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Fasting alters the gut microbiome reducing
blood pressure and body weight in metabolic
syndrome patients
András Maifeld 1,2,3,4, Hendrik Bartolomaeus 1,2,3,4, Ulrike Löber1,3,4, Ellen G. Avery 1,3,4,5,

Nico Steckhan 2,6, Lajos Markó 1,2,3, Nicola Wilck 1,3,7,8, Ibrahim Hamad9,10, Urša Šušnjar1,
Anja Mähler1,2,3, Christoph Hohmann6, Chia-Yu Chen1,2,3,4, Holger Cramer11, Gustav Dobos11, Till Robin Lesker12,

Till Strowig 12,13, Ralf Dechend1,2,3,14, Danilo Bzdok 15,16,17, Markus Kleinewietfeld 9,10,

Andreas Michalsen 2,6,18✉, Dominik N. Müller 1,2,3,4,18✉ & Sofia K. Forslund 1,2,3,4,18✉

Periods of fasting and refeeding may reduce cardiometabolic risk elevated by Western diet.

Here we show in the substudy of NCT02099968, investigating the clinical parameters, the

immunome and gut microbiome exploratory endpoints, that in hypertensive metabolic syn-

drome patients, a 5-day fast followed by a modified Dietary Approach to Stop Hypertension

diet reduces systolic blood pressure, need for antihypertensive medications, body-mass index

at three months post intervention compared to a modified Dietary Approach to Stop

Hypertension diet alone. Fasting alters the gut microbiome, impacting bacterial taxa and gene

modules associated with short-chain fatty acid production. Cross-system analyses reveal a

positive correlation of circulating mucosa-associated invariant T cells, non-classical mono-

cytes and CD4+ effector T cells with systolic blood pressure. Furthermore, regulatory T cells

positively correlate with body-mass index and weight. Machine learning analysis of baseline

immunome or microbiome data predicts sustained systolic blood pressure response within

the fasting group, identifying CD8+ effector T cells, Th17 cells and regulatory T cells or

Desulfovibrionaceae, Hydrogenoanaerobacterium, Akkermansia, and Ruminococcaceae as

important contributors to the model. Here we report that the high-resolution multi-omics

data highlight fasting as a promising non-pharmacological intervention for the treatment of

high blood pressure in metabolic syndrome patients.
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Fasting can prolong survival and reduce disease burden in
rodent models, and possibly in humans1. In contrast, today’s
Western diet promotes cardiometabolic disease (CMD)2.

How diet affects the gut microbiota, immune system and subse-
quently host (patho)physiology is not fully understood, and
information is lacking on how periodic fasting affects the gut
microbiome in patients with metabolic syndrome (MetS). To
reduce CMD risk, exercise and a healthy diet are often prescribed.
Shifting from a “Western diet” to a healthier “Mediterranean-
like” DASH diet3 to achieve optimal nutrition and negative
energy balance is recommended, although compliance is a major
hurdle. Our study is the first of its kind to investigate the effects of
a lifestyle modification in combination with fasting therapy in
patients with MetS using a multi-omics approach by combining
gut microbiome analysis and deep immunophenotyping. The
“Western diet” is known to induce metabolic inflammation,
accelerating CMD4. The gut microbiota is a delicate ecosystem
that plays a pivotal role in health and disease. Dysbiosis has been
observed as a characteristic of several inflammatory, cardiovas-
cular, and metabolic disorders (e.g. obesity)5, including
hypertension6,7. The “healthy” gut microbiome is relatively stable,
although various factors such as antibiotics, intestinal infections,
and profound dietary or lifestyle changes, such as moving on or
off a “Western diet”, can induce transient or persistent changes to
this ecosystem. Traditionally, fasting plays an important role in
different cultural and religious practices. Dramatic caloric
restriction not only affects host health and physiology, but also
has an impact on the microbiome8–10. Here, we studied the role
of fasting in cardiovascular risk patients with MetS (Table 1). Five
days of fasting followed by 3 months of a modified DASH diet
induced distinct microbiome and immunome changes not seen
under DASH alone, as well as a sustained SBP benefit even
3 months post-intervention. Applying machine-learning algo-
rithms, we were able to make effective predictions regarding
which patients would respond positively to treatment via BP
reduction from either baseline immunome or 16S microbiome
data. The microbial signature for BP responsiveness generalizes
to a recently published cohort investigating the impact of
fasting in 15 healthy male volunteers, as do many of the micro-
biome changes upon fasting. These data highlight fasting followed
by a shift to a health-promoting diet as a promising non-
pharmacological intervention for patients with hypertensive
MetS, with possible implications for a wider spectrum of health
states.

Results
Fasting affects the gut microbiome and immunome. As we have
previously reported a major influence of common MetS drugs on
the microbiota11, we accounted for any changes in medication
regime or dosage in our statistical tests, alongside controlling for
important demographic features such as age and sex. There were
substantial and significant (PERMANOVA P= 0.001) differences
in microbial composition within individuals during fasting,
reflecting a characteristic intervention-induced shift, which later
partially reverted following a 3-month refeeding period on a
DASH diet (Fig. 1d, Supplementary Data 1 and Fig. 1a). This was
echoed by analogous significant (PERMANOVA P= 0.001)
changes in host immune cell composition during the interven-
tion, revealing a fasting-specific signature, which likewise largely
reversed during refeeding (Fig. 1e, Supplementary Data 1).
We did not observe significant changes to the microbiome
species richness/alpha diversity (between-group Mann–Whitney
U (MWU) P > 0.05, within-individual likelihood ratio test FDR >
0.1 for all comparisons; Supplementary Data 2; Shannon: Fig. 1b,
Supplementary Fig. 2) after either fasting or refeeding in the

present dataset, though a trend of reduced, then restored diversity
was seen in the longitudinal tests. Similarly, there were no sig-
nificant changes between time points in the intersample gut
taxonomic variability/beta diversity (Bray–Curtis distance,
Fig. 1c. DASH without fasting neither affected the microbial
composition nor the host immune cell composition (P= 0.374
and P= 0.378, respectively, Supplementary Fig. 1B, C).

Fasting resulted in a reduction of CD3+, CD4+ T cells, and
CD19+ B cells, while the frequency of CD8+ T cells was unaltered.
In contrast, fasting increased the abundance of monocytes (CD14
+CD11c+CD19−CD3−) and TCRγ/δ+ T cells. However, these
changes were reversed upon refeeding (Fig. 1h, Supplementary
Data 1). Of note, frequency of CD123+CD14−CD16−HLA-DR+

plasmacytoid dendritic cells also increased upon fasting and was
still enriched after refeeding (Fig. 1h, Supplementary Data 1).
When looking closer into monocyte subsets, fasting increased (and
refeeding reduced) the frequency of classical CD14highCD16−,
non-classical CD14lowCD16++, and intermediate CD14high

CD16+ monocytes (Fig. 1i, Supplementary Fig. 1, Data 1), which
was confirmed by unbiased FlowSOM analyses (Supplementary
Fig. 4A–D). Fasting also affected the relative abundance of
differentially activated T cells. Upon fasting, CD8+ T cells showed
a higher percentage of terminally differentiated cells (Teff,
CD45RO−CD62L−) and a lower percentage of the naïve
phenotype (Tn, CD45RO−CD62L+), while memory T cells were
not affected (Fig. 1i, Supplementary Fig. 3, Data 1). A similar

Table 1 Patient characteristics at baseline.

FASTING+
DASH

DASH

Females/Males 23/12 21/15
Age (year) 58 ± 8 62 ± 8
Height (cm) 171 ± 8 171 ± 9
Office SBP (mm Hg) 136 ± 15 138 ± 16
Office DBP (mm Hg) 88 ± 11 88 ± 9
24 h ABPM SBP (mm Hg) 132 ± 9 131 ± 9
24 h ABPM DBP (mm Hg) 81 ± 8 81.4 ± 7
24 h ABPM MAP (mm Hg) 104 ± 8 104 ± 7
24 h ABPM peripheral resistance (mm
Hg*s/ml)

1.4 ± 0.1 1.3 ± 0.1

SBP day (mm Hg) 134 ± 10 133 ± 10
DBP day (mm Hg) 83 ± 9 84 ± 7
SBP nocturnal (mm Hg) 120 ± 12 121 ± 10
DBP nocturnal (mm Hg) 71.5 ± 8 71.6 ± 7
Weight (kg) 99 ± 17 96 ± 17
BMI (kg/m2) 34 ± 4.9 33 ± 4.7
Hip circumference (cm) 115 ± 20 113 ± 17
Waist circumference (cm) 116 ± 11 114 ± 12
Waist to hip ratio 1.1 ± 0.7 1.0 ± 0.2
Body fat percentage (%) 42 ± 8 39 ± 10
HOMA index 2.8 ± 2.1 3.4 ± 2.4
Insulin (mU/l) 10.4 ± 6.4 12.1 ± 7.4
Plasma glucose (mg/dl) 105 ± 20 110 ± 20
Hb-A1C (%) 5.8 ± 0.4 5.9 ± 0.7
Hb-A1C IFCC (mmol/mol) 39.6 ± 4.8 41.2 ± 7.4
Triglyceride (mg/dl) 166 ± 106 169 ± 109
Cholesterol (mg/dl) 220 ± 48 222 ± 54
HDL (mg/dl) 50 ± 11 51 ± 10
LDL(mg/dl) 137 ± 36 140 ± 45
LDL/HDL ratio 2.8 ± 0.7 2.8 ± 0.9
CRP (mg/l) 0.4 ± 0.4 0.3 ± 0.3
IL-6 (pg/ml) 3.1 ± 2.0 2.8 ± 2.2
Creatinine (mg/dl) 0.9 ± 0.2 0.9 ± 0.2
eGFR Cockroft-Gault (ml/min) 120 ± 39 107 ± 32

Mean values and +/− one standard deviation are shown
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pattern was observed in CD4+ Teff (Fig. 1i, Supplementary
Data 1). Further, fasting decreased the frequency of pro-
inflammatory Th17 (CD27bright CD161+CCR6+CXCR3−

CD25−CD4+), as well as TNFα- and IFNγ-producing Th1 cells
(Fig. 1i, Supplementary Data 1). These changes were partially
reverted upon refeeding (Fig. 1i). Neither fasting nor refeeding
changed the overall frequency of CD161+Vα7.2+ CD3+ mucosa-

associated invariant cells (MAIT, Fig. 1h, Supplementary Fig. 3).
However, frequency of pro-inflammatory MAITs producing
TNFα and IFNγ significantly decreased upon fasting and were
minimally affected by refeeding (Fig. 1i, Supplementary Data 1).

Next, we tested all gut microbial taxa and gene functional
(KEGG12, GMM13) modules for abundance shifts during fasting
or refeeding, as well as persistent shifts across the 3-month study
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period, controlling for age, sex and any changes in medication
(Fig. 1f–h, Supplementary Data 1). Fasting stimulated shifts in the
abundance of several core commensals, which were reversed
upon refeeding (Fig. 1f, Supplementary Data 1). Many Clostridial
Firmicutes shifted significantly in abundance, with an initial
decrease in butyrate producers such as Faecalibacterium praus-
nitzii, Eubacterium rectale and Coprococcus comes, which had also
reverted after 3 months. Interestingly, modeling the shift in C.
comes abundance as a function of body-mass index (BMI)
changes during the study yielded a better fit of the data than when
it was modeled as a function of the fasting intervention.
Bacteroidaceae showed the opposite pattern. At the end of the
refeeding period, a persistent depletion could be seen in
Enterobacteriaceae, especially Escherichia coli. These shifts were
accompanied by vast changes in microbial metabolic capacity
(Fig. 1g, Supplementary Data 1). Fasting enriched for propionate
production capacity, mucin degradation gene modules, and
diverse nutrient utilization pathways.

Reanalyzing previously published data, we compared the
microbiome signatures of metformin use and MetS to those seen
in our dataset11,14. For ease of comparability, we proceeded with
only human gut-specific functional modules (GMM) assessed
from shotgun sequencing data available for the fasting arm.
Certain fasting- or refeeding-associated functional gene modules
from our data were found to overlap with signatures of
metformin usage or MetS, though there was little concordance
on a taxonomic composition level, in line with previously
described higher functional than taxonomic concordance between
microbiomes. Of note, when comparing the metformin signal to
the MetS signal, it is clear that these two effects are functionally
distinct and often oppose one another. In contrast, the inferred
gut functional signature of metformin treatment shared some
features with that of our fasting intervention (Supplementary
Fig. 5).

Fasting reduces long-term systolic blood pressure and body
weight in MetS patients. Assessing the clinical relevance of our
intervention, we inspected clinical outcomes in the two study
arms. While DASH reduced office SBP after 3 months (Fig. 2h), it
did not significantly (MWU P= 0.27) affect 24 h ambulatory
SBP, the gold standard of clinical BP measurements (Fig. 2a)3. In
contrast, fasting followed by a modified DASH diet led to a
sustained reduction both in 24 h ambulatory SBP and mean
arterial pressure (MAP) (MWU P < 0.05, Fig. 2a). Further,

subjects undergoing fasting could significantly (χ2 P= 0.035)
reduce their intake of antihypertensive medication in 43% of
cases, compared to only 17% of the cases on DASH alone, while
their BP remained under control (Fig. 2b, Supplementary Data 3).
Because the BP response to fasting was heterogeneous in our
cohort (Fig. 2a, b), we applied a decision tree model to stratify
patients based on their ambulatory BP response, adjusted for
antihypertensive medication (Supplementary Fig. 6, Data 4).
The responder group (n= 22) had a median SBP decrease of
8.0 mmHg, irrespective of the high reduction in medications
amongst these patients, while the decrease in the non-responder
group (n= 10) was significantly lower (0.3 mmHg; Fig. 2c). In the
DASH-only arm, 17 patients were classified as responders with
a median SBP decrease of 8.0 mmHg, while the non-responders
(n= 14) showed no decrease in median SBP (0.5 mmHg, Fig. 2c).
Fasting followed by a modified DASH diet, unlike a modified
DASH diet alone, significantly (drug-adjusted post-hoc P < 0.05)
reduced BMI and body weight even 3 months post-fasting
(Fig. 2d, e). Although all fasting+DASH participants showed a
reduction in body weight, this reduction alone could not explain
the long-term ambulatory SBP and MAP changes exclusive to the
fasting arm (Fig. 2f, g), nor the microbiome or immunome
changes accompanying it. 95% of significant findings retain sig-
nificance when BMI is added as a predictor to the nested models
for longitudinal data (see Supplementary Data 5). Very few of the
significant effects observed in the fasting+DASH arm could be
replicated in the equally powered DASH-only arm (Fig. 3a–c).

BP responder-specific changes in the gut microbiome and
immunome. Because the BP responsiveness was heterogeneous in
the fasting+DASH arm (Fig. 2a–c), despite the similar disease
severity indicated by the baseline clinical characteristics of these
patients (Supplementary Data 6), we hypothesized that unique
characteristics involving the immunome or microbiome of these
patients may contribute to their BP response. We compared the
impact of fasting and refeeding in the complete fasting arm, in the
BP responders of the fasting arm, and in the DASH-only arm
(Fig. 4a, b, Supplementary Data 2, 7, 8). Even at reduced statistical
power, we were able to capture changes in the abundance of many
gut microbial taxa that were uniquely characteristic of successful
fasting treatment even 3 months post-fasting (Fig. 4a, Supple-
mentary Data 7, 8). Fasting combined with DASH resulted in the
sustained depletion of Actinobacteria family members Cor-
ynebacteriaceae and Actinomycetaceae (Fig. 4a). BP responders

Fig. 1 Fasting has a pervasive host and microbiome impact. a Study design is shown. Subjects are followed from baseline (V1), randomly assigned to
begin a modified DASH diet only or to undergo a 5-day fast followed by a modified DASH diet. Follow-up is done at one week (V2) and 3 months (V3).
b Fasting has no significant (two-sided MWU P > 0.05) impact on gut microbiome alpha diversity (Shannon diversity from mOTUv2 OTUs) across
observation times V1–V3. c Fasting has no significant (two-sided MWU P > 0.05) impact on gut microbiome beta diversity (Bray–Curtis dissimilarity from
mOTUv2 OTUs, shown are all between donor comparisons per time point) across observation times V1–V3. d Fasting significantly shifts the gut
microbiome towards a characteristic compositional state, while refeeding reverses this change. Unconstrained Principal Coordinates graph with first two
dimensions shown. Axes show Bray–Curtis dissimilarities of rarefied mOTUv2 OTUs between samples; each participant in the fasting arm is shown as two
lines, one red (fasting change), one blue (refeeding change) connected (centered) at the origin for ease of visualization. Axes show fasting and refeeding
deltas after one-week intervention and 3-month refeeding. Pseudonym participant ID numbers are shown on the point markers. Transparent circle markers
show arithmetic mean position of fasting and recovery deltas, respectively. PERMANOVA test P-values reveal significant dissimilarity (P < 0.05) between
samples from each visit V1–V3 in the original distance space, stratifying by donor. e Fasting significantly shifts the host immune cell population towards a
characteristic state, while refeeding reverses it. Same as in (d), using Euclidean distances. f Gut microbial taxa significantly enriched/depleted upon
fasting/refeeding. Taxa (mOTUv2 OTUs) are shown on the vertical axis, and effect sizes (Cliff’s delta) shown on the horizontal axis. Red arrows represent
fasting effects (V2–V1 comparison), blue arrows refeeding effects (V3–V2 comparison). Bold arrows are significant (nested model comparison of a linear
model for rarefied abundance of each taxon, comparing a model incorporating patient ID, age, sex and all dosages of relevant medications) to a model
additionally incorporating time point, requiring likelihood test Benjamini-Hochberg corrected FDR < 0.1 and additionally pairwise post-hoc two-sided MWU
test P < 0.05. g Gut microbial gene functional modules (KEGG and GMM models analyzed together) significantly enriched/depleted upon fasting/
refeeding. h General immune cell populations significantly enriched/depleted upon fasting/refeeding. i Specific immune cell subpopulations. g–i Same test
as in (f), subset of altered features shown for clarity. Effect sizes and FDR-corrected P values can be found in Supplementary Data 1,2.
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were uniquely characterized by immediate and sustained
enrichment of an unclassified Clostridium species, with con-
comitant depletion of Sphingomonas (genus-16S) and Pre-
votellaceae NK3B31 group (Fig. 4a). In addition, responders
experienced a significant and sustained enrichment of the
butyrate-producer F. prausnitzii upon refeeding (Fig. 4a). We
further classified microbiomes in the fasting+DASH arm into
enterotypes as previously described15, finding a trend towards
more samples shifting enterotype during intervention in subjects,

who achieved BP decrease (Supplementary Fig. 7). Virtually no
overlap with effects seen in the equally powered DASH arm were
found, indicating that fasting may be needed on top of a BP-
reducing diet for these changes to occur (Fig. 4a, b).

In profiling the microbial metabolic potential in BP responders,
we focused on gene modules curated for relevance to metabolism
in the human gut (GMM)13. On a functional level, responder-
characteristic changes resemble those in the fasting arm at large,
but with even more pronounced relative enrichment for
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propionate production (MF0126, MF0121) modules (Fig. 4c).
Some modules were significantly altered in abundance only in
this stratified subgroup, indicating these changes strongly
characterize BP responders compared to non-responders (Sup-
plementary Data 7). For example, pyruvate:formate lyase
(MF0085) is depleted during recovery only in responders.

Changes to the immunome of responders are similar to those
seen in the unstratified fasting group and differ from those in the
DASH arm (Fig. 4d, Supplementary Data 2, 7, 8). In the fasting
arm, several immune features related to pathogen-sensing and
mucosal immunity (e.g. MAIT cells, IL-17+-producing Th and
γδT cells) changed in abundance significantly only when tested in
the responder group, indicating relevant differences between
responders and non-responders. Upon fasting, the frequency of
both pro- and anti-inflammatory adaptive immune cells showed a
stronger decrease in responders, indicating a stronger anti-
inflammatory effect of fasting in responders.

Network analysis of microbial, immune, and clinical features.
We next aimed to explain the beneficial role of fasting on BP by
studying interacting microbiome-immune features through net-
work analysis. We assessed all triplets of pairwise interactions
between host clinical phenotypes, immune cell populations, and
microbiome taxa or functional profiles, respectively, using mod-
ified Spearman correlations (requiring FDR < 0.1 in each com-
parison of two data spaces, and P < 0.05 in a post-hoc test
accounting for the presence of the same subjects at all three time
points (see Methods, Supplementary Data 9). Figure 5a shows a
chord diagram constructed from these data, where the colored
outer rings are lined with components from one of our three
tested system spaces during fasting, refeeding, and over the full
duration of the study, and the color of the connectors between
factors indicate a positive or negative association (Spearman’s
rho). We identified a cluster of circulating cytokine-producing
MAIT cells (absolute number and fraction of CD3+ T cells),
which positively correlated with 24 h ambulatory SBP (Figs. 5a,
6c, Supplementary Fig. 8) and MAP, but not with 24 h diastolic
BP (Fig. 5a, Supplementary Data 9).

In addition, abundance of IL-2+ and granulocyte-macrophage
colony-stimulating factor (GM-CSF)-producing CD4+ cells
significantly correlated with SBP. These immune clusters showed
significant interconnection to a remarkable number of microbial
SCFA producers (Fig. 5a, b Supplementary Data 10), though
some are rather poorly characterized. Notably, abundance of the
butyrate producers E. rectale (ref mOTU v2 1416) and Dorea
longicatena (ref mOTU v2 4203), and the acetate producer
Hungatella hathewayi (ref mOTU v2 0882) negatively correlated
with the abundance of the GM-CSF and IL-2-producing CD4+

T cells, and with the absolute number of IFNγ+ and TNFα-
producing MAITs, respectively.

16S analyses of the gut microbiome identified a positive
correlation between the pro-inflammatory cytokine-producing
MAITs and the microbial taxa Acidaminococcaceae (family), and
of two Alistipes spp. (shahii and inops) (Fig. 5a, b). While further
characterization of these taxa in the context of the gut
microbiome is needed, previously published data indicated that
these taxa can produce acetate, and likely butyrate and propionate
as well (Supplementary Data 10).

Abundance of KEGG module M00209 (osmoprotectant
transport system), reported to facilitate the uptake of nutrients
mostly found in red meat16–18, was negatively associated with
IFNγ+ and TNFα+ MAIT cells (Fig. 5a, b, Supplementary
Data 9). Interestingly, fasting depleted various cytokine-
producing MAIT cells with the most pronounced long-lasting
decrease seen in IL-2+TNFα+ producing MAIT in BP responders
(Figs. 5a, b, 6a, Supplementary Data 9).

The association between MAIT cells and BMI is still a matter of
debate19. We found in our study that the abundance of
MAIT cells did not correlate with BMI, weight, waist circumfer-
ence, waist-hip ratio, or body fat percentage (Supplementary
Fig. 8, Data 9). Though we did find that BMI correlated with
the abundance of a subset of circulating Treg-like cells (CD62L+

CD45RO−CD25+CD4+), a cell type previously linked to morbid
obesity in human subjects20.

A recent publication showed non-classical monocyte enrich-
ment in hypertensive patients21. Interestingly in our study,
circulating non-classical monocytes were enriched upon fasting
and then depleted again upon refeeding to remain below baseline
levels 3 months after fasting (Figs. 1h, 5a, Supplementary Data 2).
Network analysis revealed an association between non-classical
monocytes, MAP and gut abundance of Sutterella showed an
inverse correlation with non-classical monocytes (Figs. 5a, b, 6d,
Supplementary Data 9).

Baseline indicators predicting efficacy of fasting on blood
pressure. As previously stated, a large proportion of fasting
patients responded with a substantial drop in BP, allowing them
to reduce their use of antihypertensive medication while BP
remained controlled. As not all patients experienced this bene-
ficial effect, we sought to understand whether the factors
underlying successful fasting intervention in the BP responders
could be predicted at baseline. Responder and non-responder
subgroups differ considerably in immunome and microbiome
features, not only post-fasting and at three-month follow-up, but
also at baseline, suggesting a favorable clinical response may be
predictable in single patients (Supplementary Fig. 9A–C).

Fig. 2 Fasting effects are distinct from those of a modified DASH diet only, and connected to vascular health benefits. a Fasting followed by a modified
DASH diet, but not a DASH diet alone, significantly improves 24 h ambulatory SBP and MAP 3 months post-intervention (two-sided MWU, FDR-corrected
P-values are shown). Lines show individual participant trajectories. b MetS subjects beginning a modified DASH diet post-fasting significantly reduce their
intake of antihypertensive medication by 3 months post-intervention, compared to subjects beginning a DASH diet only. Two-sided χ2 test, P= 0.035.
c Changes in 24 h ambulatory SBP in responders and non-responders including change in antihypertensive medication (two-sided MWU). d, e One week of
fasting followed by modified DASH diet, but not DASH diet alone, caused significant (two-sided MWU, FDR-corrected P values are shown) BMI and body
weight reduction in MetS patients, persisting 3 months later. f Comparison of changes in 24 h ambulatory SBP and body weight, respectively between
baseline and follow-up in both study arms. Each dot represents an individual. g Body weight change is not significantly different between responders and
non-responders in the fasting arm between baseline and follow-up (two-sided MWU). h Selected cardiometabolic risk parameters (vertical axis) altered in
the fasting arm compared to the DASH arm. Heatmap hues show Cliff’s delta signed effect sizes, with asterisk indicating post-hoc univariate significance
after compensating for drug dosage changes (see Methods). Horizontal axis shows each time point comparison: change during fasting/week three of
DASH, change during refeeding/3 months of DASH, and change during the study period as a whole. Boxplot hinges denote 25th–75th percentile. Line
within the boxplot indicates median. Whiskers on (c, g) are drawn from minimum to maximum values. Whiskers on (d, e) are drawn to minimum and
maximum values, but not further than 1.5 × IQR.
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Fig. 3 Fasting and recovery effects are not replicated in an equally powered control cohort, indicating they are intervention-specific. a A majority of
host and microbiome effects reported from the fasting+DASH arm are not replicated in DASH-only patients. Comparative effect size plot contrasting
features altered significantly only under fasting+DASH (colored markers, n= 315) with features altered significantly also under DASH alone, or with
absolute effect size greater in DASH alone (gray markers, n= 146). For the former category, color hue shows direction of effect, color intensity scope of
effect, and marker shape which time point comparison is shown. Vertical axis shows effect size in DASH only, horizontal effect size in fasting+DASH.
Selected features are named for reference. b, c Volcano plots show post-hoc FDR for all features significantly altered in either arm between any two time
points in the fasting arm (horizontal axis), compared to the same sample number DASH arm (vertical axis). Point color shows which time point comparison
is plotted. Quadrants (formed by the FDR < 0.05 thresholds) and summary counts highlight features significantly altered in each dataset for immune cell
(b) and functional or taxonomic microbiome features (c). Only the fasting arm had a significant effect on the microbiome, and while a smaller fraction of
immune features were altered in the DASH-only arm, these were largely not significant in the fasting arm.
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To further elucidate this phenomenon, we applied machine-
learning algorithms and empirically show that we can make
effective predictions from the immunome data. From 494 total
immune variables, stepwise forward regression identified the top
ten discriminators of responders from non-responders at base-
line. Evaluating the machine-learning model, we constructed for

predicting whether fasting+DASH will reduce BP by testing it on
unseen data, a prediction accuracy of 71% (sensitivity 75%,
specificity 70%, and F1 score 77%) was achieved using a leave-
subject-out cross-validation for whether or not a future patient
would respond favorably to fasting with regards to BP (Fig. 7a).
Within this multivariate analysis, the driving immune features
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of this classifier highlighted a lower CXCR3+CD25−CD4
+/CD25highCD4+ (most likely Th1/Treg ratio), alongside lower
abundances of CD24+ memory CD8+ T cells and IL-17+TNFα
+MAIT cells in responders relative to non-responders (Fig. 7b,
Supplementary Fig. 9E). Regarding the top ten features derived as
indicative for successful patient classification, responders seem to
have less of a pro-inflammatory immune signature at baseline
(Fig. 7b). Notably, we could increase the prediction performance
of the classifier up to 78% by using changes of immune cell
abundances between baseline and 3-month follow-up visit as a
basis for prediction of BP response at the single-patient level
(Supplementary Fig. 9D, F). In contrast, for subjects on a DASH
diet only, corresponding classifiers were unable to predict BP
response above chance level.

Regarding responder-specific features, we identified microbial
features as both characteristic of responders at baseline and
during the intervention (Fig. 8a). Microbiomes of BP responders
were depleted pre-intervention for Desulfovibrionaceae, pre-
viously shown to be enriched in type 2 diabetic patients in a
Chinese cohort17, and were moreover depleted of propionate
biosynthesis genes (Fig. 8a). Fasting strongly elevated the
abundance of this taxa and enriched these propionate production
modules, indicating that responders suffer a treatable deficit. By
3 months post-intervention, propionate modules are almost back
at baseline while BP (relative to medication dosage) remains
improved, suggesting that their transient elevation during
refeeding may have stabilized a less hypertensive state through
mechanisms active beyond the gut (Fig. 8a). An opposing pattern
was shown by a poorly characterized Lachnospira sp., which had a
higher abundance in responders at baseline (Fig. 8a). These
findings indicate that baseline state of the gut microbiome in
these MetS patients predicts individual degree of success of the
fasting+DASH intervention.

The question was raised whether independent data could
confirm these findings. We therefore reanalyzed the data from the
only other existing cohort investigating the effect of fasting, where
both BP data and stool sequencing22 (herein referred to as
“Mesnage data”) was available, using the same software pipeline
as for our own samples. We compared the results to ours,
collapsing species/OTU fasting/refeeding/long-term follow-up
signals in either dataset at the genus level for clarity (Fig. 8b,
Supplementary Data 11). Despite substantial differences between
the two study settings (e.g. MetS vs. healthy, mixed vs. single-sex
cohort) even at reduced statistical power (Mesnage n= 15), we
observe substantial agreement between the two datasets;
dynamics of Bifidobacterium, Roseburia, Bacteroides, Coprococcus
and Intestinimonas are comparable (Fig. 8b). Though differences
can also be observed in the patterns of Oscillibacter and Alistipes
in these two studies. The SCFA producer Faecalibacterium
showed discordant fasting responses in the healthy vs. MetS
cohort but exhibited consistent growth upon refeeding in both
datasets (Fig. 8b).

Due to the similarity of the study designs, we next assessed
whether a decrease in BP in the Mesnage cohort could be
predicted by a model trained on our 16S dataset. We classified the
Mesnage patients according to their BP decrease 3 months post-
fasting (Supplementary Data 12). A stepwise selection model
was built on our 16S baseline data, filtered for significant
responder-specific taxa. The model was then evaluated, using the
corresponding features from the Mesnage dataset as input.
The model classified correctly 10 out of 15 subjects in the
Mesnage cohort as either BP responders or non-responders. Top
five contributors to the predictor highlighted gut microbiomes
of non-responders to be enriched and responders to be depleted
of the taxa Desulfovibrionaceae, Hydrogenoanaerobacterium,
Akkermansia, Ruminococcaceae GCA-900066225 and Hydroge-
noanaerobacterium sp. (Fig. 8c).

Discussion
Here we demonstrate that fasting induces changes to the gut
microbiome and immune homeostasis with a sustained beneficial
effect on body weight and BP in hypertensive MetS patients.
There is a growing interest in understanding how dietary inter-
ventions shape the gut microbiome and interact with metabolic
diseases, including obesity, MetS, type 2 diabetes, and (cardio-
vascular) health8–10,23–27. Several lifestyle interventions aimed at
weight loss have shown that the gut microbiome changes in
obese, type 2 diabetic or MetS patients10,23,24,26,27. Although
these interventions led to beneficial clinical outcomes, their effect
on the gut microbiome was highly variable10,23,24,26,27 (more
information in Supplementary Data 13). In mice, intermittent
fasting decreased obesity-induced cognitive impairment and
insulin resistance associated with increased abundance of the
Lactobacillus and the butyrate-producer Odoribacter25. In a small
human pilot study, Ramadan fasting9 affected the microbiome of
healthy subjects enriching several SCFA producers. Each of the
aforementioned studies are described in greater detail in Sup-
plementary Data 13.

We have carried out the first high-resolution multi-omics
characterization of (periodic) fasting in patients with MetS,
including detailed clinical and immunophenotyping along with
gut microbiome sequencing. Our major finding is that periodic
fasting followed by 3 months of a modified DASH diet induces
concerted and distinct microbiome and immunome changes that
are specific to fasting itself, leading to a sustained BP benefit
(Fig. 3a), which was not seen in the patients following a DASH
diet alone.

Fasting followed by modified DASH also led to a significant
long-term reduction in body weight. However, neither the change
in BP nor global changes to the microbial composition or
immunome appeared to be mediated by this BMI decrease (95%
of findings retained significance when deconfounded for BMI
change, see Supplementary Data 5, and body weight reduction
was not more pervasive in treatment responders than non-

Fig. 4 Subjects responding favorably to fasting exhibit stronger changes in commensal abundance under intervention. a Cuneiform plot shows subset
of bacterial taxa, at different taxonomic levels, and measured either using 16S sequencing or shotgun sequencing, altered significantly (drug-adjusted post-
hoc FDR < 0.05) in abundance tested in intervention responders only (vertical axis) and showing a study effect, comparing to baseline and follow-up (V3).
Signed effect size are shown through marker direction and color, hue and size represent absolute effect size. Solid borders indicate significance. Markers
not shown could not be tested in the DASH arm as shotgun data was unavailable, or showed no difference in rank-transformed values (Cliff’s delta=0).
Horizontal axis separates tests for fasting (comparison of baseline to after one week), recovery (comparison of after one week to 3 months), and study
effect (comparison of baseline to 3-month follow-up). DASH results are from the DASH arm only, responders are tests using only the responders (as per
decision tree) in the fasting arm. b Same view as (a), showing 16S or shotgun sequencing microbial taxa significantly altered either at fasting (V1 vs. V2) or
refeeding (V2 vs. V3) in responders excluding features already in (a) to avoid redundancy. c same view as (a), with regards to gut functional modules
(selected subset shown for clarity). d Same view as (a) but with regards to immune cell subpopulations (selected subset shown for clarity). Treg: FoxP3+

cells, MAIT: Vα7.2+CD161+CD4−CD3+.
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Fig. 5 Blood pressure-microbe-immune association. a Chord diagram visualizes the interrelation between BP (24 h ambulatory systolic, mean or diastolic
BP) and fasting-impacted microbiome functional or taxonomic features, and immune cell subsets. Features are shown that form triplets of immune,
microbial and phenotype variables where at least two of three correlations are significant (Spearman FDR < 0.05, post-hoc nested model test accounting
for same-donor samples < 0.05) in the fasting arm of our cohort, and where in addition one or more features is significantly (drug-adjusted post-hoc FDR <
0.05) affected by the intervention. Color of the connectors indicates positive or negative association (Spearman’s rho), color of the cells within the tracks
indicates changes upon fasting, refeeding and study effect (Cliff’s delta, white if not significant), respectively. b Hierarchical clustering of microbiome
features-associated immune features. Color indicates Spearman’s rho.
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responders, Fig. 2g). Furthermore, BP and BMI were both asso-
ciated with various immune cell subsets and microbial taxa on a
multivariate level, and the effects of fasting on these two features
are divergent (shown as chord plots on Fig. 5, Supplementary
Fig. 8, respectively). Nevertheless, the data indicate that a 5-day
fast exerted an effect on microbiome composition and immune
cell subsets. Even though many of these shifts post-fasting are

transient, a sustained improvement of BP was seen in our
patients. Comparison of V1 to V2 suggests that microbiome and
immune cells may reset to some extent during and after the
intense caloric restriction, similar to a preconditioning mechan-
ism. The subsequent DASH diet consistent across all patients thus
seem to act differently depending on whether this precondition-
ing took place or not. This interpretation is supported by the fact
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that the DASH diet alone neither reduced SBP nor BMI,
while affecting different (and substantially fewer) immune cell
subsets. In line with the preconditioning hypothesis, we consider
that (1) those subjects who benefit most with regards to BP from
a fasting+DASH intervention are those depleted at baseline for
both SCFA producing taxa (including core butyrate producers)
and SCFA production gene modules; (2) that such taxa and gene
modules enrich either during the fasting phase or the refeeding
phase thus ameliorating the aforementioned baseline depletion;
and (3) that at least some enrichment remains at 3-month follow-
up in BP responders (less so in non-responders). Our inter-
pretation is that one crucial mechanism for the improvement
stems from the effects of increased SCFA availability, either
locally in the intestine (impacting immune signaling and intest-
inal permeability), systemically, or both. While we cannot directly
test it in the present cohort, it is a scenario consistent both with
expectations from the literature and with our observations of a
consistent depletion-then-regrowth pattern. Thus, future work
will include studying a larger fasting/refeeding cohort at various
intermediate time intervals.

Fasting induced a profound change in circulating immune
populations; e.g. depleted Th1 cells and permanently enriched
dendritic cells, which both have been shown previously to play a
role in the pathogenesis of experimental hypertension28,29. Fur-
ther, we discovered significant correlations between circulating
MAIT cells and 24 h ambulatory BP and MAP.

A growing body of evidence suggests that the abundance of
certain microbes is associated with cardiovascular health. Pre-
vious reports on hypertensive patients have shown taxonomic
and functional gut microbiome shifts6,7. For example, Firmicutes
have been shown to be more abundant in healthy controls
compared to pre-hypertensive and hypertensive patients7. Upon
fasting, several Clostridial Firmicutes shifted significantly in
abundance, with an initial decrease in butyrate producers such as
F. prausnitzii, E. rectale and C. comes, which were reverted after
3 months upon refeeding; with the latter taxon likely being an
indirect effect of the observed weight reduction (Supplementary
Data 5). Further, functional microbial metabolism in fasting
patients at baseline share some similarities to the previously
profiled hypertensive microbiome7. In the fasting arm, the
functional shift during refeeding enriches for functional modules
also enriched in non-hypertensive controls, i.e. for potentially BP-
protective factors.

Clinical studies represent a highly heterogeneous situation with
multifactorial disease features and strongly variable microbial and
lived environments. To account for this heterogeneity, we com-
pared the data from our longitudinal study (post-fasting and 3-
month) to the respective baseline values of the study subjects.
This intraindividual analysis allowed us to identify BP responder-
specific changes in spite of the reduced power in such a sub-
stratified analysis. The responder-specific microbiome changes in
our fasting arm post-intervention (enrichment of F. prausnitzii,
Bacteroides and Firmicutes, depletion of Actinomyces) are likely

beneficial to the host. A recent study profiling the hypertensive
microbiome showed that during disease, patients experienced an
enrichment of Actinomyces, and a depletion of F. prausnitzii,
Bacteroides and Firmicutes7. Moreover, Guevara-Cruz et al.
recently showed in a Mexican cohort involving 146 MetS patients,
that a 75 day long, 500 kcal/day, low-saturated fat dietary inter-
vention improved the clinical phenotype, significantly decreased
gut dysbiosis and increased the abundance of Akkermansia
muciniphila and SCFA producer F. parusnitzii27 (Supplementary
Data 13). Furthermore, abundance of some functional gut-
specific gene modules was significantly altered in our dataset only
in BP responders, for example, the pyruvate:formate lyase mod-
ule, MF0085, which was decreased after refeeding. This decrease
(from a trending elevation at baseline) may contribute to vascular
health, as a recent study demonstrated enrichment of the same
enzyme in atherosclerosis patients relative to healthy controls30,
and formate production has been previously linked to BP
regulation31,32.

Stratification of the cohort to BP responsiveness showed that
also immune changes present in the fasting arm are more pro-
nounced in responders than in non-responders, and are funda-
mentally different from the changes observed in the DASH-only
arm. The DASH-only arm was associated with the decrease of
CD8+ Tem cells, previously reported to play a role in
hypertension29,33. Responders and non-responders not only
reacted differentially to fasting, but also differed at baseline with
regards to their propionate synthesis capacity pre-intervention
and the relative depletion by depletion of Desulfovibrionaceae,
which has been linked to a lean phenotype34,35. These features
were then normalized during fasting. Notably, recent experi-
mental work suggested an antihypertensive effect of propionate
treatment in mice36. Furthermore, responders were enriched in
Lachnospira sp. at baseline, which was shown to contribute to
diabetes in obese mice and is enriched in obese children37,38. Our
findings indicate responders and non-responders to our inter-
vention differ with regards to several gut microbiome features
relevant to hypertension, with fasting-induced normalization of
these differences seen during a successful fasting intervention.

Through network analysis of the immunome, microbiome, and
clinical data, we identified significant correlations between cir-
culating MAIT cells and 24 h ambulatory SBP and MAP.
MAIT cells represent up to 10% of peripheral blood T cells, but in
contrast to other classical T cells29, have not yet been linked to the
regulation of BP. They differ in many aspects from conventional
T cells by expressing a semi-invariant TCR α-chain Vα7.2-Jα33.
MAITs can produce various cytokines mimicking an effector/
memory-like phenotype and yet they behave rather like innate
cells. During aging18 and CMD19,39, absolute circulating MAIT
number and frequencies decrease, while certain subsets of
cytokine-producing and adipose tissue MAITs were found to be
enriched in obese type 2 diabetic patients19. In addition,
this network analysis revealed that abundance of SCFA
producing microbes correlates significantly with circulating

Fig. 6 The association between blood pressure and specific circulating immune cell populations. a Cumulative absolute number and relative abundance
of circulating IFNγ+TNFα+, IL-2−TNFα+ and IL-2+TNFα+ mucosa-associated invariant T cells (MAIT) cells within the fasting arm subdivided by BP
responsiveness (median, n= 30 for all, n= 20 for responders, n= 8 for non-responders, respectively). Absolute number of circulating IL-2+TNFα+ (All:
P= 0.019, Responder: P= 0.024), TNFα+ (All: P= 0.006; Responder: P= 0.022) and IFNγ+ (All: P= 0.001; Responder: P = 0.007); (a) two-sided MWU
test after Benjamini–Hochberg correction. b MAIT cells within the fasting arm subdivided by BP responsiveness (n-number as in (a); two-sided MWU test
after Benjamini–Hochberg correction). c Correlations of circulating IL-2+TNFα+, TNFα+, and IFNγ+ MAIT cells and 24 h ambulatory SBP (*FDR-corrected
P= 0.044, 0.022, and 0.022, respectively). d Correlations of circulating non-classical CD14lowCD16++HLA-DR+ monocytes and 24 h ambulatory MAP in
responder (FDR-corrected P= 0.002). e Correlations of circulating GM-CSF+IL-2−IL-17− of % CD3+ and 24 h ambulatory SBP (FDR-corrected P=
0.047). n-number for (c–g) as in (b). MAIT: Vα7.2+CD161+CD4−CD3+. Boxplot hinges denote 25th–75th percentile. Line within the boxplot indicates
median. Whiskers are drawn to minimum and maximum values, but not further than 1.5 × IQR. c–e Gray shading represents 95% CI.
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pro-inflammatory cytokine-producing MAIT cells and GM-CSF+

IL-2+ T helper cells. Of note, most of these microbes are relatively
poorly characterized taxa and further description is needed to
elucidate their role in the gut and as contributors of dys- or
eubiosis.

Using machine learning, we were able to utilize deep immu-
nophenotyping data to predict at baseline, which subjects were
likely to decrease their BP during fasting despite the small
number of subjects. In addition, the accuracy of the prediction
was enhanced further taking the dynamics of immune popula-
tions along the course of the study into account. No

corresponding prediction of a favorable response to a DASH-only
intervention was possible. The features informing the predictor
indicate BP responders and non-responders present with differ-
ing severities of a pro-inflammatory immune signature at base-
line, raising the question whether responders and non-responders
suffer from varying degrees of MetS severity at baseline.
Remarkably, no significant difference in baseline BP, BMI, lipid
levels, or glucose homeostasis parameters between BP responders
and non-responders was observed before the intervention (Sup-
plementary Data 6). However, BP responders exhibited higher
median SBP than non-responders (135 mmHg and 128 mmHg,

Fig. 7 Long-lasting BP responders and non-responders differ in immunome composition. a Prediction model weights for BP response using the
immunome dataset at baseline. The top ten immunome features were used to build a multivariate logistic-regression algorithm. Single-subject prediction
was quantified using a leave-one-out cross-validation procedure. The bar plots represent the regression in a model with binary output (responder yes= 1
vs. no= 0) for every feature. b Quantification of the immunome features at baseline used in the prediction model to predict BP response in the future, split
into responders and non-responders. MAIT: Vα7.2+CD161+CD4−CD3+. Boxplot hinges denote 25th–75th percentile. Line within the boxplot indicates
median. Whiskers are drawn to minimum and maximum values, but not further than 1.5 × IQR.
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respectively). Baseline antihypertensive medication did not differ
significantly between the groups (responders’ normalized mean
dose: 1.4, non-responders’ normalized mean dose: 2.1). Addi-
tionally, responders had lower median BMI than non-responders;
32.0 and 36.5, respectively. In addition, body fat percentage was

slightly higher in the fasting+DASH group compared to the
DASH group (median 42%, 39%, respectively). Furthermore, BP
responders had a baseline median LDL of 149 mg/dl compared to
122 mg/dl for non-responders, while HDL did not differ (in
both groups 48 mg/dl). These data indicate that although BP
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responders and non-responders do demonstrate slightly different
trends in some clinical parameters, BP responders do not show
any less severe disease phenotype.

Through the reanalysis of the Mesnage dataset, the only fasting
cohort in the literature with a similar study design and which
includes both BP and microbiome data, we were able to
demonstrate concordant treatment-related microbiome shifts in
both studies. This finding suggests the effects of fasting and
refeeding on gut microbiota generalizable. A machine-learning
model built from microbiome features differentially abundant at
baseline in BP responders in our cohort was able to predict sig-
nificant long-term BP decrease in the Mesnage et al. subjects with
about 70% accuracy, further supporting the idea that these
findings are likely generalizable.

Previous works have also shown that some outcomes of dietary
interventions in cardiovascular patients might be related to
baseline microbiome features. Notably, a recent study demon-
strated that higher baseline Akkermansia abundance was asso-
ciated with persistent weight loss in a study investigating MetS/
obese patients undergoing a 52-week long weight reduction
program10 (Supplementary Data 13). In addition, Velikonja et al.
showed in a study investigating the effect of beta-glucan sup-
plementation in MetS patients that a higher baseline abundance
of Akkermansia muciniphila and Bifidobacter spp. was char-
acteristic of patients whose cholesterol decreased due to the
intervention23 (Supplementary Data 13).

Thus, we demonstrate the practical utility of a machine-
learning analysis pipeline for predicting BP benefit of fasting in
MetS patients with hypertension using both baseline immunome
and microbiome data.

It is important to recognize that our study represents patients
with hypertension and MetS solely from a Caucasian-European
background. This selection criterion introduces a selection bias in
our study design. Additional research is necessary to elucidate
whether the results presented here could be applicable in a more
heterogeneous patient population. Further, our recruitment pro-
cedure could already have introduced a selection bias toward
patients who were interested in fasting/dietary studies and
therefore are sensitive about their cardiometabolic health. Since
the participants were especially interested in the fasting proce-
dure, the allocated DASH participants were offered a cost-free
fasting cycle after successful completion of the study. However,
we cannot exclude that this led to an increased long-term moti-
vation compared to the participants who started with the fasting
protocol. Furthermore, the study design did not allow us to
investigate the long-term effects of a fasting intervention without
a subsequent DASH diet on the BP, microbiome, or immunome.
In our cohort, fasting was required on top of DASH to achieve the
observed outcomes, but we cannot conclude (and do not expect)
fasting without a subsequent dietary change to do so either. We
can only claim fasting was required prior to the DASH diet to
achieve the effects observed in our cohort. DASH, which is rich in
fibers, might furthermore “fuel” the beneficial microbiome, thus

further contributing to cardiovascular health, and may play a part
in maintaining this microbiotal state longer. However, some
effects are replicated in the similar dataset from healthy males
(without MetS and without DASH intervention) in the Mesnage
dataset22, thus indicating the precise DASH setup may not be
strictly needed. Most likely, the two components of the inter-
vention synergize—fasting may potentiate the microbiome in
these patients to be shifted to a more DASH-compatible micro-
biota upon diet change. While we identify changes in microbial
taxonomic and functional features, bacterial metabolites and
immune processes, which could explain the efficacy of the
intervention, robust conclusions of causality will require follow-
up experimental work, particularly in animal models (e.g. gno-
tobiotic mice colonized with bacteria strongly associated with
BP). In addition, the relatively low patient number could be
regarded as a limitation. Although our present study is large
enough to allow inference of significance for the strongest con-
tributors to the observed effect, our results are likely not com-
plete, and follow-up in additional and larger studies will be
needed for a comprehensive view of subtle fasting-associated host
and microbiome features. Our study design did not allow for the
blinding of participants regarding their intervention. To maxi-
mally reduce the bias, the scientific staff were blinded during the
course of processing, measurement, and analysis of collected
samples. Further, the present study cannot infer how frequently
fasting cycles should be repeated to control BP in at-risk patients,
nor whether it is as effective without a concomitant DASH
intervention. Despite the low number of participants of the study,
machine-learning algorithms were able to predict BP respon-
siveness based on the immunome and 16S data. Only the latter
could be confirmed in an independent dataset, as no equivalent
immunome profiling in a fasting dataset has been published to
date. Confirmation of the predictive capability of the immunome
data and testing further hypothesis raised above (e.g. the inter-
action between SCFA availability and BP responsiveness) require
future prospective clinical studies. The favorable impact of fasting
followed by a DASH diet during refeeding phase shown here
highlights this intervention as a promising non-pharmacological
intervention for the treatment of high BP in MetS patients.

Methods
Study planning and ethical approval. The study was planned as part of a
randomized-controlled bi-centric trial conducted by the outpatient center of the
department of Internal and Integrative Medicine at Charité-Universitätsmedizin.
The study was approved by the ethics committees of the Charité-
Universitätsmedizin Berlin (approval number: EA4/141/13) and registered at
ClinicalTrials.gov (registration number: NCT02099968).

Participants. Participants were recruited from the existing patients at study centers
and through local newspaper announcements. Patients were first screened over the
phone by a research assistant to assess eligibility. Eligible patients were invited for
an assessment by a physician, where they were examined and provided detailed
written information describing the study. If patients met all inclusion criteria and
did not meet any exclusion criteria, informed consent was obtained and they were
included in the study.

Fig. 8 Baseline microbiome predicts long-lasting BP responsiveness. a Circles denote features differing at baseline in responders vs. non-responders and
altered during intervention in responders. Effect size (Cliff’s delta) is shown comparing responders and non-responders. b Comparison of results from the
present study (MetS; all samples and BP responders only shown as orange and red tags, respectively, separately) with those of a recent similar fasting
intervention in healthy men (Mesnage; blue tags). Effect sizes at the species or OTU level were averaged at the genus level for clarity, and are shown in the
plot (direction rendered as marker shape and hue; scope rendered as marker size and intensity) for all genera where at least one constituent taxon
achieved significance either in the Mesnage or MetS study (these are shown in boldface). Columns denote phases of each intervention - fasting phase,
refeeding, and follow-up vs. baseline. Substantial agreement between the two studies is seen, which is typically stronger for the subset of BP responders.
c Prediction model weights for BP response using the MetS 16S dataset at baseline. The top five immunome features were used to build a multivariate
logistic-regression algorithm. Single-subject prediction on the Mesnage dataset22 was quantified using a leave-one-out cross-validation procedure. The bar
plots represent the regression in a model with binary output (responder yes= 1 vs. no= 0) for every feature.
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Male and female patients with MetS according to National Cholesterol
Education Program Adult Treatment Panel III (NCEP ATP III) criteria were
included. MetS was defined as the presence of at least three out of five risk factors:
(i) increased waist circumference (>94 cm in men and >80 cm in women), (ii)
hypertriglyceridemia (>150 mg/dl (1.7 mmol/l) or lipid-lowering medication), (iii)
low levels of high-density lipoprotein cholesterol (HDL-C; < 40 mg/dl (1 mmol/l) in
men and <50 mg/dl (1.3 mmol/l) in women or use of HDL-increasing medication
(niacin or fibrate), (iv) elevated blood pressure (≥130/85 mm Hg or use of
antihypertensive medication), and (v) elevated fasting plasma glucose (≥110 mg/dl
or treatment for diabetes mellitus). Beyond NCEP ATP III criteria, patients were
required to have been diagnosed with systolic hypertension (either being on
antihypertensive medication or untreated). Further inclusion criteria included basic
mobility and the ability to provide informed consent.

Exclusion criteria included (i) diabetes mellitus type 1 or insulin bolus therapy
(c-peptide < 1.2 ng/ml), (ii) manifest treated coronary artery disease, myocardial
infarction, pulmonary embolism, or stroke within the past 3 months, (iii) heart
failure ≥ stage I NYHA, (iv) peripheral artery disease ≥ stage 2, (v) chronic kidney
disease > stage 2 (GFR < 60 ml/min), (vi) manifest eating disorder, vii) dementia or
manifest psychosis, or viii) other severe internal diseases.

Periodic fasting and plant-based Mediterranean diet intervention
Dietary interventions. The interventions in both groups were delivered as an
intensive group-based behavioral intervention. The educational concept incorpo-
rated aspects of the mind–body program designed by the Benson–Henry Mind/
Body Medical Institute of Harvard Medical School40. The dietary education
included counseling, comprehensive lectures and cooking classes.

Periodic fasting and modified DASH diet intervention. Intervention within the
fasting arm (Fig. 1a) started with two calorie-restricted vegan days (max 1200 kcal/
day), followed by 5-days with a daily nutritional energy intake of 300–350 kcal/day,
derived from vegetable juices and vegetable broth. After completion of fasting, weekly
6 h multimodal sessions were provided for a total of 10 weeks; both groups received
intensified nutritional counseling/nutritional classes and additional general lifestyle
recommendations for exercise and stress reduction41. The program entailed 10 h of
group sessions for the initial periodic fasting and 50 h of nutritional education, which
included lectures and cooking lessons. Similar to protocols from previous trials on
periodic fasting in rheumatoid arthritis and diabetes mellitus type 242,43 patients were
instructed to follow a modified DASH diet after the fasting period, with additional
emphasis on plant-based and Mediterranean diet to optimize refeeding44–46.

Modified DASH diet intervention. The DASH group (Fig. 1a) was trained in the
Dietary Approaches to Stop Hypertension (DASH) diet, a sodium-, fat- and sugar-
reduced mainly plant-based diet, which has been shown to reduce high blood
pressure47,48. The intervention was similarly delivered as an the fasting group-
based behavioral intervention with aspects of the mind–body program of the
Benson–Henry Mind/Body Medical Institute, Harvard Medical School40. Overall,
the program consisted of 50 h of group sessions over a period of 10 weeks and also
included comprehensive lectures and cooking lessons.

Randomization. Patients were randomly allocated to Fasting or DASH by block-
randomization with randomly varying block lengths, stratified by a) study center,
and b) the intake/non-intake of antihypertensive medication. The randomization
list was created by a biometrician not involved in patient recruitment or assessment
using the Random Allocation Software49. The list was password-secured and only
the biometrician was able to access it. On this basis, sealed, sequentially numbered
opaque envelopes containing the treatment assignments were prepared.

Outcome measures. Outcomes were assessed at baseline and at 1 and 12 weeks after
randomization by a blinded outcome assessor who was not involved in patient
recruitment, allocation, or treatment. Two primary outcome measures were
defined: 24 h ambulatory systolic blood pressure at week 12 and the Homeostasis
Model Assessment (HOMA)-index at week 12.

Physician-assessed outcomes. Twenty-four-hour ambulatory blood pressure mon-
itoring (ABPM) and pulse pressure recording were performed using a digital blood
pressure monitor (Mobil-O-Graph® PWA, I.E.M., Stolberg, Germany)50. Baseline
ABPM measurements were performed within one week before the starting of the
intervention, those at week 12 within a week after the end of the intervention.
ABPM was initiated at the same time of day for each successive visit. The mon-
itoring software automatically removed incorrect measurements using built-in
algorithms. Blood pressure and heart rate values were further categorized as day or
night values using each patient’s reported awake and sleep times. Office blood
pressure was measured in the hospital by a sphygmomanometer, using the average
of three consecutive measurements after 5 min rest while sitting in a quiet room.
Office blood pressure was measured at each time point, ambulatory blood pressure
only at baseline and week 12.

Body weight, body fat percentage, and lean mass percentage were measured
using the Omron BF 511 bioelectrical impedance device51. BMI was calculated as
the weight in kilograms divided by the square of height in meters. Waist

circumference was measured by two research assistants using a measuring tape in
the horizontal plane exactly midway between the iliac crest and the costal arch.
Measures were repeated twice and the mean of both measures was used. If the two
measures differed by more than 1 cm, both measures were repeated. Hip
circumference was measured in the horizontal plain at the maximal circumference
of the hips or buttock region above the gluteal fold, whichever is larger, using the
same approach as for waist circumference. Waist-hip-ratio was measured as the
quotient of waist circumference and hip circumference52.

Laboratory measures. Blood samples were collected from the antecubital vein into
vacutainer tubes and analyzed using the Modular P analyzer (Roche, Mannheim,
Germany). Metabolic parameters included plasma and blood glucose levels, blood
insulin levels, HbA1C, and HbA1C IFCC and were analyzed using standard pro-
cedures. HOMA index was calculated as blood insulin level (µU/ml) × blood
glucose level (mmol/l)/22.553. Further laboratory parameters included blood lipid
levels (total cholesterol, HDL cholesterol, LDL cholesterol, LDL/HDL ratio, tri-
glyceride), uric acid, blood creatinine level, estimated glomerular filtration rate
(eGFR), C-reactive protein (CRP), insulin-like growth factor 1 (IGF-1), and
interleukin-6 (IL-6), triglyceride, fasting glucose level54. Samples were destroyed
after the analysis and were not further stored.

Safety. All adverse events occurring during the study period were recorded. Patients
experiencing adverse events were asked to see the study physician to assess their
status and initiate any necessary response. The most common symptoms during
the fasting period were mild weakness, headaches, and mild perception of hunger.
No serious adverse effects were reported. During the normocaloric diet periods no
adverse effects were reported.

Multiple imputation. All analyses were conducted on an intention-to-treat basis,
including all participants being randomized, regardless of whether or not they gave
a full set of data or adhered to the study protocol. Missing data were multiply
imputed by Markov chain Monte Carlo methods55,56.

Peripheral blood mononuclear cell analysis. Whole blood staining was performed
using antibodies against major leukocyte lineages. Quantitative measurement was
performed using a high throughput sampler (BD) and a BD FACS CantoII (BD).
Peripheral venous blood was obtained and mononuclear cells were isolated within
24 h of collection by density gradient centrifugation using Biocoll and cryopre-
served until further processing. Thawed cell aliquots were either labeled for
extracellular antigens using fluorophore-conjugated monoclonal antibodies or CD4
+ cells were selected (Miltenyi CD4+ Selection Kit). Cells (106) from CD4+ and
CD4− fractions were placed onto U-bottom plates and re-stimulated for 4 h at 37°
C and 5% CO2 in a humidified incubator in a final volume of 200 µl RPMI 1640
(Sigma) supplemented with 10% FBS (Merck), 100U/ml penicillin (Sigma), 100
mg/ml streptomycin (Sigma), 50 ng/ml phorbol 12-myristate 13-acetate (PMA,
Sigma), 250 ng/ml ionomycin (Sigma) and 1.3 µl/ml Golgistop (BD). After re-
stimulation, cells were labeled with Life/Dead Fixable Aqua Dead Cell Stain Kit, for
405 nm excitation (Invitrogen), followed by labeling with surface antigen-specific
fluorophore-conjugated monoclonal antibodies. Cells were then fixated and per-
meabilized by FoxP3/Transcription Factor Staining Kit (eBioscience), and subse-
quently labeled with intracellular-antigen-specific fluorophore-conjugated
monoclonal antibodies. Antibodies are listed in Table 2. Samples were analyzed
using the FACSCanto II multicolor flow cytometer (BD). The acquisition was
performed with Diva 6.1.3 (BD). Data analysis was performed using FlowJo 10.3
(FlowJo LLC) and FCSExpress V6.02 (De Novo Software) software. Absolute cell
numbers were calculated using the relative percentage of cell population compared
to a marker used in the whole blood staining.

FlowSOM. Data were manually gated on single live cells and exported as FCS files
in FCS Express V6.02 (De Novo Software). The automated analysis of FCS files was
done by the FlowSOM57 algorithm, an R58 bio-conductor package that uses self-
organizing maps for dimensional reduction and visualization of flow cytometry
data. All data were scaled and log-transformed on import. Cells were assigned to a
Self-Organizing Map (SOM) with a 10 × 10 grid, grouping similar cells into 100
nodes. Each node in the FlowSOM tree gets a score indicating its correspondence
with this requested cell profile. To visualize similar nodes in branches, a minimal
spanning tree (MST) was constructed and cell counts were log scaled. To visualize
the differences between the two-time points, the mean percentage per sample
group was computed in each cluster and then the statistical difference was per-
formed by applying MWU test on every node within metaclusters. P values were
two-sided and analysis was performed using RStudio (version 3.4.4). The Flow-
SOM algorithm was run 3 times to ensure reproducibility of the results and P <
0.05 was considered to be statistically significant.

Medication data collection and cleanup. Antihypertensive drugs were normalized in
order to track changes during intervention. In a first step, antihypertensives
(according to the WHO ATC classification system), diuretics, beta-blocking agents,
calcium channel blockers, and agents acting on the renin-angiotensin system as well
as the given dosage were identified at V1 and at follow-up visit after 3 months (V3).
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Secondly, drug dosage was normalized to the lowest drug dosage per patient
and drug. The lowest drug dosage at baseline was set to one, while corresponding
drug dosages at other time points where either zero if the medication was
discontinued, one if there was no change in drug dosage between time points,
smaller than one if the drug dosage was decreased or greater than one if the drug
dosage was increased at a certain time point. The sum of the agents taken was
calculated at each time point.

DNA isolation. For DNA-based 16S rRNA gene and metagenomics sequencing, fecal
samples were collected into RNALater containing tubes, shipped at room temperature
and stored at −80 °C until processing. The DNA isolation protocol has been pre-
viously described59. Briefly, samples were treated with 500 µl of extraction buffer (200
mM Tris, 20 mM EDTA, 200mMNaCl, pH 8.0), 200 µl of 20% SDS, 500 µl of phenol:
chloroform:isoamyl alcohol (24:24:1) and 100 µl of zirconia/silica beads (0.1mm
diameter). Samples were homogenized twice with a bead beater (BioSpec) for 2 min.
After precipitation of DNA, crude DNA extracts were resuspended in TE Buffer with
100 µg/ml RNase I and column purified to remove PCR inhibitors.

16S rRNA gene amplification and sequencing. Amplification of the V4 region (F515/
R806) of the 16S rRNA gene was performed according to previously described

protocols60,61. Briefly, for DNA-based amplicon sequencing 25 ng of DNA was
used per PCR reaction in a final volume 30 µl. The PCR conditions consisted
of initial denaturation for 30 s at 98 °C, followed by 25 cycles (10 s at 98 °C, 20 s at
55 °C, and 20 s at 72 °C). Each sample was amplified in triplicates and subsequently
pooled. After normalization, PCR amplicons were sequenced on MiSeq PE300
platform (Illumina) at the Helmholtz Centre for Infection Research, Braunschweig,
Germany.

Metagenomic DNA library construction and sequencing. Sixty microliters of total
DNA was used for shearing by sonication (Covaris). Fragmentation was performed
as follows; processing time: 150 s, fragment size: 200 bp, intensity: 5, duty cycle: 10.
Library preparation for Illumina sequencing was performed using the NEBNext
Ultra DNA library prep Kit (New England Biolabs). The library preparation was
performed according to the manufacturer’s instructions. An input of 500 ng of
sheared DNA was used and the size selection was performed using AMPure XP
beads with the following parameters. First bead selection: 55 µl, and second: 25 µl.
Adaptor enrichment was performed using seven cycles of PCR using NEBNext
Multiplex oligonucleotides for Illumina (Set1 and Set2, New England Biolabs).
Sequencing was performed on NovaSeq PE1000 platform (Illumina) at the
Helmholtz Centre for Infection Research, Braunschweig, Germany.

16S sequence processing. Reads retrieved from 16S amplicon sequencing were
analyzed using the LotuS (1.62) pipeline62. The pipeline includes sequence quality
filtering63, read merging64, adapter and primer removal, chimera removal65,
clustering66, and taxonomic classification67 based on the SILVA (v138)68 database.
The validation dataset22 was reprocessed using the exact same settings.

Shotgun metagenomic processing. Metagenomic shotgun sequences were processed
within the NGLess framework (0.10)69. Reads were quality filtered by a minimum
read length of 45 bp and a minimum Phred quality score of 25. Sequences passing
that filter were mapped to the human genome (adapted from hg19; minimum 45
bp match, 90% minimum identity) and filtered. Sequences identified as non-human
were mapped with bwa70 to a) the IGC gene catalog (0.5)70 with a minimum match
size of 45 bp and a minimum identity of 95%, b) 40 reference marker genes
described in Ciccarelli et al.71 and Sorek et al.72 with a minimum match size of 45
bp and a minimum identity of 97%. Reads mapping to the marker genes were
extracted and further mapped to marker gene-based OTUs73. Mapping statistics
can be found in Supplementary Data 14.

Microbiome statistical analysis
Data pre-processing. Reads mapped to the IGC microbial gene catalog (0.5)71 were
rarefied using the RTK (0.93.1)74 with default settings (95% of smallest total reads
—here 15,247,497 reads/sample). Reads were mapped to the mOTUv2 (2.1)
taxonomic marker genes73 were likewise rarefied (5838 reads/sample). Reads
mapped to 16S OTUs (27813 reads), to ensure sample compatibility regardless of
sampling depth. For functional microbiome analysis, IGC genes were binned to
KEGG KOs75 based on the annotations in MOCAT2 (2.0.1)75, then binned by
averaging over KOs to KEGG modules and to Gut Microbial Modules (GMMs)76.
16S and mOTUv2 (2.1) OTUs were binned at more rootwards taxonomic levels
using the taxonomies provided with LotuS (1.62)62 and the mOTUv2 (2.1) tool73

respectively.

Alpha and beta diversity analysis. We assessed several metrics for gut alpha
diversity using the 16S species data (thus, available in equal form for both arms),
namely species richness, Shannon diversity, community evenness, Simpson’s and
the Inverse Simpson’s metric, and the Chao1 index, calculated using the RTK
(0.93.1)tool74. Unpaired MWU tests failed to reach significance (P > 0.05) for all
comparisons of subsets of samples: each time point versus each other time point, in
each arm separately and pooled, and between the arms within each time separately
and pooled. Subsequently, we assessed within-individual changes in alpha diversity
for both the DASH and the fasting+DASH arm, analogously to analysis of
microbial taxa, functional modules, clinical phenotypes, and immune cell popu-
lation counts, controlling for medication changes in the same manner. Supple-
mentary Data 1 shows these results. In short, there is a nonsignificant trend for
fasting to reduce diversity, which refeeding then restores, in the fasting+DASH
arm, whereas no such trend is visible in the DASH-only arm. Beta diversity
was assessed as community distances between samples computed using the vegan
(2.5-5) R package. For microbiome data, Bray-Curtis distances on rarefied samples
were used, and for immunome data, Euclidean distances. Comparisons of distance
profiles was performed using Mann–Whitney U tests.

Multivariate analysis. Mutlivariate analysis was carried out using Principal Coor-
dinates Analysis (PcoA) as per the vegan (2.5-5) R package, with the same distance
metrics as noted above. Where described, delta metrics for the first two dimensions
of unconstrained ordination were computed. PERMANOVA tests for multivariate
effect were done using the adonis function in the vegan (2.5-5)77 R package,
stratified for patient ID.

Table 2 Antibodies used for the flow cytometry analysis.

Antibody SOURCE RRID Dilution

a-CD11c APC Miltenyi AB_871587 2:25
a-CD123 PE Miltenyi AB 244211 1:10
a-CD127 PE-Vio770 Miltenyi AB_2659856 1:10
a-CD14 APC Miltenyi AB_244301 1:25
a-CD14 PE-Vio770 Miltenyi AB_2660180 1:25
a-CD16 FITC Miltenyi AB_2655402 1:10
a-CD16 PE Miltenyi AB_2655404 1:10
a-CD161 FITC Miltenyi AB_871631 1:10
a-CD19 PE Miltenyi AB_244223 2:25
a-CD196 (CCR6) APC Miltenyi AB_2655933 1:10
a-CD24 PerCP-Vio700 Miltenyi AB_2660665 1:10
a-CD25 APC Miltenyi AB_871644 1:10
a-CD25 PE Miltenyi AB_244320 1:10
a-CD27 PerCP-Vio700 Miltenyi AB_2660841 1:10
a-CD27 PE-Vio770 Miltenyi AB_2660837 1:10
a-CD3 PerCP-Vio700 Miltenyi AB_2659948 1:10
a-CD31 FITC Miltenyi AB_871662 1:10
a-CD39 APC-Vio770 Miltenyi AB_2660873 1:10
a-CD4 FITC Miltenyi AB_871682 1:10
a-CD4 VB Miltenyi AB_10829954 1:10
a-CD45 FITC Miltenyi AB_244234 1:10
a-CD45RA PerCP-Vio700 Miltenyi AB_2660987 1:10
a-CD45RO FITC Miltenyi AB_10827692 1:10
a-CD56 APC Miltenyi AB_244331 1:10
a-CD62L APC Miltenyi AB_244246 1:10
a-CD69 APC Miltenyi AB_615096 1:10
a-CD8 FITC Miltenyi AB_244336 1:10
a-CD8 PE-Vio770 Miltenyi AB_10829189 1:10
a-CXCR3 PE-Vio770 Miltenyi AB_2655740u 1:10
a-FoxP3 PE Biolegend AB_10579944 1:5
a-GM-CSF PE Miltenyi AB_2572656 1:20
a-Helios FITC eBioscience AB_2572656 1:120
a-HLA-DR PerCP-Vio700 Miltenyi AB_10839556 1:10
a-IFNγ PE-Vio770 Miltenyi AB_2661063 1:30
a-IL10 PE-Cy7 eBioscience AB_2573523 1:20
a-IL17A APC-Vio770 Miltenyi AB_2659812 1:10
a-IL2 FITC eBioscience AB_2572512 1:20
a-IL2 PE Miltenyi AB_244197 1:10
a-IL22 eFluor450 eBioscience AB_11150956 1:20
a-IL5 APC Biolegend AB_315330 1:20
a-Ki67 APC Miltenyi AB_2573218 1:120
a-TCRγδ APC-Vio770 Miltenyi AB_2654040 1:10
a-TCRγδ PE Miltenyi AB_2654034 1:10
a-TCRVα 7.2 APC-Vio770 Miltenyi AB_2653673 1:10
a-TCRVα 7.2 VB Miltenyi AB_2653669 1:10
a-TNFα APC Miltenyi AB_244201 1:10
a-TNFα eFluor450 eBioscience AB_2043889 1:20
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Univariate contrast analysis. For all univariate analysis of clinical, immunome, or
microbiome features, medication changes during the course of the study were
accounted for as possible confounders using the following two-step procedure. The
first step was a nested model comparison of a linear model for each feature,
involving as predictors age, patient ID, sex, and normalized dosage of each salient
medication tracked at each time point, with the same model but additionally
containing time point V1-V3 as a predictor. Models were compared using a like-
lihood ratio test as implemented in the lmtest (0.9-37)78 R package, and adjusted
for false discovery rate (FDR) using the Benjamini–Hochberg (BH) procedure
within each measurement space. In the second step, features with FDR < 0.1 were
retained for a second phase of post-hoc tests using Mann–Whitney U comparisons
between values at each pair of time points, BH FDR-adjusted between time point
comparisons (n= 3) and requiring FDR < 0.05 to retain the result as significant.
Standardized non-parametric effect sizes were taken using the (signed) Cliff’s delta
metric as implemented in the orddom (3.1)79 R package. The same methods were
used to analyze the validation dataset, with the exception no drugs were adjusted
for as subjects were unmedicated22.

Statistical analysis of 24 h ambulatory blood pressure and body weight
changes. Body weight and blood pressure change differences between Responders
and Non-Responders were compared with two-sided Mann–Whitney U test using
GraphPad Prism (6.01).

Fasting arm enterotyping. Enterotypes of the samples in the fasting arm were
performed by implementing the R package DirichletMultinomial (1.32.0.)15 on the
genus-level abundance table.

Correlation analysis. To assess possible interactions between immune cells, taxa,
and quantitative phenotypes, another two-step test was used: first a Spearman
correlation test using samples pooled across time points, and with Spearman’s rho
used as standardized signed effect estimate. P-values from this were FDR-adjusted
with the BH method for each comparison of two data spaces, requiring FDR < 0.05
for significance. Second, a post-hoc test was done to account for dependency
between same-donor samples: for each of two correlated features, a mixed-effects
model was fitted of the rank-transformed variable using the rank of the other as
predictor, with patient ID as a random effect. This model was compared to a
simpler model containing only the random effect under a likelihood ratio test as
implemented in the lmtest (0.9–37)78 R package. The highest P-value for the two
possible such models was taken, and P < 0.05 was additionally required to retain
the correlation as robust. Correlation was visualized by the R packages circilize80

and pheatmap81.

Re analysis of previous datasets for comparison. Samples from Kushugulova
et al.14 and Forslund et al.11 were previously mapped to the IGC gene catalog (0.5)
and the mOTU marker genes; these abundances (binned at the level of KEGG and
GMM modules as per the above in case of functional profiles). The Kushugulova
samples were tested for significantly differential abundances between MetS cases
and controls using the Mann–Whitney U test, then controlling that a MetS status
predictor still significantly improves fit (using the R lmtest ((0.9–37)78 package) of
the rank-transformed abundances when added to a linear model already incor-
porating metformin status as a predictor, thereby controlling for confounding
influence of metformin treatment status. Analogously, the Forslund samples were
tested for significantly differential abundances between metformin-treated and
untreated patients using the Mann–Whitney U test, then controlling that a met-
formin status predictor still significantly improves fit (using the R lmtest (0.9–37)78

package) of the rank-transformed abundances when added to a linear model
already incorporating MetS status as a predictor, thereby controlling for con-
founding influence of MetS status. The validation dataset22 was analyzed exactly as
the main study dataset, as described above.

Machine-learning prediction of treatment response at the single-subject level.
To estimate how well the omics data enables forecasting of the blood-pressure
response in future patients, we performed a leave-one-patient-out cross-validation
procedure. This approach represents the gold standard in the machine-learning
community to carry out an acid-test that empirically evaluates the practical value of
a predictive model82. To this end, the set of n participants was iteratively split into n
− 1 participants as training set, and the untouched data from the hold-out parti-
cipant as the test set. All input variables were z-scored by centering to zero mean
and unit-scaling to a variance of one83. In each of n cross-validation folds, the
logistic-regression algorithm was a natural choice of method for binary classification
(no intercept term, L2 shrinkage penalty, hyper-parameter C defaulted to 1.0).
Given that the number of variables was >10× times larger than the number of
participants, dimensionality reduction was necessary for a preliminary selection of a
set of ten most promising input variables that could be relevant for outcome pre-
diction. Forward-stepwise selection is an established means84 to screen the relevance
of several hundred quantitative measures. The first step identifies the single input
variable among the p candidates, with the best p-value having a statistically sig-
nificant association with the blood-pressure outcome. After adding this first variable
to the empty null model, the second most significant (i.e., smallest p-value) was

searched based on the remaining p− 1 input variables. Based on a two-variable
model, the third most significant variable was searched based on p− 2 remaining
variables, and so forth. This successive identification of the ten most promising
among the p overall input dimensions did not bias the subsequently performed
prediction performance estimate, because the entire variable reduction scheme was
exclusively carried out on the n− 1 participants of the current cross-validation fold.
Based on the top 10 variables, the logistic-regression algorithm could be more
robustly fit to these subselected ten input dimensions only. The ensuing predictive
model was then explicitly validated by computing whether or not the obtained
model parameters allowed for accurate derivation of the relevant blood-pressure
response for the independent, unseen participant. In this way, the omics data of
each patient in our dataset served as test observation once. Averaging these yes-no
results over all n predicted, versus observed clinical responses, yielded an estimate of
the expected forecasting accuracy of the predictive model in participants that we
would observe in other or later acquired datasets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the conclusions of this manuscript will be made available by the authors,
without undue reservation, to any qualified researcher. The Python code for this analysis
can be found online: https://github.com/fastingproject/Fasting_Paper_202085. Databases
are to be found under the following links. KEGG: https://www.genome.jp/kegg/, SILVA:
https://www.arb-silva.de. mOTU: https://motu-tool.org/, Mesnage dataset: https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA531091, IGC: https://db.cngb.org/microbiome/
genecatalog/genecatalog_human/. Stool sequencing data: https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA698459.
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