develop
toward the opposite direction, while the magnetization of the Gd sublattice is still in the
process of demagnetization. During a couple of picoseconds, both sublattice magnetization
are aligned along the same direction, similar to a ferromagnet. Consequently, this non-
equilibrium state has been named the transient ferromagnetic-like state [6]. One can observe
in Fig. (A10.1.2) (b) that the demagnetization rates of both sublattices slow down when
the Fe magnetization crosses zero. This change reveals the set in of a process driving the
magnetization dynamics different to the one driving the initial demagnetization. It has
been argued that at this point direct exchange of angular momentum between sublattices
dominates over processes of relativistic origin, which in turn dissipate angular momentum
into the heat-bath. Interestingly, soon after switching, both sublattice magnetization rapidly
relax to equilibrium indicating that relaxation into the heat-bath dominates the dynamics.
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A10.1.3 Phenomenological models

Differently to ASD simulations, phenomenological models describe the element-specific mag-
netization dynamics by solving two coupled equations of motion, one for each sublattice.
In this work we aim at finding a phenomenological model that describes the same element-
specific magnetization dynamics as those coming out from the ASD simulations (Fig. A10.1.2).
The starting point is the comparison of the ASD simulations to well-known phenomenological
models. We show that those models are unable to describe in a satisfactory way the different
element-specific magnetization dynamics studied in the previous section and summarized in
Fig. A10.1.2.

Baryakhtar model

The simplest model to describe element-specific magnetization dynamics and switching in
ferrimagnets was proposed by Mentink and co-workers [126]. Longitudinal spin dynamics
was derived from Onsager’s relations

µa

γa

dma

dt
= αB

a µaHa + αB
e (µaHa − µbHb) (A10.1.9)

µb

γb

dmb

dt
= αB

b µbHb + αB
e (µbHb − µaHa) (A10.1.10)

here, αB
a,b stands for the relaxation parameter of relativistic origin, which dissipates angular

momentum out of the spin system, and αB
e stands for the exchange relaxation parameter

and describes the rate of dissipation of angular momentum between sublattices. By con-
struction exchange relaxation conserves the total angular momentum. We emphasize here
the difference in the notation between the atomic relaxation parameter, λ, describing the
dissipation of the atomic spins in ASD simulations and the macrospin relaxation parameter,
α, describing the dissipation of the whole magnetic sample. Within this model, the values
for αB

a,b and αB
e are unknown but used as fitting parameters when compared to experiments.

The internal effective field Ha(b), acting on sublattice a(b) are derived from a non-equilibrium
mean-field approximation,

µaHa = −β−1L−1(ma) + µaH
MFA
a (A10.1.11)

where, L−1(x) is the inverse Langevin function, β = 1/kBT , where T represents the temper-
ature of the heat-bath to which the spin system is coupled to. At equilibrium, the effective
field is Ha = 0, as ma = L(βµaH

MFA
a ). The same arguments apply for sublattice b. It

turns out that by solving Eqs. (A10.1.9) and (A10.1.10) together with the 2TM, described
in Eqs. (A10.1.7) and (A10.1.8), one obtains similar ultrafast magnetization dynamics as
those using ASD simulations (Fig. (A10.1.2)). Element-specific demagnetization [118] and
switching dynamics [119] based on this approach have been discussed thoroughly before. On
those works, the values for the relaxation parameters, relativistic and exchange, are taken
constant and of the same order, αB

Fe ≈ αB
Gd ≈ αB

e . We note that here αB
a defines the rate

of change of angular momentum (mµ/γ). It differs from the definition of intrinsic damping
parameters in ASD, which are related to the rate of change of the magnetization (m). Sim-
ilarly to ASD methods though, within the Baryakhtar model the observed fast dynamics of
the Fe sublattice is related to a smaller value of atomic magnetic moment. The switching
process within the Baryakhtar-like model is explained in the following manner. Since the
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Figure A10.1.3: Element-specific magnetization dynamics of GdFeCo calculated using
atomistic spin dynamics (symbols) and macroscopic Baryakhtar-like equation (solid lines)
for two laser pulse power values, (a) P0 and (b) 2P0. Both electron and lattice temperature
are kept constant, T = 300 K, for t < 0. At t = 0 a laser pulse is applied. In the Baryakhtar-
like model the relativistic relaxation parameters αB

a have a value different to the Gilbert
damping in ASD simulations, (γ/µFe)α

B
Fe = 0.005 and (γ/µGd)α

B
Gd = 0.01. The exchange

relaxation parameter is varied, αB
e /α

B
Fe = 0, 0.3 and 3. The relaxation to thermal state

(t < 0) is only well described for the Fe sublattice. (a) For P0, the laser induced dynamics is
well described by αB

e /α
B
Fe = 0.1. (b) For 2P0 the demagnetization phase of both sublattices

is relatively well described in comparison to ASD simulations. Switching is also possible,
here one instance, for a value αB

e /α
B
Fe = 3.

Fe sublattice reacts faster than Gd to heating it is expected to remain closer to thermal
equilibrium with the heat-bath. This translates into a smaller non-equilibrium effective field
acting on Fe than in Gd, HFe ≪ HGd, during the action of the laser pulse. For strong enough
pulses, the Fe magnetization rapidly reduces, mFe ≈ 0, still HFe is small in comparison to
HGd, in a way that the dynamics of Fe can be fairly approximated by ṁFe ≈ αB

e HGd. This
drives the magnetization of Fe towards the opposite direction. The field, HGd is defined by
the energy of the system, HMFA

Gd (Eq. (A10.1.6)) and αB
e from the coupling between the Gd

and the Fe sublattices. After switching, HFe ≈ HGd and relativistic relaxation processes
dominate the dynamics and drive magnetization to complete the switching. The question
here is to what extent the non-equilibrium fields as given by Eq. (A10.1.11) are accurate,
and how are the relaxation parameters related to atomic damping parameters in ASD. So
far the connection between the relaxation parameters in the ASD and Baryakhtar-like model
is unknown. In ASD simulations shown in Fig. A10.1.2 we have used λFe = λGd = 0.01
as atomistic relaxation parameter. One would expect that the relaxation parameters in the
atomistic and macroscopic models are related as λa ≈ αB

a (γa/µa). In an attempt to find
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this correspondence, we directly compare results from ASD simulations and Baryakhtar-like
models for different values of αB

a and αB
e in Eqs. (A10.1.9) and (A10.1.10). We numerically

solve Eqs. (A10.1.9),(A10.1.10), and (A10.1.11) coupled to the 2TM with exactly the same
parameters as for the ASD simulations. After exploring the results of the Baryakhtar model
for a range of values for αB

a and αe, we find that for some values the agreement is good, as one
observes in Fig. A10.1.3, however, it is not possible to find a good match for all scenarios.
In order to illustrate this, we first focus on the dynamics induced by the laser pulse with
power P0 (Fig. (A10.1.3)(a)). We find a good match for the laser induced magnetization
dynamics (t > 0 for (γ/µFe)αFe = 0.005 and (γ/µGd)αGd = 0.01, and for values of exchange
relaxation of up to αB

e /α
B
Fe = 0.3. For values αB

e /α
B
Fe < 0.3, thermal relaxation (t < 0)

of the Fe is also well described, however the relaxation of the Gd sublattice is significantly
faster. For larger values of the exchange relaxation αB

e /α
B
Fe = 3, the dynamics of both sub-

latttices are substantially speed up and strongly disagree with ASD simulations. For larger
laser pulse power 2P0 the magnetization switches using ASD simulations. We keep the same
values for the relaxation parameters in Baryakhtar-like model as for P0, and compare to
the ASD simulations. For small values of αB

e (Fig. (A10.1.3)(b)), differently to the P0 case
(Fig. (A10.1.3)(a)), the dynamics described by the Baryakhtar-like model is not only slower
than those of ASD simulations but it hardly reproduces magnetization switching. In order
to reproduce switching, we need to use larger values of the exchange relaxation parameter,
αB
e /α

B
Fe = 3. These findings are in agreement with previous works using Baryakhtar-like

model where switching was reproduced for comparable values of αB
e . However, as we have

discussed before, for those values of αB
e , thermal relaxation dynamics (t < 0) is much faster

than in ASD simulations. This brings us to the question of how much understanding about
switching can we gain by using this bare Baryakhtar-like model, are we missing something?

The Landau-Lifshitz-Bloch model

Since the Baryakhtar-like model is based on symmetry arguments, the macroscopic magne-
tization dynamics coming out from ASD simulations should also be described by that model
with adequate expression for the relaxation parameters and non-equilibrium effective fields.
The magnetization dynamics coming out from ASD simulations is well described by the LLB
equation of motion.

dma

dt
= Γ∥,a (ma −m0,a) , (A10.1.12)

where

Γ∥,a = 2λa
γ

µa
kBT

1

ξa

L(ξa)

L′(ξa)
, (A10.1.13)

with ξa = βµaH
MFA
a , where HMFA

a is given in Eq. (A10.1.6), and m0,a = L(ξa). The same
equation applies to the second sublattice b. Here, the relaxation rate Γ∥,a depends non-
linearly on the non-equilibrium sublattice magnetization, ma(b), through the parameter ξa.
We note that Eq. (A10.1.12) can be expanded around equilibrium for small perturbations of
the magnetization. By doing so, the relaxation rates and effective fields are expressed in terms
of equilibrium properties such as equilibrium magnetization and zero-field susceptibilities
[171]. In the present work, however, we use the version in Eq. (A10.1.12). Direct comparison
between ASD simulations and the LLB model of element-specific magnetization dynamics is
possible and with relatively good agreement. Importantly, since the LLB model is derived
directly from the ASD microscopic model, the damping parameters, λa(b) in Eqs. (A10.1.13)
and (A10.1.2) stand for the same physics, the rate of angular momentum dissipation of
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Figure A10.1.4: Element-specific magnetization dynamics of GdFeCo calculated using
atomistic spin dynamics (symbols) and macroscopic LLB equation (solid lines) for two laser
pulse power values, (a) P0 and (b) 2P0. For t < 0, electron and lattice temperature are
T = 300K, and at t = 0 a laser pulse is applied. The exchange relaxation parameter is varied,
αe/αa = 0, 0.1 and 1, where αa = 0.01, and a =FeCo or Gd. The initial relaxation dynamics
is well described by αe/αa = 0. (a) For laser power P0, the element-specific dynamics is
well-described for αe/αa = 0.1. (a) For αe/αa = 1, exchange relaxation dominates and the
element-specific dynamics are similar. (b) For laser power 2P0, the switching dynamics is
not described by the LLB model.

the atomic spins. Differently to the Baraykhtar model where αB
a(b) is taken as a fitting

parameter, within the LLB model the value of λa(b) in Eq. (A10.1.13) is the same as in the
ASD simulations. A key difference between the Baryakhtar-like model and the LLB model
is that in the latter an exchange relaxation term is missing. In order to find a meeting point
between these phenomenological models, we rewrite Eq. (A10.1.12) in terms of a damping
term multiplied by an effective field,

dma

dt
=

2λaL(ξa)

ξa

γ

µa

ma −m0,a

βL′(ξa)
= γαaHa, (A10.1.14)

where

αa = 2λa
L(ξa)

ξa
. (A10.1.15)

Differently to Baryakhtar-like model, in the LLB model, the relaxation parameter strongly
depends on temperature and non-equilibrium sublattice magnetization through the thermal
field, ξa = βµaH

MFA
a . At the same time, the non-equilibrium fields µaHa within the LLB
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and Baryakhtar-like models differ. The effective field in the LLB model is defined as

µaHa =
(ma −m0,a)

βL′(ξa)
. (A10.1.16)

Equation (A10.1.16) provides a microscopic description of the effective field driving the mag-
netization dynamics in ferrimagnets, based on the Heisenberg spin model (Eq. (A10.1.1)).
Under the assumption of small perturbations around the equilibrium both, LLB and Baryakhtar-
like effective fields, simplify to Landau-like expressions [119]. Equation (A10.1.14) describes
with a very good degree of accuracy the relaxation of the angular momentum via dissipation
to the heat-bath, which corresponds to the relativistic term in Eqs. (A10.1.9) and (A10.1.10).
Previously, it has been found that ASD simulations compare well to Eq. (A10.1.14) for cou-
pling parameters of around λa ≈ 0.1 − 1 [171, 292]. These values can be considered to
correspond to the intermediate-to-high coupling regime. Direct comparison between ASD
simulations and experiments of single pulse switching in GdFeCo has suggested values of
λFe ≈ 0.06 and λGd ≈ 0.01 (see chapter 3). In the context of the present work we find that
Eq. (A10.1.14) describes relatively well the thermal relaxation dynamics in direct compari-
son to ASD simulations (Fig. (A10.1.4)). In order to account for the exchange relaxation in
the LLB model, we follow the Baryakhtar-like model ((A10.1.9) and (A10.1.10)), and add
an exchange relaxation term to Eq. (A10.1.14),

dma

dt
= γαaHa + γ

αe

µa
(µaHa − µbHb) (A10.1.17)

where αe is a phenomenological exchange relaxation parameter to be determined by com-
parison to ASD dynamics. The inclusion of the exchange relaxation (second term in r.h.s)
in the LLB improves the agreement to ASD simulations. With this addition, the LLB model
describes well thermal relaxation for small values of the ratio αe/αa as demonstrated in Fig.
A10.1.4. For large values of αe the LLB model is unable to describe thermal relaxation
dynamics (t < 0 in Fig. A10.1.4(a) and (b)). For laser power P0 (Fig. A10.1.4(a) (t > 0))
the magnetization dynamics is slightly slower using the LLB model than those gained by
ASD simulations for αe/αa = 0. For αe/αa = 0.1, the agreement is even better than without
exchange relaxation. The agreement vanishes when the exchange relaxation is increased to
αe/αa = 1. Critically, when the laser power is increased from P0 to 2P0, for which ASD simu-
lations show ultrafast switching, the LLB model only shows demagnetization-remagnetization
of both sublattices. We find some agreement on the demagnetization time scales when a quite
large exchange relaxation is used, αe/αa = 1. These dynamics are similar to those observed
using the Baryakhtar-like model for intermediate values of the exchange relaxation parame-
ter (Fig. (A10.1.3)). It has been demonstrated previously that by including the transverse
components of the equation of motion, switching is possible via a precessional path when a
canting between the magnetization of each sublattice exists [286]. Here, we restrict to purely
longitudinal switching within the LLB model.

Unified phenomenological model

So far we have constructed a phenomenological model based on the LLB and Baryakhtar-like
models, the dynamics is given by Eq. (A10.1.17), the effective field by Eq. (A10.1.16) and
the relativistic relaxation parameter Eq. (A10.1.15). We still need an expression for the
exchange relaxation parameter. We construct this expression starting with single species
ferromagnets, where sublattices a and b represent the same spin lattice, hence exchange of
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angular momentum is non-local. Therefore, µaHa − µbHb = µaHexa
2
0∆ma, with a0 repre-

senting the lattice constant. Hence, the rate of non-local angular momentum transfer reads
Γnon−loc.
ex = αex(µaHa −µbHb) = αa(A/Ma(T ))∆ma, where A is the so-called micromagnetic

exchange stiffness [172]. Ma(T ) = (µa/υa)ma is the magnetization density at temperature
T , where υa is the unit cell volume. Therefore, we find that αex = αa/(zma), where z is
the number of nearest neighbors. By considering that the exchange relaxation rate should
conserve the symmetry under the exchange of lattice index, αex(M1,M2) = αex(M2,M1), we
find that

αex =
1

2

(
αa

zabma
+

αb

zbamb

)
. (A10.1.18)

This expression is the extension of the non-local exchange relaxation in ferromagnets to
local exchange relaxation in ferrimagnets. This explicit expression for the exchange relax-
ation parameter in Eq. (A10.1.18) completes our unified model, which bridges the atomistic
spin dynamics model and the Baryakhtar and LLB macroscopic models. The previously
discussed phenomenological models have introduced the relaxation parameters at a purely
phenomenological level (Baryakhtar) or missed to include the exchange relaxation (LLB).
Contrary to this, our unified model overcomes this shortcoming, by providing expressions for
the relativistic and exchange relaxation parameters as a function of the sublattice specific
atomic relaxation parameter, λa(b) through Eqs. (A10.1.15) and (A10.1.18), and normalized
magnetization ma(b). We note that in our unified model, the values of the relaxation pa-
rameters are given by the system parameters and do not depend on the power of the laser
fluence. For all laser fluences, the expressions and values are exactly the same, however,
due to the their dependence of the system temperature and element-specific magnetization,
upon photoexcitation with laser pulse, the values of the relaxation parameters will change
dynamically. For large laser powers, the exchange relaxation parameter becomes of the same
order or even larger than the relativistic relaxation parameter. In the previous phenomeno-
logical models the exchange relaxation constant needed to have a large value in order to
describe switching. By contrast, in order to describe low laser power dynamics, the exchange
relaxation constant needed to have a relatively small value (αex/αa(b) ≪ 1) (Fig. A10.1.3).
The expression for the exchange relaxation parameter that we propose in Eq. (A10.1.18)
captures this behaviour naturally. Figure A10.1.5 shows the equilibrium value of the rela-
tivistic exchange parameters (αFe and αGd) and the exchange relaxation parameter (αex) as
a function of temperature. For the sake of simplicity, the values are those corresponding to
the thermal equilibrium. The element-specific relativistic relaxation parameters scale with
the value of λa(b) as given in Eq. (A10.1.15) and depend almost linearly with temperature,
with a maximum at the Curie temperature of 2λa(b)/3. By contrast, the exchange relaxation
shows a drastically different behaviour. At low temperatures, assuming αa = αb, one gets
αex ≈ αa/z. By contrast, for relatively high temperatures, close to Tc, where ma(b) → 0,
αex scales as αex ∼ 1/ma. Therefore, even at equilibrium, close to the critical temperature,
the relaxation dynamics is dominated by exchange relaxation processes. At non-equilibrium
situations, the exchange relaxation can become larger than the relativistic relaxation by driv-
ing one of the sublattice magnetization to zero, in principle without the need of approaching
the critical temperature. We conduct a direct comparison between the proposed unified and
atomistic spin dynamics simulations. The system parameters are exactly the same as those
used in the previous sections, when ASD simulations were compared to Baryakhtar and LLB
models. The damping parameter is the same for both sublattices, λa(b) = 0.01 and we use
the same laser powers. We find that the agreement between our unified phenomenological
model and ASD simulations is excellent, see Fig. (A10.1.6)(a) and (b). Figure A10.1.6(a)
shows that for t < 0, the sublattice magnetization relaxation towards thermal equilibrium
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Figure A10.1.5: Thermal equilibrium value of the relativistic exchange parameters αFe

and αGd and the exchange relaxation parameter αex as a function of temperature.

value is described with a high level of accuracy by our model. For t > 0 and a relatively
low laser power P0, the agreement is also excellent for the demagnetization and remag-
netization dynamics. Figure A10.1.6(b) shows the comparison between the unified model
and ASD simulations of the switching dynamics. We conclude that Eq. (A10.1.17) for the
sublattice magnetization dynamics together with the Eq. (A10.1.16) for the effective field
and Eqs. (A10.1.15) and (A10.1.18) for the relaxation parameters, unify the Barayakhtar
and the LLB phenomenological models for single-pulse all-optical switching in ferrimagnets.
Our unified model compares well to ASD simulations for realistic system parameters. For
some limiting cases, our model is unable to reproduce ASD simulations. For example, ASD
simulations of an isolated ferrimagnet, e.g. no coupling to the heat-bath, are impossible to
reproduce by our model [128]. This type of sublattice magnetization relaxation has been
named non-dissipative relaxation since there is no net dissipation into an external bath. All
three phenomenological models discussed in this work; Baryakhtar, LLB and our unified
model are based on the assumption that the spin system is coupled to a heat-bath and they
are near thermal equilibrium. Non-dissipative relaxation processes could play a role in the
exchange relaxation for very low damping values, both non-realistic and of little interest
for ultrafast toggle switching. Nevertheless, we emphasize that the agreement between our
model and ASD simulations demonstrates that the potential contribution of internal ex-
change of angular momentum and energy is minimal for the damping values considered here
(λ = 0.01).

A10.1.4 Discussion and conclusion

The macroscopic model presented in this work solves some open questions in the field of
ultrafast magnetization dynamics in ferrimagnets. For example, it answers the question of
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Figure A10.1.6: Element-specific magnetization dynamics of GdFeCo calculated using
atomistic spin dynamics (symbols) and the unified phenomenological model derived here,
following Eq. (A10.1.17) (solid lines) for two laser pulse power values, (a) P0 and (b) 2P0.
Both electron and lattice temperature are kept constant, T = 300 K, for t < 0. At t = 0 a
laser pulse is applied, the same as in figure (A10.1.2). GdFeCo alloys with xGd = 25% are
calculated.

the range of applicability and the validity of the parameters of the Barayakhtar and LLB
phenomenological models. In the one hand, within our model, the relativistic relaxation
parameters (αa) are element-specific and strongly depend on both the temperature and the
non-equilibrium sublattice magnetization. The temperature and magnetization dependence
of the relativistic relaxation parameters are well described by the LLB model. In the other
hand, the exchange relaxation parameter (αex) is cast in terms of the element specific rela-
tivistic relaxation parameters and sublattice magnetization. We have demonstrated that in
order to reproduce the ASD simulations results, the relaxation parameters in the Barayakhtar
model have to be both temperature and magnetization dependent. The explicit expression
of the exchange relaxation parameter is the main result of the present work since it allows us
to unify the Barayakhtar and LLB models. While for the Barayakhtar model αe is uncon-
nected to αa, within our proposed model they are proportional to each other, αe ∼ αa/ma.
This relation is the key to bridge both ASD simulations and Barayakhtar and LLB models
together. Additionally, we have also demonstrated the validity of the non-equilibrium effec-
tive fields given in Eq. (A10.1.16) as derived in the LLB model instead of the Barayakhtar
model. Single-pulse switching in ferrimagnets has been described before by the Baryakhtar
model. A necessary condition for switching is that the system transits from the relativistic
relaxation regime to the so-called exchange-dominated relaxation regime. Although details
of switching in such a regime have been already discussed in detail [126, 119], so far it has
remained unknown how this transition could be described theoretically. Our model resolves
this question. When the system is at equilibrium or weakly excited, the exchange-relaxation
parameter fulfills, αe ≪ αa. For strong excitation, such that the magnetic order of one
sublattice reduces significantly, close to zero ma → 0, the exchange relaxation will dominate
the dynamics since αe ∼ αa/ma ≫ αa. From our model, one can derive universal criteria
for switching in ferrimagnets, including GdFeCo and Mn2RuxGa (see chapter 5). The pro-
vided understanding is paramount for further research on material engineering, for example,
to find alternative material classes showing all-optical switching. Notably, our model pre-
dicts that the exchange relaxation term is enhanced as the number of neighbours reduces.
This dependence suggests that magnetic systems of lower dimension, e.g. 2D magnets [189],
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could show a faster, more efficient switching than bulk materials. Further, the extension
of our model to the micromagnetic level will allow to optimize switching conditions. The
use of micromagnetic computational solvers permits for a realistic description of ultrafast
AOS processes in ferrimagnetic alloys, such as helicity-independent and helicity-dependent
AOS, where multidomain states and thermal gradients play an important role in the process
[295]. To summarize, in the present work we have presented a unified model for single-pulse
all-optical switching in ferrimagnets. Our model merges and improves previous semi-phen-
omenological models, the Landau-Lifshitz-Bloch model and Barayakhtar-like models. To
verify the accuracy of the proposed model, we directly compare the laser induced magneti-
zation dynamics to atomistic spin dynamics computer simulations. Differently to previous
models, our model has the advantage that it can be directly compared to ASD simulations.
Further, we have established the connection between ASD and macroscopic equations of
motion. Importantly, we provide here the stepping stone for the construction of a micromag-
netic model valid for ferrimagnets including exchange relaxation between sublattices. This is
paramount for a robust construction of a multiscale scheme of the switching process in which
not only local magnetization dynamics is described but also magnetic domain nucleation and
motion under strong non-equilibrium. Multiscale-based micromagnetic models will allow for
the description of realistic sample sizes and describe recent spintronics phenomena using
laser pulses, e.g. magnetic skyrmion creation/deletion with fs laser pulses, or domain-wall
motion under dynamics thermal gradients.
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K. Olejńık, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich,
F. Freimuth, Y. Mokrousov, J. Kuneš, J. S. Chauhan, M. J. Grzybowski, A. W. Rush-
forth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, “Electrical switching of an
antiferromagnet,” Science, vol. 351, pp. 587 LP – 590, feb 2016.

[179] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, “Antifer-
romagnetic spintronics,” Reviews of Modern Physics, vol. 90, p. 15005, feb 2018.

[180] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, “Antiferromagnetic spintron-
ics,” Nature Nanotechnology, vol. 11, no. 3, pp. 231–241, 2016.
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