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ABSTRACT

Computational pipelines have become a crucial part
of modern drug discovery campaigns. Setting up and
maintaining such pipelines, however, can be chal-
lenging and time-consuming––especially for novice
scientists in this domain. TeachOpenCADD is a plat-
form that aims to teach domain-specific skills and
to provide pipeline templates as starting points for
research projects. We offer Python-based solutions
for common tasks in cheminformatics and struc-
tural bioinformatics in the form of Jupyter note-
books, based on open source resources only. In-
cluding the 12 newly released additions, TeachOpen-
CADD now contains 22 notebooks that cover both
theoretical background as well as hands-on pro-
gramming. To promote reproducible and reusable re-
search, we apply software best practices to our note-
books such as testing with automated continuous in-
tegration and adhering to the idiomatic Python style.
The new TeachOpenCADD website is available at
https://projects.volkamerlab.org/teachopencadd and
all code is deposited on GitHub.

GRAPHICAL ABSTRACT

INTRODUCTION

Computational methods play an integral role in the design-
make-test-analyze (DMTA) cycle that drives real-world
drug design projects (1). To address questions raised dur-
ing this cycle, a single method does not suffice to deliver
an answer; instead, a pipeline combining different methods
can produce complementary and useful insights. Setting up
such complex pipelines, however, can be difficult and time-
consuming for many reasons: the scientist may not have
had the training necessary to tackle these tasks (2), tools
and their usage are constantly evolving (or becoming depre-
cated), and feeding the output from one tool into another is
often not straightforward. On top of these considerations,
sustainable pipelines need to be findable, accessible, inter-
operable, and reusable (FAIR principles (3))––not only to-
day but in many years from now––to drive reproducible re-
search.

In 2019, we launched the teaching platform TeachOpen-
CADD (4) on GitHub to help face these challenges.
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TeachOpenCADD teaches by example how to build Python
pipelines with open source resources used in the fields of
cheminformatics and structural bioinformatics to answer
central questions in computer-aided drug design (CADD).
With these ready-to-use pipelines, we target students and
teachers who need training material for CADD-related top-
ics, as well as researchers who need a template or an in-
spiration to tackle their research questions. The theoreti-
cal and practical aspects of each topic are covered in an
interactive Jupyter notebook (5). This setup makes it easy
for users from different fields to understand the computa-
tional concepts and to get started with hands-on Python
programming. We call these Jupyter notebooks talktori-
als (talk + tutorial) because their format is suited for pre-
sentations as well. The initial stack of talktorials T001–
T010 covers common CADD tasks involving webserver
queries, cheminformatics, and structural bioinformatics (4).
We show how to fetch chemical and structural data from
the ChEMBL (6) and PDB (7,8) databases and how to en-
code, filter, cluster, and screen such datasets to find novel
drug candidates and off-targets (4). The talktorials are in-
spired by several online resources recommended for further
reading such as Teach-Discover-Treat and CDK (9,10) and
the blogs Practical Cheminformatics, RDKit blog, and Is
live worth living?. Over the last two years, the TeachOpen-
CADD GitHub repository underwent many additions and
changes: we now have more than doubled our content and
extended the application of software best practices rigor-
ously. The full collection of talktorials is easily accessible on
the new TeachOpenCADD website. We comply with soft-
ware best practices regarding the code style as well as main-
tenance and facilitate installation with a dedicated conda
package.

NEW TALKTORIALS

The new stack of talktorials showcases data acquisition
from additional CADD-relevant databases, adds many ex-
amples for structure-based tasks, and extends the chemin-
formatics side with straightforward deep learning (DL) ap-
plications. Our example use case is the EGFR kinase (19)
but the talktorials are easily adaptable to other targets as
long as sufficient data is available. Besides the domain-
specific resources described below, we rely in all talktorials
on established Python packages for data science and visual-
ization such as NumPy (20), pandas (21), scikit-learn (22),
matplotlib (23), and seaborn (24).

Webservices queries

Over the last decades, the scientific community has pro-
duced an incredible amount of data and analysis software,
and adapted modern technologies to make these resources
easily available via online webservices (25). However, it
might not always be obvious to the beginner how to use
a web application programming interface (API) to access
such data and how to integrate them into larger pipelines.
TeachOpenCADD dedicates several talktorials to the usage
of different webservers relevant for the life sciences.

In the first TeachOpenCADD release from 2019, we al-
ready showed how to query the ChEMBL (6) and PDB (7,8)

databases. From the ChEMBL webservice, compounds and
bioactivities are fetched for the EGFR kinase using the
ChEMBL webresource client (26) (T001). This dataset is
used in many downstream talktorials for common chemin-
formatics tasks (T002-T007). From the PDB webservice, we
fetch a set of EGFR kinase structures based on criteria such
as ‘ligand-bound structures from X-ray experiments with a
resolution <3.0 Å’ using the biotite (27) and PyPDB (28)
(T008) packages.

In the latest release, we now have added three more note-
books covering the usage of additional online API webser-
vices (Figure 1, T011–T013).

T011: Querying online API webservices. We added a broad
introduction on how to programmatically use online web-
services from Python with a focus on REST services and
web scraping. The usage of several libraries is demon-
strated; e.g. we use requests to retrieve content from
UniProt (29), bravado to generate a Python client for
OpenAPI-compatible services –– exemplified for the KLIFS
database (11)––, and Beautiful Soup to scrape (parse)
HTML content from the web.

T012: Data acquisition from KLIFS. KLIFS (11) is a ki-
nase database gathering information on experimental ki-
nase structures and interacting inhibitors. The talktorial
shows how to quickly fetch data from KLIFS given a query
kinase or ligand. For example, we spot frequent key ligand-
interactions in EGFR based on KLIFS interaction finger-
prints and we assess kinome-wide bioactivity values for the
inhibitor gefitinib. These queries are demonstrated by using
the KLIFS OpenAPI directly with bravado, or by using the
KLIFS-dedicated wrapper OpenCADD-KLIFS (30), im-
plemented in the Python package OpenCADD.

T013: Data acquisition from PubChem. PubChem (12)
is a database holding chemical information on over 100
million compounds. We demonstrate how to fetch data
from PubChem’s PUG-REST API (31), given the name or
SMILES (32) of a query ligand. For example, we show how
to fetch molecular properties for a ligand of interest by
name (aspirin) and how to query PubChem for the most
similar compounds given a query SMILES (gefitinib).

Data acquisition case study. A summary of the informa-
tion that can be acquired automatically for a target of in-
terest using these webservices is exemplified in Figure 2. Us-
ing the Uniprot ID of EGFR kinase as input query only,
(i) 227 available EGFR structures from the PDB can be ob-
tained and further filtered (T008); (ii) 446 available complex
structures and their interaction fingerprints can be fetched
from KLIFS (T012), or (iii) a total of 8463 IC50 values of
molecules measured against EGFR can be acquired from
ChEMBL (T001). Finally, (iv) a PubChem query with the
molecule name ‘gefitinib’ showcases how to gather ligand
properties or to perform a similarity search (T013).

Pocket detection, ligand–protein docking and interactions

During a drug discovery campaign, frequent questions are:
What should I test next? Can you suggest a diverse set of
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Figure 1. Overview of 12 new talktorials. (i) Querying webservices (blue): T011 gives a broad introduction to programmatic access to webservices from
Python, T012 and T013 demonstrate how to query the KLIFS (11) and PubChem (12) databases for kinase and compound data, respectively. (ii) Struc-
tural bioinformatics (orange): T014 detects the binding site in an EGFR kinase structure and compares the prediction to the binding site defined by
KLIFS (11). T015 performs a re-docking for an EGFR–ligand complex with Smina (13). T016 detects protein–ligand interactions in an EGFR–ligand
complex structure with PLIP (14). T017 introduces basic and advanced usages of the molecular visualization tool NGLView (15), used throughout most of
TeachOpenCADD’s talktorials. T018 outlines a fully automated lead optimization pipeline: Based on an input structure, the pocket is detected and a set of
compounds similar to a selected ligand are fetched from PubChem (12). These compounds are docked into the selected binding site. The most promising
compounds w.r.t. docking scores and interaction profiles are proposed as optimized compounds. T019 demonstrates how to set up and run a molecular
dynamics (MD) simulation on Google Colab with OpenMM (16). T020 analyzes the resulting MD trajectory with a focus on the root-mean-square devi-
ation (RMSD) between trajectory frames and the dynamics of protein-ligand interactions using MDAnalysis (17,18). (iii) Cheminformatics (green): T021
exhibits the steps to numerically encode a small molecule from its SMILES representation. T022 lays the groundwork for deep learning and focuses on a
simple feed-forward neural network for activity prediction using molecular fingerprints.
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Figure 2. Data and information that can be automatically gathered for the EGFR kinase using the different web query talktorials as of September 2021,
created based on ChEMBL v.27 (6) (T001), PDB (8) (T008), PubChem (12) (T013), and KLIFS (11) (T012). Input: yellow boxes, output: gray boxes,
plots and molecule visualizations (using NGLView (15) and RDKit).

small molecules likely to bind to this protein? How should
I modify the lead compound to increase the binding affin-
ity? Answering these questions involves multiple scientific
observations, and thus, multiple computational steps as ad-
dressed in talktorials T014–T017. Finally, an automated
pipeline is compiled (T018) to process a protein structure
and a lead compound, and propose several similar ligands
with optimized estimated affinities and interactions based
on the docked protein-ligand structures.

T014: Binding site detection. First, we need to know where
ligands may bind to a protein of interest. Sometimes the
binding site is known from experimental protein-ligand
structures. If only experimental apo structures are available,
putative binding sites can be predicted with computational
methods. We demonstrate how to use the REST API of the
ProteinsPlus webserver (33) to detect the main pocket of
an EGFR structure using the DoGSiteScorer (34) pocket
detection algorithm. To validate our results, the predicted
pocket is compared with the KLIFS-defined kinase pocket,
which encompasses 85 residues shown to be in contact with
ligands based on X-ray complex structures (35).

T015: Protein–ligand docking. Next, we introduce molec-
ular docking to predict the binding mode of a ligand to
its protein target by explaining several sampling algorithms
and scoring functions, as well as commenting on limitations
and interpretation of docking results. The theoretical back-
ground is then applied in a re-docking experiment aiming
to reproduce the binding mode observed in a published X-
ray structure of EGFR. Protein and ligand are prepared
using Pybel (36), the ligand is docked into the protein us-
ing Smina (13), and finally, the docking poses are visually
inspected using NGLView (15). We refer to JupyterDock
for further reading on different docking protocols run from
Jupyter notebooks.

T016: Protein–ligand interactions. Understanding which
forces and interactions drive molecular recognition is im-
portant for drug design (37). In this talktorial, we give an in-
troduction to relevant protein-ligand interactions and their
programmatic detection using the protein-ligand interac-
tion profiler PLIP (14). To this end, all interactions in an
EGFR–ligand complex fetched from the PDB are detected
and visualized in 3D using NGLView.
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Figure 3. Case study for talktorial T018 depicting (A) 2D structure of the
input ligand for the pipeline that was used with an EGFR crystal struc-
ture (PDB: 3W32, IC50 = 75nM); (B) 2D structure of gefitinib (IC50 =
0.17nM), an EGFR ligand found during similarity searches; (C) crystal
structure of gefitinib co-crystallized with EGFR (PDB: 2ITY, black CPK
representation); (D) docked pose of gefitinib (yellow CPK representation).
Some segments of the protein structure have been removed for clarity. The
ligand RMSD between (C) and (D) and the discovery of a higher-affinity
ligand demonstrate the utility of the fully automated pipeline for early
stage drug discovery.

T017: Advanced NGLView usage. Since the molecular vi-
sualization package NGLView is invoked in many talkto-
rials, we give a dedicated overview of its usage and show
some advanced cases on how to customize residue coloring,
and how to create interactive interfaces with IPyWidgets.
In addition, access to the JavaScript layer NGL (38,39) is
showcased to perform operations that are not exposed to
the Python wrapper NGLView.

T018: Automated pipeline for lead optimization. All pre-
vious talktorials are composed of stand-alone tasks that
can be completed independently. Proposing ligand modi-
fications that will improve interaction patterns with target
proteins in a complete end-to-end process, however, neces-
sitates orchestration of code and concepts implemented in
the previously discussed talktorials T014–T017. A docking
pipeline is constructed in T018 that is comprised of both
a step-by-step demonstration and a fully automated proce-
dure. Given a query protein and a lead compound, similar
ligands fetched from PubChem are suggested, which show
optimized affinity estimates and interaction profiles based
on generated docking poses.

Lead optimization case study. As a case study, an EGFR
crystal structure (PDB: 3W32) and its co-crystallized ligand
were used as inputs for the pipeline. A similarity search led
to the generation of a small library of compounds from Pub-
Chem for docking and further analysis to find compounds
ideally more affine than the co-crystallized ligand. Using
the pipeline, an approved breast cancer drug, gefitinib, was
found in the top 50 of docked poses (Figure 3). Gefitinib
(IC50 = 0.17 nM (40)) is at least an order of magnitude
more affine for EGFR than the measured affinity of the in-
put ligand (IC50 = 75 nM (41)). Gefitinib’s predicted geom-
etry was <2 Å RMSD from a crystal structure of wild-type

EGFR (PDB: 2ITY). This retrospective example demon-
strates the utility of a fully automated pipeline and potential
application as prospective tool.

Molecular dynamics

Experimentally resolved structures offer immense insights
for drug design but can only provide a static snapshot of
the full conformational space that represents the flexible na-
ture of biological systems. Molecular dynamics (MD) sim-
ulations approximate such flexibility in silico with a trajec-
tory of atom positions over a series of time steps (frames).
These trajectories thereby reveal a more detailed––albeit
still incomplete––picture of drug-target recognition and
binding by providing access to protein-ligand interaction
patterns over time (42–44). These insights can for example
help in lead discovery to examine the stability and validity
of a predicted ligand docking pose, and in lead optimization
phases to estimate the effect of a chemical modification on
binding affinity.

T019: MD simulations. We explain the key concepts be-
hind MD simulations and provide the code to run a short
MD simulation of EGFR in complex with a ligand on a lo-
cal machine or on Google Colab with condacolab, which
allows for GPU-accelerated simulations. The protein and
ligand are thereby separately prepared with pdbfixer and
RDKit, and subsequently combined using MDTraj (45)
and openff-toolkit. The simulation is performed with
OpenMM (16), a high-performance toolkit for molecular
simulation. The talktorial produces a 100 ps trajectory if
run on Google Colab. On a local machine, only 20 fs are
generated by default to keep computational efforts reason-
able. We refer to the work by Arantes et al. (46) for further
reading on different MD protocols run with OpenMM us-
ing Jupyter notebooks on Google Colab.

T020: Analyzing MD simulations. We analyze and visu-
alize the trajectory using the Python packages MDAnaly-
sis (17,18) and NGLView. First, the protein is structurally
aligned across all trajectory frames, followed by calculating
the root-mean-square deviation (RMSD) for different sys-
tem components, i.e. protein, backbone, and ligand. Then,
we take a closer look at a selected interaction between lig-
and and protein atoms, showcasing the contribution of dis-
tance and angle to the hydrogen bond strengths.

Deep learning

Machine learning and more specifically deep learning have
gained in popularity over the last few decades thanks
to powerful computational resources (GPUs), novel algo-
rithms, and the growing amount of available data (47). Ap-
plications to CADD are diverse, ranging from molecular
property prediction (48) to de novo molecular design (49).
Here, the focus is the featurization of molecular entities
(T021) and ligand-based screening (T022).

T021: One-hot encoding. In CADD, machine learning al-
gorithms require as input a numerical representation of
small molecules. Besides molecular fingerprints (see T004),
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a popular featurization is the SMILES notation (32). How-
ever, these representations are composed of strings and
therefore cannot simply be input to an algorithm. One-hot
encoding provides a solution for SMILES usage, explained
in T021.

T022: Ligand-based screening: neural networks. We intro-
duce the basics of neural networks and build a simple two-
layer neural network. A model is trained on a subset of
ChEMBL data to predict the pIC50 values of compounds
against EGFR using MACCS keys as input. This talkto-
rial is meant as groundwork for the understanding of neu-
ral networks. More complex architectures such as convolu-
tional and recurrent neural networks will be explored in fu-
ture notebooks. Such models may use the one-hot encoding
of SMILES as input (50).

BEST PRACTICES

We provide reliable and reproducible TeachOpenCADD
pipelines, periodically checked via automated testing mech-
anisms, and a streamlined and easy-to-understand code
style across all talktorials.

Testing. Reproducibility is ensured by testing if the note-
books can run without errors and whether the output of
specific operations can be reproduced. For this purpose, we
use the tools pytest and nbval.

Continuous integration. We are testing the talktorials reg-
ularly for Linux, OSX, and Windows and different Python
versions on GitHub Actions. This ensures identical behav-
ior across different operating systems and Python versions
and also spots issues like conflicting dependency updates or
changing outputs.

Repository structure. The repository structure is based on
the cookiecutter-cms template, which provides a Python-
focused project scaffold with pre-configured settings for
packaging, continuous integration, Sphinx-based docu-
mentation, and much more. We have adapted the template
to our notebook-focused needs.

Code style. We aim to adhere to the PEP8 style guide for
Python code, which defines how to write idiomatic Python
(Pythonic) code. Such rules are important so that new
developers––or in our case talktorial users––can quickly
read and understand the code. Furthermore, we use black-
nb to format the Python notebooks compliant with PEP8.

TEACHOPENCADD USAGE

There are many ways to use the talktorials. If users sim-
ply want to go through the material, they can use the read-
only website version. If users would rather like to execute
and modify the Jupyter notebooks, this can be done online
thanks to the Binder integrations or locally using the new
conda package.

New website. Firing up Jupyter notebooks can entail un-
expected complications if one wants to simply read through
a talktorial. To make the access easy and fast, we launched
a new TeachOpenCADD website. The website statically
renders the talktorials for immediate online reading using
sphinx-nb and provides detailed documentation for local
usage, contributions and external resources.

New Binder support. The Binder project offers a place to
share computing environments via a single link. The envi-
ronment setup of TeachOpenCADD can take a couple of
minutes but does not require any kind of action on the user’s
end. This access option is recommended if the user plans on
executing the material but does not need to save the changes.

New conda package. To make the local installation of Tea-
chOpenCADD as easy as possible, we offer a conda pack-
age that ships all Jupyter notebooks with all necessary de-
pendencies. The installation instructions are lined out in
the TeachOpenCADD documentation. This access option
is recommended if the user plans on adapting the material
for individual use cases.

CONCLUSION

The increasing amount of data and the focus on data-
driven methods call for reproducible and reliable pipelines
for computer-aided drug design (CADD). Knowing how to
access and use these resources programmatically, however,
requires domain-specific training and inspiration. The Tea-
chOpenCADD platform showcases webserver-based data
acquisition and common tasks in the fields of cheminfor-
matics and structural bioinformatics. The theoretical and
programmatic aspects of each topic are outlined side-by-
side in Jupyter notebooks (talktorials) using open source
resources only. To foster FAIR research, we apply soft-
ware best practices such as testing, continuous integra-
tion, and idiomatic coding throughout the whole project.
The talktorials are accessible via our website, Binder, and
conda package to accommodate different use cases such
as reading, executing, and modifying, respectively. We be-
lieve that TeachOpenCADD is not only a rich resource for
CADD pipelines and teaching material on computational
concepts and programming but as well a good example of
how to set up websites, automated testing, and packaging
for notebook-centric repositories. TeachOpenCADD is a
living resource; problems can be voiced via GitHub issues
and contributions can be made in the form of pull requests
on GitHub. TeachOpenCADD is meant to grow; everyone
is welcome to add new topics. Whenever you explore a new
topic for your work, we invite you to fill our talktorial tem-
plate with what one learns along the way and to submit it
to TeachOpenCADD.

DATA AVAILABILITY

• TeachOpenCADD website: https://projects.volkamerlab.
org/teachopencadd/.

• TeachOpenCADD GitHub repository: https://github.
com/volkamerlab/teachopencadd.
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