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1 Introduction

We consider the transport equation, here posed (w.l.o.g.) as terminal value problem. This is,
⎧
⎪⎪⎨

⎪⎪⎩

−∂t u(t, x) =
d∑

i=1

fi (x) · Dx u(t, x)Ẇ i
t ≡ �ut (x)Ẇt in (0, T ) × R

n,

u = g on {T } × R
n .

(1.1)

for fixed T > 0, with vector fields f = ( f1, . . . , fd) driven by a C1-driving signal W =
(W 1, . . . , W d). The canonical pairing of Du = Dx u = (∂x1u, . . . , ∂xn u) with a vector field
is indicated by a dot, and we already used the operator / vector notation

�i = fi (x) · Dx , � = (�1, . . . , �d).

By the methods of characteristics, the unique (classical) C1,1 transport solution u : [0, T ] ×
R

n → R, is given explicitly by

u(s, x) = u(s, x; W ) := g(Xs,x
T ) , (1.2)

provided g ∈ C1 and the vector fields f1, . . . , fd are nice enough (C1
b will do) to ensure a C1

solution flow for the ODE
⎧
⎪⎪⎨

⎪⎪⎩

Ẋ s,x
t =

d∑

i=1

fi (Xs,x
t )Ẇ i

t ≡ f (Xt )Ẇt ,

Xs,x
s = x .

In turn, solving this ODE with random initial data induces a natural evolution of measures,
given by the continuity - or forward equation

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ =
d∑

i=1

divx ( fi (x)ρt ) dW i
t in (0, T ) × R

n,

ρ(0) = μ on {0} × R
n .

Well-posedness of the “trinity” transport/flow/continuity will depend on the regularity of the
data. For W ∈ C1 we have an effective vector field

b(t, x) =
d∑

i=1

fi (x)Ẇ i
t

which is continuous in t ∈ [0, T ] and inherits the regularity of f . In particular, f ∈ C1 will
be sufficient for a C1,1-flow. In a landmark paper, DiPerna–Lions [9] and then Ambrsosio
[1], showed that the transport problem (weak solutions) is well-posed under bounds on
div b (rather than Dx b) which in turn leads to a generalized flow. Another fundamental
directionmay be called regularisation by noise, based on the observation that generically Ẋ =
f0(X)+(noise) ismuch better behaved than the noise-free problem, see e.g. [2,4,6,10,12,21].
Our work is not concerning with DiPerna-Lions type analysis, nor regularisation by noise.

In fact, our driving vector fields will be very smooth, to compensate for the the irregularity of
the noise, which we here assumed to be very rough (This trade-off is typical in rough paths
and regularity structures.)

Specifically, we continue a programme started independently by Bailleul–Gubinelli [3]
(see also [8]) and Diehl et al. [7] and take W as a rough path, henceforth called W. As
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in these works, we are interested in an intrinsic notion of solution (Rough path stability of
transport problems was already noted in [5]). The contribution of this article is a treatment of
rough noise of arbitrarily low regularity. Based on a suitable definition of solution, carefully
introduced below, we can show

Theorem 1.1 AssumeW is a weakly geometric rough path of Hölder regularity with exponent
γ ∈ (0, 1]. Assume f has 2�γ −1� + 1 bounded derivatives. Then there is a unique spatially
regular (resp. measure-valued) solution to the rough transport (resp. continuity) equation
with regular terminal data (resp. measure-valued initial data).

This should be compared with [3,7], which both treat the “level-2 case”, with Hölder noise
of exponent γ > 1/3. Treating the general case, i.e. with arbitrarily small Hölder exponent,
requires us in particular to fully quantify the interaction of iterated integrals, themselves
constrained by shuffle-relations, and the controlled structure of the PDE problem at hand.
In fact, the shuffle relations will be seen crucial to preserve the hyperbolic nature of the
rough transport equation. This is different for (ordinary) rough differential equations where
the shuffle relations can be discarded at the price of working with branched (think: Itô-type)
rough paths. For what it’s worth, our arguments restricted to the (well-known) level-2-case
still contain some worthwhile simplifications with regard to the existing literature, e.g. by
avoiding the analysis of an adjoint equation [7] and showing uniqueness for weak solutions
of the continuity equations via a small class of test functions. On our way we also (have to)
prove some facts on (controlled) geometric rough paths of independent interest, not (or only
in the branched setting [16,18]) available in the literature.

Relation to existing works: Unlike the case of rough transport equation, when it comes
to stochastic constructions it is impossible to mention all related works stretching over more
than four decades, from e.g. Funaki [13], Ogawa [23] to recent works such as [24] with
fractional noise and Russo–Valois integration.

The many benefits of a robust theory of stochastic partial differential equations, by com-
bining a deterministic RPDE theory with Brownian and more general noise, are now well
documented and need not be repeated in detail. Let us still recall one example of interest:
multidimensional fractional Brownian motion admits a canonical geometric rough path lift
(see e.g. [11]) 1/4 < α <H, which constitutes an admissible rough noise for our rough trans-
port and continuity equations. Various authors (see for example Unterberger [26], Nualart
and Tindel [22], etc.) have constructed “renormalised” canonical fractional Brownian rough
paths for any H > 0, fully covered by Theorem 1.1.

Notations

We fix once and for all a time T > 0. In what follows we abbreviate estimates of the form
|(a) − (b)| � |t − s|γ by writing (a) =

γ
(b). Given γ ∈ (0, 1) we denote by Cγ the classical

Hölder space, i.e. consisting of functions f : [0, T ] → R such that

sup
t �=s

| ft − fs |
|t − s|γ < ∞.

Throughout the paper we say geometric rough path, when we really mean weakly geometric
rough path (since we only work with this type of rough path, the difference [14] will not
matter to us).
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2 Rough paths

We start by reviewing the definition of geometric rough paths of roughness γ ∈ (0, 1) and
controlled rough paths.Wewill do so in a Hopf-algebraic language following [18], but before
we will introduce some basic concepts.

A word of length p ≥ 1 over the alphabet {1, . . . , d} is a tuple w = (i1, . . . , i p) ∈
{1, . . . , d}p , and we set |w| := p. We denote by ε the empty word, which is by convention
the unique word with zero length. Given two non-empty words v = (i1, . . . , i p) and w =
(i p+1, . . . , i p+q), we denote by vw := (i1, . . . , i p, i p+1, . . . , i p+q) their concatenation. By
definition εw = wε = w. We observe that in any case |vw| = |v| + |w|. The concatenation
product is associative but not commutative.

The symmetric group Sp acts on words of length p by permutation of its entries, that is,
σ.w := (iσ(1), . . . , iσ(p)). Given two integers p, q ≥ 1, a (p, q)-shuffle is a permutation
σ ∈ Sp+q such that

σ(1) < σ(2) < · · · < σ(p) and σ(p + 1) < σ(p + 2) < · · · < σ(p + q).

We denote by Sh(p, q) the set of all (p, q)-shuffles.

2.1 The shuffle algebra

The shuffle product was introduced by Ree [25] to study the combinatorial properties of
iterated integrals, following K.-T. Chen’s work. Let d ≥ 1 be fixed, and consider the tensor
algebra H over Rd , which is defined to be the direct sum

H :=
∞⊕

p=0

(Rd)⊗p.

A linear basis for H is given by pure tensors ei1 ⊗ · · · ⊗ ei p , p ≥ 1 where {e1, . . . , ed} is a
basis ofRd , and the additional element 1which generates (Rd)⊗0 := R1. In order to ease the
notation we denote, for a word w = (i1, . . . , i p), ew := ei1 ⊗ ei2 ⊗ · · · ⊗ ei p . By definition,
the set {ew : |w| = p} is a linear basis for (Rd)⊗p for any p ≥ 0.

The space H is endowed with a product � : H ⊗ H → H , called the shuffle product,
defined on pure tensors as

ei1···i p � ei p+1···i p+q =
∑

σ∈Sh(p,q)

eσ.(i1,...,i p+q ).

There is also another operation, called the deconcatenation coproduct 	 : H → H ⊗ H ,
defined by

	ew :=
∑

uv=w

eu ⊗ ev. (2.1)

The shuffle product and the deconcatenation coproduct satisfy a compatibility relation (which
will not play any role in the sequel), turning the tripe (H ,�,	) into a graded connected
bialgebra. This implies the existence of a linear map S : H → H , called the antipode, turning
(H ,�,	, S) into a Hopf algebra. In our particular setting, S can be explicitly computed on
basis elements by S(ei1···i p ) = (−1)pei p ···i1 .
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The coproduct endows the dual space H∗ with an algebra structure via the convolution
product given, for g, h ∈ H∗, by

〈g
h, x〉 := 〈g ⊗ h,	x〉.
On pure tensor this yields

〈g
h, ew〉 =
∑

uv=w

〈g, eu〉〈h, ev〉.

A character is a linear map g ∈ H∗ such that 〈g, x � y〉 = 〈g, x〉〈g, y〉 for all x, y ∈ H . It
is a standard result (see e.g. [20]) that the collection of all characters on H forms a group G
under the convolution product whose identity is the function 1∗ ∈ H∗, defined by 1∗(eb) = 0
for every word b and 1∗(1) = 1. The inverse of an element g ∈ G can be computed by using
the antipode: g−1 = g ◦ S.

Given N ≥ 0, we consider the step-N truncated tensor algebra

HN =
N⊕

p=0

(Rd)⊗p.

Definition 2.1 A step-N truncated character is a linear map g ∈ H∗
N such that

〈g, x � y〉 = 〈g, x〉〈g, y〉 (2.2)

for all x ∈ (Rd)⊗p and y ∈ (Rd)⊗q with p + q ≤ N .

It is not hard to show that the set G(N ) of all step-N truncated characters is also a group under
the convolution product, whose identity is again 1∗. Denoting by e∗

1, . . . , e∗
d the basis of Rd

dual to {e1, . . . , ed}, we introduce the dual basis (e∗
a) of H∗

N in the canonical way, that is, for
a word w we denote by e∗

w the unique linear map on HN such that

〈e∗
w, ev〉 = δw(v).

The convolution product of two of these basis elements can be explicitly computed. Indeed,
by definition

〈e∗
u
e∗

v, ew〉 =
∑

u′v′=w

〈e∗
u, eu′ 〉〈e∗

v, ev′ 〉

which is nonzero if and only if w = uv, in which case 〈e∗
u
e∗

v, ew〉 = 1. Therefore e∗
u
e∗

v =
e∗

uv . For this reason this product is also known as the concatenation product.

2.2 Geometric rough paths

We now recall the notion of geometric rough paths. The group G(N ) can be endowed with
a sub-additive homogeneous norm ‖ · ‖N : G(N ) → R+, see [19] for further details. This
allows us to define a left invariant metric on G(N ) by setting

dN (g, h) := ‖h−1g‖N .

Definition 2.2 Let Nγ := �γ −1� denote the integer part of γ −1. A geometric rough path of
regularity γ is a γ -Hölder path W : [0, T ] → (G(Nγ ), dN ). The set of all geometric rough
paths of regularity γ will be denoted by C γ .
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By definition of the incrementsWst := W−1
s 
Wt satisfy the so-called Chen’s relations

Wst = Wsu
Wut (2.3)

for all 0 ≤ s, u, t ≤ T . Moreover, by construction of the homogeneous norm ‖ · ‖N , for any
word w such that |w| ≤ Nγ one has

sup
t �=s

|〈Wst , ew〉|
|t − s||w|γ < ∞. (2.4)

2.3 Controlled rough paths and rough integrals

One of the main goals of rough paths theory is to give meaning to solutions of controlled
equations of the form

dXt =
d∑

i=1

fi (Xt ) dWi
t , (2.5)

for some collection of sufficiently regular vector fields f1, . . . , fd onRn andwhere the driving
signals W 1, . . . , W d are very irregular. The general philosophy is that if the smoothness of
the vector fields compensates the lack of regularity of the driving signals, then we can still
have existence of solutions given that we reinterpret the equation in the appropriate sense.
The central ingredient for proving this kind of results is the notion of controlled rough path
which we now recall.

Definition 2.3 [11,16] LetW ∈ C γ and 1 ≤ N ≤ Nγ +1. A rough path controlled by W is a
pathX : [0, T ] → HN−1 if for anywordw such that |w| ≤ N −1 the path t �→ 〈e∗

w,Xt 〉 ∈ Cγ

and

〈e∗
w,Xt 〉 =

(N−|w|)γ 〈Wst
e∗
w,Xs〉 , (2.6)

for all s < t . We denote by D
Nγ

W the (vector) space of paths X satisfying (2.6).
We say that a path X : [0, T ] → R is controlled by W if there exists a controlled path

X ∈ D
Nγ

W such that 〈1∗,Xt 〉 = Xt ; we call X a controlled rough path above (the controlled
path) X .

Remark 2.4 The definition in [11] seems more restrictive in that one always take N = Nγ ,
which is the minimal value of N required for rough integration. The case N = Nγ + 1 is
convenient to keep track of the additional information obtained by rough integration, see
Remark 2.7.

Remark 2.5 Alternatively, by writing X andW as the sums

Xs =
∑

|u|≤N−1

〈e∗
u,Xs〉eu, Wst =

∑

|v|≤N

〈Wst , ev〉e∗
v,

the condition in Eq. (2.6) can be explicitly written

〈e∗
w,Xt 〉 =

(N−|w|)γ
∑

0≤|v|≤N−|w|
〈e∗

vw,Xs〉〈Wst , ev〉, (2.7)

for any word w.
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By construction of the vector space DNγ

W , the quantity

‖X‖W;Nγ :=
∑

0≤|w|<N

sup
s<t

|〈e∗
w,Xt 〉 − 〈Wst
e∗

w,Xs〉|
|t − s|(N−|w|)γ ,

is finite for any X ∈ D
Nγ

W . We can easily show that ‖ · ‖W;Nγ is a seminorm, and D
Nγ

W
becomes a Banach space under the norm

‖X‖
D

Nγ
W

:= max|w|≤N−1
|〈e∗

w,X0〉| + ‖X‖W;Nγ .

Weextend the notionof controlled roughpath above avector-valuedpath X : [0, T ] → R
n .

In this case, the path X takes values in (HN−1)
n , that is, each component path 〈e∗

w,X〉 is a
vector of Rn , which we denote by

〈e∗
w,X〉 = (〈e∗

w,X〉1, . . . , 〈e∗
w,X〉n).

Then we require the bound in Eq. (2.6) to hold componentwise, or equivalently, we can
replace the absolute value of the left-hand side by any norm on Rn . We denote this space by
(D

Nγ

W )n .

Using the higher-order information contained in the controlled rough path X ∈ D
Nγ

W , we
recall the rigorous notion of rough integral of X againstW. For its proof see [11].

Theorem 2.6 Let W ∈ C γ and X ∈ D
Nγ γ

W . For every i ∈ {1, . . . , d} there exists a unique
real valued path in Cγ

t �→
∫ t

0
Xu dWi

u := lim|π |→0

∑

[a,b]∈π

∑

0≤|w|≤Nγ −1

〈e∗
w,Xa〉〈Wab, ewi 〉, (2.8)

where π is a sequence of partitions of [0, t] whose mesh |π | converges to 0. We call it the
rough integral of X with respect to W i . Moreover one has the estimate

∫ t

0
Xu dWi

u −
∫ s

0
Xu dWi

u =:
∫ t

s
Xu dWi

u =
(Nγ +1)γ

∑

0<|w|≤Nγ −1

〈e∗
w,Xs〉〈Wst , ewi 〉,

(2.9)

for any s < t . Introducing the function
∫ ·
0 Xu dWi

u : [0, T ] → HNγ given by
〈

1∗,
∫ t

0
Xu dWi

u

〉

:=
∫ t

0
Xu dWi

u ,

〈

e∗
wi ,

∫ t

0
Xu dWi

u

〉

:= 〈e∗
w,Xt 〉 (2.10)

and zero elsewhere, one has
∫ ·
0 Xu dWi

u ∈ D
(Nγ +1)γ
W .

Remark 2.7 Differently from the general definition of the DNγ

W spaces, in order to define the

rough integral it is necessary to start from a controlled rough path X ∈ D
Nγ γ

W . The operation
of integration on controlled rough path comes also with some quantitative bounds. Looking
at the definition, it is also possible to prove there exists a constantC(T , γ,W) > 0 depending
on T , γ , W such that

∥
∥
∥
∥

∫ ·

0
Xu dWi

u

∥
∥
∥
∥
D

(Nγ +1)γ
W

≤ C(T , γ,W)‖X‖
D

Nγ γ

W
.

Therefore the application X �→ ∫
X dWi is a continuous linear map.
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The second operation we introduce is the composition of a controlled rough path and a
smooth function. Given a smooth function φ : Rn → R, its k-th derivative at x ∈ R

n is the
multilinear map Dkφ(x) : (Rn)⊗k → R such that for v1, . . . , vk ∈ R

n ,

Dkφ(x)(v1, . . . , vk) =
n∑

α1,...,αk=1

∂kφ

∂xα1 · · · ∂xαk

(x)v1α1 · · · vk
αk

. (2.11)

To ease notation we define

∂αφ(x) := ∂kφ

∂xα1 · · · ∂xαk

(x) = ∂kφ

∂xi1
1 · · · ∂xin

n

(x)

for a word α = (α1, . . . , αk) ∈ {1, . . . , n}k ; of course, such α induces a multi-index i =
(i1, . . . , in) ∈ N

n , where i j counts the number of entries of α that equal j .
We note that Dkφ(x) is symmetric, meaning that for any permutation σ ∈ Sk we have

that Dkφ(x)(v1, . . . , vk) = Dkφ(x)(vσ(1), . . . , vσ(k)).

Remark 2.8 Observe that we also use the notion of word in this case, albeit with a different
alphabet. In order to avoid confusion we reserve latin letters such as u, v, w, etc for words
on the alphabet {1, . . . , d}, introduced in the beginning of Sect. 2, and greek letters such as
α, β, etc for words on the alphabet {1, . . . , n} as above.

With these notations, Taylor’s theoremstates that ifφ : Rn → R
m is of classCr+1(Rn,Rm)

then for any j = 1, . . . , m one has the identity

φ j (y) =
r∑

k=0

1

k! Dkφ j (x)
(
(y − x)⊗k

)
+ O(|y − x |r+1). (2.12)

In what follows, for any finite number of words u1, . . . , uk we introduce the set

Sh(u1, . . . , uk) := {w : 〈e∗
w, eu1 � . . .� euk 〉 �= 0}.

Since the shuffle product is commutative, for any permutation σ ∈ Sk we have that

Sh(u1, . . . , uk) = Sh(uσ(1), . . . , uσ(k)).

Thanks to this notation, we can prove Faà di Bruno’s formula (see also [17]). We denote
by P(m) the collection of all partitions of {1, . . . , m}. Given π = {B1, . . . , Bp} ∈ P(m),
we let #π := p denote the number of its blocks, and for each block we denote by |B| its
cardinality.

Lemma 2.9 For any couple of functions g : Rn → R
n and f : Rn → R sufficiently smooth

and every m ≥ 1, letting h := f ◦ g one has the identity

Dmh(x)(v1, . . . , vm) =
∑

π∈P(m)

D#π f (g(x))(D|B1|g(x)(vB1), . . . , D|Bp |g(x)(vBp ))

where vB := (vi1 , . . . , viq ) for B = {i1, . . . , iq}.
In particular, for any word α = (α1, . . . , αm) we have

∂αh(x) =
m∑

k=1

1

k!
∑

β1,...,βk
α∈Sh(β1,...,βk )

Dk f (g(x))(∂β1g(x), . . . , ∂βk g(x)). (2.13)
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Proof We proceed by induction on m. For m = 1 the formula reads

Dh(x)v = D f (g(x))Dg(x)v

which is the usual chain rule. Suppose the formula holds for some m ≥ 1. Then, applying
the chain rule to each of the terms we get

Dm+1h(x)(v1, . . . , vm+1)

=
∑

π∈P(m)

k∑

l=1

D#π+1 f (g(x))
(

D|B1|g(x)vB1 , . . . , D|Bl |+1g(x)(vBl , vm+1), . . . , D|Bk |g(x)vBk

)

+
∑

π∈P(m)

D#π+1 f (g(x))(D|B1|g(x)vB1 , . . . , D|Bk |g(x)vBk , Dg(x)vm+1)

=
∑

π ′∈P(m+1)

D#π ′
f (g(x))

(
D|B′

1|g(x)(vB′
1
), . . . , D|B′

p |g(x)(vB′
k′ )

)

where the last identity follows from the fact that every partition π ′ ∈ P(m + 1) can be
obtained by either appending m + 1 to one of the blocks of some partition π ∈ P(m) or by
adding the singleton block {m + 1} to it.

Given a word α = (α1, . . . , αm), we evaluate the previous formula in the canonical basis
vectors v1 = eα1 , . . . , vm = eαm to obtain

∂αh(x) = Dmh(x)(v1, . . . , vm)

=
∑

π∈P(m)

D#π f (g(x))
(
∂αB1 g(x), . . . , ∂αBk g(x)

)

whereαB = (αi1 , . . . , αiq ) if B = {i1, . . . , i p}. It is nowclear that for any choice ofπ ∈ P(m)

the words αB1 , . . . , αBk satisfy α ∈ Sh(αB1 , . . . , αBk ). Conversely, if α ∈ Sh(β1, . . . , βk),
there is a partition π = {B1, . . . , Bk} with B j = is such that β j = αB j . Moreover, for any
choice of such a partition, any of the k! permutations of its blocks result in the same evaluation
by symmetry of the differential. Thus

∂αh(x) =
m∑

k=1

1

k!
∑

β1,...,βk
α∈Sh(β1,...,βk )

Dk f (g(x))(∂β1g(x), . . . , ∂βk g(x)).

��
Remark 2.10 This result should be well-known to experts, yet the closest reference we found
in the literature [17] only covers the scalar case (and does not immediately yield the multi-
variate case).

Using a similar technique we show a version of this identity for controlled rough paths.

Theorem 2.11 Let W ∈ C γ , 1 ≤ N ≤ Nγ + 1, X ∈ (D
Nγ

W )n, and φ ∈ C N (Rn,Rm) and set
Xt := 〈1,Xt 〉. We introduce the path �(X) : [0, T ] → (HN−1)

m defined by 〈1∗,�(X)t 〉 j =
φ j (Xt ) and for any j = 1, . . . , m, and any non-empty word w by the identity

〈e∗
w,�(X)t 〉 j :=

|w|∑

k=1

1

k!
∑

w1,...,wk
w∈Sh(w1,...,wk )

Dkφ j (Xt )(〈e∗
w1

,Xt 〉, . . . , 〈e∗
wk

,Xt 〉). (2.14)

Then �(X) is also a controlled rough path belonging to (D
Nγ

W )m.
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Remark 2.12 A similar statement in the setting of branched rough paths [16, Lemma 8.4] is
known and somewhat easier due to the absence of shuffle relations.

Before going into the proof, we introduce some more notation. If X is a controlled path,
L ∈ L((Rn)⊗k,Rm), t ≥ 0 and w1, . . . , wk are words, we let

L(t;w1, . . . , wk) := L(〈e∗
w1

,Xt 〉, . . . , 〈e∗
wk

,Xt 〉).

Proof It is sufficient to prove the result when m = 1. We first prove the result for the case of
〈1∗,�(X)t 〉 = φ(Xt ). By Taylor expanding φ up to order N around Xs we get that

φ(Xt ) =
Nγ

N−1∑

k=0

1

k! Dkφ(Xs)
(
(Xt − Xs)

⊗k
)

.

Since X ∈
(
D

Nγ

W

)n
, according to Remark 2.5, we have

〈1∗,Xt − Xs〉 =
Nγ

〈Wst − 1∗,Xs〉 =
∑

0<|w|<N

〈e∗
w,Xs〉〈Wst , eu〉. (2.15)

Plugging this estimate into the above equation and using the character property of Wst in
(2.2) we obtain

φ(Xt ) =
Nγ

N−1∑

k=0

1

k!
∑

u1,...,uk

Dkφ(Xs)(s;w1, . . . , wk)〈Wst , ew1 � · · ·� ewk 〉

=
N−1∑

k=0

1

k!
∑

w1,...,wk

∑

|w|≤N

Dkφ(Xs)(s;w1, . . . , wk)〈e∗
w, ew1 � · · ·� ewk 〉〈Wst , ew〉

so the desired estimate follows.
Now we show the bound (2.6) for all words w �= 1. By fixing an integer 1 ≤ k ≤ |w| and

words u1, . . . , uk such that w ∈ Sh(u1, . . . , uk) we consider the term

Dkφ(Xt )(t;w1, . . . , wk). (2.16)

Again, sinceX is controlled byW, plugging the estimate in Remark 2.5 into (2.16) and using
the multilinearity of the derivative we obtain

Dkφ(Xt )(t;w1, . . . , wk) =
(N−|w|)γ

∑

v1,...,vk

Dkφ(Xt )(s; v1w1, . . . , vkwk)〈Wst , ev1 � · · ·� evk 〉.

(2.17)

Performing a Taylor expansion of Dkφ up to order N − |w| between Xt and Xs , we obtain

Dkφ(Xt )(s; v1w1, . . . , vkwk)

=
(N−|w|)γ

N−|w|−1∑

m=0

1

m! Dk+mφ(Xs)
(
(Xt − Xs)

⊗m, 〈e∗
v1w1

,Xs〉, . . . , 〈e∗
vkwk

,Xs〉
)
.

(2.18)
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Combining the estimates (2.17) and (2.18) with (2.15) into the definition of 〈e∗
w,�(X)t 〉, we

obtain the identity

〈e∗
w, �(X)t 〉

=
(N−|w|)γ

|w|∑

k=1

N−1−|w|∑

m=0

∑

w1,...,wk
w∈Sh(u1,...,uk )

∑

v1,...,vk
z1,...,zm

1

k!m! Dk+mφ(Xs)(v1w1, . . . , vkwk , z1, . . . , zm)

× 〈Wst , ev1 � · · ·� evk � ez1 � · · ·� ezm 〉.
(2.19)

Since the derivative Dk+mφ(Xs) is symmetric we can replace it with

k!m!
(k + m)!

∑

Ik�Jm={1,...,m+k}
Dk+mφ(Xs)(vi1wi1 , . . . , z j1 , . . . , vik wik , . . .).

Replacing this expression in the right-hand side of (2.19), it is now an easy but tedious
exercise to verify the resulting expression is equal to the sum

∑

0≤|u|<N−|w|

|w|+|u|∑

l=1

∑

u1,...,ul
uw∈Sh(u1,...,ul )

1

l! Dlφ(Xs)(s; u1, . . . , ul)〈Wst , eu〉.

Thereby proving the result. ��
Remark 2.13 Asimilar proof gives quantitative bounds on the applicationX → �(X). Indeed
for any φ ∈ CN

b (Rn,Rm) it is possible to prove that this application is locally Lipschitz on

D
Nγ

W .

3 Rough differential equations

Now we come to the definition of solution of the RDE
⎧
⎪⎪⎨

⎪⎪⎩

dXt =
d∑

i=1

fi (Xt ) dWi
t ,

X0 = x .

(3.1)

We assume that the vector fields f1, . . . , fd are of class at least CNγ , so that by Theorem 2.11

the composition fi (Xt ) can be lifted to a controlled path Fi :
(
D

Nγ γ

W

)n →
(
D

Nγ γ

W

)n
.

Definition 3.1 A path X : [0, T ] → R
n is a solution of (3.1) if there exists a controlled path

X ∈
(
D

Nγ γ

W

)n
satisfying 〈1∗,Xt 〉 = Xt such that

Xt − Xs =
d∑

i=1

∫ t

s
Fi (X)u dWi

u, (3.2)

for all s, t ∈ [0, T ].
Remark 3.2 We stress that (3.2) is an equation inD

Nγ γ

W , which in fact implies that 〈e∗
w,Xt 〉 =

Fw(Xt ) for all words w with |w| ≤ Nγ − 1.
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Remark 3.3 If X ∈ D
Nγ γ

W satisfies Eq. (3.2), it can also be regarded as an element of

D
(Nγ +1)γ
W , by Eq. (2.8). Therefore we freely treat solutions to RDEs as elements of either

of these spaces.

By solving a fixed point equation on
(
D

Nγ γ

W

)n
(see e.g. [11]) of the form

Xt = X0 +
d∑

i=1

∫ t

0
Fi (X)u dWi

u

with (see Proposition 3.4 for the definition of the functions Fw : Rn → R
n)

X0 =
∑

|w|≤Nγ −1

Fw(x)ew ∈ (
HNγ −1

)n
,

one can prove that there exists a unique global solution of (3.2) if the vector fields are of

class C
Nγ +1
b . We recall this interesting expansion of the solution.

Proposition 3.4 (Davie’s expansion) A path X : [0, T ] → R
n is the unique rough path

solution to Eq. (2.5) in the sense of Definition 3.1 if and only if

Xt =
(Nγ +1)γ

∑

0≤|w|≤Nγ

Fw(Xs)〈Wst , ew〉 (3.3)

and the coefficients of its lift X ∈ (D
Nγ +1
W )n are given by 〈e∗

w,Xt 〉 = Fw(Xt ) where the
functions Fw : Rn → R

n are recursively defined by by Fε := id and

Fiw(x) := DFw(x) fi (x). (3.4)

Remark 3.5 By Eq. (2.7) this results actually implies the chain of estimates, for all words
|w| ≤ Nγ ,

Fw(Xt ) =
(Nγ +1−|w|)γ

∑

0≤|u|≤N−|w|
Fuw(Xs)〈Wst , eu〉.

Proof of Proposition 3.4 Suppose that X is a rough solution to Eq. (2.5) in the sense of
Definition 3.1. We define the functions Fw : Rn → R

n recursively by Fi (x) := fi (x) and

Fwi (x) :=
|w|∑

k=1

1

k!
∑

u1,...,uk
w∈Sh(u1,...,uk )

Dk fi (x)(Fu1(x), . . . , Fuk (x)). (3.5)

Now it is an easy but tedious verification to show that these functions satisfy Fiw(x) =
DFw(x) fi (x); this identity essentially amounts to a reiterated use of the Leibniz rule. The
form of the coefficients of X is shown by induction, it being clear for a single letter i =
1, . . . , d . If w is any word with 0 ≤ |w| ≤ N − 1 and i ∈ {1, . . . , d} by definition

〈e∗
wi ,Xt − X0〉 =

〈

e∗
wi ,

d∑

j=1

∫ t

0
F j (X)u dW j

u

〉

= 〈e∗
w,Fi (X)t 〉
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where, in the second identity we have used Eq. (2.10). By Theorem 2.11, the last coefficient
equals

|w|∑

k=1

1

k!
∑

u1,...,uk
w∈Sh(u1,...,uk )

Dk fi (Xt )(t; u1, . . . , uk) = Fwi (Xt )

by the induction hypothesis. Then we obtain Eq. (3.3) from Definition 2.3 and Remark 2.5.
Conversely, suppose that X admits the local expansion in Eq. (3.3) and that the path

X satisfies 〈e∗
w,Xt 〉 = Fw(Xt ) for all words w with |w| ≤ N . First we show that X is

controlled byWwith coefficients given byX. For thiswe have to Taylor expand the difference
Fw(Xt ) − Fw(Xs) and collect terms as in the proof of Theorem 2.11. Then, by Eq. (2.10) it
is not difficult to see that in fact

〈e∗
wi ,Xt 〉 = Fwi (Xt ) =

〈

e∗
wi ,

d∑

j=1

∫ t

0
F j (X)u dW j

u

〉

so that Definition 3.1 is satisfied. ��

3.1 Differentiability of the flow

It is a standard result in classical ODE theory that given a regular enough vector field V , the
equation Ẋ = V (X) induces a smooth flow on R

d . Indeed, if we let X x
t denote the unique

solution of this equation such that X x
0 = x , then the map (t, x) �→ X x

t is a flow, in the sense
that (t, X x

s ) �→ X x
t+s and the mapping x �→ X x

t is a diffeomorphism for each fixed t . More
precesily, if V is of class Ck , then the application x �→ X x

t is also of class Ck .
Now we show that a similar statement is true in the case of RDEs. The statement is the

following

Theorem 3.6 Let f1, . . . , fd be a family of classC
Nγ +1+k
b vector fields inRd for some integer

k ≥ 0, and W ∈ C γ . Then

1. the RDE

dXt =
d∑

i=1

fi (Xt ) dWi
t , Xs = x

has a unique solution Xs,x ∈ D
(Nγ +1)γ
W ,

2. the induced flow x �→ Xs,x
t is a class Ck+1 diffeomorphism for each fixed s < t , and

3. the partial derivatives satisfy the system of RDEs

d∂α Xs,x
t =

d∑

i=1

|α|∑

k=1

1

k!
∑

α∈Sh(β1,...,βk )

Dk fi (Xs,x
t )(∂β1 Xs,x

t , . . . , ∂βk Xs,x
t ) dWi

t (3.6)

with initial conditions Xs,x
s = x, ∂ i Xs,x

s = ei and ∂α Xs,x
s = 0 for all words with |α| ≥ 2.

Proof Points (1) and (2) are standard results in rough paths as found e.g. in Chapter 11 in
[15]. For the algebraic identity in (3), it suffices to show the results in the case W is smooth.
Indeed, by standard arguments W ∈ C γ can be approximated uniformly with uniform γ -
Hölder rough path bound, and hence in C γ−η for any η > 0, while on the other hand the
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particular structure (cf. Chapter 11 in [15]) of the system of (rough) differential equations
guarantees uniqueness and global existence so that the limiting argument is justified.

It remains to show point (3) forW smooth. We note that the integral representation of the
solution

Xs,x
t = x +

d∑

i=1

∫ t

s
fi (Xs,x

u )Ẇ i
u du

holds. By Lemma 2.9, for any α = (α1, . . . , αm) and s < u < t , we have

∂α Xs,x
ut =

∫ t

u

d∑

i=1

m∑

k=1

1

k!
∑

β1,...,βk

Dk fi (Xs,x
r )(∂β1 Xs,x

r , . . . , ∂βk Xs,x
r )Ẇ i

r dr (3.7)

which is the smooth version of Eq. (3.6). ��
We aim now to obtain a Davie-type expansion of the partial derivatives ∂α Xs,x by making
use of point 3. above. We observe that the above system of equations has the form

dXs,x
t =

d∑

i=1

fi (Xs,x
t ) dWi

t

dDXs,x
t =

d∑

i=1

D fi (Xs,x
t )DXs,x

t dWi
t

dD2Xs,x
t =

d∑

i=1

D fi (Xs,x
t )D2Xs,x

t dWi
t + (. . .)

...

with initial conditions Xs,x
s = x , DXs,x

s = I , D2Xs,x
s = D3Xs,x

s = · · · = 0, where the
inhomogeneity (. . .) is not important to spell out.

The expansion is clear only for the first equation; it is just Eq. (3.3). We would like to use
Proposition 3.4 to obtain an expansion of the second equation but the problem is that the vector
field driving the equation depends on time, so the result does not directly apply. For the third
and subsequent equations the problem is not only that but also they are non-homogeneous.

To solve this problem we extend our state space Rn to (the still finite-dimensional space)

Sk := R
n ⊕ L(Rn,Rn) ⊕ · · · ⊕ L

(
(Rn)⊗(k−1),Rn

)

and define the vector fields (we give a more precise definition below in Eq. (3.8)) fi : Sk →
Sk by

fi (x) := ( fi (x), D fi (x)(y1), D2 fi (x)(y1, y1) + D fi (x)(y2), . . .)

where x = (x, y1, y2, . . . , yk−1) ∈ Sk . The previous proposition shows that if

Xs,x
t :=

(
Xs,x

t , DXs,x
t , . . . , Dk−1Xs,x

t

)

then

dXs,x
t =

d∑

i=1

fi (X
s,x
t ) dWi

t , Xs,x
s := x = (x, I , 0, . . . , 0).
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This transformation turns the system of non-autonomous non-homogeneous RDEs into a
single autonomous homogeneous RDE inSk .

Corollary 3.7 For any word α, the partial derivatives of the solution flow Xs,x have the
following Davie expansion: for any p = 1, . . . , k − 1,

D p Xs,x
t =

(Nγ +1)γ

∑

0≤|v|≤Nγ

D p Fw(x)〈Wst , ew〉.

In particular, for a word α ∈ {1, . . . , n}p we have that

∂α Xs,x
t =

(Nγ +1)γ

∑

0≤|v|≤Nγ

∂α Fw(x)〈Wst , ew〉.

Proof The hypotheses on the vector fields f1, . . . , fd imply that f1, . . . , fd are of classC
Nγ +1
b

onSk , so this equation has a unique solution. Applying Proposition 3.4 in this extended space
we obtain, for s < t , the expansion

Xs,x
t =

(Nγ +1)γ

∑

0≤|w|<N

Fw(x)〈Wst , ew〉.

In order to deduce the result, we need to show that Fw(x)p = D p Fw(x) for all words w

and p = 0, 1, . . . , k−1.We do this by induction on the length ofw. Ifw = i is a single letter,
the p-th component, p = 0, 1, . . . , k − 1, of the vector field fi is given by fi (x)0 = fi (x)

and

fi (x)p =
p∑

j=1

∑

(r) j

p!
r1! · · · r j !(1!)r1 · · · ( j !)rk

D p− j+1 fi (x)
(

yr1
1 , . . . , y

r j
j

)
(3.8)

where the inner sum is over the set of indices (r1, . . . , r j ) such that r1+· · ·+r j = p− j+1 and
r1 +2r2 +· · ·+ jr j = p. For our particular initial condition, y j = 0 for j = 2, 3, . . . , k −1
the formula simplifies to

fi (x)p = D p fi (x) ∈ L
(
(Rn)⊗p,Rn)

since the only term left in (3.8) is the one with j = 1, r1 = p.
We continue by induction on the length of the word. We compute the p-th derivative of

x �→ Fiw(x) = DFw(x) fi (x) by recognizing that Fiw = ϕ1 ◦ϕ2 with ϕ1(x, h) = DFw(x)h
and ϕ2(x) = (x, fi (x)). A quick check gives that the higher order derivatives of ϕ1 and ϕ2

are given by

Dmϕ1(x, h)((u1, v1), . . . , (um, vm)) = Dm+1Fw(x)(u1, . . . , um, h)

+
m∑

j=1

Dm Fw(x)(u1, . . . , û j , . . . , um)

Dmϕ2(x)(h1, . . . , hm) = (h1δm=1, Dm fi (x)(h1, . . . , hm))

where û j = v j . Thus, using Lemma 2.9 we get that

D p Fiw(x)(h1, . . . , h p) =
∑

π∈P(p)

D#πϕ1(ϕ2(x))(D|B1|ϕ2(x)h B1 , . . . , D|Bq |ϕ2(x)h Bq ).

Now we have three cases, depending on the number of blocks of the partition in the above
summation:
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1. q = p: there is a single partition with p blocks, and each block is a singleton. In this
case the term equals

D p+1Fw(x)(h1, . . . , h p, fi (x)) +
p∑

j=1

D p Fw(x)(h1, . . . , D fi (x)h j , . . . , h p).

2. q = 1: there is a single partition with one block, namely π = {1, . . . , p}. In this case the
term equals

DFw(x)[D p f j (x)(h1, . . . , h p)].
3. 1 < q < p: there is at least one block of size greater than one, which means that the first

term in the expression for Dmϕ1 vanishes since at least one of u1, . . . , um vanishes. For
the rest of the terms, the exact result depends on whether there is a block with exactly one
block or not: if all blocks have more than one block then the whole expression vanishes;
otherwise, we obtain one term for each of the blocks having size exactly one, and it is of
the form

D#π Fw(x)(h B , D#p−|B| fi (x)hπ\B).

In either case, using the induction hypothesis it is possible to show that each of the
terms appearing are of the form ∂rFw(x)pfi (x)r , which then means that D p Fiw(x) =
[DFw(x)fi (x)]p as desired. For example, the term

D p+1Fw(h1, . . . , h p, fi (x))

corresponds to

[∂0Fw(x)pfi (x)0](h1, . . . , h p)

and so on.
��

In particular for the first derivative, the first few terms of the expansion read

DXs,x
t = I +

d∑

i=1

D fi (x)〈Wst , ei 〉

+
d∑

i, j=1

(
D f j (x)D fi (x) + D2 f j (x)( fi (x), id)

)
〈Wst , ei j 〉 + · · ·

3.2 Itô’s formula for RDEs

The last ingredient to add in the study of the rough transport equation is to write down a
change of variable formula for a solution of Eq. (2.5) for some sufficiently smooth vector
field f = ( f1, . . . , fd). By analogy with terminology of stochastic calculus we call it an “Itô
formula”. For any i = 1, . . . , n we denote by �i the differential operator fi (x) · Dx and for
any non-empty word w = i1 . . . im we use the shorthand notation

�w := �i1 ◦ · · · ◦ �im .

Moreover we adopt the convention �ε = id.
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Lemma 3.8 Let f1, . . . , fd ∈ CNγ +1(Rn;Rn) be vector fields on R
n. If φ : Rn → R is a

smooth function and w is a nonempty word, then

�wφ(x) =
|w|∑

k=1

1

k!
∑

u1,...,uk
w∈Sh(u1,...,uk )

Dkφ(x)(Fu1(x), . . . , Fuk (x)). (3.9)

Proof Before commencingwe introduce somenotation. Ifφ : Rn → R and g1, . . . , gk : Rn →
R

n are smooth functions, we define

Dkφ(x) : (g1, . . . , gk) := Dkφ(x)(g1(x), . . . , gk(x))

where the right-hand side was defined in Eq. (2.11). The Leibniz rule then gives that for any
h ∈ R

n we have

h · Dx

(
Dkφ(x) : (g1, . . . , gk)

)
= Dk+1φ(x) : (h, g1, . . . , gk)

+
k∑

i=1

Dkφ(x) : (g1, . . . , (Dx gi )h, . . . , gk).

We now prove the result by induction on the word’s length |w|. If w = i is a single letter
then �iφ(x) = fi (x) · ∇φ(x) = Dφ(x) fi (x) which is exactly Eq. (3.9). Supposing the
identity true for any word w′ such that |w′| ≤ |w|, we prove it for jw where j ∈ {1, . . . , d}.
By induction one has

�wφ(x) = ∑|w|
k=1

1
k!

∑
u1,...,uk

w∈Sh(u1,...,uk )
Dkφ(x)(Fu1(x), . . . , Fuk (x)).

By the above form of Leibniz rule, with gi = Fui and h = f j (x), and noticing that by
definition

Dx Fui (x) f j (x) = Fjui (x)

we obtain that

� j

(
Dkφ(x) : (Fu1 , . . . , Fuk )

)
= Dk+1φ(x) : ( f j , Fu1 , . . . , Fuk )

+
k∑

i=1

Dkφ(x) : (Fu1 , . . . , Fjui , . . . , Fuk ) .

Summing this expression over words u1, . . . , uk , we can rewrite it as

k∑

r=1

∑

u1,...,uk
jw∈Sh(u1,..., jur ,...,uk )

Dkφ(x) : (Fu1 , . . . , Fjur , . . . , Fuk )

+ 1

k + 1

k+1∑

r=1

∑

u1,...,uk
jw∈Sh(u1,..., j,...,uk )

Dk+1φ(x) : (Fu1 , · · · ,

r th place
︷︸︸︷

f j , . . . , Fuk ),
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the factor 1/(k + 1) is introduced because of the symmetry of Dk+1φ(x). Summing finally
over k, we can express the final expression as

� jwφ(x) =
|w|∑

k=1

1

k!
k∑

r=1

∑

u1,...,uk
jw∈Sh(u1,..., jur ,...,uk )

Dkφ(x) : (Fu1 , · · · , Fjur , . . . , Fuk )

+
|w|∑

k=1

1

(k + 1)!
k+1∑

r=1

∑

u1,··· ,uk
jw∈Sh(u1,..., j,...,uk )

Dk+1φ(x) : (Fu1 , · · · ,

r th place
︷︸︸︷

f j , . . . , Fuk ).

Since the letter j may appear as a single word or concatenated at the right with some word,
we finally identify the whole expression above with

|w|+1∑

k=1

1

k!
∑

u1,...,uk
ja∈Sh(u1,...,uk )

Dkφ(x) : (Fu1 , . . . , Fuk ).

��

Nowwe show a formula for the composition of the solution to the RDE (2.5) and a sufficiently
smooth function.

Theorem 3.9 (Itô formula for RDEs) Let fi ∈ CNγ +1 and let X ∈ D
(Nγ +1)γ
W be the unique

solution of Eq. (2.5) and Xt = 〈1∗,Xt 〉. Then for any real valued function φ ∈ C
Nγ +1
b (Rn)

one has the identity

φ(Xt ) = φ(Xs) +
d∑

i=1

∫ t

s
(�iφ)(Xr ) dWi

r . (3.10)

More generally, one has the following estimates at the level of controlled rough paths

〈e∗
w,�(X)t 〉 =

(Nγ +1−|w|)γ 〈e∗
w,�(X)s〉 +

〈

e∗
w,

d∑

i=1

∫ t

s
(�i�)(X)r dWi

r

〉

, (3.11)

where �i�(X) is the controlled lift of composition of X with the function �iφ ∈ CNγ and
any non-empty word such that |w| ≤ Nγ .

Proof of Theorem 3.9 The theorem is obtained by comparing the coefficients of the controlled
rough paths �(X)t and

∫ t
0 (�i�)(Xr ) dWi

r for every i = 1, . . . , d . Using Lemma 3.8 and
Proposition 3.4, for every non-empty word a one has

〈e∗
w,�(X)t 〉 =

|w|∑

k=1

1

k!
∑

u1,...,uk
w∈Sh(u1,...,uk )

Dkφ(Xt )(t; u1, . . . , uk)

=
|w|∑

k=1

1

k!
∑

u1,...,uk
w∈Sh(u1,...,uk )

Dkφ(Xt ) : (Fu1 , . . . , Fuk )

= �wφ(Xt ). (3.12)
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Using the same identities we also deduce for any word w,
〈

e∗
w j ,

d∑

i=1

∫ t

0
(�i�)(X)r dWi

r

〉

= 〈e∗
w, (� j�)(X)t 〉 = �w(� jφ)(Xt ) = �w jφ(Xt ).

(3.13)

Since
∑n

i=1

∫ t
0 (�i�)(X)r dWi

r and �(X)t belong both to D
(Nγ +1)γ
W for any word w one has

both

〈e∗
w,�(X)t 〉 − 〈e∗

w,�(X)s〉 =
(Nγ +1−|w|)γ

∑

0<|v|≤Nγ −|w|
〈e∗

wv,�(X)s〉〈Wst , ev〉,

and

〈

e∗
w,

n∑

i=1

∫ t

s
(�i�)(X)r dWi

r

〉

=
(Nγ +1−|w|)γ

∑

0<|v|≤Nγ −|w|

〈

e∗
wv,

n∑

i=1

∫ s

0
(�i �)(X)r dWi

r

〉

〈Wst , ev〉.

The identities (3.12) and (3.13) imply that the right-hand sides of the above estimates are the
same quantities. Thus we obtain Eq. (3.11) by simply subtracting one side from the other.
In case w = 1 one has

φ(Xt ) − φ(Xs) −
d∑

i=1

∫ t

s
(�iφ)(Xr ) dWi

r =
(Nγ +1)γ

0 .

Since (Nγ + 1)γ > 1 and the right hand side is the increment of a path, one has the identity
(3.10). ��
Using the identities (3.12) we can rewrite the Itô formula using only the operators �w .

Corollary 3.10 (Itô-Davie formula for RDEs) Let X : [0, T ] → R
n be the unique solution of

Eq. (2.5). Then for any real valued function φ ∈ C
Nγ +1
b (Rn) and any word w one has the

estimate

�wφ(Xt ) =
(Nγ +1−|w|)γ

∑

0≤|v|≤Nγ −|w|
�vwφ(Xs)〈Wst , ev〉. (3.14)

4 Rough transport and continuity

4.1 Rough transport equation

We now consider the rough transport equation
{

−dus = ∑d
i=1 �i us dWi

s,

u(T , ·) = g(·) (4.1)

where we recall the differential operator �i := fi · Dx for some vector fields f1, . . . , fd on
R

n .
We now prepare the definition of a regular solution to the rough transport equation. Since

we are in the fortunate position to have an explicit solution candidate we derive a graded
set of rough path estimates that provide a natural generalisation of the classical transport
differential equation.
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Definition 4.1 Let γ ∈ (0, 1), W ∈ C γ a weakly-geometric rough path of roughness γ and
g ∈ CNγ +1. A Cγ,Nγ +1-function u : [0, T ] × R

n → R such that u(T , ·) = g(·) is said to be
a regular solution to the rough transport Eq. (4.1) if one has the estimates

�wus(x) =
(Nγ +1−|w|)γ

∑

0≤|v|≤Nγ −|w|
�wvut (x)〈Wst , ev〉 , (4.2)

for every s < t ∈ [0, T ], uniformly on compact sets in x and any word w.

Remark 4.2 Since each application of the vector fields �i1...in amounts to take n derivatives,
these estimates have the interpretation that time regularity of �i1...in u, can be traded against
space regularity in a controlled sense.

Theorem 4.3 Let f ∈ C
2Nγ +1
b , g ∈ CNγ +1 and consider the rough solution Xs,x to Eq. (2.5).

Then u(s, x) := g(Xs,x
T ) is a solution to the rough transport equation in the sense of Defini-

tion 4.1.

Proof We first note that by Theorem 3.6 the map (s, x) �→ Xs,x
T belongs to Cγ,Nγ +1. Since

g ∈ CNγ +1 then u(s, x) = g(Xs,x
T ) ∈ Cγ,Nγ +1. Let us show that u is a solution by proving

the estimates given in Definition 4.1 for some fixed times s < t < T and x in compact set.
By uniqueness of the RDE flow one has Xs,x

T = Xt,y
T where y = Xs,x

t . Thus we deduce from
the definition of u the identity

us(x) = ut (Xs,x
t ). (4.3)

Let X denote the controlled rough path such that Xs,x
t = 〈1∗,Xt 〉. Since g ∈ C

Nγ +1
b , we can

apply the rough Itô formula in Eq. (3.14) to the function x → ut (x) obtaining

ut (Xs,x
t ) =

(Nγ +1)γ

∑

|w|≤N

�wut (x)〈Wst , w〉

obtaining (4.2) for the case ofw = ε. To show the estimates on�i1...il us , we apply Lemma 3.8
to the function x �→ us(x)

�wus(x) =
|w|∑

k=1

1

k!
∑

u1,...,uk
w∈Sh(u1,...,uk )

Dkus(x)(Fu1(x), . . . , Fuk (x)). (4.4)

Using again the identity (4.3), for any word α we apply Eq. (2.13) obtaining

∂α(us(x)) =
k∑

l=1

1

l!
∑

β1,...,βl
α∈Sh(β1,...,βl )

Dlut (Xs,x
t )(∂β1 Xs,x

t , . . . , ∂βl Xs,x
t ).

Since the vector field f ∈ C
2Nγ +1
b and every βi such that α ∈ Sh(β1, . . . , βl) satisfies

|βi | ≤ |a| we can apply Definition 3.7 to get

∂βi Xs,x
t =

(Nγ +1−|w|)γ
∑

0≤|v|≤Nγ −|w|
∂βi Fv(x)〈Wst , ev〉 .
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Plugging these estimates in Dlut (Xs,x
t ) and one has

Dl ut (Xs,x
t )(∂β1 Xs,x

t , . . . , ∂βl Xs,x
t )

=
(Nγ +1−|w|)γ

∑

0≤|v1|...|vl |≤Nγ −|a|
Dl ut (Xs,x

t )
(
∂β1 Fv1 (x), . . . , ∂βl Fvl (x)

) 〈Wst , ev1 � · · ·� evl 〉.

(4.5)

Plugging this expression into (4.4) we obtain

�wus(x) =
(Nγ +1−|w|)γ

|w|∑

k=1

∑

u1,...,uk
w∈Sh(u1,...,uk )

n∑

α1 ,... ,αk=1

k∑

l=1

1

l!
1

k! Fα1
u1 (x) · · · Fαk

uk
(x)

×
∑

0≤|d1|...|dl |≤Nγ −|a|

∑

β1,...,βl
α∈Sh(β1,...,βl )

Dlut (Xs,x
t )(∂β1 Fv1(x), . . . , ∂βl Fvl (x))

× 〈Wst , ev1 � · · ·� evl 〉.
(4.6)

Rearranging the sums and applying the definition of the functions Fw we obtain the identity

|w|∑

k=l

1

k!
∑

u1,...,uk
w∈Sh(u1,...,uk )

∑

α∈Sh(β1,...,βl )|α|=k

Dlut (Xs,x
t )(∂β1 Fv1(x), . . . , ∂βl Fvl (x))Fα1

u1 (x) · · · Fαk
uk

(x)

=
∑

u′
1,...,u

′
l

w∈Sh(u′
1,...,u

′
l )

Dlut (Xs,x
t )(Fu′

1v1
(x), · · · , Fu′

lvl
(x)).

Therefore the right-hand side of (4.6) becomes

|w|∑

l=1

∑

0≤|v1|...|vl |≤Nγ −|w|

∑

u′
1,...,u

′
l

w∈Sh(u′
1,...,u

′
l )

1

l! Dl ut (Xs,x
t )(Fu′

1v1
(x), · · · , Fu′

l vl
(x))〈Wst , ev1 � · · ·� evl 〉.

(4.7)

We perform now a Taylor expansion of Dlut (Xs,x
t ) up to order N − |w| between Xs,x

t and
x , yielding for any words u′

1, . . . , u′
k

Dlut (Xs,x
t )

(

Fu′
1v1

(x), · · · , Fu′
lvl

(x)

)

=
(Nγ +1−|w|)γ

N−|w|∑

m=0

1

m! Dl+mut (x)
(
(Xs,x

t − x)⊗m, Fu′
1v1

(x), · · · , Fu′
lvl

(x)
)

.

(4.8)
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Plugging now the Davie expansion (3.3) truncated at order Nγ − |w| into (4.7) we have the
following estimate

�w(us(x)) =
(Nγ +1−|w|)γ

|w|∑

l=1

Nγ −|w|∑

m=0

1

l!
1

m!
∑

u′
1,...,u

′
l

w∈Sh(u′
1,...,u

′
l )

∑

0≤|v1|...|vl |≤N−|w|
0<|z1|...|zm |≤N−|w|

× Dl+mut (x) :
(

Fu′
1v1

, . . . , Fz1 , . . .
)

〈Wst , ev1 � · · ·� ez1 � . . .〉 .

(4.9)

Using the symmetry of Dl+mut (x), we deduce

l!m!
(l + m)!

∑

Il�Jm={1,...,m+l}
Dm+lφ(x) :

(
Fu′

i1
vi1

, · · · , Fz j1
, . . . , Fu′

il
vil

, . . .
)

.

Replacing this expression in the right-hand side of (4.9), we can easily verify that the resulting
expression is equal to the sum

∑

0≤|v|≤N−|w|

|w|+|v|∑

n=1

∑

u1,...,un
wv∈Sh(u1,...,un)

1

n! Dnut (x) : (Fu1 , · · · , Fun )〈Wst , ev〉.

Thereby proving the result. ��
We can now show that solutions in the sense of Definition 4.1 are unique.

Theorem 4.4 Let fi ∈ C
2Nγ +1
b with associated differential operators �i , and W ∈ C γ .

Given regular terminal data g ∈ CNγ +1, there exists a unique regular solution to the rough
transport equation (4.1).

Proof Existence is clear, since Proposition 4.3 exactly says that (t, x) �→ g(Xt,x
T ) gives a

regular solution. Let now u be any solution to the rough transport equation. We show that,
whenever X = Xs̄,ȳ for every s̄, ȳ one has the estimate

u(t, Xt ) − u(s, Xs) =
(Nγ +1)γ

0. (4.10)

Since (Nγ + 1)γ > 1 this entails that t �→ u(t, Xt ) is constant, and so we recover the
uniqueness from the identities

u(s, x) = u(s, Xs,x
s ) = u(T , Xs,x

T ) = g(Xs,x
T ) .

To prove (4.10) we show that for every k = 0, . . . , Nγ and any choice of indexes i1, . . . , ik

(if k = 0 we do not consider indexes) one has the estimates

�i1...ik ut (Xt ) =
(Nγ +1−k)γ

�i1...ik us(Xs).

Let us prove this estimate by reverse induction on the indices length. The case when the
indices i1 . . . iNγ have length Nγ comes easily from the algebraic manipulation

�i1...iNγ
ut (Xt ) − �i1...iNγ

us(Xs) =
(

�i1...iNγ
ut (Xt ) − �i1...iNγ

us(Xt )

)

+
(

�i1...iNγ
us(Xt ) − �i1...iNγ

us(Xs)

)

.
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Using the defining property of a solution in the estimates (4.2), the first difference on the right-
hand side is of order γ . Moreover by hypothesis on u one has �i1...iNγ

us(·) ∈ C1, always
uniformly in s ∈ [0, T ], therefore the second difference is also of order γ , as required.
Supposing the estimate true for every indices of length k we will prove it on every indices
i1 . . . ik−1 of length k − 1 . By repeating the same procedure as before we obtain

�i1...ik−1ut (Xt ) − �i1...ik−1us(Xs) =
(

�i1...ik−1ut (Xt ) − �i1...ik−1us(Xt )

)

︸ ︷︷ ︸
I

+
(

�i1...ik−1us(Xt ) − �i1...ik−1us(Xs)

)

︸ ︷︷ ︸
I I

.

Using the definition of a solution, the first difference on the right-hand side satisfies

I =
(Nγ +1−k)γ

−
Nγ +1−k∑

k=1

∑

|w|=k

�i1...ik−1wut (Xt )〈Wst , w〉.

On the other hand, using Lemma 3.8 two timeswewrite�i1...ik−1us(Xt ) = 〈e∗
i1···ik−1

,Us(X)t 〉
so that the second difference can be replaced by the usual remainder

I I =
(Nγ +1−k)γ

Nγ +1−k∑

k=1

∑

|w|=k

〈e∗
i1...ik−1w

,Us(X)s〉〈Wst , w〉

=
(Nγ +1−k)γ

Nγ +1−k∑

k=1

∑

|w|=k

�i1...ik−1wus(Xs)〈Wst , w〉.

Combining the two estimates we obtain

I + I I = −
Nγ +1−k∑

k=1

∑

|w|=k

(

�i1...ik−1wut (Xt ) − �i1...ik−1wus(Xs)

)

〈Wst , w〉 .

Since the terms in the sum involve the increment �σ ut (Xt ) − �σ us(Xs) where σ has length
bigger or equal than k we apply the recursive hypothesis obtaining that each term satisfies

�i1...ik−1wut (Xt ) − �i1...ik−1wus(Xs) =
(Nγ +1−k−|w|)γ 0

and the multiplication with 〈Wst , w〉 gives the desired estimate. ��

4.2 Continuity equation and analytically weak formulation

Given a finite measure ρ ∈ M(Rn) and a continuous bounded function φ ∈ Cb(R
n), we write

ρ(φ) = ∫
φ(x)ρ(dx) for the natural pairing. We are interested in measure-valued (forward)

solutions to the continuity equation
⎧
⎪⎪⎨

⎪⎪⎩

dtρt =
d∑

i=1

divx ( fi (x)ρt ) dWi
t in (0, T ) × R

n,

ρ0 = μ on {0} × R
n
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when W is again a weakly geometric rough path. As before we use the notation �i =
fi (x) · Dx , whose formal adjoint is �


i = − divx ( fi ·).
Definition 4.5 Let γ ∈ (0, 1),W ∈ C

γ
g and μ ∈ M(Rn). Any function ρ : [0, T ] → M(Rn)

such thatρ0 = μ is called aweak ormeasure-valued solution to the rough continuity equation

dρt =
d∑

i=1

divx ( fi (x)ρt ) dWi
t (4.11)

if for every φ bounded in C
Nγ +1
b and any word w with |w| ≤ Nγ one has the estimates

ρt (�wφ) =
(Nγ +1−|w|)γ

∑

0≤|v|<Nγ +1−|w|
ρs(�wvφ)〈Wst , ev〉 (4.12)

for every s < t ∈ [0, T ] and uniformly in φ.

Theorem 4.6 Let f ∈ C
2Nγ +1
b and W ∈ C

γ
g . Given initial data μ ∈ M(Rn), there exists a

unique solution to the measure-valued rough continuity equation, explicitly given for φ ∈
C

Nγ +1
b by

ρt (φ) =
∫

φ(X0,x
t )μ(dx) ,

where X0,x is the unique solution of the RDE dXt = ∑d
i=1 fi (Xt ) dWi

t such that X0,x
0 = x.

Proof (Existence) Using the composition of the controlled rough path X0,x with φ ∈ C
Nγ +1
b

and the shorthand notation X0,x
t = Xt we can write

φ(Xt ) =
(Nγ +1)γ

φ(Xs) +
Nγ∑

k=1

∑

|w|=k

�wφ(Xs)〈Wst , w〉 ,

�i1...in φ(Xt ) =
(Nγ +1−n)γ

�i1...in φ(Xs) +
Nγ −n∑

k=1

∑

|w|=k

�i1...inwφ(Xs)〈Wst , w〉 .

This showing the existence when μ = δx thanks to Proposition 4.3. Since we are dealing
with bounded vector fields, all these estimates are uniform in X0 = x . Thus we can integrate
both sides with respect to the measure μ, obtaining the existence.
(Uniqueness) To prove the uniqueness, we will show that for any 0 < t ≤ T , any function

g ∈ C
Nγ +1
b and any solution u : [0, t] × R

n → R of the RPDE

dur =
d∑

i=1

�i u(r , x) dWi
r , ut = g,

the function r ∈ [0, t] �→ α(r) := ρr (ur ) is constant. This property implies that for any

function g ∈ C
Nγ +1
b and t > 0 one has the identity

ρt (g) = ρt (ut ) = ρ0(u0) = μ(u0)

which uniquely determines the measure ρt for any 0 < t ≤ T . Since the parameter T was
also arbitrary it is not restrictive to prove the result when t = T . Then α is constant if and
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only if one has the estimate

α(r) =
(Nγ +1)γ

α(s) . (4.13)

Writing us,r = ur − us and similarly for ρ one has

ρr (ur ) − ρs(us) = ρs,r (ur ) + ρs(us,r ) .

By construction of regular solution with φ = ur ∈ C
Nγ +1
b the first summand expands as

ρs,r (ur ) =
(Nγ +1)γ

Nγ∑

k=1

∑

|w|=k

ρs(�wur )〈Wsr , w〉 . (4.14)

On the other hand, we expand the second summand on the right-hand using the very definition
of regular backward RPDE obtaining

us,r (x) =
(Nγ +1)γ

−
Nγ∑

k=1

∑

|w|=k

�wur (x)〈Wsr , w〉 ,

where the remainder is uniform on x . By integrating this estimate on ρs , we obtain

ρs(us,r ) =
(Nγ +1)γ

−
Nγ∑

k=1

∑

|w|=k

ρs(�wur )〈Wsr , w〉 . (4.15)

Combining the two estimates (4.15) and (4.14) we obtain (4.13) and the theorem is proven.
��
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