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The COVID-19 pandemic led to an increase in publicly available single-cell RNA sequencing data.
This review provides an up-to-date framework and readily adoptable tools to measure such data in
lungs and compare it with existing data across species. https://bit.ly/3wHCoHe
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Abstract
Single-cell ribonucleic acid sequencing is becoming widely employed to study biological processes at a
novel resolution depth. The ability to analyse transcriptomes of multiple heterogeneous cell types in
parallel is especially valuable for cell-focused lung research where a variety of resident and recruited cells
are essential for maintaining organ functionality. We compared the single-cell transcriptomes from
publicly available and unpublished datasets of the lungs in six different species: human (Homo sapiens),
African green monkey (Chlorocebus sabaeus), pig (Sus domesticus), hamster (Mesocricetus auratus), rat
(Rattus norvegicus) and mouse (Mus musculus) by employing RNA velocity and intercellular
communication based on ligand–receptor co-expression, among other techniques. Specifically, we
demonstrated a workflow for interspecies data integration, applied a single unified gene nomenclature,
performed cell-specific clustering and identified marker genes for each species. Overall, integrative
approaches combining newly sequenced as well as publicly available datasets could help identify species-
specific transcriptomic signatures in both healthy and diseased lung tissue and select appropriate models
for future respiratory research.

Introduction
Single-cell RNA sequencing (scRNA-seq) is becoming widely employed to study biological processes in
great depth [1–3]. Its name describes its key advantage: the resolution of transcriptomes at single-cell level.
This resolution is highly valuable when sample sources are heterogeneous in their cellular compositions,
and during the rapid temporal developments occurring during responses to acute infection, such as the
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increasing cellular intervariability. Thus, scRNA-seq is an essential tool to identify interactive networks,
cell fate, disease signatures and novel cell types.

Initially, scRNA-seq was primarily utilised in studies involving oocytes, zygotes and other early
developmental cells [4, 5]. Later, global initiatives such as the Human Cell Atlas and CZ Biohub provided
the murine [6] and human [7, 8] scRNA-seq atlases. In cell biology focused research, scRNA-seq enabled
the discovery of formerly unknown pulmonary cells such as ionocytes [9], aerocytes [10] and group 2
innate lymphoid cells subpopulations [11]. Furthermore, the identification of disease states in individual
pulmonary fibrosis derived cells led to the human pulmonary fibrosis atlas, serving as a groundwork for
personalised therapies [12]. scRNA-seq was effectively adopted in cancer research, aiming to identify
individualised treatment-targets and improve patient care [13–15]. Recently, the severe acute respiratory
syndrome coronavirus type 2 (SARS-CoV-2) pandemic further boosted applications of scRNA-seq in lungs
due to the need to understand cellular pathomechanisms underlying coronavirus disease 2019 (COVID-19).
Here, scRNA-seq became the method of choice to dissect the antiviral immune response both in patient
samples and model organisms including transgenic mice, hamsters, ferrets and nonhuman primates [16–
21]. Several possible markers predicting severity of COVID-19 cases [22] and potential drug targets [23]
were also identified.

From this perspective, pandemic-driven accumulation of substantial lung-centred data allows for the
comparison of pulmonary immunity across species and the definition of the advantages and shortcomings
of animal models. This requires digital platforms and tools to integrate and compare data derived from
human and nonhuman subjects to further support translational research towards new forms of medical
diagnosis and (personalised) treatment.

Our main aim is to provide guidance and demonstrate technical feasibility of currently utilised powerful
methods for pulmonologists interested in the single-cell transcriptome of lung tissue across different
species. For this, we demonstrate current procedures and tools to create, compare and qualitatively assess
scRNA-seq data in six different species: human (Homo sapiens), African green monkey (Chlorocebus
sabaeus), pig (Sus domesticus), hamster (Mesocricetus auratus), rat (Rattus norvegicus) and mouse (Mus
musculus). We show similarities regarding cell differentiation and identify a prominent role of proliferating
alveolar macrophages in cell–cell communication.

Basic principles of pulmonary single-cell isolation, barcoding and sequencing
Lungs harbour a variety of resident and recruited cells, which participate in immune responses and are
essential for maintaining organ functionality. Ideally, analyses of lung cells should be performed in full
complexity to improve the understanding of various pulmonary pathologies. However, subsequent
cross-species cell isolation protocols are rarely identical. Therefore, their potential impact on cellular
representation and fitness should be taken into consideration. However, different protocols do not hinder
cross-species comparisons, as demonstrated here for selected species and protocol examples (protocols
corresponding to datasets depicted in table 1).

Classical droplet-based scRNA-seq technologies such as Drop-seq, In-Drop, Chromium (10× Genomics,
Pleasanton, CA, USA) and Nadia (Dolomite Bio, Royston, UK) are widely used due to their high
throughput and reasonable pricing. Although recent approaches in bulk RNA and scRNA-seq applications
of cryopreserved cells showed promising results for lung epithelial cells, using viable cells from fresh
tissue remains the recommended option by the manufacturers (10× Genomics, Dolomite Bio) of
commercially available droplet-based scRNA-seq workflows [26, 27]. In plate-based scRNA-seq
technologies such as SMART-seq2, single cells are conventionally sorted by flow cytometry into wells in
order to overcome the viability shortcoming, as dead cells can be removed during sorting. Another
advantage of the SMART-seq2 is the deeper transcriptomic information that can be drawn, much like other
full-length RNA-seq methods [28]. The disadvantages include the low number of cells that can be
analysed (96 or 384 cells per plate, per run) and significantly higher costs per cell, making it very
challenging to utilise for whole organs, especially those that are heterogeneous in structure such as the
lungs. The BD Rhapsody system enables high-throughput analyses of the whole transcriptome and adopts
a microwell-based approach, resulting in fewer doublet cells compared to the droplet-based 10× Genomics
system, albeit with the drawback of allowing the analysis of just one sample per assay [29, 30], an issue
that could be solved by additional antibody tagging (cell-hashing).

Ideally, the single-cell suspension, regardless of the method chosen, represents all pulmonary cells in their
respective proportion and all original gene signatures. Evidently, cellular dissociation of solid tissues
preferably selects migratory cells, such as leukocytes [31]. To dissociate pulmonary mesenchymal,
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TABLE 1 Overview of experimental protocols applied to generate viable pulmonary single-cell suspensions; cell isolation procedures corresponding to the interspecies datasets to dissociate lung
tissue into a single-cell suspension. Enzymatic digestion and mechanical processing steps applied to dissociate lung tissue into a single-cell suspension vary between species.

Human lung tissue
(Charité)

Murine lung tissue
(Charité)

Hamster lung tissue
(NOUAILLES et al. [18])

Human lung tissue
(TRAVAGLINI et al. [24])

Monkey lung tissue
(SPERANZA et al. [21])

Rat lung tissue
(RAREDON et al. [25])

Pig lung tissue
(RAREDON et al. [25])

Treatment Mock infection Mock infection Heparinisation
1st enzymatic

digestion
Intra-alveolar
vasculature

Intra-alveolar
vasculature

Intra-alveolar

Enzymes Dispase (50 U·mL−1) Collagenase/dispase
(1 mg·mL−1)

elastase (3 U·mL−1)
DNase (20 U·mL−1)

Collagenase/dispase
(1 mg·mL−1)

elastase (3 U·mL−1)
DNase (20 U·mL−1)

Temperature 22°C 37°C 37°C
Duration 5 min

1st mechanical
dissociation

Mincing with scissors Clapping with
tweezers

Clapping with
tweezers

Dissection and mincing Dissociation in
rocker

Dissociation in rocker

2nd enzymatic
digestion

Distal alveolar tissue Full lung tissue Lobus caudalis Distal alveolar tissue Lung sections Full lung tissue Distal lung regions

Enzymes Collagenase I
(500 U·mL−1)

DNase I (1 U·mL−1)
dispase (5 U·mL−1)

Collagenase CLS II
(750 U·mL−1)

DNase I
(1 mg·mL−1)

Collagenase CLS II
(750 U·mL−1)

DNase I (1 mg·mL−1)
Dispase (50 U·mL−1)

Liberase DL
(400 µg·mL−1)

elastase (100 µg·mL−1)

Liberase (0.1 mg·mL−1

DNase I (0.02 mg·mL−1)
Collagenase/dispase

(1 mg·mL−1)
elastase (3 U·mL−1)
DNase (20 U·mL−1)

Collagenase/dispase
(1 mg·mL−1)

elastase (3 U·mL−1)
DNase (20 U·mL−1)

Temperature 37°C 37°C 37°C 37°C 37°C 37°C 37°C
Duration 60 min 30 min 30 min 30 min NR 20 min 40 min

2nd mechanical
dissociation

Shear force via
syringe

Shear force via
pipette

GentleMACS dissociator Pressed through
sieve#

Pressed through
sieve#

2nd incubation 30 min nutator at 37°C
3rd dissociation GentleMACS dissociator

+DNAse I (100 µg·mL−1)
1st cell filtration 70 µm cell strainer 70 µm cell strainer 70 µm cell strainer 100 µm cell strainer 100 µm cell strainer 70 µm cell strainer 70 µm cell strainer
Red blood cell lysis Yes Yes Yes Yes Yes Yes Yes
2nd cell filtration 40 µm cell strainer 70 µm cell strainer 40 µm cell strainer 70 µm cell strainer 40 µm cell strainer 40 µm cell strainer
Isolation buffer RPMI, 10% FCS, 1%

glutamine
1× PBS, 0.5% BSA 1× PBS, 0.5% BSA 1× PBS, 5% FBS 1× PBS, 0.1% BSA 1× PBS, 0.01% BSA 1× PBS, 0.01% BSA

Centrifugation
force

360×g (10 min, 4°C) 300×g (6 min, 4°C) 350×g (6 min, 4°C) 300×g (5 min, 4°C) NR 300×g (3 and 5 min) 300×g (3 and 5 min)

Single-cell
processing

10× Genomics 10× Genomics 10× Genomics 10× Genomics/
SMART-seq2

10× Genomics 10× Genomics 10× Genomics

DL: dispase low; FCS: fetal calf serum; BSA: bovine serum albumin; FBS: fetal bovine serum; NR: not reported. #: the sieve was additionally rinsed with DMEM containing 10% FCS, 1% penicillin/
streptomycin, 1% amphotericin and 0.1% gentamicin.
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endothelial and epithelial cells, use of enzymatic digestion and enforcement of mechanical stress is
necessary [32]. However, these steps increase risks of inducing transcriptomic stress responses that
overwrite the cells’ original transcriptomic signature [33–35]. A preventive measure is to add reagents
during isolation steps to stop de novo transcription, such as dithio-bis(succinimidyl propionate) [36],
CellCover reagent [37] or Actinomycin D [38]. Alternatively, cold-active proteases can be used at low
temperatures to hinder ongoing transcription [33]. Another option is single-nucleus RNA sequencing
(snRNA-seq), whereby nuclei, rather than viable cells, are isolated from tissues. Advantages of snRNA-seq
include the well-established applicability to frozen tissue, minimal isolation-induced cellular stress and
improved representation of tissue cells, albeit at the cost of diminished leukocyte frequencies [39, 40].
Particularly, the enhanced representation of pulmonary epithelial and endothelial cells, without need to
undergo prior single-cell dissociation steps, makes this technique highly relevant to lung research focusing
on tissue responses, e.g. lung barrier integrity in acute lung injury models. Furthermore, snRNA-seq
enables the generation of large-scale reference maps from archived tissues as demonstrated by the GTEx
Consortium [41]. In autopsy samples from lung, heart, liver and kidney tissues, snRNA-seq outperformed
scRNA-seq to systematically access the cellular ecosystem of the tissues [42]. A recent publication
comparing scRNA-seq and snRNA-seq data of fresh and cryopreserved murine lung tissue could
demonstrate comparable detection rate of genes as well as lower expression of mitochondrial and
ribosomal genes, but increased ambient RNA contamination which could not be corrected with the soupX
package [40].

Ready-to-use protocols for both human and murine lung tissues are made publicly available, specialising
on the isolation of cell nuclei from healthy or diseased (e.g. tumorous) tissues [40, 43, 44].

Once a single-cell suspension has been obtained, the individual cell’s RNA can be barcoded,
reverse-transcribed and cDNA libraries suitable for next-generation sequencing can be created and
sequenced. Each cell’s individual barcode enables subsequent reassignment of identified RNA sequences
to its cell of origin. For basic analysis allowing for identification of individual cell populations and their
specific gene expression, usually 50 000 raw reads per cell are recommended when counting unique
molecular identifiers (UMIs), i.e. the number of sequences before PCR-amplification. Enhanced resolution
and correct identification of rare transcripts can be achieved through deeper coverage in RNA-seq [45].

Data processing and analysis
Bioinformatic tools and workflows for processing transcriptomic single-cell data are steadily improving in
their scope and usability [46, 47]. The first step in the analysis of each scRNA-seq dataset involves the
creation of a table reporting the counts of all detected genes for each measured cell. In the 10× Genomics
Chromium system, the vendor’s Cell Ranger software is often used. For human and mouse data, the
necessary annotation files are publicly available, e.g. by the Encyclopedia of DNA Elements (ENCODE)
project [48, 49]; however, it might be necessary for these to be generated from sequencing data for other
species. For this, gene annotation of related species can be used to identify genes that also match in the de
novo sequenced data as described previously [50]. In the following steps, software tools written in R and
Python dominate the field. In R, Seurat [51] and specific packages from Bioconductor [52] are
pre-eminent, while in Python, SCANPY [53] is used frequently. Initial filtering of low-quality data is
crucial for high-quality results. Such filters ensure a minimum number of unique measured genes and gene
counts per cell and remove cells with high percentages of mitochondrial genes, which is an indication of
defective cells [46]. Identified doublets (droplets that have erroneously captured more than one cell) are
also often removed.

Exemplary workflow for multispecies data pre-processing and integration
In the following, we demonstrate integration and qualitative assessment of scRNA-seq data across six
species from eight datasets: human (Homo sapiens), African green monkey (Chlorocebus sabaeus), pig
(Sus domesticus), hamster (Mesocricetus auratus), rat (Rattus norvegicus) and mouse (Mus musculus). We
used quality-filtered scRNA-seq data of lungs from different sources (figure 1) using up-to-date analysis
workflows. Six datasets are publicly available: resected lung tissue from one patient processed by 1) 10×
Genomics (human, TRAVAGLINI et al. [24], patient 2) and 2) SMART-seq2 workflow (human, TRAVAGLINI

et al. [24], patient 2); 3) three hamster lungs (naïve controls from [18]); 4) two rat lungs (data from [25]);
5) two pig lungs (data from [25]); and 6) two monkey lungs (mock-infected controls from [21]). Two
further datasets were generated in-house and made available with this article: 7) resected patient lung tissue
of four patients (human Charité) and 8) two mouse lungs pooled prior to barcoding (https://github.com/
GenStatLeipzig/pulmonologists_interspecies_scRNA). All tissue dissociation procedures for the
aforementioned datasets are summarised in table 1.
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As described in the first landmark paper demonstrating cross-species comparison within pulmonary cell
types [25], a single unified gene nomenclature is required for subsequent steps. For this, we identified the
9924 human genes with orthologues present in all species from the Ensembl database human genes build
GRCh38.p13 (http://www.ensembl.org; supplementary figure S1). In the instance of multiple genes relating
to a single orthologue, a consensus gene was selected based on the highest cell-specific expression level.
In the following, we refer to the orthologue genes by using the human gene name.

Here, the datasets were similarly transformed by defining common cut-offs for high quality cells,
performing regression-based adjustment of the percentage of mitochondrial transcripts (if available),
excluding doublets via R-package DoubletFinder [54] and removing ambient RNA via R-package DecontX
[55] (figure 1). For the SMART-seq2 dataset, the latter two steps are not required, and a higher cut-off for
the minimal number of counts applies as counts here do not reflect UMIs. For normalisation, data was split
according to each individual batch and processed with the SCTransform workflow of Seurat making the
data more comparable across experiments and species. The SCTransform() function was introduced in
2019 as an improved means of normalisation of scRNA-seq data, based on regularised negative binomial
regression [56] and described for integration across different technologies. Applying SCTransform replaces
three functions of the previous Seurat workflow: NormalizeData(), ScaleData() and FindVariableFeatures(),
we used the version implemented in Seurat_4.0.5. The combining of datasets to create an inter-species data
file was performed using Seurat’s merge() function, thereby restricting all datasets to genes present in each
species. Next, cell-specific clusters with similar expression patterns should be identified. Here, dimension
reduction was performed by principal components analysis (PCA), a dimensionality reduction technique to
emphasise strong patterns in a dataset considering variation and similarity. R-package Harmony was
employed to project the PCA data into a shared embedding [57] to successfully complete the data
integration process. The algorithm directs cells to group by cell type rather than according to
dataset-specific conditions. As one of many integration tools for scRNA-seq data, Harmony is particularly
convincing in terms of usability and was also ranked among top-scoring method [58, 59]. While other
top-scoring integration tools are Python-based (scANVI, Scanorama), a second R-based option would be
FastMNN or the Seurat IntegrateData() approach applying dimensional reduction to find anchors via
reciprocal PCA [59]. However, the method of choice may differ depending on the dataset to be analysed,
as exemplified by the systematic comparison in [59]. A comparison between Harmony and Seurat’s 4.0.5
function IntegrateData() applying reciprocal PCA is shown in supplementary figure S5, quantification of
the quality of integration can be done with measures like integration Local Inverse Simpson’s Index (LISI)
or cell-type LISI [57].

To visualise the resulting cell types, while taking into consideration the multidimensional space in a
clustered two-dimensional plot, uniform manifold approximation and projection (UMAP) was used. A key
advantage of UMAP is its ability to map cells according to global differences compared to the previous
method of choice (t-distributed stochastic neighbour embedding), which only reflects local differences.
Furthermore, it is fast and can be scalable to large numbers of cells. Finally, the number of desired clusters
was set by tuning the resolution parameter in Louvain clustering (a graph-based method for community
detection that aims to partition a network into clusters of strongly correlated cells) while cells belonging to
different clusters were weakly correlated [60]. Advantages of Louvain clustering are speed and scalability
as well as the lack of necessity to pre-define the number of clusters [61]. In our analysis, we set the
resolution parameter to 0.3, resulting in 22 clusters shared among species. These clusters representing
accumulation of cells with similar transcriptomic profiles were annotated to a certain cell type, based on

FIGURE 2 Cross-species comparison of sequenced lung cells. a) Uniform manifold approximation and projection (UMAP) plot of identified cell
populations across species including all datasets, with pie charts of lung cell frequencies in indicated species estimated from single-cell ribonucleic
acid sequencing (scRNA-seq) data; b) dot plots indicating the stress response of lung cells across species for all unique molecular identifier based
datasets using eight stress-related genes: HSPA8, FOS, DUSP1, IER3, EGR1, FOSB, HSPB1 and ATF3. AM: alveolar macrophages; prol. AM: proliferating
alveolar macrophages; Mɸ: interstitial macrophages/monocytes; PMN: polymorphonuclear leukocytes; DC: dendritic cells; mast: mast cells; NK:
natural killer cells; prol. NK/T: proliferating NK- and T-cells; AT1: alveolar epithelial cells type 1; AT2: alveolar epithelial cells type 2; ciliated: ciliated
cells; club: club cells; EC: endothelial cells; ly. EC: lymphatic endothelial cells; fibro: fibroblasts; perivasc: perivascular cells. Samples: human
Charité, cells from four fresh lung explants; human TRAVAGLINI et al. [24], data of patient 2; mouse, cells of two whole lungs pooled prior analysis;
hamster, cells from lobus caudalis of three hamsters, data from [18]; monkey cells from two lungs, data from [21]; rat and pig, cells from two lungs
each, data from [25]. All experiments involving animals were approved by institutional and governmental authorities (Charité Universitätsmedizin
Berlin or Freie Universität Berlin and LaGeSo Landesamt für Gesundheit und Soziales Berlin, Germany). Human Charité dataset biomaterial was
obtained following approval of the Charité ethics commission, application ID: EA2/079/13, while written informed consent was obtained from
all patients.
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known marker genes and cell-specific annotations transferred from the original dataset. Cell frequencies of
both haematopoietic and structural lung cells differ between compared species. While certain differences
between species have been described before [62], cell isolation protocols, especially using different
enzymatic cocktails, can have a major impact on retrieved cell types. Interspecies research aiming to
resolve cell quantitative in addition to qualitative questions should ideally incorporate spatial
transcriptomics analyses of tissue sections (figure 2a, supplementary figure S2).

Cross-species analysis of human and nonhuman scRNA-seq data
To demonstrate the quality and comparability of data across species, we investigated the expression of
eight reputed stress-related genes [34] to monitor putative cell dissociation-associated stress responses. A
stress score was developed by averaging cell-wise expression across these genes (figure 2b). Across all
analysed species, the applied cell isolation and analysis strategy led to a suitable stress gene signature, with
somewhat higher levels for in human lung-derived cells.

As raw sequencing data files were required, we computed RNA velocity (figure 3a, supplementary figure S3)
for the in-house generated datasets only [63]. Here, cell development dynamics and temporal expression
information were recovered by comparing spliced and unspliced levels of mRNA with an estimated
steady-state. The arrows in the two-dimensional UMAP latent space depict an inference of most probable
cell state transitions and cell fates based on the transcriptome. The arrow size indicates the coherence and
speed of cell development processes in the corresponding region of the UMAP latent space. For velocity
estimation, the Python package scVelo was applied with default stochastic model for transcriptional
dynamics [64]. By graphical inspection, the most coherent cell movement across the analysed species can
be observed in endothelial and T-cell clusters. Interestingly, for human clusters of macrophages and
alveolar macrophages, the derived velocities indicate a common area in the UMAP latent space to which
the corresponding cells seem to develop. As RNA velocity infers the most probable cell fate solely based
on the transcriptome, the compatibility with biological foundations should be verified.

Intercellular communication based on ligand–receptor co-expression was calculated based on 3251 recently
published pairs available through package SingleCellSignalR [25]. We limited cell-communication analysis
to UMI-based datasets available for all species. Through analysed species, proliferating alveolar
macrophages seem to dominate ligand receptor interaction within the alveolar spaces (figure 3c and d,
supplementary figure S4). All cross-species analysis codes and data, including expression analysis of
canonical cell type-specific genes, was made available via Github (https://github.com/GenStatLeipzig/
pulmonologists_interspecies_scRNA).

A major limitation is the poor genome annotation for species other than Mus musculus and Homo sapiens,
exemplified by that of Mesocricetus auratus (MesAur1.0), which lacks orthologues in ∼25% of all human
genes. Integration of further tools into cross-species comparisons, including spatial transcriptomics [65]
and new packages from the constantly growing pool of software applications designed for scRNA-Seq
data, will further improve our understanding of similarities and differences between cell states and cellular
subtypes across species.

Outlook
The meteoric rise of available infection-related patient- and animal model-derived scRNA-seq datasets in
response to the COVID-19 pandemic allows for in-depth cross-species comparisons of systemic and
pulmonary transcriptomic responses to acute infection. Moreover, such comparisons bare the potential to
systematically identify opportunities and limitations of current animal models. Exploiting this unravelled

FIGURE 3 RNA velocity in pulmonary cells and alveolar niche communication. a) Uniform manifold approximation and projection (UMAP) plots
depicting human, hamster and mouse lung cells overlaid with stream arrows derived from the RNA velocity analysis. The colouration indicates
chosen cell clusters. b–d) Intercellular communication estimated through ligand–receptor co-expression in the indicated cell types: b) scheme of
the healthy alveolus, created with Biorender.com; c) count of relevant receptor–ligand interaction (LRscore ⩾0.5) (indicated by arrows) in all
species for all unique molecular identifier based datasets. In humans and several animals, proliferating alveolar macrophages appear to show
increased intercellular communication. d) Human ligand–receptor pairs found to be conserved (detected in at least one additional nonhuman
species) based on the classification of RAREDON et al. [25]. Ligand–receptor pairs found only in humans are shown in supplementary figure S4. NK:
natural killer cells; prol. NK/T: proliferating NK and T-cells; AM: alveolar macrophages; AT1: alveolar epithelial cells type 1; AT2: alveolar epithelial
cells type 2; EC: endothelial cells; ANGPT: angiopoietin; APOE: apolipoprotein E; CCL: C-C motif chemokine ligand; EGF: epidermal growth factor;
PDGF: platelet-derived growth factor; SHH: Sonic Hedgehog; TGF: transforming growth factor; VEGF: vascular endothelial growth factor.
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treasure will allow respiratory researchers and pulmonologists to identify universal and species-specific
transcriptional responses to pathogens including SARS-CoV-2 and others.
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