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Abstract: Atherosclerosis—a systemic inflammatory disease—is the number one cause of mortality
and morbidity worldwide. As such, the prevention of disease progression is of global interest in order
to reduce annual deaths at a significant scale. Atherosclerosis is characterized by plaque formation in
the arteries, resulting in vascular events such as ischemic stroke or myocardial infarction. A better
understanding of the underlying pathophysiological processes at the cellular and molecular level is
indispensable to identify novel therapeutic targets that may alleviate disease initiation or progression.
Sphingolipids—a lipid class named after the chimeric creature sphinx—are considered to play a
critical and, metaphorically, equally chimeric regulatory role in atherogenesis. Previous studies
identified six common sphingolipids, namely dihydroceramide (DhCer), ceramide (Cer), sphingosine-
1-phosphate (S1P), sphingomyelin (SM), lactosylceramide (LacCer), and glucosylceramide (GluCer) in
carotid plaques, and demonstrated their potential as inducers of plaque inflammation. In this review,
we point out their specific roles in atherosclerosis by focusing on different cell types, carrier molecules,
enzymes, and receptors involved in atherogenesis. Whereas we assume mainly atheroprotective
effects for GluCer and LacCer, the sphingolipids DhCer, Cer, SM and S1P mediate chimeric functions.
Initial studies demonstrate the successful use of interventions in the sphingolipid pathway to prevent
atherosclerosis. However, as atherosclerosis is a multifactorial disease with a variety of underlying
cellular processes, it is imperative for future research to emphasize the circumstances in which
sphingolipids exert protective or progressive functions and to evaluate their therapeutic benefits in a
spatiotemporal manner.

Keywords: cardiovascular disease; atherosclerosis; sphingolipids; ceramide; sphingosine-1-phosphate;
dihydrocerammide; lactosylceramide; glucosylceramide; sphingomyelin

1. Introduction

The enigmatic character of sphingolipids has been first highlighted by assigning
their name to a new class of lipids first described in 1884 by the German physician and
biochemist J. L. W. Thudichum [1]. In the 1880s, he found “sphingosine” with unique
chemical characteristics, which directed him to name this brain-derived lipid after the
Sphinx, a mythical creature with a human head and a lion’s body. This iconic name became
formative for the substance class of sphingolipids, but also adequately reflects the chimeric
role of sphingolipids in the etiology of atherosclerosis.

Cardiovascular diseases (CVDs) are the leading cause of mortality, accounting for
17.9 million deaths per year worldwide [2,3]. Atherosclerotic cardiovascular disease is
a progressive and lifestyle-dependent condition characterized by arterial lesions charac-
terized by local oxidative stress and inflammation that initiate vasoconstriction, reduced
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and/or turbulent flow, plaque formation, and/or hemostasis. These responses in combina-
tion with excessive plasma low-density lipoprotein (LDL) cholesterol levels, e.g., caused
by poor dietary quality or sedentarism, lead to lipid deposition and atheromatous plaque
formation resulting in functional and, ultimately, structural disintegrity of the arterial vessel
wall [4–6]. This in turn triggers primary and secondary hemostasis that in combination
with locally altered fluid mechanics is causally responsible for embolic complications,
resulting in, e.g., myocardial infarction or ischemic strokes [7–9]. Therefore, a comprehen-
sive understanding of the molecular mechanisms of disease initiation and progression is
indispensable for the identification of possible therapeutic targets providing the spotlight
for current atherosclerosis research.

Atherosclerosis represents a subtype of arteriosclerosis. Arteriosclerosis is the most
common form of adverse vascular remodeling and is usually limited to small arteries
and arterioles. This vascular remodeling comprises thickening and hardening of the ar-
terial vessel wall, resulting in an increase in vascular stiffness and a reduction of blood
flow to the tissues. All subtypes of arteriosclerosis have these processes in common, and
sub-classification is solely based on the cause and localization of the vascular remodeling.
Atherosclerosis—the focus of this review—describes adverse vascular remodeling stem-
ming specifically from the formation of atherosclerotic plaques in the arteries. This plaque
formation leads to thickening of the vessel wall, subsequent calcification further reduces
wall compliance, and both processes together increase arterial stiffness [10,11].

Mechanistically, the pathogenesis of atherosclerosis comprises a diversity of cell types
and molecules (Figure 1). Atherogenesis is exacerbated by various environmental risk
factors such as cigarette smoking and hypercaloric diet or by preexisting conditions such
as hypercholesterolemia, hyperglycemia, or hypertension [12–14]. Underlying these risk
factors is the presence of oxidative stress and, consequently, endothelial dysfunction. NO is
continuously produced and released by endothelial NO synthase (eNOS) in endothelial
cells at baseline. NO primarily exhibits anti-inflammatory and antithrombotic functions
such as attenuation of platelet adhesion, aggregation and leukocyte adhesion [15,16]. In a
stable endothelium, protective NO and harmful ROS are in balance since ROS and NO react
to peroxynitrate [17]. In the progression of atherosclerosis or diabetes, eNOS produces ROS,
e.g., superoxide anion instead of NO; a process also known as “eNOS uncoupling” [18].
The eNOS uncoupling further enhances superoxide anion production [19] and activation
of NAD(P)H oxidase [20], which, in turn, represents a major source of the superoxide
anion [20–22]. The subsequent imbalance toward ROS results in endothelial dysfunction,
which culminates in increased vascular permeability [23–25] and extravasation of LDL into
the intima [26–28]. Furthermore, endothelial dysfunction fosters platelet adhesion to von
Willebrand factor (vWF) and consequential platelet activation by the release of paracrine
mediators, such as adenosine diphosphate (ADP) and thromboxane (TxA2) [29]. Activated
platelets also secrete the chemokine RANTES (CCL5) that immobilizes on the surface of
inflamed microvascular or aortic endothelium and allows for shear-resistant monocyte
arrest under flow conditions [30].

Parallel endothelial dysfunction is associated with the expression of cell adhesion
molecules (CAMs), i.e., ICAM-1 and VCAM-1, on vascular endothelial cells, and subse-
quent tethering, rolling and adhesion of monocytes on the endothelium—a hallmark of
atherogenesis [31–33]. The accompanying morphological change allows monocytes to
transmigrate across the endothelium into the intima in a process called diapedesis. Upon
activation, monocytes become synthesizers of ROS, i.e., superoxide, hydroxyl radicals, and
peroxyl radicals that support protein degradation and DNA oxidation, but, most impor-
tantly, lipid peroxidation, which is a hallmark of chronic inflammatory diseases including
atherosclerosis [34–37]. In this milieu, ROS can oxidize native non-atherogenic LDL to
oxidized low-density lipoprotein (oxLDL). These aid in the activation of monocytes through
scavenger receptor pathways, which in turn maturate to macrophages and, subsequently,
cholesterol rich foam cells. The differentiation of monocytes into macrophages is a multi-
step process initiated by the recruitment of monocytes to the lesion site accompanied by the
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secretion of granulocyte–macrophage colony-stimulating factor (GM-CSF) and macrophage
colony-stimulating factor (M-CSF). These factors, in turn, drive the proliferation of intimal
cells in the early phase of atherosclerosis [38] and promote advanced plaque progression
by increasing macrophage apoptosis susceptibility [39]. The altered transcriptional pro-
gram in the activated monocytes promotes macrophage maturation [40,41]. Specifically,
by expression of atherogenic scavenger receptors including CD36, macrophages become
enabled to internalize oxidatively modified proteins such as oxLDL. This oxLDL uptake
by CD36 promotes macrophage differentiation and foam cell formation as illustrated by
the fact that apolipoprotein E (ApoE)-deficient animals that lack expression of CD36 show
a marked reduction in atherosclerotic lesions as compared to ApoE-deficient mice ex-
pressing CD36 [42,43]. Due to the prevailing oxidative stress by oxLDL, smooth muscle
cells (SMC) express scavenger receptors and take up oxLDL, resulting in the formation of
foam cells [44–48]. Concomitantly, macrophages proliferate in the intima and amplify the
maladaptive inflammatory process through the release of cytokines and matrix metallopro-
teinases (MMPs), which can degrade the arterial extracellular matrix and promote further
differentiation of macrophages into foam cells following uptake of oxLDL [42]. Cytokines
from activated macrophages and endothelial cells result in the release of platelet-derived
growth factor (PDGF), which, in turn, stimulates the migration of vascular SMCs from
the media into the intima and support their proliferation [49,50]. Ultimately, foam cells
derived from SMCs and macrophages die through both necrotic and apoptotic processes,
thereby releasing their contents [51], and in this way, attract further macrophages. Secreted
oxLDL molecules and dying foam cells accumulate in a necrotic core, a condensation site
for further cellular debris of apoptotic macrophages and SMCs, which is surrounded by an
endothelial layer and migrated SMCs. As the necrotic core progresses, calcium deposits
further establish the atherosclerotic plaque that thins its fibrous cap along maturation and
eventually becomes vulnerable to rupture [52]. When this luminal surface of the plaque
is disrupted, the highly thrombogenic core is exposed, which ultimately leads to primary
hemostasis. Locally impaired release of, e.g., the tissue factor pathway inhibitor, throm-
bomodulin or reduced expression of the endothelial protein C receptor on dysfunctional
endothelial cells at the site of plaque rupture, further supports thrombus formation and
prompts vessel stenosis, complete occlusion, and/or embolism [53–57].

A potential relationship between sphingolipids and atherosclerosis was first described
by Smith in 1960 [58]. She reported that in the area of advanced lesions, human aortas
present a higher proportion of lipids in the intima and media of the vessel wall. Specif-
ically, sphingomyelin (SM) is increased in the intima of lesions sites compared to areas
with less advanced lesions [58]. Sphingomyelin was found to account for 70–80% of
all phospholipids in the necrotic core, indicating a potential pathophysiological role of
sphingolipids in atherosclerosis—an observation that has been confirmed since then on
several occasions [59–62]. Beyond SM, the presence of dihydroceramides (DhCer), ce-
ramides (Cer), lactosylceramides (LacCer), glucosylceramides (GluCer), and sphingosine-
1-phosphates (S1P) was subsequently identified as a common sphingolipid signature of
carotid plaques [59]. In this review, we provide an overview of the disease modulating anti-
and pro-atherogenic functions of each of these sphingolipids and discuss open aspects of
the mechanistic pathophysiological relationship of these sphingolipids in the onset and
progression of atherosclerosis.
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the chemokine RANTES (CCL5), which enables monocytes to adhere under flow conditions. The 
adhesion is further promoted by cellular adhesion molecules (CAM) expressed by activated endo-
thelial cells. The lymphocyte function-associated antigen 1 (LFA-1) on the surface of monocytes en-
ables their binding to intercellular adhesion molecule 1 (ICAM-1) expressed by endothelial cells. 
This cellular interaction is strengthened by monocytic integrin α4β1 (VLA-4) binding to vascular 
cell adhesion molecule 1 (VCAM-1), further mediating lateral migration and transendothelial dia-
pedesis of monocytes into the intima. Intimal LDL is oxidized by ROS to oxidized LDL (oxLDL), 
which aids in the recruitment of monocytes and initiates differentiation into macrophages by scav-
enger receptor mediated uptake of oxLDL. Activated macrophages secrete platelet-derived growth 
factor (PDGF), which stimulates smooth muscle cells (SMCs) to migrate into the intima where they 
proliferate and produce extracellular matrix and again incorporate oxLDL. Uptake of oxLDL by 
SMC and macrophages leads to their differentiation into foam cells, which degrade and, in turn, 
release oxLDL. This self-amplifying process further attracts macrophages and SMCs that accumu-
late oxLDL and dying cells—the necrotic core of the atheromatous plaque. This process is accompa-
nied by thickening of the intima limiting blood flow through the lumen and results in weakening of 
the fibrous cap of the vulnerable plaque. As the disease progresses, the vascular lumen becomes 
gradually occluded, leading to turbulent blood flow, which supports endothelial dysfunction, the 
expression of CAMs, and the formation of vascular lesions. Increasing instability culminates in 
plaque rupture and subsequent thrombus formation. 
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Figure 1. Cellular pathomechanisms of atherogenesis and progression. Environmental risk factors
such as cigarette smoking and hypercaloric diet or preexisting conditions such as hypercholes-
terolemia, hyperglycemia or hypertension promote endothelial dysfunction and increase vascular
permeability and retention of LDL in the vascular intima. Endothelial dysfunction further promotes
platelet adhesion through the release of von Willebrand factor (vWF) and platelet activation by
mediators such as adenosine diphosphate (ADP) and thromboxane (TxA2). Activated platelets
secrete the chemokine RANTES (CCL5), which enables monocytes to adhere under flow conditions.
The adhesion is further promoted by cellular adhesion molecules (CAM) expressed by activated
endothelial cells. The lymphocyte function-associated antigen 1 (LFA-1) on the surface of monocytes
enables their binding to intercellular adhesion molecule 1 (ICAM-1) expressed by endothelial cells.
This cellular interaction is strengthened by monocytic integrin α4β1 (VLA-4) binding to vascular cell
adhesion molecule 1 (VCAM-1), further mediating lateral migration and transendothelial diapedesis
of monocytes into the intima. Intimal LDL is oxidized by ROS to oxidized LDL (oxLDL), which
aids in the recruitment of monocytes and initiates differentiation into macrophages by scavenger
receptor mediated uptake of oxLDL. Activated macrophages secrete platelet-derived growth fac-
tor (PDGF), which stimulates smooth muscle cells (SMCs) to migrate into the intima where they
proliferate and produce extracellular matrix and again incorporate oxLDL. Uptake of oxLDL by
SMC and macrophages leads to their differentiation into foam cells, which degrade and, in turn,
release oxLDL. This self-amplifying process further attracts macrophages and SMCs that accumulate
oxLDL and dying cells—the necrotic core of the atheromatous plaque. This process is accompanied
by thickening of the intima limiting blood flow through the lumen and results in weakening of
the fibrous cap of the vulnerable plaque. As the disease progresses, the vascular lumen becomes
gradually occluded, leading to turbulent blood flow, which supports endothelial dysfunction, the
expression of CAMs, and the formation of vascular lesions. Increasing instability culminates in
plaque rupture and subsequent thrombus formation.

2. Dihydroceramide in Atherosclerosis Progression
2.1. Synthesis and Metabolism

The de novo synthesis of sphingolipid is initiated by a highly coordinated sequence of
actions involving serine palmitoyltransferase, 3-keto-dihydrosphingosine reductase, and
dihydroceramide synthase, which convert cytosolic serine and palmitoyl CoA molecules
via sphinganine into DhCer (Figure 2).
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Figure 2. Sphingolipid biogenesis in atherosclerosis. Sphingolipids are synthesized de novo in
the endoplasmic reticulum (ER) and the Golgi apparatus. Subsequently, they are transported
via vesicles to the plasma membrane and the endosomes. The amino acid serine and palmitoyl-
CoA provide the basis for the synthesis of 3-keto-sphinganine, which is reduced to sphinganine
via 3-keto-dihydrosphinganine reductase. The dihydroceramide synthases form dihydroceramide,
which can be catalyzed to ceramide, the backbone of all sphingolipids, by dihydroceramide desat-
urase. Ceramide itself can be converted into three further sphingolipid species. Glucosylceramide
synthase mediates the production of glucosylceramide, which can be further modified to lactosyl-
ceramide through the enzyme lactosylceramide synthase. This modification can be reversed by
β-galactosidase and glucosylcerebrosidase, respectively. Ceramide also provides the backbone for the
generation of sphingomyelin via the activity of sphingomyelin synthase. Sphingosine-1-phosphate
can be synthesized by ceramidase and sphingosine kinase. Several sphingolipids shown are assumed
to exert influence on the progression of atherosclerosis. This impact can be categorized either as
atherogenic (yellow) or as protective (purple) or can display characteristics of both categories (mixed).

DhCer is further processed at the endoplasmic reticulum (ER) membrane. Here,
DhCer serves as a substrate for dihydroceramide desaturase that introduces a 4,5-trans-
double bond to the sphingolipid backbone, thus generating Cer, which is further catalyzed
by ceramidase and sphingosine kinases to first sphingosine and then S1P in the Golgi
apparatus. Similar to most sphingolipids, DhCer is elevated in atherosclerotic plaques and
is associated with inflammation and plaque instability [59].

2.2. Regulation of Inflammation

For a long time, no specific cellular function was attributed to DhCer, yet this no-
tion has changed over the past 15 years, as DhCer was shown to impact autophagy, cell
proliferation, cell survival and cell death in cancer and metabolic diseases [63–67]. In
atheromatous plaques, DhCer levels positively correlate with proinflammatory cytokines
such as monocyte chemoattractant protein-1, interleukin 6 (IL-6), and macrophage inflam-
matory protein-1 β. Over and above that, DhCer is able to induce the release of IL-6 in
human coronary smooth muscle cells without inducing apoptosis [59]. However, caution is
warranted in the interpretation of experimental results focusing on the specific function
of DhCer, as pharmacological or genetic inhibition of enzymes involved in the de novo
pathway will not only affect DhCer levels but also Cer concentration [68].
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2.3. Regulation of Autophagy

In line with a potential functional role of DhCer in inflammatory processes per
se, DhCer has been found to promote autophagy as demonstrated by the formation of
autophagosomes in prostate cancer cells after stimulation with a DhCer desaturase in-
hibitor [69]. Of note, similar results were obtained by exogenous addition of short-chain
DhCer [69]. Similarly, exogenous addition of DhCer analogues or treatment with DhCer
desaturase inhibitors led to the accumulation of DhCer and promoted autophagy in can-
cer cells without causing cell death [64,65]. While a mechanistic link between DhCer
and autophagy has thus been established, it remains a matter of controversy whether
autophagy has a protective or a progressive effect on atherosclerosis. Normal autophagy
flux is involved in vascular homeostasis, yet abnormal activity results in mechanisms
aggravating atherosclerosis such as inducing thrombosis in endothelial cells, the secre-
tion of pro-inflammatory cytokines by macrophages and abnormal remodeling of SMC
in the intima. These characteristics can finally cause cell death and plaque instability [70].
Since short-chain DhCer can favor the formation of autophagosomes, it is appealing to
hypothesize that short-chain DhCer also promotes autophagy in a pathophysiological
context that may drive the progression of atherosclerosis. Moreover, the influence of DhCer
on atherosclerosis promoting as well as atheroprotective mechanisms appears not to be
restricted to autophagy only. DhCer has also been proposed to diminish apoptosis by
inhibiting the formation of pores on the outer mitochondrial membrane, thereby impeding
an essential step of the apoptotic cascade [71]. It remains to be evaluated whether and
how this effect of DhCer on apoptosis influences atherosclerosis progression. In addition,
DhCer affects oxidative stress by inducing ER stress. In contrast, DhCer levels are also
elevated in the presence of oxidative stress, which can be explained by the inhibition of
DhCer desaturase [72,73]. To investigate which effect provides the initiator for the other,
further research is needed.

3. Ceramide

The hydrophobic properties of ceramides restrict their solubility in an aqueous en-
vironment. Ceramides in plasma are therefore either bound to carrier proteins such as
lipid transfer proteins or are associated with lipoproteins such as LDL and high-density
lipoprotein (HDL). Cer provides the acyl-backbone for other sphingolipids such as S1P,
GluCer, LacCer and SM. Besides the de novo pathway, the most physiologically relevant
means of Cer synthesis is the acyl-CoA-dependent conversion of sphingosine and non-
esterified fatty acids by the activity of a family of six ceramide synthases (CerS1-6) [74,75]
into ceramides with distinct acyl chain lengths. Alternatively, ceramides can be metabolized
by sphingomyelinases (SMases)-induced hydrolysis of sphingomyelin to Cer.

Importantly, Cer concentrations correlate with the risk for cardiovascular disease
(CVD) in general and atherosclerosis specifically; as such, Cer qualifies as a prognostic
marker for CVD as well as for sphingomyelin (SM) [76–78]. Since Cer is present in signifi-
cantly enriched amounts in atherosclerotic plaques and has been shown to be correlated
with aggregated [79] and circulating LDL [80], a causal relationship between Cer and
atherosclerotic plaque progression has been assumed.

3.1. Sphingomyelinases (SMases)

It seems that an athero-promoting effect of Cer is mediated by specific types of SMases,
e.g., Cer can be hydrolyzed from multiple SMases such as secreted lysosomal (L-SMase),
acidic sphingomyelinase (A-SMase) and membrane neutral SMase (N-SMase). L-SMase
and A-SMase are located in the endosome but can be translocated to the outer plasma
membrane under certain conditions [81,82]. N-SMase, however, is synthesized predomi-
nantly in the ER and Golgi apparatus, but also in the inner leaflet of the plasma membrane.
All three forms of SMase have been implicated in atheroprogression in distinct manners.
High density lipoprotein (HDL) is one out of five major lipoproteins that transports lipid
molecules within the body. HDL is usually referred to as “good cholesterol”, as it captures
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lipid molecules in the artery walls and thereby prevents atheroprogression [83,84]. HDL
molecules mainly consist of apolipoprotein A (ApoA) and further apolipoprotein C (ApoC).
The main function of ApoC-1 protein is the inhibition of cholesterol ester transfer pro-
tein (CETP) and inhibiting the lipoprotein binding to the “bad cholesterols” high density
lipoprotein (HDL) and very low density lipoprotein (VLDL). Mutations reducing the func-
tion of CETP have thereby been associated with elevated atherosclerosis progression [85].
This pathophysiological mechanism seems to be of crucial role in terms of the involvement
of Cer in atherogenesis, since ApoC-1-enriched HDL induces apoptosis and cell death of
vascular smooth muscle cells (VSMC) via N-SMase activation [86]. Furthermore, oxLDL
induces proliferation of VSMC via N-SMase [87,88]. Since both apoptosis and proliferation
of VSMC are mechanisms associated with atherogenesis, these findings may suggest an
atheroprogressive effect of N-SMase activation. Similar pro-atherogenic effects have been
described for A-SMase. Endothelial cells secrete A-SMase, which hydrolyses SM on the
surface of atherogenic lipoproteins to Cer and thus mediates the fusion, aggregation and
affinity of lipoprotein particles with/at/toward the endothelium of arteries [89]. Analy-
ses of ApoE-/-/Ldlr-/-/Smpd1-/- triple knockout mice highlighted the impact of A-SMase
on atherogenesis, since the absence of A-SMase reduced the formation of atherosclerotic
lesions and arterial trapping of atherogenic lipoproteins in the otherwise atheroprone
ApoE-/-/Ldlr-/- mice [90]. Similar to A-SMase, L-SMase has also been found to promote the
pathogenesis of atherosclerosis. As a result of ligand binding to TNF receptors, activation
and translocation of L-SMase proceeds. Grassme et al. identified a mechanism by which
L-SMase seems to enhance atherosclerosis [91] through the formation of Cer-enriched do-
mains. These domains are formed by receptor-mediated translocation of L-SMase. L-SMase
is primarily localized in the endolysosomal compartment and can be relocated to the
outer leaflet of the plasma membrane upon stimulation via CD95 receptor [92–94]. Due
to this translocation, sphingolipid-rich domains accumulate and release extracellularly
orientated Cer. Accumulation of Cer leads to the formation of Cer-enriched platforms
on the surface, which, in turn, efficiently initiate apoptosis signaling by trapping and
clustering the receptors. The aggravating effect on atherosclerosis is postulated since the
Cer-enriched membrane domains in VSMC and EC impair the vasodilatory properties
in ECs and VSMC [95,96] and enhance muscarinic-1 receptor-mediated constriction of
coronary arteries [97].

Overall, the three types of SMases have been implicated at several levels in the
progression of atherosclerosis. However, as these studies have been typically performed
in different models without back-to-back comparisons of the role of different SMases, it
remains to be shown whether the individual roles of L-SMase vs. A-SMase or N-SMase in
atherogenesis are specific or redundant.

3.2. Regulation by Matrix Metalloproteinases (MMPs)

Activation of the oxLDL-induced SM/Cer pathway and subsequent activation of
ERK1/2 is regulated by MMPs, a large family of zinc proteases [98]. In principle, MMP
content is increased in atheromatous plaques and has been associated with plaque instability
and the formation of stenotic lesions that recur after treatment [99]. The expression of
these MMPs is regulated and activated by major triggers of vascular remodeling such
as inflammation or oxidative stress [100]. In SMC, the connection between MMPs and
atherogenesis is considered to be mediated by oxLDL-induced activation of N-SMase,
in that inhibition of MMP-2 inhibits N-SMase and as such, Cer production. Conversely,
exogenous MMP-2 activates the SM/Cer pathway, supporting the notion of an oxLDL-
induced activation of the Cer pathway via activation of N-SMase [98]. However, the exact
mechanism by which oxLDL activates SMases via MMPs is currently unclear and remains
the scope for future research. These findings highlight, thus far, the atheroprogressive
functions of Cer and related mediators as SMases and MMPs. As we will discuss in the
next paragraph, inflammatory mediators may exert an additional influence on the effects
of sphingolipids on cellular mechanisms such as apoptosis or vasodilation.



Int. J. Mol. Sci. 2022, 23, 11948 8 of 22

3.3. Regulation by Tumor Necrosis Factor Alpha (TNFα)

Tumor necrosis factor alpha (TNFα) is likely a central factor that further increases
Cer concentrations in atherosclerotic lesions [101,102]. TNFα contributes to endothelial
dysfunction by stimulating ROS production and induces the expression of various inflamma-
tory cytokines and chemokines [103–106]. Acting on the vascular endothelium, TNFα thus
emerges as a key driver for the progression of atherosclerosis. Linking TNFα to sphingolipids,
Sawada et al. proposed a TNFα-induced increase in Cer levels in human glioma cells via
two different pathways, both of which are initiated by activation of caspase-8: first, a p53
and ROS-dependent pathway that leads to N-SMase activation via GSH depletion and thus
to increased production of Cer; a second pathway activates A-SMase directly via caspase-8,
and, thus, causes a ROS-independent increase in Cer levels resulting in a TNFα-induced
apoptosis of human glioma cells [107]. Analogously, clinical studies have shown that the
ischemic myocardium is stimulated by inflammatory cytokines such as TNFα, interleukin 2
and endostatin, similarly resulting in an A-SMase- and N-SMase-dependent elevation of Cer
levels [108,109]. However, the effect of TNFα on Cer production is not unidirectional. TNFα
can also be induced by stimulating human umbilical vein endothelial cells with C2-Cer [110].
It may thus be inferred that TNFα not only stimulates Cer production, but conversely, Cer
synthesis also stimulates TNFα release—thus establishing a pathological feedback loop. This
notion is in line with studies showing that anti-TNFα therapy is able to improve endothelial
function in humans with vascular inflammation [111,112]. Nevertheless, it remains to be
shown whether anti-TNFα treatment may reduce vascular ceramide production and attenu-
ate CVD and atherosclerosis. Of interest, changes in amino acid metabolism may also affect
Cer de novo synthesis, as homocysteine leads to increased formation of superoxide anions
by stimulation of the NADPH oxidase pathway [113]. In agreement with this hypothesis,
ceramide levels increase in response to rising homocysteine concentrations via the de novo
synthesis pathway rather than the SMase pathway, as treatment with myriocin (a highly
selective serine palmitoyltransferase inhibitor) reduced homocysteine-induced ceramide
production in rats [114]. In summary, ceramide is produced by two independent synthesis
pathways: (i) SMase-dependent hydrolysis from sphingomyelin and (ii) de novo synthesis
via ceramide synthase, both of which are assumed to be stimulated in atherosclerosis in
general and by inflammatory cytokines such as TNFα specifically.

In conclusion, Cer has been demonstrated to be detrimental in atherosclerosis as (i) being
enriched in atherosclerotic plaques, (ii) SMases being involved in formation of aortic lesions
and processes involved in atherogenesis such as apoptosis or lipoprotein trapping and (iii)
Cer levels being elevated in response to MMPs and TNFα—which are also elevated in
atherosclerotic lesions—via SMase activation. The underlying mechanisms of action are
probably diverse, only partially elucidated, and will be discussed in the following sections.

3.4. Regulation of NO Production

Under physiological conditions, vascular NO production is stimulated by shear stress,
catalyzed by the endothelial NO synthase (eNOS), and constitutes an essential feature of
endothelial cell function and vascular homeostasis. Reduced NO release or impaired NO
bioavailability are key factors in the progression of endothelial dysfunction, manifested by
loss of endothelium-dependent vasorelaxation. Cer is considered an important negative
regulator of endothelial NO production, as it decreases the release of NO from human
umbilical vein endothelial cells [115,116] and initiates the production of superoxide an-
ions [117–119]. As such, Cer may promote endothelial dysfunction by decreasing NO and
increasing ROS production, and thus promote the development of atherosclerosis.

3.5. Regulation of LDL Aggregation

Another essential role of ceramide in the development of atherosclerosis is the ceramide-
induced aggregation of LDL. Increased levels of Cer correlate with the ability of LDL to
form aggregates [120–123]. During atherogenesis, LDL is enriched at the vessel mem-
brane where it is exposed to SMase. OxLDL activates SMase to convert LDL-SM to Cer
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within atherosclerotic lesions [75,122]. Cer, in turn, enables a conformational change in
apolipoprotein B100 (ApoB100), which provides the essential step for LDL molecules to
aggregate [124–126]. This process is further accompanied by macrophage-mediated phago-
cytosis and foam cell formation, aggravating atherosclerotic lesion formation [92,127,128].
In line with this concept, the use of the sphingolipid synthesis inhibitor myriocin prevents
aggregation of LDL and succeeds in a reduction of plaque formation [120,127].

In addition to its ability to promote oxidative stress and to enhance LDL aggrega-
tion, Cer causes apoptosis and necrosis in human coronary artery smooth muscle cells
in vitro [59], which further accentuate its pro-atherosclerotic function.

More recent findings have also taken into account a more differentiated view on
the distinct role of certain molecular species of ceramide. Long chain (C11–C20), very
long chain (C21–C24) and ultra-long chain (>C24) ceramide species are formed in the
sphingolipid synthesis pathway by six different Cer synthases (CerS1-6) with specific
affinities for the chain length of the fatty acyl-CoA. Deletion or pharmacologic inhibition
on N-SMase2 in the ApoE-/- mouse model reduced atherosclerotic lesions and decreased
macrophage infiltration and lipid deposition via small interfering RNAs in the nuclear
factor erythroid 2-related factor 2 pathway [129]. This species-dependent effect on the
biological activities of Cer was underscored by overexpression of CerS4 and CerS6, which
generate long chain Cer to inhibit cell proliferation while inducing apoptosis, respectively.
CerS2, in turn, forms very long chain Cer that increases cell proliferation [128,130]. This
highlights the importance of the activity of specific CerS and subsequent changes in Cer
species composition in the initiation and progression of atherosclerosis and remains a point
of consideration in the understanding of the pathophysiology of CVD.

4. Sphingosine-1-Phosphate

The cleavage of fatty acids from the sphingolipid backbone of Cer by ceramidases
releases sphingosine, which can be further phosphorylated by the activation of sphingosine
kinase isoenzymes 1 and 2 (Sphk1, Sphk2) to spingosine-1-phosphate [131]. Sphk1 and
Sphk2 are highly conserved and present in most mammalian cells and tissues, including
platelets [132], erythrocytes [133], and the endothelium itself [134] which secrete S1P by the
specific S1P-transporters major facilitator superfamily domain containing 2B (MFSD2B, ery-
throcytes and platelets) and spinster-homologue-2 (SPNS2, endothelial cells) into plasma
and lymph [135–138]. Here, S1P signals as a bioactive lipid mediator by targeting five
different G protein-coupled S1P-receptors (S1PR1-5) on various hematopoietic and vascular
cells, and thereby controls cellular proliferation, apoptosis and cell migration in the blood
vasculature and interstitial spaces and regulates endothelial barrier function [139]. There-
fore, S1P/S1PR signaling may infer a significant role in the pathogenesis of atherosclerotic
cardiovascular disease. Serum S1P is a strong and robust predictor of the occurrence of
obstructive coronary artery disease [140], suggesting a correlation with atherogenic effects.
Furthermore, the S1PR modulator FTY720, which acts upon all S1PRs except S1PR2 [141],
effectively attenuates atherogenesis in ApoE- and LDL-receptor (LDL-R) deficient mice, re-
spectively [142,143], implicating an atheroprotective effect. Future research should further
confirm these contradictory initial findings.

To realize signaling in health and disease, S1P has to bind to chaperone proteins
including apolipoprotein M (ApoM) on HDL (~65% of all free plasma S1P) or albumin
(~30% of all free plasma S1P) and LDL or VLDL (<5% of all plasma S1P), as its hydropho-
bic backbone and polar phosphate head group restrict the membrane permeability of
S1P [144–146]. The plasma S1P levels also closely correlate to levels of total cholesterol,
LDL cholesterol and HDL cholesterol in normolipidemic healthy subjects [147,148]. These
associations may be of mutual functional relevance, e.g., the interaction of S1P and HDL
has been proposed to reinforce their anti-thrombotic, anti-inflammatory and antioxidant
properties [149]. The S1P/cholesterol interrelation has been experimentally validated by
gain-of-function mutations of the LDL-R in livers of mice, which reduced S1P and ApoM
levels in wildtype but not in ApoE-deficient mice. This finding suggests ApoE-dependent
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clearance of ApoM-associated S1P [150]. In line with this notion, statin treatment reduced
serum ApoM levels in type 2 diabetes mellitus patients [151]. Further, only the S1P/ApoM
complex on HDL is able to activate endothelial S1PR1 Gi-signaling and downstream ERK-
and Akt-signaling, preserving endothelial adherent junctions [145] and decreasing TNFα-
induced activation of nuclear factor kappa B (NFκB) and expression of ICAM-1 [152],
while this endothelium-protective signaling cascade is only insufficiently activated by the
S1P/albumin complex [153].

The majority of receptor-associated actions of S1PR-mediated intracellular processes
are atheroprotective. Evidence from in vivo experiments shows that S1PR1 and S1PR3 are
essential for both maintenance of endothelial barrier function, as the receptors’ downstream
signaling cascade stabilizes endothelial cell–cell junctions [154] and attenuates endothelial
contraction [155], and vascular relaxation by phosphorylation of eNOS and subsequently
increased endothelial NO release [156–158]. In addition, a protective function against the
development of atherosclerotic lesions has been suggested, as expression of the adhesion
molecules VCAM-1 and ICAM-1 can be inhibited by S1PR1 signaling, thus reducing leuko-
cyte adhesion and subsequent extravasation [157,158]. Analogously, S1P signaling via
S1PR3 can inhibit the recruitment of inflammatory neutrophils and suppress apoptosis of
cardiomyocytes. S1PR3-deficient mice are accordingly more susceptible for infarction in a
mouse model of myocardial ischemia/reperfusion as compared to their corresponding wild
type [159]. In contrast to this anti-inflammatory role of S1PR3 signaling, however, S1PR3
deficiency in ApoE-/- mice was found to strongly reduce monocyte recruitment by decreas-
ing monocyte chemoattractant protein-1 secretion without affecting the size of atherogenic
lesions [160]. These pro-inflammatory and, hence, potentially atherogenic properties of S1P
signaling are further supported by the finding that S1PR1 enhances chemotaxis of lympho-
cytes and natural killer cells (NK) and, thus, has pro-inflammatory and pro-atherosclerotic
properties [153]. S1P signaling through S1PR2 is even more likely to be associated with
atherogenic functions. Although S1PR2 has been shown to inhibit SMC migration [161],
it is centrally involved in the recruitment of inflammatory macrophages [162]. As such,
S1PR2

-/-/ApoE-/--double-deficient mice show reduced release of IL-18 and IL-1β, leading
to impaired interstitial macrophage recruitment and, consequently, reduced formation of
atherosclerotic plaques and necrotic cores in comparison to S1PR2-proficient mice [163].
Consistently, S1PR2-deficient macrophages express less CD36 and scavenger receptors ex
vivo and increase cholesterol efflux while decreasing oxLDL uptake [163]. Atherogenic
effects of S1PR2 signaling have also been suggested based on the fact that S1P can impair
endothelial barrier function via the S1PR2/Rho/ROCK pathway [164]. However, S1PR2
deficiency in mice is associated with an increased risk of seizures and the development of
B-cell lymphomas, arguing against the suitability of this receptor as a therapeutic target in
atherosclerosis [165–167]. S1PR4, expressed on leukocytes, NK cells and airway SMC [168],
and S1PR5 expressed on NK cells and oligodendrocytes [169] have not been associated
with atheroprogression to date, even though S1PR4 stimulates IL-10 secretion from T-cells
and simultaneously inhibits interleukin 4 and interferon-γ production [170], while S1PR5
mobilizes NK cells during infections. Although these findings may suggest an indirect
involvement of S1PR4 and S1PR5 in atherosclerosis-associated inflammation, the latter
receptors seem to have less of a direct impact on atherosclerosis pathology.

5. Sphingomyelin (SM)

SM is the most abundant sphingolipid in mammalian tissues, where it serves as an
important structural component of cell and plasma membranes [171]. Importantly, in the
context of atherosclerosis, SM is also involved in maintaining cholesterol homoeostasis,
as addition of exogenous SM to cells increases cholesterol biosynthesis and affects LDL
binding to cell surface receptors [172,173]. However, there is further evidence implicating
SM in the pathogenesis of atherosclerosis. SM has been identified as one component of
human atherosclerotic plaques, and its abundance correlates with histological markers of
plaque instability and is associated with the expression of pro-inflammatory cytokines. In
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accordance with this observation, stimulation of human coronary smooth muscle cells with
SM in vitro induces a pro-inflammatory response reflected by IL-6 release [59]. SM plasma
levels of atherosclerotic ApoE-/- mice are also elevated in comparison to WT mice [174].
Likewise, rabbits with hypercholesterolemia show elevated levels of SM compared with
other lipids in atherosclerotic lesions [175]. Similar to S1P, SM in plasma is associated
with VLDL/HDL cholesterol (63–75%) and LDL cholesterol (25–35%). The emerging
notion that elevated SM levels in plasma are associated with pro-atherogenic properties
is further supported by the fact that a decrease in HDL SM content is associated with
smaller and more dense HDL. These complex lipoprotein particles favor cholesterol efflux,
anti-oxidative activity toward LDL oxidation, antithrombotic activity in human platelets,
as well as anti-inflammatory and anti-apoptotic activity [176]. In accordance, anti-apoptotic
and anti-oxidative activities of small compact HDL cholesterol have been associated with
SM degradation [177].

Unlike SMase, which hydrolyzes SM to Cer, the sphingomyelin synthase (SMS) cat-
alyzes the synthesis of SM from Cer. SMS represents a family of different isoforms: SMS1
is primarily localized in the Golgi apparatus, whereas SMS2 primarily in plasma mem-
branes [178,179].

Inhibition of SMS1 has been proposed as a potential therapeutic approach in atheroscle-
rosis, as SMS1-/- mice show a decreased atherosclerotic phenotype characterized by reduced
atherosclerotic lesions in the entire aortas as well as decreased macrophage content in these
lesions [180]. Similar effects have been achieved in SMS2-deficient mice. These mice are
marked by a reduction in secretion of pro-inflammatory cytokines, which is accompanied
by the reduction of atherosclerotic lesions, necrotic core formation, macrophage content
and collagen content compared to wild-type mice [181]. The pro-atherogenic capabilities
of SM are further confirmed, as adenovirus-mediated insertion of SMS2 in ApoE -/- mice
results in an increase in atherosclerotic lesions [182]. Similarly, SMS2 is shown to act as a
modulator of NF-κB activation in HEK193 cells and macrophages from SMS2-deficent mice.
This could provide one mechanistic explanation of the pro-atherogenic function of SM [183].
Consistent with this pro-atherogenic character of SM, overexpression of SMS1 and SMS2
increases the lipoprotein atherogenic potential in mice [184], whereas the simultaneous
deficiency of SMS1 and SMS2 leads to a reduction in plasma SM and pro-inflammatory
cytokine secretion [180]. In this context, it is remarkable that the inhibition of SMS1 alone
leads to a decrease in the SM content in plasma, but simultaneously to an increase in DhCer
and Cer in the plasma. Considering those two being associated with both atheroprotective
and atherogenic effects, an explicit categorization of SM as an atheroprotective should only
be made with caution. Further, it will be crucial to determine the mechanistic interplay
between the inhibition of SMS1 and the increase in DhCer and Cer in order to identify a
definite therapeutic signaling cascade. With regard to the identification of potential novel
therapeutic targets, it is furthermore relevant to consider that loss-of-function by deletion
of SMS1 (similar to S1PR2, vide supra) entails serious side effects such as low-frequency
hearing loss [179,185], impaired insulin secretion [186], or CD4+ cell dysfunction [187].

6. LacCer and GluCer—Sphingolipids with Non-Chimeric Functions?

Lactosylceramide synthase (LacCerS) generates LacCer by transferring galactose
from uridine diphosphate-galactose to GluCer. LacCer and GluCer are classified as gly-
cosphingolipids whose synthesis can be inhibited by D-threo-1-phenyl-2-decanoylamino-
3-morpholino-1-propanol (D-PDMP). D-PDMP is an analog of glucosylceramide orig-
inally synthesized to inhibit glcosylceramide synthase in patients with Gaucher’s dis-
ease [188,189]. However, D-PDMP has also been shown to be directly capable of Lac-
CerS [188]. These inhibitory effects of D-PDMP of LacCer and GluCer synthases have
been utilized to identify the involvement of these sphingolipids in terms of atherogenesis.
Thereby, it was shown that LacCer and GluCer increase vascular dysfunction, since aortic
wall thickening, presence of Ca2+ deposits and vascular stiffness were decreased upon
blockade of glycosphingolipid synthesis in ApoE-/- mice [189].
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This finding is strengthened by previous studies showing that LacCer exerts an in-
fluence on many mechanisms relevant to atherosclerosis. For example, LacCer mediates
TNF-induced NF-κB expression and ICAM-1 expression in endothelial cells by activation of a
redox-dependent transcriptional pathway [190,191]. In the same manner, it has atheroprogres-
sive effects by stimulating the expression of MAC1 on monocytes or neutrophils, presumably
facilitating their adhesion to endothelial cells and initiating atherosclerosis [189]. Based on
the results of various studies, Chatterjee and colleagues postulated the following pathway
to mechanistically explain LacCer-induced atherosclerosis progression: OxLDL increases the
production of endogenous LacCer, which, in turn, activates NADPH oxidase [118,191–193].
The resulting production of superoxide [190,194,195] induces GTP loading of P21ras and thus
activation of a kinase cascade from Raf-2, Mek2 and p44MAPK. Phosphorylation of p44MAPK
results in a local shift of p44MAPK from the cytoplasm to the nucleus [118,191]. This step
determines the final expression of c-fos, proliferating nuclear antigen and cell proliferation.

GluCer has previously been implicated in arterial stiffness and vascular cell wall thick-
ening [189] but, in addition, appears to have a direct impact on atherosclerotic plaque de-
velopment, as inhibition of glucosylceramide synthase attenuates atherosclerotic plaque
development and the expression of inflammatory genes [196]. These glycosylceramide
synthase-associated effects were found even more pronounced in ApoE*leiden mice, in
which pharmacological inhibition of glucosylceramide synthase also led to a drastic reduction
of atherosclerotic plaques. This effect was accompanied by a decreased cholesterol level in the
liver and an increased excretion of cholesterol by feces and an increased secretion of bile [196].
The effects could also be replicated in LDL receptor KO mice. In vitro, glucosylceramide per se
initiates apoptosis in HCASMC and induces an inflammatory response, evident as increased
expression of IL-6, MCP- and macrophage inflammatory protein-1β [59]. In view of these
reported functions, LacCer and GluCer seem to exhibit primarily pro-atherogenic effects.

7. Conclusions

The large quantity of sphingolipids identified in atherosclerotic plaques supports a
possible link between sphingolipids and atherosclerosis. The key question, however, that
remains to be clarified is whether sphingolipids are the cause or the consequence of athero-
genesis. Various studies have demonstrated a specific effect of sphingolipids on cellular
processes relevant to the development of atherosclerosis, such as impaired NO produc-
tion [109,115–119], apoptosis [59,71,86,107], plaque development [70,79,80,120,127,196], or
LDL aggregation [59,80,125]. As a function of their cellular and tissue context or their
respective sphingoid bases, however, the sphingolipids Cer, DhCer, GluCer, LacCer, SM
and S1P can exert chimeric and often opposing functions in the pathogenesis and progres-
sion of atherosclerosis (Table 1). While the existing evidence reviewed herein suggests
that SM, DhCer, LacCer and GluCer exclusively mediate atheroprogressive effects, Cer
and S1P may exert both protective as well as progressive properties in atherosclerosis
(Table 1). As such, S1P mediates anti-apoptotic [139,159] and anti-inflammatory [162,170]
processes as well as enhancing vasoconstriction [149,155] while maintaining endothelial
barrier function [145,154] (Table 1). In contrast, its pro-atherogenic functions are evident in
its ability to activate lymphocytes [153] and to promote primary hemostasis and thrombus
formation [163] (Table 1). Furthermore, it should be considered that the synthetic pathway
of sphingolipids is intertwined, and enzymes that can synthesize multiple species of a
sphingolipid class with unique properties mediate the generation of one from another.
Very long chain Cer is pro-thrombotic, induces cell proliferation and TNFα secretion, and
correlates with LDL aggregation, whereas long chain Cer inhibits proliferation and induces
apoptosis [128,130]—highlighting the chimeric properties of different Cer species depend-
ing on their sphingoid bases (Table 1). This opposing mode of action within the same
class of sphingolipids is influenced by their biosynthesis, as for, e.g., Cer, the activity of
CerS1-6 results in the generation of Cer with a distinct chain length, which has unique
progressive or protective functions on atherogenesis [128,130]. Furthermore, sphingolipid
receptors can essentially determine whether the mediated effect is atheroprotective or
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atherogenic, as exemplified by the differential expression and upstream signaling facili-
tated by S1PR1-5 [139,141–143]. In addition, an increasingly recognized level of regulation
is the bioavailability of S1P mediated by its specific carrier molecules. While ApoM-
associated S1P mediates atheroprotective effects, S1P bound to albumin can mediate either
atheroprotective or atheroprogressive effects [145,150,152].

Table 1. Sphingolipids and their associated mechanism in atherogenesis. Sphingolipids exhibit
molecular mechanisms, which are either categorized as atheroprotective or atheroprogressive.

Sphingolipid Associated Mechanism Effect on Atherosclerosis References

Dihydroceramide

↑ Autophagy
↑ Oxidative stress

↑ Inflammatory cytokines
↑ Cell proliferation
↑ Plaque instability

Progressive [59,63–67,69,71–73]

Cer

Long-chain

Very long-chain

↑ Inflammation
↑ Proliferation

↑ LDL-Aggregation

↓ Cell proliferation
↑ Apoptosis

↑ Cell proliferation

Progressive

Protective

Progressive

[28–30,32,59,76,90,100–
102,128,130]

S1P
S1PR1

S1PR2

S1PR3

S1P/ApoM

S1P/Albumin

↑ Endothelial barrier function

↓ Apoptosis
↑ Chemotaxis of lymphocytes and NK cells
↓ ICAM1 and VCAM1 expression

↓ Barrier function
↑ Recruitment of inflam. macrophages
↑ Plaque and necrotic core formation

↓ SMC migration

↑ Endothelial barrier function
↑Monocyte recruitment

↓ Thrombus formation
↓ Inflammation
↓ Apoptosis

Not shown

Protective

Progressive
Progressive

Protective

Progressive

Protective

Protective
Progressive

Protective

Protective + progressive

[59,139,141,143,145,149,150,
152,153,156–158,160–164]

Sphingomyelin

↑ Hypercholesterolemia
↑ Apoptosis

↑ Inflammatory cytokines
↑ Thrombus formation
↑ Plaque instability

↑ Atherosclerotic lesions
↑Macrophage content in lesions

Progressive [59,174–177,180–184]

Lactosylceramide

↑ TNFα-induced NFκB expression
↑ ICAM-1 expression
↑MAC1 expression
↑ Arterial stiffness

↑ Aortic wall thickening
↑ Presence of aortic Ca2+ deposits

↑ Apoptosis
↑ Inflammatory cytokines

Progressive [59,118,189–193,197]

Glucosylceramide

↑ Arterial stiffness
↑ Aortic wall thickening

↑ Presence of aortic Ca2+ deposits
↑ plaque development
↑ cholesterol level liver

↑ Apoptosis
↑ Inflammatory cytokines

Progressive [1,2,5]
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In a broader context, the functions of sphingolipids are determined by such a number
of individual factors and steps such that one may wonder about the evolutionary purpose
of this complexity. This could serve as an amplification process, so that many individual
steeps enhance the effect, explaining the involvement of many cell types and molecules in
the context of atherosclerosis. Furthermore, this signaling network might reflect a system of
mutual checks and balances, ensuring that not a single imbalance leads immediately to the
formation of atherosclerosis, thus preventing atherosclerosis from developing rapidly. A
deeper understanding of the complex sphingolipid network and the chimeric properties of
individual sphingolipid classes and species offers new therapeutic possibilities. For exam-
ple, knowledge of the biosynthesis of different species of a sphingolipid, each with chimeric
functions, opens up therapeutic strategies that allow for targeted inhibition of enzymes that
lead to the formation of atherosclerosis-promoting sphingolipids and, consequently, could
maximize the therapeutic outcome. Taken together, this may imply that sphingolipids and
their actions should be analyzed as a network rather than as individual components.
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