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A B S T R A C T

The interaction of computational complexity and quantum physics touches a wide range of topics
from emerging technologies such as quantum computers to the physics of black holes. While
tools from quantum information theory can help to answer questions in theoretical computer
science, conversely, the ideas developed for analyzing the power of classical computers can shed
light on physical phenomena.

Deeply intertwined with both, quantum theory and the theory of complexity, is randomness.
Indeed, quantum theory is a probabilistic theory and can predict, in general, only expectation
values for observables. In the theory of algorithms, randomness is not only a key design primitive
but also indispensable as a proof technique.

In this thesis we make advances at the intersection of randomness, complexity and quantum
theory. This includes a mathematical analysis of random ensembles of tensor network states,
leading to new results on the average-case complexity of tensor network contraction, contribu-
tions to the foundation of verifiable quantum supremacy experiments as well as novel bounds
on the generation of quantum pseudorandomness. In particular, we show that unitary t-designs
can be generated with a system-size independent number of non-Clifford resources and that
random quantum circuits generate designs in depth O(nt5+o(1)). These results have numerous
applications including the best bounds on the growth of operational notions of quantum cir-
cuit complexity. Moreover, we provide a proof of the Brown-Susskind conjecture for the linear
growth of exact circuit complexity in random quantum circuits.

The majority of the results in this thesis are theorems published in academic journals. The
tools exploited for this analysis range from the concepts of theoretical computer science, such as
complexity classes, over ideas from harmonic analysis and Markov chains to the techniques of
quantum many-body physics.

In an appendix, this thesis contains several unpublished results such as the first non-trivial
upper bounds on moments of the permanent and generation of quantum pseudorandomness
with random measurements on the cluster state.
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Z U S A M M E N F A S S U N G

Die Schnittstelle von Komplexitätstheorie und Quantenphysik umfasst Quantentechnologien
bis hin zu fundamentalen Fragen über die Physik schwarzer Löcher. Während die Methoden
der Quanteninformationstheorie dabei helfen können, Fragen in der Informatik zu beantworten,
tragen algorithmische Ideen dazu bei physikalische Phänomene zu erklären.

Sowohl in der Komplexitätstheorie als auch in der Quantentheorie ist das Konzept des Zu-
falls allgemeingegenwärtig. Für die Entwicklung neuer Algorithmen ist Zufall ein mächtiges
Werkzeug und erlaubt oft effiziente Methoden, wo es keine schnellen deterministischen Lösun-
gen gibt. Die Quantentheorie ist inhärent probabilistisch und erlaubt nur Vorhersagen über Er-
wartungswerte.

In dieser Dissertation machen wir mehrere Fortschritte an der mathematischen Theorie dieser
Schnittstelle. Das beinhaltet die Untersuchung von zufälligen Ensembles sogenannter Tensor-
produktzustände, Komplexitätsresultate für den typischen Fall von Tensornetzwerken, rigorose
Evidenz für verifizierbare Quantenüberlegenheitssexperimente und mehrere neue Schranken
auf die Erzeugung von Quantenpseudozufall. Insbesondere zeigen wir, dass unitäre t-Designs
mit einer systemunabhängigen Anzahl an nicht-Clifford Gattern erzeugt werden können und
das zufällige Quantenschaltkreise t-Designs in einer Tiefe von O(nt5+o(1)) erzeugen. Diese
Resultate haben zahlreiche Anwendungen und implizieren insbesondere die momentan besten
Schranken auf das Wachstum fehlerrobuster Definitionen von Schaltkreiskomplexität. Letzt-
lich enthält diese Dissertation einen Beweis der Brown-Susskind Vermutung für das lineare
Wachstum der exakten Schaltkreiskomplexität in zufälligen Quantenschaltkreisen.

Die Mehrzahl der Ergebnisse in dieser Arbeit sind mathematische Theoreme mit rigorosen Be-
weisen. Die Methoden für diese Analyse rangieren von den Konzepten der theoretischen Inform-
atik, über harmonische Analysis und Markovketten zu den Techniken der Vielteilchentheorie.

In einem Appendix enthält diese Arbeit mehrere unveröffentlichte Resultate wie die ersten
nicht-trivialen oberen Schranken auf Momente der Permanente zufälliger Matrizen so wie die
Erzeugung von Pseudozufall mit zufälligen Messungen auf Cluster-Zuständen.
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1

I N T R O D U C T I O N

Determining macroscopic properties of materials is of key importance for the understanding of
conductance and thermodynamics of solid-state materials [AS10, NB09], designing new sensors
and devising novel quantum technologies [ABB+18] and inferring nuclear processes in stars
or the early universe [Web05, ABB+05]. Often, however, it is not possible to find degrees of
freedom enabling a concise description of a given system. In such a case there is usually no
other way than to calculate numerically observables of interest from a microscopic description
[GKKR96, GML+11, MSH+12, Sch05, Sch11, AL18, DD06].

This being said, it is an unfortunate truth in life that many problems are hard to solve. This
includes physics and, in particular, the derivation of macroscopic properties from a microscopic
description. In general, the number of parameters necessary to fully characterize an arbitrary
state of a physical system grows exponentially in the number of microscopic particles involved.
This phenomenon is often referred to as the curse of dimensionality. Nevertheless, only specific
and, thus, a small fraction of systems satisfy nature’s constraints such as the locality of interac-
tions. Therefore, the number of parameters alone cannot provide a satisfactory explanation for
practical challenges and, in principle, these specific systems might allow for a more compressed
description, e.g. by exploiting a low-entanglement structure via a tensor network ansatz. There
are even examples of dynamics generating highly correlated quantum systems which can still
be simulated effciently. This includes states generated by so-called matchgate circuits [Val02]
and Clifford circuits [Got98]. Both circuit families admit a structure that can be exploited by a
simulation algorithm: Matchgate circuits can be transformed into the dynamics of free fermi-
ons [Bra05] and are thus interaction-free from this point of view; Clifford circuits have restrict-
ive algebraic properties. These examples are in contrast to many examples of quantum systems
that can presently be build in laboratories such as Rydberg atoms [BSK+17], superconducting
qubits [CW08] and trapped ions [BR12]. Even the controlled dynamics of ultracold bosonic atoms
in optical lattices [TCF+12] quickly become intractable by classical simulation algorithms. This
leads to the first guiding question of this thesis: How complex are general interacting quantum
systems?

Computational complexity and physics. In order to provide at least partial answers to
this general question, we need to show non-existence of such compressed descriptions for
certain physical processes or systems. In general, ruling out algorithms or computational short-
cuts is a highly non-trivial problem and a defining question for the field of computational
complexity theory [AB09]. Arguably, the most prominent example of the notorious problem
to rule out efficient solutions is the P vs NP conjecture. P vs NP asks, colloquially speaking,
whether any computational problem that admits efficient proofs can also be solved efficiently
to begin with [Aar16, AB09]. It is widely conjectured that this is not the case. That is, some so-
called NP-hard problems cannot be solved efficiently 1. Consequently, the hardness of explicit

1 Formally in a time that is polynomial in the input size.
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computational problems is often established by reducing the problem to the P vs NP conjecture
or a variant of it.

The P vs NP conjecture provides us with beautiful examples of how theoretical computer
science can relate to physical phenomena. A direct link between computational complexity
theory and physics is the idea that nature itself behaves like a (quantum) computer. This is
called the (quantum) extended Church-Turing thesis [BV93, VSD86]. While seemingly abstract,
this hypothesis can be directly related to the behavior of spin glasses. These are highly disordered
systems, typically modeled by Ising-type interactions, that can take very long times to cool down.
It turns out that this behavior is a necessary consequence of the Church-Turing thesis: It was
proven by Barahona [Bar82] that computing the ground state energy of a general Ising-type
Hamiltonian is NP-hard. This means that a quick cooling for all such systems would equip nature
with an in-built NP solver: Simply build your instance of the Ising ground state energy problem
in a lab, cool it down and measure the energy! Even seemingly mundane phenomena, such as
optimal configurations of soap bubbles, are subject to this line of reasoning [Aar, Aar05].
Quantum vs. classical complexity. While the example of spin glasses showcases how

computational complexity can make statements about physics, its hardness is of a purely classical
nature: Once found, the ground state can be easily stored and processed on a classical computer.
What is more, the fact that nature does not perform these tasks quickly indicates that quantum
dynamics will not be capable of solving this problem either. So are there tasks that nature
performs via quantum computations that cannot be efficiently simulated? Indeed, there is strong
evidence in form of Shor’s factoring algorithm [Sho99a] that the computational power of a full
quantum computer is separate from classical computation.

Unfortunately, testing algorithms such as Shor’s factoring method on a large quantum com-
puter might not be technologically feasible for a long time. A more recent approach to exper-
imentally separate the computational power of quantum from classical dynamics are so-called
‘‘quantum supremacy’’ experiments. These are tasks that can be shown to be unsimulable condi-
tional on certain complexity theoretic assumptions, such as the infinity of the polynomial hier-
archy (a generalization of the P vs NP conjecture). In particular, they promise to be feasible long
before fully fledged fault tolerant quantum computers can be expected. Indeed, Google prom-
inently claimed quantum supremacy from random quantum circuit sampling in 2019 [AAB+19].
As anticipated, new classical algorithms emerged in the meantime and raised the bar for quantum
supremacy [PCZ21].

A key aspect, common in all such proposals, is the idea of randomized experiments: The
particular instance of the computational task that is performed by the experiment is drawn
at random. This procedure guarantees that the dynamic is as devoid of exploitable structure
as possible. The unsimulability of these sampling schemes would therefore demonstrate the
computational complexity of randomness in random quantum systems.
Complexity and local ensembles of states. These sampling tasks are good candidates

to separate quantum from classical computational power, but they provide little insight into
how inherently complex the quantum states generated in these protocols are. For this we need
quantifiers such as the (quantum) circuit complexity. This notion allows to measure the minimal
number of operations required to prepare a given state. Finding lower bounds for explicit families
of states is a notoriously difficult question. It is all the more surprising that often such bounds
can be proven to hold with high probability for an ensemble of states. Finding such probabilistic
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bounds is a key objective towards progress on the general complexity of interacting quantum
systems.

Indeed, the probabilistic method [AS16] can often imply the existence (and even the abundance)
of objects that lack an explicit construction. In this thesis, we will use the probabilistic method
to establish lower bounds on the (quantum circuit) complexity of states under chaotic time
evolution. Indeed, the probabilistic method has so far found several applications in quantum
information theory. A most useful ensemble of states and unitaries is the uniform measure
invariant under application of a unitary transformation [DF17]. For example, a seminal result by
Page [Pag93] in quantum information theory is that the overwhelming majority of bipartite states
are nearly maximally entangled. However, statements of the kind ‘‘most states have property
X’’ clearly depend on the ensemble that specifies what is meant by ‘‘most’’. In particular, in the
context of complexity and quantum many-body physics, we are often interested in ensembles of
quantum systems that respect the locality of natural interactions and need to understand how
their properties compare to those of uniformly random states. This makes complexity a strong
motivation to understand randomness in random (locally) interacting quantum systems. We will
find that the applications of ensembles of states with locality restrictions go beyond complexity.

In this thesis we will make multiple advances at the intersection of randomness and quantum
complexity theory. This line of research allows to make progress on fundamental questions about
the computability of nature and at the same time delineate the limitations of emergent quantum
technologies. In the following, we will relate the general questions and concepts outlined above
to specific projects and assign them a place in this thesis.

1.1 extended outline.

In Chapter 2, we review ubiquitous aspects of group theory and representation theory. Multiple
results in quantum information theory are based on the integration over groups. We develop
most of these techniques from a simple statement in representation theory called Schur’s lemma.
In discussions, when confronted with a seemingly complicated integration formula, one would
often hear a puzzled: ‘‘ But isn’t that just somehow Schur’s lemma?’’. The answer to this is yes
and in this review chapter we show how this works in general. Thereby, we formalize many of
the notions we briefly introduce in the following, such as random walks, approximate designs,
pseudorandomness and spectral gaps.

In Chapter 3 we then present the first results of this thesis. To apply randomized arguments
to the complexity of interacting quantum systems, we need to understand how toy models of
locally random dynamics, so-called random quantum circuits, relate to uniform randomness over
all states. Random quantum circuits are a well-established concept in the theory of quantum
computing and quantum information theory. The abundance of applications, ranging from
protocols for the processing of quantum information, quantum system characterization to even
black hole physics, is partially due to the quick generation of quantum pseudorandomness. A
key notion here is that of unitary t-designs. These are probability distributions on the unitary
group which are indistinguishable from the uniform probability measure -- the Haar measure
-- if only tested against polynomials of degree at most t. The Haar measure is the unique
probability distribution on the unitary group that is invariant under multiplication with any
unitary. In a seminal paper, Brandão, Harrow and Horodecki prove that quantum circuits on n
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qubits with randomly drawn gates approximate unitary t-designs after O(nt10.5) random gates
for all t > O(20.4n) [BaHH16].

Local random quantum circuits require a fully fledged fault tolerant quantum computer. While
this is likely necessary for higher moments, small values of t require much less experimental
resources. Indeed, the Clifford group is not only a 3-design but also efficiently simulable on
a classical computer [Got98, AG04]. Moreover, Clifford unitaries have desirable properties
for fault tolerant implementation [BK05, Got97, CS96, Ste96, err]. At the same time, it fails
gracefully [ZKGG16] to be a unitary 4-design. To generate higher designs, some non-Clifford
resources are required. The objective of Section 3.1 is to quantify the non-Clifford resources that
are sufficient to lift the Clifford group to an approximate t-design for small values of t: n > t2.
Surprisingly, we find that it suffices to injectO(t4) single qubit non-Clifford gates into a random
Clifford circuit to approximate unitary designs up to (additive) errors. Strikingly, this number is
independent of the system-size and, therefore, the density of non-Cliffords is allowed to tend to
zero in the thermodynamic limit.

The generation of approximate unitary t-designs has direct consequences for the growth of
quantum circuit complexity in random quantum circuits. Effecting a unitary or a state (possibly up
to some error) requires a minimal number of elementary 2-local unitaries. This minimal number
is called the quantum circuit complexity. It was proven in Ref. [BCHJ+21] that a unitary drawn
from a unitary t-design has circuit complexity at leastΩ(t) with overwhelming probability. This
can be viewed as a partial derandomization of the fact that most unitaries are exponentially
complex [Pre98], a quantum analogue of a result by Shannon [Sha49] for boolean functions.
Combined with the Brandão, Harrow, Horodecki bound, the lower bound on unitary t-designs
implies ar bound ofΩ(T1/10.5) for the circuit complexity of states prepared by a random quantum
circuit of depth T , even for exponentially deep circuits.

The exponential time scale, while practically inaccessible, is key to a conjecture in the context
of the AdS/CFT correspondence and, in particular, for a proposal to resolve the wormhole growth
paradox [Sus18,Sus16]. Here, random quantum circuits serve as a model for the holographic dual
of a black holes dynamic. The Brown-Susskind conjecture states that with high probability the
quantum circuit complexity of random quantum circuits grows at a linear rate for exponentially
deep circuits [BS18a]. Roughly, this would mean that most local quantum circuits are essentially
incompressible until their complexity saturates. Therefore, the complexity lower bound can
be viewed as a significant step towards the Brown-Susskind conjecture in that it establishes
a sublinear but algebraic bound on the complexity.

In the first publication of Section 3.2, we improve the design depth of local random quantum
circuits with nearest neighbor interactions to O(nt5+o(1)) for t 6 O(20.5n). This implies
a growth of complexity of O(T1/5+o(1)), which constitutes the strongest known bound for
error-robust notions of quantum circuit complexity. As an auxiliary result, we prove a strong
convergence result for the Clifford interleaved circuits introduced in Section 3.1.

The generation of unitary t-designs at a depth O(nt) would imply the full Brown-Susskind
conjecture [BCHJ+21] and was conjectured in Ref. [BaHH16, BHH16]. Evidence for this scaling
was obtained in [HJ19], by considering random quantum circuits on large qudits, i.e. acting
on (Cq)⊗n in the limit of large local dimensions. One contribution of the second publication
presented in Section 3.2 is that this abstract limit can be reduced to the condition t2 6 q. In the
same publication, we also prove strong bounds on random quantum circuits without geometric
locality restriction or all-to-all interactions. Moreover, we combine new numerical results with
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analytical arguments to obtain the strongest known bound on the convergence to designs for
t = 2, 3, 4, 5.

In Section 3.3 we change perspective and focus on the complexity of exact implementation
of states. This far more restrictive notion allows us to prove that the complexity in random
quantum circuit is at least linear in the depth of the random quantum circuit with probability
1. This rigorously proves a variant of the Brown-Susskind conjecture. The key idea is not to
use unitary t-designs, but to exploit that the set of unitaries implementable in a given circuit
architecture is a semialgebraic set [BCR13].

InChapter 4 of this thesis is concerned with the efficient simulability of specific computational
problems related to quantum physics. In recent years, the primitive of sampling-based quantum
advantage experiments or ‘‘quantum supremacy experiments’’ emerged. Examples include the
boson sampling proposal [AA13], random quantum circuit sampling [AAB+19, BFNV19] and
commuting quantum circuits [BMS17, BMS16a]. The objective of these schemes is not to solve
some practical tasks. Instead, we only require the quantum device to exponentially outperform
the best classical attempts to simulate them. As explained above, this alone would be a significant
achievement, refuting the Church-Turing thesis. The typical models of quantum computing
come with no mathematical guarantees of a speed-up. In fact, a polynomial algorithm for
factoring integers would have no immediate implications for problems in classical computer
science 2, such as P vs NP.

While less powerful than access to a full quantum computer, the ‘‘supremacy’’ of sampling-
based quantum advantage schemes can be related to classical computational assumptions. These
arguments come with ‘‘loopholes‘‘ or ‘‘gaps’’ and much of the theoretical literature is focused
on closing the gaps. In particular, the average-case complexity of approximating the output
probabilities up to very small errors is an open problem for each of these schemes. Related
thereto is a property called anticoncentration that roughly asserts that for most instances the
output distribution is not too peaked. This anticoncentration property can be proven for some
but not all schemes. Another loophole is the verification of the protocol: How do we know that
the quantum device performed the computation we want it to? A recent quantum advantage
scheme [BVHS+18] is based on a constant time evolution under an elementary Ising-type
Hamiltonian and can be seen as a quantum advantage experiment for quantum simulators. A
particular advantage of this scheme is that it comes with an efficient verification protocol (up to
partial trust in the measurements) [HKSE17].

In Chapter 4, we close the anticoncentration gap for this protocol by proving the 2-design
property for a random quantum circuit effected by measurements. Moreover, we show that a
very accurate evaluation of the output distribution is indeed average-case complex by adapting
an argument based on polynomial interpolation developed by Lipton for the permanent [Lip91,
BFNV19].
Chapter 5, we focus on one of the key techniques for the simulation of quantum systems:

tensor networks. The locality of interaction of Hamiltonians is related to a low-entanglement
structure of states that can be prepared of ground states of such systems. Arguably, these states
constitute the physical corner of Hilbert space. Tensor network states naturally captures low
entanglement by modeling the correlation with local tensors with restricted dimensions. This
ansatz has proven unreasonably successful [Orú14, BC17].

2 Of course, it would break some hearts [pri].
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The subclass of matrix product states are among the most ubiquitous tools in the simulation
of condensed matter and in the theory of quantum information. Comfortably, this comes with a
matching mathematical guarantee [Vid03] that not only their storage, but also their contraction
can be efficiently computed on a classical computer. This allows to efficiently extract physical
quantities such as expectation values of local observables from a matrix product approximation
of a state. This situation drastically changes in 2D. Not only are practical challenges abundant,
but it can also be proven that a very accurate contraction of a 2D tensor network representation
(a so-called projected entangled pair state (PEPS)) is #P-hard [SWVC07]. The latter includes the
class NP and it is therefore unlikely that an efficient algorithm for this task can exist. However,
this only makes a statement about the worst-case complexity. That is, it does not rule out the
existence of good heuristic algorithms that work fast and accurately for most systems. In the
first half of Chapter 5, we prove a worst-to-average case reduction for the contraction of PEPS.
These results imply that no heuristic algorithm can solve a constant fraction of the instances of
the contraction problem with very high accuracy.

In the second half of Chapter 5, we study general properties of a naturally local ensemble of
matrix product states. We employ a mapping of the resulting combinatorial problem to the par-
tition functions of auxiliary statistical mechanics models. This allows us to prove equilibration
of evolution under general Hamiltonians starting with ‘‘most MPS’’, a local principle of max-
imal entropy and the extensivity of the second Rényi entropy of disjoined subsystems all with
overwhelming probability.

Last, in Appendix A we present and prove results not contained in the publications that
form this thesis. Some of these results are complementary to published results such as the
generation of quantum pseudorandomness from random measurements in cluster states. Others
approach independent problems, such as providing non-trivial upper bounds on moments of the
permanent.
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2

‘ ‘ I S N ’ T T H I S J U S T S C H U R ’ S L E M M A ? ’ ’ R E P R E S E N T A T I O N S A N D
P R O B A B I L I T Y T H E O R Y O N G R O U P S

2.1 representations

In this thesis we assume familiarity with basic algebraic definitions such as topological groups,
Lie-groups, rings, fields and (associative) algebras as well as the concepts of quantum inform-
ation theory. The following chapter is intended as a quantum information theorist’s guide for
representation theory and some of its applications. We do not follow any particular textbook,
but for more details and depth we refer to Ref. [FH].

Groups are among the most ubiquitous objects in mathematics. In particular, they are closely
related to the concept of symmetries. This thesis is concerned with quantum theory and in
quantum theory most objects of interest can be located in vector spaces and more precisely in
Hilbert spaces. If a group is supposed to describe a class of symmetries of a physical system it
can only do so if the abstract group structure can be translated to operations on a Hilbert space.
If such a map respects the group structure, it is called a representation:

Definition 1. A (unitary) representation of a group G is a tuple (ρ,V), where V is a Hilbert space
and ρ : G → U(V) is a continuous map from G to the group of unitary operations on V such that
ρ(g ◦h) = ρ(g)ρ(h) for all g,h ∈ G and ρ(e) = 1V , where e ∈ G denotes the identity element of
G. A subrepresentation is a vector spaceW ⊂ V such that ρ(U)W ⊂W for all U.

A representation of an algebra is defined similarly. We will often abuse notation and refer to
the vector space V as the representation.

It can be shown from this definition that ρ also respects inverses: ρ(g−1) = ρ(g)†.

Example 1. We will meet the following examples multiple times again in this thesis.

• For every group G there is always the 1-dimensional trivial representation Vtriv on which the
group acts as ρ(g)v = v for g ∈ G and v ∈ Vtriv.

• The traceless part of the adjoint representation of any matrix group G ⊂ GL(d): V = {M ∈
Cd×d, Tr[M] = 0} and ρ(g)(M) := gMg−1.

• Tensor products: For any two representation (V , ρV) and (W, ρW) of a group G, the vector
space V ⊗W is also a representation with the representation ρV⊗W(g)(v⊗w) = ρV(g)v⊗
ρW(g)w. Most often, we will consider the case, where V = W and ρV = ρW or even higher
tensor powers defined by iterating this definition.

For many naturally occurring groups, representations can be decomposed into a class of
irreducible representations, the ‘‘atoms’’ of representation theory:

Definition 2. We call a representation (ρ,V) of a group G irreducible if there is no subrepresent-
ation of ρ except {0} and V .
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In this thesis, we will only ever see groups and algebras that are semisimple:

Definition 3. A group is called semisimple if all representations over C decompose as a direct sum
of irreducible representations.

Example 2. blub

• The trivial representation is irreducible for every semisimple group.

• For the special unitary group, the adjoint representation decomposes into two irreps: The trivial
irrep and the traceless part. We will show later as an application of the relation between
commutants and representations that this traceless part is indeed an irreducible representation.

Intertwiners are linear maps that respect the structure of a representation:

Definition 4. Let (V , ρ) and (W,σ) be two representations of a groupG, a linear map T : V →W

is called a homomorphism or intertwiner is it commutes with the group action, i.e. σ(g)T |v〉 =
Tρ(g)|v〉. If T is invertible, it is called an isomorphism.

A corner stone and one of the most useful statements in representation theory and in this thesis
is Schur’s lemma. 1

Theorem 1 (Schur’s lemma). Let (V , ρ) and (W,σ) be irreducible representations of a semisimple
group G and T : V → W an intertwiner. If (V , ρ) and (W,σ) are not isomorphic, then T = 0. If
we have (W,σ) = (V , ρ), then T is a multiple of the identity 1V on V .

This immediately implies that isomorphisms between irreducible representations are unique
up to scalar factors. Indeed, in this thesis, we will only encounter intertwiner that are unitaries
on the representation spaces, which implies uniqueness of isomorphisms up to a phase.

A useful structural tool in representation theory is the commutant theorem. Next, we will show
that it follows directly from Schur’s lemma. For this, consider the commutant of a set S ⊂ L(V)
of linear maps acting on a vector space V :

comm(S) := {T ∈ L(V), [L, T ] = 0 for all L ∈ S}. (2.1)

Moreover, for a representation (V , ρ) we set

comm(ρ) := comm({ρ(g),g ∈ G}). (2.2)

Theorem 2 (Commutant theorem). Let (V , ρ) be a representation of a semisimple group G. Then,
A := comm(ρ) is a semisimple algebra acting on V with irreducible representations Wλ, which
can be labeled by all isomorphism classes λ represented by irreps (Vλ, ρλ) of G appearing in the
decomposition of V . Then, V decomposes as follows:

V
∼
=
⊕

λ

Vλ ⊗Wλ, (2.3)

whereG acts on V as
∑
λ ρλ(g)⊗ 1Wλ for all g ∈ G andA acts on V as

∑
λ 1Vλ ⊗ L for all L ∈ A.

1 In general, Schur’s lemma characterizes intertwiners between irreducible representations as elements of a division
algebra. In the special case of representations over the complex numbers, we have the stronger implication presented
here.
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Proof. By definition of the irreps Vλ, V decomposes as

V
∼
=
∑
λ

Vλ ⊗Mλ =
∑
λ

V
⊕dimMλ
λ (2.4)

for some multiplicity spaces Mλ.2 In the following we will use the bracket notation from
quantum mechanics, i.e. we denote vectors as |ψ〉 and dual vectors by 〈ψ|. Pick any ONB
{|k, λ〉} of the spaces Mλ. Denote by Pk,λ the orthogonal projector onto the space Vλ ⊗ |k, λ〉
and let T : V → V be an element of A. The latter is equivalent to T being an intertwiner from
(V , ρ) to (V , ρ). Consider the restricted operators Pk,λ ′TPk,λ. As the representation ρ(g) block
diagonalizes into the irreducible representations, the restricted operators are intertwiners as well.
In particular, we can directly invoke Schur’s lemma multiple times and find that

T =
∑
k,λ

Pk,λT
∑
k,λ ′

Pk ′,λ ′

=
∑

k,λ,k ′,λ ′
Pk,λTPk ′,λ ′

=
∑
k,k ′,λ

PkλTPk ′,λ

=
∑
λ

∑
k,k ′,λ

(PVλ ⊗ 〈k, λ|)T(PVλ ⊗ |k ′, λ〉)⊗ |k, λ〉〈k ′, λ|

=
∑
λ

∑
k,k ′,λ

Lλ,k,k ′1Vλ ⊗ |k, λ〉〈k ′, λ|

=
∑
λ

1Vλ ⊗ Lλ,

(2.5)

for some linear operators Lλ : Mλ → Mλ. Moreover, all operators of this form are in the
commutant. Hence, we have

A =
⊕

λ

1Vλ ⊗ L(Mλ)
∼
=
⊕

λ

L(Mλ) (2.6)

as an algebra. It follows from this characterization that the spacesMλ are irreducible represent-
ations of A.

2.2 representation theory of the unitary group

In this section we focus on the representation theory of the unitary group. We have seen in the
last section how the commutant algebra can be helped to characterize the representation theory
of a group. Here, we will apply this general principle to the diagonal representation or tensor
power representation δt : SU(d)→ U((Cd)⊗t) of SU(d):

δt(U) := U
⊗t. (2.7)

As it turns out, we also have to study the representation theory of the symmetric group St, the
group of all bijections on [t]. The reason for this is the celebrated Schur-Weyl duality. For this
statement, consider the representation r : St → U((Cd)⊗t) of the symmetric group defined by

r(π)|i1, . . . , it〉 = |iπ(1), . . . , iπ(t)〉. (2.8)
2 The spaces Vλ ⊗Mλ are called isotypic components.
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Theorem 3. The following holds for the commutant of the diagonal action of SU(d):

comm(δt) = span{r(π),π ∈ St}. (2.9)

The special case t = 2 already implies the statement made in Example 2 that the traceless part
of the adjoint representation is irreducible:

Proposition 1. The adjoint action Ad : SU(d) → L(Cd×d), AdU(M) := UMU† decomposes
into two irreps: {a1d,a ∈ C} and {M ∈ Cd×d, Tr(M) = 0}.

Proof. First, recall that Cd×d is a Hilbert space with the Hilbert-Schmidt product. Therefore, we
have {M ∈ Cd×d, Tr(M) = 0} = {a1d,a ∈ C}⊥. We have immediately that {a1d,a ∈ C} is
isomorphic to the trivial irrep. Therefore, Cd×d decomposes into at least two irreps. It can be
easily verified that under the vectorization isomorphism, the adjoint representation is equivalent
to the action δ1,1 : U 7→ U⊗U. It can be checked that the partial transpose Γ is an isomorphism
of vector spaces Γ : comm(δ2)→ comm(δ1,1)

3. In particular,

dim comm(δ1,1) = dim comm(δ2) = dim span{1, F} = 2.

Therefore, the commutant of the adjoint action can contain at most 2 irreducible representations
up to isomorphisms and consequently, by Theorem 2, so does the adjoint representation.

Similarly, we find:

Corollary 1. The symmetric subspace St(Cd) is an irreducible representation of SU(d).

Proof. Observe that St(Cd) is defined as the invariant subspace under the action r of St. In other
words, it is the isotypical component in (Cd)⊗t of the trivial representation of St. As the trivial
irrep is 1-dimensional, the commutant theorem ensures that this isotypical component is an irrep
of SU(d).

Even though less prominent in this thesis, essentially the same proof strategy works for
the antisymmetric subspace At(Cd). There are more elementary and insightful proofs of the
irreducibility of the symmetric subspace [Har13].

Irreps of the symmetric group can be uniquely labeled (up to isomorphisms) by partitions. That
is, tuples of numbers λ = (λ1, . . . , λm) of positive integers ordered from left to right by largest
to smallest such that λ1 + . . .+ λm = t.

It is common to represent partitions by combinatorial objects called Young diagrams. Here,
one places λ1 boxes horizontally in a first row, λ2 boxes in a second row etc. For example the
partition 8 = 4+ 2+ 2 is represented by the Young tableaux

3 However, the partial transpose is not an algebra isomorphism. In general, the two commutants are not isomorphic
as algebras.
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From every such Young diagram, one can construct an operator on the group algebra by
labeling the boxes by numbers from 1 to t and then symmetrizing over the columns and
antisymmetrizing over the rows. The result, the Young symmetrizer, will have (multiple copies
of) a unique irrep as its image. We will not get into the details of this construction, but only
take away from this the intuition that the longer the Young diagram horizontally, the more
antisymmetric and the taller the diagram vertically, the more symmetric the corresponding irrep
is. The extreme cases are the partitions (t) a (1, . . . , 1) corresponding to the trivial and the sign
representation, respectively. As Young diagrams, these are represented by

Via the commutant theorem, these correspond to the symmetric subspace and the antisymmetric
subspace as representations of SU(d). This gives us the opportunity to state the following
formulation of the Schur-Weyl duality:

Corollary 2. Let Λt,d be the set of all Young diagrams with at most d boxes per row and t boxes
overall. Then, we have the following decomposition of the t-th tensor power representation of SU(d)
acting on (Cd)⊗t:

(Cd)⊗t ∼
=
⊕

λ∈Λt,d
Wd,λ ⊗ Sλ. (2.10)

The spacesWd,λ are often called Weyl modules and the Sλ are called Specht modules [FH].
It turns out that each irrep of SU(d) is contained in some tensor power of the standard

representation. In particular, we can label the irreps of SU(d) also by Young diagrams. However,
these labelings are only unique if we consider every column with d boxes to be trivial. It is
therefore a standard convention to assign the empty Young diagram to the trivial representation
of SU(d). Considering the Schur-Weyl duality, the Young diagram labeling the standard
representation corresponds to the trivial irrep of S1, which is isomorphic to the trivial group.
This is the Young diagram which consists of a single box. This immediately yields that the
standard representation is irreducible

Highest weights [FH] are an equivalent way of labeling the irreducible representations by the
’’highest‘‘ irrep in the induced representation of the diagonal subgroup. Also compare Appendix
B in the publication presented in Section 3.1. This latter approach of highst weights works more
generally for compact Lie-groups, where one considers induced representations of a maximal
torus [FH].

2.3 the haar measure and weingarten calculus

A central object in this thesis is the Haar measure. That is a generalization of the uniform
probability distribution on an interval I = [0,b] to more complicated objects such as the set
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of states or the unitary group. It turns out that the uniform measure on I can alternatively be
defined as the unique measure that is invariant under addition modulo b. In particular, we have
the defining condition

1

b

∫
I
f(x+ y mod b)dx =

1

b

∫
I
f(x)dx (2.11)

for any measurable function f : I → C and any y ∈ I. Further, it can be easily seen that the
operation x+ y mod b is actually the group action inherited from U(1)

∼
= S1

∼
= I/ ∼, where

the equivalence relation ∼ identifies the two end points. Translating the uniform measure via
these isomorphisms from I/ ∼ to a measure onU(1) denoted by µH, we can rewrite this defining
condition on U(1) as ∫

U(1)
f(UV)dµH(U) =

∫
U(1)

f(U)dµH(U). (2.12)

This means, µH, the uniform, or Haar measure on U(1) is the unique left invariant measure.
The following theorem provides the existence of a unique measure that generalizes the uniform

measure on an interval.

Theorem 4. Let G be a compact group. There is a unique left invariant probability measure on G
that we denote by µH and call the Haar measure.

As the (normalized) Haar measure is a probability measure, we will often denote the integrals
over it as expectation values:

EU∼µHf(U) :=

∫
G
f(U)dµH(U). (2.13)

Analogously, a right invariant measure exists. For all groups of interest in this thesis, the left
and right invariant measure will coincide, a property called unimodularity. The introduction (and
explicit constructions in terms of random 2× 2 matrices) of the Haar measure on the classical
Lie groups SU(d) and SO(d) go back to Hurwitz [Hur63, DF17].

Moreover, we can similarly define a unique invariant measure on manifolds that G acts on
transitively. The main example of this is the state space Sd = {|ψ〉, 〈ψ|ψ〉 = 1} 4. We denote by
µH the measure on Sd defined by∫

f(U|ψ〉)dµH(U) =:

∫
f(|ψ〉)dµH(ψ) (2.14)

for any measurable function f and unitary U.
The following lemma provides the key link between the Haar measure and representation

theory:

Lemma 1 (Projector formula). Let G be a compact group with Haar measure µH and (V , ρ) a
representation of G. Moreover, denote by Ptriv the orthogonal projector onto the trivial isotypical
ensemble of ρ. Then,

Ptriv =

∫
ρ(U)dµH(U). (2.15)

4 Technically, the phase is unphysical information and thus we could and perhaps should reduce this to the projective
space CP.
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Moreover, it holds that
(∫
ρ(U)dµH(U)

)(∫
ρ(U)dν(U)

)
=

(∫
ρ(U)dµH(U)

)
(2.16)

for all probability measures ν on SU(d).

Proof. First, we can verify that the right hand side of Eq. (2.15) is a projector:
(∫
ρ(U)dµH(U)

)2
=

∫ ∫
ρ(U)ρ(V)dµH(U)dµH(V)

=

∫ ∫
ρ(UV)dµH(U)dµH(V)

=

∫ ∫
ρ(U)dµH(U)dµH(V)

=

∫
ρ(U)dµH(U).

(2.17)

Moreover, as µH is symmetric, we find that the RHS is also hermitian. Next, we need to
characterize the image of the RHS. First, if |ψ〉 is in the trivial isotypical component (or invariant
subspace), then∫

ρ(U)dµH(U)|ψ〉 =
∫
ρ(U)|ψ〉dµH(U) =

∫
|ψ〉dµH(U) = |ψ〉. (2.18)

For the other direction, let |ψ〉 be in the image of
∫
ρ(U)dµH(U). Then,

ρ(V)|ψ〉 = ρ(V)
∫
ρ(U)dµH(U)|ψ〉

=

∫
ρ(VU)dµH(U)|ψ〉

=

∫
ρ(U)dµH(U)|ψ〉

= |ψ〉,

(2.19)

which completes the proof. The second claim follows from a straightforward generalization
of 2.17.

An immediate consequence of this general principle is average over an adjoint of a represent-
ation:

Corollary 3. ∫
H
ρ(U)Aρ(U)†dµH(U) = Pcomm(ρ), (2.20)

where Pcomm(ρ) denotes the orthogonal projector onto comm(ρ) with respect to the Hilber-Schmidt
product on L(V).

Proof. The proof is immediate from the fact that Adρ defined by AdρU(A) := ρ(U)Aρ(U)†

defines a representation on L(V) and AdρU(A) = A is

ρ(U)Aρ(U)† = A ⇐⇒ ρ(U)A = Aρ(U).
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We now give two simple applications of these formulas. The first one is prototypical for many
calculations in this thesis.

For these examples we to introduce the Schatten p-norms. Throughout this thesis, we will
denote the Schatten p-norms of a matrix A ∈ CD×D by

||A||p := Tr[|A|p]
1
p , (2.21)

where |A| :=
√
AA†. The case p = 1 is also called the trace norm and is not to be confused with

the l1-norm of matrix as a vector in CD
2 . The case p =∞ corresponds to the operator norm of

A viewed as an element of L(CD), the space of linear maps on CD and p = 2 coincides with the
Frobenius norm. For the latter case, we will mostly use the notation ||A||F.

Application On average, over the uniform measure on a d-dimensional state space, the prob-
ability of detecting an arbitrary fixed state |φ〉 is 1/d. Indeed, we can compute

E|ψ〉∼µH |〈φ|ψ〉|
2 = ETr[|φ〉〈φ||ψ〉〈ψ|]
= Tr[|φ〉〈φ|E|ψ〉〈ψ|]

= Tr
[
|φ〉〈φ|E

∫
U|ψ〉〈ψ|U†dµH(U)

]

†
= Tr

[
|φ〉〈φ|E 1

d
1dTr(|ψ〉〈ψ|1d)

]

=
1

d
Tr [|φ〉〈φ|]

=
1

d
.

(2.22)

Here, † follows from Corollary 3 by observing that the standard representation ρ(U) = U is
irreducible and thefore the commutant of U is the identity by Schur’s lemma. Hence,∫

UAU†dµH(U) = Pspan(1d)(A) =
1

||1d||
2
F

1dTr(A1d) =
1

d
1dTr(A).

The second application is a formula for averages over copies of a uniformly random state. We
used a special case of this for a single copy in the previous application:

Application The following formula is key in many calculations involving random states:∫
(|ψ〉〈ψ|)⊗tdµH(ψ) =

Psym,t(
d+t−1
t

) , (2.23)

where Psym,t denotes the orthogonal projector onto St(Cd). This follows from the fact that
|ψ〉⊗t ∈ St(Cd). In particular, this space is an irreducible representation under the action U⊗t.
Then, ∫

(|ψ〉〈ψ|)⊗tdµH(ψ) =
∫
U⊗t(|ψ0〉〈ψ0|)⊗t(U⊗t)†dµH(ψ) (2.24)

for some fixed |ψ0〉. This projects (|ψ0〉〈ψ0|)⊗t onto the commutant of the action U⊗t by
Corollary 3. However, by Schur’s lemma, this commutant is a multiple of the orthogonal
projector onto this irrep. Hence,∫

(|ψ〉〈ψ|)⊗tdµH(ψ) = Tr
[
(|ψ0〉〈ψ0|)⊗t

Psym,t

||Psym,t||F

]
Psym,t

||Psym,t||F
=

Psym,t

||Psym,t||
2
F

, (2.25)
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which yields the claimed result by observing that

||Psym,t||
2
F = Tr(Psym,t) = dimSt(Cd) =

(
d+ t− 1

t

)
,

where the last equation is the standard formula for the dimension of the symmetric subspace [Har13].

Another close connection between the Haar measure and representation theory arises from the
fact that we can define the space L2(G) of functions f : G → C that are square integrable over
the Haar measure, with the usual inner product. This space comes with a representation called
the regular representation:

ρreg(U) : f 7→ (V 7→ f(U−1V)). (2.26)

A key result in representation theory is the Peter-Weyl theorem that roughly states that all
irreducible representations appear in the decomposition of (L2(G), ρreg).

Theorem 5 (Peter-Weyl). Let G be a compact group with Haar measure µH. All irreducible
representations of G are finite dimensional. Moreover, the set ΛG of all irreducible representations
Vλ up to isomorphisms is countable and we have the following decomposition

L2(G)
∼
=
⊕

λ∈ΛG
V
⊕dimVλ
λ

∼
=
⊕

λ∈ΛG
L(Vλ). (2.27)

Lastly, we introduce Weingarten calculus as a consequence of the projector formula derived in
this section. We introduce the notation

|ψπ〉 := d−t/2vec(r(π)), (2.28)

where vec : CD×D → (CD)⊗2 defined by

vec(A) := 1⊗A|Ω〉, (2.29)

for A ∈ CD×D where |Ω〉 = ∑i |ii〉 denotes the (unnormalized) maximally entangled state for
an ONB {|i〉} of CD. It can be seen that this map is alternatively defined by vec(|i〉〈j|) = |i, j〉.

We know from Corollary 3 that M(µH, t) is the orthogonal projector onto the span of the
vectorizations |ψπ〉 of r(π). Picking any orthonormal basis {|π〉} for this space, we can hence
write the projectorM(µH, t) as a sum of the rank 1 projectors onto the basis states. Notice that,
while {|ψπ〉 constitutes a basis, the permutations are not mutually orthogonal. Nevertheless, we
can expand each |π〉 as a linear combination of the vectors |ψπ〉. This yields the expansion

M(µH, t) =
∑
π∈St

|π〉〈π| =
∑
π,σ

(dtWd(π,σ))|ψπ〉〈ψσ|. (2.30)

The unique coefficientsWd(π,σ) are called Weingarten function. The factor dt comes from the
fact that we normalize the state |ψπ〉.

To characterize these more precisely, we define the synthesis operator

V =
∑
π∈St

|ψπ〉〈π| (2.31)
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and the Gram matrix G by
Gπσ = (V†V)πσ = 〈ψπ|ψσ〉. (2.32)

More precisely, we find
Gπσ = d−td#cycles(πσ−1). (2.33)

On the full space (Cd)⊗t the matrices G and V are not invertible, but we can define the
pseudoinverses G+ and V+. That is, we only invert the matrices on their images and leave
the kernel invariant. With these definitions, we can expand∑

π∈St
|π〉〈π| = VV+(V+)†V†

= V(V†V)+V†

= VG+V†

=
∑
π,σ

|ψπ〉〈π|G+|σ〉〈ψσ|

=
∑
π,σ

(G+)π,σ|ψπ〉〈ψσ|.

(2.34)

Comparing this to the expansion (2.30) characterizes the Weingarten functions as the matrix
entries of the inverted Gram matrix:

Wd(σ,π) = d−t〈π|G+|σ〉 (2.35)

Example 3. We now put this formula to the test and derive a general integration formula for
quadratic functions. For t = 2, we have the Gram matrix

G =

(
〈ψ1|ψ1〉 〈ψF|ψ1〉
〈ψ1|ψF〉 〈ψF|ψF〉

)
=
1

d2

(
Tr[1] Tr[F]

Tr[F] Tr[1]

)
=
1

d

(
d 1

1 d

)
. (2.36)

We can verify that

G−1 =
d2

d2 − 1

(
1 − 1

d

− 1
d 1

)
. (2.37)

Plugging this into (2.30) immediately yields the general formula∫
U⊗2A(U⊗2)† =

1

d2 − 1

(
1Tr(A) −

1

d
FTr(A) −

1

d
1Tr(AF) + FTr(AF)

)
. (2.38)

Notice that we never had to construct an explicit ONB {|ψ〉} for this. This formula is ubiquitous
in quantum information theory as expressions such as the LHS of (2.38) are common in the
study of states that are invariant under local operations. In this context, the LHS of (2.38) is
often referred to as a twirl. More generally, Eq. (2.35) can be used to exactly compute the t-fold
moment operator. Indeed, strong bounds for the asymptotic behaviour of Weingarten functions
for large dimensions are known [CM09,CM17]. However, there is no simple and explicit formula
for higher moments and we are therefore incentivized to exploit as much symmetry as possible
for higher moment calculations before we resort to Weingarten calculus. To exploit symmetries,
a general formula by Collins and Sniady [CS06] can provide guidance: It expresses the integral
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∫
U⊗tA(U†)⊗t in terms of the frame operator applied to A times a weighted sum of projectors

onto the isotypic components of (Cd)⊗t. Moreover, Ref. [CS06] also provides similar formulas
for the integration over the orthogonal and symplectic group.

The formula (2.38) is a key ingredient for Ref. [HBRE21], which is presented in Chaper 5. In
that chapter, we use the formula in a graphical calculus based on tensor network diagrams5:

EU∼µH
U

U
U

U

=
1

q2 − 1


 −

1

q
−
1

q
+


 . (2.39)

A diagrammatic approach to Weingarten calculus goes back to Ref. [BB96] (see also [NS21]). We
refer to Ref. [BC17] for an extensive introduction to tensor network diagrams.

We can define the frame operator by

Q = VV† =
∑
π

|ψπ〉〈ψπ| > 0. (2.40)

We find that
√
Q+|ψπ〉 defines an orthonormal basis. This is because

|ψπ〉 = QQ+|ψπ〉 =
∑
σ

|ψσ〉〈ψσ|Q+|ψπ〉 (2.41)

and the vectors |ψπ〉 are linearly independent. This general procedure is called symmetric
orthogonalization (see e.g. Ref. [GNW21] for a similar application). Moreover, notice that the
same procedure works for every group, where we instead consider the Gram matrix over a basis
of the respective commutant.

If the permutations are approximately orthogonal, then we find that the frame operator is
approximately the projector onto the span of permutations. Remarkably, the frame operator can
also be interpreted as the moment operator of a (non-unitary) ensemble of matrices. Indeed,
Wick’s theorem [Wic50] shows that the t-th moment operator of matrices with i.i.d Gaussian
entries is precisely the frame operator. It can be shown that for small submatrices the correlation
between the entries can be neglected and that these submatrices are indeed approximately
Gaussian [AA13]. This is conjectured even for t× t submatrices with t = o(

√
d) [Jia06]. We

conclude that the approximate orthogonality of permutation matrices is directly related to how
Gaussian the Haar measure is up to t moments. As low-degree monomials in the entries of
unitaries only see correlations in submatrices, we would expect the expectation values to behave
effectively Gaussian. Indeed, this behavior can be made precise and is the key insight in many
results on the generation of unitary designs. More precisely, it was shown in Ref. [BaHH16] that

||M(µH, t) −Q||∞ 6 t2
d

. (2.42)

For higher moments, the correlations between the entries become increasingly important and
we can therefore not expect that the scaling of this inequality can be greatly improved.

5 Here, we use tensor network notation on the RHS. That is, strings between plaquettes represent contraction of
indices, and plaquettes in parallel represent tensor products of operators. This notation will be used in Chapter 5.
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2.4 the many faces of unitary t-designs

Purely random bit strings are a ubiquitous design primitive for algorithms. There is reason,
however, to view randomness as a precious resource and minimize the number of random
bits required. First, randomness does not come perfectly uniform in nature. Whether there
is true randomness (e.g. from quantum mechanics) or not, natural chaotic ensembles come
with structure and biases. Second, the need for randomness in the design of algorithms is a
puzzling phenomenon and many computer scientists believe that large classes of algorithms can
be ‘‘derandomized’’ [AB09].

Consequently, it is desirable to construct pseudorandom probability distributions that mimic
uniform randomness for practical purposes but require less random bits. These ensembles would
be required to be indistinguishable from the uniform measure for an agent that has limited
resources. Different limitations lead to different notions of pseudorandomness. For example,
a standard notion of pseudorandom bit strings is computational pseudorandomness. These are
ensembles, that cannot be distinguished from the uniform measure by any computation in
polynomial time. Often, these guarantees come from conjectures in theoretical computer science.

In a more information theoretical setting, the agent can only read out t bits from the string.
If any such t substrings are uniformly (or approximately uniformly) distributed, we speak of t-
wise independence. Clearly, these ensembles can require far less random bits than the uniform
distribution. Indeed, a single random bit suffices to generate a 1-wise independent ensemble:
consider the bitstring 01010101 . . . and, with probability 1

2 , shift every bit to the right (or left)
with periodic boundary conditions.

There are, in particular, powerful approximate constructions of t-wise independent permuta-
tions [BH08, Gow96, HMMR05]. More precisely, it can be shown that random classical revers-
ible circuits of at most O(n2t3) gates suffice to generate approximately t-wise independent en-
sembles.

A quantum version of pseudorandomness in general and t-wise independence in particular
is naturally defined for probability distributions on state space or the unitary group. Intuit-
ively, these are probability measures that are indistinguishable from the Haar measure if tested
only against sufficiently simple functions. In particular, we define the notion of a unitary t-
design [DCEL09, GAE07, AE07] as a probability measure ν on the (special) unitary group that
yields the same expectation values as the Haar measure for polynomials of degree at most t. In
the following, we show that this definition has multiple, seemingly unrelated, characterizations.

We call a monomial f(x,y) balanced 6, if the degree of each monomial in f in x is the same as
the degree in y.

Theorem 6. Let ν be a probability measure on SU(d). The following properties are equivalent.

1. EU∼νf(U,U) = EU∼µHf(U,U) for all balanced polynomials f in the entries of U and U of
degree at most t.

2. Denote byΦ(t)
ν the moment operator defined by

Φ
(t)
ν (A) :=

∫
U⊗tA(U⊗t)†dν(U) (2.43)

6 Not to be confused with the notion of balanced boolean functions.
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for every matrix A ∈ Cd
t×dt . For ν it holds that

Φ
(t)
ν = Φ

(t)
µH . (2.44)

3. For the frame potential defined by

F
(t)
ν :=

∫ ∫
|Tr(UV†)|2tdν(U)dν(V) (2.45)

it holds that
F
(t)
ν = dim span(r(π),π ∈ St). (2.46)

Proof. 1. =⇒ 2. This follows directly from the fact that for all |ψ〉 and |φ〉, we have

〈φ|Φ(t)
ν (A)|ψ〉 =

∫
〈φ|U⊗tA(U⊗t)†|ψ〉dν(U), (2.47)

which is an expectation value over a balanced polynomial.
2. =⇒ 1. First, notice that Φ(t)

ν = Φ
(t)
µH implies Φ(t−1)

ν (A) = Φ
(t−1)
µH by taking the partial

trace over the t copies of Cd. Moreover, by linearity of the expectation value we can restrict to
balanced monomials but every balanced monomial can be written as

〈i1|⊗ . . .⊗ 〈it|U⊗t|j1〉 ⊗ . . . |jt〉〈i ′1|⊗ . . . 〈i ′t|(U⊗t)†|j ′1〉 ⊗ . . . |j ′t〉.

2. =⇒ 3. It follows from Corollary 3 and the Schur-Weyl duality that Φ(t)
µH is the projector

onto the span of permutations. We introduce the short notation U⊗t,t := U⊗t ⊗U⊗t. We can
reformulate

F
(t)
ν =

∫ ∫
|Tr(UV†)|2tdν(U)dν(V)

=

∫ ∫
Tr(U⊗t,t(V†)⊗t,t)dν(U)dν(V)

= Tr

[∫
U⊗t,tdν(U)

(∫
U⊗t,tdν(U)

)†]

2.
= Tr

[∫
U⊗t,tdµH(U)

(∫
U⊗t,tdµH(U)

)†]

= Tr
[
vec(Φ(t)

ν )vec(Φ(t)
ν )†

]

= Tr
[
vec(Φ(t)

µH)vec(Φ(t)
µH)
†
]

= Tr
[
vec(Φ(t)

µH)
]

= dim span(r(π),π ∈ St).

(2.48)

3. =⇒ 1. We introduce the notation

M(ν, t) := vec(Φ(t)
ν ) =

∫
U⊗t,tdν(U). (2.49)
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Then, we can compute

||M(ν, t) −M(µH, t)||2F
= Tr[M(ν, t)M(ν, t)†] − Tr[M(µH, t)M(ν, t)†] − Tr[M(ν, t)M(µH, t)†] + Tr[M(µH, t)M(µH, t)†]
†
= Tr[M(ν, t)M(ν, t)†] − Tr[M(µH, t)M(µH, t)†]

= F
(t)
ν −F

(t)
µH ,

(2.50)

where we have used Lemma 1 in †. Eq. (2.50) immediately implies that F(t)
ν > F

(t)
µH . Moreover,

as || • ||F is a norm, equality is satisfied if an only ifM(ν, t) =M(µH, t).

Notice that for t 6 d, it was proven in [DS94] that

dim span(r(π),π ∈ St) = t!, (2.51)

or in other words, all permutations of tensor factors are linearly independent. Indeed, in the
regime t > d, this relation does not hold anymore but the frame potential can nevertheless be
characterized directly. In the general case, it was proven in Ref. [Rai98] that F(t) equals the
number of permutations of length t with no increasing subsequence of length greater than d.

Definition 5. We call a measure that satisfies the conditions in Theorem 6 a unitary t-design.

In the special case that ν is the Haar measure on a (Lie-)subgroup G of SU(d), the t-design
property is further equivalent to representation theoretical properties ofG. A group that defines
a unitary t-design is sometimes called a unitary t-group [BNRT18].

Theorem 7. Let ν be the Haar measure on a Lie-subgroup of SU(d). Then, the t-design property
is equivalent to the following conditions:

1. comm(U⊗t,U ∈ G) = comm(U⊗t,U ∈ SU(d)).

2. The t-th tensor power representation of G has the same decomposition into irreps as SU(d).

3. Every irrep in the t-th tensor power representation of SU(d) is also an irrep under the induced
action of G.

Proof. It follows from Corollary 3 that

Φ
(t)
ν = Pcomm(U⊗,U∈G). (2.52)

It immediately follows that 1. is equivalent to condition 2. in Theorem 6.
2. ⇐⇒ 3. Consider the decomposition of t-th tensor power representation into irreducible

representations Vγ of G:
(Cd)⊗t ∼

=
⊕

γ

Vγ ⊗Mγ. (2.53)

This equals the Schur-Weyl decomposition if and only if all irreps in the t-th tensor power
representation of SU(d) remain irreducible under the action of G.

32



2. =⇒ 1. For this equivalence, we can invoke the commutant theorem (Theorem 2), which
characterizes the commutant of {U⊗t,U ∈ G} as

comm{U⊗t,U ∈ G} =
⊕

γ

L(Mγ). (2.54)

Therefore, if the decomposition (2.53) equals the Schur-Weyl decomposition, then comm(U⊗t,U ∈
G) = comm(U⊗t,U ∈ SU(d)).
1. =⇒ 3. We have

dim comm{U⊗t,U ∈ G} =
∑
γ

(dimMγ)
2. (2.55)

Assume an irrep Wλ of SU(d) in the Schur-Weyl decomposition decomposes non-trivially into
irreps. Each of these now come with a multiplicity space at least as large as Sλ. Therefore, we find
that
∑
γ(dimMγ)

2 is strictly larger than
∑
λ(dimSλ)

2. Consequently, the two commutants
have the same dimension (and are therefore equal), then no irrep in the t-th tensor power
representation decomposes under the action of G.

In summary, unitary t-designs can be uniquely characterized by statistical properties, algebraic
properties or representation theoretical properties. As such, they provide a natural link between
all these fields. Switching between these different perspectives is going to provide an indispens-
able tool for the problems tackled in this thesis.

The key example of such a group in quantum information theory is the Clifford group. Let Pn
denote the Pauli group generated by all tensor products of n Pauli operators:

1 =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (2.56)

The n-qubit Clifford group Cl(n) is the unitary normalizer of the Pauli group Pn:

Cl(n) =
{
U ∈ U(2n, Q[i])

∣∣ UPnU† ⊂ Pn

}
. (2.57)

Here, we restrict to elements with entries in Q[i] as otherwise the group would become continu-
ous due arbitrary phases. The Clifford group has multiple remarkable properties:

• It is a discrete group with

2n
2+2n

n∏
j=1

(4j − 1) (2.58)

elements (see e.g. [GNW21]).

• It forms a unitary 3-design [Web15, Zhu17].

• Every element has a polynomially upper bounded circuit complexity [AG04, BM21].

• Moreover, computations performed by applications of Clifford unitaries can be efficiently
classically simulated by the Gottesmann-Knill theorem [Got97, Got98].
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• Clifford operations can be comparably easily protected from errors and hence serve as the
foundation of most error-correcting codes [Got97].

The Clifford group however fails ‘‘gracefully’’ to be a unitary 4-design [ZKGG16]. More
precisely, while the fourth tensor power representation of the unitary group decomposes under
the induced action of the Clifford group, the number of irreducible representations remains
constant in the system-size. Relatedly, the commutant of the fourth tensor power representation
of the Clifford group is generated by the permutations plus a single additional generator: The
projector

Q := 2−2n
∑
P∈Pn

P⊗4. (2.59)

While the Clifford commutant’s dimension starts to grow rapidly with t, it remains true for
higher moments that its dimension is independent of the system-size. In fact, the commutant
of the Clifford group is characterized in Ref. [GNW21]. This observation is going to be the key
ingredient in Chapter 3.

2.5 random walks, spectral gaps and approximate designs

So far, we have seen that unitary t-designs satisfy strong constraints in particular, if the
probability measure in question is the uniform measure on a subgroup of SU(d). Given these
strong properties, it is perhaps not surprising that the existence of unitary t-groups is heavily
limited [BNRT18, GT05]. More precisely, there is no family of 4-groups for all number of qubits.
More strikingly, the multiqubit Clifford group is actually the unique family of 3-designs that
exists for all number of qudits. Similarly, every family of 2-designs in a prime power dimension
is a subgroup of the multiqudit Clifford group and except for these there is only a finite list
of sporadic designs. Of course, for many applications, we do not require a group structure at
all and, in fact, it can be abstractly proven that finitely supported spherical t-designs always
exist [BRV13] for every t. While explicit constructions of unitary t-designs are known [BNOZ22],
the individual states in their support require exponentially deep quantum circuits. In fact, the
circuits in these constructions to generate a unitary 4-design are of a depth that is sufficient to
approximate the Haar measure. On the other hand, we usually do not require exact t-designs for
practical purposes. Indeed, the majority of this thesis is concerned with probability distributions
that only approximately satisfy the t-design property. Consequently, we will have to deal with
moment operators that are not orthogonal projectors. Luckily, we are not the first to encounter
this problem.

In general, the Fourier transform of a measure ν on a compact Lie group G is the (in general
infinite dimensional) operator

FG(ν) =
⊕

λ∈ΛG

∫
ρλdν(U) :

⊕

λ∈ΛG
Vλ →

⊕

λ∈ΛG
Vλ. (2.60)

For the special case of a torus Td = S1 × . . . × S1, the irreducible representations are all 1-
dimensional and uniquely labeled by tuples λ = (i1, . . . , id) of integers. The corresponding
representations are

ρλ((e
ix1 , . . . , eixd))|v〉 = ei〈λ,x〉|v〉. (2.61)
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Therefore, FTd(ν) is technically an assignment of λ to the value
∫
ei〈λ,x〉dν(x), which is the

classical Fourier transform on the torus.
However, over a noncommutative group such as SU(d) for d > 2, the irreps Vλ are not all
1-dimensional. Therefore, it can in general be an intricate problem to characterize the spectrum
of the Fourier transform for a given measure. For many applications, we are in need of precisely
such a spectral analysis because this provides a way of measuring how random a distribution
ν is. More precisely, if all eigenvalues (except the trivial component) are sufficiently bounded
away from 1, then we consider the distribution to be evenly distributed. Notice that the highest
eigenvalue is always 1, realized on the trivial component and the Fourier transform of the
Haar measure is by Lemma 1 precisely this component. We can quantify the randomness of
a distribution by the following spectral gap:

∆(ν) := 1− max
λ∈Λ\{triv}

∣∣∣∣
∣∣∣∣
∫
ρλ(U)dµ(U)

∣∣∣∣
∣∣∣∣∞ = 1− ||F(ν) − F(µH)||∞. (2.62)

We would expect a very uniformly random ensemble to give expectation values close to those
of the completely uniform measure. A non-vanishing spectral gap does not guarantee closeness
in expectation value. However, the gap can be exponentially amplified by an operation called
convolution. Convolution is defined as an operation on probability measures over group. For this
consider two probability measure ν1 and ν2. The convolution ν1 ∗ ν2 is defined by drawing a
random group element from the distribution ν1 and another independently from ν2 and then
concatenating these two group elements. In measure theoretic terms the convolution is the
pushforward measure of the product measure ν1 × ν2 under the group multiplication. The
process of convoluting a measure with itself repeatedly is called a random walk and denoted
by ν∗k = ν ∗ . . . ∗ ν. In the following we denote FSU(d) by F. We find that

F(ν∗k) =
⊕

λ∈ΛG

∫
ρλdν∗k(U)

=
⊕

λ∈ΛG

∫
. . .

∫
ρ(U1 . . . Uk)dν(U1) . . .dν(Uk)

=
⊕

λ∈ΛG

∫
. . .

∫
ρ(U1) . . . ρ(Uk)dν(U1) . . .dν(Uk)

=


⊕

λ∈ΛG

∫
ρλdν(U)



k

= F(ν)k.

(2.63)

And as a consequence

∆(ν∗k) = 1− ||F(ν∗k) − F(µH)||∞ = 1− ||(F(ν) − F(µH))
k||∞

> 1− ||F(ν∗k) − F(µH)||
k∞ = 1− (1−∆(ν))k. (2.64)

Moreover, notice that we have equality whenever F(ν) is a normal operator and in particular,
when it is hermitian. Therefore, for symmetric measure ν, the gap amplification is strict.

As an example, consider a finite group H and a set of generators T of H. Then, let νT be the
uniform distribution over the elements of T . The spectral gap ∆(νT ) characterizes if the Cayley
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graph of H with respect to T is expanding. More concretely, a famous problem in the theory
of random walks concerns the symmetric group S52: the group of ways to arrange a deck of
52 cards. How many shuffles does it take to mix the deck completely? The group contains a
daunting number of 52! elements. Nevertheless, it was proven in Refs. [AD86, BD92, DGK83]
that after 7 steps of a random walk that ‘‘shuffles’’ the deck of card, the total variation to the
uniform distribution is below 1

2 . More generally, a cut-off phenomenon emerges [Dia96]: the
distance to the uniform distributions remains almost constantly close to 1 until a threshold is
reached. After this threshold, the distance decays exponentially. We will find similar cut-off
behaviors in the generation of unitary designs.

Another example of a random walk is Kac’s random walk on SO(d) [Kac47]. Here, each step of
the walk consists of drawing a random 2× 2 submatrix from SO(2) and embedd it into SO(d).
This walk was motivated from the theory of Brownian motions. An obvious analogue can be
defined for SU(d). Bounding the convergence of this process was a key objective of the theory
of random walks [DSC00]. The full spectrum of the walk (and therefore the gap) was finally
computed in [Mas03, CCL03]. We make use of the techniques developed here in Ref. [HHJ21].

A probability distribution ν with spectral gap ∆(ν) > 0 is called a (∞,∆(ν))-tensor product
expander. The above example motivates why we should think of a gapped probability distribu-
tion as an expander, but where does the word ‘‘tensor’’ come from? To see this, we need to recall
the definition of a unitary t-design in terms of moment operators:

M(ν, t) =
∫
U⊗t,tdν(U) =

∫
U⊗t,tdµH(U) =M(µH, t). (2.65)

The integral over a group action is unitarily equivalent to the integral over an isomorphic
group action and block decomposes into the irreps of the representation. Moreover, it turns
out that the representation we average over in the moment operators contains all irreps. This is
a consequence of Chevalley’s generalization of Burnside’s theorem to Lie groups [Che16].

Theorem 8. For a compact Lie groupG, let ρ be a faithful (i.e. injective) irreducible representation.
Then, every irrep of G is contained in ρ⊗n ⊗ ρ⊗m for some n,m > 0.

Observe that the representation defined by U 7→ U⊗t,t is isomorphic to Ad⊗t. Ad is
irreducible if restricted to act on traceless matrices. Moreover, we find that it is faithful: consider
U,V ∈ SU(d) such that U⊗U 6= V ⊗ V . Then,

0 < ||U⊗U− V ⊗ V ||2F = 2d
(
1−

1

d
|Tr[UV†]|2

)
. (2.66)

But 1
d |Tr[UV†]|2 is 1 if and only if U = V by Cauchy-Schwarz. Moreover, Ad is self-dual

(Ad ∼
= Ad), so Burnside’s theorem implies that every irrep of SU(d) is contained in some tensor

power of the adjoint action by Theorem 8. Therefore, we find

∆(ν) = 1− sup
t

||M(ν, t) −M(µH, t)||∞. (2.67)

Often it suffices to consider only t moments for an application and hence we can define
the more refined notion of a (t, δ)-tensor product expander [HH08], which is a probability
distribution ν that satisfies

δ = 1− ||M(ν, t) −M(µH, t)||∞. (2.68)
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In this sense, the spectral gap of the moment operator as defined in (2.68) measures how close
a measure is to being a unitary t-design. As for the spectral gap of the Fourier transform, the
spectral gap of moment operators is amplified exponentially by convolution powers. This often
allows to translate a large spectral gap to more practical or operational notions of approximate
unitary designs.

Before we present these notions of approximate designs, we introduce a third operator contain-
ing the same spectrum as the Fourier transform and the moment operators. Recall the definition
of the left regular representation in Eq. (2.26) and consider the operators

Tν : L2(SU(d))→ L2(SU(d)), Tν :=

∫
SU(d)

ρreg(U)dν(U). (2.69)

These are sometimes called Hecke operators [LPS86, LPS87, BG08, BG12]. Hence, to translate the
mathematical literature to a language closer to quantum information theory, it is often sufficient
to realize that the operator Tν block diagonalizes into irreducible representations and by the
Peter-Weyl theorem (Theorem 5), all irreps are contained in L2(SU(d)).

We introduce the diamond norm [Wat18] of a superoperatorΦ : L(CD)→ L(CD) by

||Φ||� := max
X,||X||161

||(Φ⊗ 1D)X||1. (2.70)

In other words, the diamond norm is the stabilized version of the induced 1-norm:

||Φ||1→1 := max
X,||X||161

||ΦX||1. (2.71)

With this definition, we can introduce operationally and practically motivated definitions of
approximate designs:

Definition 6. We call a probability distribution on SU(d) a(n)

• additive ε-approximate unitary design if
∣∣∣
∣∣∣Φ(t)

ν −Φ
(t)
µH

∣∣∣
∣∣∣
�
6 ε. (2.72)

• strong additive ε-approximate unitary design if
∣∣∣
∣∣∣Φ(t)

ν −Φ
(t)
µH

∣∣∣
∣∣∣
�
6 ε

dt
. (2.73)

• relative ε-approximate design if

(1− ε)Φ
(t)
ν 4 Φ(t)

µH 4 (1+ ε)Φ
(t)
ν , (2.74)

where A < B if and only if B−A is completely positive for channels A and B.

An additive approximate design has low distinguishability from the Haar measure using the
moment operator as a channel. More precisely, the 1-norm distance between two states ρ and σ
quantifies how well ρ and σ can be distinguished via a single 2 outcome measurement. The
induced 1-norm difference of two channels hence measures how well the two channels can
be distinguished by applying them to some input state and then measuring the outcome. The

37



diamond norm additionally accounts for inputs entangled with ancillary systems and therefore
quantifies the operational single-shot distinguishability of channels. Now consider the following
scenario: You are given an unknown random source of unitaries and you want to know how
evenly distributed this source is. An obvious operational approach would be to sample the t-th
moment operator from this source and compare it to the t-th moment operator for the Haar
measure. If the source is guaranteed to be distributed according to an additive approximate
design, we know that the two channels are difficult to distinguish and the source is thus pseudo-
random in an operational sense. That is not to say that additive approximate designs with
constant ε do not have applications. Indeed, we present such an application in the appendix
of the publication presented in Section 3.1.

The strong additive designs and relative designs, while technically inequivalent, tend to have
the same properties. More precisely, both tend to have the same properties as exact designs for all
practical purposes in quantum information theory. Indeed, a prototypical application in quantum
information would involve concentration results for monomials in entries 〈i|U|0〉 for a random
unitary U. We have seen already that t-th moments of this random variable over the Haar
measure scale like t!/dt, where we usually have d = 2n for a system-size of n. Consequently,
we find that the strong additive and relative designs reproduce the scaling of Haar averages in n
and therefore imply similar concentration results. For an example of this phenomenon, we refer
to the bounds on circuit complexity from higher moments of overlaps of states in the proof of
Proposition 2. Here, we require a scaling ofO(d−t) to lift the statement to approximate designs.
In this context, we also need to define approximate state designs:

Definition 7. We call a probability distribution ν on Sd

• an additive ε-approximate state t-design if
∣∣∣∣
∣∣∣∣
∫
(|ψ〉〈ψ|)⊗tdν(ψ) −

∫
(|ψ〉〈ψ|)⊗tdµH(ψ)

∣∣∣∣
∣∣∣∣
1

6 ε. (2.75)

• a strong additive ε-approximate state t-design if
∣∣∣∣
∣∣∣∣
∫
(|ψ〉〈ψ|)⊗tdν(ψ) −

∫
(|ψ〉〈ψ|)⊗tdµH(ψ)

∣∣∣∣
∣∣∣∣
1

6 ε

dt
. (2.76)

Consider also Ref. [Low10], which compares more approximate notions of unitary designs.
Finally, Random quantum circuits are random walks on SU(qn). They can be viewed as an

experimental protocol to generate pseudorandomness but also as a (toy) model for time evolution
of chaotic systems. Arguably, it is the simplest model of dynamics that captures the concept of
local interactions without imposing any particular further structure. In each step of this walk,
one draws a random position (e.g. a random pair of nearest neighbors) and applies a Haar random
unitary from SU(q2) to this pair of qudits. It can be proven [BaHH16, Haf22] that this random
walk is indeed gapped. Moreover, for moments satisfying t 6 eΩ(n) it was shown in a seminal
paper [BaHH16] that these random quantum circuits indeed form tensor product expanders after
a depth polynomial in the system-size and the moment.

In the next chapter we will define yet another random walk we call K-interleaved Clifford
circuits, which quickly generates approximate t-designs for small values of t.
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3

Q U A N T U M P S E U D O R A N D O M N E S S A N D G R O W T H O F Q U A N T U M
C I R C U I T C O M P L E X I T Y

3.1 unitary designs with a system-size independent number of non-clifford
unitaries

Exact unitary 3-designs can be implemented by drawing a random unitary from the multi-
qubit Clifford group. Clifford unitaries are well-behaved in a number of ways: They can
be efficiently simulated classically and are comparably easy to implement fault-tolerantly. In
fact, the difference to non-Clifford gates is so stark that modern resource theories of quantum
computing treat Clifford gates as a free resource.

However, recent mathematical results show that higher designs can not be obtained exactly
without implementing full Haar-randomness [BNRT18, GT05]. In seminal work [BaHH16],
Brandao, Harrow and Horodecki have proven that t-designs can, nevertheless, be implemented
approximately with local random quantum circuits of depth O(n2t10.5). More recently, this
depth was improved to O(n2t5+o(1)) in Ref. [Haf22], using the random walk introduced in this
chapter. The full implementation of local random quantum circuits is daunting especially for
near-term technology as it requires a fully fledged quantum computer. Moreover, the resulting
circuits will not be simulable in polynomial time even for small fixed t. This is in stark contrast
to the case of t = 3. This state of affairs suggest that -- in some ways costly -- non-Clifford
gates have to be inserted into a random Clifford circuit in order to uplift unitary 3-designs to
approximate higher-order unitary designs. This leads us to the central question underlying this
work: How many non-Clifford gates are required to generate an approximate unitary t-design?

In this work, we show that surprisingly, the number on non-Clifford gates that need to be
inserted into a random Clifford circuit to generate an additive approximate unitary t-design
is independent of the system-size and the polynomial in t, provided that t is not too large:
n > O(t2).

Let ν be a probability measure on the unitary group U(d). In this section, we work with
(additive) ε-approximate t-designs. Recall that these are by Definition 6 distributions that satisfy

∣∣∣
∣∣∣Φ(t)

ν −Φ
(t)
µH

∣∣∣
∣∣∣
�
6 ε, (3.1)

where ‖ · ‖♦ is the diamond norm.
We consider uniformly drawn Clifford unitaries interleaved with a random single qubit gate

drawn from {K,K†, 1}, where K is an arbitrary but fixed non-Clifford gate as illustrated in the
figure. Our main result about these circuits is the following theorem:

Theorem 9 (Unitary designs with few non-Clifford gates). Let K ∈ U(2) be a non-Clifford
unitary. Then, a K-interleaved Clifford circuit of depth O(t4 log2(t) log(1/ε)) acting on n =

O(t2) qubits is an additive ε-approximate t-design.
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The number of non-Clifford gates in this result is system-size independent. Our result has
multiple consequences: First, combined with the asymptotically optimal decomposition of Clif-
ford unitaries [AG04] into 2-local gates, our construction features an overall number of gates of
O(n2t4 log2(t)/ log(n)). This is an improved scaling compared to Ref. [BaHH16] in both t and
n (for small t). Second, Theorem 9 ensures the existence of families of additive ε-approximate
unitary log1/4(n)-designs which are efficiently classically simulable Ref. [BBC+19].

We can also show that K-interleaved Clifford circuits of depth O(t4n) generate relative and
strong additive designs (Definition 6) in the regime n = O(t2). This is not system-size
independent anymore, but involves only a square root of the number of non-Clifford gates in
other constructions [BaHH16, Haf22, HM18].

In order to make contact with a circuit constructions with random local gates, we in our work
additionally identify rigorous bounds on the convergence of random walks of local Clifford
generators to the moments of the uniform distribution on the Clifford group.

Theorem 10 (Local random Clifford designs). Let n > 12t, then a local random Clifford circuit of
depthO(n2 log−2(t)t9 log(1/ε)) constitutes an ε-approximate t-design with respect to the uniform
distribution on the Clifford group.

This result is of independent interest and significantly improves the previously indicated
scaling of O(n8) [DLT02]. Together with Theorem 9 it provides a construction for unitary t-
designs with a system-size-independent number of non-Clifford gates in terms of a circuit only
consisting of random local gates.

A key tool we use is a variant of the Schur-Weyl duality for the Clifford group [GNW21].
This characterizes the commutant of the t-th diagonal action of the Clifford group in terms of a
concept from symplectic geometry: stochastic Lagrangian subspaces T ∈ Σt,t of the vector space
F2t2 .

We prove various auxiliary results about these Lagrangian subspaces. This includes a quant-
itative bound on the Gram-Schmidt orthogonalization of the resulting basis, which achieved by
careful combinatorial bounds based on the statistics of cycles in random permutations. A most
involved auxiliary results is a bound on the overlap of representations of Lagrangian subspaces
with the commutant of the unitary group.

Lemma 2. For all t and for all T ∈ Σt,t \ St, we have

(QT |PHaar|QT ) 6
7

8
, (3.2)

where QT is the basis vector of the t-th commutant of the Clifford group corresponding to T and
PHaar = ∆t(µHaar) is the t-th moment operator of the single-qubit unitary group U(2).

This is proven using a geometrical argument involving finite phase space methods. It is
moreover essentially optimal, as we find examples that saturate a lower bound of 7/10. This
result can also be seen as a sanity check for the constant spectral gap conjecture for local
random quantum circuits (compare the outlook of Ref. [Haf22]). We combine the before-
mentioned bounds with deep results from harmonic analysis about spectral gaps of Hecke
operators restricted to irreducible representations of Lie groups due to P. Varjú [Var13].
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Abstract: Many quantum information protocols require the implementation of random
unitaries.Because it takes exponential resources to produceHaar-randomunitaries drawn
from the full n-qubit group, one often resorts to t-designs. Unitary t-designs mimic the
Haar-measure up to t-th moments. It is known that Clifford operations can implement at
most 3-designs. In this work, we quantify the non-Clifford resources required to break
this barrier. We find that it suffices to inject O(t4 log2(t) log(1/ε)) many non-Clifford
gates into a polynomial-depth random Clifford circuit to obtain an ε-approximate t-
design. Strikingly, the number of non-Clifford gates required is independent of the system
size – asymptotically, the density of non-Clifford gates is allowed to tend to zero. We
also derive novel bounds on the convergence time of random Clifford circuits to the t-th
moment of the uniform distribution on the Clifford group. Our proofs exploit a recently
developed variant of Schur-Weyl duality for the Clifford group, as well as bounds on
restricted spectral gaps of averaging operators.

Random vectors and unitaries are ubiquitous in protocols and arguments of quantum
information and many-body physics. In quantum information, a paradigmatic example
is the randomized benchmarking protocol [1–3], which aims to characterize the error
rate of quantum gates. There, random unitaries are used to average potentially complex
errors into a single, easy to measure error rate. In many-body physics, random unitaries
are used e.g. to model the dynamics that are thought to describe the mixing process that
quantum information undergoes when absorbed into, and evaporated from, a black hole
[4]. In these and related cases, one is faced with the issue that unitaries drawn uniformly
from the full many-body group are unphysical in the sense that, with overwhelming
probability, they cannot be implemented efficiently. The notion of a unitary t-design
captures an efficiently realizable versionof uniform randomness [5–7].More specifically,
a probability measure on the unitary group is a t-design if it matches the uniform Haar
measure up to t-th moments.

Applications abound. The randomness provided by designs is used to foil attackers in
quantum cryptography protocols [8–10]. It guards against worst case behavior in various
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quantum [10–16] and classical [17] estimation problems. Designs allow for an efficient
implementation of decoupling procedures, a primitive in quantum Shannon theory [18].
In quantum complexity, unitary designs are used as models for generic instances of
time evolution that display a quantum computational speed-up [19,20]. Unitary designs
are now standard tools for the quantitative study of toy models in high energy physics,
quantum gravity, and quantum thermodynamics [4,21–23].

The multitude of applications motivates the search for efficient constructions of uni-
tary t-designs [24–28]. In particular, Brandao, Harrow and Horodecki [24] show that
local random circuits on n qubits with O(n2t10) many gates give rise to an approximate
t-design. In practice, it is often desirable to find more structured implementations. De-
signs consisting ofClifford operationswould be particular attractive from various points
of view: (i) Because the Clifford unitaries form a finite group, elements can be repre-
sented exactly using a small number (O(n2)) of bits. (ii) The Gottesman-Knill Theorem
ensures that there are efficient classical algorithms for simulating Clifford circuits. (iii)
Most importantly, in fault-tolerant architectures [29,30], Clifford unitaries tend to have
comparatively simple realizations, while the robust implementation of general gates (e.g.
viamagic-state distillation) carries a significant overhead. The difference is so stark that
in this context, Clifford operations are often considered to be a free resource, and the
complexity of a circuit is measured solely in terms of the number of non-Clifford gates
[31,32].

The Clifford group is known to form a unitary t-design for t = 2 [9] and t = 3
[33–35], but fails to have this property for t > 3 [33–37]. In fact, the Clifford group is
singled out among the finite subgroups of the unitary group by being a 3-design [38].
Moreover, Refs. [38,39] together imply that any local gate set that generates an exact
unitary design of order t > 3 must necessarily be universal, c.f. the discussion in Sect. 5.
Hence, any efficient design construction for t > 3 can only be approximate, and the
Clifford group seems to be a distinguished starting point.

This leads us to the central question underlying this work: How many non-Clifford
gates are required to generate an approximate unitary t-design? A direct application
of the random circuit model of Ref. [24] yields an estimate of O(n2t10) non-Clifford
operations. In this paper we show that a polynomial-sized random Clifford circuit, to-
gether with a system size-independent number of O(t4 log2(t)) non-Clifford gates – a
“homeopathic dose” – is already sufficient.

We establish this main result for two different circuit models (Fig. 1). In Sect. 1.1,
we consider alternating unitaries drawn uniformly from the Clifford group with a non-
Clifford gate. This gives rise to an efficient quantum circuit, as there are classical algo-
rithms for sampling uniformly from the Clifford group, and for producing an efficient
gate decomposition of the resulting operation [40]. A somewhat simpler model is an-
alyzed in Sect. 1.2. There, we assume that the Clifford layers are circuits consisting
of gates drawn form a local Clifford gate set. These circuits will only approximate the
uniform measure on the Clifford group. Theorem 2, which might be of independent
interest, gives novel bounds on the convergence rate.

The key to this scaling lies in the structure of the commutant of the t-th tensor
power of the Clifford group, described by a variant of Schur-Weyl duality developed
in a sequence of recent works [36,41–43]. There, it has been shown that the dimension
of this commutant – which measures the failure of the Clifford group to be a t-design
from a representation theoretical perspective – is independent of the system size. Refs.
[36,42] have used this insight to provide a construction for exact spherical t-designs
that consist of a system size-independent number of Clifford orbits. It has been left as an
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Fig. 1. K -interleaved Clifford circuits: We consider a model where random Clifford operations are alternated
with a non-Clifford gate K or its inverse K †

open problemwhether these ideas can be generalized from spherical designs to the more
complex notion of unitary designs, and whether the construction can be made efficient
[42]. The present work resolves this question in the affirmative.

Finally, we note that inRef. [44], it has been observed numerically that adding a single
T gate to a random Clifford circuit has dramatic effects on the entanglement spectrum.
A relation to t-designs was suspected. Our result provides a rigorous understanding of
this observation.

1. Results

1.1. Approximate t-designs with few non-Clifford gates. To state our results precisely,
we need to formalize the relevant notion of approximation, as well as the circuit model
used. Let ν be a probability measure on the unitary group U (d). The measure ν gives
rise to a quantum channel

Mt (ν)(ρ) :=
∫
U(d)

U⊗tρ
(
U †
)⊗t

dν(U ), (1)

which applies U⊗t , with U chosen according to ν. We will refer to Mt (ν) as the t-th
moment operator associated with ν. Following Ref. [27], we quantify the degree to
which a measure approximates a t-design by the diamond norm distance of its moment
operator to the moment operator of the Haar measure μH on U (d).

Definition 1 (Approximate unitary design). Let ν be a distribution on U(d). Then ν is
an (additive) ε-approximate t-design if

‖Mt (ν) − Mt (μH)‖� ≤ ε. (2)

Denote the uniform measure on the multiqubit Clifford group Cl(2n) by μCl, and
let K be some fixed single-qubit non-Clifford gate. The circuit model we are consid-
ering (Fig. 1) interleaves Clifford unitaries drawn from μCl, with random gates from
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{K , K †,1} acting on an arbitrary qubit.1 Note that the concatenation of two unitaries
drawn from measures ν1 and ν2 is described by the convolution ν1 ∗ ν2 of the respective
measures. We thus arrive at this formal definition of the circuit model:

Definition 2 (K -interleaved Clifford circuits). Let K ∈ U (2). Consider the probability
measure ξK that draws uniformly from the set {K ⊗ 12n−1 , K † ⊗ 12n−1 ,12n }. A K -
interleaved Clifford circuit of depth k is the random circuit acting on n qubits described
by the probability distribution

σk := μCl ∗ ξK ∗ · · · ∗ μCl ∗ ξK︸ ︷︷ ︸
k times

. (3)

For convenience, we work with the logarithm of base 2: log(x) := log2(x). We are
now equipped to state the main result of this work in the form of a theorem:

Theorem 1 (Unitary designs with few non-Clifford gates). Let K ∈ U (2) be a non-
Clifford unitary. There are constants C1(K ),C2(K ) such that for any k ≥ C1(K ) log2(t)
(t4 + t log(1/ε)), a K -interleaved Clifford circuit with depth k acting on n qubits is an
additive ε-approximate t-design for all n ≥ C2(K )t2.

We give the proofs of this theorem in Sect. 3. In Theorem 1, we consider uniformly
drawn multiqubit Clifford unitaries. This can be achieved with O(n3) classical random
bits [40] and then implemented with O(n2/ log(n)) gates [45]. Combined with these
results, Theorem 1 implies an overall gate count of O(n2/ log(n)t4 log2(t)) improving
the scaling compared to Ref. [24] in the dependence on both t and n. In this sense, our
construction can be seen as a classical-quantum hybrid construction of unitary designs:
The scaling is significantly improved by outsourcing as many tasks as possible to a
classical computer. A construction in which all parts of the random unitary are local
random circuits is considered in Corollary 2.

For designs generated from general random local circuits, numerical results suggest
that convergence is much faster in practice than indicated by the proven bounds [46].
We expect that a similar effect occurs here, and that in fact very shallow K -interleaved
Clifford circuits are sufficient to approximate t-designs. This intuition is supported by
the numerical results of Ref. [44], which show that even a single T -gate has dramatic
effects on the entanglement spectrum of a quantum circuit.

It is moreover noteworthy that circuits with few T -gates can be efficiently simulated
[47–51]. The scaling of these algorithms is polynomial in the depth of the circuit, but
exponential in the number of T -gates. Combined with our result, this implies that for
fixed additive errors ε, there are families of ε-approximate unitary O(log(n))-designs
simulable in quasi-polynomial time. For the general random quantum circuit model, it
is conjectured that a depth of order O(nt) suffices to approximate t-designs [24,52]. If
such a linear scaling is sufficient in our model, the quasi-polynomial time estimate for
classical simulations would improve to polynomial.

For the proof of Theorem 1 we need to analyse the connection between the t-th mo-
ment operator of the Haar measure and the commutant of the diagonal action of the Clif-
ford group. The latterwas proven to be spanned by representations of so-called stochastic

1 We use the set {K , K †,1} instead of just {K } for technical reasons: Making the set closed under the
adjoint causes the moment operator to be Hermitian. The identity is included to ensure that the concatenation
of two random elements has a non-vanishing probability of producing a non-Clifford gate—a property that
will slightly simplify the proof. Of course, in a physical realization, identity gates and the following Clifford
operation are redundant and need not be implemented.
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Lagrangian sub-spaces in Ref. [42]. In particular, we prove almost tight bounds on the
overlap of the Haar operator with these basis vectors in Lemma 13 that might be of
independent interest. This will allow us to invoke a powerful theorem by Varjú [53] on
restricted spectral gaps of probability distributions on compact Lie groups to show that
non-Clifford unitaries have a strong impact on representations of Lagrangian sub-spaces
that are not also permutations.We combine this insightwith a careful combinatorial argu-
ment about the Gram-Schmidt orthogonalization of the basis corresponding to stochastic
Lagrangian sub-spaces to bound the difference to a unitary t-design in diamond norm.

Moreover, the bound for Theorem 1 allows us to prove a corollary about the stronger
notion of relative approximate designs:

Definition 3 (Relative ε-approximate t-design). We call a probability ν a relative ε-
approximate t-design if

(1 − ε)Mt (ν) � Mt (μH) � (1 + ε)Mt (ν), (4)

where A � B if and only if B − A is completely positive.

Corollary 1 (K -interleaved Clifford circuits as relative ε-approximate t-designs). There
are constants C ′

1(K ),C ′
2(K ) such that a K -interleaved Clifford circuit is a relative ε-

approximate t-design in depth k ≥ C ′
1(K ) log2(t)(2nt + log(1/ε)) for all n ≥ C ′

2(K )t2.

Hence, if we drop the system-size independence, we can achieve a scaling of O(nt)
at least until t ∼ √

n.
While we believe the setting of K -interleaved Clifford circuits to be themore relevant

case, the same method of proof works for Haar-interleaved Clifford circuits. Here, we
draw not from the gate set {Ki , K

†
i ,1}, but instead Haar-randomly from U (2). The

advantage is that we obtain explicit constants for the depth, while the depth in the K -
interleaved setting has to depend on a constant (as K might be arbitrarily close to the
identity).

Proposition 1 (Haar-interleaved Clifford circuits as additive ε-approximate t-designs).
For k ≥ 36(33t4 + 3t log(1/ε)), Haar-interleaved Clifford circuits with depth k form an
additive ε-approximate t-design for all n ≥ 32t2 + 7.

Similarly, variants of Corollary 1 for Haar-interleaved Clifford circuits can be ob-
tained, here also without the log2(t) dependence. Finally, we discuss an application to
higher Rényi entropies in “Appendix D”.

1.2. Local random Clifford circuits for Clifford and unitary designs. The circuits con-
sidered in the previous section require one to find the gate decomposition of a random
Clifford operation. In this section, we analyze the case where the Clifford layers are
circuits consisting of gates drawn from a local set of generators.

As a first step, we establish that a 2-local random Clifford circuit on n qubits of depth
O(n2t9 log−2(t) log(1/ε)) constitutes a relative ε-approximate Clifford t-design, i.e.,
reproduces the moment operator of the Clifford group up to the t-th order with a relative
error of ε. We consider local random Clifford circuits that consist of 2-local quantum
gates from a finite set G with is closed under taking the inverse and generates Cl(4). We
refer to such a set as a closed, generating set. A canonical example for such a closed,
generating set is {H ⊗ 1, S ⊗ 1, S3 ⊗ 1,CX} where H is the Hadamard gate, S is
the phase gate and CX is the cNOT-gate [54]. Such a set G induces a set of multi-qubit
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Clifford unitaries Ĝ ⊂ Cl(n) by acting on any pair of adjacent qubits on a line, where we
adopt periodic boundary conditions. We then define the corresponding random Clifford
circuits.

Definition 4 (Local random Clifford circuit). Let G ⊂ Cl(4) be a closed, generating
set containing the identity. Define the probability measure σG as the measure having
uniform support on Ĝ ⊂ Cl(n) acting on n qubits. A local random Clifford circuit of
depth m is the random circuits described by the probability measure σ ∗m

G .

For technical reasons, we again assume that the identity is part of the generating set.
This assumption can be avoided but simplifies the argumentation in the following. As
for the Definition 2 of K -interleaved Clifford circuits before, any upper bound on the
depth of local random Clifford circuits with identity is a bound for those without.

Our result on local random Clifford circuits even holds for a stronger notion for
approximations of designs, namely relative approximate designs. Write A � B if B− A
is positive semi-definite.

Definition 5 (Relative approximate Clifford t-designs). Let ν be a probability measure
on Cl(2n). Then, ν is a relative ε-approximate Clifford t-design if

(1 − ε)Mt (μCl) � Mt (ν) � (1 + ε)Mt (μCl). (5)

With this definition, our result reads as follows.

Theorem 2 (Local random Clifford designs). Let n ≥ 12t , then a local random Clifford
circuit of depth O(n log−2(t)t8(2nt + log(1/ε))) constitutes a relative ε-approximate
Clifford t-design.

The proof of the theorem is given in Sect. 4. This result is a significant improvement
over the scaling of O(n8), which is implicit in Ref. [9].

We can combine this result with the bounds obtained in Sect. 3. To this end, consider a
random circuit that k-times alternatingly applies a local random Clifford circuit of depth
m, and a unitary drawn from the probability measure ξK . The corresponding probability
measure is

σk,m := σ ∗m
G ∗ ξK ∗ · · · ∗ σ ∗m

G ∗ ξK︸ ︷︷ ︸
k times

. (6)

For these local random circuits we establish the following result:

Corollary 2 (Local randomunitary design). Let K ∈ U (2) be a non-Clifford gate and let
G ⊂ Cl(4) be a closed, generating set. There are constants C ′′

1 (K ,G),C ′′
2 (K ),C ′′

3 (K )

such that whenever

m ≥ C ′′
1 (K ,G)n log−2(t)t8 (2nt + log(1/ε)) and k ≥ C ′′

2 (K ) log2(t)(t4 + t log(1/ε)),

the local random circuit σk,m, defined in (6), is an ε-approximate unitary t-design for
all n ≥ C ′′

3 (K )t2.

The complete argument for the corollary is given at the end of Sect. 4. After intro-
ducing technical preliminaries in Sect. 2, the remainder of the paper, Sect. 3 and Sect. 4,
is devoted to the proofs of Theorem 1, Theorem 2 and the Corollary 2. Finally, in
Sect. 5 we elaborate on and formalize as Proposition 3 the observation that there ex-
ists no non-universal gate set generating exact 4-designs for arbitrary system size. This
observation is an immediate consequence of the classification of finite unitary t-groups
and a criterion for the universality of finite gate sets [38,39,55].
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2. Technical Preliminaries

2.1. Operators and superoperators. Given a (finite-dimensional) Hilbert space H, we
denote with L(H) the space of linear operators on H with involution † mapping an
operator to its adjoint with respect to the inner product on H. L(H) naturally inherits a
Hermitian inner product, the Hilbert-Schmidt inner product

(
A
∣∣B) := Tr(A†B), ∀A, B ∈ L(H). (7)

As this definition already suggests, we will use “operator kets and bras” whenever we
think it simplifies the notation. Concretely, we write |B ) = B and denote with (A | the
linear form on L(H) given by

(A | : B �−→ (
A
∣∣B) . (8)

Following common terminology in quantum information theory, we call linear maps
φ : L(H) → L(H) on operators “superoperators”. We use φ† to denote the adjoint map
with respect to the Hilbert-Schmidt inner product. Note that with the above notation,
φ = |A )(B | defines a rank one superoperator with φ† = |B )(A |. Moreover, we will
denote by the superoperator AdA := A · A−1 the adjoint action of an invertible operator
A ∈ GL(H) on L(H). For notational reasons, we sometimes write Ad(A) instead of
AdA.

We consistently reserve the notation ‖·‖p for the Schatten p-norms

‖A‖p := Tr(|A|p)1/p = ‖σ(A)‖�p , (9)

where σ(A) is the vector of singular values of A. In particular, we use the trace norm
p = 1, the Frobenius or Hilbert-Schmidt norm p = 2 and the spectral norm p = ∞.
Clearly, this norms can be defined for both operators and superoperators and we will use
the same symbol in both cases. For the latter, however, there is also a family of induced
operator norms

‖φ‖p→q := sup
‖X‖p≤1

‖φ(X)‖q . (10)

Note that ‖·‖2→2 ≡ ‖·‖∞. Finally, we are interested in “stabilized” versions of these
induced norms, in particular the diamond norm

‖φ‖� := sup
d∈N

∥∥φ ⊗ idL(Cd )

∥∥
1→1 = ∥∥φ ⊗ idL(H)

∥∥
1→1 . (11)

The following norm inequality will be useful [56]

‖φ‖� ≤ (dimH)2 ‖φ‖∞ , ‖φ‖∞ ≤ √
dimH ‖φ‖� . (12)
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2.2. Commutant of the diagonal representation of the Clifford group. In this section, we
review some of the machinery developed in Ref. [42]. Recall that the n-qubit Clifford
group Cl(n) is defined as the unitary normalizer of the Pauli group Pn as

Cl(n) =
{
U ∈ U (2n, Q[i]) ∣∣ UPnU

† ⊂ Pn

}
. (13)

Here, we followed the convention to restrict the matrix entries to rational complex num-
bers. This avoids the unnecessary complications from an infinite center U (1) yielding
a finite group with minimal center Z(Cl(n)) = Z(Pn) � Z4. The Clifford group can
equivalently be defined in a less conceptual but more constructive manner: It is the sub-
group of U(2n) generated by CX, the controlled not gate, the Hadamard gate H and the
phase gate S.

For this work, the t-th diagonal representation of the Clifford group, defined as

τ (t) : Cl(n) −→ U(2nt ), U �−→ U⊗t , (14)

will be of major importance. It acts naturally on the Hilbert space ((C2)⊗n)⊗t which
can be seen as t copies of an n-qubit system. However, it will turn out that the opera-
tors commuting with this representation naturally factorize with respect to a different
tensor structure on this Hilbert space, namely ((C2)⊗t )⊗n � ((C2)⊗n)⊗t . Because of
the different exponents, it should be clear from the context which tensor structure is
meant. We will make ubiquitous use of the description of the commutant of the diagonal
representation in terms of stochastic Lagrangian sub-spaces [42]:

Definition 6 (StochasticLagrangian sub-spaces).Consider the quadratic formq : Z2t
2 →

Z4 defined as q(x, y) := x ·x−y ·y mod 4. The set
t,t denotes the set of all sub-spaces
T ⊆ Z2t

2 being subject to the following properties:

1. T is totally q-isotropic: x · x = y · y mod 4 for all (x, y) ∈ T .
2. T has dimension t (the maximum dimension compatible with total isotropicity).
3. T is stochastic: (1, . . . , 1) ∈ T .

We call elements in 
t,t stochastic Lagrangian sub-spaces. We have

|
t,t | =
t−2∏
k=0

(2k + 1) ≤ 2
1
2 (t2+5t). (15)

With this notion, we can now state the following key theorem from Ref. [42].

Theorem 3 ([42]). If n ≥ t − 1, then the commutant τ (t)(Cl(n))′ of the t-th diagonal
representation of the Clifford group is spanned by the linearly independent operators
r(T )⊗n, where T ∈ 
t,t and

r(T ) :=
∑

(x,y)∈T
|x〉〈y|. (16)

Since the representation in question is fixed throughout this paper, we will simplify
the notation from now on and write Cl(n)′ ≡ τ (t)(Cl(n))′. To make use of a more
sophisticated characterization of the elements r(T ) developed in Ref. [42, Section 4],
we need the following definitions.
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Definition 7 (Stochastic orthogonal group). Consider the quadratic form q : Zt
2 → Z4

defined as q(x) := x · x mod 4. The stochastic orthogonal group Ot is defined as the
group of t × t matrices O with entries in Z2 such that q(Ox) = q(x) for all x ∈ Zt

2.

The subspace TO := {(Ox, x), x ∈ Zt
2} is a stochastic Lagrangian subspace. More-

over, the operator r(O) := r(TO) is unitary. We will therefore canonically embed the
orthogonal stochastic group Ot ⊂ 
t,t . Notice that the permutation group on t objects,
referred to as St , may be embedded into Ot by acting on the standard basis of Zt

2.
Together with Ot , the following definition can be used to fully characterize the set of
stochastic Langrangian sub-spaces, 
t,t .

Definition 8 (Defect sub-spaces). A defect subspace is a subspace N ⊆ Zt
2 which is

isotropic with respect to q, that is, that q(x) = 0 for all x ∈ N .

The quadratic form q is what is known as a generalized quadratic refinement of the
bi-linear form defined by the inner product (x, y) �→ x · y mod 2 (see, e.g., Ref. [57,
App. A] for a self-contained discussion). In the following, the ortho-complement N⊥ of
a subspace N ⊆ Zt

2 is taken with respect to the inner product modulo 2,

N⊥ = {v ∈ Zt
2 | v · u = 0 mod 2, ∀ u ∈ N }.

Notice that q(x) = 0 implies that x · 1t = 0 mod 2, where 1t := (1, . . . , 1)T

is the all-ones vector. Thus, we do not need a separate clause requiring 1t ∈ N⊥ in
the definition of defect sub-spaces (compare Ref. [42, Def. 4.16]). Moreover, one may
verify that 2q(x) = 2x · 1t mod 4. This implies, similarly, that if O preserves q, then
O1t = 1t . Borrowing the language of [42], all q-isometries are stochastic (compare
the definition of the orthogonal stochastic group in that reference, [42, Def. 4.11]). The
reason for these simplifications is that here we focus on the qubit case exclusively, while
Ref. [42] works simultaneously for qubits and odd qudits. We use the names stochastic
orthogonal group and defect subspace (rather than simplyq-isometry group and isotropic
subspace) to keep with the notation of that reference.

For any defect subspace N , it holds that N ⊆ N⊥ (and thus dim N ≤ t/2). Because
of this, defect sub-spaces N ⊆ Zt

2 define Calderbank-Shor-Sloane (CSS) codes

CSS(N ) := {Z(p)X (q) | q, p ∈ N } , (17)

where the action of the multi-qubit Pauli operators is Z(p) |x 〉 := (−1)p·x |x 〉 and
X (q) |x 〉 := |x + q 〉 for x ∈ Zt

2. The corresponding projector is given by

PN := PCSS(N ) = 1

|N |2
∑

q,p∈N
Z(p)X (q). (18)

Since theorder of the stabilizer group is 22 dim N , PN projects onto a2t−2 dim N -dimensional
subspace of (C2)⊗t . For N = {0} we set PCSS(N ) := 1. We summarize the findings of
Ref. [42, Sect. 4] in Thm. 4. We give a short proof to give an explicit relation between
this theorem and the results of that work.

Theorem 4 ([42]). Consider T ∈ 
t,t , then

r(T ) = 2dim Nr(O)PCSS(N ) = 2dim N ′
PCSS(N ′)r(O

′) (19)

for O, O ′ ∈ Ot and N , N ′ are unique defect sub-spaces with dim N = dim N ′.
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Proof. Recall fromRef. [42] that the code space range PCSS(N ) has an orthonormal basis
of coset state vectors given by

⎧⎨
⎩ |N , [x] 〉 := 1√

N

∑
y∈N

|x + y 〉
∣∣∣ x ∈ N⊥, [x] ∈ N⊥/N

⎫⎬
⎭ .

One may compute that r(O) |N , [x] 〉 = |ON , [Ox] 〉. This way,
r(O)PCSS(N ) =

∑
[x]∈N⊥/N

|ON , [Ox] 〉 〈N , [x] | .

Comparing this equation to [42, Lem. 4.23] we see that the set {2dim Nr(O)PCSS(N )}O
is equal to the set of r(T ) operators with right defect subspace given by N , i.e., with
TRD = N in the notation of that reference. This way, varying over N we obtain the full
set 
t,t . The existence of a decomposition 2dim N PCSS(N ′)r(O ′) follows from the above
by noting that r(O)PCSS(N )r(O)† = PCSS(ON ). ��
Lemma 1 (Norms of r(T )). Suppose r(T ) = 2dim Nr(O)PN as in Theorem 4. Then it
holds:

‖r(T )‖1 = 2t−dim N , ‖r(T )‖2 = 2t/2, ‖r(T )‖∞ = 2dim N . (20)

Proof. Since any Schatten p-norm is unitarily invariant, we have ‖r(T )‖p = 2dim N

‖PN‖p. The statements follow from rank PN = 2t−2 dim N . ��
In the following, we will often work with a normalized version of the r(T ) operators

which we define as

QT := r(T )

‖r(T )‖2 = 2−t/2r(T ). (21)

3. Approximate Unitary t-Designs

In this section, we give a bound on the number of non-Clifford gates needed to leverage
the Clifford group to an approximate unitary t-design. This is made precise by the fol-
lowing two theorems which rely on two distinct proof strategies and come with different
trade-offs.

Theorem 1 (Unitary designs with few non-Clifford gates). Let K ∈ U (2) be a non-
Clifford unitary. There are constants C1(K ),C2(K ) such that for any k ≥ C1(K ) log2(t)
(t4 + t log(1/ε)), a K -interleaved Clifford circuit with depth k acting on n qubits is an
additive ε-approximate t-design for all n ≥ C2(K )t2.

Recall from Def. 2 that a K -interleaved Clifford circuit has an associated probability
measure σK := (μCl ∗ ξK )∗k where ξK is the measure which draws uniformly from
{K , K †,1} on the first qubit. Let us introduce the notation

R(K ) :=
∫
U (2n)

Ad⊗t
U dξk(U ) = 1

3

(
Ad⊗t

K +Ad⊗t
K † +id

)
⊗ idn−1. (22)
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Then, our goal is to bound the deviation of the moment operator

Mt (σk) =
∫
U (2n)

Ad⊗t
U dσk(U ) = Mt (μCl)R(K ) . . .Mt (μCl)R(K )︸ ︷︷ ︸

k times

, (23)

from the Haar projector PH ≡ Mt (μH) in diamond norm. Using that PH is invariant
under left and right multiplication with unitaries, we have the identity

Ak − PH = (A − PH)k, (24)

for anymixedunitary channel A. Thus,we can rewrite the difference ofmoment operators
as

Mt (σk) − PH = [PClR(K )]k − PH = [(PCl − PH)R(K )]k , (25)

where we have introduced the shorthand notation PCl := Mt (μCl).

Remark 1 (Non-vanishing probability of applying the identity). We apply K , K † with
equal probability in Theorem 1 such that R(K ) is Hermitian. The non-vanishing proba-
bility of applying 1, i.e., of doing nothing, is necessary in the proof of Lemma 2, because
we require the probability distribution ξK ∗ ξK to have non-vanishing support on a non-
Clifford gate. If ξK is the uniform measure on K and K †, then ξK ∗ ξK has support on
K 2, (K †)2 and 1. We can hence drop this assumption for gates that do not square to a
Clifford gate. This is not the case for e.g. the T -gate.

Our proof strategy for Theorem 1 makes use of the following two lemmas which are
proven in Sects. 6.1 and 6.2. The first lemma is key to the derivations in this section. It is
based on a bound (Lemma 13) on the overlap of stochastic Lagrangian sub-spaces with
the Haar projector and Theorem 5, a special case of a theorem about restricted spectral
gaps of random walks on compact Lie groups due to Varjú [53].

Lemma 2 (Overlap bound). Let K be a single qubit gate which is not contained in the
Clifford group. Then, there is a constant c(K ) > 0 such that

ηK ,t := max
T∈
t,t−St
T ′∈
t,t

1

3

∣∣∣(QT |Ad⊗t
K +Ad⊗t

K † +id |QT ′)
∣∣∣ ≤ 1 − c(K ) log−2(t). (26)

The second lemma is of a more technical nature.

Lemma 3 (Diamond norm bound). Consider T1, T2 ∈ 
t,t and denote with N1, N2 their
respective defect spaces. Then, it holds that

∥∥∣∣QT1

)(
QT2

∣∣∥∥� ≤ 2dim N2−dim N1, (27)

| (QT1

∣∣QT2

) | ≤ 2−| dim N1−dim N2|. (28)

The difficulty of using these results to bound the difference

Mt (σk) − PH = [ (PCl − PH)R(K )
]k

, (29)

stems from the following reason: The range of the projector PCl − PH is the ortho-
complement of the space spanned by permutations Q⊗n

π for π ∈ St within the commu-
tant of the Clifford group spanned by the operators Q⊗n

T . Although this is a conveniently
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factorizing and well-studied basis, it is non-orthogonal. Thus, the projectors do not pos-
sess a natural expansion in this basis and we can not directly use the above bounds.
However, we can write it explicitly in a suitable orthonormal basis of the commutant ob-
tained by the Gram-Schmidt procedure from the basis {Q⊗n

T | T ∈ 
t,t }. We summarize
the properties of this basis in the following lemma.

Lemma 4 (Properties of the constructed basis). Let {Tj }|
t,t |
j=1 be an enumeration of the

elements of 
t,t such that the first t ! spaces Tj correspond to the elements of St . Then,
the {E j } constitutes an orthogonal (but not normalized) basis, where

E j :=
j∑

i=1

Ai, j Q
⊗n
Ti

:=
j∑

i=1

⎡
⎢⎢⎣
∑

∈S j


( j)=i

sign(
)

j−1∏
l=1

(
QTl

∣∣QT
(l)

)n
⎤
⎥⎥⎦ Q⊗n

Ti
. (30)

Denote by Ni the defect space of Ti . For n ≥ 1
2 (t

2 + 5t), we have

|Ai, j | ≤ 2t
3+4t2+6t−n| dim Ni−dim N j |, ∀i, j, (31)

|Ai, j | ≤ 22t
2+10t−n, ∀i �= j. (32)

Moreover, it holds that

1 − 2t
2+7t−n ≤ A j, j ≤ 1 + 2t

2+7t−n . (33)

We believe that the explicit bounds in Lemma 4 might be of independent interest in
applications of the Schur-Weyl duality of the Clifford group. For the sake of readibility,
and as Theorem 1 holds up to an inexplicit constant, we will bound all polynomials in
t by their leading order term in the following. Specifically, the bounds in Lemma 4 will
be simplified by using the inequalities

t3 + 4t2 + 6t ≤ 11t3, (34)

2t2 + 10t ≤ 12t2 ≤ 12t3, (35)

t2 + 7t ≤ 8t2 ≤ 8t3 (36)

which hold for all positive integers t .

Proof of Theorem 1. Notice that from (25), we have the expression

‖[PClR(K )]k − PH‖� (37)

=

∥∥∥∥∥∥∥

⎡
⎣
⎛
⎝

|
t,t |∑
j=t !+1

1(
E j
∣∣E j
) ∣∣E j

)(
E j
∣∣
⎞
⎠R(K )

⎤
⎦
k
∥∥∥∥∥∥∥�

(38)

=
∥∥∥∥∥∥

|
t,t |∑
j1,..., jm=t !+1

k∏
l=1

1(
E jl

∣∣E jl

) ∣∣E j1

) (
E j1

∣∣ R(K )
∣∣E j2

)
. . .
(
E jk

∣∣ R(K )

∥∥∥∥∥∥�
(39)

≤
|
t,t |∑

j1,..., jk=t !+1

k∏
l=1

1(
E jl

∣∣E jl

)
k−1∏
r=1

| (E jr

∣∣ R(K )
∣∣E jr+1

) | ·
∥∥∥ ∣∣E j1

)(
E jk

∣∣ ∥∥∥�. (40)
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We now bound each of the factors in each term above. First, we compute the squared
norm of

∣∣E j
)
,

(
E j
∣∣E j
) =

j∑
r,l=1

Ar, j Al, j
(
QTr

∣∣QTl

)n = A2
j, j +

∑
k,l< j

Ar, j Al, j
(
QTk

∣∣QTl

)n
. (41)

Using Eqs. (32) and (33), we thus bound

(
E j
∣∣E j
) ≤

(
1 + 2t

2+7t−n
)2

+ ( j2 − 1)42t
2+10t−n

≤
(
1 + 2t

2+7t−n
)2

+ |
t,t |242t2+10t−n

≤ 1 + 231t
2−2n, (42)

and in the same way

(
E j
∣∣E j
) ≥ 1 − 231t

2−2n . (43)

Now we use that n ≥ 16t2. Letting x := 231t
2−2n ∈ [0, 1

2 ], the inequalities 1/(1− x) ≤
1 + 2x and 1 − 2x ≤ 1/(1 + x) hold. This leads to

1(
E j
∣∣E j
) = 1 + a j with |a j | ≤ 232t

2−2n . (44)

We now focus on the second factor,

| (Ei | R(K )
∣∣E j

) | ≤
i∑

r=1

j∑
l=1

|Ar,i Al, j | ·
∣∣∣
(
Q⊗n

Tr

∣∣∣ R(K )

∣∣∣Q⊗n
Tl

)∣∣∣ . (45)

If for
(
QTr

∣∣ R(K )
∣∣QTl

)
one of the stochastic Lagrangian sub-spaces does not corre-

spond to a permutation, Lemma 2 introduces a factor of ηK ,t . If both correspond to a
permutation, we redefine the factors in a way that leads to simpler expressions in the
calculations used below. Namely, in this case we redefine Ar,i and Al, j by multiplying
it with 2. This is compensated by introducing a factor of 1

4 and letting

η̄K ,t := max

{
1

4
, ηK ,t

}
. (46)

We can do this as i and j do not correspond to permutations and hence Ar, j and Al j are
exponentially suppressed, which remains true after rescaling by 2. In this case, moreover,
r < t !+1 ≤ i and l < t !+1 ≤ j , so the factor |Ar,i Al, j |will be exponentially suppressed
according to (32) and so this redefinition will not affect the asymptotic scaling in n.

We provide two bounds for | (Ei | R(K )
∣∣E j

) | that will be used later on. We will
use repeatedly that the diamond norm is multiplicative under the tensor product of
superoperators [58, Thm. 3.49]. First, using (31), (33) and (28), we obtain
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| (Ei | R(K )
∣∣E j

) | ≤
i∑

r=1

j∑
l=1

|Ar,i Al, j | ·
∣∣∣
(
Q⊗n

Tr

∣∣∣ R(K )

∣∣∣Q⊗n
Tl

)∣∣∣ (47)

≤ η̄K ,t (1 + 28t
2−n)

i∑
r=1

j∑
l=1

224t
3−n| dim Nr−dim Ni |−n| dim Nl−dim N j |−(n−1)| dim Nl−dim Nr |

(48)

≤ η̄K ,t (1 + 28t
2−n)|
t,t |2225t3−n| dim N j−dim Ni | (49)

≤ η̄K ,t (1 + 28t
2−n)231t

3−n| dim N j−dim Ni |, (50)

where we have used 2| dim Nl−dim Nr | ≤ 2t≤ 2t
3
, and the fact that for the rescaled Ar,i ,

the inequality (31) implies

Ar,i ≤ 211t
3−| dim Nr−dim N j |+1 ≤ 212t

3−| dim Nr−dim N j |

for all r, i . Moreover, we have used the triangle inequality,

| dim Nr − dim Ni | + | − dim Nl + dim N j | + | dim Nl − dim Nr |
≥ | dim Nr − dim Ni − dim Nl + dim N j + dim Nl − dim Nr |
= | dim N j − dim Ni |, (51)

in the inequality (49).
The second bound follows from Eqs. (32) and (33), and we consider two cases. If

i �= j , then

| (Ei | R(K )
∣∣E j

) | ≤
i∑

r=1

j∑
l=1

|Ar,i Al, j | · |
(
Q⊗n

Tr

∣∣∣ R(K )

∣∣∣Q⊗n
Tl

)
|

≤ η̄K ,t (1 + 28t
2−n)|
t,t |2219t2−n

≤ η̄K ,t (1 + 28t
2−n)225t

2−n . (52)

Otherwise,

| (Ei | R(K ) |Ei ) | ≤
i∑

r=1

i∑
l=1

|Ar,i Al,i | · |
(
Q⊗n

Tr

∣∣∣ R(K )

∣∣∣Q⊗n
Tl

)
| (53)

≤η̄K ,t

(
|Ai,i |2 + (i2 − 1)212t

2−n
)

(54)

≤η̄K ,t

(
(1 + 28t

2−n)2 + (1 + 28t
2−n)216t

2−n
)

(55)

≤η̄K ,t (1 + 216t
2−n)3. (56)

In inequality (54), we have bounded the term r = l = i using (33), and each of the other
terms using (32). Moreover, in the inequalities (55) and (56) we use that i ≤ |
t,t |, and

1 + 28t
2−n ≤ (1 + 28t

2−n)2 ≤ (1 + 216t
2−n)2.
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Lastly, we obtain from (31) and (27)

‖ |Ei )
(
E j
∣∣ ‖� ≤

i∑
r=1

j∑
l=1

|Ar,i Al, j | ·
∥∥∥
∣∣∣Q⊗n

Tr

)(
Q⊗n

Tl

∣∣∣
∥∥∥� (57)

≤ |
t,t |2224t3−n| dim Nr−dim Ni |−n| dim Nl−dim N j |+n(dim Nl−dim Nr ) (58)

≤ 230t
3+n(dim N j−dim Ni ). (59)

We now start piecing these expressions together to bound (40). Eqs. (59) and (44)
give

‖[PClR(K )]k − PH‖�

≤
(
1 + 232t

2−2n
)k |
t,t |∑

j1,..., jk=t !+1
230t

3+n(dim N jk−dim N j1 )
k−1∏
r=1

| (E jr

∣∣ R(K )
∣∣E jr+1

) |.
(60)

To bound (60), we will bunch together the contribution of all terms whose sequence
{ j1, . . . , jk} contains l changes. Moreover, we will treat differently the cases l ≤ �t/2�
and l > �t/2�. In the former case, we use (50) to get

k−1∏
r=1

| (E jr

∣∣ R(K )
∣∣E jr+1

) | ≤ η̄k−1
K ,t (1 + 216t

2−n)3(k−1)2l31t
3−n| dim N jk−dim N j1 |. (61)

In this case, the factor of 2n(dim N jk−dim N j1 ) coming from (59) is cancelled by the last
factor of 2−n| dim N jk−dim N j1 |.

In the latter case, we turn to (52) instead to obtain

k−1∏
r=1

| (E jr

∣∣ R(K )
∣∣E jr+1

) | ≤ η̄k−1
K ,t (1 + 216t

2−n)3(k−1)2l25t
2−ln .

Here, the exponential factor coming from (59) is cancelled by 2−ln since dim N jk −
dim N j1 ≤ �t/2�. Counting the instances of sequences with l changes, we may put these
considerations together to bound

‖[PClR(K )]k − PH‖� ≤
(
1 + 232t

2−2n
)k (

1 + 216t
2−n
)3(k−1)

η̄k−1
K ,t

[ � t
2 �∑

l=0

(
k

l

)
|
t,t |l+12l31t3

+
k∑

l=� t
2 �+1

(
k

l

)
|
t,t |l+12(l−� t

2 �)(25t2−n)2� t
2 �25t2

]

≤
(
1 + 232t

2−2n
)4k

η̄k−1
K ,t

[
t

2

(
k

� t
2�
)

|
t,t |� t
2 �+12� t

2 �31t3
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+

k−� t
2 �∑

l=1

(
k

l + � t
2�
)

|
t,t |l+1+� t
2 �2l(25t2−n)213t

3
]

‡≤
(
1 + 232t

2−2n
)4k

η̄k−1
K ,t

[
232t

4+t log(k)

+ k� t
2 �|
t,t |1+� t

2 �213t3
k∑

l=0

(
k

l

)
|
t,t |l2l(25t2−n)

]

≤
(
1 + 232t

2−2n
)4k

η̄k−1
K ,t

[
232t

4+t log(k)

+ 218t
3+log(k)t

(
1 + 228t

2−n
)k ]

≤
(
1 + 232t

2−2n
)4k (

1 + 228t
2−n
)k

2t log(k)η̄k−1
K ,t

[
232t

4
+ 218t

3
]
,

where we have used in ‡ that
(

k

l + � t
2�
)

= (k)!
(k − l − � t

2�)!(l + � t
2�)!

≤ (k − l − ⌊ t
2

⌋
+ 1) . . . (k − l)

k!
(k − l)!l!

≤ k� t
2 �
(
k

l

)
.

Finally, noting that 232t
4
+ 218t

3 ≤ 233t
4
for all positive integers t , we obtain the bound

‖Mt (σk) − PH‖� ≤ 233t
4+t log(k)

(
1 + 232t

2−n
)5k

η̄k−1
K ,t , (62)

where η̄K ,t is bounded by Lemma 2. Taking the logarithm and using the inequality
log(1 + x) ≤ x repeatedly, this implies Theorem 1. ��
With the above bound, we can also prove Corollary 1.

Proof of Corollary 1. Consider the self-adjoint superoperator A := PClR(K )PCl. As
PCl is a projector, we have with Eq. (24)

(A − PH)k = Ak − PH = [PClR(K )]k − PH = Mt (σk) − PH. (63)

Using norm inequality between operator and diamond norm Eq. (12) and the previous
result Eq. (62), we find

||A − PH ||k∞ = ||(A − PH )k ||∞ ≤ 2nt/2‖Mt (σk) − PH‖�

≤ 233t
4+t log(k)+nt/2

(
1 + 232t

2−n
)5k

η̄k−1
K ,t . (64)
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Taking the k-th square root of the expresion above, we obtain a sequence of infinitely
many bounds for ||A − PH ||∞ which converges as k → ∞. That limit gives

||A − PH ||∞ ≤
(
1 + 232t

2−n
)5

η̄K ,t . (65)

Combined with Ref. [24, Lem. 4], Eq. (65) implies the result. ��
The bound in Eq. (62) also suffices to prove Proposition 1:

Proof of Proposition 1. The proof follows exactly as the proof of Theorem 1, but with
the factor 7/8 instead of η̄K ,t (compare Lemma 13). Using log2(7/8) ≤ −0.19 the result
can be checked. ��

4. Convergence to Higher Moments of the Clifford Group

In this section, we aim to prove:

Theorem 2 (Local random Clifford designs). Let n ≥ 12t , then a local random Clifford
circuit of depth O(n log−2(t)t8(2nt + log(1/ε))) constitutes a relative ε-approximate
Clifford t-design.

The proof of Theorem 2 follows a well-established strategy [24,59] in a sequence
of lemmas. For the sake of readibility, the proofs of these lemmas have been moved to
Sect. 6.4. Given a measure ν on the Clifford group Cl(n), recall that its t-th moment
operator was defined as

Mt (ν) :=
∫
Cl(2n)

Ad⊗t
U dν(U ).

The idea of the proof is that if Mt (ν) is close to the moment operator Mt (μCl) ≡ PCl
of the uniform (Haar) measure μCl on the Clifford group, ν is an approximate Clifford
design. However, we have seen that there are different notions of closeness. We define
its deviation in (superoperator) spectral norm as

gCl(ν, t) := ‖Mt (ν) − Mt (μCl)‖∞ .

Then, we prove the following lemma in Sect. 6.4.

Lemma 5 (Relative ε22tn-approximate Clifford t-designs). Suppose that 0 ≤ ε < 1 is
such that gCl(ν, t) ≤ ε. Then, ν is a relative ε22tn-approximate Clifford t-design.

Recall that we have defined the measure σG on the Clifford group Cl(n) in Def. 4 by
randomly drawing from a 2-local Clifford gate set G and applying it to a random qubit
i , or to a pair of adjacent qubits (i, i + 1), respectively. For this measure, we show that
it fulfills the assumptions of Lemma 5:

Proposition 2 (Clifford expander bound). Let σG be as in Def. 4 and n ≥ 12t . Then,
gCl(σG, t) ≤ 1 − c(G)n−1 log2(t)t−8 for some constant c(G) > 0.

We will prove Proposition 2 in the end of this section. From this, Theorem 2 follows
as a direct consequence:
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Proof of Theorem 2. First, note that gCl(ν∗k, t) = gCl(ν, t)k for all probabilitymeasures
ν on the Clifford group. This can be easily verified using the observation

Mt (μCl)Mt (ν) = Mt (ν)Mt (μCl) = Mt (μCl). (66)

Hence, combining the bound given by Proposition 2 andLemma 5,we find that the k-step
randomwalk σ ∗k

G is a ε-approximate Clifford t-design, if we choose k = O
(
n log−2(t)t8

(2nt + log(1/ε))). ��
For the sake of readibility, let us from now on drop the dependence on G and write

σ ≡ σG . In order to prove Proposition 2, we use a reformulation of g(σ, t) based on the
following observation. Since G is closed under taking inverses, the moment operator
Mt (σ ) is self-adjoint with respect to the Hilbert-Schmidt inner product. Due to σ being
a probability measure, its largest eigenvalue is 1 with eigenspace corresponding to the
operator subspace which is fixed by the adjoint action Ad(g⊗t ) of all generators [59].
Equivalently, this is the subspace of operators which commute with any generator g⊗t .
However, any operator commutingwith all generators also commuteswith every element
in theClifford groupCl(n) andvice versa.Hence, this subspace is nothing but theClifford
commutant Cl(n)′ with projector PCl:=Mt (μCl). Thus, the spectral decomposition is

Mt (σ ) = PCl +
∑
r≥2

λr (Mt (σ ))
r , (67)

where λr (X) denotes the r -th largest eigenvalue of a normal operator X . Hence, we
find

g(σ, t) = ‖Mt (σ ) − PCl‖∞ = λ∗ (Mt (σ )) := max {λ2 (Mt (σ )) , |λmin (Mt (σ )) |} ,

(68)

where λmin (Mt (σ )) is the smallest eigenvalues of Mt (σ ). We continue by arguing that
it sufficient to consider the case when λ∗ (Mt (σ )) = λ2 (Mt (σ )) > 0.

To this end, consider the linear operator Tσ : L2(Cl(n)) → L2(Cl(n)) given as

Tσ f (g) :=
∫

f (h−1g)dσ(h). (69)

This is the (Hermitian) averaging operator with respect to σ on the group algebra
L2(Cl(n)). The largest eigenvalue of Tσ is λ1(Tσ ) = 1 and its eigenspace corresponds to
the trivial representation. By Ref. [60, Lem. 1], its smallest eigenvalue is lower bounded
by

λmin(Tσ ) ≥ −1 + 2σ(1) = −1 +
2

|G| , (70)

where σ(1) ≡ σ({1}) = 1/|G| is the probability of drawing the identity. According to
the Peter-Weyl theorem, the spectrum of Mt (σ ) is exactly the spectrum of the restriction
of Tσ to the irreducible representations that appear in the representation U �→ Ad⊗t

U .
In particular, we find λmin(Mt (σ )) ≥ −1 + 2

|G| . Let us assume that λ∗ (Mt (σ )) =
|λmin (Mt (σ )) |. Then, g(σ, t) ≤ 1 − 2/|G| < 1 and hence we can argue as in the
proof of Thm. 2 to show that local random Clifford circuits form relative ε-approximate
Clifford t-designs in depth O(2nt + log(1/ε)).
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Therefore, we consider the more relevant case when λ∗ (Mt (σ )) = λ2 (Mt (σ )) > 0
in the following, this is

g(σ, t) = ‖Mt (σ ) − PCl‖∞ = λ2 (Mt (σ )) . (71)

Since Mt (σ ) is self-adjoint, we can interpret it as an Hamiltonian on the Hilbert space
L((C2)⊗nt ). In this light, it will turn out to be useful to recast Eq. (71) as the spectral
gap of a suitable family of local Hamiltonians with vanishing ground state energy:

Hn,t := n (id − Mt (σ )) =
n∑

i=1

hi,i+1, with hi,i+1 := 1

|G|
∑
g∈G

(
id − Ad(g⊗t

i,i+1)
)

.

(72)

Let us summarize these findings in the following lemmas.

Lemma 6 (Spectral gap). Let σ be as in Def. 4 and Hn,t the Hamiltonian from Eq. (72).
It holds that

g(σ, t) = 1 − �(Hn,t )

n
. (73)

Lemma 7 (Ground spaces). The Hamiltonians Hn,t are positive operators with ground
state energy 0. The ground space is given by the Clifford commutant

Cl(n)′ = span
{
r(T )⊗n

∣∣ T ∈ 
t,t
}
, (74)

where 
t,t is the set of stochastic Lagrangian sub-spaces of Zt
2 ⊕ Zt

2.

In the remainder of this section, we will prove the existence of a uniform lower bound
on the spectral gap of Hn,t . In combination with Lemma 6 and Lemma 5 this will imply
Theorem 2. While it is highly non-trivial to show spectral gaps in the thermodynamic
limits, we can use the fact that Hn,t is frustration-free (compare Lemma 7). This allows
us to apply the powerful martingale method pioneered by Nachtergaele [61].

Lemma 8. (Lower bound to spectral gap) Let the Hamiltonian Hn,t be as in Eq. (72)
and assume that n ≥ 12t . Then, Hn,t has a spectral gap satisfying

�(Hn,t ) ≥ �(H12t,t )

48t
. (75)

Proof of Proposition 2. We can now combine the bound in (75) with any lower bound
on the spectral gap independent of t . To this end, we make again use of the averaging
operator Tσ : L2(Cl(n)) → L2(Cl(n)) introduced in Eq. (69) before. By Ref. [60,
Cor. 1] we have that

λ2(Tσ ) ≤ 1 − η

d2
, (76)

where η is the probability of the least probable generator (here 1/|G|n) and d is the
diameter of the associated Cayley graph (given in Ref. [62] as d = O(n3/ log(n)).

Since the representationU �→ Ad⊗t
U contains a trivial component, the second largest

eigenvalue ofMt (σ ) can be atmost λ2(Tσ ). Thus, Hn,t has a gap of at least η/d2. Finally,
by Lemma 8 it follows that

�(Hn,t ) ≥ �(H12t,t )

48t
≥ c(G)t−8 log(t)2, (77)

for a constant c(G). We note that the applicability of Ref. [60, Cor. 1] to random walks
on the Clifford group has also been observed in Ref. [9]. ��



1014 J. Haferkamp, F. Montealegre-Mora, M. Heinrich, J. Eisert, D. Gross, I. Roth

We can combine Theorem 2 and Theorem 1 to obtain the following corollary:

Corollary 2 (Local randomunitary design). Let K ∈ U (2) be a non-Clifford gate and let
G ⊂ Cl(4) be a closed, generating set. There are constants C ′′

1 (K ,G),C ′′
2 (K ),C ′′

3 (K )

such that whenever

m ≥ C ′′
1 (K ,G)n log−2(t)t8 (2nt + log(1/ε)) and k ≥ C ′′

2 (K ) log2(t)(t4 + t log(1/ε)),

the local random circuit σk,m, defined in (6), is an ε-approximate unitary t-design for
all n ≥ C ′′

3 (K )t2.

Proof. Consider the superoperator

Mt (σk,m) =
∫
U (2n)

Ad(U⊗t ) dσk,m(U ) = Mt (σ
∗m)R(K ) . . .Mt (σ

∗m)R(K )︸ ︷︷ ︸
k times

, (78)

where σ ∗m denotes the probability measure of a depth m local random walk on the
Clifford group (cp. Def. 4). We would like to bound the difference between the Haar
random t-th moment operator Mt (μH) =: PH and Mt (σk,m). Notice the following
standard properties of PH:

PHMt (ν) = Mt (ν)PH = PH, and P†
H = PH, (79)

for any probability measure ν on U (2n). In particular, we have that PH is an orthogonal
projector. As in the last section, we make use of the spectral decomposition in Eq. (67)
to decompose Mt (σ

∗k) as follows:

Mt (σk,m) − PH = [Mt (σ
∗m)R(K )

]k − PH

=
⎡
⎣
(
PCl +

∑
i≥2

λmi 
i

)
R(K )

⎤
⎦
k

− PH. (80)

Recall the shorthand notation PCl := Mt (μCl). Using the triangle inequality and the
inequality (12), this implies

∥∥Mt (σk,m) − PH
∥∥� ≤ ∥∥[PClR(K )]k − PH

∥∥� + 22tn
k∑

l=1

(
k

l

)
λlm2

≤ ∥∥[PClR(K )]k − PH
∥∥� + k22tn+1λm2 . (81)

Note that we bounded the second largest eigenvalue λ2 of Mt (σ ) in Proposition 2. We
can now combine Proposition 2 with (62) to obtain:

‖Mt (σk,m) − PH‖� ≤ k22tn+1λm2 + 233t
4+t log(k)

(
1 + 232t

2−n
)5k

η̄kK ,t . (82)

��
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5. Singling out the Clifford Group

There are a number of ways to motivate the construction of approximate unitary t-
designs from random Clifford circuits. From a practical point of view, Clifford gates are
often comparatively easy to implement, in particular in fault-tolerant architectures. In
this section, we point out that Refs. [38,39] together imply that the Clifford groups are
also mathematically distinguished. We formulate this observation as Proposition 3: The
finite case follows from the recently obtained classification of finite unitary subgroups
forming t-designs, so-called unitary t-groups, by [38] building on earlier results by
[55]. The infinite case is a corollary of a theorem about universality of finitely generated
subgroups by [39].

This section is independent from the rest of the paper and has the sole purpose of
highlighting the results in Refs. [38,39,55] and explicitly formulate their combined
implications for the generation of unitary t-designs. Moreover, it might serve as an
intuitive justification for the usefulness and omnipresence of Clifford unitaries in random
circuit constructions.

For any subgroup G ⊆ U(d), we let

G := {det(U †)U |U ∈ G} ⊆ SU(d).

Notice that G is a unitary t-design if and only if G is.
Proposition 3 refers to t-designs generated by finite gate sets, which we define now.

The starting point is a Hilbert space (Cq)⊗r for some r . A finite gate set is a finite subset

G ⊂ SU
(
(Cq)⊗r ).

We will denote by Gn the subgroup of SU
(
(Cq)⊗n

)
generated by elements of G acting

on any r tensor factors (here r ≤ n). The number q is called the local dimension of G.

Proposition 3 (Singling out the Clifford group [38,39,55]). Let t ≥ 2, and let G be a
finite gate set with local dimension q ≥ 2. Assume that (1) either all Gn are finite or they
are all infinite, and (2) there is an n0 such that for all n ≥ n0, Gn is a unitary t-design.

Then, one of the following cases apply:

(i) If t = 2, we have either q prime and Gn is isomorphic to a subgroup of the Clifford
group Cl(qn), or Gn is dense in SU(qn),

(ii) If t = 3, we have either q = 2 and Gn is isomorphic to the full Clifford groupCl(2n)
or Gn is dense in SU(qn),

(iii) If t ≥ 4 then Gn is dense in SU(qn).

Note that a finitely generated infinite subgroup of SU(d) is always dense in some
compact Lie subgroup (cp. [39, Fact 2.6]). In particular, it inherits a Haar measure from
this Lie subgroup which allows for a definition of unitary t-design.
a. Finite case. In the classification in Ref. [38], the non-existence of finite unitary t-
groups was shown for t ≥ 4 (and dimension d > 2). Already the case t = 3 is very
restrictive, since the authors arrive at the following result:

Lemma 9 (Ref. [38, Thm. 4]). Suppose d ≥ 5 and consider a finite subgroup H <

SU(d) which is a unitary 3-design. Then, H is either one of finitely many exceptional
cases or d = 2n and H is isomorphic to the Clifford group Cl(2n).
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This establishes the finite version of (i i), the t = 3 case.
The classification of unitary 2-designs is however more involved, it includes cer-

tain irreducible representations of finite unitary and symplectic groups (compare [38,
Thm. 3 Lie-type case]), and a finite set of exceptions. The exceptions can be ruled out
in the same way as above.

The former, the Lie-type cases, happen in dimensions (3n ±1)/2 and (2n +(−1)n)/3.
There is no q for which there exists an n0 such that for all n ≥ n0 there exists an m ∈ N
satisfying either

qn = (3m ± 1)/2 or qn = (2m + (−1)m)/3.

Thus, the assumptions of Prop. 3 rule these out. This establishes the finite version of (i).
b. Infinite case. Define the commutant for a set S ⊂ SU(d) of the adjoint action as

Comm(AdS) :=
{
L ∈ End

(
Cd×d

) ∣∣ [Adg, L] = 0 ∀g ∈ S
}

.

We show that the second case can be reduced to Cor. 3.5 from Ref. [39] applied to the
simple Lie group SU(d).

Lemma 10 ([39, Cor. 3.5]). Given a finite set G ⊂ SU(d) such that G = 〈G〉 is infinite.
Then, the group G is dense in SU(d) if and only if

Comm(AdG) ∩ End(su(d)) = {λ idsu(d) | λ ∈ R}. (83)

Recall that a subgroupG ⊆ U (d) is a unitary 2-group if andonly ifComm(U⊗U |U ∈
G) = Comm(U ⊗ U |U ∈ U(d)) = span(1, F), where F denotes the flip of two tensor
copies (see also App. A). Let us denote the partial transpose on the second system of a
linear operator A ∈ L(Cd ⊗ Cd) by A� . Then, one can easily verify that � induces a
vector space isomorphism between Comm(U ⊗U |U ∈ G) and Comm(U ⊗U |U ∈ G).
The image of the basis {1, F} is readily computed as

1� = 1, F� = d |� 〉〈� | , (84)

where |� 〉 = d−1/2∑d
i=1 |i i 〉 is themaximally entangled state vector. Next, we use that

U ⊗ U = mat(AdU ) is the matrix representation of AdU = U · U † with respect to the
basis Ei, j = |i 〉〈 j | of L(Cd). Thus, we have Comm(AdG) � Comm(U ⊗ U |U ∈ G)

as algebras. Pulling the above basis of Comm(U ⊗U |U ∈ G) back to Comm(AdG), we
then find:

mat−1(1) = idL(Cd ), mat−1( |� 〉〈� |) = Tr(•)idL(Cd ). (85)

Hence, we have shown that any element in Comm(AdG) is a linear combination of these
two maps. However, by restricting to su(d), the second map becomes identically zero,
thus we have

Comm(AdG) ∩ End(su(d)) = {λ idsu(d) | λ ∈ R}. (86)

By Lemma 10, this shows that any finitely generated infinite unitary 2-group G ≤ SU(d)

is dense in SU(d). Since any unitary t-group is in particular a 2-group, this is also true
for any t > 2.
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6. Proofs

6.1. Proof of overlap lemmas. In this section, we prove three technical lemmas which
are needed throughout this paper. These lemmas give bounds on the overlaps of the
operators Q⊗n

T and hence quantify how far this basis is from an orthonormal basis of the
commutant of the Clifford tensor power representation, i.e., for range PCl.

Lemma 3 (Diamond norm bound). Consider T1, T2 ∈ 
t,t and denote with N1, N2 their
respective defect spaces. Then, it holds that

∥∥∣∣QT1

)(
QT2

∣∣∥∥� ≤ 2dim N2−dim N1, (27)

| (QT1

∣∣QT2

) | ≤ 2−| dim N1−dim N2|. (28)

Proof. First, recall that QT := 2−t/2r(T ). Then, we make use of the following elemen-
tary bound on the diamond norm of rank one superoperator |A )(B |:

‖ |A )(B |‖� = sup
‖X‖1=1

‖A ⊗ Tr1 (B ⊗ 1X)‖1
†≤ ‖A‖1 sup

‖X‖1=1
‖B ⊗ 1X‖1

‡= ‖A‖1 ‖B ⊗ 1‖∞
= ‖A‖1 ‖B‖∞ . (87)

Here, we have used in † that the partial trace is a contraction w.r.t. ‖·‖1 and in ‡ a version
of the duality between trace and spectral norm [63]. Given stochastic Lagrangians T1
and T2 with defect spaces N1 and N2, we thus find using Lem. 1:

∥∥∣∣QT1

)(
QT2

∣∣∥∥� ≤ 2−t ‖r(T1)‖1 ‖r(T2)‖∞ = 2dim N2−dim N1 . (88)

To prove 2., we use Ref. [42, Eq. (4.25)] and that the transpose does not change
the dimension of the corresponding defect subspace. Moreover, we assume w.l.o.g. that
dim N2 ≥ dim N1. We have

| (QT1

∣∣QT2

) | = 2−t |Tr[r(T1)r(T2)T ]| = 2−t+dim(N1∩N2)|Tr[r(T )]| (89)

where r(T ) is described by a stochastic orthogonal and a defect space N⊥
1 ∩ N2 + N1.

Hence, we obtain (together with Hölder’s inequality):

| (QT1

∣∣QT2

) | ≤ 2−t+dim(N1∩N2)2t−dim(N⊥
1 ∩N2+N1). (90)

Using N ⊆ N⊥ for all defect spaces and the general identity dim(V + W ) = dim V +
dimW − dim(V ∩ W ), this yields

| (QT1

∣∣QT2

) | ≤ 2dim(N1∩N2)−dim N1 ≤ 2dim N2−dim N1 . (91)

��
Next, we define a frame operator associated to the basis Q⊗n

T . If the basis was
orthogonal, this frame operator would simply be the projector PCl onto the Clifford
commutant.



1018 J. Haferkamp, F. Montealegre-Mora, M. Heinrich, J. Eisert, D. Gross, I. Roth

Definition 9 (Clifford frame operator). We define the Clifford frame operator of the
basis Q⊗n

T as

SCl :=
∑

T∈
t,t

|QT )(QT |⊗n . (92)

Hence, a quantifier for the orthogonality of the Q⊗n
T basis is the distance of SCl to

the projector PCl. As we prove in Lem. 12, we have PCl ≈ SCl in spectral norm and we
will use this result later in the proof of Lem. 8. In order to show this, we first derive a
result on the sum of overlaps in Lem. 11.

Interestingly, SCl is not close to PCl in diamond norm (see. Ch. 15 in Ref. [64]).
To derive our main result, we instead construct an orthogonalized basis from the Q⊗n

T .
Some properties of the orthogonalized basis are proven in Lem. 4, which also makes use
of Lem. 11.

Lemma 11 (Overlap of stochastic Lagrangian sub-spaces). We have
(
QT
∣∣QT ′

) ≥ 0 for
all T, T ′ ∈ 
t,t . Moreover, for all T ∈ 
t,t the sum of overlaps is∑

T ′∈
t,t

(
QT
∣∣QT ′

)n = (−2−n; 2)t−1 ≤ 1 + t2t−n, (93)

where (−2−n; 2)t−1 = ∏t−2
r=0(1 + 2r−n) and the last inequality holds for n + 2 ≥

t + log2(t).

Proof. Denote by Stab(n) the set of stabilizer states on n qubits. Since the operators
r(T ) are entry-wise non-negative, we have

(
QT
∣∣QT ′

) = 2−t Tr(r(T )†r(T ′)) ≥ 0. Note
that r(T )† = r(T̃ ) for a suitable T̃ ∈ 
t,t (cp. Thm. 4). We obtain

∑
T ′∈
t,t

(
QT
∣∣QT ′

)n = 1

2tn
∑

T ′∈
t,t

Tr
[
r(T̃ )⊗nr(T ′)⊗n

]

†= 2n
∏t−2

r=0(2
r + 2n)

2tn
Tr
[
r(T̃ )⊗nEs∈Stab(n)( |s 〉〈s |⊗t )

]

= 2n
∏t−2

r=0(2
r + 2n)

2tn
Es∈Stab(n)

〈
s⊗t
∣∣ r(T̃ )⊗n

∣∣s⊗t 〉

‡= 2n
∏t−2

r=0(2
r + 2n)

2tn

=
t−2∏
r=0

(1 + 2r−n)

≤
(
1 + 2t−2−n

)t−1

∗≤ exp
(
(t − 1)2t−n−2

)
, (94)

where we have again used [42, Thm. 5.3] in † and in ‡ that
〈
s⊗t
∣∣ r(T )⊗n

∣∣s⊗t
〉 = 1 for

all T ∈ 
t,t and all s ∈ Stab(n) (compare Ref. [42, Eq. (4.10)]). Finally, in ∗ we have
used the “inverse Bernoulli inequality” (1 + x)r ≤ erx which holds for all x ∈ R and
r ≥ 0. By assumption, the following holds

0 ≥ t + log2(t) − n − 2 ⇒ 1 ≥ t2t−n−2 ≥ (t − 1)2t−n−2. (95)
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Thus, we can use the inequality ex ≤ 1 + 2x for 0 ≤ x ≤ 1 to obtain
∑

T ′∈
t,t

(
QT
∣∣QT ′

)n ≤ 1 + (t − 1)2t−n−1

≤ 1 + t2t−n . (96)

��
Lemma 12. Let SCl be the Clifford frame operator and � the corresponding Gram

matrix, i. e. �T,T ′ = (QT
∣∣Q′

T

)n
. Then the following holds

‖SCl − PCl‖∞ = ‖� − 1‖∞ ≤ (−2−n; 2)t−1 − 1 ≤ t2t−n, (97)

where (−2−n; 2)t−1 = ∏t−2
r=0(1 + 2r−n) and the last inequality holds for n + 2 ≥

t + log2(t).

Proof. Define the synthesis operator of the frame as the map

V : C|
t,t | → Cl(n)′, V =
∑

T∈
t,t

∣∣Q⊗n
T

)〈eT | , (98)

where eT is the standard basis of the domain. Then, we have clearly � = V †V and
SCl|Cl(n)′ = VV †. Since SCl and PCl are both identically zero on

(
Cl(n)′

)⊥, this part
does not contribute to the spectral norm. From this it is clear that

‖SCl − PCl‖∞ = ‖� − 1‖∞ . (99)

Moreover, we can compute

‖� − 1‖∞ =
∥∥∥∥∥∥
∑
T

∑
T,T ′

(
QT
∣∣QT ′

)n |eT 〉〈eT ′ |
∥∥∥∥∥∥∞

≤ max
T

∑
T ′ �=T

(
QT
∣∣QT ′

)n

= (−2−n; 2)t−1 − 1, (100)

where we have used that the spectral norm of Hermitian operators is bounded by the
max-column norm and inserted the exact result of Lemma 11 in the last step. Finally,
said lemma provides the desired bound for n + 2 ≥ t + log2 t . ��

6.2. Proof of Lemmas for Theorem 1.

Lemma 2 (Overlap bound). Let K be a single qubit gate which is not contained in the
Clifford group. Then, there is a constant c(K ) > 0 such that

ηK ,t := max
T∈
t,t−St
T ′∈
t,t

1

3

∣∣∣(QT |Ad⊗t
K +Ad⊗t

K † +id |QT ′)
∣∣∣ ≤ 1 − c(K ) log−2(t). (26)
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The proof of Lemma 2 is based on two results. The first states that the basis elements
r(T ) of the commutant of tensor powers of the Clifford group either belong to the
commutant of the powers of the unitary group, or else are far away from it.

Lemma 13 (Haar symmetrization). For all t and for all T ∈ 
t,t \ St , it holds that

(QT | PH |QT ) = 2−t ‖PH[r(T )]‖22 ≤ 7

8
, (101)

where QT is as in Eq. (21) and PH = Mt (μH) is the t-th moment operator of the
single-qubit unitary group U(2).

The proof is given in Sect. 6.3. In Appendix C, we show that the constant 7/8 cannot
be improved below 7/10, by exhibiting a T that attains this bound.

The second ingredient to Lemma 2 is a powerful theorem by Varjú [53]. Here, we
specialize this theorem to the unitary group:

Theorem 5 ([53, Thm. 6]. Let ν be a probability measure on U(d). Consider the aver-
aging operator Tv(ν) on a irreducible representation πv : U(d) → End(Wv) parame-
terized by highest weight v ∈ Zd:

Tv(ν) :=
∫
U(d)

πv(U ) dν(U ). (102)

Then there are numbers C(d) > 0 and r0 > 0 such that

�r (ν) := 1 − max
0<|v|≤r

‖Tv(ν)‖∞ ≥ C(d)�r0(ν) log−2(r), (103)

where |v|2 =∑i v
2
i .

Proof of Lemma 2. Consider the probability measure ξK that draws uniformly from the
set {K , K †,1}. Moreover, define νK on U(2) as the average of the uniform measure on
{H, S, S3} and ξK ∗ ξK . Hence, the according moment operator is

Mt (νK ) :=1

6
(Ad⊗t

H +Ad⊗t
S +(Ad3S)

⊗t ) +
1

2
Mt (ξK ∗ ξK )

=1

6
(Ad⊗t

H +Ad⊗t
S +(Ad3S)

⊗t ) +
1

2
Mt (ξK )2. (104)

As the Clifford group augmented with any non-Clifford gate is universal [65, Thm. 6.5],
so is the probability measure νK .

It follows from the representation theory of the unitary group (see App. B) that
the representation U �→ Ad⊗t

U does not contain irreducible representations Wv with
highest weight of length |v| >

√
2t . Thus, we can decompose into these irreducible

representations as follows:

‖Mt (νK ) − PH‖∞ =
∥∥∥∥∥∥
⊕

|v|≤√
2t

(Tv(νK ) − Tv(μH)) ⊗ idmv

∥∥∥∥∥∥
∞

≤
∥∥∥∥∥∥

⊕
0<|v|≤√

2t

Tv(νK )

∥∥∥∥∥∥
∞



Efficient Unitary Designs with a System-Size… 1021

= max
0<|v|≤√

2t
‖Tv(νK )‖∞

= 1 − �√
2t (νK ). (105)

Here, mv denotes the multiplicity of the irreducible representation Wv (possibly zero).
In the second step we have used that PH has only support on the trivial irreducible
representation v = 0, where both PH andMt (νK ) act as identity and thus cancel. Hence,
only non-trivial irreducible representations are contributing. To bound �√

2t (νK ), we
can invoke Theorem 5 combined with the fact that for any universal probability measure
the restricted gap is non-zero:�r (νK ) > 0 for all r ≥ 1 (compare e.g. Ref. [27]). Hence,
we obtain

�√
2t (νK ) ≥ C(2)�r0(νK ) log−2

(√
2t
)

≥ 1

4
C(2)�r0(νK ) log−2(t) =: c′(K ) log−2(t) > 0, (106)

where c(K ) > 0. Therefore, we have

‖Mt (νK ) − PH‖∞ ≤ 1 − �√
2t (νK ) ≤ 1 − c′(K ) log−2(t) =: κt,K , (107)

Furthermore, consider the operator

XT := (id − PH)QT

‖(id − PH)QT ‖2 . (108)

We obtain

‖Mt (νK ) − PH‖∞ = max‖X‖2=1
|(X |Mt (νK ) − PH |X)|

≥ |(XT |Mt (νK ) − PH |XT )|
‖XT ‖22

= |(QT | (id − PH)Mt (νK )(id − PH) |QT )|
(QT | (id − PH)2 |QT )

= | (QT |Mt (νK ) |QT ) − (QT | PH |QT ) |
1 − (QT | PH |QT )

≥ (QT |Mt (νK ) |QT ) − (QT | PH |QT )

1 − (QT | PH |QT )
. (109)

In the fourth step, we again used the properties of the Haar projector as in Eq. (79).
Combining this with (107) and Lemma 13 we obtain

(QT |Mt (νK ) |QT ) ≤ κt,K + (1 − κt,K ) (QT | PH |QT ) ≤ 1 − 1

8
c′(K ) log−2(t).

(110)

We can use that (QT |Ad⊗t
S |QT ) = (QT |Ad⊗t

S3
|QT ) = (QT |Ad⊗t

H |QT ) = 1 for all

T ∈ 
t,t because QT = 2−t/2r(T ) commutes with the t-th diagonal action of the
single-qubit Clifford group (compare [42, Lem. 4.5]). We immediately obtain

(QT |Mt (ξK )2 |QT ) ≤ 1 − 1

4
c′(K ) log−2(t). (111)
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From the Cauchy-Schwarz inequality, we now get

|(QT |Mt (ξK ) |QT ′)| ≤
√

(QT |Mt (ξK )2 |QT )

≤
√
1 − 1

4
c′(K ) log−2(t)

≤ 1 − 1

8
c′(K ) log−2(t)

=: 1 − c(K ) log−2(t), (112)

where we have used that c′(K ) log−2(t) ≤ �√
2t (νK ) ≤ 1 such that we can use the

inequality
√
1 − x ≤ 1 − x/2 for x ≤ 1. This shows the claimed statement. ��

Remark 2 (Quantum gates with algebraic entries). If we restrict to gates K that have
only algebraic entries, we can apply the result from Ref. [66] and save the additional
overhead of log2(t) in the scaling. This applies to the T -gate and for essentially all gates
that might be used in practical implementations. Here, we have chosen the more general
approach.

Remark 3 (Implications for quantum information processing). Theorem 5 has miscel-
laneous implications for quantum information processing. E.g. we can immediately
combine this bound with the local-to-global lemma in Ref. [23, Lem. 16] to extend Ref.
[24, Cor. 7] to gate sets with non-algebraic entries at the cost of an additional overhead of
log2(t) in the scaling. The bottleneck to loosen the invertibility assumption as well is the
local-to-global lemma which only works for Hermitian moment operators (symmetric
distributions). Work to lessen the assumption of invertibility has been done in Ref. [67].
Extending this would be an interesting application which we, however, do not pursue in
this work.

Lemma 4 (Properties of the constructed basis). Let {Tj }|
t,t |
j=1 be an enumeration of the

elements of 
t,t such that the first t ! spaces Tj correspond to the elements of St . Then,
the {E j } constitutes an orthogonal (but not normalized) basis, where

E j :=
j∑

i=1

Ai, j Q
⊗n
Ti

:=
j∑

i=1

⎡
⎢⎢⎣
∑

∈S j


( j)=i

sign(
)

j−1∏
l=1

(
QTl

∣∣QT
(l)

)n
⎤
⎥⎥⎦ Q⊗n

Ti
. (30)

Denote by Ni the defect space of Ti . For n ≥ 1
2 (t

2 + 5t), we have

|Ai, j | ≤ 2t
3+4t2+6t−n| dim Ni−dim N j |, ∀i, j, (31)

|Ai, j | ≤ 22t
2+10t−n, ∀i �= j. (32)

Moreover, it holds that

1 − 2t
2+7t−n ≤ A j, j ≤ 1 + 2t

2+7t−n . (33)
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Proof. The form of (30) is up to a constant the determinant formulation of the Gram-
Schmidt procedure. First, note that the number of permutations of n elements with no
fixed points is known from Ref. [68] to be

D(n) = n!
n∑

r=0

(−1)r

r ! ≤ 2
n!
e

(113)

for n ≥ 1. Here, D stands for “derangement” as permutations without fixed points are
sometimes called. Then, the number of permutations having exactly k fixed points is

(n
k

)
many choices of k points times the number D(n − k) of deranged permutations on the
remaining n − k objects:

p(n, k) :=
(
n

k

)
D(n − k) ≤ 2e−1 n!

k! . (114)

The following estimate for certain sums involving p(n, k) will shortly become useful.
Note that we have for anyM, L ∈ N andm ∈ R such that 2m > M−L andM ≥ L ≥ 1:

M−L∑
k=0

p(M, k)2−m(M−k) ≤ 2

e

M−L∑
k=0

2−mMM !2
mk

k!

≤ 2

e
2−mM (M − L + 1)M ! 2

m(M−L)

(M − L)!
≤ ML+12−mL . (115)

Here, we have used in the second inequality that 2mk/k! is monotonically increasing for
k ≤ M − L < 2m and a standard bound on binomial coefficients in the last step.

We start by bounding the diagonal coefficients A j, j . The idea is to divide the set
of permutations into sets of permutations with exactly k fixed points. For any such
permutation, the product of overlaps collapses to only j−1−k non-trivial inner products.
By assumption n ≥ 1

2 (t
2 + 5t) ≥ t + log2 t , thus we can be bound any of those using

Lemma 11 as
(
QT
∣∣QT ′

)n ≤ t2t−n, for all T �= T ′. (116)

Note that the trivial permutation (corresponding to k = j−1 fixed points) contributes by
exactly 1 to the sum. Thus, we find the following bound using Eq. (115) with M = j−1,
L = 1 and m = n − t − log2 t :

A j, j = |A j, j | ≤
∑

π∈S j−1

j−1∏
l=1

(
Ql
∣∣Qπ(l)

)n

≤ 1 +
j−2∑
k=0

p( j − 1, k)2−(n−t−log2 t)( j−1−k)

≤ 1 + ( j − 1)2 2−n+t+log2 t

< 1 + 2t
2+7t−n, (117)
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where we have used Eq. (15) in the last step as j − 1 < j ≤ |
t,t | ≤ 2
1
2 (t2+5t). Using

the reverse triangle inequality, we get a lower bound in the same way:

A j, j = |A j, j | ≥ 1 −
∣∣∣∣∣∣
∑

π∈S j−1\id
sign(π)

j−1∏
l=1

(
Ql
∣∣Qπ(l)

)n
∣∣∣∣∣∣ ≥ 1 − 2t

2+7t−n . (118)

Next, we will bound the off-diagonal terms Ai, j . It is well known that every per-
mutation 
 ∈ S j can be written as a product of disjoint cycles. Given a 
 ∈ S j with

( j) = i , consider the cycle j �→ i �→ i1 �→ i2 �→ . . . ir �→ j in 
. Then, we have
the bound

j−1∏
l=1

(
QTl

∣∣QT
(l)

)n ≤
(
QTi

∣∣QTi1

)n
. . .
(
QTir

∣∣QTj

)n

≤ 2−n(| dim Ni−dim Ni1 |+...| dim Nir −dim N j |)

≤ 2−n| dim Ni−dim N j |, (119)

where we have used Lemma 3, the triangle inequality and a telescope sum. We set
L := | dim Ni − dim N j | and split the sum over permutations into those with more than
or equal to j−L many fixed points and those with less. In the first case, we use Eq. (119)
to bound the overlaps, in the second case we use Eq. (115) as before. This yields the
following bound

|Ai, j | ≤
∑

∈S j


( j)=i

j−1∏
l=1

(
QTl

∣∣QT
(l)

)n

≤
j−1∑

k= j−L

p( j, k)2−nL +
j−L−1∑
k=0

p( j, k)2−(n−t−log2 t)( j−1−k)

≤ 2

e

j−1∑
k= j−L

j !
k!2

−nL + 2n−t−log2 t j L+2 2−(n−t−log2 t)(L+1)

≤ L
j !

( j − L)!2
−nL + j L+2 2−(n−t−log2 t)L

≤ L j L2−nL + j L+2 2−(n−t−log2 t)L

≤ L|
t,t |L+2 2−(n−t−log2 t)L

≤ 2log2 L2
1
2 (t2+5t)(L+2) 2(t+log2 t−n)L

= 2t
2+5t2( 12 t

2+ 5
2 t+t+log2 t−n)L

≤ 2
1
4 t

3+ 11
4 t2+5t+( t

2 +1) log2 t−nL

≤ 2t
3+4t2+6t−n| dim Ni−dim N j |, (120)

where we have used again j ≤ |
t,t | and L ≤ t/2.
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Note that we can alternatively bound Ai, j for i �= j using that the identity is not an
allowed permutation, i. e. only permutations with less than j −2 fixed points can appear.
With Eqs. (115) and (116), we get the following inequality

|Ai, j | ≤
j−2∑
k=0

p( j, k)2−(n−t−log2 t)( j−1−k)

≤ j32−(n−t−log2 t)

≤ 2
3
2 t

2+ 15
2 t+t+log2 t−n

≤ 22t
2+10t−n . (121)

��

6.3. Proof of Haar symmetrization Lemma 13.

Lemma 13 (Haar symmetrization). For all t and for all T ∈ 
t,t \ St , it holds that

(QT | PH |QT ) = 2−t ‖PH[r(T )]‖22 ≤ 7

8
, (101)

where QT is as in Eq. (21) and PH = Mt (μH) is the t-th moment operator of the
single-qubit unitary group U(2).

For an analysis of the tightness of the bound, see “Appendix C”. Recall that

PH[A] :=
∫
U (2)

U⊗t A(U †)⊗tdμH(U ). (122)

Let PD be the Haar averaging operator, restricted to the diagonal unitaries. As it averages
over a subgroup, PD is a projection with range a super-set of PH. By applying PD to
r(T ), we can turn the statement (101) from one involvingHilbert space geometry to one
about the discrete geometry of stochastic Lagrangians. Indeed,

2−t ‖PH[r(T )]‖22 = 2−t ‖PH[PD[r(T )]]‖22
≤ 2−t ‖PD[r(T )]‖22
= 2−t

(
r(T ), PD[r(T )]

)

= 2−t
∑

(x,y)∈T

∑
(x ′,y′)∈T

( |x 〉〈y | , PD[ ∣∣x ′ 〉〈y′ ∣∣])

= 2−t
∑

(x,y)∈T

∑
(x ′,y′)∈T

( |x 〉〈y | ,
∫ 2π

0
ei2φ(h(x ′)−h(y′)) ∣∣x ′ 〉〈y′ ∣∣ d φ

)

= 2−t |{(x, y) ∈ T | h(x) = h(y)}|
= Pr(x,y)[h(x) = h(y)],

i.e., the overlap is upper-bounded by the probability that a uniformly sampled element
(x, y) of T has components of equal Hamming weight.
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We will bound the probability in slightly different ways for spaces T with trivial (i.e.,
zero-dimensional) and non-trivial defect spaces.
a. Case I: trivial defect sub-spaces In this case, T = {(Oy, y) | y ∈ Ft

2} for some
orthogonal stochastic matrix O . The next proposition treats a slightly more general
situation.

Proposition 4 (Hamming bound). Let O ∈ GL(Ft
2). Assume O has a column of Ham-

ming weight r . Then the probability that O preserves the Hamming weight of a vector
y chosen uniformly at random from Ft

2 satisfies the bound

Pry[h(Oy) = h(y)] ≤ 1

2
+

{
2−(r+1)

( r+1
(r+1)/2

)
r odd

0 r even.
(123)

The bound in Eq. (123) decreases monotonically in r . Orthogonal stochastic matrices
O satisfy r = 1 mod 4, so the smallest non-trivial r that can appear is r = 5, for which
the bound gives .81.

The proof idea is as follows: For each y ∈ Ft
2, the two vectors y, y + e1 differ in

Hamming weight by ±1. But, if h(e1) �= 1, then h(Oy) − h(O(y + e1)) tends not to
be ±1. In such cases, O does not preserve weights for both y and y + e1. Applying this
observation to randomly chosen vectors, we can show the existence of many vectors for
which O changes the Hamming weight.

Proof of Proposition 4. Assume without loss of generality that the first r entries of Oe1
are 1, and the remaing t − r entries are 0.

Let y be a uniformly distributed random vector on Ft
2, notice that also Oy, and

O(y + e1) are uniformly distributed. Using the union bound, we find that

Pr[h(Oy) = h(y)] = 1 − Pr[h(Oy) �= h(y)]
= 1 − 1

2

(
Pr[h(Oy) �= h(y)] + Pr[h(Oy + Oe1) �= h(y + e1)]

)

≤ 1 − 1

2
Pr[h(Oy) �= h(y) ∨ h(Oy + Oe1) �= h(y + e1)]

= 1

2
+
1

2
Pr[h(Oy) = h(y) ∧ h(Oy + Oe1) = h(y + e1)]

≤ 1

2
+
1

2
Pr[h(Oy) − h(Oy + Oe1) = ±1].

We would like to compute Pr[h(Oy) − h(O(y + e1)) = ±1]. The vector O(y + e1) =
O(y)+O(e1) arises fromO(y) byflipping the first r components. This operation changes
the Hamming weight by ±1 if and only if the number of ones in the first r components
of O(y) equals (r ±1)/2. For even r , this condition cannot be met, and correspondingly
Pr[h(Oy) − h(O(y + e1)) = ±1] = 0.

In case of odd r , this probability becomes

Pr[h(Oy) − h(O(y + e1)) = ±1] = 2−r
(

r

(r − 1)/2

)
+ 2−r

(
r

(r + 1)/2

)

= 2−r
(

r + 1

(r + 1)/2

)
. (124)

��



Efficient Unitary Designs with a System-Size… 1027

b. Case II: non-trivial defect sub-spacesWenow turn to Lagrangians T with a non-trivial
defect subspace.

Proposition 5 (Defect Hamming bound). Let {0} �= N ⊂ Ft
2 be isotropic. There exists

an n ∈ N such that if x is chosen uniformly at random from N⊥, then

Prx∈N⊥[h(x) = h(x + n)] ≤ 3

4
.

What is more, let T be a stochastic Lagrangian with non-trivial defect sub-spaces. Then,
for an element (x, y) drawn uniformly from T , we have

Pr(x,y)∈T [h(x) = h(y)] ≤ 7

8
.

Proof. Let d = dim N . Consider a t × d column-generator matrix � for N . Permuting
coordinates of Ft

2 and adopting a suitable basis, there is no loss of generality in assuming
that � is of the form

� =
(
G
1d

)
, G ∈ F(t−d)×d

2 .

Note that

γ = (1t−d , G
)

is a row-generator matrix for N⊥. Indeed, the row-span has dimenion t − d and the
matrices fulfill

γ� = G + G = 0,

i.e., the inner product between any column of � and any row of γ vanishes. It follows
that elements n ∈ N , x ∈ N⊥ are exactly the vectors of respective form

n = ( Gñ︸︷︷︸
t−d

, ñ︸︷︷︸
d

), ñ ∈ Fd
2; x = ( x̃︸︷︷︸

t−d

, GT x̃︸︷︷︸
d

), x̃ ∈ Ft−d
2 .

In particular, if x is drawn uniformly from N⊥, then the first t − d components are
uniformly distributed in Ft−d

2 . For now, we restrict to the case where G has a column,
say the first, with r �= 1 non-zero entries. We then choose n = (Ge1, e1) and argue as
in Eq. (124) to obtain

Prx∈N⊥[h(x) = h(x + n)] ≤ sup
1 �=r odd

2−r
(

r + 1

(r + 1)/2

)
= 3

4
(attained for r = 3).

(125)

We are left with the case where all columns of G have Hamming weight 1. (If N is
a defect subspace, then Def. 6.1 implies that every column of � has Hamming weight
at least 4. We treat the present case merely for completeness). As N is isotropic, the
columns of � have mutual inner product equal to 0:

�T� = 0 ⇔ GTG = −1 = 1 mod 2.
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It follows that all columns have to be mutually orthogonal standard basis vectors ei ∈
Ft−d
2 . Thus, by permutating the first t − d coordinates of Ft

2, we can assume that G is
of the form

G =
(
1d
0

)
, ⇒ N = {(ñ ⊕ 0t−2d , ñ) | ñ ∈ Fd

2}, N⊥ = {(x̃, x̃ |d) | x̃ ∈ Ft−d
2 },

where x̃ |d denotes the restriction of x̃ to the first d components. Adding n := (e1⊕0, e1)
to x = (x̃, x̃ |d), the Hamming weight of the two parts change both by ±1, giving
h(x + n) = h(x) ± 2. Thus, we have Pr[h(x) = h(x + n)] = 0.

We have proven the first advertised claim. It implies the second one, as argued next.
Let N be the left defect subspace of T . By Ref. [42, Prop. 4.17], we find the following.

• The restriction {x | (x, y) ∈ T for some y} equals N⊥.
• The stochastic Lagrangian T contains N ⊕ 0.

Assume that (x, y) is distributed uniformly in T . By the first cited fact, x is distributed
uniformly in N⊥. By the second fact, (x + n, y) follows the same distribution as (x, y),
for each n ∈ N . Thus, repeating the argument in the proof of Proposition 4, we find that
for any fixed n ∈ N :

Pr[h(x) = h(y)] = 1 − Pr[h(x) �= h(y)]
≤ 1 − 1

2
Pr[h(x) �= h(y) ∨ h(x + n) �= h(y)]

≤ 1

2
+
1

2
Pr[h(x) = h(x + n)] ≤ 7

8
.

��

6.4. Proof of Lemmas for Theorem 2.

Lemma 5 (Relative ε22tn-approximate Clifford t-designs). Suppose that 0 ≤ ε < 1 is
such that gCl(ν, t) ≤ ε. Then, ν is a relative ε22tn-approximate Clifford t-design.

Proof. This follows similar to Ref. [24, Lem. 4& Lem. 30]. Denote by |�2n 〉 the maxi-
mally entangled state vector on C2n ⊗ C2n . The condition in (5) is equivalent to

(1 − ε)ρCl ≤ ρν ≤ (1 + ε)ρCl, (126)

as an operator inequality, where

ρν := (�ν ⊗ 1)(|�2n 〉〈�2n |)⊗t and ρCl := ρμCl . (127)

We have a decomposition of (C2n )⊗t into irreducible representations of the Clifford
group:

(C2n )⊗t ∼=
⊕
γ

Cγ ⊗ Lγ , (128)
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where {Cγ } is the set of all equivalence classes of irreducible representations of Cl(n)

that appear in the t-th order diagonal representation, and Lγ are the corresponding mul-
tiplicity spaces (which by the double commutant theorem are irreducible representations
of the commutant algebra –we have chosen L for Lagrangian). This implies that

|�2n 〉⊗t ∼=
∑
γ

√
dim Lγ dimCγ

2nt
|γ, γ 〉 ⊗ |�Cγ 〉 ⊗ |�Lγ 〉, (129)

where |�Lγ 〉 and |�Cγ 〉 denote maximally entangling state vectors on two copies of
Lγ and Cγ , respectively. Indeed, observe that |�2n 〉⊗t = 2−nt/2 vec(1) and that the
identity restricted to sub-spaces is just the identity on these sub-spaces. The prefactors
then follow from normalizing the vectorized identity operators on the direct summands.

Since Cl(n) acts via multiplication on the spaces Cλ, this implies that

ρCl =
∫
Cl(n)

(U ⊗ 1)⊗t (|�2n 〉〈�2n |)⊗t (U † ⊗ 1)⊗tdμCl(U )

∼=
∑
γ

dim Lγ dimCγ

2nt
(|γ 〉〈γ |)⊗2 ⊗

(
1Cγ

dimCγ

)⊗2

⊗ |�Lγ 〉〈�Lγ |, (130)

where the second line follows from Schur’s lemma and the fact that
∫
U⊗t • (U †)⊗t is

trace preserving. The support of this operator is on the symmetric subspace∨t (C2n⊗C2n )

[24, Lem 30.1]. The minimal eigenvalue of this operator restricted to the symmetric
subspace is

min
γ

dim Lγ

2nt dimCγ

, (131)

which we now lower bound. Let γ ∗ denote the optimizer. By Schur-Weyl duality, the
diagonal action of U(2n) on (C2n ⊗ C2n )⊗t decomposes as ⊕λUλ ⊗ Sλ where as usual
Uλ are Weyl modules and Sλ are Specht modules. Restricting this action to the Clifford
group, the Uλ further decompose into irreducible representations

Uλ �
⊕
γ∈Iλ

Cγ ⊗ Cdλ,γ ,

where Iλ is the spectrum of Uλ as a Clifford representation. Let �0 be the set of all λ

such that γ ∗ ∈ Iλ, then as a Clifford representation

(C2n ⊗ C2n )⊗t � Cγ ∗ ⊗
( ⊕

λ∈�0

Sλ ⊗ Cdλ,γ ∗
)

⊕ (other irreducible representations).

(132)

Thus, as a vector space, we have

Lγ ∗ =
⊕
λ∈�0

Sλ ⊗ Cdλ,γ ∗ . (133)

In particular, for any λ ∈ �0 we have that dimCγ ∗ ≤ dimUλ and dim Lγ ∗ ≥ dim Sλ.
Thus we get the following bound for the minimal eigenvalue:

dim Lγ ∗

2nt dimCγ ∗
≥ min

λ∈Part(t,2n)
dim Sλ

2nt dimUλ

≥ 2−2nt . (134)

The rest of the proof follows as in Ref. [24, Lem. 4], mutatis mutandis. ��



1030 J. Haferkamp, F. Montealegre-Mora, M. Heinrich, J. Eisert, D. Gross, I. Roth

In order to prove Lemma 8wemake use of the following result by [61] and Lemma 11
bounding certain sums of overlaps of the operators r(T ).

Lemma 14 (Nachtergaele [61, Thm. 3]). Let H[p,q] for [p, q] ⊂ [n] = {1, . . . , n} be a
family of positive semi-definite Hamiltonians with support on (C2)⊗(q−p+1) ⊂ (C2)⊗n.
Assume there is a constant l ∈ N, such that the following conditions hold:

1. There is a constant dl > 0 for which the Hamiltonians satisfy

0 ≤
n∑

q=l

H[q−l+1,q] ≤ dl H[1,n]. (135)

2. There are Ql ∈ N and γl > 0 such that there is a local spectral gap:

�
(
H[q−l+1,q]

) ≥ γl , ∀q ≥ Ql . (136)

3. Denote the ground state projector of H[p,q] by G[p,q]. There exist εl < 1/
√
l such

that
∥∥G[q−l+2,q+1]

(
G[1,q] − G[1,q+1]

)∥∥∞ ≤ εl , ∀q ≥ Ql . (137)

Then, it holds that

�
(
H[1,n]

) ≥ γl

dl

(
1 − εl

√
l
)2

. (138)

While conditions 1) and 2) are merely translation-invariance with finit range of inter-
actions and frustration-freeness in disguise, the third condition is highly non-trivial and
involves knowledge of the ground-space structure. Usually, finding the ground space in
a basis can be just as hard as computing the spectral gap in the first place. Fortunately,
the ground space structure of the Hamiltonians Hn,t is determined by the representation
theory of the Clifford group. With little additional work, we obtain the following lemma
about the ground space structure of our Hamiltonians.

Lemma 8 (Lower bound to spectral gap). Let the Hamiltonian Hn,t be as in Eq. (72)
and assume that n ≥ 12t . Then, Hn,t has a spectral gap satisfying

�(Hn,t ) ≥ �(H12t,t )

48t
. (75)

Proof. We make use of the Nachtergaele lemma. We have to verify the three conditions
of Lemma 14. As already stated in Ref. [61], the first two conditions hold directly for
translation-invariant local Hamiltonians as in our case.

1. The first condition immediately follows from the fact that we consider a translation-
invariant 2-local Hamiltonian. It is fulfilled for any choice of l ≥ 2 and dl = l − 1.

2. The second condition follows again for all l ≥ 2 and the choice Ql = l, since
H[q−l+1,q] is a sum of positive semi-definite operators for all q ≥ l with spectrum
that does not depend on q due to translation-invariance. Thus, we can set

γl := �(H[q−l+1,q]) > 0. (139)
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3. The third condition requires a calculation and a non-trivial choice of l. We have to
bound the quantity

Rq,l := ∥∥G[q−l+2,q+1]
(
G[1,q] − G[1,q+1]

)∥∥∞ , (140)

for all q ≥ Ql = l. Here, G[p,q] denotes the orthogonal projector onto the ground
space of H[p,q]. Note that this ground space is simply a suitable translation of the
Clifford commutant Cl(k)′ for k = q − p + 1 as shown in Lemma 7. Recall that it
comes with a non-orthogonal basis Q⊗k

T , where

QT := r(T )

‖r(T )‖2 = 2−t/2r(T ), T ∈ 
t,t . (141)

Moreover, the projector G[ p, q] is also simply a translation of the Clifford projector
PCl(k) projecting onto Cl(k)′. From the discussion in Sect. 6.1, we know that the
Clifford frame operator

SCl(k) :=
∑
T

|QT )(QT |⊗k , (142)

is a suitable approximation to PCl(k) when k is large enough. Concretely, we have by
Lem. 12:

∥∥SCl(k) − PCl(k)
∥∥∞ ≤ (−2−k; 2)t−1 − 1. (143)

Defining the shorthand notation st (k) = (−2−k; 2)t−1, we in particular get the bound
∥∥SCl(k)∥∥∞ ≤ ∥∥SCl(k) − PCl(k)

∥∥∞ +
∥∥SCl(k)∥∥∞ ≤ st (k), (144)

Let us introduce the shorthand notation Gq := G[1,q] ≡ PCl(q), Sq = S[1,q] ≡
SCl(q), and Gq,l := G[q−l+2,q+1], Sq,l := S[q−l+2,q+1] for translations of the Clifford
projector and frame operator, respectively. Notice that Gq − Gq+1 is an orthogonal
projector as the support of Gq+1 is by definition contained in that of Gq . Therefore,
restricted to the support of Gq , the operator Gq −Gq+1 projects onto the orthogonal
complement of the support of Gq+1. Combining this fact with the above inequalities,
we find

Rq,l = ∥∥Gq,l
(
Gq − Gq+1

)∥∥∞
≤ ∥∥(Gq,l − Sq,l)(Gq − Gq+1)

∥∥∞ +
∥∥Sq,l(Gq − Gq+1)

∥∥∞
≤ st (l) − 1 +

∥∥Sq,l(Sq − Sq+1)
∥∥∞ +

∥∥Sq,l(Gq − Sq)
∥∥∞

+
∥∥Sq,l(Gq+1 − Sq+1)

∥∥∞
≤ ∥∥Sq,l(Sq − Sq+1)

∥∥∞ + st (l) − 1 + st (l) (st (q) + st (q + 1) − 2)

q≥l≤ ∥∥Sq,l(Sq − Sq+1)
∥∥∞ + (st (l) − 1) (2st (l) + 1)

=
∥∥∥∥∥∥
∑

T∈
t,t

|QT )(QT |⊗(q−l+1) ⊗ YT

∥∥∥∥∥∥∞
+ (st (l) − 1) (2st (l) + 1) , (145)
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where the operator YT can be straightforwardly computed as

YT :=
∑
T ′ �=T

((
QT ′
∣∣QT

)l−1 |QT ′ )(QT |⊗(l−1)
)

⊗
(

|QT ′ )(QT ′ | (id − |QT )(QT | )). (146)

Invoking the synthesis operators

Vk =
∑
T

∣∣∣Q⊗k
T

)
〈eT | : C|
t,t | −→ Cl(k)′, (147)

introduced in Lemma 12, one can bound the above norm as∥∥∥∥∥
∑
T

|QT )(QT |⊗(q−l+1) ⊗ YT

∥∥∥∥∥
∞

=
∥∥∥∥∥
∑
T

Vq−l+1 |eT 〉〈eT | V †
q−l+1 ⊗ YT

∥∥∥∥∥
∞

≤
∥∥∥Vq−l+1V

†
q−l+1

∥∥∥∞

∥∥∥∥∥
∑
T

|eT 〉〈eT | ⊗ YT

∥∥∥∥∥
∞

= ∥∥Sq−l+1
∥∥∞ max

T
‖YT ‖∞

≤ st (q − l + 1) (st (l − 1) − 1) . (148)

Thus, we arrive at

Rq,l ≤ st (q − l + 1) (st (l − 1) − 1) + (st (l) − 1) (2st (l) + 1)

≤ st (1) (st (l − 1) − 1) + (st (l) − 1) (2st (l) + 1) . (149)

For l + 1 ≥ t + log2(t), we can use Lemma 11 to get:

Rq,l ≤ t2t−l+1
(
1 + t2t−1

)
+ t2t−l

(
3 + t2t−l

)

= t222t−l
(
5

t
2−t + 2−l + 1

)

≤ 4t222t−l . (150)

Finally choose any l ≥ 4t + 4 log2(t) + 6, then we find

l ≤ 4l−2t

64t2
⇒ Rq,l ≤ 4t222t−l ≤ 1

2
√
l

<
1√
l
, ∀q ≥ l. (151)

In particular, we can choose l = 12t , εl = 1/2
√
l to get the desired bound in

Lemma 14 ∀q ≥ l.

Hence, for the choices l = 12t , dl = l − 1, Ql = l, γl = �(H12t,t ) and εl = 1/2
√
l,

Lemma 14 gives the claimed bound on the spectral gap:

�(Hn,t ) ≥ γl

dl

(
1 − ε2l

√
l
)

≥ �(H12t,t )

48t
. (152)

��
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7. Summary and Open Questions

We have found that a number of non-Clifford gates independent of the system size
suffices to generate ε-approximate unitary t-designs. This is surprising, conceptually
interesting and practically relevant: After all, it is the main objective in quantum gate
synthesis to minimize the number of non-Clifford gates in a circuit implementation of a
given unitary. There are multiple open questions and ways to continue this work:

• Similar to the result in Ref. [24], the scaling in n is near to optimal, the scaling in t
can probably be improved.

• Another natural open question is whether the condition n = O(t2) can be lifted.
Notably, this is reminiscent to the situation discussed inRef. [69], where the improved

scaling can be proven only in the regime t = o(n
1
2 ). In this work, the condition

n = O(t2) is related to the approximate orthogonality of theLagrangian subspace.We
use this fact repeatedly and in different flavours, butwe canonly prove it in this regime.
In fact, inLemma12weuse the same technique that has beenused inRef. [24] to prove
approximate orthogonality of permutations in the regimes t ≤ 2O(0.4n). However, the
commutant of the Clifford group is far larger than the span of permutations and we
suspect that this bound is tight. Nevertheless, we cannot rule out that similar results
can be proven without exploiting approximate orthogonality. This likely requires a
detailed understanding of the representation theory of the Clifford group.

• Our result holds for additive errors in the diamond norm. For relative errors, our
bounds can be used to obtain a quadratic advantage in the number of non-Clifford
gates in Corollary 1. This still allows the density of non-Clifford gates to go to zero
in the thermodynamic limit, but is not system-size independent anymore. In fact, it
has been proven in Ref. [70] that this scaling is optimal for relative errors. It would
be interesting to delineate more precisely for which notions of approximations a
system-size independent result holds.

• We strongly expect that the results can be generalized to qudits for arbitrary d,
giving rise to analogous conclusions concerning an independence of the system size
for additive errors in the diamond norm.

We hope the present work stimulates such endeavors.
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Appendix A: Unitary t-designs

In the following, we review the concept of a unitary t-design [5–7], giving different but
equivalent definitions which prove to be useful in different contexts. They also serve as
starting point to explore connections to other mathematical fields, e. g. representation
theory. To this end, let us introduce some notation. DefineμH to be the (normalized)Haar
measure on U(d) and let Hom(t,t)(U(d)) be the space of homogeneous polynomials of
degree t in both the entries of U ∈ U(d) as well as U .

Definition 10 (Unitary t-design). A probability measure ν on U(d) is called a unitary
t-design if the following holds for all p ∈ Hom(t,t)(U(d)):∫

U(d)

p(U ) dν(U ) =
∫
U(d)

p(U ) dμH(U ). (A1)

A subset D ⊆ U(d) is called a unitary t-design, if it comes with a probability measure
νD which, continued trivially to U(d), is a unitary t-design. In particular, if D is finite,
νD is usually taken to be the (normalized) counting measure.

It might not come as a surprise that Def. 10 has not to be checked for any polynomial.
Since any homogeneous polynomial p ∈ Hom(t,t)(U(d)) can be linearized as

p(U ) = Tr
(
AU⊗t,t) , U⊗t,t := U⊗t ⊗U

⊗t
, (A2)

the defining Eq. (A1) becomes

Mt (ν) :=
∫
U(d)

U⊗t,t dν(U ) =
∫
U(d)

U⊗t,t dμH(U ) =: Mt (μH). (A3)

Thus ν is a unitary t-design if and only if its moment operator Mt (ν) agrees with the
one of the Haar measure. Note that the operators U⊗t,t are the matrix representation
of the t-diagonal adjoint action Ad(U⊗t ) = U⊗t • (U †)⊗t with respect to the standard
basis |i 〉〈 j | of L(Cd). Thus, this can be equivalently stated as equality of the twirls
Mt (ν) = Mt (μH) over the two measures.

A particularly fruitful theory of designs is possible in the casewhere the design (G, ν)

itself constitutes a (locally compact) subgroup G ⊆ U(d) and ν is the normalized Haar
measure on G. Following Ref. [38], we call these unitary t-groups. In this case, we see
that Eq. (A3) implies that the trivial isotype of the representation G & g �→ Ad⊗t

g shall

agree with the trivial isotype of U(d) & U �→ Ad⊗t
U . Since the trivial isotype exactly

corresponds to the commutant of the respective diagonal representations τt : U �→ U⊗t ,
this is equivalent to the statement that the commutant of the representation τt agrees
with the commutant of the restriction τt |G . However, this is the case if and only if τt |G
decomposes into the same irreducible representations as τt .
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Appendix B: Representations of the Unitary Group

The representation theory of the unitary group can be understood using the theory of
highest weight for compact Lie groups, see, for example Refs. [71–73]. We present a
short summary of the part relevant to us here. Let ρ be an irreducible representation
of U(d), and consider the restriction ρ|D(d) to the diagonal subgroup D(d) � (S1)×d

(which is a so-calledmaximal torus inU(d)). In general, this is a reducible representation
of D(d). Since D(d) is Abelian, ρ|D(d) decomposes into one-dimensional irreducible

representations , i. e. characters of D(d) � (S1)×d . Those are of the formχu(θ) := eiu
T θ

for some vector u ∈ Zd , and thus we find

ρ|D(d) �
⊕
u∈Zd

χu ⊗ 1mu , (B1)

wheremu ∈ N are multiplicities. The vectors u for whichmu �= 0 are called the weights
of ρ. Introducing a lexicographical ordering of the weights, we call a weight u higher
than the weight v if u > v. The theorem of the highest weight states that any irreducible
representation ρ has a highest weight and that irreducible representations with the same
highest weight are isomorphic. Thus, irreducible representations are unambiguously
labeled by their highest weight. Next, let us consider the tensor product πu ⊗ πv of
two irreducible representations labeled by their highest weights u and v. One can easily
check that the weights of irreducible representations in πu ⊗ πv have to be sums of
weights of πu and πv . In particular, the highest weight of all irreducible representations
is at most u + v.

As a relevant example consider the (irreducible) defining representation ρ : U �→ U
of U (2). Its restriction to the diagonal subgroup S1 × S1 decomposes as

ρ|S1×S1 � χe1 ⊕ χe2 ,

with highest weight e1 = (1, 0). Using χ̄u = χ−u , the highest weight of the complex
conjugate representation ρ̄ : U �→ Ū can be immediately determined as (0,−1). Hence,
the weights of ρ ⊗ ρ̄ are {(0, 0), (1,−1), (−1, 1)}. Here, (0, 0) is the highest weight of
the trivial irreducible representation and (1,−1) the highest weight of the adjoint irrep.
Finally, all irreducible representations appearing in (ρ ⊗ ρ̄)⊗t have weightsw satisfying
(−t, t) ≤ w ≤ (t,−t) and, in particular,

w =
t∑

i=1

ui

whereui ∈ {(0, 0), (1,−1), (−1, 1)}. It follows that theEuclidean normof theseweights
is at most

√
2t .

Appendix C: Converse Bounds for Estimates in Sect. 6.3

Here, we collect various tightness results that limit the degree by which the estimates
in Sect. 6.3 can be improved. The bound in Proposition 4 is tight in many cases. Most
interestingly, the anti-identity [42]

1 =

⎛
⎜⎜⎜⎜⎝

0 1 · · · 1
1

. . .
. . .

...
...

. . .
. . . 1

1 · · · 1 0

⎞
⎟⎟⎟⎟⎠ ∈ Ot , (C1)
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meets the bound if both

r = t − 1 and t/2 = (r + 1)/2 are odd. (C2)

Indeed, the anti-identity flips the components of the input if its parity is odd, and leaves
the input invariant if the parity is even. The flipping step preserves the Hamming weight
if and only if h(a) = t/2. Thus

Pr[h(Oa) = h(a)] = Pr[h(a) even] + Pr[h(a) odd ∧ h(a) = t/2]
= Pr[h(a) even] + Pr[h(a) = t/2] (using (C2))

= 1

2
+ 2−t

(
t

t/2

)

= 1

2
+ 2−(r+1)

(
r + 1

(r + 1)/2

)
.

Likewise, both estimates in Proposition 5 are tight. The first bound is saturated for
N = {0, (1, 1, 1, 1)}. Indeed, N⊥ is the space of all even-weight elements of F4

2. The
only non-trivial element of N is (1, 1, 1, 1) and adding it to an even-weight vector
changes its weight if and only if the vector is in N itself. But |N |/|N⊥| = 1/4. In an
exactly analogous way, the second bound is tight for the stochastic Lagrangian with left
and right defect spaces equal to the same N . As detailed in Example 4.27 of Ref. [42],
this stochastic Lagrangian is the one identified in Ref. [74] as the sole non-trivial one in
case of t = 4.

In contrast, we do not know (but suspect) that we pay a price by restricting from the
full Haar symmetrizer to the one over diagonal matrices in Eq. (123). For the two cases
that saturate the bounds in Proposition 4 and Proposition 5, we can compute the full
projection explictily and show that at least there, Eq. (123) indeed fails to be tight.

One can expand the anti-id 1 in terms of Pauli operators [42]

1 = 1

2

(
1⊗t + X⊗t + Y⊗t + Z⊗t). (C3)

Then

2−t(r(1), PH [r(1)]) = 2−t
∫

Tr r(1)U⊗t r(1)†(U †)⊗t dμH (U )

= 2−t−2
3∑

i, j=0

∫
Tr σ⊗t

i U⊗tσ⊗t
j (U †)⊗t dμH (U )

= 2−t−2
∑
i, j

∫ (
Tr σiUσ jU

†
)t

dμH (U )

= 2−2 + 2−t−2
∑
i, j �=0

∫ (
Tr σiUσ jU

†
)t

dμH (U )

= 2−2 + 2−29
1

4π

∫
S2

xt1dx

= 1

4
+
9

4

1

4π

4π

1 + t
= 1

4

(
1 +

9

t + 1

)
, (C4)



Efficient Unitary Designs with a System-Size… 1037

where in (C4), we have interpreted the Haar integral over inner products of Paulis as an
integral over the Bloch sphere and in the next line, used the formula from [75]. For t = 2,
Eq. (C1) is just the swap operator (i.e., a permutation), and the formula gives 1, as it
should. The smallest non-trivial case is t = 6 [42] , where we get roughly 0.571 < 0.65.

Next, we consider the CSS code PN for N = (1, 1, 1, 1). We use the results in Sect. 3
of Ref. [74]. For a given partition λ, let Wλ be the associated Weyl module and Sλ the
Schur module. As in Ref. [74], let W+

λ ⊂ Wλ be the subspace such that

(
Wλ ⊗ Sλ

) ∩ range PN = W+
λ ⊗ Sλ.

For the projection operators onto the various spaces, we write Pλ (Schur module), Qλ

(Weyl module), and Q+
λ (the subspace defined above). Then [74]

PN =
∑
λ

Q+
λ ⊗ Pλ.

By Schur’s Lemma,

PH [PN ] =
∑
λ

cλQλ ⊗ Pλ,

for suitable coefficients cλ, which are seen to equal cλ = D+
λ/Dλ by the fact that Haar

averaging preserves the trace. Hence, using Table 1 of Ref. [74] for d = 2,

2−t+2 dim N (PN , PH[PN ]) = 2−2
∑
λ

dλ(D+
λ)2

Dλ

= 7

10
<

7

8
.

Appendix D: Saturation of Higher Rényi-entropies in K -interleaved Clifford Cir-
cuits

Consider the Rényi-entropies which are defined as

Sα(ρ) := 1

1 − α
log Tr[ρα] (D1)

for α > 0. For α ↘ 1 the standard von Neumann entropy is recovered. Here, we are
interested in the entanglement properties of random state vectors |ψ〉 on n qubits. We
consider a bi-partition of the n qubits into a set A consisting of constantly many qubits
nA and a set B of nB = n − nA many qubits that constitutes the complement of A. To
derive concentration bounds on these quantities over random ensembles of states, we
study the “higher purities” Tr[ρα] for positive integer α in more detail. First, we compute
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the Haar average of this quantity. Let πcyc ∈ Sα be any full α-cycle. We compute

EU∼μHTr[ρα
A] = EU∼μHTr

[
TrB[|ψ〉〈ψ |]α]

= EU∼μHTr
[
r(πcyc)A ⊗ 1B(|ψ〉〈ψ |)⊗α

]

=
(
2n + α − 1

α

)−1

Tr
[
r(πcyc)A ⊗ 1B Psym,α

]

=
(
2n + α − 1

α

)−1

α!−1
∑
σ∈Sα

Tr
[
r(πcyc ◦ σ)A ⊗ r(σ )B

]

=
(
2n + α − 1

α

)−1

α!−1
∑
σ∈Sα

2nA#cyc(πcyc◦σ)2nB#cyc(σ )

= 1

2n(2n + 1) . . . (2n + α − 1)

∑
σ∈Sα

2nA#cyc(πcyc◦σ)2nB#cyc(σ )

= 2αnB2nA

2n(2n + 1) . . . (2n + α − 1)
+ O(2−nB )

= 2−(α−1)nA + O(2−nB ),

(D2)

where O(2−nB ) depends on α. Therefore, up to an exponentially small correction, the
average higher purity is minimal.

Next, we compute the same average over an additive ε-approximate unitary t-design.
Recall that this is a probability distribution ν such that

||Mt (ν) − Mt (μH )||♦ ≤ ε. (D3)

By definition of the diamond norm, this also implies

||Mt (ν) − Mt (μH )||1→1 ≤ ε. (D4)

From this, we obtain

EU∼νTr[ρα
A] = EU∼νTr

[
TrB[|ψ〉〈ψ |]α]

= Tr
[
r(πcyc)A ⊗ 1BEU∼ν(|ψ〉〈ψ |)⊗α

]
≤ Tr

[
r(πcyc)A ⊗ 1BEU∼μH (|ψ〉〈ψ |)⊗α

]
+
∣∣Tr[r(πcyc)A ⊗ 1B(Mt (ν) − Mt (μH ))

[
(|ψ0〉〈ψ0|)⊗α

]∣∣
≤ Tr

[
r(πcyc)A ⊗ 1BEU∼μH (|ψ〉〈ψ |)⊗α

]
+
∣∣∣∣(Mt (ν) − Mt (μH ))

[
(|ψ〉〈ψ |)⊗α

]∣∣∣∣
1

≤ 2−(α−1)nA + O(2−n) + ε. (D5)

It suffices to insert C(K ) log2(t)(t4 + t log(1/ε)) non-Clifford gates into random Clif-
ford circuits to generate an additive ε-approximate t-designs. Therefore, we can choose
ε = 2−2(α−1)nA and t = α and find that a K -interleaved Clifford circuit with k =
C(K ) log2(α)(α4 + 2(α − 1)nA) satisfies

EU∼σ ∗kTr[ρα
A] ≤ (1 − 2−(α−1)nA)2−(α−1)nA + O(2−n)

≤ (1 − 2−(α−1)nA − O(2−n))2−(α−1)nA . (D6)

Therefore, for every constant nA and α, there is a classically simulable ensemble of
quantum circuits that generate essentially minimal higher purities on average.
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3.2 improved design depths for random quantum circuits

Random quantum circuits (RQCs) are central in both quantum information and quantum many-
body physics. They are a simple model of local chaotic dynamics and have been used to
study thermalization and the dynamical spread of entanglement in strongly-interacting quantum
systems. In particular, they lack structure due to the local randomization but still capture the
concept of local interactions.

We will see that many of their properties can be derived from the fact that they quickly generate
quantum pseudorandomness in the sense of approximate unitary t-designs. In particular, they
will eventually generate approximate unitary t-designs even for exponentially large t, in contrast
to the bounds we found in the previous chapter.

In this section we study the convergence of random quantum circuits to unitary t-designs. In
particular, we prove several results on the convergence to unitary designs based on improved
spectral gaps of the moment operators.

The approach of bounding the spectral gap to establish convergence to unitary designs has
been considered before in Refs. [BH10, BaHH16]. Specifically, Ref. [BaHH16] considered local
RQCs in one dimension, i.e. consisting of geometrically local nearest-neighbor interactions
between n qudits of local dimension q, and proved that the spectral gap is bounded below by
Ω(n−1t−5−3.1/ log(q)).

It has been conjectured that the actual scaling is ∼ poly(n)−1, thus independent of t. This result
would have exciting implications. For instance, the depth at which unitary designs are generated
would improve to a linear scaling in t. This would imply a robust version of the Brown-Susskind
conjecture [BS18a] for random quantum circuits. We will elaborate on this conjecture in the next
section, where we prove a variant of it.

Here, we make improvements to multiple existing bounds on the spectral gap for a number of
different random circuit architectures. This section contains two publications. The first improves
the design depth of 1D random quantum circuits over qubits from O(nt10.5) to O(nt5+o(1)).
Notice that this holds for all t that satisfy t 6 O(2n/2) in stark contrast to the bound t2 6 O(n)
in Section 3.1.

Before we explain the contributions in this section, we formalize the connection between
unitary t-designs and circuit complexity. Let G denote a universal gate set of 2-local gates.
Moreover, denote by MG,R the set of all unitaries that can be realized by concatenation of at
most R gates in G.

Definition 8. blub

• For δ ∈ (0, 1] a state |ψ〉 has δ-state complexity

Cδ(|ψ〉) := min{R,∃V ∈MG,R with
1

2
||V |0n〉〈0n|V† − |ψ〉〈ψ|||1 6 δ}. (3.3)

• For δ ∈ (0, 1] a unitary U has δ-unitary complexity

Cδ(U) := min{R,∃V ∈MG,R with |||V −U||� 6 δ}, (3.4)

where U is the channel defined by U(ρ) = UρU† and V likewise.
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The power of unitary t-designs can be seen in a counting argument that can be found e.g.
in Ref. [BCHJ+21]. First, we consider fully Haar random global unitaries. Indeed, almost all
Haar random unitaries are close to maximally complex. The argument for this folklore result
(see e.g. [Pre98]) goes roughly as follows: The Haar measure behaves locally like the Lebesgue
measure on a dimSU(2n) = 4n − 1 dimensional space. Therefore, the volume of a ball with
radius ε scales like O(ε4n) -- doubly exponentially small in the system-size. A circuit with R
gates implements at most |G|R many unitaries. However, this implies that at most a fraction of
|G|RO(ε4

n
) is ε-close to a unitary that can be implemented with a circuit with R gates. This can

only be a constant fraction if R scales like 4n and almost all unitaries have at least exponential
circuit complexity.

It turns out that this argument can be partially derandomized using unitary t-designs.
Proposition 2. Let |ψ〉 be drawn from a strong additive ε-approximate state t-design as defined
in Definition 7 with ε = O(1). Then, Cδ(|ψ〉) > Ω(t) with high probability.

Proof. Notice first that
1

2
||V |0n〉〈0n|V† − |ψ〉〈ψ|||1 =

√
1− |〈ψ|V |0n〉|2. (3.5)

Hence,
1

2
||V |0n〉〈0n|V† − |ψ〉〈ψ|||1 6 δ ⇐⇒ |〈ψ|V |0n〉|2 > (1− δ2)

1
2 . (3.6)

We use first the union bound and then a Markov inequality to obtain

Pr
[
|〈ψ|V |0n〉|2 > (1− δ2)

1
2 ,V ∈MR,G

]
= Pr


 ⋃

V∈MR,G

|〈ψ|V |0n〉|2 > (1− δ2)
1
2




6
∑

V∈MR,G

Pr
[
|〈ψ|V |0n〉|2 > (1− δ2)

1
2

]

=
∑

V∈MR,G

Pr
[
|〈ψ|V |0n〉|2t > (1− δ2)

1
2 t
]

6
∑

V∈MR,G

E|〈ψ|V |0n〉|2t

(1− δ2)
1
2 t

6 |G|R
Eψ∼µH |〈ψ|0n〉|2t + ε2−nt

(1− δ2)
1
2 t

= |G|R
(
2n+t−1

t

)−1
+ ε2−nt

(1− δ2)
1
2 t

.

(3.7)

In the last inequality, we use that

E|〈ψ|V |0n〉|2t = E

∣∣∣Tr
[
(|ψ〉〈ψ|)⊗t(V |0〉〈0|V†)⊗t

]∣∣∣

6 Eψ∼µH |〈ψ|V |0n〉|2t +
∣∣∣Tr
[
(E(|ψ〉〈ψ|)⊗t − Eψ∼µH(|ψ〉〈ψ|)⊗t)(V |0〉〈0|V†)⊗t

]∣∣∣
6 Eψ∼µH |〈ψ|V |0n〉|2t +

∣∣∣∣E(|ψ〉〈ψ|)⊗t − Eψ∼µH(|ψ〉〈ψ|)⊗t
∣∣∣∣

66 Eψ∼µH |〈ψ|V |0n〉|2t +
ε

2nt

(3.8)
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via Hölder’s inquality.
The proof of Proposition 2 now follows from the fact that by Stirling’s approximation, we have

asymptotically (
2n + t− 1

t

)
∼

(
2n

t

)t
. (3.9)

Therefore, for
R log |G| 6 O

(
t(n− log(t) − log

(
(1− δ2)−

1
2

)
)
)

,

the probability of accidentally drawing a low complexity state is small.

Notice that we did not use of any structure of quantum circuits of a certain depth. In principle,
the above argument applies to any set of exponentially upper bounded cardinality.
Improving the Brandão-Harrow-Horodecki exponent. In the first publication presented

in this section, we improve the spectral gap of random quantum circuits on qubits from the bound
obtained in Ref. [BaHH16] of Ω(n−1t−9.5) to Ω(n−1t−(4+o(1))). Ths is achieved by improving
the unconditional gap (independent of t). In Ref. [BaHH16], this bound was obtained by showing
convergence of random quantum circuits to the Haar measure in the Wasserstein distance in
exponential depth. This convergence result is strong enough to be translated to a bound on the
spectral gap. We show that a close sibling of the random walk introduced in Chapter 3 converges
very quickly (in depth 4n) to the Haar measure up to polynomial factors. Using modern tools
like Gao’s quantum union bound [Gao15, AAV16], we can again translate this into an improved
gap:

Proposition 3. We have the explicit bound

||M(νn, t) −M(µH, t)||∞ 6 1− 120000−1n−52−2n. (3.10)

This, together with small improvements of the reductions in Ref. [BaHH16] yields the new
bound.

In the second publication, we consider parameter regimes and models that are closely related
to the random quantum circuit model in 1D considered in Ref. [BaHH16].
Constant gap for large local dimensions. For large enough local dimensions q the spectral

gap scales inverse linearly in n and is independent of t. This was proven in [HJ19] for q > q0
for some q0 depending inexplicitely on the circuit size and the moment. We circumvent this
uncontrolled approximation and strongly improve the dependence of q0 to O(t2):

Theorem 11 (Spectral gaps for large q). Local random quantum circuits on n qudits with local
dimension q have a spectral gap that can be bounded by 1/8n, and hence independent of t for all
q > 6t2 and t > 1.

An immediate corollary of this result is that 1D RQCs form approximate designs in a depth
that scales essentially optimally in n and t:

Corollary 4 (Linear design growth). 1D random quantum circuits on n qudits of local dimension
q form approximate unitary t-designs when the depth is O(nt log(q)) for all q > 6t2.
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We prove this for two strong definitions of approximate design, in terms of the relative
difference of channels as in [BaHH16], as well as in diamond norm with exponentially small
error.
Improved scaling for non-local random quantum circuits. For quantum circuits with

all-to-all interactions one would expect a faster mixing time and hence quicker convergence to
unitary designs. Interestingly, the bounds that can be derived from [BaHH16,BH10] scale worse
in n than for 1D circuits. In this publication we improve the n scaling in the all-to-all case and
even improve on the scaling in t for larger (but fixed) values of the local dimension:

Theorem 12 (Spectral gap for non-local circuits). Letn > max{d2.03 logq(t)e, 6000}, then there
is a constant c(q) such that the spectral gap is lower bounded by c(q)n−1 log−1(n) log(t)t−α(q),
where α(q) is a function of we define explicitly, with limq→∞ α(q) = 4.06.
Exact result for the smallest non-trivial example. By constructing an explicit basis of the

orthocomplement of the permutations for the smallest non-trivial case n = 3 and t = 2, we
obtain an explicit formula for the second highest eigenvalue of the moment operator:

λ2
(
M(νRQC,n=3, t = 2)

)
=
1

2
+

q

2(q2 + 1)
. (3.11)

This can be combined with finite-size criteria to improve the constants in the convergence of
random quantum circuits to unitary 2-designs for all n.
Improved spectral gaps from numerics. By numerically constructing the local moment op-

erator, and using sparse matrix methods for eigenvalue approximation, we numerically compute
the spectral gaps for the first few moments. Again using finite-size criteria to bound spectral
gaps for all n, we provide improved constants for the convergence of n-qubit RQCs to unitary
t-designs, up to t = 5. Specifically, the constants are improved by factors of 109 as compared
with those given in [BaHH16], which is of particular importance for near-term applications of
random circuits.

To obtain these results we combine several techniques from quantum many-body physics as
well as the theory of random walks on Lie groups. Such a combination was used in [BaHH16]
by applying the Nachtergaele method [Nac96] for spectral gaps of frustration-free Hamiltonians
to lower bound the spectral gap. Instead, we exploit so-called Knabe bounds on the spectral
gap [Kna88] to prove Theorem 11. This allows us to use that the ground space of the Hamiltoni-
ans in question admits an approximately orthonormal product basis for the regime q > Ω(t2).

The technically more involved result is Theorem 12. The key to this bound is a surprisingly
simple recursion relation that relates the spectral gap of a random quantum circuit with all-to-
all interactions to the spectral gap of a simpler auxiliary walk. More specifically, each step of
the auxiliary walk picks a random qudit and applies a Haar random unitary from U(qn−1) to
the system consisting of all other qudits. We can show that this walk mixes quickly. A similar
technique was used for the spectral gap of Kac’s random walk [CCL03, Mas03].

Denote the second highest eigenvalue of the moment operator for the non-local random
quantum circuit on n qudits by ∆n and the second eigenvalue for the auxiliary circuit by γn.
Then we prove the following lemma:

Lemma 3 (Recursion relation for non-local gap). For all n > 2 it holds that

∆n 6 γn +∆n−1(1− γn). (3.12)
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We first solve the auxiliary spectral gap problem in the regime n > O(log(t)), for which we
obtain the desired result using the approximate orthogonality of the permutation operators, and
then combine this with a general spectral gap bound independent of t but exponential in n.
The following Paper is published in Quantum under the Creative Commons Attribution 4.0
International (CC BY 4.0) license. Copyright remains with the original copyright holders such as
the authors or their institutions.
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Random quantum circuits are approximate
unitary t-designs in depth O


nt5+o(1)




Jonas Haferkamp

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Germany

The applications of random quantum circuits range from quantum
computing and quantum many-body systems to the physics of black
holes. Many of these applications are related to the generation of quan-
tum pseudorandomness: Random quantum circuits are known to approx-
imate unitary t-designs. Unitary t-designs are probability distributions
that mimic Haar randomness up to tth moments. In a seminal paper,
Brandão, Harrow and Horodecki prove that random quantum circuits on
qubits in a brickwork architecture of depth O(nt10.5) are approximate
unitary t-designs . In this work, we revisit this argument, which lower
bounds the spectral gap of moment operators for local random quantum
circuits by Ω(n−1t−9.5). We improve this lower bound to Ω(n−1t−4−o(1)),
where the o(1) term goes to 0 as t → ∞. A direct consequence of this
scaling is that random quantum circuits generate approximate unitary
t-designs in depth O(nt5+o(1)). Our techniques involve Gao’s quantum
union bound and the unreasonable effectiveness of the Clifford group.
As an auxiliary result, we prove fast convergence to the Haar measure
for random Clifford unitaries interleaved with Haar random single qubit
unitaries.

Random unitaries are a ubiquitous concept in quantum information theory and
quantum many-body physics. This ranges from practical applications such as ran-
domized benchmarking [21, 37, 34] to mixing in black holes [30]. However, the appli-
cability of uniformly (Haar) random unitaries and states is limited by the fact that
they require exponential resources as counting arguments show [33]. It is therefore
desirable to consider less complex probability distributions over the unitary group
that are sufficiently random for practical purposes. This leads naturally to the no-
tion of unitary t-designs [17, 18, 23, 6]. These are probability distributions which
mimic the Haar measure up to tth moments.

There is an ongoing effort to find efficient constructions of unitary t-designs
[16, 29]. In a seminal result, Brandão, Harrow and Horodecki proved that local
random quantum circuits are approximate unitary t-designs after the application of
O(n2t10.5) random gates for all t ≤ O(20.4n) [9]. This result has several consequences
and many results [28, 46, 42, 38] on the statistical properties of random processes
over the unitary group directly depend on the bound from Ref. [9].
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Recently, unitary t-designs played a key role in lower bounding quantum circuit
complexity [11, 10]. Here, Ref. [11] shows that strong notions of quantum circuit
complexity of a unitary t-design can be lower bounded by Ω(nt) with high proba-
bility. Combined with the design depth from Ref. [9], this roughly implies that the
complexity of most quantum circuit of depth T can be lower bounded by Ω(T 1/10.5).
This line of research is inspired by the Brown-Susskind conjecture [13] in the con-
text of the AdS/CFT correspondence [48]. The conjecture states that the quantum
circuit complexity grows at a linear rate for an exponentially long time. Indeed,
Ref. [11] implies such a linear lower bound in the limit of large local dimension [31]
(it was later shown that a scaling of ∼ 6t2 for the local dimension is sufficient [26]).
More recently, a variant of the Brown-Susskind conjecture for random quantum
circuits was proven for the special case of the exact circuit complexity [25]. How-
ever, for error-robust (and therefore more operational) notions of quantum circuit
complexity and for random quantum circuits over qubits, the best lower bound for
exponentially long times is Ω(T 1/10.5).

Here, we want to improve the scaling of the design depth in t. Indeed, the scaling
in n is already optimal (up to logarithmic factors). It was conjectured in Ref. [9]
that the true scaling of the design depth might be linear in t, which would directly
imply an error-robust version of the Brown-Susskind conjecture [11].

In this work, we dissect the bound obtained on the spectral gap of random
quantum circuits in Ref. [9] and improve the lower bound on this spectral gap from
Ω(n−1t−9.5) to Ω(n−1t−4−o(1)).

The lion’s share of the improvement is a new unconditional bound on the spectral
gap. We achieve this bound by considering an auxiliary random walk that interleaves
global uniformly random Clifford unitaries with Haar random unitaries on a single
qubit. This walk was introduced in Ref. [27, 52] to analyze the number of non-
Clifford unitaries required to approximate unitary t-designs for small values of t
satisfying O(t2) ≤ n. Indeed, this random walk has desirable properties for the
generation of unitary designs. It was proven that, while relative error approximations
require θ(n) many non-Clifford gates [35, 45], an additive constant approximation
of unitary designs requires only a system-size independent amount of non-Clifford
resources [27]. We show that the path coupling technique on the unitary group [44]
provides a fast convergence to the Haar measure for this auxiliary random walk.
As the Clifford group is a finite group with upper bounded circuit complexity, the
comparison technique from Ref. [19] provides fast mixing bounds, which allows us to
approximate the uniform measure on the Clifford group with a local random walk.
We then translate these bounds to a spectral gap for local random quantum circuits
by invoking Gao’s quantum union bound [22, 7].

1 Preliminaries
A central object of this paper is the moment superoperator defined with respect to
a probability distribution ν on the unitary group U(d), defined as

Φ(t)
ν (A) :=

∫
U⊗tA(U †)⊗t dν(U) . (1)
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We denote the Haar-measure on the unitary group by µH .
We make use of the following isomorphism called vectorization: vec : Cd×d → Cd2

with vec(|i〉〈j|) = |i〉 ⊗ |j〉. This isomorphism extends to superoperators, mapping
them to matrices: vec(T )vec(M) := vec(T (M)) for allM ∈ Cd×d for a superoperator
T .

We introduce the following notation for the second highest eigenvalue of the
moment operator:

g(ν, t) :=
∥∥∥M(ν, t)−M(µH , t)

∥∥∥
∞
, (2)

where the t-th moment operator of a probability distribution is defined as

M(ν, t) := vec
(
Φ(t)
ν

)
=
∫
U⊗t ⊗ U⊗t dν(U) (3)

and ‖ • ‖∞ denotes the Schatten∞-norm. The spectral gap of the moment operator
is 1−g(ν, t). Notice that we defined the spectral gap to be the difference between the
first t! eigenvalues and the (t!+1)st eigenvalue of the moment operator. That means
that for non-universal probability distributions the gap can be 0. A probability
distribution ν is called a (λ, t)-tensor product expander if the spectral gap of the
moment operator satisfies 1− g(ν, t)≤λ.

Moreover, we denote the Schatten 1-norm by ||•||p and the Schatten 2-norm/Frobenius
norm by || • ||F . The stabilized induced (Schatten) 1-norm – called diamond norm
– of superoperators will be denoted by || • ||� [5, 50]. Roughly, the distance be-
tween channels in diamond norm quantifies the “one-shot” distinguishability using
entangled input states.

The second highest eigenvalue g(ν, t) can be amplified. Specifically, the k-fold
convolution of ν has the property that

g(ν∗k, t) ≤ g(ν, t)k . (4)

Upper bounds on the second highest eigenvalue can be used to imply an approximate
version of unitary designs [9]. We define approximate designs in two (inequivalent)
ways, with a relative error and with an exponentially small additive error. The
relation to the spectral gap turns out to be the same.

Definition 1 (Approximate unitary designs). a

1. A probability distribution ν on U(d) is an ε-approximate unitary t-design if
the moment superoperator obeys

∥∥∥Φ(t)
ν − Φ(t)

µH

∥∥∥
�
≤ ε

dt
. (5)

2. A probability distribution ν on U(d) is a relative ε-approximate t-design if

(1− ε)Φ(t)
ν 4 Φ(t)

µH
4 (1 + ε)Φ(t)

ν , (6)

where here A 4 B if and only if B − A is a completely positive map.

By applying [9, Lemma 4], as well as the fact that ‖Φ(t)
ν −Φ(t)

µH
‖� ≤ dtg(ν, t) [36],

we can state:
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Lemma 1. Let ν be a probability distribution on U(d) such that g(ν, t) ≤ ε/d2t.
Then ν is an ε-approximate unitary t-design and obeys both Eq. (5) and Eq. (6).

In this paper we consider the following architectures of random quantum circuits
comprised of 2-local unitary gates on a system of n qubits.

Definition 2 (Random quantum circuits). a

1. Local (1D) random quantum circuits: Let νn denote the probability distribution
on U((C2)⊗n) defined by first choosing a random pair of adjacent qubits and
then applying a Haar random unitary Ui,i+1 from U(4). We assume periodic
boundary conditions.

2. Brickwork random quantum circuits: Apply first a unitary U1,2⊗U3,4⊗ ... and
then a unitary U2,3⊗U4,5⊗ ..., where all Ui,i+1 are drawn Haar-randomly. For
simplicity we assume in this case an even number of qubits . We denote this
distribution by νbw

n .

A standard tool for converting results on the gap on local random quantum
circuits into brickwork circuits is the detectability lemma [4, 7]. We will also make
use of a strong converse called the quantum union bound [22, 7]. We present both
together:

Lemma 2 (Detectability lemma and union bound). Let H = ∑
iQi, where Qi are

orthogonal projectors in an arbitrary order. Assume that each Qi commutes with all
but g of the projectors. Moreover, assume that H is frustration-free, i.e. a state
|ψ〉 with 〈ψ|H|ψ〉 = 0 exists. Then, for a state |ψ⊥〉 orthogonal to the ground space
of H,

√
1− 4∆(H) ≤

∣∣∣∣∣

∣∣∣∣∣
∏

i

(1−Qi)|ψ⊥〉
∣∣∣∣∣

∣∣∣∣∣
2
≤
√

1
∆(H)/g2 + 1 . (7)

Finally, we introduce the Clifford group, which plays a crucial role in the proof
of Theorem 1: The n-qubit Clifford group Cl(n) is the unitary normalizer of the
Pauli group Pn:

Cl(n) :=
{
U ∈ U(2n,Q[i])

∣∣∣ UPnU † ⊂ Pn
}
. (8)

Our interest stems from the fact that this group forms a unitary 2-design [51, 53],
while every element has a polynomially upper bounded circuit complexity [2, 12].

2 Revisiting the spectral gap of random quantum circuits
Here we review the key steps in the proof technique in Ref. [9]. We introduce the
notation PH := M(µH , t) and PH,m to specify that we are talking about the Haar
moment operator on m qubits. Ref. [9] introduced the frustration-free Hamiltonian

Hn,t :=
n∑

i=1
(1− 1i−1 ⊗ PH,2 ⊗ 1n−i−1). (9)
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With this definition it holds that [9, Lem. 16]:

g(νn, t) = 1− ∆(Hn,t)
n

, (10)

where ∆(Hn,t) denote the spectral gap of Hn,t.
Using Nachtergaele’s martingale method for spin systems, Ref. [9] proves that

for all n and t such that n ≥ d2.5 log2(4t)e the following bound holds:

∆(Hn,t) ≥
∆(Hd2.5 log2(4t)e,t)
4d2.5 log2(4t)e . (11)

Remarkably, this reduction not only establishes a constant spectral gap for every
fixed value of t, but also turns every bound that only depends exponentially on the
system size into one that depends polynomially on t.

The reduction (11) to smaller system sizes is then combined with an spectral gap
that holds for all values of t. We call such a gap unconditional :

∆(Hn,t) ≥
1

n(5e)n . (12)

This bound is obtained from a convergence result: By applying the path coupling
technique on the unitary group [44], the authors of Ref. [9] show that random quan-
tum circuits converge to the Haar measure in the Wasserstein distance. This con-
vergence result is strong enough to imply the bound (12) on the spectral gap.

How does the exponent of t for the design depth in Ref. [9] decompose exactly?
Ignoring logarithmic factors, the exponent is approximately

10.41 ≈ 1︸︷︷︸
1.

+

 2︸︷︷︸

2.

+ 0.5︸︷︷︸
3.


 ×


log2 5︸ ︷︷ ︸

4.

+ log2(e)
︸ ︷︷ ︸

5.


 . (13)

1. This contribution comes from the conversion of a spectral gap to the stronger
notions of approximate designs in Definition 1. This contribution is therefore
a necessary consequence of using spectral gaps to bound the design depth.

2. Ref. [9] establishes approximate orthogonality of permutations of t tensor fac-
tors of CD in the regime D ≥ t2. In the application of Nachtergaele’s martin-
gale method [41], this fact is repeatedly used and the second contribution can
be directly linked to the square in the condition t2 ≤ D. More precisely, the
following inequality holds

∣∣∣∣∣∣

∣∣∣∣∣∣
M(µH , t)− 2−tn

∑

π∈St

vec(r(π))vec(r(π))†
∣∣∣∣∣∣

∣∣∣∣∣∣
∞
≤ t2

D
, (14)

where r denotes the representation of the symmetric group that permutes the
t tensor factors. The second operator in Eq. (14) is called the frame opera-
tor of the permutations. It has the same eigenvalues as the Gram matrix of
the permutations and is also the moment operator of random matrices with
i.i.d. Gaussian entries by Wick’s theorem. The approximate orthogonality of
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the permutations is therefore equivalent to the moments of the Haar measure
being approximately equal to those of Gaussian matrices with i.i.d. entries.
Each monomial of degree t only contains information about some t × t sub-
matrix. Indeed, small submatrices t ∼ o(

√
D) of Haar random unitaries are

conjectured to be close to an i.i.d. Gaussian ensemble in total variation dis-
tance [1, 32]. However, as the entries of Haar random matrices are correlated,
large submatrices cannot be close to an i.i.d Gaussian ensemble. Consequently,
we cannot expect to make the RHS of Eq. (14) scale better than t/D.

3. This contribution is a consequence of Nachtergaele’s bound. More precisely,
the final bound of Ref. [9, Lem. 18] is

∆(Hn,t) ≥
∆(Hl,t)

4l , (15)

for any l that satisfies the inequality

6t2
2l ≤

1
2 l
− 1

2 . (16)

The choice l = 2.5dlog2(4t)e can be seen to always satisfy (16). This bound
gives a comparably simple expressions at the expense of a slightly worse than
optimal exponent in t. However, as the objective of this work is to pedantically
optimize the exponent of t, we use modern bounds on Lambert’s W function
to obtain such a tight bound in l. We present the resulting bound below in
Observation 1.

4. The last two contributions are a consequence of the unconditional spectral
gap in Eq. (12). In general, contribution 4. comes from an exponential decay
(q2 + 1)−n (for qubits q = 2) of the unconditional bound on the gap. This
part of the bound (12) can be proven for random “staircase circuits” of the
form U1,2U2,3 . . . Un−1,n, with Haar random 2-local unitaries Ui,i+1. The same
bound holds for permutations of the unitaries Ui,i+1. In this work, we observe
that the application of the path coupling method in Ref. [9] uses the full Haar
randomness of the first gate U1,2 only. For all other gates, we merely need the
second moments of the Haar measure and we would hence obtain the same
bound if the gates U2,3, . . . , Un−1 are drawn uniformly from the Clifford group.
The key idea in our improved bound is to go one step further and directly
apply the full n-qubit Clifford group and only worry about locality once this
convergence result is translated to spectral gaps.

5. Permutations of these staircase random walks appear with non-zero proba-
bility after n steps of local random quantum circuits. More precisely, these
are realized with a probability of n!/nn. This explains the appearance of Eu-
ler’s constant e as Stirling’s approximation of the factorial is n! ∼ (n/e)n.
By applying Gao’s union bound directly to the moment operators of Clifford
brickwork circuits approximating the uniform distribution on the Cliffords, we
can circumvent this counting step entirely.
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We observe that the bound (11) can be slightly improved. A detailed argument
for the following can be found in Appendix A.

Observation 1 (Improved gap reduction). For all n ≥ d2 log2(4t) + 1.5
√

log2(4t)e
the following bound holds:

∆(Hn,t) ≥
∆
(
Hd2 log2(4t)+1.5

√
log2(4t)e,t

)

4
⌈
2 log2(4t) + 1.5

√
log2(4t)

⌉ . (17)

3 Results
3.1 Tensor product expanders and unitary designs
Our first result is a bound on the spectral gap of the moment operator of local
random quantum circuits that is independent of the moment t:

Theorem 1 (Unconditional gap). We have the following bound for all t ≥ 1:

g(νn, t) ≤ 1− 120000−1n−52−2n (18)

This can be combined with the slightly improved reduction in Observation 1
to yield the following bounds on the tensor product expander properties of local
random quantum circuits:

Theorem 2 (Tensor product expanders). We have the following bounds for n ≥
d2 log2(4t) + 1.5

√
log2(4t)e:

• g(νn, t) ≤ 1−
(
Cn ln5(t)t4+3 1√

log2(t)

)−1

• g(νbw
n , t) ≤ 1−

(
3C ln5(t)t4+3 1√

log2(t)

)−1
,

where the constant can be taken to be C = 1013.

Proof. The bound on g(νn, t) follows from plugging the unconditional bound

∆(Hm,t) ≥ 120000−1m−42−2m (19)

from Theorem 1 into the reduction (17) in Observation 1. The bound on g(νbw
n ) can

be obtained from this by applying the detectability lemma (Lemma 2):

g(νbw
n ) ≤

√
1

∆(Hn,t)/4 + 1 ≤ 1−
(

3C ln5(t))t4+3 1√
log2(t)

)−1
, (20)

which is the second part of Theorem 2.

By Lemma 1, this immediately implies the following corollary, which is the main
application of Theorem 2:
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Corollary 1 (Unitary designs). For n ≥ d2 log2(4t) + 1.5
√

log2(4t)e, the following
bounds hold

• Local random quantum circuits are ε-approximate unitary t-designs after

k ≥ Cn ln5(t)t4+3 1√
log2(t) (2nt+ log2(1/ε)) (21)

steps.

• Brickwork quantum circuits are ε-approximate unitary t-designs after

k ≥ C ln5(t)t4+3 1√
log2(t) (2nt+ log2(1/ε)) (22)

steps.

In comparison to the exponent in Eq. (13), the new exponent decomposes as
follows.

5 + 3 1√
log2(t)

= 1︸︷︷︸
1.

+




2︸︷︷︸
2.

+ 1.5 1√
log2(t)

︸ ︷︷ ︸
3.



× 2︸︷︷︸

4.

, (23)

where we again ignored the log-factors in (21). Here, contribution 1. and 2. appear
for the same reason as 1. and 2. in Eq. (13). Contribution 3. is a direct consequence
of Observation 1 and 4. follows from the improved bound on the unconditional gap
in Theorem 1.

By applying an argument from Ref. [9], the same scaling can be implied for
random quantum circuits drawn from a discrete invertible gate set with algebraic
entries, using a powerful result by Bourgain and Gamburd [8]. This bound comes
with an implicit constant depending on the gate set. Moreover, at the expense of
additional polylogarithmic factors in t, the assumption of algebraic entries can be
dropped as proven in Ref. [47] using on a theorem from Ref. [49]. Similarly, it was
shown recently that the assumption of invertibility can be dropped at the expense
of an additional factor of n [47].

In this paper we focus on random quantum circuits over qubits. This is because
there are very concrete bounds available for the maximal circuit complexity of the
multiqubit Clifford group [2, 12]. However, the same proof strategy works for random
quantum circuits defined over every local dimension that is prime because in these
dimensions the Clifford group forms a unitary 2-design. Therefore, all results in this
paper can be proven for every prime power dimension with constants depending on
the maximal circuit complexity of the multiqudit Clifford group.

3.2 Quantum circuit complexity
We apply our result to the growth of circuit complexity [11, 10]. Let G denote a
universal gate set of 2-local gates. Moreover, denote by MG,R the set of all unitaries
that can be realized by concatenation of at most R gates in G.
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Definition 3 (Quantum circuit complexity). For δ ∈ (0, 1] a
• state |ψ〉 has δ-state complexity

Cδ(|ψ〉) := min{R, ∃V ∈MG,R with 1
2 ||V |0

n〉〈0n|V † − |ψ〉〈ψ|||1 ≤ δ}. (24)

• unitary U has δ-unitary complexity

Cδ(U) := min{R, ∃V ∈MG,R with |||V − U||� ≤ δ}, (25)

where U is the channel defined by U(ρ) = UρU † and V likewise.
We can use the following bound:

Theorem 3 (Informal, Ref. [9]). Let ν be a relative approximate unitary t-design
for some t ≤ O(2n/2). Then, a unitary U drawn from ν satisfies Cδ(U) ≥ Ω(nt) and
Cδ(U |ψ〉) ≥ Ω(nt) with high probability.

Combining this theorem with Corollary 1 yields the following lower bounds on
the circuit complexity:

Corollary 2 (Growth of quantum circuit complexity). Let U be drawn from a ran-
dom quantum circuit in brickwork architecture of depth T . Moreover, let δ ∈ (0, 1)
be constant in the system size. Then, with probability 1− e−Ω(n) , we have for the
• δ-state complexity

Cδ(U0n〉) ≥ Ω
(
T 1/(5+o(1))

)

• δ-unitary complexity
Cδ(U) ≥ Ω

(
T 1/(5+o(1))

)

until T ≥ Ω(2n/(2+o(1))).
For the error-robust notions of quantum circuit complexity defined above Corol-

lary 2 provides the strongest known bounds for random quantum circuits over
qubits of superpolynomial depth.

Ref. [11] in fact provides an even stronger result. Even an operational notion
of complexity that quantifies the resources necessary to distinguish a unitary from
the maximally depolarizing channel (the “most useless” channel) is lower bounded
by Ω(T 1/(5+o(1))).

4 Proof of Theorem 2 and Theorem 1
Denote by µH,1 the Haar measure on the subgroup U(2)⊗1n−1 and µCl the uniform
measure on the Clifford group. We apply the path coupling technique [14] for the
unitary group developed in Ref. [44] to the following auxiliary random walk that is
defined by

σ∗k := (µCl ∗ µH,1 ∗ µCl)∗k. (26)
This walk was defined in [27] and shown to generate unitary t-designs in depth
k = O(t4) for “small” t. More precisely, the result holds for the regime t2 ≤ O(n)
and for a weaker definition of approximate unitary design.

The first lemma is an unconditional spectral gap on the random walk σ:
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Figure 1: Four steps of the random walk σ on n = 6 qubits.

Lemma 3. We have for all t ≥ 1 and n ≥ 1 that

g(σ, t) ≤ 1− 3
2

1
22n − 1 (27)

The path coupling technique provides a bound on the convergence to the Haar
measure in the Wasserstein distance, which is based on the notion of a random
coupling: A random variable (X, Y ) is called a coupling for the distributions ν1
and ν2 if the marginal distributions for random variables X and Y are ν1 and ν2,
respectively. This allows us to define the Wasserstein distance:

Wg,p(ν1, ν2) := inf{(E g(X, Y )p)1/p, (X, Y ) is a random coupling}. (28)

In Ref. [9] a convergence result is proven for for the distance WRie,2. Here, gRie is
the metric induced by the unique Riemannian metric that is invariant under left and
right translations. For our purposes, however, it is sufficient to prove a convergence
in the weaker distance WFro,2. We remark that the stronger convergence result can
be obtained from our analyzis as in Ref. [9].

It was proven in Ref. [44] that infinitesimal contractions can be boosted to a
global contraction of a random walk. More precisely, Theorem 2 in Ref. [44] contains
the following lemma as a special case:

Lemma 4. Suppose that

lim sup
X→Y

{
WFro,2(ν ∗ δX , ν ∗ δY )

||X − Y ||F
: ||X − Y ||F ≤ ε

}
≤ η, (29)

for some probability distribution ν over SU(d). Then, for all probability measures
µ1 and µ2,

WFro,2(ν ∗ µ1, ν ∗ µ2) ≤ ηWFro,2(µ1, µ2). (30)

Using Lemma 4, we prove the following convergence result:

Lemma 5. For every k ≥ 1, we have the bound:

WgFro,2
(
σ∗k, µH

)
≤
(

1− 3
22n − 1

)k/2
π2n/2. (31)
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Proof. A single step of the random walk σ applied to a fixed unitary X ∈ U(2n) by
left multiplication yields:

X → {C ′(U ⊗ 1n−1)CX} , (32)

for U ∈ U(2) and C,C ′ ∈ Cl(n). The unitary Y undergoes the same transformation.
We can now introduce a family of random couplings for (σ ∗ δX , σ ∗ δY ):

X ′ = C ′(UV ⊗ 1n−1)CX Y ′ = C ′(U ⊗ 1n−1)CX (33)

defined for a unitary V ∈ U(2) that is independent of U but can depend on X, Y
and C.

We need to bound:

E||X ′ − Y ′||2F = E||C ′(UV ⊗ 1n−1)CX − C ′(U ⊗ 1n−1)CY ||2F. (34)

We can choose V to be minimal for all C,X and Y . Then, we find

E
(

min
V
||C ′(UV ⊗ 1n−1)CX − C ′(U ⊗ 1n−1)CY ||2F

)
= 2

(
Tr[1n]−max

V
Tr[V ⊗ 1n−1CXY

†C†]
)

= 2
(
Tr[1n]− E||Tr[2,n](CXY †C†)||1

)
,

(35)

where we used the variational characterization of the Schatten 1-norm. We can
choose X and Y to be infinitesimally close together and write

R := XY † = exp(iεH) = 1n + iεH − ε2

2 H
2 +O(ε3), (36)

with ||H||F ≤ 1. By Taylor expanding the 1-norm, this implies (as in Ref. [9]):

E
(

min
V
||C ′(UV ⊗ 1n−1)CX − C ′(U ⊗ 1n−1)CY ||2F

)

= ε2
(

Tr(H2)− 1
2n−1E

[
Tr
(
Tr[2,n]

[
CHC†

])2
])

+O(ε3). (37)

Denote by F the swap operator defined by F : Cd ⊗ Cd → Cd ⊗ Cd, F|ψ〉 ⊗ |φ〉 =
|φ〉 ⊗ |ψ〉. The “replica trick”

Tr[A2] = Tr[A⊗2F] (38)

for every matrix A can be applied to show

E
[
Tr
(
Tr[2,n]

[
CHC†

])2
]

= Tr
[
(CHC†)⊗2 F1 ⊗ 1[2,n]

]

= Tr
[
H⊗2 (C†)⊗2(F1 ⊗ 1[2,n])C⊗2

]
.

(39)

We now use that the Clifford group is an exact unitary 2-design: the expectation
value in the above equation is the same as that for Haar-random unitaries C. We
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employ standard formulas [3, Lem. IV.3] for the twirl over the Haar measure:

EC∼µCl Tr[H⊗2 (C†)⊗2(F1 ⊗ 1[2,n])C⊗2]

= Tr
[
H⊗2

(
2 + 2n−1

2n + 1
1
2(1 + F)− 2− 2n−1

2n − 1
1
2(1− F)

)]

= 1
2

(
2 + 2n−1

2n + 1 + 2− 2n−1

2n − 1

)
Tr
[
H⊗2F

]
+ 1

2

(
2 + 2n−1

2n + 1 −
2− 2n−1

2n − 1

)
Tr
[
H⊗21

]

=
(

2− 2−1

2n − 2−n

)
Tr[H2] +

(
22n−1 − 2
22n − 1

)
Tr[H]2

≥
(

2− 2−1

2n − 2−n

)
Tr[H2].

(40)

Consequently, we obtain

E
(

min
V
||C ′(UV ⊗ 1n−1)CX − C ′(U ⊗ 1n−1)CY ||2F

)
≤
(

1− 3
22n − 1

)
ε2Tr(H2)+O(ε3).

(41)
From

||X − Y ||2F = ε2Tr(H2) +O(ε3), (42)

we find
E||X ′ − Y ′||2F ≤

(
1− 3

22n − 1

)
||X − Y ||2F +O(ε3). (43)

Notice, that for X 6= Y , we can always choose ε, such that Tr(H2) = ||H||2F = 1.
Therefore, we find that

WFro,2(σ ∗ δX , σ ∗ δY )
||X − Y ||F

≤ (E||X ′ − Y ′||2F ) 1
2

||X − Y ||F

≤

√(
1− 3

22n−1

)
||X − Y ||2F +O(ε3)

||X − Y ||F

≤
√(

1− 3
22n − 1

)
+

√√√√ O(ε3)
ε2 +O(ε3)

≤
√(

1− 3
22n − 1

)
+O(

√
ε),

(44)

with ε→ 0 as X → Y . Invoking Lemma 4 k times with η :=
√

(1− 3
22n−1) implies

WFro,2(σ∗k, µH) = WFro,2(σ∗k ∗ δ1, σ ∗ µH)
≤ ηkWFro,2(δ1, µH)
≤ ηk(EU ||1− U ||2F ) 1

2

=
√

22n/2ηk,

(45)

which is the statement of Lemma 5.
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We can now prove Lemma 3:

Proof of Lemma 3. We use the following formula [9], which holds for any probability
distribution ν:

g(ν, t) ≤ 2tWFro,1(ν, µH) (46)
Combining this with Lemma 5 yields:

g(σ∗k, t) ≤ 2tWFro,1(σ∗k, µH)
≤ 2tWFro,2

(
σ∗k, µH

)

≤
(

1− 3
22n − 1

)k/2
2
√

2t2n/2,

(47)

where the second inequality follows immediately from Jensen’s inequality. σ is a
symmetric measure, that is, it is invariant under taking inverses. Consequently, the
moment operators are hermitian, which implies

g(σ∗k, t) = g(σ, t)k. (48)

Notice that the inequality g(σ∗k, t) ≤ g(σ, t)k holds for all measure but not equality.
We plug (48) into (47), take the k-th square root and the limit k →∞. This yields

g(σ, t) ≤
(

1− 3
22n − 1

)1/2
≤ 1− 1

2
3

22n − 1 . (49)

Before we can prove Theorem 1, we need another auxiliary bound. More pre-
cisely, we show that a local random walk over Clifford generators quickly approxi-
mates the uniform measure on the Clifford group: Apply first a unitary U1,2⊗U3,4⊗...
and then a unitary U2,3 ⊗ U4,5 ⊗ ..., where all Ui,i+1 are drawn uniformly from the
Clifford group on 2 qubits. We denote this distribution by νCl,bw

n

The Clifford group is a finite group with polynomially bounded circuit complex-
ity [2, 12] and we can use this fact to apply the comparison technique [19]. This
gives the following bound:

Lemma 6. The following bound holds for all t ≥ 1:
∣∣∣
∣∣∣M

(
νCl,bw
n , t

)
−M(µCl, t)

∣∣∣
∣∣∣
∞
≤ 1− 1

2000n3 . (50)

Proof. Consider the averaging operator on the group algebra Tν : L2(Cln)→ L2(Cln)
defined by

(Tνf)(g) :=
∫
f(h−1g)dν(h). (51)

By [19], we have
λ2(Tσ) ≤ 1− η

d2 , (52)

where η is the probability of the least probable generator and d is the minimal
number of generators necessary to generate any group element. Here, d = 9n by [12]
and η = 1/|Cl2|n = 1/24n. By the Peter-Weyl theorem, the entire spectrum of the
moment operators is contained in the spectrum of the averaging operator and thus
we obtain Eq. (50).
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We remark that the comparison technique was previously applied to the Clifford
group in Ref. [20].

We can now put everything together.

Proof of Theorem 1. For simplicity, we use the following notation:

PCl,n = M(µCln , t). (53)

We use
∣∣∣∣
∣∣∣∣M

(
νCl,bw
n , t

)k − PCl,n

∣∣∣∣
∣∣∣∣
∞
≤
∣∣∣
∣∣∣M

(
νCl,bw
n , t

)
− PCl,n

∣∣∣
∣∣∣
k

∞
≤
(

1− 1
2000n3

)k
. (54)

In particular, we have the approximation
∣∣∣∣
∣∣∣∣M

(
νCl,bw
n , t

)kn − PCl,n

∣∣∣∣
∣∣∣∣
∞
≤ 1

2
1

22n − 1 (55)

for a number of layers kn that we can choose as

kn = 6000n4. (56)

Therefore, by applying the triangle inequality twice, we obtain

||M
(
νCl,bw
n , t

)kn

M(µH,1, t)M
(
νCl,bw
n , t

)kn − PH ||∞

≤ ||PCl,nM(µH,1, t)PCl,n − PH ||∞ + 1
22n − 1

= ||M(σ, t)− PH ||∞ + 1
22n − 1

≤ 1− 1
2

3
22n − 1 + 1

22n − 1
≤ 1− 1

2(22n − 1) ,

(57)

where we used Lemma 3 in the third inequality.
M
(
νCl,bw
n , t

)kn

M(µH,1, t)M
(
νCl,bw
n , t

)kn is a product of (2nkn + 1) orthogonal
projectors. In the following we denote these projectors as 1− Q1, . . . , 1− Q2nkn+1.
E.g. we set

Q1 := 1− PCl,2 ⊗ 1n−2 (58)
and Qnkn+1 := 1−PH,1. The order of these labels will not matter in the following.
As in Lemma 2, we define a Hamiltonian H̃ := ∑2nkn+1

i=1 Qi. We can now relate
the bound (57) to the gap of the Hamiltonian H̃ via the quantum union bound or

Accepted in Quantum 2022-08-18, click title to verify. Published under CC-BY 4.0. 14



converse detectability lemma (Lemma 2):

||M
(
νCl,bw
n , t

)kn

M(µH,1, t)M
(
νCl,bw
n , t

)kn − PH ||∞
= max
|ψ⊥〉
||M

(
νCl,bw
n , t

)kn

M(µH,1, t)M
(
νCl,bw
n , t

)kn |ψ⊥〉||2

= max
|ψ⊥〉

∣∣∣∣∣∣

∣∣∣∣∣∣

2nkn+1∏

i=1
(1−Qi)|ψ⊥〉

∣∣∣∣∣∣

∣∣∣∣∣∣
2

≥
√

1− 4∆(H̃)
≥ 1− 4∆(H̃).

(59)

Combining this with (57), yields:

1
8

1
22n − 1 ≤ ∆(H̃). (60)

We still need to relate the gap of H̃ to that of Hn,t. Using the operator inequalities
PCl ≥ PH and PH,1 ≥ PH,2, we obtain

H̃ = 2kn
n∑

i=1
(1− 1i−1 ⊗ PCl,2 ⊗ 1n−i−1) + (1− PH,1 ⊗ 1n−1)

≤ 2kn
n∑

i=1
(1− 1i−1 ⊗ PH,2 ⊗ 1n−i−1) + (1− PH,1 ⊗ 1n−1)

≤ (2kn + 1)
n∑

i=1
(1− 1i−1 ⊗ PH,2 ⊗ 1n−i−1)

= (2kn + 1)Hn,t.

(61)

Moreover , notice that H̃ and Hn,t have the same ground state space with ground
state energy 0 as the gate set consisting of all 2-local Clifford unitaries plus single
qubit unitaries are universal [43]. Indeed, it was proven in Ref. [29] that the eigen-
value 1 eigenspace of a moment operator for a probability distribution with universal
support equals the image of the Haar random moment operator. Consequently, we
find

∆(Hn,t) ≥
1

8(2kn + 1)(22n − 1) ≥ 120000−1n−42−2n. (62)

Together with Eq. (10), this implies Theorem 1.

5 Outlook: Gaps from representations of the Clifford group?
In this work, we improved the scaling of the design depth for local random quantum
circuits over qubits. The lion’s share of the improvement comes from the near-
optimal convergence of an auxiliary random walk that interleaves global random
Clifford unitaries and single qubit Haar random unitaries.

The key open question, posed in Ref. [9], is to either prove or disprove a subex-
ponential unconditional gap. An unconditional gap that scales inverse polynomially

Accepted in Quantum 2022-08-18, click title to verify. Published under CC-BY 4.0. 15



in n would imply a robust version of the Brown-Susskind conjecture for random
quantum circuits. For approaches based on techniques from harmonic analysis, see
Ref. [26]. The techniques presented in this paper open up another potential path
towards this goal: It suffices to prove such a gap for the auxiliary walk defined in
Eq. (26).

The commutant of tensor powers of the Clifford group was studied in Ref. [24,
39, 40] and it was proven in Ref. [27] that the action of a single qubit Haar average
has a strong shrinking effect on a natural basis of the Clifford commutant labeled
by Lagrangian subspaces of Z2t

2 . Therefore, Lemma 13 in Ref. [27] can be viewed as
a sanity check for the constant spectral gap conjecture.

To prove the generation of state designs in linear depth, we do not require a
spectral gap of the entire moment operator. Indeed, it would suffice to show a spec-
tral gap of the moment operator restricted to the endomorphisms of the symmetric
subspace End(St[(C2)⊗n]):

∣∣∣
∣∣∣(M(νn, t)− PH)|vec(End(St[(C2)⊗n]))

∣∣∣
∣∣∣
∞
≤ 1− poly−1(n)? (63)

To characterize the commutant of powers of the Clifford group on the endomor-
phisms of the symmetric subspace, one would need to understand how the symmetric
subspace decomposes into irreducible representations of the Clifford group.
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A Proof of Observation 1
In this appendix we show how Observation 1 follows from bounds on Lambert’s W
function. The improvement obtained in Observation 1 makes the difference between
a design depth of O(nt6) and a design depth of O(nt5+o(1)).

Proof. Eq. (16) is implied by

l − 1
2 ln(2) ln(l) ≥ 2 log2(4t). (64)

First, we consider the equation y − a ln(y) = b. This is equivalent to

e−
y
a

(
−y
a

)
= −e

− b
a

a
. (65)

If the right hand side of Eq. (65) is larger than −1/e, this can be solved by

y = −aW−1

(
−e
−b/a

a

)
, (66)

where W−1 denotes one of the branches [15] of Lambert’s W function (also called
log product function). By definition, all branches of Lambert’s W function solve the
equation

yey = x (67)
for y.

We can now use the following bound for x > 0 proven in Ref. [15]:

W−1(e−x−1) ≥ −1− (2x) 1
2 − x. (68)

With x = b/a+ ln(a)− 1, b = 2 log2(4t) and a = (2 ln(2))−1, this implies

y ≤ −a

−1−

√√√√2
(
b

a
+ ln(a)− 1

)
− b

a
− ln(a) + 1




≤ 2 log2(4t) + 1.5
√

log2(4t).

(69)

Accepted in Quantum 2022-08-18, click title to verify. Published under CC-BY 4.0. 20



The LHS of Eq. (64) is monotone in l. Hence, choosing

l =
⌈
2 log2(4t) + 1.5

√
log2(4t)

⌉
(70)

implies Eq. (64) and thus, by Nachtergaele’s bound, Eq. (17).
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3.3 linear growth of quantum circuit complexity

In random quantum circuits the quantum circuit complexity serves as a proxy for studying
quantum chaotic Hamiltonian dynamics, with profound implications for a broad range of quantum
complex many-body systems; for instance, quantum complexity is increasingly understood as
being essential to capture properties of black hole horizons. In particular, connections between
gate complexity and holography in high-energy physics, in the context of the anti-de-Sitter-
space/conformal-field-theory (AdS/CFT) correspondence have been prominently considered
[Sus16, SS14, BRS+16, BS18b, BFV19]. The ‘‘complexity equals volume’’ conjecture [SS14] sug-
gests that the correspondence’s boundary state has a complexity proportional to the volume
behind the event horizon of a black hole in the bulk geometry. This conjecture was developed
in the context of the wormhole growth paradox: The volume of a wormhole grows at a steady
rate for an exponentially long time. However, if the volume corresponds to a local observable
in the dual quantum theory, we would expect it to saturate quickly due to thermalization. As
a resolution, Susskind and collaborators suggest that the volume could instead correspond to
a measure of the inherent complexity of the dual state such as the circuit complexity. These
connections have motivated studies of quantum complexity as a means of illuminating quantum
many-body systems’ complex behaviors.

In related work, Brown and Susskind conjecture that quantum circuits’ complexity generically
grows linearly for an exponentially long time [BS18a,Sus18]. The intuition behind this conjecture
is that the space of all unitaries is vast and unless the circuits in question are exponentially deep,
it should be more likely to expand into new territory by applying a gate. In particular, collisions
between circuits should be rare and most quantum circuits are expected to not hit an accidental
short-cut to the identity.

In this work, we prove the above notorious conjecture for a straightforward notion of quantum
circuit complexity: the minimal number of gates necessary to implement a unitary exactly. We
denote this quantity by C(U) and C(|ψ〉) for states. Informally, an architecture is simply a
way to arrange the gates. In a random quantum circuit in a given architecture we draw all
gates independently from the Haar measure on SU(4). We call a segment of an architecture a
backwards light cone if there is a site from which a perturbation can spread to the full system-size
in the reversed circuit. We prove the following theorem:
Theorem 13 (Linear growth of complexity). Let U denote a unitary implemented by a random
quantum circuit in an architecture that contains T disjoint backwards light cones. The unitary’s
circuit complexity is lower-bounded as

C(U) > T
9
−
n

3
, (3.13)

with unit probability, until the number of gates grows to T > 4n − 1. The same bound holds for
C(U|0n〉), until T > 2n+1 − 1.

Effectively, this means that almost all quantum circuits have no significant ‘‘short-cuts’’ [Pir22].
Moreover, this result provides direct evidence for Brown-Susskind conjecture for chaotic Hamilto-
nian dynamics such as the SYK model and a sanity check for the ‘‘complexity equals volume’’
conjecture.

The theorem requires the architecture to be a concatenation of blocks that each have a light
cone. The reason for this is that resulting quantum circuits need to be sufficiently scrambling for
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the complexity to grow steadily. In fact, the generality of Theorem 13 allows us to show that in
fact most architectures admit linear growth of complexity. That is, if the circuit architecture itself
is drawn at random, a similar linear lower bound on the complexity holds with exponentially
high probability. Arguably, the most studied architecture for random quantum circuits is the
brickwork architecture, consisting of staggered layers of nearest-neighbor gates on an n-qubit
chain, which yields the following bound:

Cu(U|0
n〉) > # of layers

18n
−
n

3
. (3.14)

Moreover, we prove that there exists an error ε > 0 such that a ε-approximate version of circuit
complexity is subject to the same bound with a probability arbitrarily close to 1.

The proof of Theorem 13 is surprisingly short, given the established difficulty of lower-
bounding the exact circuit complexity. In order to do so, we introduce new mathematical
methods into quantum information theory, which we regard as a relevant contribution in its
own right. Our proof strategy combines differential topology and elementary algebraic geometry
with an inductive construction of Clifford circuits.

An idea central to the proof is to view the quantum circuits in an architecture A as a smooth
map FA from an algebraic set SU(4)R to another algebraic set and manifold SU(2n). The Tarski-
Seidenberg theorem, a powerful result in the theory of quantifier elimination, guarantees that
the image U(A) = FA(SU(4)R) is a semi-algebraic set and as such has a well defined integer
dimension. Since the publication of Ref. [HFK+22] shorter proofs for variants of the main result
were found in Ref. [Li22]. Both proofs are based on the (semi-)algebraic properties of U(A).

We call dimU(A) the accessible dimension of the architectureA. Using the algebraic geometric
properties of SU(4)R, we can show that unitaries in the image of an architecture generating
a low dimensional set are of probability 0 with respect to drawing random circuits from an
architecture that generates a higher dimensional set. dimU(A) can be linearly upper bounded
and all unitaries with a fixed number of gates R are necessarily in the image of the contraction
map FA ′ for A ′ having R gates. As a consequence, it suffices to prove a lower bound on the
dimension dimU(A) in terms of the number of disjoint complete backward light cones. We
obtain such a lower bound in the following proposition:

Proposition 4 (Lower bound of accessible dimension). Let AT denote an architecture with T
disjoint complete backward light cones. Assume that AT consists of causal slices of 6 L gates each.
The architecture’s accessible dimension is lower-bounded as dimU(AT ) > T .

We achieve this by showing that the dimension dimU(AT ) equals the maximal rank of the
contraction map FA due to the properties of the unitary group as a real algebraic set. In more
detail, we use the irreducibility of the unitary group in the Zariski topology to conclude that the
rank of FA is maximal except for a subset of measure 0. This allows us to invoke the constant rank
theorem from differential topology to show that locally FA is equivalent to its own derivative.

As a consequence, it suffices to show that there exists a single tuple of gates such that FAT
has a rank of at least T at this tuple. We proceed to construct such an example of a circuit for
which the Jacobian has an image of dimension at least T . We construct a tuple of Clifford gates
such that 2-local Pauli operators inserted into the resulting circuit yield at least T different Pauli
matrices.
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The exact circuit complexity seems to be more tame than robust versions in general. In fact,
a recent paper [JW22] provides explicit states with exponential exact circuit complexity, a task
far out of reach for boolean functions. The exact complexity cannot be directly related to the
separation of complexity classes and thus does not necessarily suffer from the same obstructions.
Notice that the circuit complexity for boolean functions is robust to errors as they form a discrete
set, so there is no classical analogue of it. This opens the fascinating possibility to test quantum
versions of notorious conjectures with a rigorously defined notion of circuit complexity.
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Complexity is a pervasive concept at the intersection of com-
puter science, quantum computing, quantum many-body 
systems and black hole physics. In general, complexity 

quantifies the resources required to implement a computation. For 
example, the complexity of a Boolean function can be defined as the 
minimal number of gates, chosen from a given gate set, necessary 
to evaluate the function. In quantum computing, the circuit model 
provides a natural measure of complexity for pure states and uni-
taries: a unitary transformation’s quantum circuit complexity is the 
size, measured with the number of gates, of the smallest circuit that 
effects the unitary. Similarly, a pure state’s quantum circuit complex-
ity definable is the size of the smallest circuit that produces the state 
from a product state.

Quantum circuit complexity, by quantifying the minimal size 
of any circuit that implements a given unitary, is closely related to 
computational notions of complexity. The latter quantify the dif-
ficulty of solving a given computational task with a quantum com-
puter and determine quantum complexity classes. Yet quantum 
circuit complexity can subtly differ from computational notions of 
quantum complexity: the computational notion depends on the dif-
ficulty of finding the circuit. In the following, we refer to quantum 
circuit complexity as ‘quantum complexity’ for convenience.

Quantum complexity has risen to prominence recently due 
to connections between gate complexity and holography in 
high-energy physics, in the context of the anti-de-Sitter space/
conformal field theory (AdS/CFT) correspondence1–5. In the bulk 
theory, a wormhole’s volume grows steadily for exponentially long 
times. By contrast, in boundary quantum theories, local observables 
tend to thermalize much more quickly. This contrast is known as the 
‘wormhole-growth paradox’1. It appears to contradict the AdS/CFT 
correspondence, which postulates a mapping of physical operators 
between the bulk theory and a quantum boundary theory. A resolu-
tion has been proposed in the ‘complexity equals volume’ conjec-
ture: the wormhole’s volume is conjectured to be dual not to a local 
quantum observable, but to the boundary state’s quantum com-
plexity2. Similarly, the ‘complexity equals action’ conjecture posits 

that a holographic state’s complexity is dual to a certain space–time 
region’s action6.

A counting argument reveals that the vast majority of unitaries 
have near-maximal complexities7. Yet lower-bounding the quantum 
complexity is a long-standing open problem in quantum informa-
tion theory. The core difficulty is that the gates performed early in 
a circuit may partially cancel with gates performed later. One can 
rarely rule out the existence of a ‘shortcut’, a seemingly unrelated 
but smaller circuit that generates the same unitary. Consequently, 
quantum-gate-synthesis algorithms, which decompose a given 
unitary into gates, run for times exponential in the system size8. 
Approaches to lower-bounding unitaries’ quantum complexities 
include Nielsen’s geometric picture9–13.

A key question in the study of quantum complexity is the follow-
ing. Consider constructing deeper and deeper circuits for an n-qubit 
system, by applying random two-qubit gates. At what rate does the 
circuit complexity increase? Brown and Susskind conjectured that 
the complexity of quantum circuits generically grows linearly for an 
exponentially long time4,14. Intuitively, the conjecture is that most 
circuits are fundamentally ‘incompressible’: no substantially shorter 
quantum circuit effects the same unitary. Quantum complexity, if 
it grows linearly with a generic circuit’s depth, strongly supports 
the ‘complexity equals volume’ conjecture as a proposal to the 
wormhole-growth paradox1,2. The conjecture therefore implies that 
complexity growth is as generic as thermalization15,16 and operator 
growth17,18 (the spreading of an initially local operator’s support in 
the Heisenberg picture). However, in contrast to easily measurable 
physical quantities, which thermalize rapidly, complexity grows for 
an exponentially long time. Brown and Susskind have supported 
their conjecture using Nielsen’s geometric approach (Fig. 1b)9–12.

Brandão et al.19 recently proved a key result about the growth of 
quantum complexity under random circuits. The authors leveraged 
the mathematical toolbox of t-designs, finite collections of unitar-
ies that approximate completely random unitaries. A t-design is a 
probability distribution, over unitaries, whose first t moments equal  
the Haar measure’s moments20–22. The Haar measure is the unique 

Linear growth of quantum circuit complexity
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The complexity of quantum states has become a key quantity of interest across various subfields of physics, from quantum com-
puting to the theory of black holes. The evolution of generic quantum systems can be modelled by considering a collection of 
qubits subjected to sequences of random unitary gates. Here we investigate how the complexity of these random quantum cir-
cuits increases by considering how to construct a unitary operation from Haar-random two-qubit quantum gates. Implementing 
the unitary operation exactly requires a minimal number of gates—this is the operation’s exact circuit complexity. We prove 
a conjecture that this complexity grows linearly, before saturating when the number of applied gates reaches a threshold that 
grows exponentially with the number of qubits. Our proof overcomes difficulties in establishing lower bounds for the exact 
circuit complexity by combining differential topology and elementary algebraic geometry with an inductive construction of 
Clifford circuits.
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unitarily invariant probability measure over a compact group. 
Reference 19 proved that quantum complexity robustly grows poly-
nomially in a random circuit’s size. The complexity’s growth was 
shown to be linear in the circuit’s size if the local Hilbert-space 
dimension is large.

We prove that the complexity of a random circuit grows linearly 
with time (with the number of gates applied). We consider unitar-
ies constructed from quantum circuits composed of Haar-random 
two-qubit gates. The focus of our proof is the set of unitaries that 
can be generated with a fixed arrangement of gates. We show that 
this set’s dimension, which we call accessible dimension, serves 
as a good proxy for the quantum complexity of almost every uni-
tary in the set. Our bound on the complexity holds for all random 
circuits described above, with probability 1. Instead of invoking 
unitary designs19 or Nielsen’s geometric approach9–12, we employ 
elementary aspects of differential topology and algebraic geometry, 
combined with an inductive construction of Clifford circuits. The 
latter are circuits that transform Pauli strings to Pauli strings up to  
a phase23–27.

This work is organized as follows. First, we introduce the set-up 
and definitions. Second, we present the main result, the complex-
ity’s exponentially long linear growth. Third, we present a high-level 
overview of the proof. The key mathematical steps follow, in the 
Methods. Two corollaries follow: an extension to random arrange-
ments of gates and an extension to slightly imperfect gates. In the 
Discussion we compare our results with known results and explain 
our work’s implications for various subfields of quantum physics. 
Finally, we discuss the opportunities engendered by this work. 
In Supplementary Appendix A we review the elementary alge-
braic geometry required for the proof. Proof details are provided 
in Supplementary Appendix B. We elaborate on states’ complexi-
ties in Supplementary Appendix C. We prove two corollaries in 
Supplementary Appendices D and E. Finally, we compare notions of 
circuit complexity in Supplementary Appendix F.

Preliminaries. This work concerns a system of n qubits. For conve-
nience, we assume that n is even. We simplify tensor-product nota-
tion as 

∣∣0k
〉
:= |0⟩⊗k, for k = 1, 2, …, n, and k denotes the k-qubit 

identity operator. Let Uj,k denote a unitary gate that operates on 
qubits j and k. Such gates need not couple the qubits together and 
need not be geometrically local. An architecture is an arrangement 
of some fixed number R of gates (Fig. 2a).

Definition 1. (Architecture) An architecture is a directed acyclic 
graph that contains R ∈ Z>0 vertices (gates). Two edges (qubits) enter 
each vertex, and two edges exit.

Figure 2b,c illustrates example architectures governed by our 
results.

•	 A brickwork is the architecture of any circuit formed as follows. 
Apply a string of two-qubit gates: U1, 2 ⊗ U3, 4 ⊗ … ⊗ Un − 1, n. Then 
apply a staggered string of gates, as shown in Fig. 2b. Perform 
this pair of steps T times in total, using possibly different gates 
each time.

•	 A staircase is the architecture of any circuit formed as in Fig. 2c. 
Apply a stepwise string of two-qubit gates: Un, n − 1Un − 2, n − 1…U2, 1. 
Repeat this process T times, using possibly different gates  
each time.

The total number of gates in the brickwork architecture, as in 
the staircase architecture, is R = (n − 1)T. Our results extend to more 
general architectures, for example, the architecture depicted in  
Fig. 2a and architectures of non-nearest-neighbour gates. Circuits of 
a given architecture can be formed randomly.

Definition 2. (Random quantum circuit) Let A denote an arbi-
trary architecture. A probability distribution can be induced over the 
architecture-A circuits as follows: for each vertex in A, draw a gate 
Haar-randomly from SU(4). Then contract the unitaries along the 
edges of A. Each circuit so constructed is called a random quantum 
circuit.

Implementing a unitary with the optimal gates, in the optimal 
architecture, concretizes the notion of complexity.

Definition 3. (Exact circuit complexities) Let U ∈ SU(2n) 
denote an n-qubit unitary. The (exact) circuit complexity Cu(U) 
is the least number of two-qubit gates in any circuit that imple-
ments U. Similarly, let |ψ⟩ denote a pure quantum state vector. 
The (exact) state complexity Cstate(|ψ⟩) is the least number r of 
two-qubit gates U1, U2, …, Ur, arranged in any architecture, such that 
U1U2…Ur |0n⟩ = |ψ⟩.

We now define a backwards light cone, a concept that helps us 
focus on sufficiently connected circuits. Consider creating two ver-
tical cuts in a circuit (dashed lines, Fig. 2). The gates between the 
cuts form a block. We say that a block contains a backwards light 
cone if some qubit t links to each other qubit t′ via a directed path 
of gates (a path that may be unique to t′). The backwards light cone 
consists of the gates in the paths.

Main result, linear growth of complexity in random quantum 
circuits. Our main result is a lower bound on the complexities of 
random unitaries and states. The bound holds with unit probability.

Theorem 1. (Linear growth of complexity) Let U denote a uni-
tary implemented by a random quantum circuit in an architecture 
formed by concatenating T blocks of ≤L gates each, each block con-
taining a backwards light cone. The unitary’s circuit complexity is 
lower-bounded as

Cu(U) ≥
R
9L −

n
3 , (1)

with unit probability, until the number of gates grows to T ≥ 4n − 1. 
The same bound holds for Cstate(U |0n⟩), until T ≥ 2n + 1 − 1.

The theorem governs all architectures that contain enough back-
wards light cones. The brickwork architecture forms a familiar spe-
cial case. Let us choose for a brickwork’s blocks to contain 2n of 
the columns in Fig. 2b. Each block contains L = n(n − 1) gates (in 
the absence of periodic boundary conditions), yielding the lower 
bound Cu(U) ≥ R

9n(n−1) −
n
3 . Another familiar example is the stair-

case architecture. A staircase’s blocks can have the least L possible, 
n − 1, which yields the strongest bound.

a b

Time

Complexity

U

eΩ(n)

e
Ω
(n
)

Fig. 1 | The geometric approach to complexity provides a strong intuitive 
and physical basis for the complexity growth conjecture that we prove. 
a, The complexity has been conjectured to grow linearly under random 
quantum circuits until times exponential in the number n of qubits4. b, The 
blue region depicts part of the space of n-qubit unitaries. A unitary U has 
a complexity that we define as the minimal number of two-qubit gates 
necessary to effect U (green jagged path; each path segment represents 
a gate). Nielsen’s complexity9–12, involved in ref. 4, attributes a high metric 
cost to directions associated with nonlocal operators. In this geometry, the 
unitary’s complexity is the shortest path that connects  to U (red line). 
Nielsen’s geometry suggests the toolbox of differential geometry, avoiding 
circuits’ discreteness. The circuit complexity upper-bounds Nielsen’s 
complexity; opposite bounds hold for approximate circuit complexity12.
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High-level overview of the proof of Theorem 1. Consider fixing 
an R-gate architecture A, then choosing the gates in the architec-
ture. The resulting circuit implements some n-qubit unitary. All the 
unitaries implementable with A form a set U(A) (compare Fig. 3). 
Our proof relies on properties of U(A)—namely, on the number of 
degrees of freedom in U(A). We define this number as the architec-
ture’s accessible dimension, dA = dim(U(A)) (Fig. 3. The following 
section contains a formal definition; here, we provide intuition. As 
the n-qubit unitaries form a space of dimension 4n, dA ∈ [0, 4n]. The 
greater the dA, the more space U(A) fills in the set of n-qubit uni-
taries. Considering U(A) circumvents the intractability of calculat-
ing a unitary’s circuit complexity. To better understand the form of 
U(A), we study the set’s dimension, which is the accessible dimen-
sion. Importantly, the accessible dimension enables us to compare 
the sets U(A) generated by different architectures. Distinct acces-
sible dimensions imply that the lower-dimensional set has measure 
zero in the higher-dimensional set. As a proxy for quantum com-
plexity, the accessible dimension plays a role similar to t-designs 
in refs. 19,28. Our first technical result lower-bounds the sufficiently 
connected architecture’s accessible dimension.

Proposition 1. (Lower bound on accessible dimension) Let AT 
denote an architecture formed by concatenating T blocks of ≤L gates 
each, each block containing a backwards light cone. The architecture’s 
accessible dimension is lower-bounded as

dAT ≥ T ≥
R
L . (2)

We can upper-bound dA, for an arbitrary architecture A, by 
counting parameters. To synopsize the argument in Supplementary 
Appendix B, 15 real parameters specify each two-qubit unitary. 
Each qubit shared by two unitaries makes three parameters redun-
dant. Hence

dA ≤ 9R+ 3n. (3)

The accessible dimension reaches its maximal value, 4n, after a 
number of gates exponential in n. Similarly, the circuit complex-
ity reaches its maximal value after exponentially many gates. This 
parallel suggests dA as a proxy for the circuit complexity. The next 
section justifies the use of dA as a proxy.

The proof of Theorem 1 revolves around the accessible dimen-
sion dAT of a certain R-gate architecture AT. The main idea is as fol-
lows. Let R′ be less than a linear fraction of R. More specifically, 
let 9R′ + 3n < T = R/L. For every R′-gate architecture A′, dA′ < dAT 
holds by a combination of equations (2) and (3). Consequently, 
Supplementary Appendix B shows that U(A′) has zero probabil-
ity in U(AT), according to the measure in Definition 2. Therefore, 
almost every unitary U ∈ U(AT) has a complexity greater than the 
greatest possible R′. Inequality (1) follows.

Discussion
We have proven a prominent physics conjecture proposed by Brown 
and Susskind for random quantum circuits4,14: a local random cir-
cuit’s quantum complexity grows linearly in the number of gates 
until reaching a value exponential in the system size. To prove this 
conjecture, we have introduced a technique for bounding complex-
ity. The proof rests on our connecting the quantum complexity 
to the accessible dimension, the dimension of the set of unitaries 
implementable with a given architecture (arrangement of gates). 
Our core technical contribution is a lower bound on the accessible 
dimension. The bound rests on techniques from differential topol-
ogy and algebraic geometry.

Theorem 1 is a rigorous demonstration of the linear growth of 
random qubit circuits’ complexities for exponentially long times. 
The bound holds until the complexity reaches Cu(U) = Ω(4n)—the 
scaling, up to polynomial factors, of the greatest complexity achiev-
able by any n-qubit unitary29. One hurdle has stymied attempts to 
prove that the quantum complexity of local random circuits grows 
linearly: most physical properties (described with, for example,  
local observables or correlation functions) reach fixed values in 
times subexponential in the system size. One must progress beyond 
such properties to prove that the complexity grows linearly at 

a b c

Fig. 2 | Our result relies on architectures and their backwards light cones. a, An architecture specifies how R two-qubit gates are arranged in an n-qubit 
circuit. The gates need not be applied to neighbouring qubits, although they are depicted in this way for convenience. Our result involves blocks with  
the following property: the block contains a qubit reachable from each other qubit via a path (red dashed line), possibly unique to the latter qubit, that 
passes only through gates in the block. b, The brickwork architecture interlaces layers of gates on a one-dimensional (1D) chain. In a 1D architecture  
with geometrically local gates, such as the brickwork architecture, each block has a backwards light cone (light red region) that touches the qubit chain’s 
edges. In the brickwork architecture, a minimal backwards-light-cone-containing block consists of ~n2 gates. c, The staircase architecture, too, acts on a 1D 
qubit chain. The circuit consists of layers in which n − 1 gates act on consecutive qubit pairs. A minimal backwards-light-cone-containing block consists of 
n − 1 gates.

Architecture A Image U(A)

Contraction map

Choices of
unitary gates

SU(2n)

FA

1 2 3 4

R5

, , , ,

, ,...

[SU(4)]×R

Fig. 3 | The R-gate architecture A is associated with a contraction 
map FA. FA maps a list of input gates (a point in [SU(4)]×R) to an n-qubit 
unitary U in SU(2n). The unitary results from substituting the gates into 
the architecture. FA has an image U(A), which consists of the unitaries 
implementable with the architecture. A has an accessible dimension, dA, 
equal to the dimension of U(A). Our core technical result is that dA grows 
linearly with R. To bridge this result to complexity, consider an arbitrary 
architecture A′ formed from fewer gates than a constant fraction of R. 
Such an architecture’s accessible dimension satisfies dA′ < dA, as we show. 
Therefore, every unitary in U(A) has a complexity linear in R, except for a 
measure-0 set. The proof relies on algebraic geometry. A key concept is the 
rank of FA at a point. The rank counts the local degrees of freedom in the 
image (orange arrows).
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superpolynomial times. We overcome this hurdle by identifying the 
accessible dimension as a proxy for the complexity.

Theorem 1 complements another rigorous insight about com-
plexity growth. In ref. 19, the linear growth of complexity is proven in 
the limit of large local dimension q and for a strong notion of quan-
tum circuit complexity, with help from ref. 30. Furthermore, depth-T 
random qubit circuits have complexities that scale as Ω(T1/11) until 
T = exp(Ω(n)) (refs. 19,22). The complexity scales the same way for 
other types of random unitary evolution, such as a continuous-time 
evolution under a stochastically fluctuating Hamiltonian31. Finally, 
ref. 19 addresses bounds on convergence to unitary designs22,30–32, 
translating these bounds into results about circuit complexity. 
Theorem 1 is neither stronger nor weaker than the results of ref. 19, 
which govern a more operational notion of complexity—how easily 
U|0n⟩⟨0n|U† can be distinguished from the maximally mixed state.

Our work is particularly relevant to the holographic context sur-
rounding the Brown–Susskind conjecture. There, random quantum 
circuits are conjectured to serve as proxies for chaotic quantum 
dynamics generated by local time-independent Hamiltonians33. 
Reference 34 has introduced this conjecture into black hole physics, 
and ref. 1 has discussed the conjecture in the context of holography. 
A motivation for invoking random circuits is that random circuits 
can be analysed more easily than time-independent Hamiltonian 
dynamics. Time-independent Hamiltonian dynamics are believed 
to be mimicked also by time-fluctuating Hamiltonians31 and by 
random ensembles of Hamiltonians. Furthermore, complexity par-
ticipates in analogies with thermodynamics, such as a second law of 
quantum complexity4. Our techniques can be leveraged to construct 
an associated resource theory of complexity35.

In the context of holography, the complexities of thermofield 
double states have attracted recent interest1,36–38. Thermofield double 
states are pure bipartite quantum states for which each subsystem’s 
reduced state is thermal. In the context of holography, thermofield 
double states are dual to eternal black holes in anti-de-Sitter space36. 
Such a black hole’s geometry consists of two sides connected by 
a wormhole, or Einstein–Rosen bridge. The wormhole’s volume 
grows for a time exponential in the number of degrees of freedom of 
the boundary theory1,4. As discussed above, random quantum cir-
cuits are expected to capture the (presumed Hamiltonian) dynam-
ics behind the horizon. If they do, the growth of the wormhole’s 
volume is conjectured to match the growth of the boundary state’s 
complexity1,2,4; both are expected to reach a value exponentially 
large in the number of degrees of freedom. Our results govern the 
random circuit that serves as a proxy for the dynamics behind the 
horizon. That random circuit’s complexity, our results show strik-
ingly, indeed grows to exponentially large values. This conclusion 
reinforces the evidence that quantum circuit complexity is the right 
quantity with which to resolve the wormhole-growth paradox1.

Outlook
Our main result governs exact circuit complexity. In Supplementary 
Corollary 2, we generalize the result to a slightly robust notion of 
circuit complexity. There, the complexity depends on our toler-
ance of the error in the implemented unitary. Yet, the error toler-
ance can be uncontrollably small. The main challenge in extending 
our results to approximate complexity is that the accessible dimen-
sion crudely characterizes the set of unitaries implementable with 
a given architecture. Consider attempting to enlarge this set to 
include all the n-qubit unitaries that lie close to the set in some 
norm. The enlarged set’s dimension is 4n. The reason for this is that 
the enlargement happens in all directions of SU(2n). Therefore, our 
argument does not work as for the exact complexity. Extending 
our results to approximations therefore offers an opportunity for 
future work. Approximations may also illuminate random circuits 
as instruments for identifying quantum advantages39,40; they would 
show that a polynomial-size quantum circuit cannot be compressed 

substantially while achieving a good approximation. These observa-
tions motivate an uplifting of the present work to robust notions of 
quantum circuit complexity allowing for implementation errors in 
the distinguishability of states or channels41 (see, for example, ref. 19). 
A possible uplifting might look as follows. Let A denote an R-gate 
architecture, and let A′ denote an R′-gate architecture. Suppose that 
the accessible dimensions obey dA′ < dA. A unitary implemented with 
A has no chance of occupying the set U(A′), which has a smaller 
dimension than U(A). Consider enlarging U(A′) to include the uni-
taries that lie ϵ-close, for some ϵ > 0. If U(A′) is sufficiently smooth 
and well-behaved, we expect the enlarged set’s volume, intersected 
with U(A), to scale as ∼ϵdA−dA′. Furthermore, suppose that unitar-
ies implemented with A are distributed sufficiently evenly in U(A) 
(rather than being concentrated close to U(A′)). All the unitaries 
in U(A) except a small fraction ∼ϵdA−dA′ could not lie in U(A′). 
We expect, therefore, that all the unitaries in U(A) except a fraction 
∼ϵdA−dA′ have ϵ-approximate complexities greater than R′.

A related opportunity is a proof that Nielsen’s geometric com-
plexity measure grows linearly under random circuits. Such a 
proof probably requires a more refined characterization of U(A) 
than its dimension. The quantum complexity in Theorem 1 does 
not lower-bound Nielsen’s complexity. Hence our main results 
do not immediately imply a similar bound for Nielsen’s complex-
ity. However, proving the approximate circuit complexity’s linear 
growth would suffice to lower-bound Nielsen’s complexity because 
of the known inequalities between Nielsen’s complexity and the cir-
cuit complexity (Fig. 1b; for example, ref. 12).

We expect our machinery based on geometry42–47 and proper-
ties of the Clifford27,48,49 group to be applicable to random processes 
that more closely reflect a variety of systems that are studied in the 
many-body physics community. Examples include randomly fluc-
tuating dynamics31, which implement random quantum circuits 
when Trotterized, and thermofield double states undergoing ran-
dom ‘shocks’5,50,51. Additionally, hybrid circuits—random unitary 
circuits punctuated by intermediate measurements—have recently 
attracted much interest52,53, as the amount of entanglement present 
in such systems appears to undergo phase transitions induced by 
the rate at which they are measured. A generalization of the acces-
sible dimension to such systems might reveal to what extent cir-
cuit complexity, as a measure of entanglement in deep dynamics, 
undergoes similar phase transitions. We hope that the present work, 
by innovating machinery for addressing complexity, stimulates 
further quantitative studies of holography, scrambling and chaotic  
quantum dynamics.
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Methods
Having overviewed the proof at a high level, here we fill in the key mathematics. 
Three points need clarifying. First, we must rigorously define the accessible 
dimension, or the dimension of U(A), which is not a manifold. Second, we must 
prove Proposition 1. Finally, we must elucidate steps in the proof of Theorem 1. 
We address these points using the toolbox of algebraic geometry. We associate with 
every R-gate architecture A a contraction map FA: SU(4)×R → SU(2n). This function 
maps a list of gates to an n-qubit unitary. The unitary results from substituting the 
gates into the architecture A (Fig. 3). The map contracts every edge (qubit) shared 
by two vertices (gates) in A.

The image of FA is the set U(A) of unitaries implementable with the 
architecture A. U(A) is a semialgebraic set, consisting of the solutions to a 
finite set of polynomial equations and inequalities over the real numbers 
(Supplementary Appendix A provides a review). That U(A) is a semialgebraic 
set follows from the Tarski–Seidenberg principle, a deep result in semialgebraic 
geometry (Supplementary Appendix A). A semialgebraic set’s dimension quantifies 
the degrees of freedom needed to describe the set locally. More precisely, a 
semialgebraic set decomposes into manifolds. The greatest dimension of any  
such manifold equals the semialgebraic set’s dimension. The dimension  
of U(A) is the architecture A’s accessible dimension. More restricted than a 
semialgebraic set is an algebraic set, which consists of the solutions to a finite  
set of polynomial equations.

Just as the contraction map’s image will prove useful, so will the map’s rank, 
defined as follows. Let x = (U1, U2, …, UR) ∈ SU(4)×R denote an input into FA, such 
that the Uj denote two-qubit gates. The map’s rank at x is the rank of a matrix that 
approximates FA linearly around x (the rank of the map’s Jacobian at x). The rank is 
low at x if perturbing x can influence the n-qubit unitary only along few directions 
in SU(2n).

Crucially, we prove that FA has the same rank throughout the domain, except 
on a measure-zero set, where FA has a lesser rank. The greater, ‘dominating’ rank is 
the dimension of U(A). To formalize this result, let Er denote the locus of points at 
which FA has a rank of r ≥ 0. Let E<r =

∪
r′ < rEr′ denote the set of points where FA 

has a lesser rank. Let rmax denote the maximum rank achieved by FA at any point x. 
We prove the following lemma in Supplementary Appendix B, using the dimension 
theory of real algebraic sets.
Lemma 1. (Low-rank locus) The low-rank locus E<rmax is an algebraic set of measure 
0 and so is closed (in the Lie-group topology). Equivalently, Ermax is an open set of 
measure 1. Consequently, dA = rmax.

Lemma 1 guarantees that the contraction map’s rank equals the accessible 
dimension dA almost everywhere in U(A).

We now turn to the proof of Proposition 1. The rank r of FA at each point x 
lower-bounds rmax, by definition. Consider an architecture AT of T blocks,  
each containing a backwards light cone. We identify an x at which r is lower- 
bounded by a quantity that grows linearly with R (the number of gates in the 
architecture AT). We demonstrate the point’s existence by constructing circuits 
from Clifford gates.

Consider a choice x = (U1, U2, …, UR) =: (Uj)j of unitary gates. Perturbing 
a Uj amounts to appending an infinitesimal unitary: Uj �→ Ũj = eiϵHUj. The 
H denotes a two-qubit Hermitian operator and ϵ ∈ R. H can be written as a 
linear combination of two-qubit Pauli strings Sk. (An n-qubit Pauli string is a 
tensor product of n single-site operators, each of which is a Pauli operator [X, Y 
or Z] or the identity, 1. The 4n n-qubit Pauli strings form a basis for the space 
of n-qubit Hermitian operators.) Consider perturbing each gate Uj using a 
combination of all 15 nontrivial two-qubit Pauli strings (Supplementary Fig. 4a): 
x = (Uj)j �→ x̃ = (exp(i

∑15
k=1 ϵj,kSk)Uj)j, wherein ϵj,k ∈ R. The perturbation 

x �→ x̃ causes a perturbation U = FAT (x) �→ Ũ = FAT (x̃) of the image under 
FAT. The latter perturbation is, to first order, ∂ϵj,k Ũ|ϵj,k=0. This derivative can be 
expressed as the original circuit with the Pauli string Sk inserted immediately after 
the gate Uj (Supplementary Fig. 4b).

The rank of FAT at x is the number of parameters ϵj,k needed to parameterize a 
general perturbation of U = FAT (x) within the image set U(AT). To lower-bound 
the rank of FAT at a point x, we need only show that ≥r parameters ϵj,k perturb 
FAT (x) in independent directions. To do so, we express the derivative as

∂ϵj,k F
AT (x̃)|ϵj,k=0 = Kj,kFAT (x), (4)

where Kj,k denotes a Hermitian operator (Supplementary Fig. 4c). Kj,k results from 
conjugating Sk, the Pauli string inserted into the circuit after gate Uj, with the later 
gates. The physical significance of Kj,k follows from perturbing the gate Uj in the 
direction Sk by an infinitesimal amount ϵj,k. The image FAT (x) is consequently 
perturbed, in SU(2n), in the direction Kj,k.

We choose for the gates Uj to be Clifford operators. The Clifford operators 
are the operators that map the Pauli strings to the Pauli strings, to within a phase, 
via conjugation. For every Clifford operator C and Pauli operator P, CPC† equals 
a phase times a Pauli string by definition of the Clifford group. As a result, the 
operators Kj,k are Pauli strings (up to a phase). Two Pauli strings are linearly 
independent if and only if they differ. For Clifford circuits, therefore, we can easily 
verify whether perturbations of x cause independent perturbation directions in 
SU(2n): we need only show that the resulting operators Kj,k are distinct.

We apply that fact to prove Proposition 1, using the following observation. 
Consider any Pauli string P and any backwards-light-cone-containing block of any 
architecture. We can insert Clifford gates into the block such that two operations 
are equivalent: (1) operating on the input qubits with P before the extended block 
and (2) operating with the extended block, then with a one-qubit Z. Supplementary 
Fig. 4d depicts the equivalence, which follows from the structure of backwards light 
cones. We can iteratively construct a Clifford unitary that reduces the Pauli string’s 
weight until producing a single-qubit operator. See Supplementary Appendix B  
for details.

We now prove Proposition 1 by recursion. Consider an R′-gate architecture 
AT′ formed from T′ < 4n − 1 blocks, each containing a backwards light cone 
and each of ≤L gates. Assume that there exists a list x′ of Clifford gates, which 
can be slotted into AT′, such that FAT′ has a rank ≥T′ at x′. Consider appending 
a backwards-light-cone-containing block to AT′. The resulting architecture 
corresponds to a contraction map whose rank is ≥T′ + 1.

By assumption, we can perturb x′ such that its image, FAT′ (x′), is perturbed 
in ≥T′ independent directions in SU(2n). These directions can be represented 
by Pauli operators K′

jm,km, wherein m = 1, 2, …, T′, by equation (4). Let 
P denote any Pauli operator absent from {K′

jm,km}. We can append to AT′ a 
backwards-light-cone-containing block, forming an architecture AT′ + 1 of T′ + 1 
backwards light cones. We design the new block from Clifford gates such that two 
operations are equivalent: (1) applying P to the input qubits before the extended 
blocks and (2) applying the extended block, then a single-site Z. We denote by x″ 
the list of gates in x′ augmented with the gates in the extended block. Conjugating 
the K′

jm,km with the new block yields operators K′
jm,km, for m = 1, 2, …, T′. 

They represent the directions in which the image FAT′+1 (x′′) is perturbed by 
the original perturbations of AT′. The K′

jm,km are still linearly independent Pauli 
operators. Also, the K′

jm,km and the single-site Z form an independent set, because 
P is not in {K′

jm,km}. Meanwhile, the single-site Z is a direction in which the last 
block’s final gate can be perturbed. The operators Kjm,km, augmented with the 
single-site Z, therefore span T′ + 1 independent directions along which FAT′+1 (x′′) 
can be perturbed. Therefore, T′ + 1lower-bounds the rank of FAT′+1.

We apply the above argument recursively, starting from an architecture that 
contains no gates. The following result emerges: consider any architecture AT that 
consists of T backwards-light-cone-containing blocks. At some point x, the map 
FAT has a rank lower-bounded by T. Lemma 1 ensures that the same bound  
applies to dAT.

To conclude the proof of Theorem 1, we address an architecture A′ whose 
accessible dimension satisfies dA′ < dAT. Consider sampling a random circuit 
with the architecture AT. We must show that the circuit has a zero probability 
of implementing a unitary in U(A′). To prove this claim, we invoke the 
constant-rank theorem: consider any map whose rank is constant locally—in 
any open neighbourhood of any point in the domain. In that neighbourhood, 
the map is equivalent to a projector, up to a diffeomorphism. We can apply the 
constant-rank theorem to the contraction map: FAT has a constant rank throughout 
Ermax, by Lemma 1. Therefore, FAT acts locally as a projector throughout Ermax—and 
so throughout SU(4)×R, except on a measure-0 region, by Lemma 1. Consider 
mapping an image back, through a projector, to a pre-image. Suppose that the 
image forms a subset of dimension lower than the whole range’s dimension. The 
backward mapping just adds degrees of freedom to the image. Therefore, the 
pre-image locally has a dimension less than the domain’s dimension. Hence the 
pre-image is of measure 0 in the domain. We use the unitary group’s compactness 
to elevate this local statement to the global statement in Theorem 1.
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Appendix A: Algebraic and semialgebraic sets

For convenience, we review elementary aspects of algebraic geometry over the real numbers. We apply these properties in the
proof of Theorem 1. Ref. [45] contains a more comprehensive treatment.

Definition 4 (Algebraic set). A subset V ⊆ Rm is called an algebraic set, or an algebraic variety, if, for a set of polynomials
{fj}j ,

V = {x ∈ Rm|fj(x) = 0}. (A1)

A subset V ′ ⊆ V is called an algebraic subset if V ′ is an algebraic set. We call a subset W ⊆ Rm a semialgebraic set if, for sets
{fj}j and {gk}k of polynomials,

W = {x ∈ Rm|fj(x) = 0, gk(x) ≤ 0}. (A2)

A natural topology on algebraic sets is the Zariski topology.

Definition 5 (Zariski topology). Let V denote an algebraic set. The Zariski topology is the unique topology whose closed sets
are the algebraic subsets of V .

A traditional definition of “dimension” for algebraic sets involves irreducible sets.

Definition 6 (Irreducible set). Let X denote a topological space. X is called irreducible if it is not the union of two proper
closed subsets.

Definition 7 (Dimension of algebraic sets). Let V be an algebraic set that is irreducible with respect to the Zariski topology.
The dimension of V is the maximal length d of any chain V0 ⊂ V1 ⊂ · · · ⊂ Vd of distinct nonempty irreducible algebraic subsets
of V .

The relevant algebraic sets in the proof of Theorem 1 are SU(4)×R and SU(2n). Our interest in semialgebraic sets stems from
the following principle. In the following, we refer to a function F : Rn → Rm as a polynomial map if its entries are polynomials
in the entries of its input.

Theorem 2 (Tarski-Seidenberg principle). Let F : Rn → Rm be a polynomial map. If W is a semialgebraic set, so is F (W ).

The Tarski-Seidenberg principle applies to the map that contracts sets of quantum gates. This application is important for us,
because it provides a natural notion of dimension for the contraction map’s image.

All semialgebraic sets (and hence all algebraic sets) decompose into smooth manifolds.

Theorem 3 (Stratification of semialgebraic sets). If W is a semialgebraic set, then W =
⋃N
j=1Mj , wherein each Mj denotes a

smooth manifold. If W is an algebraic set of dimension d in the sense of Definition 7, then maxj{dim(Mj)} = d.

This maxj{dim(Mj)} does not depend on the decomposition chosen. This independence motivates the following definition:

Definition 8 (Dimension of semialgebraic sets). Let W denote a semialgebraic set, such that W =
⋃N
j=1Mj , wherein each Mj

denotes a manifold. The greatest dimension of any manifold, maxj{dim(Mj)}, is the semialgebraic set’s dimension.

This definition generalizes Definition 7, due to Theorem 3. One more fact about semialgebraic sets’ dimensions will prove
useful:

Lemma 2 (Dimension of an image). Let F : Rn → Rm be a polynomial map. If W is a dimension-d semialgebraic set, F (W )
is of dimension ≤ d.

The bound follows from combining the results of Ref. [45, Prop. 2.8.7] with the results of Ref. [45, Prop. 2.8.6]. (Ref. [45]
invokes a semialgebraic mapping, which encompasses polynomial maps.)
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Appendix B: Proof of the main theorem and lemmata

In this appendix, we prove Lemma 3, Lemma 4, and the main theorem. The proofs rely on the topics reviewed in Appendix A,
as well as the following notation and concepts. In differential geometry, the rank of FA at the point x = (U1, U2, . . . , UR) is
defined as the rank of the derivative DxF

A. Mapping lists of gates to unitaries, F is a complicated object. We can more easily
characterize a map from real numbers to real numbers. Related is a map from Hermitian operators to Hermitian operators: An
n-qubit state evolves under a Hamiltonian represented by a 2n × 2n Hermitian operator, which has (2n)2 = 4n real parameters.
Therefore, for convenience, we shift focus from unitaries to their Hermitian generators. We construct a map whose domain is
the algebra su(4)×R ' R15R that generates SU(4)×R. The range is the set of n-qubit Hermitian operators, su(2n) ' R4n . We
construct such a map from three steps, depicted by the dashed lines in Fig. 1.

Subset of  
the domain,  

SU(4)×R

Subset of  
the image,  

SU(2n)

Subset of  

realized as 
"#(4)×R ≃ ℝ15R ,
(H1U1, …, HnUn)

Subset of  
 

realized as 
"#(2n) ≃ ℝ4n,

HF(x)

Contraction map

Local chart, 
exp×R

x

Inverse of 
local chart 

expF(x)

Figure 1. Three-part map used in the proof of Lemma 3. Hj denotes the jth two-qubit Hermitian operator, Uj denotes the jth two-qubit
unitary, and H denotes an n-qubit Hermitian operator.

The first step is a chart, a diffeomorphism that maps one manifold to another invertibly. Our chart acts on the algebra su(4)×R

that generates SU(4)×R. To define the chart, we parameterize an element H of the jth copy of su(4):

H =
∑

α,β∈{1,X,Y,Z}
(α,β)6=(1,1)

λj,α,β α⊗ β, (B1)

wherein λj,α,β ∈ R. For each point x = (U1, U2, . . . , UR) ∈ SU(4)×R, we define the local exponential chart exp×Rx :
su(4)×R → SU(4)×R as exp×Rx (H1, . . . ,HR) := (eiH1U1, . . . , e

iHRUR), and we define the analogous expU : su(2n) →
SU(2n) as expU (H) := eiHU . These charts are standard for matrix Lie groups. Both are locally invertible in small neighbour-
hoods around x and U , by a standard result in Lie-group theory [46]. The three-part map, represented by the dashed lines in
Fig. 1, has the form exp−1

FA(x)
◦FA ◦ exp×Rx .

We now characterize the map’s derivative, to characterize the derivative of FA, to characterize the rank of FA. Denote by D0

the derivative evaluated where the Hermitian operators are set to zero, such that each chart reduces to the identity operation. The
image of D0(exp−1

FA(x)
◦FA ◦ exp×Rx ) is spanned by the operators

∂λj,A,B

(
exp−1

FA(x)
◦FA ◦ exp×Rx

) ∣∣∣
0
. (B2)

These operators have the form

UR . . . Uj+1PUj . . . U1, (B3)

wherein P denotes a two-qubit Pauli operator. We apply the setting above to prove the following restatement of Lemma 1 in the
methods section.

Lemma 3 (Low-rank locus). The low-rank locus E<rmax
is an algebraic set of measure 0 and so is closed (in the Lie-group

topology). Equivalently, Ermax is an open set of measure 1. Consequently, dA = rmax.

Proof. Consider representing an operator (B3) as a matrix relative to an arbitrary tensor-product basis. To identify the matrix’s
form, we imagine representing the unitaries in SU(4)×R as matrices relative to the corresponding tensor-product basis for
C2 ⊗ C2. Combining the unitary matrices’ elements polynomially yields the matrix elements of (B3).
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Figure 2. Examples of partial derivatives ∂λj,α,β (exp
−1
FA(x)

◦FA ◦ exp×4
x )

∣∣
λj,α,β=0

that span the image of D0(expFA(x) ◦FA ◦ exp×4
x ).

DxF
A has the same rank as D0(exp−1

FA(x)
◦FA ◦ exp×Rx ), because exp×Rx and expFA(x) are local charts [47]. Recall that

E<rmax denotes the locus of points, in SU(4)×R, where FA has a rank < rmax. Equivalently, by the invertible-matrix theorem,
E<rmax consists of the points where certain minors of D0(exp−1 ◦FA ◦ exp×Rx )—the determinants of certain collections of
rmax×rmax matrix elements—vanish. The determinants’ vanishing implies a set of equations polynomial in the matrix elements
of D0(exp−1 ◦FA ◦ exp×Rx )—and so, by the last paragraph, polynomial in the entries of matrices in SU(4)×R. SU(4)×R is a
real algebraic set, being the set of operators that satisfy the polynomial equations equivalent to UU† = 1 and detU = 1. Thus,
by Definition 4, the points of rank < r form an algebraic subset of SU(4)×R.

We can now invoke properties of algebraic subsets, reviewed in Appendix A. First, we prove that SU(4)×R is irreducible in
the Zariski topology. The Zariski topology of SU(4)×R is coarser than the topology inherited from (C4×4)×R, identified with
R32R. As SU(4)×R is connected in the finer topology, so is SU(4)×R connected in the Zariski topology. This connectedness
implies that SU(4)×R is irreducible, as SU(4)×R is an algebraic group [48, Summary 1.36]. Being irreducible, SU(4)×R

has a dimension à la Definition 7. If the low-rank locus E<rmax
is not all of SU(4)×R, then it is, by Definition 7, a lower-

dimensional algebraic subset. Every dimension-N algebraic subset decomposes into a collection of submanifolds, each of
which has dimension ≤ N [45, Prop. 9.1.8]. As a proper submanifold has measure 0, E<rmax

has measure 0. As an algebraic
subset, E<rmax

is closed in the Lie-group topology.
Finally, we prove that dA = rmax. In a small open neighborhood V of a point x ∈ Ermax

, the contraction map’s rank is
constant, by Lemma 3. By the constant-rank theorem [47, Thm 5.13], therefore, FAT acts locally as a projector throughout
Ermax

—and so throughout SU(4)×R (except on a region of measure 0, by Lemma 3). The projector has a rank, like FAT , of
rmax. A rank-rmax projector has an image that is a dimension-rmax manifold. Hence rmax ≤ dA. The other direction, dA ≤
rmax, follows directly from Sard’s theorem [49]. Let Xr denote the set of points where FA is rank-r. As FA is a smooth map,
Sard’s theorem ensures that r upper-bounds the Hausdorff dimension of the image FA(Xr). As FA(SU(4)) is a semialgebraic
set, it stratifies into manifolds, by Theorem 3. Therefore, the Hausdorff dimension coincides with the semialgebraic set’s
dimension.

Lemma 3, combined with the following lemma, implies Proposition 1.

Lemma 4 (Existence of a high-rank point). Let T ∈ Z>0 denote any nonnegative integer. Consider any architecture AT formed
from T L-gate, backwards-light-cone–containing blocks. The map FAT has the greatest rank possible, rmax ≥ T .

Proof. Without loss of generality, we assume that all T blocks have identical architectures. This assumption will simplify the
notation below. We can lift the assumption by complicating the notation.

Consider an arbitrary point x = (U1, U2, . . . , UR) ∈ SU(4)×R. For all x, the contraction map FAT has a derivative charac-
terized, in the proof of Lemma 3, with local charts expFAT (x) and exp×Rx . The number of gates in AT is R ≤ TL. The map
FAT has an image spanned by the partial derivatives ∂λj,α,β (exp−1

FAT (x)
◦FAT ◦ exp×Rx )

∣∣
λj,α,β=0

. Each partial derivative has
the form

URUR−1 . . . Uj+1(α⊗ β)UjUj−2 . . . U1 (B4)

(Fig. 2). α and β denote Pauli operators; each acts nontrivially on just one of the two qubits on which Uj acts nontrivially. We
implicitly pad operators with identities wherever necessary, such that the operators act on the appropriate Hilbert space.

We aim to lower-bound the greatest possible rank, rmax, of the map FAT . To do so, we construct a point

xT =


C(1)

1 , . . . , C
(L)
1︸ ︷︷ ︸

L gates

, . . . , C
(1)
T , . . . , C

(L)
T︸ ︷︷ ︸

L gates


 ∈ SU(4)×R . (B5)

We will choose for the C(i)
j ’s to be Clifford gates. A gate’s subscript, j, labels the blocks to which the gate belongs. The

superscript, i, labels the gate’s position within the block. The gates constitute a block as C(L)
j C

(L−1)
j . . . C

(1)
j =: Cj . Our
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construction of Cj relies on a property of an arbitrary Pauli operator Qj : We can choose the Clifford gates C(i)
j such that block

Cj maps Qj to a Z on qubit t: CjQjC
†
j = Zt ≡ 1⊗(t−1) ⊗ Z ⊗ 1⊗(n−t). We now show how the existence of such a Clifford

unitary Cj implies Lemma 4. Afterward, we show to construct Cj .
Let us choose the Pauli strings Qj that guide our construction of the Clifford block Cj . We choose the Qj’s inductively over

T such that {(CTCT−1 . . . Cj)Qj(Cj−1Cj−1 . . . C1)}1≤j≤T is linearly independent. We start with an arbitrary Pauli string Q1.
The form of Q1 guides our construction of C1. Second, we choose for Q2 to be an arbitrary Pauli string 6= C1Q1C

†
1 . Q2 guides

our construction of C2. Third, we choose for Q3 to be an arbitrary Pauli string outside span{C1C2Q1C
†
2C
†
1 , C2Q2C

†
2}. This

Q3 guides our construction of C3. After T steps, we have constructed all the Qj’s and Cj’s. If T < 4n− 1, enough Pauli strings
exist that, at each step, a Pauli string lies outside the relevant span.

The operators (CTCT−1 . . . Cj)Qj(Cj−1Cj−2 . . . C1), for j ∈ [1, T ], are in the image of D0(exp−1
FAT (xT )

◦FAT ◦ exp
×(R)
xT ):

∂λjL,11,Z

(
exp−1

FAT (xT )
◦FAT ◦ exp×RxT

) ∣∣∣
0

= (CTCT−1 . . . Cj+1)(1t−1 ⊗ Zt ⊗ 1n−t)(CjCj−1 . . . C1)

= (CTCT−1 . . . Cj)Qj(Cj−1Cj−2 . . . C1).
(B6)

We have assumed, without loss of generality, that each block’s final gate acts on qubit t. For all j ∈ [1, T ], the operators
(CTCT−1 . . . Cj)Qj(Cj−1Cj−2 . . . C1) are in the image of D0(exp−1

FAT (xT )
◦FAT ◦ exp×RxT ) and are linearly independent.

Therefore, the rank of FAT at the point xT is ≥ T .
In the remainder of this proof, we provide the missing link: We show that, for every Pauli string P , we can construct a

backwards-light-cone–containing block that implements a Clifford unitary C = C(L)C(L−1) . . . C(1) such that CPC† = Zt.
We drop subscripts because subscripts index blocks and this prescription underlies all blocks. By definition, each block contains
a qubit t to which each other qubit t′ connects via gates in the block. The path from a given qubit t′ depends on t′, and
multiple paths may connect a t′ to t. Also, one path may connect t to multiple qubits. We choose an arbitrary complete set
of paths (which connect all the other qubits to t) that satisfies the merging property described below. To introduce the merging
property, we denote by m the number of paths in the set. Let p ∈ [1,m] index the paths. Path p contacts the qubits in the order
ip,1 7→ ip,2 7→ . . . 7→ ip,lp = t, reaching lp ∈ [1, L+ 1] qubits. We choose the paths such that they merge whenever they cross:
If ip,j = ip′,j′ , then ip,j+k = ip′,j′+k for all k ∈ {1, 2, . . . , lp − j=lp′ − j′}. We choose for all the gates outside these paths to
be identities. Next, we choose the nontrivial gates in terms of an arbitrary Pauli string.

Let P =
⊗n

j=1 Pj denote an arbitrary nontrivial n-qubit Pauli string. Some Clifford unitary C maps P to a Pauli string that
acts nontrivially on just one qubit, which we choose to be t. Indeed, consider conjugating an arbitrary n-qubit Pauli operator P
with a uniformly random Clifford operator C. The result, C†PC, is a uniformly random n-qubit Pauli operator [50]. Therefore,
for every initial Pauli operator P and every final Pauli operator, some Clifford operator C maps one to the other.

We arbitrarily choose for the string’s nontrivial single-qubit Pauli operator to be Z. Let ip,kp denote the first index j in
ip,1 7→ ip,2 7→ . . . 7→ ip,lp for which Pj 6= 1. By definition, Pip,k ⊗ Pip,k+1

is a nontrivial Pauli string. There exists a two-local
Clifford gate Cp,(0) that transforms Pip,k ⊗ Pip,k+1

into a Z acting on qubit ip,k+1:

Cp,(0)(Pp,ik ⊗ Pp,ik+1
)(Cp,(0))† = 1ik ⊗ Zik+1

. (B7)

Operating with Cp,(0) (padded with 1’s) on the whole string P yields another Pauli string:

Cp,(0)P (Cp,(0))† =
n⊗

j=1

P
p,(1)
j . (B8)

Let ip,` denote the first index j for which P p,(1)j is a nontrivial Pauli operator. Since

P
(1)
ip,k+1

⊗ P (1)
ip,k+2

= Zip,k+1
⊗ Pip,k+2

, (B9)

ip,` = ip,k+1. There exists a two-local Clifford gate Cp,(1) that shifts the Z down the path:

Cp,(1)
(
P
p,(1)
ip,k+1

⊗ P p,(1)ip,k+2

)
(Cp,(1))† = 11 ⊗ Zip,k+2

. (B10)

We perform this process—of shifting the Z down the path and leaving an 11 behind—for every path simultaneously. For
example, if we begin with two equal-length paths, C(2) = Cp,(2)Cp

′,(2). This simultaneity is achievable until two paths merge.
Whenever paths merge, we choose the next Clifford gate such that we proceed along the merged path. Every qubit is visited,
and every path ends at qubit t. Therefore, we have constructed a circuit that implements a Clifford operation C such that
CPC† = Zt. Figure 4(d) depicts an example of this construction.
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Figure 3. Along every contraction is a redundant copy of the gauge group SU(2).

The foregoing proof has a surprising implication: A map’s rank is somewhat divorced from a circuit’s complexity. The rank of
FAT at xT is at least T , which could be a large number. Yet, the contracted unitary corresponding to this circuit is Clifford. Hence
the extended circuit’s complexity surpassed the original circuit’s complexity only a little—by, at most, O(n2/ log(n)) [51].

Finally, we combine Lemmata 3 and 4 to prove Theorem 1:

Theorem 1 (Linear growth of complexity). Let U denote a unitary implemented by a random quantum circuit in an architecture
formed by concatenating T blocks of ≤ L gates each, each block containing a backwards light cone. The unitary’s circuit
complexity is lower-bounded as

Cu(U) ≥ R

9L
− n

3
, (1)

with unit probability, until the number of gates grows to T ≥ 4n−1. The same bound holds for Cstate(U |0n〉), until T ≥ 2n+1−1.

Proof of Theorem 1. We reuse the notation introduced in Lemmata 3 and 4. Examples include AT , an arbitrary architecture that
satisfies the assumptions in Lemma 4 and that consists of R≤TL gates. FAT denotes the corresponding contraction map. Ermax

denotes the locus of points at which FAT achieves its greatest rank, rmax. In a small open neighborhood V of a point x ∈ Ermax ,
the contraction map’s rank is constant, by Lemma 3. By the constant-rank theorem [47, Thm 5.13], therefore, FAT acts locally
as a projector throughout Ermax—and so throughout SU(4)×R (except on a region of measure 0, by Lemma 3). The projector
has a rank, like FAT , of rmax. Therefore, in the open set V ⊆ SU(4)×R, FAT is equivalent, up to a diffeomorphism, to the
projection

(
x1, . . . , xdim(SU(4)×R)

)
7→ (x1, . . . , xrmax

, 0, . . . , 0︸ ︷︷ ︸
dim(SU(2n))−rmax

). (B11)

For simplicity of notation, we identify V with its image under the local diffeomorphism (we do not distinguish V from its image
notationally).

The open subset V contains, itself, an open subset that decomposes as a product: V1 × V2 ⊆ V , such that x ∈ V1 × V2 and,
as suggested by Eq. (B11),

V1 ⊆ Rrmax , and V2 ⊆ Rdim(SU(4)×R)−rmax . (B12)

(Again to simplify notation, we are equating the local sets Vj=1,2 with their images, under local charts, in Rm, for m ∈ Z>0.)
From now on, V1 × V2 is the open subset of interest. The contraction map’s equivalence to a projector, in V1 × V2, will help us
compare high-depth circuits with low-depth circuits: Consider a circuit whose contraction map takes some local neighborhood
to an image of some dimension. How does the dimension differ between high-depth circuits and low-depth circuits? We start by
upper-bounding the dimension for low-depth circuits.

We have been discussing an R-gate architecture AT . Consider any smaller architecture A′ of R′ < R gates. A′ is encoded
in a contraction map FA

′
whose domain is SU(4)×R

′
. As explained in the proof of Lemma 3, FA

′
is a polynomial map.

Therefore, FA
′

has a property prescribed by the Tarski-Seidenberg principle [45] (Theorem 2): The image FA
′
(SU(4)×R

′
) is a

semialgebraic set of dimension ≤ dim(SU(4)×R
′
) = R′ dim(SU(4)) = 15R′.

We can strengthen this bound: Consider contracting two gates that share a qubit. The shared qubit may undergo a one-
qubit gate specified by three parameters (one parameter per one-qubit Pauli). The one-qubit gate can serve as part of the first
two-qubit gate or as part of the second two-qubit gate; which does not affect the contraction. Hence the contraction contains
3 fewer parameters than expected. In other words, the contraction has a redundant copy of the gauge group SU(2): Every
unitary U ∈ SU(4) decomposes as (U1 ⊗ U2)K(V1 ⊗ V2), wherein K = ei(aZ⊗Z+bY⊗Y+cX⊗X) and the Uj and the Vj
denote single-qubit unitaries [52]. Let us classify the shared qubit as an input of the second two-qubit gate. A two-qubit
gate in a circuit’s bulk accepts two input qubits outputted by earlier gates. So we might expect an R′-gate circuit to have
dim(FA

′
(SU(4)×R

′
)) ≤ 15R′ − 2× 3R′ = 9R′. But the first n/2 gates [the leftmost vertical line of gates in Fig. 2(a)] receive
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their input qubits from no earlier gates. So we must restore 3 × 2 parameters for each of the n/2 initial gates, or restore 3n
parameters total:

dim(FA
′
(SU(4)×R

′
)) ≤ 9R′ + 3n. (B13)

We have upper-bounded the dimension for low-depth circuits.
Technically, this bound on the dimension does not follow from Lemma 2 as it does for the bound dimFA

′
(SU(4)×R

′
) ≤ 15R′.

The reason is, the quotient space SU(4)×R
′
/SU(2)×(2R

′−n) is not necessarily semialgebraic. This difficulty can be resolved
via Sard’s theorem [49], which asserts, as a special case, that the Hausdorff dimension of a smooth map’s image is bounded by
its domain’s dimension. A semialgebraic set’s dimension is the greatest dimension in its stratification and so agrees with the
Hausdorff dimension.

We now lower-bound the corresponding dimension for high-depth circuits. We can do so by lower-bounding the greatest
possible rank, rmax, of a high-depth architecture’s contraction map, FAT : In an open neighborhood of x ∈ SU(4)×R, FAT is
equivalent to a projector, which has some rank. The neighborhood’s image, under the projector, is a manifold. The manifold’s
dimension equals the projector’s rank. Therefore, we bound the rank to bound the dimension.

Augmenting an architecture with T (≤ L)-gate blocks increases the contraction map’s greatest possible rank, rmax, by
≥ T − 1. Therefore, for an architecture-AT circuit of R ≤ TL gates, we have constructed a point of rank T ≥ R/L. Therefore,

rmax ≥ R/L. (B14)

We have lower-bounded the dimension of the image of a high-depth architecture’s contraction map [the rank in Ineq. (B14)]
and have upper-bounded the analogous dimension for a low-depth architecture [Ineq. (B13)]. The high-depth-architecture di-
mension upper-bounds the low-depth-architecture dimension,

dim
(
FA

′
(SU(4)×R

′
)
)
< rmax, (B15)

if

9R′ + 3n < rmax, (B16)

by Ineq. (B13). Furthermore, by Ineqs. (B13) and (B14), Ineq. (B15) holds if 9R′ + 3n < R/L, or R′ < R
9L − n

3 .

R′ <
R

9L
− n

3
. (B17)

holds. We have upper-bounded the short circuit’s gate count in terms of the deep circuit’s gate count.
Let us show that, if Ineq. (B17) holds, the points in SU(4)×R resulting in unitaries that can be prepared with short circuits

form a set of measure 0. We will begin with a point x ∈ Ermax
; apply the short-architecture contraction map FA

′
; and follow

with the deep-architecture contraction map’s inverse, (FAT )−1. The result takes up little space in SU(4)×R, we will see.
To make this argument rigorous, we recall the small open neighborhood V1 × V2 of x ∈ Ermax . In V1 × V2, FA

′
(SU(4)×R

′
)

has the preimage, under FAT , of
(
FAT |V1×V2

)−1 (
FA

′
(SU(4)×R

′
)
)
'
[
FA

′
(SU(4)×R

′
) ∩ V1

]
× V2. (B18)

The ' represents our identification of the map FA with its representation in local charts. By the proof of Lemma 3,
FA

′
(SU(4)×R

′
) is a semialgebraic set. Therefore, by Theorem 3, FA

′
(SU(4)×R

′
) is a union of smooth manifolds. Each

manifold is of dimension≤ 9R′+3n, by Theorem 3 and Ineq. (B13). By Eq. (B12), V2 is of dimension dim(SU(4)×R)−rmax.
Therefore, [FA

′
(SU(4)×R

′
) ∩ V1] × V2 consists of manifolds of dimension ≤ 9R′ + 3n + dim(SU(4)×R) − rmax. Using

Ineq. (B16), we can cancel the 9R′ + 3n with the −rmax, at the cost of loosening the bound: [FA
′
(SU(4)×R

′
) ∩ V1] × V2

consists of manifolds of dimension < dim(SU(4)×R). As a collection of manifolds of submaximal dimension, the points in
SU(4)×R that contract to unitaries implementable by short circuits (satisfying (B17)), restricted to a small open neighborhood
V1, form a set of measure 0.

Let us extend this conclusion about n-qubit unitaries—about images of maps FA
′
—to a conclusion about preimages—about

lists of gates. By Lemma 3, Ermax
is of measure 1. Therefore, for every ε > 0, there exists a compact subset K ⊆ Ermax

of
measure 1−ε. SinceK is compact, for any cover ofK by open subsets, a finite subcover exists. The foregoing paragraph shows
that, restricted to each open set in this finite subcover, the preimage of the unitaries reached by lower-depth circuits is of measure
0. Therefore, the preimage of the R′-gate, architecture-A′ circuits is of measure ≤ ε. Since ε > 0 is arbitrary, the preimage is
of measure 0. The foregoing argument holds for each architecture A′ of R′ gates. Hence each preimage forms a set of measure
0. The total measure is subadditive. So the union of the preimages, over all architectures with ≤ R′ gates, is of measure 0. We
have proven the circuit-complexity claim posited in Theorem 1. The state-complexity claim follows from tweaks to the proof
(Appendix C).
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Appendix C: Proof of the linear growth of state complexity

At the end of Appendix B, we proven part of Theorem 1—that circuit complexity grows linearly with the number of gates.
Here, we prove rest of the theorem—that state complexity grows linearly. We need only tweak the proof presented in Appendix B.

Consider instead of the contraction map FAT , the map that contracts a list of gates, forming an architecture-AT circuit, and
applies the circuit to |0n〉, to get

GAT : SU(4)×R → S2×2n−1 ⊆ C2n . (C1)

The argument works the same as in Appendix B, with one exception: The derivative DxG
AT has an image that does

not contain 4n − 1 nontrivial linearly independent Pauli operators. Rather, the image contains the computational basis
{iκ|x〉}x∈{0,1}n,κ∈{0,1} formed by applying tensor products of Z,X and Y to |0n〉. (We denote the imaginary number

√
−1 by

i.) The proof of Lemma 3 ports over without modification, as GAT is a polynomial map between algebraic sets.
The proof of Lemma 4 changes slightly. We must prove the existence of a point x ∈ SU(4)×R at which GAT has a rank at

least linear in the circuit depth. The only difference in the proof is, we must choose the operators Qj inductively such that the
states (CTCT−1 . . . Cj)Qj(Cj−1Cj−2 . . . C1)|0n〉 are linearly independent. Such a choice is possible if T < 2 × 2n − 1, the
number of real parameters in a pure n-qubit state vector.

Appendix D: Randomized architectures

From Theorem 1 follows a bound on the complexity of a doubly random circuit: Not only the gates, but also the gates’
positions, are drawn randomly. This model features in Ref. [22]. Our proof focuses on nearest-neighbor gates, but other models
(such as all-to-all interactions) yield similar results.

Corollary 1 (Randomized architectures). Consider drawing an n-qubit unitary U according to the following probability distri-
bution: Choose a qubit j uniformly randomly. Apply a Haar-random two-qubit gate to qubits j and j + 1. Perform this process
R times. With high probability, the unitary implemented has a high complexity: For all α ∈ [0, 1),

Pr

(
Cu(U) ≥ α R

9n(n− 1)2
− n

3

)
≥ 1− 1

1− α (n− 1)e−n . (D1)

Proof. The proof relies on the following strategy: We consider constructing blocks randomly to form a circuit. If the blocks
contain enough gates, we show, many of the blocks contain backwards light cones. This result enables us to apply Theorem 1 to
bound the circuit’s complexity.

Consider drawing L gates’ positions uniformly randomly. For each gate, the probability of drawing position (j, j + 1)
is 1/(n − 1). The probability that no gates act at position (j, j + 1) is (1 − 1/(n − 1))L. Let us choose for each block
to contain L = n(n − 1)2 gates. Define a binary random variable Ij as follows: If one of the gates drawn during steps
(j − 1)n(n− 1), (j − 1)n(n− 1) + 1, . . . , jn(n− 1) acts at (j, j + 1), then Ij = 1. Otherwise, Ij = 0. With high probability,
gates act at all positions:

p := Pr



n−1∧

j=1

(Ij = 1)


 =

(
1−

(
1− 1

n− 1

)n(n−1))n−1
≥
(
1− e−n

)n−1 ≥ 1− (n− 1)e−n. (D2)

We have invoked the inverse Bernoulli inequality and the Bernoulli inequality. We will use this inequality to characterize blocks
that contain backwards light cones.

Consider drawing T L-gate blocks randomly, as described in the corollary. Denote by X the number of blocks in which at
least one position is bereft of gates: For some j, Ij = 0. With high probability, X is small: For all a ∈ (0, T ],

Pr(X ≥ a) ≤ T (1− p)
a

≤ T (n− 1) e−L/n/a , (D3)

by Markov’s inequality. Let us choose for the threshold to be a = (1− α)T . With overwhelming probability, αT blocks satisfy∧
j(Ij = 1) and so contain gates that act at all positions (j, j+ 1) in increasing order. Therefore, these blocks contain a staircase

architecture and so contain backwards light cones. Therefore, a slight variation on Theorem 1 governs the αT × L = αR
gates that form the blocks. Strictly speaking, Theorem 1 governs only consecutive backwards-light-cone–containing blocks. In
contrast, extra gates may separate the blocks here. However, the extra gates can only increase the contraction map’s image.
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Therefore, the additional (1−α)TL gates cannot decrease the accessible dimension dAT . Therefore, the bound from Theorem 1
holds. With probability ≥ 1− 1

1−α (n− 1) e−n over the choice of architecture,

Cu(U) ≥ R− (1− α)R

9n2(n− 1)
− n

3
, (D4)

with probability one over the choice of gates. This bound is equivalent to Ineq. (D1).

Appendix E: Linear growth of slightly robust circuit complexity

Corollary 2 extends Theorem 1 to accommodate errors in the target unitary’s implementation. We prove Corollary 2 by
drawing on the proof of Theorem 1 and reusing notation therein.

Corollary 2 (Slightly robust circuit complexity). Let U denote the n-qubit unitary implemented by any random quantum circuit
in any architecture AT that satisfies the assumptions in Theorem 1. Let U ′ denote the n-qubit unitary implemented by any
circuit of R′ ≤ R/(9L) − n/3 gates. For every δ ∈ (0, 1], there exists an ε := ε(AT , δ) > 0 such that the Frobenius distance
dF(U,U ′) ≥ ε, with probability 1− δ, unless R/L > 4n − 1.

Proof of Corollary 2. The proof of Theorem 1 can be modified to show that, for every δ > 0, there exists an open set B ⊆
SU(2n) that contains FA

′
(SU(4)×R

′
), such that the preimage (FAT )−1(B) is small—of measure ≤ δ. The modification is as

follows. For every δ′ > 0, there exists a measure-(1 − δ′) compact subset K of Ermax
. As K is compact, there exists a finite

cover of K that has the following properties: K is in the union ∪jV j of subsets V j . On the V j , the contraction map FAT is
equivalent to a projector, up to a local diffeomorphism. As in the proof of Theorem 1, we can assume, without loss of generality,
that V j = V j1 × V j2 . The V j1 and V j2 are defined analogously to the V1 and V2 in the proof of Theorem 1. For each V j , there
exists an open neighborhood W j of FA

′
(SU(4)×R

′
) ∩ V j1 such that W j has an arbitrarily small measure δ′′j > 0. Therefore,

B := ∪jW j has a preimage of measure ≤ δ′ +∑j δ
′′
j = δ. Each of the summands, though positive, can be arbitrarily small.

The Frobenius norm induces a metric dF on SU(4)×R. In terms of dF, we define the function

dF
(
. , FAT (SU(4)×R) \B

)
: FA

′
(SU(4)×R

′
)→ R≥0. (E1)

This function is continuous, and FA
′
(SU(4)×R

′
) is compact. Therefore, the function achieves its infimum at a point xmin ∈

FA
′
(SU(4)×R

′
). Therefore, the minimal distance to FAT (SU(4)×R) \ B is dF(xmin, F (SU(4)×R) \ B). Since B is open,

FA(SU(4)×R) \B is closed and so compact. By the same argument,

ε(AT , δ) := dF
(
xmin, F (SU(4)×R) \B

)
= inf
y∈F (SU(4)×R)\B

{dF(xmin, y)} = dF(xmin, ymin) > 0. (E2)

We have identified an ε > 0 that satisfies Corollary 2.

Appendix F: Notions of circuit complexity

As circuit complexity is a widely popular concept, there is a zoo of quantities that measure it. We prove our main theorem
for the straightforward definition of exact circuit implementation—the most straightforward notion of a circuit complexity—and
for a version of approximate circuit complexity (Corollary 2) with an uncontrollably small error. In this appendix, we briefly
mention other notions of complexity, partially to review other notions and partially to place the main text’s findings in a wider
context. Let U ∈ SU(2n) denote a unitary. Ref. [10] discusses notions of approximate circuit complexity.

Definition 9 (Approximate circuit complexity). The approximate circuit complexity Cu(U, η) is the least number of 2-local
gates, arranged in any architecture, that implements U up to an error η > 0 in operator norm ||.||.

This definition is similar in mindset to the above (slightly) robust definition of a circuit complexity. For every pair U,U ′ ∈
SU(2n) of circuits, the Frobenius distance between them satisfies

1

2n
dF(U,U ′) ≤ ||U − U ′|| ≤ dF(U,U ′). (F1)

A widely used proxy for quantum circuit complexity—one that is increasingly seen as a complexity measure in its own right—
is Nielsen’s geometric approach to circuit and state complexity [9, 10, 12]. This approach applies geometric reasoning to
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circuit complexity and led to many intuitive insights, including Brown and Susskind’s conjectures about the circuit complexity’s
behavior under random evolution. To connect to cost functions as considered in Nielsen’s framework, consider 1-local and
2-local Hamiltonian terms H1, H2, . . . ,Hm in the Lie algebra su(2n) of traceless Hermitian matrices, normalized as ‖Hj‖ = 1
for j = 1, 2, . . . ,m. Consider generating a given unitary, by means of a control system, following Schrödinger’s equation:

d

dt
U(t) = −iH(t)U(t), wherein H(t) =

m∑

j=1

hj(t)Hj . (F2)

The control function [0, τ ] → Rm is defined as t 7→ (h1(t), . . . , hm(t)) and satisfies U(0) = 1. That is, a quantum circuit
results from time-dependent control. In practice, not all of Rm reflects meaningful control parameters; merely a control region
R ⊂ Rm does. With each parameterized curve is associated a cost function c : R → R, so that the entire cost of a unitary
U ∈SU(2n) becomes

C(U) := inf
T, t 7→H(t)

∫ τ

0

dt c(H(t)). (F3)

We take the infimum over all time intervals [0, τ ] and over all control functions t 7→ H(t) such that the control parameters are in
R for all t ∈ [0, τ ] and scuh that U(τ) = U . Several cost functions are meaningful and have been discussed in the literature. A
common choice is

cp(H(t)) =




m∑

j=1

hj(t)
p




1/p

. (F4)

In particular, c2 gives rise to a sub-Riemannian metric. For the resulting cost C2(U), Ref. [11] establishes a connection between
the approximate circuit complexity and the cost: Any bound on the approximate circuit complexity, with an approximation error
bounded from below independently of the system size, immediately implies a lower bound on the cost.

Theorem 4 (Approximate circuit complexity and cost [11]). For every integer n, every U ∈ SU(2n) and every η > 0,

Cu(U, η) ≤ c C2(U)3n6

η2
. (F5)

The quantity on the right-hand side can, in turn, be upper-bounded: C2(U) ≤ C1(U). This C1 has a simple interpretation in
terms of a weighted gate complexity [13].

Definition 10 (Weighted circuit complexities). Let U ∈ SU(2n) denote a unitary. The weighted circuit complexity Cw(U) equals
the sum of the weights of 2-local gates, arranged in any architecture, that implement U , wherein each gate Uj is weighted by its
strength W (Uj), defined through

W (U) := inf
{
‖h‖ : U = eih

}
. (F6)

The weighted circuit complexity Cw(U) turns out to equal the cost C1(U) for any given unitary. We can grasp this result by
Trotter-approximating the time-dependent parameterized curve in the definition of C1(U).

Lemma 5 (Weighted circuit complexity and cost). If n denotes an integer and U ∈ SU(2n), then

Cw(U) = C1(U). (F7)

Therefore, the weighted circuit complexity grows like the cost C1. By implication, the circuit complexity’s growth will
be reflected by a notion of circuit complexity that weighs the quantum gates according to their strengths. Again, once the
main text’s approximate circuit complexity is established with an n-independent approximation error, one finds bounds on the
weighted circuit complexity, as well.

The last important notion of circuit complexity that has arisen in the recent literature is that of Ref. [19]. Denote by
Ga ⊂SU(22n) the set of 2n-qubit unitary circuits comprised of ≤ a elementary quantum gates, wherein the first n qubits
form the actual system and the next n qubits form a memory. Let Mb denote the class of all two-outcome measurements,
defined on 2n qubits, that require quantum circuits whose implementation requires ≤ b elementary quantum gates. Define

β(r, U) := maximize
∣∣tr
(
M
{

[U ⊗ 1]|φ〉〈φ|[U ⊗ 1]† − [1/2n ⊗ tr1(|φ〉〈φ|)]
})∣∣ , (F8)

subject to M ∈Mb, |φ〉 = V |02n〉, V ∈ Ga, r = a+ b. (F9)

In terms of this quantity, Ref. [19] defined strong unitary complexity.



9

Definition 11 (Strong unitary complexity [19]). Let r ∈ R and δ ∈ (0, 1). A unitary U ∈ SU(2n) has strong unitary complexity
≤ r if

β(r, U) ≥ 1− 1

22n
− δ, (F10)

denoted by C̃(U, δ) ≥ r.

While seemingly technically involved, the definition is operational. The definition is also more stringent and demanding than
more-traditional definitions of approximate circuit complexity. To concretize this statement, we denote the diamond norm by
‖.‖� [53].

Lemma 6 (Implications of strong unitary complexity [19]). Suppose that U ∈ U(2n) obeys C̃(U, δ) ≥ r+1 for some δ ∈ (0, 1),
r ∈ R, arbitrary measurement procedures that include the Bell measurement. Then

min
Cu(V )≤r

1

2
‖U − V‖� >

√
δ . (F11)

That is, it is impossible to accurately approximate U with circuits V of < r elementary quantum gates.

U and V denote the unitary quantum channels defined by U(ρ) = UρU† and V(ρ) = V ρV †. The diamond norm between them
is

1

2
‖U − V‖� =

1

2
sup
ρ
‖(U ⊗ 1)ρ(U ⊗ 1)† − (V ⊗ 1)ρ(V ⊗ 1)†‖1 (F12)

≤ 1

2
sup
ρ
‖[(U − V )⊗ 1]ρ(U ⊗ 1)†‖1 +

1

2
sup
ρ
‖(U ⊗ 1)ρ[(U − V )⊗ 1]†‖1.

We have added and subtracted a term and have used the triangle inequality. Therefore,

1

2
‖U − V‖� ≤

1

2
‖U − V ‖∞

(
sup
ρ
‖ρ(U ⊗ 1)†‖1 + sup

ρ
‖(V ⊗ 1)ρ‖1

)
≤ ‖U − V ‖∞, (F13)

as the operator norm is a weakly unitarily invariant norm. Therefore, C̃(U, δ) ≥ r+1 implies that C(U, δ) ≥ r. That is, the strong
unitary complexity of Ref. [19] is tighter than approximate circuit complexity. A topic of future work will be the exploration of
the growth of approximate notions of complexity with an approximation error independent of the system size.

Appendix G: Figures for the methods section
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(a) (b)

(c)
(e)

1

2
j j

causal slices

causal slices

(d)

Figure 4. Our core technical result is a lower bound on the accessible dimension. (a) Each gate Uj is perturbed with a unitary eiεj,kSk ,
generated by a 2-qubit Pauli operator Sk and parameterized with an infinitesimal εj,k ∈ R. Perturbing the gate perturbs the n-qubit unitary,
turning U into Ũ ≈ U . (b) A key quantity is the derivative of Ũ with respect to a parameter εj,k, evaluated at U . Taking this derivative is
equivalent to inserting the Pauli string Sk immediately after the gate Uj . (c) The derivative depicted in panel (b) is equivalent to following the
circuit with a Hermitian operator Kj,k [Eq. (1)]. The operator Kj,k results from conjugating Sk with the gates after Uj . If the circuit consists
of Clifford gates, then Kj,k is a Pauli string, since Clifford gates map the Pauli strings to Pauli strings. Therefore, a perturbation of Uj in
the direction of Sk results in a perturbation of the resulting unitary U in the direction of Kj,k in SU(2n). (d) The following is true of every
backwards-light-cone–containing block and every Pauli string P (leftmost green squares): The block’s gates can be chosen to be Cliffords that
map P to a single-site Z. The Clifford gates first map P to a Pauli string that acts nontrivially on fewer qubits (pale green squares), then to a
Pauli string on fewer qubits, and so on until the Pauli string dwindles to one qubit (rightmost green square). (e) Our lower bound is proven by
recursion as explained in the main text.
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Q U A N T U M A D V A N T A G E E X P E R I M E N T S

4.1 closing gaps of a quantum advantage with short-time hamiltonian
dynamics

In principle, errors in quantum computers can be corrected faster than they appear. This result,
known as the ‘‘threshold theorem’’, was shown already in the 1990s [ABO97]. With it comes the
prospect of quantum algorithms that efficiently solve classical problems for which no polynomial
classical algorithm is known [Sho99b]. Indeed, it is widely believed that such an efficient classical
algorithm does not exist and that quantum computers are therefore exponentially seperated
from classical computers. This would violate the extended Church-Turing thesis, which claims
that any model of computation that can be build in nature can be simulated (with a polynomial
overhead) on a classical computer [VSD86,BV93]. An experimental realization of such a violation
would be a major milestone in the field of computing and is referred to as a quantum advantage
or ‘‘quantum supremacy’’ [Pre13, HE22].

In order to conclusively demonstrate the superior computational power of quantum devices
we must hold ourselves to a particularly high standard of evidence. While several examples
of quantum devices that outperform certain classical algorithms have been reported [TCF+12,
BFH+15, CHZ+16, BSK+17, ZPH+17], to have high confidence that these devices are providing
bona-fide quantum speedups, we must give evidence that no classical algorithm will ever be able
to solve this problem efficiently.

However, the realization of fault-tolerant devices capable of outperforming classical computers
for practical problems appears to be far out of reach for current technology [RWS+17, CKM19,
GE21]. Recently, a paradigm of sampling based quantum advantage schemes emerged. This
appears to be a particularly natural task for quantum computers as all measurements are
intrinsically random. We know from Bell’s theorem that the correlations between measurement
outcomes can, in general, not be generated with a classical (realistic) local hidden variable
model. We expect that, similarly, classical computers cannot generate the correlations in general
quantum measurements efficiently and refer to Ref. [HE22] for the discussion of quantum
advantages as a computational analogue of Bell’s inequality.

Multiple candidates for such random quantum sampling schemes emerged such as commuting
quantum circuits [BJS11,BMS16a,BMS17], boson sampling [AA13] and universal random circuit
sampling [BIS+18, AAB+19]. In fact, in a technological breakthrough, a successful experiment
was prominently reported by Google Inc. [AAB+19], demonstrating a verified advantage over
classical algorithms of that time.

However, in light of recent advances in classical simulations of Google’s experiment [PCZ21],
it is possible that the race between quantum experiments and classical simulation will only be
decided in a regime where even the verification algorithms fail. This is because all verification
procedures for Google’s random circuit sampling experiment also require exponentially long
times. Without verification there is no way of knowing whether the experiment was successful.
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In the near future, only imperfect and small universally programmable quantum devices are
becoming available in laboratories around the world [BIS+18, WHL+17], however. At the same
time, large-scale quantum simulators that outperform known classical algorithms are already
available today in platforms such as cold atoms in optical lattices [BFH+15, CHZ+16, BDN12]
or ion traps [ZPH+17]. However, rigorous results on the hardness of those simulations are
very sparse and what is more the available hardness results rely on unproven albeit plausible
conjectures beyond standard complexity-theoretic assumptions [HE22].

Quantum advantage schemes based on quantum simulators that involve the constant-time
evolution of translation-invariant Ising Hamiltonians [GWD17, BVHS+18, HKSE17] have been
proposed. These schemes come with an efficient and rigorous certification protocol that only
requires partial trust in single-spin measurements. One of the simplest realizations can be
performed in three steps:

1. Preparation. Arrange N qubits on a rectangular lattice, draw N random angles βi ∈
(0, 2π] and prepare the state (up to normalization)

|ψβ〉 =
N⊗

i=1

(|0〉+ eiβi |1〉). (4.1)

2. Coupling. Couple along the edges of the lattice via time evolution under an Ising
Hamiltonian

H :=
∑
i,j∈E

Ji,jZiZj −
∑
i∈V

hiZi. (4.2)

3. Measurement. Measure each qubit in the X basis.

While only little entanglement is generated, the resulting probability distribution can be related
to highly correlated distributions. This is because the protocol is equivalent to measuring a
cluster state in a random basis and therefore implements a randomized measurement based
quantum computation. From a practical perspective, the design of such simple translationally
invariant schemes is highly desirable in that they are very close to what can be achieved in
scalable present-day experimental architectures such as cold atoms in optical lattices [BDN12].

The central open problem in the complexity theoretic argument for hardness of all such
sampling schemes revolves around its robustness to noise [AA13, BMS16b]. Proving this key
conjecture called approximate average-case hardness has remained elusive for all known practical
schemes that are amenable to the Stockmeyer proof strategy. Aaronson and Arkhipov have also
observed, however, that evidence for approximate average-case hardness can be provided using
certain properties of the sampled distribution: First, exact average-case hardness constitutes a
necessary criterion for the approximate version thereof. Second, the so-called anti-concentration
property reduces the notion of approximation that is necessary for the hardness proof to a more
plausible one that involves only relative errors. One of the key challenges in the field, therefore,
is to close these conceptual, mathematical, and complexity-theoretic ‘‘loopholes’’ for schemes
that are feasible on large-scale quantum simulators.

In this work, we close these loopholes simultaneously for the arguably simplest quantum sim-
ulation architecture on a square lattice of Ref. [BVHS+18] -- thus bringing it up to the highest
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standard to date in terms of evidence for computational intractability. First, we prove anti-
concentration for this model. In fact, our main contribution is to establish an even stronger
property than anti-concentration, namely, that the effective circuits generated by the archi-
tectures mimic Haar-randomness up to second moments -- surprisingly -- already on square
(n×O(n)) lattices. In precise terms, we prove that these circuits form an approximate 2-design.

Theorem 14. Consider the architectures of quantum simulation with local rotation angles chosen
uniformly from [0, 2π) on an n×m lattice with m ∈ O (n+ log (1/ε)). When measuring the
firstm− 1 columns in the X-basis, the effective unitary acting on the last column forms a relative
ε-approximate unitary 2-design.

In fact, the emergence of relatively ε-approximate 2-designs is a much more powerful result
than mere anti-concentration. First, observe that the 2-design property directly implies anti-
concentration [HBVSE18, BFK18, MB17, HM18]. Second, we note that generating the moments
of the Haar measure is considered even stronger evidence for hardness of classical simulation
than mere anti-concentration [BIS+18]. But already rigorously establishing anti-concentration
is a difficult endeavor, in our case particularly so due to the low -- in fact constant -- depth
of the circuits. Indeed, for the prominent case of random circuit sampling anti-concentration
holds at depth O(

√
n) on a

√
n × √n 2D grid [HM18], and at depth O(n) in 1D [BHH16,

HBVSE18], but it is not expected for constant depth [BIS+18, BMS17]. With our work, we
prove anti-concentration at constant depth, but in a very different model of random circuits.
Our result implies the first non-trivial anti-concentration bound for constant-time, translation-
invariant dynamics on a square lattice, going significantly beyond direct measurement-based
embeddings [MSM17, HBVSE18, GWD17, MGDM18, MGDM19].

As our second main contribution, we prove average-case hardness for exactly evaluating the
output probabilities of the architectures. To do so, we extend a result of [BFNV19] showing
exact average-case hardness of universal circuit sampling [BIS+18] to the translation invariant
case. Informally, we obtain the following result:

Theorem 15 (Average-case hardness). It is #P-hard to exactly compute any 3/4 + 1/poly(N)

fraction of the output probabilities of the architectures of quantum simulation.

Our work also demonstrates that these average-case hardness methods are applicable to
many other sampling architectures, such as continuous forms of IQP circuits [BMS16b] and
other measurement-based schemes [GWD17, MSM17, MGDM19]. Our results have significant
implications for quantum simulation, giving the strongest complexity theoretic evidence to date
that ‘‘simple’’ constant-time Hamiltonian evolutions on the square lattice [BVHS+18] cannot be
classically simulated.
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Ref. [HHB+19] is not contained in the online version for copyright reasons.
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C O M P U T A T I O N A L C O M P L E X I T Y A N D R A N D O M T E N S O R N E T W O R K S

5.1 contracting projected entangled pair states is average-case hard

Storing a general state of the system on a computer is impossible and hence one seeks for efficient
variational families of states. Tensor networks are a prime example of such an ansatz class
[FNW92,VMC08,Sch11,Orú14,BC17,ECP10]. Despite their spectacular success in one-dimension
[VGRC04, GKSS05, VC06, MWNM07, TCF+12, FKE+13, PTBO10, BPM12, KBM12, Pro11, RSB+13]
as so-called matrix-product states [PGVWC07, VC06, VMC08], the most natural tensor network
ansatz in two-dimensions, called projected entangled pair states (PEPS) [VWPGC06], turned
out to be burdened by a peculiar difficulty: even to calculate the normalization of PEPS is
computationally intractable as has been shown by [SWVC07]. More precisely, the normalization
or evaluation of a local expectation value within the PEPS ansatz class is a computational task
which is complete for the complexity class #P.

In this section, we provide complexity theoretical evidence against strong heuristic algorithms
for generic PEPS. This extends the worst-case #P-hardness result [SWVC07] to the average-
case and is an even more challenging obstruction to overcome. More precisely, we show that
determining the normalization of as well as expectation values in a PEPS is #P-hard for a constant
fraction of the instances.

It is known that PEPS contraction algorithms often work well in practice for reasonable
condensed-matter systems [LCB14, RTP+17] which at first sight may seem at odds with the
results presented here and in Ref. [SWVC07]. However, many important problems have addi-
tional structure that may render the PEPS contraction feasible. Specifically, it was proven in
Ref. [SBE17] that local normalized expectation values of injective PEPS with uniformly gapped
parent Hamiltonian can be evaluated in quasi-polynomial time, i.e., faster than conjectured by
the exponential-time hypothesis.

We define PEPS on a family of graphsG = (V ,E) with |V | = N vertices. Every vertex v stands
for a local spin system of bond dimension D. In the projective construction of PEPS one thinks
of every edge e ∈ E as a maximally entangled state

∑D
i=1 |i〉|i〉 in a virtual D-dimensional spin

systems. A specific PEPS is described by operators P[v] : CD ⊗ · · · ⊗CD → Cd. It is defined as
the state vector in H resulting from the application of all P[v] for all v ∈ V . Note that by this the
obtained PEPS is not necessarily normalized.

While the polynomial description is a clear advantage of PEPS, it remains notoriously difficult
to contract PEPS. This is needed for obtaining physical quantities of interest like expectation val-
ues. Specifically, we consider the following computational task, which is an essential ingredient
in PEPS contraction algorithms. It is one of the key insights in Ref. [SWVC07] that this problem
is in fact #P-complete for the case that G is a square lattice.

We can formalize this task as follows:

181



Problem 1 (PEPS-contraction). blub

Input. A graph G and corresponding finite PEPS-data
(
P[v]
)
v
describing an unnormalized state

|ψ〉 and with bond dimension D = poly(N).

Output. 〈ψ|ψ〉.

We find that PEPS-contraction is hard in the same sense as canonical combinatorial problems
[AA13, Lip91]: Both problems admit random self-reducibility. A problem is randomly self-
reducible if the evaluation of any instance x can be reduced to the evaluation of random instances
y1, . . . ,yk with a bounded probability independent of the input. The seminal result by [Lip91]
proves this property for the permanent.

While wort-case results are ubiquitous in computer science, average-case hardness is rarely
established rigorously and most known examples of average-case complexity results concern #P-
complete problems. Moreover, more often than not, the proof is a variant of Lipton’s technique.
An exception are lattice problems starting with the work of Ajtai [Ajt96].

In the proof of our main result, we show random self-reducibility for PEPS contraction:

Theorem 16 (Average case hardness of PEPS contraction). Suppose there exists an algorithm
O that solves Problem 1 for square lattices in polynomial time with probability 3

4 +
1

poly(N) when
instances are drawn from P. Then, there exists a randomized algorithm O ′ that solves any instance
of Problem 1 in polynomial time with exponentially high probability 1− 2−poly(N).

To do so, we consider a generic PEPS in the sense that all entries of the tensor P[v] are drawn
independently at random from the finite precision approximation of the normal distribution
centered around 0 and with standard deviation σ. The main result is then that any algorithm
that solves the PEPS-contraction for around 3

4 of the instances can be lifted to a randomized
algorithm that solves PEPS-contraction in the worst-case and is, hence, very unlikely to exist.
Indeed, our proof works analogously to Lipton’s technique for the permanent and is intriguingly
simple: We interpolate between any instance of the problem and a generic instance. We then
prove that polynomially many queries to a good enough heuristic solver would suffice to learn
the permanent as a function of the interpolation parameter. Then, evaluating in the original
function yields a good estimate with high probability. As the original instance was arbitrary, we
conclude random self-reducibility.
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An accurate calculation of the properties of quantum many-body systems is one of the most important yet
intricate challenges of modern physics and computer science. In recent years, the tensor network ansatz has
established itself as one of the most promising approaches enabling striking efficiency of simulating static
properties of one-dimensional systems and abounding numerical applications in condensed matter theory. In
higher dimensions, however, a connection to the field of computational complexity theory has shown that the
accurate normalization of the two-dimensional tensor networks called projected entangled pair states (PEPS) is
#P-complete. Therefore an efficient algorithm for PEPS contraction would allow solving exceedingly difficult
combinatorial counting problems, which is considered highly unlikely. Due to the importance of understanding
two- and three-dimensional systems the question currently remains: Are the known constructions typical of states
relevant for quantum many-body systems? In this work, we show that an accurate evaluation of normalization
or expectation values of PEPS is as hard to compute for typical instances as for special configurations of highest
computational hardness. We discuss the structural property of average-case hardness in relation to the current
research on efficient algorithms attempting tensor network contraction, hinting at a wealth of possible further
insights into the average-case hardness of important problems in quantum many-body theory.

DOI: 10.1103/PhysRevResearch.2.013010

I. INTRODUCTION

Determining the properties of quantum many-body sys-
tems is of paramount importance in our efforts to understand
conductance and thermodynamics of solid-state materials
[1,2], designing new sensors and devising novel quantum
technologies [3], inferring nuclear processes in stars or the
early universe [4,5]. However, oftentimes it is not possible
to find degrees of freedom enabling a concise description
of a given system in terms of an effective model featuring
essentially no interactions. In such a case, there is usually
no easy way out but to calculate numerically observables of
interest from a Hamiltonian description [6–12]. Here, how-
ever, we face a particular challenge namely that the state
space of quantum many-body systems demands a number
of parameters that grows exponentially with the amount of
constituents of the system. If so, even storing the state of
the system on a computer becomes impossible and hence one
seeks for efficient variational families of states. Tensor net-
works are a prime example of such an ansatz class [10,13–17].
Despite their spectacular success in one dimension [18–29] as
so-called matrix-product states [14,20,30], the most natural
tensor network ansatz in two-dimensions, called projected
entangled pair states (PEPS) [31], turned out to be burdened
by a peculiar difficulty: even to calculate the normalization

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

of PEPS is computationally intractable as has been shown in
Ref. [32].

More precisely, the normalization or evaluation of a lo-
cal expectation value within the PEPS ansatz class is a
computational task which is complete for the complexity
class #P, i.e., is as hard as any other problem in this class
[33–35]. Paradigmatic #P problems consist in counting the
solutions to decision problems which are complete for the
class NP. Intuitively, counting the solutions to a hard problem
can only be harder. Within the current state of knowledge
in computer science the optimal runtime for NP-complete
problems is unknown. However, it is widely conjectured that
there are no algorithms with polynomial runtime solving
any NP-complete problem. For the famous SAT-problem,
there is even the exponential-time hypothesis [36], which
conjectures that an exponential runtime is optimal for the
problem.

Physically, one can invoke the Church-Turing-Deutsch
principle [37] that interprets computations as physical pro-
cesses. NP has been established to correspond to the cooling
of spin glasses [38]. These materials are known to sometimes
take an extremely long time to cool down. On the other
hand, very many solid-state materials seem to cool down
much faster. Indeed, insights in computer science suggest
that the hardness of NP-complete problems lies in few tough
instances with particularly rugged landscape. Phenomena like
this are described in the framework of average-case com-
plexity. While many NP-complete problems like 3-SAT are
unlikely to be hard on average for uniform distributions [39],
average-case hard problems are ubiquitous for the class #P.
Recently, first examples directly relevant to demonstrating
computational separation between classical and quantum de-
vices have been pointed out [40,41].
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There are several approaches for a rigorous theory of
average-case complexity. Arguably the most natural is
random self-reducibility, an immediate consequence of which
is that a machine powerful enough to solve, e.g., three
quarters of the instances would allow solving all instances.
Thus it becomes implausible to find heuristic algorithms that
solve significant numbers of instances as the self-reducibility
structure would imply efficiency even for those instances that
are particularly hard.

In this work, we provide strong complexity theoretical
indications that the latter is not the case for generic PEPS
due to a random self-reducibility structure that we uncover.
This extends the worst-case #P-hardness result [32] to the
average case and is an even more challenging obstruction to
overcome. Technically, we make an extensive use of the recent
insightful work in Ref. [41], where average-case hardness has
been established in the context of quantum circuits, and we
also employ some of the results established in Ref. [40]. Our
main result is the following theorem.

Theorem 1 (Informal). Contracting a subset making up a
3
4 + 1

poly(N ) fraction of the instances drawn from an entrywise
Gaussian distribution is #P-hard.

We explain in Sec. IV how this can be generalized to
many probability distributions that satisfy an autocorrelation
property. In particular a similar statement would hold if the
local tensors are drawn from a uniform distribution supported
on a bounded region, i.e., the overall “shape” is not crucial
as long as the distribution is not infinitely peaked or has
unusually broad tails. Firstly, this rules out the possibility
that the computational hardness could be hidden in particular
instances that are intractable, as it says that one could use the
algorithm O to construct an algorithm O′ that is efficient for
all inputs. Secondly, it is important to note that Theorem 1
requires exact computation [32] but a different variant of
Theorem 1 shows the following. Approximation up to errors
of the form 2−poly(N ) for N the system size, is also intractable
on average, however, under stronger requirements on the
algorithm O. Our choice of the probability distribution is
similar to that of Sec. 9.1 of Ref. [40], where the evaluation
of the so-called permanent is considered which is also a #P-
complete computational problem. Note that the result holds
for arbitrary graphs as well, though the statement is trivial in
one dimension [42].

In certain special instances fast algorithms might still be
feasible. For example it is known that matrix-product states
admit a polynomial time deterministic contraction algorithm
[42]. However, even in two dimensions, this can happen under
strong physical assumptions forcing the problem to admit a
local structure [43,44]. Additionally, for certain subclasses
some heuristic algorithms [42–63] (see Refs. [45,64] for
reviews) yield results of practical importance [65–74]. Our
average-case hardness result, however, suggests that these ap-
proaches could break down even for relevant PEPS instances
as otherwise difficult computational problems would admit
(quasi-) polynomial algorithms.

Physically, for disordered systems, one would expect any
accurate ground state approximation by a PEPS to inherit the
randomness of the Hamiltonian [75]. Hence in this setting,
we provide evidence of intractability. Oftentimes, however,
further physical assumptions are justified: While these com-

pletely generic PEPS are relevant for the study of strongly dis-
ordered systems, in many practically meaningful settings (in
particular in the study of topological order), the relevant PEPS
are translation-invariant. Remarkably, a worst-to-average case
reduction as described in this paper works just as well for
translation-invariant systems but we are unaware of a hardness
result in the worst case for such systems.

II. DISCUSSION

Before we formalize the above in a rigorous setting, we
discuss various aspects of this result.

A. Translation invariance

In many physical applications, e.g., in solid state materials
and specifically in systems admitting topological order, the
system of interest is translation-invariant. Hence, the data
specifying the PEPS efficiently should reflect this symmetry
and one would naturally set all local tensors to be equal. In
this case, we do not know the corresponding computational
problem to be #P-hard, for example the #P-hard instances in
Ref. [32] are not translation-invariant. However, our worst-to-
average case reduction works just as well in this special case,
simply by choosing (Q[v] )v = (Q)v , where Q is drawn from
the Gaussian distribution NC (0, σ )D4d . The same argument
and statement of the main theorem goes through. This leaves
us with two mutually exclusive options: If the translation-
invariant problem is hard for a complexity class C, then it
follows that the problem is C-hard on average in the sense
of our main theorem. If the problem is merely in P, then
it is enough to find a heuristic for about 3/4 of the inputs
to find a full randomized algorithm. On the other hand, if
C = #P, then even the translation-invariant PEPS contraction
problem would appear to be average-case intractable. We are
unaware of random self-reducibility results for complexity
classes other than #P. We thus expect a dichotomy: Either the
translation-invariant problem is in P or it is #P-complete.

B. Evaluation precision

As far as we know, it is state of the art in computer sci-
ence to prove random self-reducibility structures for problems
given the promise that O works with at least exponential pre-
cision. In fact, we can improve our main theorem for this case
too, at the cost of requiring O to function with a probability of
1 − 1

12N , where N denotes the system size. The reason for this
trade-off is that subtleties arise in the technical steps, where
the Berlekamp-Welch algorithm has to be replaced with a
noise-resistant method. However, in the bigger picture, it does
not seem possible to extend the seminal idea of Lipton to O
working with lower precision. The reason is that th method
crucially depends on the extrapolation of polynomials which
is highly sensitive to noise. Related questions of precision
relaxation are of interest in quantum information theory in
the context of searching for quantum speed-ups. Here, certain
precision relaxations are conjectured to be average-case hard
as well [40,41].

C. Expectation values

The computational problem is concerned with PEPS con-
tractions. The quantity that one computes is the norm of
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the respective PEPS. However, in most physical applications
the quantities of interest are expectation values of a local
observable Â

〈Â〉ψ = 〈ψ |Â|ψ〉
〈ψ/|ψ〉 , (1)

where |ψ〉 refers to the PEPS specified by local tensors. Notice
that this problem and its unnormalized version have both
been proven to be #P-complete in Ref. [32] as well. For any
algorithm that uses PEPS normalization as an intermediate
step our main theorem is directly of interest and reflects the
fundamental structure of the problem at hand. In the general
case we can prove a worst-to-average result for this quantity as
well. It is easy to see that our discussion of PEPS contraction
carries over to the discussion of unnormalized expectation
values. We show that a close analog of Theorem 1 holds
for this quantity as well. The normalized expectation value
is slightly more subtle in the following sense: the analog of
the function q is not a polynomial but a rational function q/p
where the degrees of both polynomials q and p are bounded
by 2N . We can then use interpolation for rational functions on
enough sampling points to obtain the respective coefficients.

D. Implications on practical tensor network algorithms

The results found here have interesting implications to the
performance of PEPS contraction algorithms aimed at solv-
ing condensed-matter problems [10,14,15]. There are three
insights that are important in this respect. Firstly, the results
laid out here relate average-case to worst-case complexity. In
that, they apply to any tensor network contraction algorithm as
the structure of random self-reducibility shows that if a given
method O has trouble at less than a quarter of instances, these
can in principle be treated with a small polynomial runtime
overhead by our construction of the randomized algorithm O′
(and, for that matter, our results also pertain to algorithms
in P). Secondly, it is known that PEPS contraction algo-
rithms often work well in practice for reasonable condensed-
matter systems [45,64] which may seem at first sight at odds
with the results presented here and in Ref. [32]. For this,
one has to acknowledge that many important problems have
additional structure that may render the PEPS contraction
feasible. Specifically, it has been proven in Ref. [44] that
local normalized expectation values of injective PEPS with
uniformly gapped parent Hamiltonian can be evaluated in
quasipolynomial time, i.e., faster than conjectured by the
exponential-time hypothesis. Following up on this observa-
tion, it seems conceivable that one can devise PEPS algo-
rithms that provide ground states of systems in a trivial phase
(possibly even with convergence proofs), by making use of
techniques of quasiadiabatic evolution [76,77], applying short
circuits to product states as ground states of trivial parents.
Having said that, any such approach would require keeping
track of ground states of families of Hamiltonians. Thirdly, in
most practical algorithms used in practice, in contrast, some
initial condition for the PEPS is chosen, which is iteratively
refined via sweeps, until a good convergence to the ground
state is encountered. In fact, in practice, the PEPS data are
initially often chosen randomly, following a refinement in
sweeps by iteratively minimizing the energy evaluated from

a local Hamiltonian. The results laid out here show that it
is crucial to devise meaningful schemes making reasonable
choices of these initial conditions. However, our average-case
hardness results of PEPS contraction indicate that one should
be particularly cautious when choosing such initial states.

III. PROBLEM SETTING

We now come to the technical section of this paper. In this
section, we describe the problem in a rigorous setting.

A. Projected entangled pair states

Here we recall the definition of PEPS [52] and review
the computational problem from Ref. [32] concerning the
contraction of PEPS. We consider a family of graphs G =
(V, E ) with |V | = N . Every vertex v stands for a local spin
system described by a Hilbert space Hv := Cd . The physical
Hilbert space is, thus, H := H⊗N

v = (Cd )⊗N . In the projec-
tive construction of PEPS, one thinks of every edge e ∈ E
as a maximally entangled state

∑D
i=1 |i〉|i〉 in a virtual D-

dimensional spin systems. A specific PEPS is then described
by linear operators P[v] : CD ⊗ · · · ⊗ CD → Cd , where the
number of copies of CD is the number of adjacent edges
for v. It is defined as the state vector in H resulting from
the application of all P[v] for all v ∈ V . Note that by this
the obtained PEPS is not necessarily normalized. The vir-
tual dimension is assumed to satisfy D = poly(N ) and is
called bond dimension. In our discussion, it will be crucial
to discriminate between the PEPS, which is a state vector in
H, and its specification (P[v] )v . We will refer to the latter
as PEPS data. A PEPS is called translation-invariant if the
local tensors satisfy P[v] = P[w] = P for all v,w ∈ V . These
states have already been proven to be immensely useful in
condensed matter research but the full regime of applicability
is still open. Here, we assume open boundary conditions but
our results carry over to the periodic case too.

B. PEPS evaluation

PEPS are described by polynomial data only. However,
the physical problem we want to tackle remains notoriously
difficult in that contraction of PEPS is computationally hard.
This is needed for obtaining physical quantities of interest
like expectation values of local observables. Specifically, the
following computational tasks are the essential ingredients of
PEPS contraction algorithms:

Problem 1 (PEPS-contraction). Input: A graph G and
corresponding finite PEPS data (P[v] )v describing an unnor-
malized state |ψ〉 and with bond dimension D = poly(N ).

Output: 〈ψ |ψ〉.
Problem 2 (PEPS-contraction:UEV). Input: The same in-

put as in Problem 1 and additionally a local observable Â.
Output: 〈ψ |Â|ψ〉.
Problem 3 (PEPS-contraction:NEV). Input: The same input

as in Problem 1 and additionally a local observable Â.
Output: 〈ψ |Â|ψ〉/〈ψ |ψ〉.
It is one of the key insights in Ref. [32] that these problems

are in fact #P-complete for the case that G is a square lattice.
In the following, we recall the arguments leading to this ob-
servation. The construction uses measurement based quantum
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computing [78–80]. Measurement based quantum computing
based on cluster states performs a computation by initializing
the cluster state on a square lattice and successively applying
local sharp (projective) measurements to the local qubits. This
is a universal model of a quantum computer and we can use
it to encode any quantum circuit in a PEPS with polynomially
bounded bond dimension. Notice first that the cluster state is
a PEPS with bond dimension D = 2. However, the outcome
of the quantum computation performed by the measurements
depends on the random outcomes. This is dealt with by
correcting the outcome with Pauli operators depending on the
random outcomes. The PEPS encoding the quantum circuit is
now obtained by applying an additional projector |a〉〈a|, where
a is the outcome that does not give rise to a nontrivial Pauli
correction. Hardness follows from encoding the problem of
counting solutions for a Boolean formula: Given a Boolean
formula f , finding #1( f ) := |{x, f (x) = 1}| is #P-complete.

We prove all results for two canonical choices: The first
is to draw entry-wise from a uniform distribution centered
around zero and truncated at some chosen threshold σ , which
we will denote by U = UC (0, σ ) and the product distribution
by P1 := UD4dN . Almost equivalently we could draw from a
Gaussian distribution. We will denote this Gaussian distribu-
tion with P2 := GD4dN := NC (0, σ )D4dN . This is reminiscent
to a discussion about the permanent with entries in the com-
plex numbers in Sec. 9.1 of Ref. [40]. More precisely, we
prove the following technical theorems.

Theorem 2 (Worst-to-average reduction). Suppose there
exists a machine O that solves Problem 1 or 2 within
precision 2−poly(N ) for square lattices in polynomial time with
a probability of 1 − 1

12N over the instance drawn from Pi

for i = 1, 2. Then, there exists a machine O′ that solves any
instance with precision 2−poly(N ) of the respective problem
in randomized polynomial time with exponentially high
probability.

We will prove this theorem first, as it requires the most
technical work. If we do not relax to exponential precision but
require perfect arithmetical evaluation of the machine O, we
obtain a much stronger worst-to-average reduction:

Theorem 3 (Stronger worst-to-average reduction). Supp-
ose it exists a machine O that solves Problem 1 or 2 exactly
for square lattices in polynomial time with a probability of
3
4 + 1

polyN drawn from Pi, with i = 1, 2. Then, there exists a
machine that solves any instance of the respective problem
in randomized polynomial time with exponentially high
precision.

Finally, requiring perfect evaluation, we obtain a worst-
to-average reduction for the normalized expectation value
problem as well:

Theorem 4 (Normalized expectation values). Suppose it
exists a machine O that solves Problem 3 exactly for square
lattices in polynomial time with a probability of 3

4 + 1
polyN

drawn from Pi with i = 1, 2. Then there exists a machine that
solves any instance of the respective problem in randomized
polynomial time with exponentially high precision.

C. Proof idea

There are several precise mathematical candidates for
a definition of average-case hardness. We find that PEPS

contraction is average-case hard in the same sense as cer-
tain combinatorial problems [40,81]: They admit a property
called random self-reducibility. A problem is randomly self-
reducible if the evaluation of any instance x can be reduced to
the evaluation of random instances y1, . . . , yk with a bounded
probability independent of the input. We will sketch how this
is done for the permanent and PEPS giving the essential proof
idea, see Ref. [41] for a particularly clear exposition in the
context of quantum circuits. The complete argument can be
found in Sec. IV.

In a seminal result, Ref. [81] has proven random self-
reducibility for the evaluation of the permanent, a function
that takes as an input a square matrix and outputs a number.
The permanent of an n×n matrix A over a finite field is defined
as the “determinant without signs”:

perm(A) :=
∑
σ∈Sn

n∏
i=1

Ai,σ (i) , (2)

where Sn is the symmetric group. However, very unlike the
determinant, the permanent turns out to yield a difficult com-
binatorial problem: Its evaluation has been proven to be #P-
complete in Ref. [82]. The proof of random-self reducibility
is rooted in the algebraic fact that the permanent defines a
polynomial of degree n in the entries of its input matrix A.
More precisely, the strategy is to take any (hard) instance A
that we want to compute, draw a uniformly random matrix B
and define

E (t ) := A + tB , (3)

for a parameter t in the finite field. Notice that E (t ) is
uniformly random for any t because B is, even though E (t )
and E (t ′) are correlated. The permanent of these matrices
is a polynomial q(t ) := perm(E (t )) of degree n. Even if the
algorithm O fails to accurately output perm(A) it will, by
assumption, likely correctly evaluate q(ti ) for a choice of ti.
The idea is to infer q(0) from the values at {ti} via polynomial
interpolation. We will explain this step in more detail in the
next paragraph for the setting of PEPS.

We sketch how the worst to average-case reduction works
for PEPS contractions. For a detailed and formal proof we
refer to Sec. IV. A major difference to Lipton’s result for the
permanent is that we work over the complex numbers, for
which there is no uniform distribution. Instead, we work with
an entry-wise Gaussian distribution.

Intuitively, we scramble independently the individual ten-
sors. Given a hard instance (P[v] )v , we draw random PEPS
data (Q[v] )v and define

(R(t )[v] )v := t (P[v] )v + (1 − t )(Q[v] )v. (4)

Thus (R(0)[v] )v = (Q[v] )v and (R(1)[v] )v = (P[v] )v . Notice
that PEPS data and PEPS since the above definition has
nothing to do with the addition of the corresponding states
This choice of a scrambled operator is suitable for us because
it allows us to deal with a subtlety arising from the fact that the
PEPS data (R(t )[v] )v is not Gauss-random even though (Q[v] )v
is. This is different to the setting of Ref. [81] but has been
worked out for boson sampling [40], where it was shown that
the difference is immaterial for small t . This carries over to
our case as we discuss in Sec. IV.
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IV. PROOFS

We can now provide rigorous proofs for Theorems 2–4.

A. Proof of Theorem 2

Before we turn to presenting the proof, we state a modifica-
tion of Lemma 48 in Ref. [40]. Let us denote with NC (μ, σ )
the normal distribution over the complex numbers with mean
μ and standard deviation σ . The lemma establishes that
products of normal distributions with small mean are close to
a product of the standard normal distribution with zero mean.

Lemma 5 (Autocorrelation of Gaussian distributions). For
the distributions

D1 := NR(0, (1 − ε)2σ )M, (5)

D2 :=
M∏

i=1

NR(vi, σ ) (6)

with v ∈ CM , it holds that

||D1 − NR(0, σ )M || � 2Mε, (7)

||D2 − NR(0, σ )M || � 1

σ
||v||1, (8)

where ||.|| denotes the total variation distance and v ∈ CM .
The same result holds if we substitute N with U .

Proof of Lemma 5. We prove the lemma for the Gaussian
case. The uniform can be obtained similarly. We obtain with
the triangle inequality for the total variation distance:

||D1 − GM || � M||NR(0, (1 − ε)2σ ) − NR(0, σ )||. (9)

With the relation between total variation distance and L1

norm, we obtain

||D1 − GM ||

� M

2

∫ ∞

−∞

∣∣∣∣ 1√
2πσ

e− x2

2σ2 − 1√
2πσ (1 − ε)

e− x2

2σ2 (1−ε)2

∣∣∣∣dx

= M

2
√

2πσ (1 − ε)

∫ ∞

−∞

∣∣∣(1 − ε)e− x2

2σ2 − e− x2

2σ2 (1−ε)2

∣∣∣dx

� Mε

2
√

2πσ (1 − ε)

∫ ∞

−∞
e− x2

2σ2

+ M

2
√

2πσ (1 − ε)

∫ ∞

−∞
e− x2

2σ2 − e− x2

2σ2 (1−ε)2 dx

= Mε

2(1 − ε)
+ M

2(1 − ε)
− M

2
= Mε

1 − ε
� 2Mε. (10)

The second inequality follows using again the triangle in-
equality:

||D2 − GM || �
M∑

i=1

||NR(vi, σ ) − NR(0, σ )||

=
M∑

i=1

1

2

∫ ∞

−∞

∣∣∣∣ 1√
2πσ

e− (x−vi )2

2σ2 − 1√
2πσ

e− x2

2σ2

∣∣∣∣dx

=
M∑

i=1

1

2
√

2π

∫ ∞

−∞

∣∣∣e− (x−vi/σ )2

2 − e− x2

2

∣∣∣dx

�
M∑

i=1

|vi|
σ

= ||v||1
σ

, (11)

where the last inequality follows from a straightforward
calculation. �

Proof of Theorem 2. For simplicity, we set σ = 1. Further-
more, we restrict to the case of Problem 1 as the proof for
the case of Problem 2 is completely analogous. Consider
Problem 1 and a hard instance defined by the data (P[v] )v , e.g.,
the encoding of a Boolean function as was done in Ref. [32].
It suffices to consider a (P[v] )v with all matrix entries being
bounded by 1 as all instances constructed in Ref. [32] admit
this form. Furthermore, we draw PEPS data from the standard
Gaussian distribution entrywise, denoted as (Q[v] )v ∼ GD4dN .
Analogously to Lipton [81], we define

(R(t )[v] )v := t (P[v] )v + (1 − t )(Q[v] )v. (12)

Now, let |ψ (t )〉 denote the PEPS corresponding to these data.
In analogy to the discussion of the permanent, we define the
function q(t ) := 〈ψ (t )|ψ (t )〉. Notice that this function is a
polynomial in t with degree r = 2N , which scales polyno-
mially in the input length. Before we can apply Theorem 8,
we have to deal with the fact that the (R(t )[v] )v are not
distributed according to the Gaussian distribution. We will
need only very small t bounded by some ε > 0, such that the
difference between the respective distributions is immaterial.
Specifically, the (R(t )[v] )v tensors are distributed according to

D =
D4dN∏
i=1

NC (t pi, (1 − t )2). (13)

Thus, from a triangle inequality and Lemma 5, we obtain

||D − GD4dN || � (4D4dN + 2D4dN )ε = (6D4dN )ε (14)

for |t | � ε, by identifying C with R2. It will suffice to set

ε := δ

6D4dN
(15)

and δ := 1
12N . This implies that for a small enough inverse

polynomial ε, we can make the total variation distance poly-
nomially small. Let {ti}i∈[r+1] be the set of r + 1 equidistant
points in [0, ε]. We will now use the assumption from the
theorem’s statement that the machine O works for a 1 − δ

fraction of the instances drawn from GD4dN . Using (14), we
obtain for the success probability of the machine evaluating at
the points ti accurately up to within precision 2−polyN

Pr[|O((R[v] )v (ti )) − q(ti )| � 2−polyN ]

� 1 − δ − ||D − GD4dN ||
� 1 − 2δ, (16)

where we used that the total variation distance is an upper
bound on the difference in probability the two distributions
could possibly assign to an event.
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Finally, we obtain the probability of r + 1 consecutive
successful evaluations as

Pr[|{i ∈ [r + 1], |O(ti ) − q(ti )| � 2−polyN }| = r + 1]

= (1 − 2δ)r+1 =
(

1 − 1

6N

)r+1

� 1 − 2N + 1

6N
= 2

3
− 1

6N
, (17)

by Bernoulli’s inequality. Here, we abbreviated O((R[v] )v (ti ))
with O(ti ). Given the evaluation values at the ti, we can solve
for the coefficients and obtain a polynomial q̃ which satisfies
|q̃(ti ) − q(ti )| � 2−polyN for all ti with high probability. The
machine O′ then evaluates q̃(1), which is an estimate for
q(1) = 〈ψ/|ψ〉.

To bound the error on this estimate we will use two
powerful results: The first on noisy extrapolations and the
second on noisy interpolations of polynomials. A version of
the following lemma was proven in Ref. [83], see also Sec. 9.1
in Ref. [40].

Lemma 6 (Paturi). Let p : R → R be a polynomial of de-
gree r and suppose |p(x)| � � for all x such that |x| � ε.
Then, |p(1)| � �e2r(1+1/ε).

The following result was proven in Rakhmanov [84].
Theorem 7 (Rakhmanov). Let Ek denote the set of k

equidistant points in (−1, 1). Then, for a polynomial
p : R → R with degree r such that |p(y)| � 1 for all y ∈ Ek ,
it holds that

|p(x)| � C log

(
π

arctan
(

k
r

√
R2 − x2

)
)

(18)

with

|x| � R :=
√

1 − r2

k2
. (19)

We will use the second result to bound the error between
the points and then use the first result to bound the error on
q̃(1). For the proof, we shift the polynomial p such that the
intervall of interest is centered around the origin. Furthermore,
we can straightforwardly implement that we work with a
smaller interval. We obtain that

R =
√

1 − r2

(r + 1)2

ε

2
=

√
4N + 1

(2N + 1)2

ε

2
. (20)

Restricting to the strict subinterval [−R
2 , R

2 ], we can ap-
ply Theorem 7 and obtain the following bound for all
t ∈ [−R

2 , R
2 ],

|p(t )| � 2−polyNC ln

(
π

arctan
(

k
r

√
R2 − x2

)
)

� 2−polyNC ln

(
π

arctan(2R)

)
� 2− 1

2 polyN . (21)

Finally, we can apply Lemma 6. This yields the desired bound
on the difference between the estimate q̃(1) and the actual
value q(1):

|q̃(1) − q(1)| = |p(1)| � 2− 1
2 polyN+4 log2(e)N (1+2/R)

= 2−poly′N (22)

for a sufficiently large poly. Finally, we remark that the suc-
cess probability can be exponentially amplified by repeating
the above procedure polynomially many times because of the
Chernoff bound. �

B. Proof of Theorem 3

The superior bound in Theorem 3 follows from the fact
that we can invoke the Berlekamp-Welch algorithm in the
interpolation step. The latter is a provably correct algorithm
for the interpolation of polynomials due to Ref. [85]. Compare
also Bouland et al. [41].

Theorem 8 (Berlekamp-Welch [85]). Let q be a degree-r
polynomial over any field F . Suppose we are given k pairs of
elements {(xi, yi )}i=1,...,k with all xi distinct with the promise
that yi = q(xi ) for at least max(r + 1, (k + r)/2) points. Then,
one can recover q exactly in poly(k, r) deterministic time.

As explained in Sec. III C, we arrive at a polynomial q(t ) =
〈ψ (t )/|ψ (t )〉 of degree r = 2N . Instead of r + 1 queries to
the machine O, we query it k = poly(N ) times. Berlekamp-
Welch requires that at least k+r

2 of obtained k data points are
correct in order to reconstruct the polynomial. We furthermore
assume that k > r. From Markov’s inequality and the union
bound, we obtain

Pr

[
|{i,O(ti ) = q(ti )}| � k + r

2

]
� 1 − 2E

k − r

� 1 −
2
(

1
4 − 1

polyN

)
k

k − r
= 1 − k

2(k − r)
+ 2k

poly(N )(k − r)

= 1

2
− r

2(k − r)
+ 2k

poly(N )(k − r)
, (23)

where we abbreviate the expectation value in question with E.
Thus, by choosing k polynomially large, we obtain an expres-
sion that is polynomially close to 1/2. Again, by repeating
the procedure a polynomial number of times and taking a
majority vote we can amplify this probability exponentially.
With this probability, the Berlekamp-Welch algorithm outputs
q exactly and we can simply evaluate q(1) without having to
worry about the error of extrapolation. It seems appropriate
to point out that we are in fact not drawing data from the
Gaussian distribution in this case but from a discrete analog of
it. However, this does not change the details of our analysis.

C. Proof of Theorem 4

We know that the function we are interested in can be de-
scribed by the quotient of two polynomials of degree at most
r = 2N . This leaves us with 4N + 1 unknown coefficients.
There is an equivalent of the Berlekamp-Welch algorithm
for rational functions [86]. Invoking this algorithm, the proof
proceeds analogously to the proof of Theorem 3.

V. EXPONENTIAL DEPENDENCE ON PEPS DATA

The argument in the main text emphasizes the demanding
precision that is required when specifying the PEPS data.
In this section, we stress that this is not merely done for
complexity-theoretic reasons: A pair of states can be defined
by very similar PEPS data, while their norms can be vastly
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different. In fact, to specify the norm of a PEPS, one needs
exponential precision in the PEPS data, as a moment of
thought reveals. This is already true in one spatial dimension
for matrix product states. Take D = 2, d = 2, an a translation-
invariant open boundary condition MPS, so that the vertex set
V is that of N sites, E reflecting nearest neighbor interactions.
The linear operators P[v] = P are for all v defined by

P[v] =
∑
i=1,2

D∑
α,β=1

A[i]α,β |i〉〈α, β|, (24)

where for the state vector |ψ〉 we take

A[0] := diag(1, 0), A[1] := diag(0, 1). (25)

The boundary conditions are taken open, as in the main text,
and fixed by vector |0〉 and the respective dual. Obviously,
this is a representation of the product |0, . . . , 0〉 with norm
〈ψ/|ψ〉 = 1. For |φ〉, we choose

B[0] := diag(1, 0), B[1] := diag(η, 1), (26)

with the same boundary conditions, for some η > 0. It is still
straightforward to compute the norm, invoking the transfer
operator

E := B[0] ⊗ B∗[0] + B[1] ⊗ B∗[1] = diag(1 + η2, η, η, 1).

(27)

This gives

〈φ/|φ〉 = 〈0|EN |0〉 = (1 + η2)N . (28)

Clearly, for the two states to feature norms that are the same up
to a constant, an in N exponentially small η > 0 is required. In
fact, even for a bond dimension D = 1 one could have come
to a similar conclusion. However, |ψ〉 and |φ〉 are even vastly
different in their entanglement properties, the latter featuring
an entanglement entropy of a symmetrically bisected chain
that is extensive in N .

VI. OUTLOOK

In this work, we presented the first average-case com-
plexity result in the context of quantum many-body sys-
tems, specifically tensor network states. Our main result is
structural, namely we prove that the hard instances of PEPS
contraction make up a significant fraction of all instances.
Physically, this means that contraction of PEPS with random
tensors is likely to be computationally hard to accurately
evaluate. Conceptually, we establish structural similarities to
the evaluation of the permanent. Our results hold under the
assumption of accurate or exponential precision. In Sec. V, we
stress that also on physical grounds, to demand exponential
precision is very much reasonable. However, in a physical
context it is often sufficient to evaluate observables up to poly-
nomial precision. The major open problem is thus to extend
the presented analysis to this case. For PEPS contractions
establishing such a result would have direct practical implica-
tions. Furthermore, we are not aware of any #P-completeness
result for translation-invariant PEPS. Thus the general open
question should be: what are the instances of PEPS for which
known contraction methods have convergence guarantees? It
is our hope that further research at the interface between com-
puter science and quantum many-body physics will provide
exciting insights to this question.
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5.2 emergent statistical mechanics and disordered random matrix product
states

Random matrix theory has countless applications in condensed matter physics, allowing to
predict a wide range of topics ranging from universal conductance fluctuations, weak localization
or coherent back-scattering [ABDF11]. Closer to notions of quantum information theory, it
has been shown that for uniformly drawn states, such ideas lead to a principle of maximum
entropy [SR95, HLSW04, HLW06], an insight that has implications in the context of quantum
computing [GFE09]. However, from a physical perspective, such random states do not respect
the local structure present in most naturally occurring systems. What is more common and
natural, in contrast, are quantum states that emerge from ground states of gapped Hamiltonians.
Indeed, in common experiments, good approximations of ground states of local Hamiltonian
characterized by finite-ranged interactions can often be feasibly prepared by means of cooling
procedures or by resorting to suitable loading procedures. A key question that arises, therefore,
is to what extent one can expect such ground states to exhibit the same or similar properties
as (Haar-random) uniformly chosen ones. Of particular interest is the apparent emergence of
properties that are usually assumed true in statistical mechanics from the isolated Hamiltonian
dynamics of generic quantum states, for instance the tendency to relax to an equilibrium state
and to exhibit maximum entropy. To tackle these questions, we use the fact that ground states
of one dimensional gapped local Hamiltonian can be approximated arbitrarily well by Matrix
Product States (MPS), i.e. states of the form

|ψ〉 =
∑
i1,...,iN

Tr
[
A

(1)
i1
A

(2)
i2
. . . A

(n)
in

]
|i1, . . . , iN〉. (5.1)

Here A(k)
ij

is a D ×D matrix. D is referred to as the bond dimension. In graphical calculus
(compare [BC17]):

. (5.2)

Many properties are known for random translationally invariant Matrix Product States including
a principle of maximum entropy [GGJN18, CGGPG13] and extensivity of the Rényi 2-entropy
with respect to equidistant disconnected subsystems [RW20]. In this work we focus on the
properties of typical disordered Matrix Product States. More precisely, it is known that MPSs
can be unitarily embedded [PGVWC07]: here, one equips each tensor with another leg and feeds
in an arbitrary state vector |0〉 ∈ Cd, to get

|0
〉

U (0)

|0
〉

U (1)

|0
〉

U (2)

|0
〉

U (3)

|0
〉

U (4)

|0
〉

U (5)

|0
〉

U (6)

|0
〉

U (7)

|0
〉

U (8)
. (5.3)

Each unitary U(0), . . . ,U(n) ∈ U(dD) can be seen as mapping one Cd ⊗ CD input system to
another Cd ⊗CD output system. A natural definition of typical (i.e. Haar random) disordered
Matrix Product State is hence the following:

Definition 9 (Random matrix product state). A random matrix product state (RMPS) of local
dimension d, system-size n and bond dimension D is a state defined by (5.3) with each unitary
U(1), . . . ,U(n) ∈ U(dD) drawn i.i.d. randomly from the Haar measure. We denote the resulting
measure as µd,n,D.
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We first prove that states drawn from this measure equilibrate exponentially well with a
probability exponentially close to 1 in the system-size n under unitary evolution with mild
requirements on the Hamiltonian. More precisely, given an observable A, "equilibration" means
that for the overwhelming majority of time (for example after a short equilibration time) the
expectation value of A will take a value very close to its infinite time average, meaning that the
quantity

∆A∞ψ := lim
t→∞ 1t

∫ t
0
|〈ψ|A(t ′)|ψ〉−A∞ψ |2dt ′ (5.4)

measuring fluctuations from the infinite time average

A∞ψ := lim
t→∞ 1t

∫ t
0
〈ψ|A(t ′)|ψ〉dt ′ (5.5)

should be small. We thus prove the following:

Theorem 17 (Equilibration of RMPS). LetH be a Hamiltonian with non-degenerate spectrum and
non-degenerate spectral gap and A an observable evolving in time governed by H. Let |ψ〉 be a
RMPS drawn from µd,n,D and |ψ ′〉 := |ψ〉/

√
〈ψ|ψ〉. Then there are universal constants c1, c2 such

that for n sufficiently large the infinite time average ∆A∞ψ ′ (5.4) fulfills

Pr
(
∆A∞ψ ′ 6 e−c1α(d,D)n

)
> 1− e−Ω(n). (5.6)

Our second result is once again motivated by the phenomenon of equilibration in quantum
many-body physics and the endeavor to provide a rigorous foundation for it. It has been proven
in Ref. [WGRE19] that systems equilibrate if their energy eigenstates have Rényi entropy that is
extensive in the system-size n, which means that

S2 (TrA[|j〉〈j|]) > g(j)n (5.7)

for a sufficiently well-behaved function g and an arbitrary subsystem A. This property has
been dubbed entanglement ergodicity [WGRE19]. Moreover, Ref. [RW20] shows that generic
translation-invariant MPS have extensive Rényi entropy if one considers a bi-partition of the
spin chain into the subsystem A that corresponds to every kth spin and the rest. That is, the
entropy grows proportional to the boundary |∂A|. Here, we prove such a result with explicit
quantitative bounds for disordered RMPS with overwhelming probability.

Theorem 18 (Extensivity of entanglement entropies). Suppose n is divisible by k and A consists
of every k-th qudit. Let ρ ′A be the normalized density matrix of a RMPS drawn from µd,n,D reduced
on A. Then,

Pr
(
S2(ρ

′
A) > Ω

(n
k

))
> 1− e−Ω(n/k). (5.8)

Finally, we show a principle of maximum entropy for typical disordered ground states of local
gapped Hamiltonians. We show that the Rényi 2-entropy of a small connected subchain of qudits
close to maximal:

Theorem 19 (Almost maximum entropy for reduced states). Let A be a subset l of consecutive
qudits, let ρ ′A be the normalized density matrix of a RMPS drawn from µd,n,D reduced to A. Then
for any real r and n > 2 logD

logd + l we have

Pr(Tr
[
ρ ′2A
]
> Ω(D−r) + d−l) 6 O

(
D−(2−r)

)
. (5.9)
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The proofs of the above results are based on a graphical calculus, as all of them are obtained
via mappings from the combinatorial problem obtained from applying elementary Weingarten
calculus (as introduced in Chapter 2). This mapping produces partition functions of a one-
dimensional statistical mechanical model. In fact, the method we make use of is inspired by
recent work on random quantum circuits [ZN19, HJ19]. We showcase how this mapping can be
a powerful tool in a conceptually different context. We also make use of a generalization of the
Cauchy-Schwarz inequality to tensor networks without self-contractions [KKEG19].
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The study of generic properties of quantum states has led to an abundance of insightful results. A mean-
ingful set of states that can be efficiently prepared in experiments are ground states of gapped local
Hamiltonians, which are well approximated by matrix product states. In this work, we introduce a picture
of generic states within the trivial phase of matter with respect to their nonequilibrium and entropic prop-
erties. We do so by rigorously exploring nontranslation-invariant matrix product states drawn from a local
independent and identically distributed Haar measure. We arrive at these results by exploiting techniques
for computing moments of random unitary matrices and by exploiting a mapping to partition functions of
classical statistical models, a method that has lead to valuable insights on local random quantum circuits.
Specifically, we prove that such disordered random matrix product states equilibrate exponentially well
with overwhelming probability under the time evolution of Hamiltonians featuring a nondegenerate spec-
trum. Moreover, we prove two results about the entanglement Rényi entropy: the entropy with respect to
sufficiently disconnected subsystems is generically extensive in the system size, and for small connected
systems, the entropy is almost maximal for sufficiently large bond dimensions.

DOI: 10.1103/PRXQuantum.2.040308

The application of random matrix theory to the study of
interacting quantum many-body systems has proven to be a
particularly fruitful endeavor, in fact, in various readings.
This includes countless applications in condensed matter
physics, allowing us to predict a wide range of topics rang-
ing from universal conductance fluctuations, weak local-
ization, or coherent backscattering [1]. In a mindset closer
to notions of quantum information theory, it has been
shown that, for uniformly drawn states, such ideas lead to
a principle of maximum entropy [2–4], an insight that has
implications in the context of quantum computing [5]. That
said, from an operational perspective, quantum states that
are uniformly random—in the sense that they are drawn
from a global invariant measure—are not particularly nat-
ural in many contexts. From a physical perspective, such
random states do not respect locality present in most
naturally occurring systems. What is more common and
natural, in contrast, are quantum states that emerge from
ground states of gapped Hamiltonians. Indeed, in com-
mon experiments, often good approximations of ground

*jonas.haferkamp@fu-berlin.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

states of local Hamiltonian characterized by finite-ranged
interactions can be feasibly prepared, by means of cooling
procedures or by resorting to suitable loading procedures.
A key question that arises, therefore, is to what extent one
can expect such ground states to exhibit the same or similar
properties as (Haar-random) uniformly chosen ones.

This question can be interpreted in several readings.
A particularly important one from the perspective of out-
of-equilibrium physics is, specifically, to what extent such
states would eventually equilibrate in time under the evo-
lution of general Hamiltonians [6–8]. Equilibration is an
important concept in the foundations of quantum statistical
mechanics and considerations of how apparent equilibrium
states seem to emerge under closed system quantum
dynamics. Equilibration refers to properties becoming
apparently and effectively stationary, even though the
entire system would remain to undergo unitary dynamics
generated by some local Hamiltonian.

In this work, we consider such typical ground states
from a fresh perspective. More precisely, we prove sev-
eral concentration-type results for so-called matrix product
states (MPSs), instances of tensor network states that
approximate ground states of gapped one-dimensional
quantum systems well. This class of states hence indeed
captures those that can be obtained by cooling local Hamil-
tonians with a spectral gap. To pick such random states
seems a most meaningful approach to respect natural
restrictions of locality. Since one can readily see such

2691-3399/21/2(4)/040308(12) 040308-1 Published by the American Physical Society
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states as being ground states of disordered parent Hamil-
tonians [9], they can be viewed as being typical repre-
sentatives of one-dimensional quantum phases of mat-
ter. Indeed, while the significance of random ensembles
of quantum states respecting locality has been appreci-
ated early on [10], only recently, first steps have been
taken towards a rigorous understanding of such ensembles,
specifically concerning spectral properties and decays of
correlations of generic MPSs [11,12].

Specifically, the powerful technical tool we bring in
to this kind of study is a framework – seemingly out of
context – related to mappings to partition functions of a
one-dimensional statistical mechanical models. We also
develop this picture further. Equipped with this techni-
cal tool, we prove with overwhelming probability that
a randomly chosen MPS—drawn according to the inde-
pendent and identically distributed (i.i.d.) Haar measure
in the physical and the virtual dimensions of the tensor
network state—equilibrates exponentially under the time
evolution of Hamiltonians with nondegenerate spectrum.
Moreover, as a second result, and also motivated by the
equilibration of systems exhibiting many-body localization
[13–15], we prove the extensivity of the Rényi-2 entropy
with overwhelming probability with respect to equidistant
disconnected subsystems. This result complements recent
work obtained for translation-invariant MPSs [16]. A third
result is an improved principle of maximum entropy for
disordered random MPSs. More precisely, we show that
the Rényi-2 entropy is almost maximal for small connected
subsystems up to errors polynomially small in the bond
dimension D. This again complements results for random
translation-invariant MPSs [11,17]. Another complemen-
tary result is given in Refs. [18,19], where formulas for
the asymptotic values of various quantum entropies are
derived in the setting of ergodic Markov chains.

Again, this substantial progress in studying generic
equilibrium and out-of-equilibrium states of matter are
facilitated by a technical tool introduced to the context
at hand. The proofs of the above results are based on a
graphical calculus, as all of them are obtained via map-
pings to partition functions of a one-dimensional statis-
tical mechanical model. These models can be obtained
by an application of the Weingarten calculus. In fact, the
method we make use of is inspired by recent work on
random quantum circuits. Such random quantum circuits
have recently prominently been discussed in the litera-
ture, both in the context of quantum computing where
they are used to show a quantum advantage over classi-
cal algorithms [20,21], as well as in proxies for scrambling
dynamics [22–29]. In that context, similar mappings have
been exploited [26]. We showcase here, therefore, how
this mapping can be a very much helpful tool in a con-
ceptually very different context. We also make use of a
generalization of the Cauchy-Schwarz inequality to tensor
networks without self-contractions [30]. In the Appendix,

we argue that the low-entanglement structure of MPSs
prevents them from having generic properties of uniform
states in the sense that they will now form an approx-
imate complex projective 2-design [31] in a meaningful
sense. The upshot of this work is that, using a machinery
of mappings to partition functions of a one-dimensional
statistical mechanical model and the Weingarten calculus,
a wealth of out-of-equilibrium and equilibrium properties
of generic one-dimensional quantum phases of matter can
be rigorously computed.

I. SETTING

A. Random matrix product states

We start by stating the underlying model of random
quantum states used throughout this work. A very reason-
able model of random matrix product states already used
in Ref. [10] is the following. Consider an arbitrary MPS
vector [32,33] with periodic boundary conditions and n
constituents of local dimension d. Such a state vector can
be written as

|ψ〉 =
∑

i1,...,in

Tr[A(1)i1 A(2)i2 · · · A(n)in ]|i1, . . . , in〉. (1)

Here, the A(i) are complex valued D × D matrices that
specify the quantum state at hand, where D is referred to
as the bond dimension, sometimes also called the tensor
train rank. In a commonly used graphical calculus, this is
represented as

(2)

We consider MPSs that can be unitarily embedded [34,35].
Here, one equips each tensor with another leg and feeds in
an arbitrary state vector |0〉 ∈ Cd to get

|0
〉

U (0)

| 0
〉

U (1)

| 0
〉

U (2)

|0
〉

U (3)

| 0
〉

U (4)

| 0
〉

U (5)

| 0
〉

U (6)

|0
〉

U (7)

| 0
〉

U (8)

(3)

Each unitary U(0), . . . , U(n) ∈ U(dD) can be seen as map-
ping one Cd ⊗ CD input system to another Cd ⊗ CD out-
put system. These can be normalized by choosing an
appropriate normalization for the boundary vectors. We
can construct MPSs with periodic boundary conditions
analogously. This motivates a very natural probability
measure.

Definition 1 (Random matrix product state). A random
matrix product state (RMPS) of local dimension d, system
size n, and bond dimension D is a state defined by Eq. (3)
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with each unitary U(1), . . . , U(n) ∈ U(dD) drawn i.i.d. ran-
domly from the Haar measure. We denote the resulting
measure as μd,n,D.

Note that this definition can be regarded as drawing the
A(i) tensor cores uniformly from the Stiefel manifold of
isometries. This probability measure makes a lot of sense:
it is a distribution over random disordered, nontranslation-
invariant quantum states. Once again, each realization will
have a parent Hamiltonian [9], a gapped local Hamiltonian
for which the given state is an exact ground state. In this
sense, the probability measure discussed here can equally
be seen as a probability measure on disordered, random
local Hamiltonians. It should be noted that this probability
measure takes values on state vectors that are not exactly
normalized. It is, however, easy to see that the values of
〈ψ |ψ〉 are strongly concentrated around unity.

Lemma 1 (Concentration around a unit norm). It holds
that

Pr(|〈ψ |ψ〉 − 1| ≥ ε) ≤ ε−2d−n. (4)

This will be proven in Sec. V.

B. Effective dimension and equilibration

We now turn to discussing concepts of equilibration in
quantum many-body dynamics. Equilibration refers to the
observation that, for an observable A, the expectation value
of a time-evolving quantum many-body system will for the
overwhelming times take the same values as the expec-
tation value with respect to the infinite time average: the
expectation value then looks “equilibrated” [7,36]. For a
given arbitrary state vector |ψ〉 that reflects the initial pure
state at time T = 0, this expectation value of an observable
A with respect to the infinite time average takes the form

A∞
ψ := lim

t→∞
1
t

∫ t

0
〈ψ |A(t′)|ψ〉dt′. (5)

The fluctuations around this infinite time average are
defined as [36]

�A∞
ψ := lim

t→∞
1
t

∫ t

0
|〈ψ |A(t′)|ψ〉 − A∞

ψ |2dt′. (6)

The reduced density matrices on a local region are deter-
mined by local observables. It hence suffices to consider
the above definitions. In particular, if �A∞

ψ � 1 then the
reduced density matrices on a small region cannot devi-
ate from the infinite time average except for very brief
time periods. In this sense a small value for �A∞

ψ implies
equilibration.

II. EQUILIBRATION OF RANDOM MATRIX
PRODUCT STATES

Equipped with these preparations, we are in the posi-
tion to state our first main result. On the equilibration of
RMPSs, following nonequilibrium dynamics, we prove the
following theorem.

Theorem 1 (Equilibration of RMPSs). Let H be a Hamil-
tonian with nondegenerate spectrum and nondegenerate
spectral gap, and let A be an observable evolving in time
governed by H. Let |ψ〉 be a RMPS drawn from μd,n,D
and |ψ ′〉 := |ψ〉/√〈ψ |ψ〉. Then there are constants inde-
pendent of the system parameters c1, c2 such that, for
sufficiently large n, the infinite time average�A∞

ψ ′ , Eq. (6),
fulfills

Pr(�A∞
ψ ′ ≤ e−c1α(d,D)n)) ≥ 1 − e−c2α(d,D)n (7)

with

α(d, D) = log
(

d − 1/(dD2)

(1 + 1/D)[1 + 1/(dD)]

)
. (8)

This shows that, under the time evolution of many
Hamiltonians, almost all matrix product states equilibrate
exponentially well. The proof of Theorem 1 implies a
second result that we can informally state as follows.
Assume that we draw Hamiltonians from an ensemble
such that all marginal distributions for most eigenstates
are distributed according to the RMPS measure introduced
above. Then, for an arbitrary initial state, the system equi-
librates exponentially well with overwhelming probability.
This is motivated by the fact that the equilibration of
systems exhibiting many-body localization still lacks a
completely rigorous explanation. In particular, it is known
that the energy eigenstates of many-body localized sys-
tems satisfy an area law for the entanglement entropy
[14,37,38] and can be described by matrix product states
[14]. It seems unrealistic that any natural ensemble of
Hamiltonians has RMPSs as marginal eigenstates, but we
believe that enough of this result might survive for more
structured ensembles to prove equilibration of many-body
localization systems.

A. Proof techniques

In this section, we present many of the proof techniques
relevant for this work. In order to obtain Theorem 1, we
observe that Theorem 3 of Ref. [39] can be generalized
to any distribution ν on states provided that the effec-
tive dimension is large. The effective dimension measures
how much overlap the initial state has with the energy
eigenstates of the Hamiltonian. In particular, we have the
following key result from Refs. [39–41] that we make
use of.
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Lemma 2 ([39–41]). Consider a Hamiltonian with
nondegenerate spectrum and nondegenerate spectral
gaps, i.e., En − Em = Ej − Ek if and only if n = j , m = k,
where En labels the eigenvalues of the Hamiltonian. Then,

�A∞
ψ = O(1/Deff) (9)

with

1/Deff :=
∑

j

|〈ψ |j 〉|4, (10)

where {|j 〉} is the eigenbasis of the Hamiltonian H.

Theorem 1 follows immediately from Lemma 2 in
combination with the following statement.

Lemma 3 (Bound to effective dimension). For all state
vectors |φ〉, we have

Eψ∼μd,n,D |〈ψ |φ〉|4 ≤ 2
(1 + 1/D)n[1 + 1/(dD)]n

(d2 − 1/D2)n
. (11)

We are trying to find an upper bound on

E|〈ψ |φ〉|4 = 〈φ|⊗2E(|ψ〉〈ψ |)⊗2|φ〉⊗2. (12)

We make use of the Weingarten calculus [42,43], as elab-
orated upon here in the following statement.

Lemma 4 (Weingarten calculus). The tth moment operator
of Haar-random unitaries is given by

EU∼μH U⊗t ⊗ U
⊗t =

∑

σ ,π∈St

Wg(σ−1π , q)|σ 〉〈π |, (13)

where |σ 〉 := (1⊗ r(σ ))|
〉 with r being the representa-
tion of the symmetric group St on (Cq)⊗t that permutes the
vectors in the tensor product, and |
〉 = ∑qt

j =1 |j , j 〉 the
maximally entangled state vector up to normalization.

The Weingarten calculus is a powerful tool in particular
when suitably combined with Penrose tensor-network dia-
grams providing a graphical calculus; e.g., for t = 2 and
U(q), Eq. (13) takes the form

EU∼µH

U
U

U
U

=
1

q2 − 1

⎡
⎢⎢⎣ − 1

q
− 1

q
+

⎤
⎥⎥⎦

(14)

Graphically, we can express Eq. (12) as

E|〈ψ|φ〉|4 = EU(i)∼µH

U (1)

|0
〉

U (2)

|0
〉

U (3)

|0
〉

U (4)

|0
〉

U (5)

|0
〉

U (6)

| 0
〉

U (7)

|0
〉

U (8)

|0
〉

|φ 〉

U (1)

|0
〉

U (2)

|0
〉

U (3)

|0
〉

U (4)

|0
〉

U (5)

|0
〉

U (6)

|0
〉

U (7)

|0
〉

U (8)

|0
〉

|φ〉

U (1)

|0
〉

U (2)

|0
〉

U (3)

|0
〉

U (4)

|0
〉

U (5)

|0
〉

U (6)

|0
〉

U (7)

|0
〉

U (8)

| 0
〉

|φ 〉

U (1)

|0
〉

U (2)

|0
〉

U (3)

|0
〉

U (4)

|0
〉

U (5)

|0
〉

U (6)

|0
〉

U (7)

|0
〉

U (8)

|0
〉

|φ 〉
(15)

By evaluating each EU(i)U
(i) ⊗ U(i) ⊗ U

(i) ⊗ U
(i)

individ-
ually according to Eq. (14), this can be reformulated as a
partition function. Introducing the notation

|ψ〉⊗2,2 := |ψ〉⊗2 ⊗ |ψ〉⊗2
, (16)

we obtain

E|〈ψ|φ〉|4

=
∑

{1,F}2n

|0〉⊗2,2 |0〉⊗2,2 |0〉⊗2,2 |0〉⊗2,2 |0〉⊗2,2 |0〉⊗2,2 |0〉⊗2,2 |0〉⊗2,2

|φ〉⊗2,2

(17)

Here, the black balls correspond to a choice of an ele-
ment of S2 = {1, F} with F the swap permutation. The
wiggly line corresponds to different weights for every pair
of permutations (π , σ) with the corresponding value of the
Weingarten function Wg(π−1σ , q) according to Eq. (14)
with q = dD. The red edges denote contractions over Cd

and the blue edges are contractions over CD. This is
reminiscent of Ref. [26], where the frame potential of ran-
dom quantum circuits is mapped to a partition function
with local degrees of freedom corresponding to permuta-
tions. Note however that, for every permutation π ∈ S2,
we always have

〈π |0〉⊗2,2 = |〈0|0〉|2 = 1. (18)

Moreover, every summand contains a factor of the form
〈φ|⊗2,2 ⊗n

l=1 |σl〉. We can bound this contribution using the
following generalization of the Cauchy-Schwarz inequal-
ity [30].

Lemma 5 (Cauchy-Schwarz inequality for tensor net-
works [30]). Consider a tensor network (T, C) with J ≥ 2
tensors T = (tj )∈{1,...,J } such that no tensor in the contrac-
tion C self-contracts, i.e., no string connects a tensor with
itself. Then,

|C(T)| ≤
J∏

j =1

||tj ||F , (19)

where ||.||F is the Frobenius norm of the tensor tj viewed
as a vector.
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Proof of Lemma 3. As the tensor network contraction
〈φ|⊗2,2 ⊗n

l=1 |σl〉 does not contain self-contractions, this
yields

∣∣∣∣〈φ|⊗2,2
n⊗

l=1

|σl〉
∣∣∣∣ ≤ |||φ〉||4F = 1. (20)

Therefore, we can apply a triangle inequality to the sum in
Eq. (17) to obtain the bound

E|〈ψ|φ〉|4 ≤
∑

{1,F}2n

∣∣∣∣
∣∣∣∣

(21)

As contractions over CD we have 〈1|1〉 = 〈F|F〉 = D2 and

〈1|F〉 = 〈F|1〉 = D. (22)

This allows us to obtain a sufficient upper bound on
1/Deff via a combinatorial argument. Consider a sequence
(σ1π1), (σ2π2), . . . , (σnπn) ∈ {1, F}2n. Here, the σ refer to
the balls on top in Eq. (21) and π to the ones on the bot-
tom. If σi = πi, the total interaction between sites i and
i + 1 contributes with a term

D2

d2D2 − 1
. (23)

If σi �= πi, this contribution is divided by dD, and if πi �=
σi+1, it is divided by D. Hence, we sum over all possible
ways of choosing σi �= πi or πi �= σi+1, and divide by the
corresponding factor, to get

E|〈φ|ψ〉|4 ≤ 2
D2n

(d2D2 − 1)n

n∑

l=0

n∑

r=0

(
n
l

)(
n
r

)
D−l−rd−r

= 2
(1 + 1/D)n[1 + 1/(dD)]n

(d2 − 1/D2)n
. (24)

This implies Lemma 3. �
Theorem 1 now follows from applying Lemma 3 to

Eq. (10) together with an application of Markov’s inequal-
ity and Lemma 1.

Proof of Theorem 1. By Lemma 3 we have

E(1/Deff) =
∑

j

E(|〈ψ |j 〉|4)

≤ 2
(1 + 1/D)n[1 + 1/(dD)]n

[d − 1/(dD2)]n

= 2e−αn (25)

with α = α(d, D) as defined in Eq. (8). Picking two pos-
itive constants k1, k2 > 0 with k1 < 1/2, since �A∞

ψ =
O(1/Deff), Markov’s inequality yields

Pr(�A∞
ψ ≤ e−k1αn) ≥ 1 − e−k2αn. (26)

Let N := 〈ψ |ψ〉, and let |ψ ′〉 = N−1/2|ψ〉 be the normal-
ized state vector. We then have

�A∞
ψ ′ = �A∞

ψ

N 2 . (27)

Suppose that �A∞
ψ ≤ e−k1αn and |N − 1| ≤ e−k1αn. Then

N 2 ≥ (1 − e−k1αn)2 and

�A∞
ψ ′ ≤ e−k1αn

(1 − e−k1αn)2
≤ e−c1αn (28)

for some constant c1 > 0 and the integer n being large
enough. Then, by the union bound, we get

Pr(�A∞
ψ ′ ≤ e−c1αn)

≥ 1 − Pr(�A∞
ψ ≥ e−k1αn or |N − 1| ≥ e−k1αn)

≥ Pr(�A∞
ψ ≤ e−k1αn)− Pr(|N − 1| ≥ e−k1αn)

≥ 1 − e−k2αn − Pr(|N − 1| ≥ e−k1αn)

≥ 1 − e−k2αn − e−2k1αnd−n

≥ 1 − e−k2αn − e−(1−2k1)αn, (29)

where we have used Lemma 1 and α ≤ log d. Finally,

Pr(�A∞
ψ ′ ≤ e−c1αn) ≥ 1 − e−k2αn − e−α(1−2k1)n

≥ 1 − e−c2αn (30)

for a constant c2 > 0 and sufficiently large n. �

III. EXTENSIVITY OF THE RÉNYI-2
ENTANGLEMENT ENTROPY

In this section, we turn to proving our second result. This
is once again motivated by the phenomenon of equilibra-
tion in quantum many-body physics and the endeavor to
provide a rigorous foundation for it. It has been proven
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in Ref. [44] that systems equilibrate if their energy eigen-
states have Rényi entropy that is extensive in the system
size n, which means that

S2(TrA[|j 〉〈j |]) ≥ g(j )n (31)

for a sufficiently well-behaved function g and some sub-
system A. This property has been dubbed entanglement
ergodicity [44]. Motivated by this insight, it has been
proven in Ref. [16] that generic translation-invariant MPSs
have extensive Rényi entropy if one considers a biparti-
tion of the chain into the subsystem that corresponds to
every kth site and the rest. That is, the entropy grows
proportional to the boundary |∂A|. Considering this par-
ticular partitioning is enough, since one partition of the
system satisfying Eq. (31) suffices to consider the system
entanglement ergodic, and to show the equilibration prop-
erties proven in Ref. [44]. Here, we prove such a result
with explicit quantitative bounds for disordered RMPSs
with overwhelming probability. Interestingly, the details
of the correlation length of the state is of no concern for
the bound presented. Even though the correlation length
is expected to be small compared to the system size but
nonzero (compare also the results of Ref. [12] in the
translationally invariant case), we still arrive at an exten-
sive bound of the respective entropy, independent of how
the distance k between the sites precisely relates to the
correlation length.

Theorem 2 (Extensivity of entanglement entropies). Sup-
pose that n is divisible by a positive integer k and that A
consists of what remains after tracing out every kth qudit.
Let ρ ′

A be the normalized density matrix of a RMPS drawn
from μd,n,D reduced on A. Then,

Pr
[

S2(ρ
′
A) ≥ 


(
n
k

)]
≥ 1 − e−
(n/k). (32)

Proof. The proof of Theorem 2 follows similar lines as
that of Lemma 3. We first show that the purity (Tr[ρ2

A])
is almost minimal and then apply Markov’s inequality. We
have, for the expected purity of a subsystem,

Tr[ρ2
A] = Eψ∼ν(Tr[ρ2

A])

= Eψ∼ν(Tr[FA,Aρ
⊗2
A ])

= Tr{FA,A TrB,B[E(|ψ〉〈ψ |)⊗2]}
= Tr[FA,A ⊗ 1B,BE(|ψ〉〈ψ |)⊗2]. (33)

In the same graphical notation as in the proof of Lemma 3,
this amounts to

E Tr[ρ2
A] =

∑

{1,F}2n

|F〉

|F〉

|F〉

| F〉

|F 〉

| F〉

|F〉

|F 〉

|F〉

|1〉

|1〉

|1〉

(34)

here depicted for the subset A corresponding to every k = 3
spin. Similar to the strategy laid out in Ref. [26], we sum
over every lower ball to obtain a statistical model. For this,
we define the following two interactions. These are

:=
∑

1,F |F〉

, :=
∑

1,F |1〉

(35)

Graphically, this yields the chain

E Tr[ρ2
A]

=
∑

{1,F}n

(36)

In order to proceed, we compute

F F = 1,

1 1 =
dD2 − d

D2d2 − 1
= η(d, D),

1 F = 0,

F 1 =
d2D − D

D2d2 − 1
= η(D, d)

(37)

with the notation

η(x, y) := xy2 − x
x2y2 − 1

. (38)

For the green plaquettes, we simply switch the roles of 1
and F. As an intermediate step, let us compute the same
but with j blue plaquettes. The sum over the black balls is
implicit, and the following is obtained by simply counting
how many switches between 1 and F are allowed:
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F F = 1,

1 1 = η(d, D)j ,

1 F = 0,

F 1 = η(D, d)

j∑

l=1

η(d, D)j−l

aaaaa = η(D, d)
1 − η(d, D)j

1 − η(d, D)

(39)

We can group the chain in Eq. (36) into blocks of k − 1
spins consisting of all spins to the right of a green plaquette
except the one before the next green plaquette. For k ≥
2, we have, using Eq. (39) with j = k − 1 combined with
Eq. (37) for the final green plaquette,

1 1

aaaaa = η(d, D)k−1 + η(D, d)2
1 − η(d, D)k−1

1 − η(d, D)

aaaaa ≤ η(d, D)k−1 + η(D, d),

1 F

aaaaa = η(D, d)

aaaaa ≤ η(d, D)k−1 + η(D, d),

F 1

aaaaa = η(d, D)η(D, d)
1 − η(d, D)k−1

1 − η(d, D)

aaaaa ≤ η(D, d) + η(d, D)k−1,

F F = η(d, D). (40)

In this step, we have used the facts that η(x, y) ≤ 1/x and,
for x ≥ 2,

1
1 − η(x, y)

≤ 2. (41)

We sum over the number of spins with value 1. We make
use of the fact that every spin with value 1 contributes
a factor of η(d, D)k−1 + η(D, d) (via the plaquette to its
right), to find that

E Tr[ρ2
A] ≤

n/k∑

i=0

( n
k
i

)
[η(d, D)k−1 + η(D, d)]iη(d, D)n/k−i

= [η(d, D)k−1 + η(D, d)+ η(d, D)]n/k

= η(d, D)n/k[1 + η(d, D)k−2

+ η(D, d)η(d, D)−1]n/k. (42)

Hence, for d(1/2) ≤ D and large enough k, this expectation
value becomes arbitrarily close to the minimal value d−n/k.
In the regime D2 ≤ d, the Rényi-2 entropy is bounded by
the entanglement area law [38]

|∂A| log(D) = 2n
k

log(D). (43)

As in the proof of Theorem 1, the expression for the expec-
tation value in Eq. (42) implies a concentration result via
Markov’s inequality and the union bound. This concentra-
tion inequality extends to the Rényi-2 entropy. �

IV. MAXIMUM ENTROPY FOR SMALL
CONNECTED SUBSYSTEMS

In this section, we show that small connected sub-
systems will, with high probability, feature a close to
maximum entropy. A principle of maximum entropy
for translation-invariant RMPSs has been proved in
Refs. [11,17].

Theorem 3 (Almost maximum entropy for reduced states).
Let A be a subset of l consecutive qudits, and let ρ ′

A be the
normalized density matrix of a RMPS drawn from μd,n,D
reduced to A. Then, for any real r,

Pr{Tr[ρ ′2
A ] ≥ 
(D−r)+ d−l} ≤ O(D−(2−r)) (44)

for

n ≥ 2
log D
log d

+ l. (45)

Proof. Let ρA be the unnormalized quantum state. In the
disordered case we consider here, we obtain analogously
to the previous section the expression

E Tr[ρ2
A]

=
∑

{1,F}n

(46)

for the subset A consisting of l consecutive qudits. Sum-
ming over the four contributions in Eq. (39), we obtain

E Tr[ρ2
A] = η(d, D)n−l + η(d, D)l + 0

+ η(D, d)2
1 − η(D, d)l

1 − η(D, d)
1 − η(D, d)n−l

1 − η(D, d)
. (47)

By Eq. (41), for d, D ≥ 2,

E Tr[ρ2
A] ≤ 1

dl + 1
dn−l + 4

1
D2 (48)
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holds. Let N = Tr[ρ] be the norm squared of the MPS.
We have

Tr[ρ2
A] ≥ N 2 1

dl , (49)

and using [see Eq. (67) in the proof of Lemma 1]

E(N 2) = 1 + η(d, D)n ≥ 1, (50)

we find that

E(Tr[ρ2
A] − N 2d−l) ≤ 4

1
D2 + 1

dn−l + 1
dn+l

≤ 6
1

D2 , (51)

where we have used

n ≥ 2
log D
log d

+ l, i.e., dl−n ≤ 1
D2 . (52)

Markov’s inequality then yields

Pr(Tr[ρ2
A] − N 2d−l ≥ D−r) ≤ 1

6 D−(2−r). (53)

We now need to ensure that the normalization of the state
does not worsen the bound. We employ the union bound in
a similar manner as in the proof of Theorem 1. Let ρ ′

A =
ρA/N be the normalized state. Suppose that

Tr[ρ2
A] − N 2d−l ≤ D−r (54)

and |N − 1| ≤ ε. Then N 2 ≥ (1 − ε)2 and

Tr[ρ ′2
A ] − d−l ≤ D−r

(1 − ε)2
. (55)

Pick ε := td−kn, with k ≤ 1 − r/4 and t < 1. Then ε ≤
t dklD−2k and

Tr[ρ ′2
A ] − d−l ≤ O(D−r). (56)

By the same union bound argument as in the proof of
Theorem 1, we get

Pr{Tr[ρ ′
A] − d−l ≤ O(D−r)}

≥ Pr{Tr[ρA] − N 2d−l ≤ O(D−r)} − Pr(|N − 1| ≤ d−kn)

≥ 1 − O(D−(2−r))− d−(1−2k)n

≥ 1 − O(D−(2−r)), (57)

where we have used the fact that k ≤ 1 − r/4 and hence
d(1−2k)n ≥ D2−r. This concludes the proof. �

The bound on the expectation value (47) is of the form

E Tr[ρ2
A] ≤ d−l + O(D−2)+ O(dl−n). (58)

In comparison, a bound for the expectation value of the
form d−l + O(D−1/10) for D ≥ n5 has been obtained in
Ref. [17] for random translation-invariant MPSs. For peri-
odic boundary conditions, a similar result has been proven
in Ref. [11]. Perhaps not surprisingly, our bound in the dis-
ordered case scales slightly better in D. Moreover, the bond
dimension D is not required to grow with the system size n.

In Ref. [17], Levy’s lemma has been employed in order
to obtain an exponential concentration bound. This is not
possible in our case, as the Lipschitz constant of the purity
is necessarily lower bounded by O(D). As a matter of fact,
consider the MPS generated by choosing

U(k) := 1d ⊗ 1D (59)

for all k, i.e., ρ = D2|0〉〈0|⊗n. Then, for any A, Tr[ρ2
A] =

D2. Now pick a site k and a unitary

U := 1d ⊗ V (60)

with Tr(V) = 0. For example, we can choose

V := diag(e2π ij /D)j =0,...,D−1. (61)

We construct the MPS σ with the identity on every site
and U on site k. For any A containing k, Tr[σ 2

A ] = 0. The
Lipschitz constant of the function

U(dD)×n → R,

(U) �→ Tr[ρU
A

2],
(62)

where ρU is the MPS constructed with the unitaries and
where we equip U(dD)×n with the product Frobenius
norm, is then bounded by

L ≥ | Tr[ρ2
A] − Tr[σ 2

A ]|
||1− U||2 ≥ D2

2D
= O(D), (63)

where we have made use of the triangle inequality to
further bound the denominator.

V. CONCENTRATION AROUND THE UNIT NORM

In this section, we make use of the machinery of statisti-
cal mechanics mappings in order to show that the norm of
the vectors |ψ〉 is exponentially concentrated around unity,
i.e., around being an actual quantum state.

Lemma 6 (Concentration around a unit norm). It holds
that

Pr(|〈ψ |ψ〉 − 1| ≥ ε) ≤ ε−2d−n. (64)
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To prove this statement, first note that

E〈ψ |ψ〉2 = Tr[F(|ψ〉〈ψ |)⊗2]. (65)

Moreover, using first-order Weingarten calculus, it is easy
to see that E〈ψ |ψ〉 = 1. Graphically, this corresponds
to the spin chain depicted in Eq. (34) with only blue
plaquettes as

E〈ψ|ψ〉2

=
∑

{1,F}n

(66)

However, given the values of the plaquettes in Eq. (37),
the only nonzero contributions are all spins 1 or all spins
F. This yields

E〈ψ |ψ〉2 = 1 +
(

dD2 − d
D2d2 − 1

)n

≤ 1 + d−n. (67)

Now from Markov’s inequality we obtain

Pr[(〈ψ |ψ〉 − 1)2 ≥ ε] ≤ ε−1E(1 − 〈ψ |ψ〉)2 ≤ ε−1d−n.
(68)

This exponential concentration allows us to prove all other
concentration results without regarding the normalization.
In fact, we combine every calculation with a union bound
and the above concentration result such that the normaliza-
tion does not change the statements. It is also noteworthy
that all these concentration results follow from simple
applications of Markov’s inequality and do not require
geometric methods such as Levy’s lemma [45].

VI. LOCAL EXPECTATION VALUES

Consider an observable O acting on (Cd)⊗l for some
small number of sites l. Here we consider the expecta-
tion values 〈ψ |O ⊗ 1(C2)⊗n−l |ψ〉. We assume without loss
of generality that O is traceless. First, note that we have

E〈ψ |O ⊗ 1(C2)⊗n−l |ψ〉 = Tr(O) = 0. (69)

We want to show that the expectation values are con-
centrated around 0. One possible way to do this is to
exploit the results of Sec. IV to argue that the local den-
sity matrix is close in norm with high probability to the
maximally mixed state, as done in Ref. [17], and con-
clude by Hölder’s inequality that, for the expectation value
expressed in terms of the reduced density matrix ρ, the

following holds:

| Tr[Oρ]| = | Tr[O(ρ − 1/dl)]| ≤ ||ρ − 1/dl||∞||O||1.
(70)

Here ||O||1 is a constant in n and D. Nevertheless, we want
to showcase how our method can be applied directly to this
problem.

To showcase the flexibility of our approach, we provide
a direct bound on the second moment

E〈ψ |O ⊗ 1(C2)⊗n−l |ψ〉2 = E Tr[(O ⊗ 1(C2)⊗n−l |ψ〉〈ψ |)⊗2].
(71)

We consider the case l = 1 for simplicity. Graphically, we
have

E〈ψ|O|ψ〉2

=

|O
〉 (72)

where |O〉 := [(1⊗ O)|
〉]⊗2. We obtain the interactions

1 | O
〉

1 = − Tr[O2]

D2d3 − d
,

F | O
〉

F =
Tr[O2]D2

D2d2 − 1
,

1 | O
〉

F = − Tr[O2]D

D2d3 − d
,

F | O
〉

1 =
Tr[O2]D

D2d2 − 1
(73)

from this. Simply by ignoring the one negative contribu-
tion (all spins 1), we obtain

E〈ψ |O ⊗ 1(C2)⊗n−l |ψ〉2

≤ Tr[O2]
[

D
D2d2 − 1

η(D, d)
n−2∑

i=0

η(d, D)i

+ D2

D2d2 − 1

(
d2D − D
D2d2 − D

)n−2]

≤ Tr[O2]
(

D−2 1 − d−n+1

1 − d−1 + D−n+1
)

≤ 2D−2 Tr[O2] (74)

for n ≥ 2 as a combinatorial bound. We can now achieve
a concentration result for local expectation values from
Markov’s inequality. Previously, typicality of expecta-
tion values was argued for translation-invariant MPSs in
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Ref. [46], where the authors argued an exponential concen-
tration if D grows faster than 
(n2). However, their proof
is based on the concentration of measure phenomenon
and the bound they obtained on the Lipshitz constant
involves the assumption that the second highest eigenvalue
of the transfer operator is small enough for essentially all
instances. While a numerical assessment indicates that this
is the case for all practical purposes, it is difficult to obtain
explicit rigorous bounds for the dependence on n this way.
Our simple bound from second moments only scales as
D−2 (as opposed to e−
(D)), but it is independent of n and
does not require any further assumptions.

VII. OUTLOOK

In this work, we have systematically explored RMPSs
where the individual tensors have been chosen indepen-
dently according to the Haar measure. Exploiting a map-
ping to a one-dimensional statistical mechanics model, we
have been in the position to compute expectation values
of various quantities for such disordered RMPSs. We have
derived concentration results for the effective dimension,
implying equilibration under the time evolution of generic
Hamiltonians, and concentration results for the Rényi-2
entropy and the expectation values of local observables.

While we have put properties of such families of quan-
tum states into the focus of our analysis, it should be clear
that by means of the parent Hamiltonian concept men-
tioned above, we could have discussed ensembles of local
Hamiltonians. For translational-invariant RMPSs [12], this
picture is particularly transparent.

An obvious further problem is to consider quantities that
require higher moments, such as higher Rényi entropies
Sα with 2 ≤ α ∈ Z. This would result in more complicated
statistical models with α! many local degrees of freedom.
Another open question concerns higher-dimensional sys-
tems. It would be interesting to apply a similar analysis to
projected entangled pair states.

For translational-invariant RMPSs, the expected corre-
lation length has been proven in Refs. [11]. The family
of states defined in this fashion gives rise to generic rep-
resentatives of the trivial phase of matter [9] with unit
probability. If a state has symmetries, i.e., if the state
vector satisfies U⊗n

g |ψ〉 = eiθg |ψ〉 for some real phase θg ,
and where g �→ Ug is a linear unitary representation of a
symmetry group G, then this symmetry is (for a suitable
phase gauge) reflected on the virtual level of the MPS as a
projective unitary representation of group G, satisfying

VgVh = eiω(g,h)Vgh (75)

for a real phase (g, h) �→ ω(g, h) [47]. Different phases of
matter respecting these symmetries in symmetry-protected
topological order are now captured by equivalence classes,
called cohomology classes, they again forming a group,

the second cohomology group H2[G, U(1)] of G over U(1)
[9,48,49]. That said, it now makes sense to think of RMPSs
that respect a physical symmetry and think of typical
symmetry-protected topological (SPT) phases of matter.
Here, the Haar measure is chosen in each of the blocks of
a direct sum on the virtual level, respecting the projective
unitary representation of group G. In this sense, one can
speak of common representatives of SPT phases, a line of
thought that will be elaborated upon elsewhere.

More broadly put, this work can be seen as a contri-
bution to a bigger program concerned with understanding
generic phases of quantum matter by means of random
tensor networks. Indeed, properties of random tensor net-
works can often be easier computed than those of tensor
networks in which the entries are specifically chosen. Ran-
domness hence serves as a computational tool, a line of
thought that can be dated back to Ref. [3] and further.

In Ref. [50], such a line of thought has already been
applied to identify properties of holographic tensor net-
works, where a desirable property to be a so-called perfect
tensor turns out to the approximately satisfied with high
probability. Building upon this insight, one can compute
properties of the resulting boundary state. More ambi-
tiously still, it makes a lot of sense to think of holo-
graphic random tensor network models in which the ten-
sors have further structure, e.g., to be match-gate tensor
networks [51]. Similarly, questions of properties of higher-
dimensional cubic tensor networks arise along similar
lines. It is the hope that the present work can provide
insights and a powerful machinery to address such fur-
ther questions when exploring typical instances of phases
of matter.
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APPENDIX

A natural follow up question is whether RMPSs have
features similar to generic Haar-random states. Naively,
an argument as above might be used to show that RMPSs
form approximate spherical 2-designs [31]. The difference
of moment operators in the 2-norm can be bounded using
the frame potential as

∣∣∣∣

∣∣∣∣Eψ∼ν(|ψ〉〈ψ |)⊗2 − 2Psym

dn(dn + 1)

∣∣∣∣

∣∣∣∣
2

F
= F2,ν − 2

dn(dn − 1)
,

(A1)
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and the frame potential is given by

F2,ν := Eψ ,φ∼ν |〈ψ |φ〉|4, (A2)

which is reminiscent of the expression in Eq. (11). After
all, random product states constitute an exact projective 1-
design.

However, RMPSs with polynomially bounded bond
dimensions have low-entanglement structure by definition.
Since the Schmidt rank along any bipartition is bounded by
D, the purity is bounded below by 1/D, but the average
over this quantity is exponentially small for an approx-
imate 2-design. In more detail, consider a probability
measure such that

∣∣∣∣

∣∣∣∣Eψ∼ν(|ψ〉〈ψ |)⊗2 − 2Psym

dn(dn + 1)

∣∣∣∣

∣∣∣∣
F

≤ ε. (A3)

With this notion we obtain a straightforward bound on the
entanglement purity over a bipartition of the spin chain into
subsets A and B of equal size n/2. With the norm inequality
|| · ||1 ≤ √

dim H|| · ||F [see, e.g., Eq. (1.2.6) of Ref. [52] ],
we obtain

Eψ∼ν(Tr[ρ2
A]) = Eψ∼ν(Tr[FA,Aρ

⊗2
A ])

= Tr{FA,A TrB,B[Eψ∼ν(|ψ〉〈ψ |)⊗2]}. (A4)

Therefore,

Eψ∼ν(Tr[ρ2
A])

≤ 2
dn(dn + 1)

Tr{FA,A TrB,B[Psym]} + dnε

= 1
dn(dn + 1)

Tr{FA,A TrB,B[FAB,AB + 1AB,AB]} + dnε

= 2d3n/2

dn(dn + 1)
+ dnε. (A5)

As a small expectation value implies the existence of
instances with small values, this leads to a contradiction
for

ε ≤ d−n

D
. (A6)

This argument rules out a “cutoff” phenomenon, where the
error is exponentially suppressed in the bond dimension D
only after some polynomial threshold has been surpassed.
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6

S U M M A R Y A N D O P E N P R O B L E M S

In this thesis, we made advances at the intersection of quantum many-body physics, complex-
ity theory and probability theory. We saw how to generate increasingly evenly distributed en-
sembles of states and unitaries from randomizing over quantum circuits and provided several
strong bounds that quantify this phenomenon. We also used randomness to imply strong bounds
on the growth of quantum circuit complexity. These results provide powerful examples of how
randomness can be used as a proof technique for complexity. On the other hand, we also saw
how complexity can arise from randomizing over the instances of a computational problem. In
the practically motivated task of contracting tensor networks, we ruled out strong heuristic al-
gorithms by turning any such algorithm into an efficient randomized solver for all tensor net-
works. Lastly, we explored the physical properties of generic matrix product states, thereby
studying how local ensembles of states relate to properties of uniformly random states.

In the following we comment on open questions that we made partial progress on.

6.1 the robust brown-susskind conjecture, designs in linear depth and the
spectral gap of random quantum circuits

Large parts of this thesis are motivated by the Brown-Susskind conjecture for random quantum
circuits, namely the intuition that complexity should grow linearly for almost all circuits for an
exponentially long time. This conjecture can be formulated for essentially any sensible notion
of circuit complexity. A crucial result in this thesis is that the conjecture holds for the exact
implementation complexity. A more operational notion should allow for an implementation
error, e.g. in the 1-norm of states quantifying the single shot distinguishability [BCHJ+21]. The
result of Section 3.3 can even be shown to imply such a linear growth of complexity for an
implementation error that is > 0 but depends uncontrollably on the system-size. The problem
with this is that we ideally would like the error to be constant in the system-size. To make any
progress on the scaling in the system-size it seems like we need to use information about the
curvature of the sets of states generated by circuits of a given depth.

A purely combinatorial approach based on unitary t-designs [BCHJ+21] works perfectly fine
for operational/robust notions of circuit complexity. The best bound on the growth rate of robust
complexity was based on this approach in Section 3.2 and scales likeΩ(depth1/(5+o(1))).

Therefore, two seemingly different natural approaches to the robust Brown-Susskind conjec-
ture fail for different reasons. However, while based on different mathematics, both approaches
are versions of counting arguments. More precisely, they can both be viewed as partial deran-
domizations of counting arguments: a volume based counting argument presented in Section 3.2
is derandomized by unitary t-designs and a counting argument based on the dimension of the
unitary group/state space can be derandomized by dimensions of sets of unitaries with a fixed
circuit complexity in Section 3.3. In both approaches, we use that random quantum circuits are
‘‘expressive’’ and generate increasing amounts of randomness. This motivates to search for a
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way to quantify the randomness of ensembles of states and unitaries that is weaker than the
convergence for higher moments but stronger than the dimension of the ensemble’s support.

6.2 approximate average-case hardness of output probabilities

To this day, there is no (oracle free) unconditional argument that relates superpolynomial
speed-ups of (realistic) quantum devices to the separation of classical complexity classes such
as P vs NP. On the other hand, an efficient sampler for quantum supremacy schemes up to
multiplicative errors implies the collapse of the polynomial hierarchy. The problem here is
that even a fully-fledged quantum computer will never be capable of such a simulation. This
is because multiplicative errors allow for no error at all for output probabilities that are 0. A
much more realistic notion of approximation is additive in total variation distance/ l1 norm.
Reducing hardness of sampling up to constant errors in total variation distance rests on one key
conjecture: approximate average-case hardness.

In various settings, one can show worst-to-average case reductions based on polynomial
interpolation, as developed by Lipton for the permanent [Lip91]. As it was explained in Chapter 4,
this can be adapted to output probabilities of sampling schemes with continuous degrees of
freedom. Usually, these reductions yield average-case complexity for approximation up to errors
of the form 2−poly(n). In comparison, for random quantum circuits, we would need average-
case complexity for approximations up to errors of O(2−n). Recently, the robustness of worst-
to-average case reductions for random quantum circuits was improved to O(2−O(n)) [Kro22,
BFLL22, KMM22]

Unfortunately, recent work establishes strong limitations on worst-to-average case reductions
based on gate-wise interpolations for errors that scale as 2n [BFLL22, DFG+21]. In particular,
every proof of average-case complexity for this level of robustness necessarily depends on the
depth of the random quantum circuit beyond the worst-case hardness.

6.3 anticoncentration of boson sampling

While well-established for most circuit-based sampling schemes, the anticoncentration conjec-
ture for boson sampling remains wide open. While numerical results suggest that the distribution
of the permanent is as flat as the distribution of the determinant [AA13], the complexity of the
permanent is mirrored in the mathematical difficulty to characterize its distribution: It turns out
that the usual approach of computing second moments in combination with the Paley-Zygmund
inequality is not sufficient to establish the anticoncentration conjecture in this case.

A natural path forward is to compute higher moments and use them to characterize the
permanent distribution. Unfortunately, this seems to require a very precise computation of
the higher moments, which turns out to be a highly non-trivial combinatorial problem [Nez21].
In particular, we would need upper bounds that are far stronger than the ones obtained in
Appendix A. Moreover, it is observed in Ref. [Nez21] that the permanent distribution for
Gaussian matrices might not even be fully characterized by its integer moments due to possible
heavy tails of the distribution.
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A

A D D I T I O N A L R E S U L T S

a.1 efficient quantum pseudorandomness from quantum simulators

Recall from Chapter 4 that measuring the 2D cluster states in uniformly random X-Y plane bases
results in the following effective circuit acting on the last column [HHB+20, BVHS+18]
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(A.1)

Here, global entangling Clifford unitaries

E :=

(
n∏
i=n

Hi

)(
n−1∏
i=1

CZi,i+1

)
, (A.2)

are interleaved with a tower of single qubit Z rotations:
∏n
i=1 e

iβ̃jiZi .

Theorem 20. The circuit in (A.1) forms an ε-approximate unitary t-design in depth

m = O(nt(t4+o(1)n+ log(1/ε))).

Notice that each layer consists of O(n) many gates, so the overall gate count scales as O(n3)
in the system-size. This is in contrast to the result in [HHB+20], where the number of required
gates scales asO(n2) but only for t = 2. It was already proven in [Rau05] that this constitutes a
universal model of quantum computing and in fact, any unitaryU ∈ U(2n) can be approximated
by a long enough circuit of the above form. This insight is based on the properties of the unitary
E viewed as a Clifford cellular automaton [SVW08]. We can commute the rotation eiφZ through
the circuit and obtain more complicated and, in particular, entanglement generating unitaries.
The effect can be observed by the action of E on Zi := 1[1,...,i−1]⊗Z⊗ 1[i+1,n] with i somewhere
in the bulk (i.e. i is far enough away from 1 and n):

EZiE
† = X1, E2Zi(E

†)2 = Xi−1ZiXi+1, E3Zi(E
†)3 = Xi−2Zi−1XiZi+1Xi+2. (A.3)
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This expansion carries on until one of the non-trivial Pauli operators is one of the boundary
qubits 1 or n. Then, the process turns into a shift. This is best seen by starting with the operator
Z1:

EZ1E
† = X1, E2Z1(E

†)2 = Z1X2 E3Zi(E
†)3 = Z2X3. (A.4)

It is this process in particular that we will exploit to prove the generation of unitary t-designs.
We consider a random quantum circuit of the form A.1 on n qubits with n layers and denote

the corresponding probability measure on the unitary group by ν. The corresponding moment
operator is of the following form

Mt(ν) =

(
E⊗t,t

n∏
i=1

P
Zi
t

)n
, (A.5)

where we define for any Pauli word p

P
p
t :=

1

2π

∫2π
0
(eiϕp)⊗t,tdϕ. (A.6)

We successively commute all operators eβ
j
i from their position in the circuit to the right of the

entangling unitaries E. This is equivalent to reformulating the moment operator as

Mt(ν) = (En)⊗t,tPp1t · · ·P
p
n2

t , (A.7)

with suitable Pauli words pi. Since E⊗t,t is unitary, we have that

||Mt(ν) −Mt(µH)||∞ = ||P
p1
t · · ·P

p
n2

t −Mt(µH)||∞. (A.8)

The latter is the spectral gap of a product of projectors and we can apply the detectability
lemma [AAV16, AALV09] to obtain the bound:

||P
p1
t · · ·P

p
n2

t −Mt(µH)||∞ 6 1√
∆(Hn,t)

9 + 1
(A.9)

for the Hamiltonian

Hn,t =

n2∑
i=1

1 − Ppit . (A.10)

Each of these summands is a positive operator. Moreover, Hn,t is frustration-free, i.e. it has
global ground space with eigenvalue 0. We know from (A.4) that the Pauli words Zi ⊗Xi+1 for
all 1 6 i 6 n− 1 and Zi,Xi for 1 6 i 6 n among the Pauli words p1, ...,pn2 . This implies the
operator inequality

Hn,1 >
n∑
j=1

(
1 − P

Zj
t

)
+

n∑
j=1

(
1 − P

Xj
t

)
+

n−1∑
j=1

(
1 − P

ZiXi+1
t

)

> 1
2

(
n−1∑
i=1

hi,i+1

)
,
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where
hi,i+1 := 51 − PZit − PXit − PZi+1 − P

Xi+1
t − P

ZiXi+1
t . (A.11)

In particular, up to normalization (by a factor of 1/5) the summands hi,i+1 are moment operators
corresponding to the distribution σ of picking with equal probability a gate eiϕXi Xi , eiϕZi Z, ...
with equal probability. Since the gates eiϕXi Xi , eiϕZi Z are universal on SU(2) and eiϕZXi ZiXi+1

is entangling for almost all values of ϕZXi ∈ [0, 2π), it follows from the result in [BB01] that this
is a universal gate set and hence σ a universal distributions. For universal distributions it was
proven in Refs [Var13, OSH21, HMMH+23]) that

||Mt(σ) −Mt(µH)||∞ 6 1− c ′ log−2(t) (A.12)

for a universal constant c ′ > 0. This local spectral gap can be elevated to a global spectral
gap [BaHH16, OBK+17]:

∆(Hn,t) > (1− ||Mt(σ) −Mt(µH)||∞)∆(HH
n,t), (A.13)

where

HH
n,t =

n−1∑
i=1

1 −Mt(µH,i,i+1) (A.14)

is the local Hamiltonian corresponding to a locally Haar-random walk (compare [BaHH16]). We
can combine this bound with the following bound from [Haf22]:

∆(HH
n,t) > c2 × t−(4+o(1)). (A.15)

Overall, we obtain a bound of

∆(Hn,t) > c3 log−2(t)t−(4+o(1)). (A.16)

Plugging this into (A.9) yields

||Mt(ν) −Mt(µH)||∞ 6 1− c log−2(t)t−(4+o(1)). (A.17)

Theorem 20 now follows from a standard argument [BaHH16] (that can also be found in
Section 3.2).

a.2 incompressibility of parameterized quantum circuits

The effective circuits in (A.1) can also be prepared on a quantum computer. As such, they are
an example of parameterized quantum circuits [BLSF19]. These are candidates for emergent
quantum technologies like quantum machine learning or variational quantum optimizer. In this
context, a key concept is that of overparameterization [HBK21]: How many of the parameters
are redundant for the preparation of states? The parameters in the case of (A.1) are the angles
ϕij.

Here, we observe that the techniques from Section 3.3 can be used to show that at least for
certain parameterized circuits of linear depth, there is no overparameterization in this sense!
The set of unitaries generated has a dimension precisely equal to the number of parameters:
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Proposition 5. Denote by U
par
T the set of unitaries that can be generated by circuits introduced in

Eq. (A.1) of depth T 6 n. Then, Upar
T is a semialgebraic set with

dimU
par
T = nT . (A.18)

Proof. First, notice that Upar
T is the image of the contraction map Fpar : U(1)×nT → U(2n)

that maps eθi 7→
(
eθi 0

0 e−θi

)
and then contracts the circuits (A.1) with the above single-qubit

diagonal matrices. This is a polynomial map applied to an algebraic set and hence, by the Tarski-
Seidenberg principle [BCR13], the image is a semialgebraic set. For the dimension formula, we
observe that again, by the same techniques as in Section 3.3, the maximally attainable rank among
all choices of parameters equals dimUpar. To prove the second claim of Proposition 5 we only
need to find nT linearly independent matrices in the image of the Jacobian. It turns out that it
suffices to choose ϕij = 0 for all angles. The partial derivatives are then of the form

Ej−1ZiE
T−j+1 = ETPi,j. (A.19)

From the pattern established in the previous section, it is clear that each tuple (i, j) ∈ [1,n]×
[1, T ] corresponds to nT different Pauli operators.

The same result is likely true for even deeper circuits. As En = −1, this would require us to
choose non-trivial angles ϕij.

a.3 baby steps towards anticoncentration of boson sampling

The permanent is one of the most studied matrix polynomials, second perhaps only to the determ-
inant. In contrast to the determinant the permanent is notoriously difficult to compute [Val79,
Aar11,AA13]. In particular, the #P-hardness of approximating the permanent is related to various
other hardness results [KKT20] and is at the heart of the quantum advantage paradigm of boson
sampling [AA13]. Specifically in the context of quantum advantages, one is often concerned with
the permanent of random matrices such as submatrices of Haar random unitary matrices. A key
conjecture for quantum advantages is the anticoncentration conjecture. While the full conjec-
ture remains out of reach, a recent preprint by S. Nezami [Nez21] makes substantial progress on
the permanent of random matrices. In particular, this new work provides formulas for various
special cases, a powerful expansion in terms of irreducible representation and lower bounds for
the higher moments of the permanent distribution.

The permanent can be interpreted as the probability amplitude of a state subject to non-
interacting bosonic dynamics [AA13, Aar11]. In this section, we show that this quantum
mechanical point of view allows for a simple derivation of this lower bounds. Moreover, along
similar lines, we find a simple method to obtain non-trivial upper bounds on the moments. We
show how this general method can yield a bound ofO(t−12k) on the tth moment of a k×kminor.

We work over the unitary group U(d) on d modes. Each element U ∈ U(d) acts as a passive
Gaussian transformation on the bosonic (symmetric) subspace of n particles with d modes
Sn(Cd) ⊂ (Cd)⊗n as U⊗n.
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The key to the observation in this section is the following standard formulation of the perman-
ent as a probability amplitude in quantum mechanics [AA13, Aar11]. Let M be the upper-left
k× k minor of a unitary matrix U ∈ U(d) with k 6 d. Then,

perm(M) = 〈ψ|U⊗k|ψ〉, where |ψ〉 := k!
1
2Psym|1, . . . ,k〉. (A.20)

For the moments of the permanent this yields:

EU|perm(M)|2t = EU|〈ψ|⊗tU⊗kt|ψ〉⊗t|2 = EU〈ψ|⊗tU⊗kt|ψ〉⊗t〈ψ|⊗t(U†)⊗kt|ψ〉⊗t. (A.21)

We see that the unitariesU⊗kt form a subgroup ofU(dkt). The following elementary observation
captures the intuition that overlaps are smaller in larger spaces on average:

Observation 1. Let G ⊆ H ⊆ U(H) be Lie subgroups of the unitary group acting on a Hilbert
spaceH. Then, for φ ∈ H, we have

EU∼µG |〈φ|U|φ〉|2 > EU∼µH |〈φ|U|φ〉|2, (A.22)

where µG,H denote the uniform measure on G and H respectively.

Proof. We present two short proofs of this statement. The first is the following calculation. Here,
|| • ||F denotes the Frobenius norm:

0 6
∣∣∣
∣∣∣EU∼µHU|φ〉〈φ|U† − EV∼µGV |φ〉〈φ|V†

∣∣∣
∣∣∣
2

F

= Tr
[(

EU∼µHU|φ〉〈φ|U† − EV∼µGV |φ〉〈φ|V†
)2]

= Tr
[
EU,U ′∼µHU|φ〉〈φ|U†U ′|φ〉〈φ|U ′†

]
− 2Tr

[
EU∼µHEV∼µGU|φ〉〈φ|U†V |φ〉〈φ|V†

]

aaaaaaaaaaaaaaaaaa+ Tr
[
EV ,V ′∼µGV |φ〉〈φ|V†V ′|φ〉〈φ|V ′†

]

= EU∼µG |〈φ|U|φ〉|2 − 2EU∼µH |〈φ|U|φ〉|2 + EU∼µH |〈φ|U|φ〉|2

= EU∼µG |〈φ|U|φ〉|2 − EU∼µH |〈φ|U|φ〉|2,
(A.23)

where we have used repeatedly the left and right invariance of the measures µG and µH.
Alternatively, Eq. (A.22) follows directly from representation theory. Recall Lemma 1, which

states that for every representation ρ of a group H,

EU∼µHρ(U) = Ptriv, (A.24)

where Ptriv is the orthogonal projector onto the trivial isotypic component of ρ. As every trivial
representation is also trivial under the induced representation of a subgroup G, we immediately
obtain the following operator inequality of projectors:

EU∼µHρ(U) 6 EU∼µGρ(U). (A.25)

This immediately implies Eq. (A.22) by choosing ρ(U) = U⊗U.

By choosing the correct subgroups, this yields a short proof of the following result from [Nez21,
Theorem 5.1]:
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Theorem 21.

EU|perm(M)|2t >
((k+d−1

d

)
+ t− 1

t

)−1

. (A.26)

Proof. Observe that |ψ〉 ∈ St[Sd(Cd)]. We can choose G = {U⊗kt,U ∈ U(d)} forming a
subgroup of H = {U⊗t,U ∈ U(Sk(Cd))}. Hence,

EU|perm(M)|2t > EU∼µH〈ψ|⊗tU⊗t|ψ〉⊗t〈ψ|⊗t(U†)⊗t|ψ〉⊗t

=
〈ψ|⊗tPsym,(k+d−1d ),t|ψ〉⊗t

dimSt(Sk(Cd))

=
1

dimSt(Sk(Cd))
,

(A.27)

which implies the result.

Theorem 21 follows in Ref. [Nez21] as a consequence of a very general expansion formula. In
the remainder of this section we apply Observation 1 to obtain upper bounds on the permanent.
This is possible by choosing H = {U⊗kt,U ∈ U(d)} and G to be a small enough subgroup such
that the expectation values over it can be explicitely evaluated.

Theorem 22 (Upper bound on moments of the permanent). LetM be a k× k minor of a Haar
random unitary U ∈ U(d). Then,

EU|perm(M)|2t 6 (πt)−
1
2 bd/2c (A.28)

If additionally t 6 d, then we have the stronger inequality

EU|perm(M)|2t 6 min
[
(πt)−

1
2 bk/2c, (πk)−

1
2 bt/2c

]
. (A.29)

Proof. We first consider the case k = d = 2. We obtain an interesting bound from considering
diagonal matrices in the Hadamard eigenbasis. This is the following group:

G ′ = DH := {HXH,X = diag(x1, x2) ∈ U(2)}. (A.30)

A general element of this group has the form:

HXH =
1

2

(
x1 + x2 x1 − x2

x1 − x2 x1 + x2

)
. (A.31)

Hence we find
perm(HXH) =

1

2
(x21 + x

2
2). (A.32)

This yields:

E|perm(HXH)|2t = E
1

4t
(x21 + x

2
2)
t(x21 + x

2
2)
t =

1

4t

t∑
j=0

(
t

j

)2
=
1

4t

(
2t

t

)
6 1√

πt
, (A.33)

by Stirling’s approximation.
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Now consider a larger value of d. We can always choose a subgroup of G ′ ⊂ U(d) by
considering block diagonal matrices with k independent copies of U(2) on the diagonal:




[
U(2)

]
. . .

. . .
. . .

[
U(2)

]




The maximal number of such copies that fit into a k × k minor is bk/2c. As the permanent
factorizes for block diagonal matrices, we immediately obtain the bound:

EU|perm(M)|2t 6 (πt)−
1
2 bk/2c. (A.34)

The stronger form (A.29) follows from the moment-size duality derived in [Nez21].

A natural generalization of the above example for general d is to consider the discrete Fourier
transform Fd, where F2 = H and the group

G ′ = DFd :=
{
FdXF

†
d,X = diag(x1, . . . , xd) ∈ U(d)

}
. (A.35)

The case d = 3 yields

perm(F3XF
†
3) =

1

9

[
2(x31 + x

3
2 + x

3
3) + 3x1x2x3

]
. (A.36)

This generalizes to an interesting family of polynomials. The bound (A.28) can likely be improved
by choosing larger blocks and the moments of the permanent of random diagonal matrices in
the Fourier basis of these blocks. Even better bounds can be expected from the latter problem
in arbitrary dimensions without using block diagonal embeddings. Unfortunately, this might
be a difficult combinatorial problem: The matrices in question are known as circulant matrices.
Expanding the permanent of these as a polynomial in the eigenvalues can be linked to #P-hard
problems [KKT20].

a.4 is there an analogue of gurvit’s algorithm for tensor networks?

The analogy between the permanent and tensor networks goes beyond the #P average-case
hardness. Both functions, the tensor network contraction and the permanent, are low-degree
polynomials in the entries of the input tensors. In this section, we show further that we can
define an analogue of formulas for the permanent as expectation values over binary random
variables [Rys63, Gly10, AH12]. Such formulas immediately give rise to natural sampling al-
gorithms [Gur05, AH12].

Definition 10. A tensor network T is a graph G = (V ,E) together with a tensor Tv ∈⊗
e∈N(v) CDe for every vertex v, where N(v) ⊆ E denotes the set of adjacent edges to v.

Contraction over all edges defines the number C(T). We define the max-1-norm of a tensor
network:
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Definition 11. The max-1-norm of a tensor network T is defined by

||T ||m,1 := max
v∈V

||Tv||1, (A.37)

where ||Tv||1 is the 1-norm of Tv as a vector.

Theorem 23. There is a randomized approximation scheme that, given a tensor network T outputs
an estimate of C(T) that is within an additive error of ε||T |||V |m,1 with high probability and runtime
in

O

(
|V |, max

e∈E
De, ε−2

)
.

For every edge e ∈ E, we draw a random string xe ∈ {−1, 1}De . Then, we define a smaller
tensor network T̃(v, x) for every vertex v: The graph of this network is the vertex v together
with the edges e ∈ N(v) that now connect v to new, artificial vertices ve. We locate the tensor
Tv at v and xe at ve. Next we define the estimators

Est(x) :=
∏
v∈V

C
(
T̃(x, v)

)
. (A.38)

None of these equals the actual tensor network contraction, but we find the following analogue
to Ryser’s formula for the permanent: The contraction of a tensor networks T can be expressed
as

C(T) = Ex (Est(x)) . (A.39)

This follows from the fact that:
Exx

e
ix
e
j = δij. (A.40)

The algorithm to estimate C(T) is thus simply to randomly draw m = O(ε−2) many x1, ..., xm
and then output the mean:

M :=
Est(x1) + ... + Est(xm)

m
(A.41)

The bound in Theorem 23 follows from a standard application of the Chernoff bound. This
immediately implies |C(T)| 6 ||T ||

|V |
m,1. Hence, we have limn→∞C(Tn) = 0 for all families

of tensor networks Tn with sufficiently (but constantly) small entries. However, a stronger
inequality is available for tensor networks that don’t have ‘‘self-loops’’ in form of a generalization
of the Cauchy-Schwarz inequality. More precisely, it was proven in Ref. [KKEG19] that for
every tensor network T in which every edge has two distinct vertices, the contraction is upper
bounded by the product of the vector 2-norms of the tensors and, in fact, we used this inequality
in Section 5.2.

Therefore, while we can define an analogue to Gurvit’s algorithm for tensor networks, the
runtime guarantees are only polynomial (for reasonable errors) in a regime where stronger
bounds exist already and simply outputting 0 is a better estimator. Unfortunately, even in
the regime of exponential runtimes, the 1-norm usually gives very weak guarantees. We
can compare this to the analogous algorithm for the permanent [Gur05, AH12], which merely
depends on the operator norm of the input tensor/matrix.
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