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The interface between a ferro-/ferrimagnetic insulator and a normal metal can support spin cur-
rents polarized collinear with and perpendicular to the magnetization direction. The flow of angular
momentum perpendicular to the magnetization direction (“transverse” spin current) takes place via
spin torque and spin pumping. The flow of angular momentum collinear with the magnetization
(“longitudinal” spin current) requires the excitation of magnons. In this article we extend the ex-
isting theory of longitudinal spin transport [Bender and Tserkovnyak, Phys. Rev. B 91, 140402(R)
(2015)] in the zero-frequency weak-coupling limit in two directions: We calculate the longitudinal
spin conductance non-perturbatively (but in the low-frequency limit) and at finite frequency (but in
the limit of low interface transparency). For the paradigmatic spintronic material system YIG|Pt,
we find that non-perturbative effects lead to a longitudinal spin conductance that is ca. 40% smaller
than the perturbative limit, whereas finite-frequency corrections are relevant at low temperatures
. 100 K only, when only few magnon modes are thermally occupied.

I. INTRODUCTION

In magnetic insulators, transport of angular momen-
tum is possible via spin waves, collective wave-like
excursions of the magnetization from its equilibrium
direction.1–3 A spin wave — or its quantized counter-
part, a “magnon” — carries both an oscillating angu-
lar momentum current with polarization perpendicular
(transverse) to and a non-oscillating angular momentum
current with polarization parallel (longitudinal) to the
magnetization direction. The magnitude of the trans-
verse spin current is proportional to the amplitude of the
spin wave; the magnitude of the longitudinal spin current
is quadratic in the spin wave amplitude, i.e., it scales pro-
portional to the number of excited magnons.4–6

Both components of the spin current couple to con-
duction electrons at the interface between a ferro-
/ferrimagnetic insulator (F) and a normal metal (N).
Microscopically, the coupling of the transverse compo-
nent can be understood in terms of the interfacial spin
torque and spin pumping,7–11 which both give an an-
gular momentum current perpendicular to the magneti-
zation direction, see Fig. 1 (left). A longitudinal spin
current across the interface is obtained from the spin
torque acting on or spin pumped by the small thermally-
induced transverse magnetization component.12 Alterna-
tively and equivalently, a longitudinal interfacial spin cur-
rent results from magnon-emitting or -absorbing scat-
tering at the interface, as shown schematically in Fig.
1 (right). The transverse component of the interfacial
spin current is relevant for coherent effects, such as the
spin-torque diode effect13,14 or the spin-torque induced
ferromagnetic resonance.15–17 The longitudinal compo-
nent governs incoherent effects, such as the interfacial
contribution to the spin-Seebeck effect,18–21 the spin-
Peltier effect,22 or non-local magnonic spin-transport
effects.23–25 The spin-Hall magnetoresistance26–31 de-
pends on a competition between both components of the

FIG. 1. Illustration of the microscopic mechanisms underly-
ing the transverse (left) and longitudinal (right) components
of the spin current through the interface between a ferro-
/ferrimagnetic insulator F and a normal metal N. The trans-
verse spin current is mediated by the spin torque and spin
pumping involving electrons (red) with spins perpendicular
to the magnetization and spin waves (blue) with frequency
ω equal to the frequency at which the spin accumulation µs

in N is driven. The longitudinal component arises from spin-
flip scattering of conduction electrons (red), combined with
the creation or absorption of thermal magnons of frequency
Ω (blue). (The thermal magnon frequency Ω is not related
to the driving frequency ω.) Alternatively, the longitudinal
component can be seen as arising from the spin torque exerted
on/spin pumped by the transverse magnetization component
induced by thermal fluctuations in F (not shown schemati-
cally).

spin current.32,33

In the linear-response regime, the transverse spin cur-
rent density jxs⊥ through the F|N interface (directed from
N to F) is proportional to the difference of the trans-
verse spin accumulation µs⊥ in N and the time deriva-
tive of the transverse magnetization amplitude m⊥ at the
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interface,11

jxs⊥(ω) =
g↑↓
4π

[µs⊥(ω) + ~ωm⊥(ω)]. (1)

The coefficient of proportionality g↑↓ is complex and
known as the “spin-mixing conductance” per unit area.34

Omitting Seebeck-type contributions that depend on the
temperature difference across the F|N interface, the lon-
gitudinal spin current density jxs‖ is proportional to the

difference of the longitudinal spin accumulation µs‖ in N

and the “magnon chemical potential” µm,35

jxs‖(ω) =
gs‖

4π
[µs‖(ω)− µm(ω)]. (2)

In the limit of weak coupling across the F|N interface the
longitudinal interfacial spin conductance is proportional
to the real part of the spin-mixing conductance,12,35,36

gs‖ =
4 Re g↑↓

s

∫
dΩ νm(Ω)Ω

(
−dfT (Ω)

dΩ

)
. (3)

Here s is the spin per volume in F, νm(Ω) the density
of states (DOS) of magnon modes at frequency Ω, and
fT (Ω) the Planck distribution at temperature T of the
magnons.

The availability of high-quality THz sources, combined
with spin-orbit-mediated conversion of electric into mag-
netic driving, as well as of femtosecond laser pulses for
pump-probe spectroscopy has made it possible to exper-
imentally access spin transport across F|N interfaces on
ultrafast time scales.37–43 Whereas Eq. (1) is valid for fre-
quencies small in comparison to the frequencies of acous-
tic magnons at the zone boundary,10 which reach well
into the THz regime, Eq. (3) requires driving frequencies
much smaller than the frequencies of thermal magnons,
i.e., ω/2π . kBT/h ≈ 6.3 THz for 300 K.12 At room
temperature, the two conditions roughly coincide for the
magnetic insulator YIG, which is the material of choice
for many experiments, or for ferrites, such as CoFe2O4

and NiFe2O4, see Refs. 44 and 45. But at low temper-
atures, the condition for the applicability of Eq. (3) is
stricter and may be violated for sufficiently fast driving
for these materials.46 An example of a magnetic mate-
rial for which the two conditions do not coincide already
at room temperature is Fe3O4 (magnetite), for which the
frequency of acoustic magnons at the zone boundary is
well above the frequency of thermal magnons at room
temperature.47

In this article, we present two calculations of the lon-
gitudinal interfacial spin conductance gs‖(ω) per area
that go beyond the low-frequency weak-coupling regime
of validity of Eq. (3): (i) We calculate gs‖ in the low-
frequency limit, but without the assumption of weak cou-
pling across the F|N interface, and (ii) we calculate the
finite-frequency longitudinal spin conductance gs‖(ω) per
area in the weak-coupling limit. Our finite-frequency re-
sult is applicable in the same frequency range as Eq.
(1), i.e., within the entire frequency range of acoustic

magnons. Additionally, the temperature T must be low
enough such that only acoustic magnons are thermally
excited. For YIG this condition amounts to the require-
ment that T . 300 K.48 Comparing our non-perturbative
low-frequency calculation to the weak-coupling result
in Eq. (3), we find that the latter is a good order-
of-magnitude estimate for most material combinations,
whereas quantitative deviations are possible.

This article is organized as follows: In Sec. II we report
our non-perturbative calculation of the longitudinal spin
conductance gs‖ at zero frequency, using scattering the-
ory for the reflection of spin waves from the F|N interface.
In Sec. III we present our perturbative calculation of the
finite-frequency longitudinal spin conductance gs‖(ω), us-
ing the method of non-equilibrium Green functions. We
give numerical estimates for material combinations in-
volving the magnetic insulator YIG in Sec. IV and we
conclude in Sec. V. Appendices A and B contain further
details of the calculations.

II. NON-PERTURBATIVE CALCULATION AT
ZERO FREQUENCY

Central to our non-perturbative calculation is the am-
plitude ρ(Ω) that a magnon with frequency Ω incident on
the F|N interface is reflected back into F. The “transmis-
sion coefficient” |τ(Ω)|2 = 1 − |ρ(Ω)|2 is the probability
that the magnon is not reflected and, instead, transfers
its angular momentum ~ to the conduction electrons in
N. As we show below, knowledge of ρ(Ω) is sufficient for
the calculation of the longitudinal interfacial spin con-
ductance gs‖(ω) per area in the low-frequency limit.

Magnon reflection amplitude ρ.— To keep the notation
simple, we describe our calculation for a one-dimensional
geometry and switch to three dimensions in the presen-
tation of the final results. We consider an F|N interface
with coordinate x normal to the interface and a magnetic
insulator F for x > 0, see Fig. 1. Magnetization dynamics
in F is described by the Landau-Lifshitz equation

ṁ = ω0 e‖ ×m +
1

~s
∂

∂x
jxs , (4)

where m is a unit vector pointing along the direction of
the magnetization, ω0 is the ferromagnetic resonance fre-
quency, e‖ the equilibrium magnetization direction, and

jxs = −~sDexm×
∂m

∂x
(5)

the spin current density, with Dex the spin stiffness of di-
mension length2· time−1. (We recall that the gyromag-
netic ratio is negative, so that the angular momentum
density corresponding to the magnetization direction m
is −~sm.) The spin current density through the F|N
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interface is10,11,34,49,50

jxs = − 1

4π
(Re g↑↓m× + Im g↑↓) [(m× µs) + ~ṁ]

+ ~
√

Re g↑↓
2π

m× h′, (6)

where g↑↓ is the complex spin-mixing conductance51 and
h′ is proportional to a stochastic magnetic field repre-
senting the spin torque due to current fluctuations in N.
If the normal metal is in equilibrium at temperature TN,
the correlation function of the stochastic term h′ is given
by the fluctuation-dissipation theorem,49

〈h′α(Ω′)∗h′β(Ω)〉 = ΩfTN
(Ω)δ(Ω− Ω′)δαβ , (7)

where fT (Ω) = 1/(e~Ω/kBT − 1) is the Planck function
and the Fourier transform is defined as

h′(t) =
1√
2π

∞∫
−∞

dΩh′(Ω)e−iΩt. (8)

We parameterize the magnetization direction m as

m(x, t) =
√

1− 2|m⊥(x, t)|2 e‖
+m⊥(x, t)e⊥ +m⊥(x, t)∗e∗⊥, (9)

where the complex unit vectors e⊥ and e∗⊥ span the di-
rections orthogonal to the equilibrium magnetization di-
rection e‖ and satisfy the condition e⊥ × e‖ = ie⊥. The
solution of the Landau-Lifshitz equation (4), up to linear
order in the magnetization amplitude m⊥, then reads

m⊥(x, t) =

∞∫
−∞

dΩ
e−iΩt√

4πsDexkx

×
[
ain(Ω)e−ikxx + aout(Ω)eikxx

]
, (10)

where

kx(Ω) =

√
Ω− ω0

Dex
(11)

and ain(Ω) and aout(Ω) are flux-normalized amplitudes
for spin waves moving towards the F|N interface at x = 0
and away from it, respectively. (The amplitudes ain(Ω)
and aout(Ω) may be interpreted as magnon annihilation
operators in a quantized formulation.) The spin current
density jxs can be decomposed into transverse and longi-
tudinal contributions analogous to Eq. (9),

jxs (x, t) = jxs‖(x, t)e‖ + jxs⊥(x, t)e⊥ + jxs⊥(x, t)∗e∗⊥. (12)

In the same way, the spin accumulation µs and the
stochastic term h′ can be decomposed into transverse
and longitudinal contributions.

We first consider the transverse spin current density
jxs⊥ to linear order in the magnetization amplitude m⊥.
From Eqs. (5) and (10), one finds that the magnonic

transverse spin current density jxs⊥(0, t) at the F|N inter-
face x = 0 is

jxs⊥(0, t) = i~sDex
∂m⊥(x, t)

∂x
(13)

=
~

4π

∞∫
−∞

dΩ e−iΩt
√

4πsDexkx(Ω)

× [ain(Ω)− aout(Ω)].

Equation (6) implies that the transverse spin current den-
sity through the interface is given by

jxs⊥(0, t) =
g↑↓
4π

[µs⊥(t) + i~ṁ⊥(0, t)− µs‖(t)m⊥(0, t)]

− i~
√

Re g↑↓
2π

h′⊥(t). (14)

Imposing continuity of the transverse spin current at the
F|N interface allows us to express the amplitude aout of
magnons moving away from the interface in terms of the
amplitude ain of incident magnons and the stochastic
field h′⊥. Inserting Eqs. (10) and (13) into the bound-
ary condition (14), we get

aout(Ω) = ρ(Ω)ain(Ω) + ρ′(Ω)h′⊥(Ω), (15)

with

ρ(Ω) =
4πsDexkx(Ω)− (Ω− µs‖/~)g↑↓

4πsDexkx(Ω) + (Ω− µs‖/~)g↑↓
,

ρ′(Ω) =
2
√

4πsDexkx(Ω) Re g↑↓
4πsDexkx(Ω) + (Ω− µs‖/~)g↑↓

. (16)

The coefficient ρ(Ω) is the amplitude that a magnon with
frequency Ω incident on the F|N interface is reflected.
One therefore may interpret

|τ(Ω)|2 = 1− |ρ(Ω)|2

= (Ω− µs‖/~)|ρ′(Ω)|2 (17)

as the probability that a magnon is annihilated at the
F|N interface while exciting a spinful excitation in N.

Longitudinal interfacial spin conductance.— The lon-
gitudinal spin current is quadratic in the magnetization
amplitude. From Eqs. (5) and (12) one finds

jxs‖(0, t) = m⊥(0, t)∗jxs⊥(0, t) + jxs⊥(0, t)∗m⊥(0, t), (18)

so that continuity of jxs⊥ at the F|N interface to linear
order in m⊥ also ensures continuity of jxs‖. In terms of

the magnon amplitudes, we find from Eqs. (5) and (10)
that

jxs‖(0, t) = ~
∞∫
−∞

dω

2π
e−iωt

∞∫
−∞

dΩ (19)

× [aout(Ω−)∗aout(Ω+)− ain(Ω−)∗ain(Ω+)],
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where we abbreviated Ω± = Ω± ω/2 and omitted terms
that drop out in the limit ω → 0. The correlation func-
tion of the magnon amplitudes is given by the (quantum-
mechanical) fluctuation-dissipation theorem,52

〈ain(Ω−)∗ain(Ω+)〉 = fTF
(Ω− µm/~)δ(ω). (20)

Here TF is the (magnon) temperature of the magnetic
insulator and fTF

(Ω) = 1/(e~Ω/kBTF − 1)Θ(Ω − ω0) the
Planck function, with Θ the Heaviside step function. To
obtain the correlation function of the stochastic field h′

in the presence of a spin accumulation µs = µs‖e‖, we
use the equilibrium result in Eq. (7) and make use of
the fact that a spin accumulation µs can be shifted away
by transforming to a spin reference frame that rotates at
angular frequency ω = µs/~, see App. A. Denoting the

stochastic field in the rotating frame by h̃′, we then have

h̃′⊥(Ω) = h′⊥(Ω + µs‖). (21)

In the rotating frame there is no spin accumulation in N,
so that the correlation function of h̃′⊥ is given by Eq. (7).
It follows that

〈h′⊥(Ω−)∗h′⊥(Ω+)〉 = (Ω− µs‖/~)

× fTN(Ω− µs‖/~) δ(ω). (22)

Inserting this result as well as Eqs. (15), (17), and (20)
into Eq. (19), we find for the longitudinal spin current

jxs‖ =
~

2π

∞∫
ω0

dΩ |τ(Ω)|2

× [fTN
(Ω− µs‖/~)− fTF

(Ω− µm/~)]. (23)

Equation (23), together with Eq. (17) for |τ(Ω)|2, illus-
trates the equivalence of the two pictures of longitudinal
spin transport mentioned in the introduction: as aris-
ing from magnon-emitting/absorbing scattering at the
F|N interface (see first line in Eq. (17)) as well as from
stochastic spin torques due to thermal fluctuations (see
second line in Eq. (17)).

In three dimensions the calculation of the longitudinal
spin current density involves an integration over modes
with transverse wavenumbers (ky, kz). For each trans-
verse mode the previous calculation applies, but with
kx(Ω) replaced by

kx(Ω, k⊥) =

√
Ω− ω0

Dex
− k2
⊥, (24)

with k2
⊥ = k2

y + k2
z . In particular, the mode-dependent

reflection amplitude ρ(Ω, k⊥) and transmission coefficient
|τ(Ω, k⊥)|2 are found by substituting kx(Ω, k⊥) for kx(Ω)
in Eq. (16). For the steady-state longitudinal spin current
density we then find

jxs‖ =
~

2(2π)2

∞∫
ω0

dΩ kx(Ω)2Tm(Ω)

× [fTN
(Ω− µs‖/~)− fTF

(Ω− µm/~)], (25)

where kx(Ω) is given by Eq. (11) and Tm(Ω) is the mode-
averaged magnon transmission coefficient,

Tm(Ω) =
2

kx(Ω)2

kx(Ω)∫
0

dk⊥ k⊥|τ(Ω, k⊥)|2. (26)

The validity of Eqs. (23) and (25) is not restricted to
linear response or to weak coupling across the F|N in-
terface. For comparison with the literature and with the
perturbative calculation of the next section, it is never-
theless instructive to expand Eqs. (23) and (25) to linear
order in the interfacial spin-mixing conductance, which
gives

jxs‖ =
1

πs
Re g↑↓

∞∫
ω0

dΩ νm(Ω)(~Ω− µs‖)

× [fTN
(Ω− µs‖/~)− fTF

(Ω− µm/~)], (27)

where νm(Ω) is the magnon density of states, which
equals ν1D

m (Ω) = 1/2πDexkx(Ω) in the one-dimensional
case and ν3D

m (Ω) = kx(Ω)/4π2Dex in the three-
dimensional case. One verifies that this expression is
consistent with Eq. (3) to linear order in µs‖ − µm.

III. PERTURBATIVE CALCULATION AT
FINITE FREQUENCIES

In this section we again consider the longitudinal spin
current density jxs‖ through the interface between a ferro-

/ferrimagnetic insulator F and a normal metal N, but
now with a time-dependent spin accumulation µs‖(t) in
N. We calculate jxs‖ to leading order in the spin-mixing

conductance per unit area, g↑↓. To keep the notation
simple, we present the calculation for a one-dimensional
F|N junction. To generalize to the three-dimensional case
it is sufficient to replace the magnon density of states
νm(Ω) by ν3D

m (Ω).
Starting point of our calculation is the Hamiltonian

coupling conduction electrons in N and magnons in F,

Ĥ = Jψ̂†↑ψ̂↓â+ J∗ψ̂†↓ψ̂↑â
†. (28)

Here ψ̂σ is the annihilation operator for a conduction
electron with spin σ at the F|N interface, J is the (suit-
ably normalized) interfacial exchange (s-d) interaction
strength, and the raising and lowering operators â† and
â describe the transverse magnetization amplitude at the
F|N interface at x = 0. (They are the Fourier transforms
of the second-quantization counterparts of the amplitude
ain(Ω) + aout(Ω) of the previous section.) The spin cur-
rent through the F|N interface is

ĵxs‖ = i[Jψ̂†↑ψ̂↓â − J
∗ψ̂†↓ψ̂↑â

†]. (29)
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Calculating the expectation value jxs‖ to leading order

in J using Fermi’s Golden rule, one finds

jxs‖ = 2π|J |2ν2

∞∫
−∞

dε

∞∫
ω0

dΩ νm(Ω) (30)

× {n↑(ε)[1− n↓(ε− ~Ω)][1 + fTF(Ω− µm/~)]

− [1− n↑(ε)]n↓(ε− ~Ω)fTF
(Ω− µm/~)},

where nσ is the distribution function of electrons with
spin σ in N, ν the electron density of states at the Fermi
energy, and νm(Ω) the magnon density of states at the in-
terface. (We assume that the electronic density of states
is constant within the energy window of interest.) Tak-
ing a Fermi-Dirac distribution with chemical potential µσ
and temperature TN for the electron distribution function
nσ and performing the integration over the electron en-
ergy ε, one obtains

jxs‖ = 2π|J |2ν2

∞∫
ω0

dΩ νm(Ω)(~Ω− µs‖)

×
[
fTN(Ω− µs‖/~)− fTF(Ω− µm/~)

]
, (31)

where µs‖ = µ↑−µ↓ and fT is the Planck distribution as

before. This result is identical to Eq. (27) if we identify12

|J |2ν2 =
Re g↑↓
2π2s

. (32)

To obtain the spin current density for an oscillating
spin accumulation, we set

µσ(t) = µ̄σ +

∞∫
−∞

dω δµσ(ω)e−iωt, µm(t) = µ̄m, (33)

with δµσ(ω) = δµσ(−ω)∗. Hence, we impose oscillat-
ing chemical potentials δµσ on top of a time-independent
background µ̄σ in N and a time-independent background
µ̄m in F. We use the method of non-equilibrium Green
functions to calculate the expectation value jxs‖ in the

presence of the chemical potentials of Eq. (33). To linear
order in δµs‖(ω) = δµ↑(ω)− δµ↓(ω), we find (see App. B
for details)

jxs‖(t) = j̄xs‖ +

∞∫
−∞

dω δjxs‖(ω)e−iωt, (34)

with j̄xs‖ equal to the steady-state spin current density of

Eq. (31) with µm = µ̄m, µs‖ = µ̄s‖ and

δjxs‖(ω) =
gs‖(ω)

4π
δµs‖(ω). (35)

Here gs‖(ω) is the finite-frequency longitudinal spin con-
ductance per unit area,

gs‖(ω) = i
2 Re g↑↓
πs

∞∫
−∞

dΩ (36)

× {D(Ω) [fTF(Ω− µ̄m/~)−FN(Ω, ω)]

−D(Ω)∗ [fTF
(Ω− µ̄m/~)−FN(Ω,−ω)]},

where we defined

FN(Ω, ω) =
1

~ω
[
(~Ω− µ̄s‖)fTN(Ω− µ̄s‖/~) (37)

− (~Ω− ~ω − µ̄s‖)fTN
(Ω− ω − µ̄s‖/~)

]
,

and where

D(Ω) =

∞∫
−∞

dΩ′
νm(Ω′)

Ω + iη − Ω′
(38)

is the (retarded) magnon Green function, with η a posi-
tive infinitesimal. One verifies that Eq. (36) reproduces
the perturbative result in Eq. (27) for the limit ω → 0
and that it satisfies the Kramers-Kronig relation

gs‖(ω) =
1

iπ

∫
dω′

Re gs‖(ω
′)

ω′ − ω − iη
. (39)

IV. DISCUSSION

Zero-frequency limit.— We evaluate the results of our
calculations in Secs. II and III for the paradigmatic
spintronic material combination YIG|Pt. Longitudinal
spin transport through the F|N interface is expected to
play an important role for the ferrimagnetic insulator
YIG, since at room temperature the longitudinal spin
conductance gs‖ is comparable to the (transverse) spin-
mixing conductance g↑↓ for this material. (This leads,
e.g., to a prediction of a remarkable frequency depen-
dence of the spin-Hall magnetoresistance for this mate-
rial combination.33) To facilitate a comparison with the
literature, we use the same material parameters as Cor-
nelissen et al. in Ref. 35 (if applicable). We summarize
the material parameters in Tab. I.

Our non-perturbative calculation of the longitudinal
spin conductance uses the magnon dispersion of the
Landau-Lifshitz equation (4). This is a good approxima-
tion at long wavelengths, for which the magnon disper-
sion is quadratic as in Eq. (11). The use of the quadratic
approximation to the magnon dispersion is justified if
kBT � ~Ωmax, where Ωmax is the frequency of acoustic
magnons at the zone boundary,

Ωmax ≈ ω0 +
12Dex

a2
m

, (40)

with am the size the of the magnetic unit cell. For YIG,
one has Ωmax/2π ≈ 1013 Hz,48,55 so that the condition
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material experimental parameters ref.
YIG ω0/2π = 7.96 · 109 Hz 29

am = 1.2 · 10−9m 35

Dex = 8.0 · 10−6 m2 s−1 35

s = 5.3 · 1027m−3 35

YIG|Pt (e2/h)Re g↑↓ = 1.6 · 1014 Ω−1m−2 29,53

(e2/h)Im g↑↓ = 0.08 · 1014 Ω−1m−2

TABLE I. Typical values for the relevant material parameters
of YIG and YIG|Pt interfaces considered in this article. The
last column states the references used for our estimates. The
spin density s = S/a3m, where S = 10 is the magnitude of
the spin in each magnetic unit cell with lattice constant am.
The frequency of acoustic magnons at the zone boundary is
Ωmax/2π ≈ (12Dex/a

2
m)/2π ≈ 1.0 × 1013 Hz. The imaginary

part of the spin-mixing conductance is found from the esti-
mate Im g↑↓/Re g↑↓ ≈ 0.05, see Refs. 31 and 54.

kBT � ~Ωmax is only weakly obeyed at room tempera-
ture.

The result (26) for the mode-averaged transmission co-
efficient Tm(Ω), which is the probability that a magnon
is annihilated at the F|N interface and excites a spin-
ful excitation of the conduction electrons in N, is shown
in Fig. 2 for µs‖ = 0. At the lowest magnon fre-
quency ω0, the magnon wave vector k = 0 (i.e., kx =
k⊥ = 0) and thus the reflection coefficient ρ(ω0, k⊥) =
−1, so that Tm(ω0) = 0. However, upon increas-
ing Ω above ω0, |ρ(Ω, k⊥)| first very quickly drops to
approximately 0 and then reaches a maximum; corre-
spondingly, Tm(Ω) first features a maximum and then
reaches a minimum upon increasing the magnon fre-
quency Ω above ω0. The maximum is at a frequency
(Ω − ω0)/ω0 ≈ ω0|g↑↓|2/(4πs)2Dex � 1; the minimum
is at Ω ≈ 2ω0. Upon further increasing the frequency,
Tm(Ω) increases monotonously with Ω. In this frequency
range, a good approximation for Tm(Ω) is obtained by
expanding |τ(Ω, k⊥)|2 to first order in g↑↓, which gives

T (p)
m (Ω) =

8πRe g↑↓
s

(Ω− µs‖/~)ν3D
m (Ω)

kx(Ω)2
(41)

as shown by the blue dashed curve in Fig. 2. The
perturbative approximation for Tm(Ω) remains valid for
Ω� (4πs)2Dex/|g↑↓|2, a condition that is obeyed as long
as Ω � Ωmax. (The condition Ω � (4πs)2Dex/|g↑↓|2
becomes equal to the condition Ω � Ωmax if one
uses the Sharvin approximation for the spin-mixing
conductance34,56 and takes the Fermi wavelength of elec-
trons in N to be of the same order of magnitude as the
size am of the magnetic unit cell, so that |g↑↓| ≈ 1/a2

m.)
Now we are ready to discuss the differential longitudi-

nal spin conductance per unit area

gs‖ = 4π
∂jxs‖

∂µs‖
. (42)

From Eq. (25) we find for T = TN = TF and µ = µs‖ =
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FIG. 2. Mode-averaged magnon transmission coefficient
Tm(Ω) at a YIG|Pt-interface. The solid red curve shows
the non-perturbative result of Eq. (26) and the blue dashed

curve the weak-coupling approximation T
(p)
m (Ω) of Eq. (41).

Both curves are based on the quadratic approximation to the
magnon dispersion, which breaks down for magnon frequen-
cies Ω ≈ Ωmax, which is the frequency of acoustic magnons at
the zone boundary. Parameter values are taken from Tab. I.

µm, that

gs‖ =
1

2π

∞∫
ω0

dΩ kx(Ω)2Tm(Ω)

(
−∂fT (Ω− µ/~)

∂Ω

)
. (43)

In the perturbative limit of small g↑↓ this result simplifies
to

g
(p)
s‖ =

4Re g↑↓
s

∞∫
ω0

dΩ ν3D
m (Ω)(Ω− µ/~)

×
(
−∂fT (Ω− µ/~)

∂Ω

)
. (44)

The perturbative result for the ratio gs‖/Re g↑↓ depends
on the magnetic properties of bulk YIG only and not on
the choice of the normal metal N or the transparency of
the interface, whereas the non-perturbative result shows
a (quantitative, but not qualitative) dependence on the
interface properties. The results of Eqs. (43) and (44)
are shown in Fig. 3 as functions of temperature T for
the material parameters of a YIG|Pt interface, see Tab.
I. (We assume no temperature dependence of the spin
density s and the spin stiffness Dex.) The green dashed
straight line in Fig. 3 is the perturbative result with the
additional approximation ~ω0 � kBT , which gives35

g
(p0)
s‖ = c

Re g↑↓
s

[(
kBTF

π~Dex

)3/2

+
1

2

(
kBTN

π~Dex

)3/2
]

(45)
with c = (1/2)ζ(3/2) ≈ 1.31. The difference between
the perturbative and non-perturbative results increases
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with temperature and reaches a factor ≈ 1.7 at room
temperature, whereby the non-perturbative result for gs‖
is always below the small-g↑↓ approximation, see Fig. 3
(upper left inset).

Since the perturbative finite-frequency expression for
the longitudinal spin conductance, discussed below, can
not be evaluated using a magnon density of states νm(Ω)
of a continuum magnon model, we compare the zero-
frequency longitudinal spin conductance for a quadratic
magnon dispersion (as is used in the main panel of Fig.
3) with that for a magnon dispersion of a Heisenberg
model on a simple cubic lattice (see Eq. (46) below).
This comparison is shown in the lower right inset of Fig.
3. Whereas the difference between the two cases is small
for low temperatures and near room temperature, the
Heisenberg model leads to a longitudinal spin conduc-
tance that is up to a factor ≈ 1.45 larger than that of the
quadratic approximation at intermediate temperatures.
This is consistent with the absence of van Hove peaks in
the magnon density of states in the quadratic approxi-
mation.

In principle, the differential longitudinal spin conduc-
tance per unit area, gs‖, also depends on the chemical
potentials µs‖ and µm. Such dependence governs the in-
terfacial spin current beyond linear order in µs‖ − µm.
Because the driving potentials µs‖ and µm must remain
below ~ω0 — otherwise the magnon system is unstable
—, the range of admissible values for µs‖ and µm remains
well below kBT at most temperatures, so that apprecia-
ble nonlinear effects can be found only for extremely low
temperatures T . 1 K. At those low temperatures ther-
mal magnons are as good as absent, so that the longitudi-
nal spin conductance is negligibly small in comparison to
the transverse spin conductance. For a further discussion
we refer to the discussion of nonlinear effects in the con-
text of the finite-frequency longitudinal spin conductance
below.

Finite-frequency longitudinal spin transport.— For a
discussion of the finite-frequency longitudinal spin con-
ductance per unit area, gs‖(ω), the quadratic approxi-
mation of the magnon dispersion is not sufficient even
at temperatures kBT � ~Ωmax. The reason is that
at finite frequencies, gs‖(ω) acquires a finite imaginary
part, which depends on the full magnon spectrum. (The
real part of gs‖(ω), which describes the dissipative re-
sponse, can still be calculated within the quadratic ap-
proximation.) For temperatures of the order of room
temperature and below and for frequencies ω . Ωmax

it is sufficient to consider the lowest-lying magnon band
and neglect higher magnon bands in YIG.48 The lowest
magnon band can be described effectively by a Heisen-
berg model of spins on a simple cubic lattice with nearest-
neighbor interactions.55,57 The resulting dispersion rela-
tion is given by

Ω(k) = ω0 +
2Dex

a2
m

∑
α=x,y,z

(1− cos(kαam)), (46)

with maximal magnon frequency Ωmax, given in Eq.
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FIG. 3. Zero-frequency longitudinal spin conductance per
unit area, gs‖, at a YIG|Pt-interface as function of the temper-
ature T = TN = TF for µ = µs‖ = µm = 0. The red solid curve
shows the non-perturbative result gs‖/Re g↑↓ of Eq. (43), the

blue dashed curve the perturbative result g
(p)

s‖ /Re g↑↓ of Eq.

(44), and the thin green dot-dashed curve the approximation

g
(p0)

s‖ /Re g↑↓ of Eq. (45). The upper left inset shows the ratios

gs‖/g
(p0)

s‖ (red solid curve) and g
(p)

s‖ /g
(p0)

s‖ (blue dashed curve).

The lower right inset shows the ratio g
(pH)

s‖ /g
(p)

s‖ , where g
(pH)

s‖
is the result of Eq. (44) for the magnon density of states ob-

tained from a Heisenberg model, see Eq. (46), and g
(p)

s‖ that

of Eq. (44) for the quadratic approximation of the magnon
dispersion. Parameter values are taken from Tab. I.

(40), and agrees with the quadratic approximation for
Ω � Ωmax. The finite magnon bandwidth regular-
izes the integrations for the imaginary part of gs‖(ω).
In the numerical evaluations of the real and imaginary
parts of gs‖(ω) that are discussed below we therefore
use the magnon density of states corresponding to the
dispersion in Eq. (46). We verified that as long as ω,
kBT/~ � Ωmax the results for real and imaginary parts
of gs‖(ω) depend only weakly on the precise form of the
magnon density of states at frequencies ω � kBT/~.

Figures 4 and 5 show the real and imaginary parts of
the finite-frequency spin conductance gs‖ at an F|N in-
terface with F=YIG as function of the driving frequency
ω and for different temperatures T = TN = TF and
µ̄s‖ = µ̄m = 0. In the perturbative regime, the ratio
gs‖/Re g↑↓ is independent of the choice of the normal
metal N or the quality of the F|N interface.

For driving frequencies ω � kBT/~, the real part
Re gs‖ approaches the zero-frequency limit discussed
above. (Note that there may be small deviations between
the zero-frequency limit obtained from the quadratic
approximation of the magnon dispersion and from the
magnon dispersion of Eq. (46), see Fig. 3, lower right in-
set.) For T = 300 K, the real part Re gs‖ does not show an
appreciable frequency dependence. At this temperature,
the Planck distribution fTN

may be well approximated
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FIG. 4. Real part Re gs‖ of the finite-frequency longitudi-
nal spin conductance of an F|N interface in the perturbative
regime of weak coupling as a function of the driving frequency
ω/2π for various temperatures T = TN = TF (solid colored
lines). Material parameters are taken for an F|N interface
with F=YIG and N an arbitrary normal metal, see Tab. I. The
black dashed curve shows the result of the Rayleigh-Jeans ap-
proximation, see Eq. (47). The inset displays the same curves.
The time-independent background magnon chemical potential
and spin accumulation have been set to zero, µ̄m = µ̄s‖ = 0.

by the Rayleigh-Jeans distribution

fTN(Ω) =
kBTN

~Ω
. (47)

In this limit one finds that FN(Ω, ω) = 0 in Eq. (36), so
that gs‖(ω) is independent of frequency ω, temperature
TN, and background spin accumulation µ̄s‖ in N. At lower
temperatures, Re gs‖ shows an increase with frequency
for ω & kBTN/~, followed by a saturation at ω ≈ Ωmax.
One may obtain an analytical expression for Re gs‖(ω) in
the limit ω � kBTN/~ (setting µ̄s‖ = µ̄m = 0):

Re gs‖(ω) ≈ 2Re g↑↓
s

2

∞∫
ω0

dΩ νm(Ω)fTF
(Ω− µ̄m)

+

ω+µ̄s‖/~∫
ω0

dΩ νm(Ω)
ω − Ω− µ̄s‖

ω

. (48)

(To keep the notation simple, we drop the superscript
“(p)” because all finite-frequency spin conductances are
obtained in the perturbative limit of small g↑↓.) The
first line in Eq. (48) is a frequency-independent offset
which depends on the temperature TF and magnon chem-
ical potential µ̄m of the ferro-/ferrimagnetic insulator
only. Using the quadratic approximation for the magnon
dispersion and assuming ω0 � kBTF/~, this term is
found to be equal to the first term in Eq. (45). For ω0,
kBTN/~ � ω � Ωmax we may also use the quadratic
approximation for the magnon dispersion in the second

term and find

Re gs‖(ω) ≈ Re g↑↓
s

[
c

(
kBTF

π~Dex

)3/2

+
8

15

(
ω

Dex

)3/2
]
,

(49)

where c = (1/2)ζ(3/2) ≈ 1.31 as below Eq. (45). In
the limit ω � Ωmax (but still kBT � ~Ωmax) we find
similarly

Re gs‖(ω) ≈ Re g↑↓
s

[
c

(
kBTF

π~Dex

)3/2

+
2

a3
m

]
. (50)

where am is the lattice constant of the magnetic unit cell.
(Note that, up to a numerical factor of order unity in the
second term, Eq. (50) is what one obtains when kBTN/~
in Eq. (45) is replaced by Ωmax.)

With respect to the high-frequency limit ω & Ωmax

and/or the high-temperature limit kBT & ~Ωmax, it
should be kept in mind that our calculation only consid-
ers the contribution from the lowest-lying magnon band.
For such high frequencies, other magnon bands are likely
to contribute to gs‖(ω) as well and such a contribution
is not included in our theory. Hence, Eq. (50) and anal-
ogously Eq. (53) for Im gs‖(ω) discussed below should
be interpreted as the contribution of the lowest-lying
magnon band to the longitudinal spin conductance only.

The imaginary part Im gs‖(ω) increases linearly
with ω for small frequencies, reaches a maximum at
max(Ωmax, kBT/~), and decreases with ω in the high-
frequency limit, see Fig. 5. The linear increase with ω
for frequencies ω . Ωmax is given by the expression

Im gs‖(ω) ≈ − ω 2Re g↑↓
πs

∫
dΩ

νm(Ω + µ̄s‖/~)

Ω
hTN

(Ω),

(51)

with

hT (Ω) =

∞∫
−∞

dΩ′
Ω

Ω− Ω′
∂2

∂Ω′2
[Ω′fT (Ω′)]. (52)

This function behaves as hT (Ω) → 1 for Ω � kBT/~
and hT (Ω) → 0 for Ω � kBT/~. Hence, effectively
only frequencies Ω & kBT/~ contribute to the integra-
tion in Eq. (51), which explains the decreasing slope
of −Im gs‖(ω) vs. ω — i.e., the intercept with the ver-
tical axis in Fig. 5 — with increasing temperature T .
The decay of Im gs‖(ω) in the limit of large frequencies
ω � Ωmax is described by

Im gs‖(ω) ≈ − 1

ω

4Re g↑↓
πs

∫
dΩ νm(Ω + µ̄s‖~)Ω

×
[
1 + ln

ω

Ω
+ h′TN

(Ω)
]
, (53)

with

h′T (Ω) =

∞∫
−∞

dΩ′
Ω′

Ω(Ω′ − Ω)
[fT (Ω′) + Θ(−Ω′)] , (54)
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FIG. 5. Same as Fig. 4, but for the imaginary part Im gs‖ of
the finite-frequency spin conductance. The black dashed lines
show the limiting behavior for small and large ω according to
Eqs. (51) and (53) for TN → 0.

where Θ(Ω′) is the Heaviside step function. The
temperature-dependent term proportional to h′TN

is sub-
leading for ω � Ωmax, so that Im gs‖(ω) becomes effec-
tively temperature-independent for sufficiently high fre-
quency ω, as seen in Fig. 5.

The role of the time-independent background magnon
chemical potential µ̄m and spin accumulation µ̄s‖ is ad-
dressed in Fig. 6. The figure shows Re gs‖(ω) as function
of ω, as in Fig. 4, but for different values of µ̄m and
µ̄s‖, while satisfying the bound µ̄m, µ̄s‖ < ~ω0. As the
magnon chemical potential and spin accumulation ap-
pear in Eq. (36) only in the combinations µ̄m/kBTF and
µ̄s‖/kBTN and since ~ω0 is much smaller than kBT for
most temperatures considered, we only show results for
T = TN = TF = 0.03 K and T = TN = TF = 3 K. As
can be seen in Fig. 6, the dependence of Re gs‖(ω) on µ̄m

and µ̄s‖ disappears, when ~ω0 � kBT (as for T = 3K
in Fig. 6) or when ~ω becomes large in comparison to
µ̄m and µ̄s‖. The imaginary part of gs‖(ω) does not show
any appreciable dependence on µ̄s‖ in the full parameter
range considered (not shown) and is independent of µ̄m.

Spin-Seebeck coefficient.— Our non-perturbative cal-
culation of the longitudinal spin current through the F|N
interface also describes the longitudinal spin current in
response to a temperature difference δT across the in-
terface. We set TF = T + δT , TN = T , µm = µs‖, and
expand jxs‖ in Eq. (25) to linear order in δT , resulting in

jxs‖ =
LSSE

T
δT (55)
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FIG. 6. Real part Re gs‖ of the finite-frequency spin con-
ductance of an F|N interface in the weak-coupling regime as
function of the driving frequency for two values of the tem-
perature T = TN = TF. Material parameters are taken for
an F|N interface with F=YIG and N is an arbitrary normal
metal, see Tab. I. Curves are shown for three combinations of
the time-independent background potentials µ̄m and µ̄s‖: The
solid colored curves correspond to µ̄m = µ̄s‖ = 0; the dashed
curves correspond to µ̄m = µ̄s‖ = 0.5~ω0, and the dot-dashed
ones to µ̄m = µ̄s‖ = −0.5~ω0.

with the spin-Seebeck coefficient LSSE
58

LSSE =
~

2(2π)2

∞∫
ω0

dΩ kx(Ω)2Tm(Ω)(Ω− µs‖/~)

×
(
−
∂fT (Ω− µs‖/~)

∂Ω

)
. (56)

In the weak-coupling limit of Eq. (27), one recovers the
spin-Seebeck coefficient obtained by Cornelissen et al.,35

L
(p)
SSE =

~Re g↑↓
πs

∫
dΩ ν3D

m (Ω)(Ω− µs‖/~)2

×
(
−
∂fT (Ω− µs‖/~)

∂Ω

)
. (57)

In the limit ω0 � kBT/~ the frequency integration may
be performed and one finds35

L
(p0)
SSE = c′

Re g↑↓kBT

πs

(
kBT

π~Dex

)3/2

, (58)

with c′ = 15 ζ(5/2)/32 ≈ 0.63. All three expressions
are evaluated in Fig. 7 as a function of T for mate-
rial parameters of a YIG|Pt interface. Like in the case
of the longitudinal spin conductance, we observe that
there are small quantitative differences between the non-
perturbative and perturbative results. These differences
are small at low temperatures, but the perturbative
weak-coupling result deviates from the non-perturbative
one at higher temperatures, the difference reaching a fac-
tor ≈ 2.3 at room temperature, see the upper left inset
of Fig. 7.



10

100 101 102

10-29

10-27

10-25

10-23

10-21

100 101 102

0.5

1.0

LSSE

L
(p0)
SSE

100 101 102

0.5

1.0

1.5
L

(pH)
SSE

L
(p)
SSE

0.0 0.2 0.4 0.6 0.8 1.0
T (K)

0.0

0.2

0.4

0.6

0.8

1.0
L

S
S
E
/R

e
g

 (
J
)

FIG. 7. Spin-Seebeck coefficient LSSE at a YIG|Pt-interface
in the linear-response regime as function of the temperature
T = T̄N = T̄F. All three curves in the main panel are ob-
tained using the parabolic approximation of the magnon dis-
persion. The red solid curve shows LSSE according to the non-
perturbative theory, see Eq. (56), the blue dashed curve the

perturbative result L
(p)
SSE of Eq. (57), and the thin green dot-

dashed curve includes the approximation L
(p0)
SSE of Eq. (58).

The upper left inset shows the ratios LSSE/L
(p0)
SSE (red solid

curve) and L
(p)
SSE/L

(p0)
SSE (blue dashed curve). The lower right

inset shows the ratio L
(pH)
SSE /L

(p)
SSE, where L

(pH)
SSE is the result

of Eq. (57) for the magnon density of states obtained from

a Heisenberg model, see Eq. (46), and L
(p)
SSE that of Eq. (57)

for the quadratic approximation of the magnon dispersion.
Parameter values are taken from Tab. I.

V. CONCLUSIONS AND OUTLOOK

The spin angular momentum current from a normal
metal N into a ferro-/ferrimagnetic insulator F in general
has a component collinear with the magnetization, which
is carried by thermal magnons in F. In this article, we pre-
sented two calculations of the longitudinal interfacial spin
conductance: At zero frequency, but for arbitrary trans-
parency of the interface, and at finite frequencies, but to
leading order in the interface transparency. In general,
one expects the longitudinal interfacial spin conductance
to acquire a dependence on the driving frequency ω, when
ω exceeds kBT/~. In the case of typical parameters for
the material combination YIG|Pt and at room tempera-
ture, we find that the resulting frequency dependence of
the interfacial spin conductance is rather weak, not more
than a factor ≈ 1.1 between the low- and high-frequency
limits. Also, we find that (at zero frequency) the differ-
ence between the spin conductance in a non-perturbative
treatment of the coupling across the F|N interface and the
perturbative result to leading order in the spin-mixing
conductance g↑↓ is not more than a factor ≈ 1.7 at room
temperature, despite the fact that g↑↓ of a good YIG|Pt
interface (see Tab. I) is only slightly below the Sharvin
limit (e2/h)g↑↓ = πe2/hλ2

e ≈ 6.8 · 1014 Ω−1m−2,56 where

λe is the Fermi wavelength of Pt.59–61 In that sense, for
F|N interfaces involving the ferrimagnetic insulator YIG,
our two calculations may seen as a confirmation of the ex-
isting low-frequency weak-coupling theory.12,23,35 A sim-
ilar conclusion applies to the interfacial spin-Seebeck
coefficient, for which we compared the existing weak-
coupling zero-frequency theory35,36,62 with a calculation
non-perturbative in the interface transparency.

Of course, one may turn the question around and ask,
under which experimental conditions or for which mate-
rial combinations a frequency dependence of the inter-
facial longitudinal spin conductance or a deviation from
the perturbative weak-coupling approximation will be-
come significant. To see an appreciable frequency de-
pendence of gs‖, it is necessary that the temperature is
significantly below the maximum energy ~Ωmax of acous-
tic magnons. For YIG, this means that the temperature
must be well below room temperature. Our numerical
estimates based on material parameters for YIG indicate
that gs‖(ω) may increase by a factor & 10 between low-
and high-frequency regimes if T . 30 K and that the
effect can be larger at lower temperatures, whereas the
frequency dependence of gs‖(ω) is small for T & 100 K.

An experimental technique to measure these effects is
the spin-Hall magnetoresistance, which depends on the
competition of longitudinal and transversal spin trans-
port across the F|N interface. Measurements of the
spin-Hall magnetoresistance up to the lower GHz range63

have already been performed. Since the longitudinal and
transversal interfacial spin conductances are of compa-
rable magnitude in the high-frequency limit, one may
thus expect a visible frequency dependence of the spin-
Hall magnetoresistance effect for frequencies in the THz
range, if the temperature is low enough that not all
magnon modes are thermally excited. (This effect is ad-
ditional to a frequency dependence of the spin-Hall mag-
netoresistance in the GHz range predicted in Ref. 33.)
However, since the spin-Hall magnetoresistance effect in-
volves the difference of two contributions of comparable
magnitude, a more precise material-specific modeling is
required to reach a firm prediction.

Another experimental platform in which the lon-
gitudinal interfacial spin conductance plays a role is
that of non-local magnonic spin transport.23–25 In this
case, the interfacial spin conductance directly determines
the coupling between the magnon system in a ferro-
/ferrimagnetic insulator and the electrical currents in ad-
jacent normal-metal contacts used to excite and detect
the magnon currents. Our predictions directly trans-
late to a frequency dependence of the electron-to-magnon
and magnon-to-electron conversion in such experiments.
Furthermore, the difference between the weak-coupling
and strong-coupling predictions may quantitatively af-
fect estimates of the spin-mixing conductance based on
a measurement of the longitudinal spin conductance or
the spin-Seebeck coefficient.28–31,53,64,65.

We predict that the longitudinal spin conductance
depends on the temperatures TF and TN of the ferro-
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/ferrimagnetic insulator and the normal metal in differ-
ent ways, see, e.g., Eqs. (45) and (50). Whereas the lon-
gitudinal spin current in F is carried by thermal magnons
if F and N are close to equilibrium, the longitudinal spin
conductance does not vanish if TF = 0, as long as TN

is non-zero. In this case, the spin current is carried by
magnons in F excited by spin-flip scattering of thermally
excited electrons at the F|N interface. Apart from the
difficulty that a large temperature difference between F
and N is difficult to realize experimentally, a large tem-
perature difference across an F|N interface also leads to
a large steady-state spin current via the interfacial spin-
Seebeck effect. However, this DC spin current can be
easily distinguished experimentally from the AC signal,
which is caused by time-dependent driving of the spin
accumulation in N.

At the interface between a normal metal and a ferro-
/ferrimagnetic metal, there are two contributions to the
longitudinal spin current: A contribution from conduc-
tion electrons in the ferro-/ferrimagnetic metal and a
magnonic contribution. The results derived in this article
also apply to the magnonic contribution at such an inter-
face. However, at metal-metal interfaces, the magnonic
contribution to the spin current is typically much smaller
than the electronic contribution so that the frequency
and temperature dependence of the magnonic contribu-
tion is a sub-leading effect at such interfaces.

We close with two remarks on possible further ex-
tensions of our work. An important limitation of our
theory is the restriction to the lowest magnon band.
On the one hand, this limitation enters into our non-
perturbative calculation for low frequencies, because the
calculation relies on the continuum limit of the Landau-
Lifshitz-Gilbert equation. On the other hand, this lim-
itation enters both calculations, because the boundary
condition at the F|N interface implicitly assumes that
the coupling between electronic degrees of freedom in N
and the magnonic degrees of freedom in F at the inter-
face is local. For acoustic magnons at the zone boundary
and for higher magnon bands, electrons in N reflecting
off the ferro-/ferrimagnetic insulator F penetrate F suf-
ficiently deep such that they are influenced by the non-
uniformity of m, violating the assumption of a local cou-
pling between magnonic and electronic degrees of free-
dom. The first problem can be partially addressed by
replacing the quadratic magnon dispersion by the dis-
persion of a Heisenberg model on a simple cubic lattice,
as we have done in Sec. IV, but this replacement does
not account for the non-uniformity of the magnetization
near the interface. A rough estimate for the frequency at
which the non-uniformity becomes relevant is the max-
imum frequency Ωmax of acoustic magnons, where for
YIG Ωmax/2π ≈ 1013 Hz. It is an open task for the
future to extend our theory to appropriate couplings be-
tween electron spins and short-wavelength magnons, op-
tical magnons, and antiferromagnons in antiferromagnets
and ferrimagnets.

Our finite-frequency calculations assume that it is only

the electronic distribution in the normal metal N that is
driven out of equilibrium. Experiments exciting directly
the phonons of an insulating magnet F such as YIG, e.g.,
by an ultrashort THz laser pulse, might also create a
time-dependent magnon chemical potential in F on ul-
trafast time scales.35 Time-dependent magnon chemical
potentials may also appear in ultrafast versions of non-
local magnon transport experiments or in the ultrafast
spin-Hall magnetoresistance effect with an ultrathin mag-
netic insulator F.33 Investigating the ultrafast response
to a change of magnon chemical potential is another in-
teresting avenue for future research.
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Appendix A: Transformation to a rotating frame

Here we consider the transformation to a reference sys-
tem for the spin degree of freedom that rotates with an-
gular frequency ω̄(t) = ω̄(t)e‖. We discuss how the lon-
gitudinal spin accumulation µs‖ in N, the magnetization
amplitude m⊥, and the stochastic transverse spin current
js⊥ transform upon passing to the rotating frame. We re-
strict the discussion to linear response in µs‖ and ω̄. We
use a prime to denote creation and annihilation operators
and observables in the rotating reference system.

We first consider the transformation to a frame rotat-
ing at constant angular velocity ω̄ = ω̄e‖. The transfor-
mation relation for the electron annihilation operators in
N is

ψ̂′(t) = eiω̄·σt/2ψ̂(t), (A1)

where ψ(t) is a two-component column spinor for the
wavefunction of the conduction electrons. Solving for
the annihilation operator c(ε) in energy representation,
we have

ψ̂′(ε) = ψ̂(ε+ ~ω̄ · σ/2) (A2)

and, similarly,

ψ̂′(ε)† = ψ̂(ε+ ~ω̄ · σ/2)†. (A3)

It follows that the distribution function f ′(ε) in the ro-
tating frame is

f ′TN
(ε) = fTN

(ε+ ~ω̄ · σ/2), (A4)

where fTN is the distribution function in the original ref-
erence frame. We thus conclude that, in linear response,
upon transforming to a rotating frame the spin accumu-
lation changes as

µ′s = µs − ~ω̄. (A5)



12

Appendix B: Weak-coupling spin current at finite
frequency

We first discuss the expression (29) for the longitudi-
nal spin current through the F|N interface. From the
Heisenberg equation of motion, the spin current into the
magnetic insulator is

ĵxs‖(t) = − i

2
[Ĥ, N̂↑ − N̂↓], (B1)

where Ĥ is the Hamiltonian and N̂σ is the number of
conduction electrons with spin σ, σ =↑, ↓. The only
contribution to Ĥ that does not commute with N̂σ is the
term (28) describing the coupling via the F|N interface.
Inserting Eq (28) into the above expression gives Eq. (29)
of the main text.

We next turn to the calculation of the expectation
value jxs‖(t) of the interfacial longitudinal spin current.

Calculating jxs‖(t) to leading order in perturbation the-

ory in J gives

jxs‖(t) = i
|J |2

~

∫
c

dt′ [G↑(t
′, t)G↓(t, t

′)D(t, t′)

−G↑(t, t′)G↓(t′, t)D(t′, t)], (B2)

where t′ is integrated along the Keldysh contour (i.e.,
forward and backward integrations along the real time
axis),

Gσ(t′, t) = −i〈Tcψ̂σ(t′)ψ̂†σ(t)〉 (B3)

is the contour-ordered Green function for the conduction
electrons, evaluated at the interface, and

D(t′, t) = −i〈Tcâ(t′)â†(t)〉 (B4)

is the contour-ordered magnon Green function, again
evaluated at the interface. Equation (B2) may be written
as

jxs‖(t) = i
|J |2

~

∞∫
−∞

dt′
[
(GR
↑ (t′, t) +G<↑ (t′, t))(GR

↓ (t, t′) +G<↓ (t, t′))(DR(t, t′) +D<(t, t′))

− (GR
↑ (t, t′) +G<↑ (t, t′))(GR

↓ (t′, t) +G<↓ (t′, t))(DR(t′, t) +D<(t′, t))

−G>↑ (t′, t)G<↓ (t, t′)D<(t, t′) +G<↑ (t, t′)G>↓ (t′, t)D>(t′, t)
]
. (B5)

In this expression, the integration variable t′ is a time,
not a contour time.

We first evaluate Eq. (B5) for the case that the three
subsystems — conduction electrons with spin up, con-
duction electrons with spin down, and magnons — are
separately in equilibrium at chemical potentials µσ and
µm and temperatures Tσ and Tm, respectively. In this
case, all Green functions depend on the time difference
t− t′ only. Changing to the integration variable t′− t for
the first term and third term and t − t′ for the second
and fourth term in Eq. (B5), one finds that the first and
third terms in Eq. (B5) cancel, whereas the second and
fourth terms give, after Fourier transform,

jxs‖ = − i |J |
2

~

∫
dε

2π

∫
dΩ

2π

[
G>↑ (ε)G<↓ (ε− Ω)D<(Ω)

−G<↑ (ε)G>↓ (ε− Ω)D>(Ω)
]
. (B6)

According to the fluctuation-dissipation theorem, one has

G>σ (ε) = − 2πi~(1− nσ(ε))νσ,

G<σ (ε) = 2πi~nσ(ε)νσ. (B7)

Similarly, for the magnon Green function, one has

D>(Ω) = − 2πi(fTF
(Ω− µm/~) + 1)νm(Ω),

D<(Ω) = − 2πifTF
(Ω− µm/~)νm(Ω). (B8)

Hence, we find that the spin current is

jxs‖ = 2π|J |2ν↑ν↓
∫
dε

∫
dΩ νm(Ω) (B9)

× [n↑(ε)(1− n↓(ε− ~Ω))(1 + fTF(Ω)− µm/~)

− (1− n↑(ε))n↓(ε− ~Ω)fTF(Ω− µm/~)].

Setting T↑ = T↓ = TN and performing the integration
over ε, one reproduces Eqs. (29) and (30) of the main
text, which was derived from Fermi’s Golden Rule.

We now consider an additional oscillating component
of the chemical potential as in Eq. (33) of the main text.
In the presence of the oscillating chemical potential the
electron Green function G(t, t′) reads
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Gσ(t, t′) =Gσ0(t, t′)e−i
∫ t
t′ dτδµσ(τ ′)/~

=Gσ0(t, t′)

{
1 +

∫
dω
δµσ(ω)

~ω
e−iωt[1− eiω(t−t′)]

}
+ . . . , (B10)

for the greater and lesser Green functions, where, in the second line, the subscript “0” indicates the equilibrium Green
function and the dots indicate terms of higher order in δµσ(ω). Similarly, one has

Gσ(t′, t) =Gσ0(t′, t)

{
1−

∫
dω
δµσ(ω)

~ω
e−iωt[1− eiω(t−t′)]

}
+ . . . . (B11)

To find the spin current, we find it advantageous to cast the first two terms of Eq. (B5) into a different form, making
repeated use of the identities GR +G< = GA +G> and DR +D< = DA +D>,

δjxs‖(t) = i
|J |2

~

∫
dt′
[
(GA
↑ (t′, t) +G>↑ (t′, t))(GR

↓ (t, t′) +G<↓ (t, t′))(DR(t, t′) +D<(t, t′))

− (GR
↑ (t, t′) +G<↑ (t, t′))(GA

↓ (t′, t) +G>↓ (t′, t))(DA(t′, t) +D>(t′, t))

−G>↑ (t′, t)G<↓ (t, t′)D<(t, t′) +G<↑ (t, t′)G>↓ (t′, t)D>(t′, t)
]
. (B12)

For the linear-response correction to the spin current, we then obtain

δjxs‖(ω) = i
|J |2

~2ω

∫
dt′[eiω(t−t′) − 1]

×
{

[G<↑0(t′ − t)GR
↓ (t− t′)δµ↑(ω)−GA

↑ (t′ − t)G<↓0(t− t′)δµ↓(ω)][DR(t− t′) +D<(t− t′)]

+ [GA
↓ (t′ − t)G<↑0(t− t′)δµ↑(ω)−G<↓0(t′ − t)GR

↑ (t− t′)δµ↓(ω)][DA(t′ − t) +D>(t′ − t)]

+G>↑0(t′ − t)G<↓0(t− t′)(δµ↑(ω)− δµ↓(ω))DR(t− t′)

+G<↑0(t− t′)G>↓0(t′ − t)(δµ↑(ω)− δµ↓(ω))DA(t′ − t)
}
. (B13)

Writing the Green functions in terms of their Fourier representations, we write this as

δjxs‖(ω) = i
|J |2

~ω

∫
dε

2π

∫
dΩ

2π

×
{[

[G<↑0(ε− ω)−G<↑0(ε)]GR
↓ (ε− Ω)δµ↑(ω)−GA(ε+ Ω)[G<↓0(ε+ ω)−G<↓0(ε)]δµ↓(ω)

]
[DR(Ω) +D<(Ω)]

+
[
G<↑0(ε+ ω)−G<↑0(ε)]GA

↓ (ε− Ω)δµ↑(ω)−GR(ε+ Ω)[G<↓0(ε− ω)−G<↓0(ε)]δµ↓(ω)
]

[DA(Ω) +D>(Ω)]

+ [G>↑0(ε− ω)−G>↑0(ε)]G<↓0(ε− Ω)(δµ↑(ω)− δµ↓(ω))DR(Ω)

+ [G<↑0(ε+ ω)−G<↑0(ε)]G>↓0(ε− Ω)(δµ↑(ω)− δµ↓(ω))DA(Ω)
}
. (B14)

Again we use the fluctuation-dissipation theorem, see Eqs. (B7) and (B8). For the electrons we assume that the
spectral density is independent of energy and we set GR

σ (ε) = −GA
σ (ε) = −iπ~νσ. For the magnons we use that

DR(Ω) +D<(Ω) =DA(Ω) +D>(Ω)

=DR(Ω)(fTF
(Ω− µ̄m/~) + 1)−DA(Ω)fTF

(Ω− µ̄m/~). (B15)

We then find

δjxs‖(ω) = i
|J |2

2~ω

∫
dε

∫
dΩ ν↑ν↓ {[[n↑(ε− ~ω)− n↑(ε+ ~ω)]δµ↑(ω)− [n↓(ε− ~ω)− n↓(ε+ ~ω)]δµ↓(ω)]

× [DR(Ω)(fTF
(Ω− µ̄m/~) + 1)−DA(Ω)fTF

(Ω− µ̄m/~)]− 2(δµ↑(ω)− δµ↓(ω))

×
[
[n↑(ε− ~ω)− n↑(ε)]n↓(ε− ~Ω)DR(Ω)− [n↑(ε+ ~ω)− n↑(ε)][1− n↓(ε− ~Ω)]DA(Ω)

]}
= i
|J |2

~ω
δµs‖(ω)

∫
dΩ

{
DR(Ω)

[
ω[fTF

(Ω− µ̄m/~) + 1]−
∫
dε[n↑(ε− ~ω)− n↑(ε)]n↓(ε− ~Ω)

]
+DA(Ω)

[
(−ω)[fTF(Ω− µ̄m/~) + 1]−

∫
dε[n↑(ε+ ~ω)− n↑(ε)]n↓(ε− ~Ω)

]}
. (B16)
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If T↑ = T↓ = T this may be further simplified as

δjxs‖(ω) = i
|J |2

~ω
ν↑ν↓δµs‖(ω)

∫
dΩ

×
{
DR(Ω)

[
(~Ω− µ̄s‖ − ω)fTN

(Ω− ω − µ̄s‖/~)− (~Ω− µ̄s‖)fTN
(Ω− µ̄s‖/~) + ~ωfTF

(Ω− µ̄m/~)
]

+DA(Ω)
[
(~Ω− µ̄s‖ + ~ω)fTN

(Ω + ω − µ̄s‖/~)− (~Ω− µ̄s‖)fTN
(Ω− µ̄s‖/~)− ~ωfTF

(Ω− µ̄m/~)
]}
.

(B17)

The retarded and advanced magnon Green functions can be obtained from the Krppmers-Kronig relations,

DR(Ω) =DA(Ω)∗

=

∫
dΩ′

νm(Ω′)

Ω + iη − Ω′
, (B18)

where η is a positive infinitesimal. In the main text the superscript “R” for the retarded magnon Green function is
omitted. In the limit ω → 0, Eq. (B17) simplifies to

δjxs‖(0) = 2π|J |2ν↑ν↓δµs‖(0)

∫
dΩ νm(Ω)

{
fTF(Ω− µ̄m/~)− fTN(Ω− µ̄s‖/~)− (Ω− µ̄s‖/~)

dfTN

dΩ

∣∣∣∣
Ω−µ̄s‖/~

}
, (B19)

which is consistent with Eq. (31).
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