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Abstract
Background: Deep brain stimulation (DBS) electrode implant trajectories are stereotactically 
defined using preoperative neuroimaging. To validate the correct trajectory, microelectrode record-
ings (MERs) or local field potential recordings can be used to extend neuroanatomical information 
(defined by MRI) with neurophysiological activity patterns recorded from micro- and macroelec-
trodes probing the surgical target site. Currently, these two sources of information (imaging vs. 
electrophysiology) are analyzed separately, while means to fuse both data streams have not been 
introduced.
Methods: Here, we present a tool that integrates resources from stereotactic planning, neuroim-
aging, MER, and high-resolution atlas data to create a real-time visualization of the implant trajec-
tory. We validate the tool based on a retrospective cohort of DBS patients (N = 52) offline and 
present single-use cases of the real-time platform.
Results: We establish an open-source software tool for multimodal data visualization and analysis 
during DBS surgery. We show a general correspondence between features derived from neuroim-
aging and electrophysiological recordings and present examples that demonstrate the functionality 
of the tool.
Conclusions: This novel software platform for multimodal data visualization and analysis bears trans-
lational potential to improve accuracy of DBS surgery. The toolbox is made openly available and is 
extendable to integrate with additional software packages.
Funding: Deutsche Forschungsgesellschaft (410169619, 424778381), Deutsches Zentrum für Luft- 
und Raumfahrt (DynaSti), National Institutes of Health (2R01 MH113929), and Foundation for OCD 
Research (FFOR).

Editor's evaluation
The authors present a software tool combining and correlating the documentation of intraoperative 
neurophysiological findings with atlas and imaging data. They also show an exemplary validation 
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of their tool in a clinical series of 52 Parkinson's disease patients who underwent DBS surgery. This 
article will be of interest to clinicians and researchers who are involved in both the placement and 
controlling of the accuracy of the location of deep brain stimulation electrodes.

Introduction
During deep brain stimulation (DBS) surgery, different sources of information are used to ensure 
precise placement of the electrodes within the target structure. Functional stereotactic coordinates 
(defined relative to anatomical atlas landmarks) are often used as a starting point (indirect targeting). 
Then, more importantly, preoperative MRI sequences optimized to visualize target structures are used 
to refine the initial plan (direct targeting). Surgical planning is usually carried out after fusing the 
MRI sequences with a computed tomography (CT) volume acquired with the stereotactic frame and 
fiducial plates already mounted to the patient’s head. The fiducial plates include markers that are 
used to convert stereotactic coordinates (established in the planning software) to frame coordinates 
(applicable to mechanically adjust the stereotactic frame) in order to place electrodes to the intended 
target.

During the surgical procedure, microelectrode recordings (MERs), as well as test stimulations 
carried out using macroelectrodes, are often used as an additional confirmation step of placement 
in the intended target site. While the necessity of the former step has been debated (Aviles-Olmos 
et al., 2014) and the procedure may lead to slightly increased rates of complications (Zrinzo et al., 
2012), the experience of our own high-volume center is that roughly every fifth patient’s surgical 
plan will be slightly altered based on electrophysiological signals, with similar experiences reported 
by others (Lozano et al., 2018). Of specific relevance is the role of brain shift occurring due to air 
entering the skull during surgery: even with optimal imaging and meticulous surgical planning before-
hand, brain shift may lead to nonlinear displacement of the brain relative to the skull and stereotactic 
frame (Halpern et al., 2008), which can only be monitored intraoperatively (e.g., using the electro-
physiological data recorded with microelectrode probes). While most centers analyze MERs by visual 
and auditory inspection from expert neurosurgeons or neurologists, the first FDA and CE-approved 
machine-learning algorithms that facilitate this monitoring step have recently been introduced, for 
instance, in the form of the HaGuide system created by the company Alpha Omega Engineering 
(Nazareth, Israel; Thompson et al., 2018).

Still, understanding and communicating the complex neuroanatomical and neurophysiological 
relationships within the clinical team during the procedure may remain a challenge even for experts. 
To account for this, Krüger, 2020 introduced the concept of navigated DBS surgery, showing that a 
visual feedback of the microelectrode position can be helpful to mentally envision the ongoing 3D 
scene.

In parallel, reconstructions of DBS target regions based on elaborate MRI sequences have become 
increasingly precise (Horn, 2019; Krauss et al., 2021). Specialized MRI sequences have been intro-
duced to maximize visibility and boundary definitions of pallidal, thalamic (Tourdias et  al., 2014; 
Sudhyadhom et al., 2009; Vassal et al., 2012), and subthalamic (Santin et al., 2017; Wang and 
Liu, 2015) targets. But even when relying on a set of standard sequences (e.g., T1 and T2), modern 
reconstruction pipelines have the capability to reconstruct the subthalamic nucleus (STN) and internal 
segment of the globus pallidus (GPi) with a precision that rivals manual expert segmentations (Ewert 
et al., 2019). Over recent years, these methods have made it possible to transform the 2D representa-
tions of stereotactic imaging slices into 3D models that are not only graphically appealing but indeed 
realistic and meaningful (Horn and Kühn, 2015). As a by-product, these tools have made it possible 
to accurately register atlas data into the patient-specific model. With atlas data, here, we generally 
refer to an array of ultra-high-resolution imaging resources that could be based on histology (Ilinsky 
et al., 2018; Ewert et al., 2018; Amunts et al., 2013), postmortem MRI (Edlow et al., 2019), or 
even expert anatomical knowledge aggregated in three-dimensional fashion (Petersen et al., 2019). 
Similarly, atlas data could represent optimal stimulation sites defined on a group level, for instance, in 
the form of probabilistic sweet spot targets (Dembek et al., 2019; Boutet et al., 2021; Elias et al., 
2021; Horn et al., 2017) or tractography-defined DBS target atlases (Li et al., 2020; Treu et al., 
2020; Al-Fatly et al., 2019).

https://doi.org/10.7554/eLife.72929
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Here, we present an integrative approach to combine information derived from neuroimaging and 
neurophysiology in a joint visualization platform. First, we build on recent validations of subcortical 
normalization routines to introduce a method to refine 3D models of subcortical targets on a single 
patient level. Second, we port our methodology for postoperative electrode localization established 
within Lead-DBS software (https://www.lead-dbs.org; Horn and Kühn, 2015) to the pre- and intraop-
erative realm, that is, the one of stereotactic planning, MERs, and intraoperative testing. To achieve 
this, we present and validate a novel unified software framework termed Lead-OR that incorporates 
the following resources into a live visualization scene: (1) patient-specific imaging, (2) stereotactic 
planning information, (3) real-time microelectrode localization, (4) MER feature extraction, and (5) 
high-resolution atlas imaging data. The capability of the system to integrate electrophysiological 
information with imaging data is explored in-depth. Beyond this feature, the tool also includes the 
possibility to visualize test stimulations and real-time fiber tractography. The software framework is 
made available as an open-source package (https://github.com/netstim/SlicerNetstim) and currently 
supports integration with the Brainlab Elements (Brainlab AG, Munich, Germany) planning software 
and a direct interface to the NeuroOmega system (Alpha Omega Engineering). Further integrations 
with other systems are planned in the future.

Methods
Ethics statement
Lead-OR is intended for purely academic research use and does not have any form of government 
body regulatory approval. As such, any use of Lead-OR is strictly limited to Institutional Review Board 
(IRB)-approved research studies at individual academic institutions, while legal frameworks and 
practices may differ from country to country. The collection and analysis of all patient data used 
for this article were approved by the local ethics committee of Charité – Universitätsmedizin Berlin 
(master vote EA2/145/21). All data were analyzed retrospectively and obtained in deidentified form 

eLife digest Deep brain stimulation is an established therapy for patients with Parkinson’s disease 
and an emerging option for other neurological conditions. Electrodes are implanted deep in the 
brain to stimulate precise brain regions and control abnormal brain activity in those areas. The most 
common target for Parkinson’s disease, for instance, is a structure called the subthalamic nucleus, 
which sits at the base of the brain, just above the brain stem.

To ensure electrodes are placed correctly, surgeons use various sources of information to charac-
terize the patient’s brain anatomy and decide on an implant site. These data include brain scans taken 
before surgery and recordings of brain activity taken during surgery to confirm the intended implant 
site. Sometimes, the brain activity signals from this last confirmation step may slightly alter surgical 
plans. It represents one of many challenges for clinical teams: to analyse, assimilate, and communicate 
data as it is collected during the procedure.

Oxenford et al. developed a software pipeline to aggregate the data surgeons use to implant 
electrodes. The open-source platform, dubbed Lead-OR, visualises imaging data and brain activity 
recordings (termed electrophysiology data) in real time. The current set-up integrates with commer-
cial tools and existing software for surgical planning.

Oxenford et al. tested Lead-OR on data gathered retrospectively from 32 patients with Parkinson’s 
who had electrodes implanted in their subthalamic nucleus. The platform showed good agreement 
between imaging and electrophysiology data, although there were some unavoidable discrepancies, 
arising from limitations in the imaging pipeline and from the surgical procedure. Lead-OR was also 
able to correct for brain shift, which is where the brain moves ever so slightly in the skull.

With further validation, this proof-of-concept software could serve as a useful decision-making 
tool for surgical teams implanting electrodes for deep brain stimulation. In time, if implemented, its 
use could improve the accuracy of electrode placement, translating into better surgical outcomes 
for patients. It also has the potential to integrate forthcoming ultra-high-resolution data from current 
brain mapping projects, and other commercial surgical planning tools.

https://doi.org/10.7554/eLife.72929
https://www.lead-dbs.org
https://github.com/netstim/SlicerNetstim
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from Medical Records of Charité. Hence, following local guidelines in Berlin/Brandenburg as well as 
NIH guidelines for human subjects research, no explicit patient consent to analyze and publish was 
obtained/necessary.

Implementation environment
The tools used in this study are implemented in the form of a 3D Slicer (Slicer) (Fedorov et al., 2012; 
Kapur et al., 2016) extension (https://github.com/netstim/SlicerNetstim). The main module of the 
SlicerNetstim extension is Lead-OR, which assembles the different sources of information, as outlined 
in the following sections.

Coordinate systems
The first step in aggregating data from different sources is to co-register their spatial relationship and 
coordinate systems (Figure 1). Lead-OR is based on Slicer’s world-coordinate system (RAS). We use a 
linear transform to match the Head-Ring center and positive axes to the origin of this world-coordinate 
system. The planned central trajectory is then defined based on target coordinates, mounting type, 
and ring and arc angles. The other trajectories are defined relative to the central one, following the 
configuration of the Ben-Gun microarray. As mentioned, currently, support for the NeuroOmega 
setup has been implemented, which uses a Ben-Gun array first introduced by the team of Alim-Louis 
Benabid (Benazzouz et al., 2002).

These trajectories describe a line in space through which the macro, micro, and definitive DBS 
electrodes are inserted. The last parameter to fully define their position varies throughout surgery, 
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Figure 1. Patient-specific visualization generated by aggregating different sources of data. The stereotactic 
planning procedure defines the surgical target coordinate, as well as ring and arc angles, which together describe 
the central trajectory. The Ben-Gun configuration presented in the figure shows additional posterolateral and 
anteromedial trajectories, 2 mm apart from the central one. Up to five trajectories are currently supported by 
the software. In our current setup, the distance to the target is controlled by the NeuroOmega system, accessed 
with its Software Development Kit (SDK) – but can alternatively be set manually within the tool itself. Relevant 
subcortical nuclei have been warped to patient space via a manually refined normalization. GPe: external segment 
of the globus pallidus; GPi: internal segment of the globus pallidus; STN: subthalamic nucleus; RN: red nucleus.

https://doi.org/10.7554/eLife.72929
https://github.com/netstim/SlicerNetstim
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namely, the distance to the planned target. This parameter is set by the Microdrive, which allows to 
move the electrodes along the trajectories while recording from the tip of the microelectrodes. In 
our current setup, this value is queried via the NeuroOmega Software Development Kit (SDK) and 
alternatively can be manually controlled within the software itself. Interfacing to similar systems as 
the NeuroOmega device will be possible given the open-source nature of our tool and creating such 
interfaces with other systems is in our interest for the future.

To co-register the patient’s images and frame reference, the tool uses a set of fiducial points defined 
in both coordinate systems (image and frame) that we extract from the surgical planning coordinates. 
Specifically, the anterior commissure (AC) and posterior commissure (PC), as well as a midsagittal 
point (MS), are used to create the transform (implemented using the fiducial registration module 
available within Slicer). Currently, an interface with the Brainlab Elements (Brainlab AG) stereotactic 
planning software is implemented (via PDF export in Elements and automated import in Lead-OR). 
Again, support for alternative planning tools is planned for the future.

Finally, we incorporate high-resolution atlas resources into the patient-specific visualization scene. 
For the present examples within the article, we used nuclei from the DISTAL (Ewert et al., 2018) 
and MNI PD 25 histology atlases (Xiao et al., 2017) that were defined in MNI space (ICBM 2009b 
Nonlinear Asymmetric, Fonov et  al., 2009). Similarly, we imported histological sections from the 
BigBrain atlas (Amunts et al., 2013) and fiber tract definitions provided by the holographic basal 
ganglia pathway atlas (Petersen et al., 2019). In the same fashion, virtually any type of atlas data 
could be imported to the patient scene, but it is crucial that this registration is of utmost precision. 
To account for this, we built on the long-standing methods development within Lead-DBS (Horn and 
Kühn, 2015; Horn et al., 2019; Ewert et al., 2019; Vogel et al., 2020; Edlow et al., 2019) but dras-
tically extended the procedure with a novel manual refinement method, termed WarpDrive. Namely, 
an initial deformation field was calculated via a multispectral four-stage normalization step using the 
symmetric normalization (SyN) transformation model implemented within Advanced Normalization 
Tools (ANTs; http://stnava.github.io/ANTs/; Avants et  al., 2008). This was implemented using the 
‘effective: low variance + subcortical refinement’ preset defined in Lead-DBS, which has been opti-
mized for normalization of subcortical structures (Horn et al., 2019) and has shown to yield accurate 
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Figure 2. Output of a Lead-DBS/Advanced Normalization Tools (ANTs)-based automated normalization with and without subsequent manual 
refinement. Two MRI modalities are shown anterior commissure-posterior commissure (AC-PC) aligned: T1-MPRAGE (left) and T2-TSE (right). Both 
MRI modalities (together with FGATIR, not shown here) were used as an input to the normalization step implemented in Lead-DBS, which allows 
multispectral registration using ANTs. The white outline shows atlases: MNI PD 25 histology (Xiao et al., 2017) (left) and DISTAL (Ewert et al., 2018) 
(right), both included within Lead-DBS.

The online version of this article includes the following video for figure 2:

Figure 2—video 1. General overview of the visualizations and tools made available through the WarpDrive module implementation in Slicer.

https://elifesciences.org/articles/72929/figures#fig2video1

https://doi.org/10.7554/eLife.72929
http://stnava.github.io/ANTs/
https://elifesciences.org/articles/72929/figures#fig2video1
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segmentations of subcortical nuclei that rival the ones carried out manually by experts (Ewert et al., 
2019; Vogel et al., 2020). The deformation fields derived from this automated step are then further 
manually refined using WarpDrive, which is described in the next section.

Normalization refinement
While normalization algorithms have become increasingly accurate (Vogel et al., 2020; Ewert et al., 
2019), their precision is not always perfect in single subjects and shows varying accuracy throughout 
the brain. Indeed, accurate automated registration of the basal ganglia nuclei presents a challenge to 
intensity-based registration methods given their low contrast between regions (Ewert et al., 2019).

Using WarpDrive, an experienced user can recognize such mismatches included in the automated 
normalization and manually refine the displacement field using point-to-point and line-to-line fiducials 
as well as a smudge tool. Manually entered fiducials are fed into the Plastimatch software (Sharp 
et al., 2010) (accessed as a command line module from within Slicer). Details about the WarpDrive 
tool will be reported and evaluated elsewhere. Figure 2 shows an example of a manually refined 
normalization, and Figure 2—video 1 shows a demo application of the tool to refine atlas-to-patient 
fits in a surgical case.

Real-time implementation
Lead-OR has the potential to be used in real-time during surgery. As mentioned above, one aspect of 
this is the continuous/live updating of the microelectrode distance to the surgical target while keeping 
the scene (i.e., multiple 2D and 3D views) synchronized. The interface to the NeuroOmega device 
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Module
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Figure 3. Overview of the SlicerNetstim extension. The current setup shows interfaces with specific commercial products. Similar interfaces to 
competing tools are planned and will be included in the future. A PDF plan exported from Brainlab Elements is used as an input to the Stereotactic Plan 
module to store the planned trajectory as a Slicer Transform. The NeuroOmega system is connected via its Software Development Kit (SDK) through the 
Neurophysiology module, providing continuous updates about the drive depth and electrophysiological channel input. Finally, in the Lead-OR module, 
the Ben-Gun configuration is defined by selecting the used trajectories and assigning them to input channels from the NeuroOmega device. Using 
a transform hierarchy, the spatial position of the microelectrode is defined: the Ben-Gun translation is transformed by the distance to the target, this 
one itself being transformed by the planned trajectory. By doing so, the features extracted from the respective microelectrode recordings (MERs) can 
be mapped to their spatial location. At our center, an automatic pipeline for preprocessing data retrieved from a picture archiving and communication 
system (PACS) system is setup using the NORA medical imaging platform (https://www.nora-imaging.com/) to automatically run the core Lead-DBS 
pipeline once images arrive in the hospital’s PACS system. This part (right-hand side) is not discussed in detail since it is largely specific to our center.

https://doi.org/10.7554/eLife.72929
https://www.nora-imaging.com/
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provides live data about how distant the microelectrodes are to the target and also streams out elec-
trophysiological recordings made in a real-time manner. Finally, test stimulations can be visualized, 
including a function for live-tractography visualization estimating ‘activated’ or ‘modulated’ tracts.

To make this possible, we included the NeuroOmega C++ SDK as part of a Slicer loadable module. 
This module sets up the connection to the NeuroOmega device and queries the distance to the target 
in specified time intervals. It also displays the available channels from which recorded electrophysio-
logical data can be streamed, stored, processed, and visualized.

Through the Lead-OR module, the microelectrode Ben-Gun configuration is defined and the 
NeuroOmega channels are linked to the selected trajectories. Together with the aforementioned 
image-to-frame transform, as well as the distance to the target, this allows to define the anatomical 
location of the electrophysiological signal in real time. The features extracted from recordings are 
projected into the patient-specific space and represented in the 2D/3D visualization (Figure 3). The 
computation of features is continuously executed for each position of the microdrive, updating the 
recording stream at each time point. This process takes a few seconds (depending on available hard-
ware), and the visualization is then updated.

(Re-)developing a signal processing pipeline for electrophysiological data was not the focus of this 
study since a multitude of tools exist, which could be integrated into Lead-OR in the future. However, 
to demonstrate live processing and visualization of electrophysiological features, for now we included 
two minimal processing pipelines for MER. (Currently, no pipeline for local field potential recordings is 
included, but this could be similarly extended given the open-source nature of the tool.).

The first is the signal’s normalized root mean square (NRMS) value, which is computed as described 
in Zaidel et  al., 2009. For each step (Microdrive position), a stable part of the recorded data is 
extracted to compute the RMS on (see Zaidel et al., supplementary material). To obtain a normalized 
measure, the values along the trajectory are divided by the median of the first five stable steps. To 
visualize results in space, Lead-OR projects a tube along the trajectory with varying radius and color 
– both redundantly representing NRMS magnitude. Potentially, in the future, radius and color could 
be assigned to represent different features that could graphically combine information derived from 
MER and local field potential signals.

The second processing pipeline is based on spike analysis. This is implemented by running the 
WaveClus (Chaure et  al., 2018) automatic pipeline with negative threshold on the recorded files 
once the drive moves to the next position. Clusters with less than 100 spikes or in which 10% of the 
inter spike intervals (ISIs) are below 3 ms or in which signal-to-noise ratio (SNR) is less than 1.5 are 
discarded. SNR is computed as described in Joshua et  al., 2007 using the residual method. We 
assume the recordings capture singe-unit activity (SUA) instead of multiunit activity (MUA), and thus 
each recording can represent none or one cluster of spikes. One of the reasons behind this assump-
tion is, for example, that changes in amplitude recording from the same unit might be misclassi-
fied as different clusters. Spike clusters are represented as fiducials placed in the position they were 
detected. Figure 3 summarizes the described live-processing setup.

Stimulation module
Intraoperative assessment of stimulation-induced therapeutic as well as side effects can yield 
important information about electrode placement. For example, electrode placement close to the 
internal capsule may lead to tonic muscle contractions at low stimulation amplitudes. Often, these 
thresholds are intraoperatively identified by stimulating at increasing steps until muscle contractions 
and/or electromyography (EMG) activity are observed. Since Lead-OR already visualizes the patient-
specific location of the stimulation sites, volumes of tissue activated (VTA) could be used as seeds for 
tractography. Fiber analysis was carried out by accessing the logic of the SlicerDMRI module (Norton 
et al., 2017).

Obtaining preoperative diffusion MRI data is not part of clinical practice at all DBS centers. In 
cases where patient-specific dMRI data is not available, an alternative is to use normative fibers that 
are defined in template space and warped into patient space (similar to other types of atlas data). 
This process can at times even come with advantages, for example, the absence of false-positive 
fibers when using manually curated normative datasets (Petersen et al., 2019; for a more thorough 
discussion, see Horn and Fox, 2020). For the purpose of this article, we will refer to the term tractog-
raphy as the process to filter and visualize tracts derived from such normative datasets or whole-brain 

https://doi.org/10.7554/eLife.72929
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tractography connectomes (Reisert et al., 2011) that intersect with a region of interest (ROI) (in our 
case, the VTA). The exact same process is possible using patient-specific streamlines but is not demon-
strated here.

To estimate the VTA, we use the simplified method proposed by Dembek et  al., 2017, which 
defines the radius of a sphere based on stimulation amplitude and pulse width. Varying values from 
0.5 to 1.0 were set for the constant k2 in their formula (see Dembek et al., supplementary material, for 
the explanation of the parameter). In our present example, a value of ‍∼ 0.8‍ seemed to yield results 
that matched the recorded EMG data. Currently, this part of this article should be seen as exploratory 
as an example of feasibility. Data to validate the approach on a larger number of patients beyond 
the present case was lacking. Further studies are needed to titrate the k2 value on a group level and 
validate the stimulation module of Lead-OR in general.

Patient cohort and surgical procedure
Up to this point, we described the live setup of Lead-OR. We aimed to evaluate the accuracy of this 
setup by comparing imaging- and electrophysiology-derived markers on a group level. To do so, we 
retrospectively gathered data from patients who underwent DBS and processed it in a similar fashion 
as the real-time application. 52 patients (12 females; mean age ‍= 61 ± 9‍) were retrieved from cases 
undergoing STN-DBS surgery at Charité – Universitätsmedizin Berlin between 07/2017 and 10/2021. 
Inclusion was based on having homogeneous data acquisitions consistent with current surgical proce-
dure (i.e., Brainlab planning exports together with corresponding imaging acquisitions and complete 
microelectrode recording information). Supplementary file 1 summarizes the inclusion process in the 
form of a flow chart.

Patients underwent bilateral DBS surgery targeting the STN. Surgery was either performed awake 
or under general anesthesia. In case of the latter, the depth of narcosis was reduced before MERs to 
reduce potential effects of anesthetic drugs.

The NeuroOmega System (Alpha Omega Engineering) was used with 2–5 microelectrodes in 
orthogonal (0°) or rotated (45°) Ben-Gun configuration to acquire MERs. Recordings were carried 
out from 10 mm above to 4 mm below the target with step sizes between 0.2 mm and 0.5 mm (with 
some exceptions common to clinical practice). Then, microelectrodes were removed and test stimula-
tions were applied at multiple heights above the target via macroelectrodes on central and alternate 
trajectories. Neuroprobe Sonus non-shielded microelectrodes (Alpha Omega Engineering) were used 
as micro-/macroelectrodes. Stimulations were done at increasing amplitude steps of 0.5 mA until 
identifying permanent side effects. Additionally, therapeutic stimulation effects were evaluated when 
the surgery was performed in the awake state. Patients who underwent general anesthesia received 
additional EMG using needle electrodes to evaluate motor unit activity of eight muscles as indicator 
for the activation of corticobulbar and corticospinal tracts. Finally, based on imaging, electrophysi-
ological, and clinical findings, the surgical team decided upon the optimal depth and trajectory for 
permanent electrode implantation.

Of the 52 patients included in this study, 4 were discarded based on poor imaging quality and 16 
based on poor electrophysiology signals (both determined by visual inspection). Additionally, taking 
the same considerations, four left and four right hemispheres were also discarded based on a low 
quality of electrophysiology data. MERs were saved as segments for each distance to the target value. 
Segments were discarded if they were contaminated by artifacts or when their recording length was 
less than 4 s. With these considerations, we analyzed a final cohort of 32 patients (56 hemispheres) 
with a total of 236 trajectories.

Imaging and electrophysiology processing
Pre- and postoperative imaging data were co-registered and normalized using Lead-DBS (Horn et al., 
2019) followed by visual inspection and, if necessary, refinement using WarpDrive. The definitions of 
the central trajectories were extracted from stereotactic planning reports and the Ben-Gun configura-
tion from recordings files. We computed the NRMS of all trajectories and resampled them on a linear 
space with 0.1 mm distance to target resolution. Spike clusters were computed as described above. 
As mentioned earlier, if more than one cluster was detected in a segment and satisfied the stated 
conditions, this was still considered an SUA (and represented as one cluster in further analysis).

https://doi.org/10.7554/eLife.72929
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Using the Lead-DBS pipeline, we carried out brain shift correction using postoperative CT data 
(Horn et al., 2019). This allowed us to quantify the degree of brain shift occurring after surgery based 
on imaging-derived metrics. For each trajectory, each recording position was displaced using the 
brain shift correction transform. We took the median of displacements as the amount of brain shift for 
each trajectory. We will refer to this measure as the imaging-based brain shift estimate in this article 
(note that it is derived from pre- and postoperative imaging data).

The most recently available clinical stimulation settings were retrieved from all 32 patients (visits 
ranging from 3 to 44 months after surgery). We reconstructed DBS electrodes based on the stan-
dard Lead-DBS pipeline and denoted the coordinate of the active contact (in case of multiple active 
contacts, their locations were averaged). For a qualitative analysis, we projected this coordinate to the 
nearest point along the closest trajectory for each electrode.

Each recording segment had its own patient-specific distance to target measure. In order to carry 
out group analyses, we defined a normalized distance to target. With the nonlinear deformation 
displacement fields, a link between the location of the trajectory and the ICBM 2009b NLIN ASYM 
(Fonov et al., 2009) (‘MNI’) space was established. We then took a reference point in each trajec-
tory computed as the nearest point to the STN target coordinates in MNI space from Caire et al., 
2013. The normalized distance to the target was defined by aligning the references of all trajectories. 
The alignment was done by displacing each trajectory by its reference position minus the average 
displacement from all trajectories (Figure 5—source code 1). Furthermore, by using the warp to 
MNI space we were able to compute the trajectory’s distance to the STN and the STN entry and exit 
sites (henceforth referred to as imaging-defined STN boundaries). To do this, we used the STN as 
defined by the DISTAL atlas. The main hypothesis from the group analysis was that electrophysiolog-
ical recordings acquired from within the imaging-defined STN would show higher activity than the 
ones recorded outside of the STN.

All spike clusters were mapped to the left hemisphere of the MNI space (right hemisphere coor-
dinates were nonlinearly flipped). Then, we created an image of 0.22 mm isotropic resolution where 
each voxel represented the number of clusters detected divided by the number of segment record-
ings within 1 mm of the voxel’s center. This resulted in a cluster density volume in MNI space (Figure 
5—source code 1; Figure 5—source data 2).

Additionally, NRMS values and STN distances for each trajectory were transformed with the inverse 
tangent function resulting in similar distributions of the two. Subsequent cross-correlation of these 
two signals along each trajectory resulted in a maximum cross-correlation value and the lag (displace-
ment) at which this maximum occurred (Figure 5—source code 2).

In the next step, we sorted the trajectories according to their maximum cross-correlation and split 
the data in half, retaining the trajectories that were in close proximity to the STN and showed electro-
physiological activity. We then sorted the top half according to the lag at which the maximum cross-
correlation occurred (Figure 5—source code 2). We will refer to this lag as the electrophysiology-based 
brain shift estimate (note that it is derived from preoperative imaging and intraoperative electrophys-
iology). Hence, in contrast to the imaging-derived brain shift estimate (which required postopera-
tive imaging), this one could be computed during surgery. The electrophysiology-based brain shift 
measures were compared to the imaging-based brain shift estimates in two ways: first, we contrasted 
imaging-based brain shift estimates between the low versus high-lag groups using Wilcoxon’s signed-
rank test. The high-lag group was defined by taking trajectories with lag values above 1 standard 
deviation of the lags. The low-lag group is composed of the same number of trajectories taken from 
the data sorted according to the lag. This would analyze whether cases with high electrophysiology-
derived estimates indeed had more brain shift based on the imaging-based estimate. Second, we 
correlated values from the high-lag trajectories (where significant brain shift was estimated based on 
electrophysiology) with the imaging-derived estimate of brain shift. This would analyze whether the 
degree of brain shift would correlate between electrophysiology- and imaging-derived estimates.

Results
The main result of this work consists of an integrated software framework that links electrophys-
iological with imaging-derived data within the same patient-specific coordinate space during 
surgery. Figure 4 shows the software output for a single-case example including different forms of 
visualization and an exemplary match between DBS imaging and electrophysiology. Furthermore, 

https://doi.org/10.7554/eLife.72929
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Figure 4—figure supplement 1 shows the application of the tool in a ventral intermediate nucleus 
(VIM) and GPi example. Finally, for illustrative purposes, we included additionally three STN cases with 
unusual anatomical configurations in Figure 4—figure supplement 2. Figure 4—video 1 shows the 
live application of the tool in action, and Figure 4—video 2 shows the user interface and how the 
platform is setup.

Figure 5 shows the 236 trajectories retrospectively gathered from 32 patients, arranged from left 
to right based on their distance to the STN and vertically aligned with the normalized distance to 
target. Electrophysiology traces were plotted with STN entry and exit markers derived from imaging. 
Comparing the NRMS from the bottom 20% (outside of the STN) to the top 20% revealed an anatom-
ical region with significant differences (p<0.01) within the imaging-defined STN boundaries (defined 
as the median of the top 20% STN boundaries). In other words, the recorded activity from inside this 
part of the STN was significantly higher than the ones recorded outside of it. Data were compared 
using nonparametric Wilcoxon’s signed-rank test and multiple comparisons were corrected using false 
discovery rate (FDR) (Benjamini et al., 2006).

The cluster density volume in MNI space also showed a general agreement with the imaging-
derived STN: when thresholding the volume based on increasing density values, the overlap with the 
STN region was higher (95% overlap at a 50% cluster density threshold; Figure 5).

With respect to the brain shift analysis, the low-lag and high-lag groups showed a significantly 
different brain shift distribution (Wilcoxon’s signed-rank test ‍p=0.0076‍). Also, correlating the high-lag 
values (electrophysiology-derived brain shift estimate) with their imaging-derived brain shift estimates 
showed a significant association (‍R = 0.40‍, ‍p=0.016‍; Figure 5—figure supplement 1). Figure 5—
figure supplement 2 shows an example case illustrating how the imaging-based brain shift-corrected 
Lead-OR scene presents better correspondence between imaging and MER.
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Figure 4. Example case showing trajectories, microelectrode recording (MER) features, and DISTAL atlas volumes mapped to patient space. 10 s 
recording snippets from one trajectory are displayed. Normalized root mean square (NRMS) activity is represented by a tube with varying diameter and 
color matching the value. Spike clusters are represented by red point fiducials. GPe: external segment of the globus pallidus; GPi: internal segment of 
the globus pallidus; STN: subthalamic nucleus; RN: red nucleus.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 4:

Figure supplement 1. Additional ventral intermediate nucleus (VIM) and internal segment of the globus pallidus (GPi) cases.

Figure supplement 2. Additional example cases of subthalamic nucleus-deep brain stimulation (STN-DBS) Lead-OR visualizations.

Figure 4—video 1. General overview of the Lead-OR real-time application.

https://elifesciences.org/articles/72929/figures#fig4video1

Figure 4—video 2. Video showing the program user interface and its use.

https://elifesciences.org/articles/72929/figures#fig4video2

Source data 1. Slicer scene containing the spatial data shown in the Figure 4.

https://doi.org/10.7554/eLife.72929
https://elifesciences.org/articles/72929/figures#fig4video1
https://elifesciences.org/articles/72929/figures#fig4video2
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In Figure 5—figure supplement 3, we show clinical active contact coordinates with respect to the 
results of the group analysis as shown in Figure 5. Most of the coordinates rely inside the STN and 
coincide with high-activity regions as depicted by the microelectrode recordings.

Figure 6 shows an example case using the test stimulation setup with live volume activation trac-
tography and corresponding EMG activity invasively recorded during surgical routine using a needle 
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Figure 5. Retrospective group analysis investigating agreement between imaging- and electrophysiology-defined subthalamic nucleus (STN). In (A) and 
(C), each trajectory is presented as a column, showing normalized root mean square activity (NRMS) and spike clusters, respectively, with the normalized 
distance to target denoted on vertical axes. Trajectories are sorted from left to right according to their distance to the STN as defined in the DISTAL 
atlas (Ewert et al., 2018). Dark green values (indicating NRMS of zero) represent no recordings at these sites. Black dashes represent STN entry and 
exit, and the dashed white line the median entry and exit for the top 20%. (B) shows comparisons between bottom and top trajectories, with the gray 
area representing a significant band (nonparametric Wilcoxon’s signed-rank test p<0.01 with false discovery rate [FDR] correction), which resides within 
the STN. The plots show median, 0.25 and 0.75 quantiles. (D) shows the overall distribution of spike clusters. (E) shows isosurfaces of a volume where 
each voxel contains the number of clusters detected divided by the number of recordings carried out within 1 mm distance to the location (cluster 
density). The legend shows the percentage of the volume overlap with the STN at different thresholds. The 7 T MRI ex vivo human brain template 
(Edlow et al., 2019) is shown as the background image with DISTAL STN outline. Decreasing values on the z-axis traverse from superior to inferior.

The online version of this article includes the following source data, source code, and figure supplement(s) for figure 5:

Source code 1. Uses Figure 5—source data 1 to generate Figure 5—source data 2 and panels A–D.

Source code 2. Uses Figure 5—source data 1 to generate Figure 5—figure supplement 1.

Source data 1. Trajectories data including normalized root mean square (NRMS) traces, subthalamic nucleus (STN) entry-exit positions, spike clusters, 
brain shift, and distance to STN values.

Source data 2. Cluster density volume shown in Figure 5E.

Figure supplement 1. Brain shift study.

Figure supplement 2. Example case in which the imaging-derived brain shift transform was applied to the Lead-OR scene, post-hoc.

Figure supplement 3. Active contact coordinates overlayed with Figure 5A and E.

https://doi.org/10.7554/eLife.72929
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electrode inserted into the brachioradialis muscle. We also refer to Figure 4—video 1 for a demon-
stration of the real-time application of this module.

Discussion
Multiple take-home points can be drawn from this study. First, we established a software pipeline 
to integrate imaging and electrophysiology results within an interactive real-time application during 
DBS surgery. The setup interacts with commercial tools for surgical planning and MERs and has the 
capability to visualize and analyze data in various forms. In the presented group study, the data acqui-
sition conditions were not controlled for, given their retrospective nature. However, the platform can 
generalize to alternate settings. For example, the number of trajectories used can be set from 1 to 5, 
without compromising its execution. With respect to hardware settings, while currently a fixed set of 
interfaces to commercial tools is available, the open-source nature of the software will allow integra-
tion of links to other devices. Furthermore, although we present the tool and analysis made with STN 
cases, it could also be applied to other DBS targets. As illustrative examples, we refer to Figure 4—
figure supplement 1 to see Lead-OR visualizations for a VIM and GPi case. Second, atlas data from 
ultra-high-resolution resources may be integrated into the tool. For instance, whole-brain histological 
atlases, such as the BigBrain dataset (Amunts et al., 2013) or stereotactic 3D atlases, such as the 
DISTAL (Ewert et al., 2018) or Human Thalamus Atlas (Ilinsky et al., 2018) could be integrated. In 
a way, these atlases would fill the gap of commonly used histological reference atlases available in 
book format, such as the Schaltenbrandt-Wahren (Schaltenbrand et al., 1977) or Talairach atlases 
(Rey et al., 1988). While these book resources have been and still are invaluable to the field, they 
lack the possibility to be deformed into native patient space and to be digitally represented in direct 
synopsis with patient imaging and electrophysiology. Instead, whole-brain resources will grow in 
number, resolution, and quality in the foreseeable future (Horn, 2019; Krauss et al., 2021; Sui et al., 
2020; Vedam-Mai et  al., 2021). Similarly to anatomical atlas resources, optimal target definitions 
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Figure 6. Example of test stimulation setup (also see Figure 4—video 1 for the demonstration of a real-time 
application). A simplified stimulation volume is modeled based on the applied test stimulation parameters 
following the approach of Dembek et al., 2017. From a set of predefined fiber tracts representing the internal 
capsule (without hyperdirect components; Petersen et al., 2019) that were registered to patient space, fibers 
passing through the volume were visualized in real time. Alternatively, tractograms obtained based on diffusion 
MRI of the individual patient data or normative connectomes could be used. The top panel shows needle 
electromyography (EMG) activity that was recorded within clinical routine from the brachioradialis muscle during 
stimulation in the same patient. Colors represent stimulation amplitude. After a preliminary exploratory analysis of 
the k2 parameter from Dembek’s formula, a value of 0.8 was used for the shown example.

The online version of this article includes the following source data for figure 6:

Source data 1. Slicer scene containing the spatial data shown in the Figure 6.

https://doi.org/10.7554/eLife.72929
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(‘sweet spots’) or even connectomic/tract-based target definitions could one day be integrated to 
guide DBS surgery – after proper and prospective validation of such datasets and applied methods 
(Dembek et al., 2019; Boutet et al., 2021; Elias et al., 2021). On the hardware side, other possible 
integrations to the platform in the future include the use of intraoperative imaging such as CT or X-ray 
acquired for final verification of electrode placement. Data from these acquisitions could potentially 
be integrated to further enhance visualizations provided by Lead-OR.

The tools, methods, and software described here are not approved by any regulatory authorities 
and are not intended to assist in making clinical decisions. Rather, we present them for use for purely 
research-driven purposes under proper IRB approval in study contexts. The tool should be seen as 
a data visualization tool that could potentially save researchers time by showing data from multiple 
sources in direct synopsis to one another. As such, it may be powerful to further explore the inter-
play between electrophysiology and imaging, validate biophysical models, and better characterize 
patient-specific data.

We see special value in integrating MER-derived measures to the anatomical realm and in the inte-
gration with imaging findings. Our aim was to produce a set of use cases each of which could open 
larger windows of opportunities for upcoming studies. For instance, we included two MER processing 
pipelines in this study, which have previously been studied in different publications (Koirala et al., 
2020; Boëx et al., 2018; Zaidel et al., 2009). The reason for their adoption was mostly demonstra-
tive, and we do not claim for them to be the best/only choices when it comes to studying STN activity. 
Future work involves analyzing differences in these and similar processing pipelines to derive a better 
understanding of MER physiology. Given the open-source nature of this project, it will be feasible to 
extend usability and incorporate complementary approaches. Lead-OR should be seen as a satellite 
application to existing intraoperative electrophysiology software tools, not an attempt to replace 
them. The aim of our application is to augment these existing tools by a projection of recorded 
signals to anatomical space. It is intended to run in parallel to existing software (either on a secondary 
machine or on the same computer). Hence, thorough inspection and analysis of electrophysiological 
signals will remain unchanged for users of existing software, while our tool could hopefully add addi-
tional insights into the anatomical origins of recorded signals.

In a similar vein, we see larger potential in the field of activation tractography by studying stimu-
lation spread across brain tissue with biophysical models that could range around varying degrees of 
complexity (Butenko et al., 2020; Gunalan et al., 2017; Howell et al., 2019; Noecker et al., 2021). 
Differences in connectomes (Horn and Blankenburg, 2016) vs. pathway atlases (Petersen et  al., 
2019; Alho et al., 2019; Middlebrooks et al., 2020) vs. individual tractography (Akram et al., 2017) 
acquired in the specific patient could be investigated directly within the operation theater. We foresee 
that such studies could lead to a better understanding of the mechanism of action of DBS. This study 
for now showcases this application of visualizing test stimulations in limited and anecdotical form (also 
see Figure 4—video 1), warranting further investigation and validation.

Finally, we see large potential in the use and further aggregation of ultra-high-resolution atlas data. 
Already, such datasets have been emerging and incorporated into DBS applications (Edlow et al., 
2019; Horn et al., 2017). However, we foresee additional datasets that may revolutionize our defini-
tion of anatomy and brain connectivity in the future. For instance, the Jülich group has announced an 
upcoming version of the BigBrain dataset (Figure 7, Figure 4—video 1) that will be available in 1 µm 
resolution (Horn, 2021). A recent normative diffusion-MRI connectome available in 760 µm resolution 
was based on a 9-hr-long scan of a living human brain (Wang et al., 2021). Similarly, a structural brain 
template of the human brain available in 100 µm resolution was acquired by scanning a postmortem 
brain over 100 hr at ‍7 T ‍ (Figure 7; Edlow et al., 2019). A recently published pathway atlas of the 
basal ganglia used expert knowledge and insights from animal studies to create the most realistic set 
of subcortical fibers available to date (Petersen et al., 2019). Similar applications involve histological 
mesh tractography – a novel technique to create accurate tract representations based on histological 
data (Alho et al., 2021) or expert-curated sets of fiber bundles created by tractography on diffusion 
MRI data from 1000 subjects (Middlebrooks et al., 2020). We foresee great use of such resources if 
the process of registering them to patient space is truly accurate. The WarpDrive method presented 
here could embody a missing link in the evolution of making co-registration methodology as precise 
as possible – with specific focus on regions of particular interest (such as the DBS target zone in our 
application). For instance, if our aim was to overlay the BigBrain atlas to support our anatomical 

https://doi.org/10.7554/eLife.72929
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knowledge within and around the STN, it is of crucial importance that the registration between atlas 
and patient imaging of the STN area is meticulously precise. Instead, registration accuracy of, for 
example, the parietal lobe will be of lesser importance in this particular scenario. WarpDrive gives the 
user the necessary toolkit to realize highly precise warps, while focusing on specific ROIs (Figure 7, 
Figure 2—video 1).

Our results demonstrate general agreement between imaging and electrophysiology data on a 
group level. The recordings throughout the trajectories present a region with higher activity coin-
ciding with the imaging-based STN. However, as can be seen in Figure 5, the agreement is not 100%. 
Namely, we can observe the presence of activity and high neuronal density in some locations outside 
of our image-derived model of the STN and vice versa (we observe no activity within voxels that 
form part of the STN). This emphasizes the possibility of a lack of congruence between preoperative 
imaging and intraoperative electrophysiological delineation of the STN. Some of these discrepancies 
could be explained physiologically, for example, seeing activity from regions other than the STN (i.e., 
thalamic recordings that may be encountered dorsal to the STN or recordings from substantia nigra 
ventrally). However, true mismatch of the two sources of information (imaging and electrophysiology) 
in some cases is indeed something we would expect. Namely, we should not forget that the tool 
is entirely designed to facilitate integration and visualization of different sources of information in 
parallel. If both would perfectly agree in each single case, there would be no need to acquire MER data 
in the first place. In our brain shift analysis, we could demonstrate that some of these discrepancies are 
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Figure 7. BigBrain (Amunts et al., 2013; Xiao et al., 2019) (left) and 7 T MRI ex vivo human brain template (Edlow et al., 2019) (right) are two high-
resolution (100 µm isotropic) imaging resources that can be used from Lead-DBS and Lead-OR. The middle panel shows a closeup in a plane using 
the original transformation to MNI space (Xiao et al. in the case of BigBrain) with white outlines of DISTAL atlas (Ewert et al., 2018) (left) and anterior 
commissure from Neudorfer et al., 2020 (right). The bottom panel shows the same slice, but using a refined transformation using Lead-DBS and 
WarpDrive. The refined transformation files can be found in the supplementary data repository (Oxenford, 2022a).

https://doi.org/10.7554/eLife.72929


 Tools and resources﻿﻿﻿﻿﻿﻿ Medicine | Neuroscience

Oxenford et al. eLife 2022;11:e72929. DOI: https://doi.org/10.7554/eLife.72929 � 15 of 21

associated with the occurrence of brain shift. This presented analysis could be considered a first of its 
kind attempt to infer brain shift during surgery using a combination of preoperative MRI and intraop-
erative MER. Specifically, the cross-correlation-derived features may be used as indicators (provided 
by the program) to quantify discrepancies between MER and imaging data in a real-time setting. This 
analysis can be further elaborated upon and integrated into future iterations of the platform.

Limitations
Other explanations for disagreement between imaging and electrophysiological data will directly 
inform limitations that apply to this study. The occurrence of brain shift could be seen as a limitation 
but also as a feature of our approach (see above). However, true limitations may arise from impreci-
sions of the imaging pipeline itself. Although a dedicated multispectral imaging pipeline was applied 
(in the form of Lead-DBS software), which has shown to create meaningful models of DBS in various 
studies, there will always be a certain degree of imprecision that is unavoidable when using imaging 
to segment subcortical nuclei. Here, we aimed to further minimize this imprecision by introducing the 
WarpDrive tool. However, a downside of this tool could be seen in the fact that it involves manual 
and observer-dependent steps. Detailed anatomical knowledge and optimal imaging quality are 
needed to achieve maximal registration accuracy. Ideally, multispectral sets of preoperative images 
that include specialized sequences optimized for the basal ganglia should be used (Krauss et al., 
2021). Use of ultra-high-field (i.e., ‍7 T ‍) imaging could represent a useful alternative (Forstmann et al., 
2017), but in this case danger could arise from increased distortion artifacts exactly and especially 
in the center of the brain (Neumann et al., 2015). Hence, as in the procedure of DBS surgery itself, 
optimal imaging data quality and meticulous use of tools, as well as optimal levels of methodological 
insights, are needed to assure safe and successful applications.

Finally, the MER analysis also comes with limitations. First, as the data was collected in retrospec-
tive fashion, durations of recordings and distances in recording steps when advancing towards the 
target were not exactly consistent throughout the whole dataset. Second, cardioballistic artifacts, as 
well as gradual displacement of brain tissue leading to attenuation of spike amplitudes, are recog-
nized problems when applying spike-sorting algorithms in general. Moreover, anesthesia and wakeful-
ness of patients have an impact on the recordable neurophysiological activity patterns and should be 
considered when making assumptions about the relationship between neuroanatomy and neurophys-
iology. While here patients were awake in general, this followed periods of anesthesia (following the 
clinical protocol established at our center). This leads to a nonuniform quality of the recordings that 
may then present challenges in their interpretation and processing via automatic algorithms. However, 
we operate in an experienced high-volume DBS center where surgical decisions are made based on 
the data used here. In other words, signal quality was sufficient for expert-based decision-making. In 
the future, additional automatic EEG and EMG activity analysis could further augment the validity of 
the approach. In general, however, the main aim of this article was to demonstrate the use and feasi-
bility of the tool, while dedicated analyses investigating specific neuroscientific questions should take 
aforementioned nuances into consideration further.

Conclusion
We presented a method and open-source software tool to visualize results derived from MERs in 
anatomical space, together with information derived from patient-specific MRI data, as well as high-
resolution atlas resources during DBS surgery. We demonstrated general agreement between imaging 
and electrophysiology-derived measures, as well as examples of unavoidable discrepancy between 
the two modalities. The tool has potential to empower scientific studies investigating several topics 
outlined in our discussion, as well as high potential for clinical translation and represents a first step 
to help integrate information across sources within two- and three-dimensional visualization scenes. 
While the software is not certified and intended for scientific use under IRB approval only, subsequent 
steps will involve improving and extending the different components of the software to achieve a reli-
able multimodal patient-specific navigator capable of assisting clinical decision-making.

Data availability
All processed data and code needed to reproduce the main findings of the study are made openly 
available in deidentified form (see figure legends). This can be found in https://github.com/simonoxen/​

https://doi.org/10.7554/eLife.72929
https://github.com/simonoxen/Lead-OR_Supplementary
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Lead-OR_Supplementary, (copy archived at swh:1:rev:c7b8661f0587db992e7eba978d61da8c-
d7cdc88b; Oxenford, 2022a) and attached to the publication. Due to data privacy regulations of 
patient data, raw data cannot be publicly shared. Upon reasonable request to the corresponding 
author, data can be made available after setting up a data-sharing agreement between our host 
institution (Charité – Universitätsmedizin Berlin) and the inquiring party. All codes used to analyze the 
dataset are available within Lead-DBS/-OR software (https://github.com/netstim/leaddbs [Network 
Stimulation Laboratory, 2022]; https://github.com/netstim/SlicerNetstim [Oxenford, 2022b]).
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