Science Advances

Supplementary Materials for

Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation

Craig MacGregor-Chatwin, Dennis J. Nürnberg, Philip J. Jackson, Cvetelin Vasilev, Andrew Hitchcock, Ming-Yang Ho, Gaozhong Shen, Christopher J. Gisriel, William H. J. Wood, Moontaha Mahbub, Vera M. Selinger, Matthew P. Johnson, Mark J. Dickman, Alfred William Rutherford, Donald A. Bryant, C. Neil Hunter*

*Corresponding author. Email: c.n.hunter@sheffield.ac.uk

Published 9 February 2022, *Sci. Adv.* **8**, eabj4437 (2022) DOI: 10.1126/sciadv.abj4437

The PDF file includes:

Figs. S1 to S12 Legends for Data S1 and S2

Other Supplementary Material for this manuscript includes the following:

Data S1 to S2

Fig. S1. Characterisation of photosystem complexes solubilised from thylakoid membranes from WL- and FRL-acclimated *C. thermalis* 7203. (A) Sucrose density gradients of solubilised membranes from WL (left) and FRL (right) cells showing green bands that correspond to different oligomeric states as described in the main text. (B) Negative stain transmission EM of the green band highlighted by the black rectangle "1" in (A) showing either monomeric or dimeric complexes. (C) Negative stain transmission EM of the band highlighted in the red rectangle "2" in (A) showing trimeric PSI complexes purified from FRL membranes. Scale bars in (B) and (C) are 50 nm. (D) Room temperature absorbance spectra of bands from the sucrose gradients in (A). (E) 77 K fluorescence emission spectra of bands from the sucrose gradients in (A). (F) BN-PAGE analysis of thylakoid membranes from WL- and FRL-acclimated *C. thermalis* 7203 (left, unstained gel; right, Coomassie-stained gel). Thylakoid membranes were solubilized in 0.4 % and 2 % (w/v) β -DDM as indicated. Isolated photosystems from *T. elongatus* were used for comparison, showing trimeric PSI and monomeric and dimeric PSII with an unknown protein complex in between. NativeMARK Protein Standard (Novex) was used as a molecular weight marker (M). Approximately 1.5 μ g ChI was loaded for each condition.

Fig. S2. Characterisation of photosystem complexes solubilised from thylakoid membranes from WL- and FRL-acclimated *C. fritschii* 9212. (A) Sucrose density gradients of solubilised membranes from WL (left) and FRL (right) cells showing green bands that correspond to different oligomeric states as described in the main text. (B) Negative stain transmission EM of the green band highlighted by the black rectangle "2" in (A) showing either dimeric or tetrameric complexes from WL membranes. (C) Negative stain transmission EM of the band highlighted in the red rectangle "3" in (A) showing trimeric PSI complexes purified from FRL-acclimated membranes. Scale bars in (B) and (C) are 50 nm. (D) Room temperature absorbance spectrum of bands from the sucrose gradients in (A). (E) 77 K fluorescence emission spectra of bands from the sucrose gradients in (A).

Fig. S3. Characterisation of PSI complexes in WL- and FRL-acclimated membranes from *Synechococcus* 7335. (A) AFM of thylakoid membranes from *Synechococcus* 7335 showing large arrays of PSI complexes in either a dimeric or tetrameric configuration with peripheral regions of trimeric PSI complexes in a disordered state, showing that both configurations are present in WL membranes. Scale bar is 100 nm.. (B) Sucrose density gradients of solubilised membranes from WL (left) and FRL (right) cells in which green bands can be observed that correspond to different oligomeric states of photosynthetic complexes. The black rectangle highlights the green band that corresponds to trimeric PSI in WL membranes. The red rectangle highlights the major band in the density gradient, which corresponds to PSI trimers, and suggests an increased proportion of trimeric PSI complexes in FRL-acclimated membranes.

Fig. S4. Correlation matrices for three technical replicate proteomic analyses of thylakoid membranes from *C. thermalis* **cells acclimated under (A) WL and (B) FRL.** Thylakoid membranes were subjected to quantitative proteomic analysis in triplicate as described in Materials and Methods, with protein abundance scores calculated by the iBAQ method and normalized to the intra-analysis sum of iBAQ abundance scores. The numbers of protein identifications for each replicate are shown in red and the Spearman rank correlation coefficients in blue. A total of 629 proteins were quantified and the data-points are listed in Supplementary Data S1.

Α

PsaA1	MTISPPEREEKKARVVVDNDPVPTSFELWSK <mark>PGHFDR</mark> TLSRGPKTTTWIWNLHALAHDFD	60
PsaA2	MTITPEREQKVRVVVDNDPVPTSPELWAK <mark>PGHFDR</mark> TLARGPKTTTWIWNLHANAHDFD	58
PsaA1	THTSDLEDISRKIFAAHFGHLAVIFIWLSGMYFHGARFSNYEAWLADPLGVKPSAQVVWS	120
PsaA2	THTSDLEDISRKIFAAHFGHLAVIFIWLSGMYFHGAKFSNFEAWMANPTGVKPSAQVVWS	118
PsaA1	VVGQDILNADVGGGFHGIQITSGFFQIWRGAGITNTFQLYCTAIGGLVMAALMLFAGWFH	180
PsaA2	LVGQDILNADVGGGFHGIQITSGLFQLWRAAGITNTFQLYCTAIGGLVMAAIMLFAGWFH	178
PsaA1	YHKRAPKLEWFQNVESMLNHHLAGLLGLGSLAWAGHQIHVSLPINKLLDAGVAPKDIPLP	240
PsaA2	YHKRAPKLEWFQNWEAMMNHHLAGLLGLGCLGWAGHQIHVALPVNKLLDAGVAIKDIPLP	238
PsaA1	QEFILNSNLMTELYPSFAQGLTPFWTLNWGAYADFLTFKGGLNPVTGGLWLTDQAHHHLA	300
PsaA2	HEFILNTSLMAELYPSFAKGLVPFFTLQWGQYADFLTFKGGLNPVTGGLWLSDTAHHHLA	298
PsaA1	IAVLFIIAGHMYRTNWGIGHSLKEILENHKGPFTGDGHRGLFENMTTSWHAQ	352
PsaA2	LAVLFIVAGHFYRTNWGIGHSFKEMLDDAKSPNMLPFLNFIGPVGHEGLDKIFETSWHAN	358
PsaA1	LGTNLAMLGSLTIIVAHHMYAMPPYPYLATDYATQLSIFTHHMWIGAFCIVGGAAHATIF	412
PsaA2	LSIHLVQFGTASLLVAHHMYAMPPYPYLATDYATALSLFTHHVWIAGFCIVGGAAHAAIF	418
PsaA1	MVRDYDPATNMNNVLDRVLRHRDAIISHLNWVCMFLGFHSFGLYIHNDTMQALGRPQDMF	472
PsaA2	MVRDYDPAHHVNNILDRTLRHRDVIISHLAWVCQFLGFHSFAMYCHNDTMRAFGRPQDMF	478
PsaA1	SDTAIQLQPVFAQWVQNLHTLAPGSTAPNALEPVSY	508
PsaA2	SDTGIQLQPIFAQWIQHIHTAAVGAAQVAQPLGDVFGGVRGIELSGLGTTAPGIGAPVSY	538
PsaA1	AFGGGVLAVGGKVAMMPIALGTADFMIHHIHAFQIHVTVLILLKGFLFARNSRLIPDK <mark>AN</mark>	568
PsaA2	AWGGGMVAVGGKVAMMPIALGTADFLIHHIHAFTIHVTVLVLFKGVLFARGSRLVPDK <mark>AN</mark>	598
PsaA1	<mark>LGFRFPCDGPGR</mark> GGTCQVSGWDHVFLGLFWMFNTISIAVYHFSWKMQSDVWGTVDPDGTI	628
PsaA2	<mark>LGFRFPCDGPGR</mark> GGTCQVSAWDHVFLGLFWMYNSLSMVVFHFSWKMQSDVWGTVDSDGIV	658
PsaA1	NHITAGNWALSATTINGWLRDFQWAQAAQVIQSYGSALSAYGLLFLGAHFVWAFSLMFLF	688
PsaA2	THLTGGNFATSSITNNGWLRDFLWAQSAQVIQSYNSSLSAYGLMFLAGHFIFGFSLMFLF	718
PsaAl	SGR <mark>GYWQELIESIVWAHNK</mark> LKVAPTVQPRALSIIQGRAVGVAHYLLGAIVTIWAFFEARI	748
PsaA2	SGR <mark>GYWQELIESIVWAHNK</mark> LKVAPAIQPRALSIVHGRAVGVAHYLLGGIVTTWAFFLARM	778
PsaA1 PsaA2	LSVG 752 SAIG 782	

В

PsaB1	MATKFPK <mark>FSQDLAQDPTTRR</mark> IWYGIATAHDFESHDGMTEENLYQKLFATHFGHLAIIFLW	60
PsaB2	MATKFPKFSQDLAQDPTTRRIWYAMATAHDFELHDGMTEENLYQKIFASHFGHLAIIFLW	60
PsaB1	ASSLLFHVAWQGNFEQWIKDPLHVRPIAHAIWDPQFGKAAVDAFTQGGASYPVNIAYSGV	120
PsaB2	ASGVLFHVAWQGNFEQWIKDPLNVRPIAHAIWDAQFGPPAIEAFTRAGATNPVDICYSGV	120
PsaB1	YHWWYTIGMRTNNDLYMGSVFLLLLASLFLFAGWLHLQPKFRPSLSWFKSAEPRLNHHLA	180
PsaB2	YHWWYTIGMRTNNELYVGAIFLLLLAALFLFAGWLHLQPRYRPTLGWFKSAEPRLNHHLA	180
PsaB1	GLFGVSSLAWTGHLVHVAIPESRGQHVGWSNFLTTPPHPDGLQPFFSGNWGAYAANPDTA	240
PsaB2	GLFGVSSLAWAAHLIHVAIPESRGQHVGWDNFLFTPPHPAGLGAFFTGNWSAYAQNPDTA	240
PsaB1	NHVFGTSQGAGTAILTFLGGFHPQTQSLWLTDMAHHHLAIAVLFIVAGHMYRTNFGIGHS	300
PsaB2	QHVFNSSQGAGTAILTFLGGFHPQTQSLWLTDMAHHHVAIAVLFIIAGHMYRTNWGIGHS	300
PsaB1	IKEMLNAKKFFGASTEGQFNLPHQGLYDTINNSLHFQLSLALAALGTITSLVAQHMYAMP	360
PsaB2	IKEMLNSKSFFGAKVEGPFNLPHQGLYDTINNSLHFQLSFALAALGVASSLTAQHMYSMP	360
PsaB1	PYAFIGQDFTTQAALYTHHQYIACALMLGAFAHAAIFWVRDYDPEQNKGNVLDRVLKHKE	420
PsaB2	PYAFIGQDFTTQAALYTHHQYIAGFLMVGAFSHAGIFWIRDYDPEQNKGNVLDRMLRHKE	420
PsaB1	AIISHLSWVSLFLGFHTLGLYVHNDVVVAFGTPEKQILIEPVFAQFIQGAHGKVLYGFDT	480
PsaB2	AIISHLSWVSLFLGFHTLGLYVHNDVEVAFGAAEKQVLIEPVFAQFIQAAHGKALYGFNT	480
PsaB1	LLSNPDSVASTAGAAWLPNWLDAINNGTNSLFLTIGPGDFLVHHAFALAIHTTVLV	536
PsaB2	LLSNPDSIASTAWPNHANVWLPGWLDAVNNTTNSLFLTIGPGDFYVHHAIALGLHVTTLV	540
PsaB1	LVK <mark>GALDAR</mark> GSKLMPDKK <mark>DFGYAFPCDGPGR</mark> GGTCDISAWDSFYLAAFWVLNTAGWVTFY	596
PsaB2	LVK <mark>GALDAR</mark> GSKLMPDKK <mark>DFGYAFPCDGPGR</mark> GGTCDISAWDASYLAVFWMLNTLGWVTFY	600
PsaB1	WHWKHLGIWQGNVAQFNESSTYLMGWLRDYLWLYSAQLINGYNPYGMNNLSVWAWMFLLG	656
PsaB2	WHWKHLAIWEGNIAQFNESSTYLMGWFRDYLWLHSAQLINGYNPYGTNSLAIWSWMFLWG	660
PsaB1	HLIWATGFMFLISWRGYWQELIETLVWAHERTPLANLIRWKDK <mark>PVALSIVQAR</mark> IVGLGHF	716
PsaB2	HLAWAVSFMFLITWRGYWQELIETLVWAHEKTPLS-FGYWRDKPVALSIVQARLVGLTHF	719
PsaB1 PsaB2	AAGYILTYAAFLIASTAGKFG 737 TVGYIATYGAFLIASTAGKFG 740	

Fig. S5 Alignment of PsaA and PsaB homologs showing the location of shared tryptic peptides. Proteomic analysis most often employs upstream proteolysis with trypsin to generate peptide fragments for nano-flow liquid chromatography coupled on-line to mass spectrometry. Protein homologs with a significant degree of sequence identity may contain shared tryptic peptides. This situation is exemplified by isoforms of the photosystem I subunits (A) Chro_5026/1019 (PsaA1/A2) and (B) Chro_5027/1018 (PsaB1/B2), with shared peptides highlighted in colored rectangles. For quantification of differential expression by iBAQ, which utilizes the sum of all peptide ion intensities attributable to each protein, peptides with ion intensities contributed by more than one isoform may introduce inaccuracy. For relative quantification of photosystem subunit isoforms, we instead used the Top-N method in which the three most intense and unique tryptic peptide ion intensities mapping to a protein were summed to generate the abundance score.

6803	MAESNQVVQAYNGDPFVGHLSTPISDSAFTRTFIGNLPAYRKGLSP	46
9212	MSNTVDTIDTVDTDIIKSFKGDPCLGNLSTPINDSPLARAFINNLPAYRKGLTP	54
7203	MTNTANPSVESKLNYRLDTDPVQPYKGDPFNSNFSTAITDSPLARAFINNLPAYRKGLTP	60
7335	MSASDAYISDDPIQPYQGNPQLGNLATPINSSNLAKAFINNLPAYRPGLTP	51
6803	ILRGLEVGMAHGYFLIGPWTLLGPLRDSEY-QYIGGLIGALALILVATAALSSYGLVTFQ	105
9212	FMRGLEIGMAHGYFLVGPEVVIGPLRESAHGANLSGLITAIYIAVSACLGISIFAITTFQ	114
7203	FMRGLEIGMAHGYFLVGPEVVVGPLRETAHGANLSGLITAIYIAVSACLGISIFAITTFQ	120
7335	FLRGLEIGMAHGYFLVGPEVVFGPLKEGSHGANLSGLITAIYITVSACLGISIFALATFQ	111
6803	GEQGSGDTLQTADGWSQFAAGFFVGGMGGAFVAYFLLENLSVVDGIF <mark>R</mark> GLF	156
9212	GNPKGSYSSYSTDSLRPLRSREEWS <mark>Q</mark> LNGGIFLGAMGGAVFAYLLLENFDSLDAIL <mark>R</mark> GAV	174
7203	GDPRGAYGSTSKDSLRPLRNRDEWY <mark>Q</mark> LNGGIFLGAMGGAVFAYLLLENFDALDSIL <mark>R</mark> GGV	180
7335	GDPRGTYNSHSRDRLRPLRKKEDWY <mark>Q</mark> LSGGILMGSLGGAIFAYALLENFELL <mark>D</mark> SIL <mark>R</mark> GAV	171
6803	N 157	
9212	NUCYIDE 191	
7203		
7205	1102 174	
1333	NVG 1/4	

Fig. S6. Sequence alignments of PsaL from *Synechocystis* **6803 with FaRLiP encoded PsaL2 subunits from** *C. fritschii* **9212**, *C. thermalis* **7203** and *Synechococcus* **7335**. The sequences for the FaRLiP encoded PsaL2 subunits that are incorporated into trimeric PSI complexes have been aligned with the PsaL subunit from *Synechocystis* **6803**, which also forms trimeric complexes. The colored boxes show the four conserved amino acid residues that have been identified as important for trimer formation.

7120 9212 7203 7335 Chro_2988	MAQAVDASKNLPSDPRNREVVFPAGRDPQWGNLETPVNASPLVKWFINNLPAYRPGLT MAQAVDASKNSPSDPRNREVVFPAYRDPQVGNLETPINSSALVKWFIGNLPAYRPGIT MAQAIDASKNRPGDPRNQEVVFPAGRDPQNSNLETPVNSSGLVKWFINNLPAYRPGIT MPASSNFIKPYEGDPQIGNLETPLNSSGLSKAFLENLPAYRTGLS DLIQPPLANPRSGDRFSSVEANDLTLNFLKYLPIYRPGIT	58 58 45 380
7120	PFRRGLEVGMAHGYFLFGPFAKLGPLRDAANANLAGLLGAIGLVVLFTLALSLYANS	115
9212	TFRRGLEIGMAHGYWIFGPFAKLGPLRNTVNANLAGLLATLGLIVILTGALSLYANS	115
7203	DMRRGLEVGMAHGYWVLGPFTKLGPLRDTDVANIAGLISTLGMVAIMTATMALYSAS	115
7335	AQRRGLEVGMAHGYLLYGPFALLGPLRDTDVLGITGLLSAIGLVLILTVCLSIYGGA	102
Chro_2988	PLSRGLEIGMAHGYWLVGPFTILGSLGSLNDSRASNLLGLLAAGSLIVILTIGFSIYGST	440
7120	NPPTALASVTV-PNPPDAFQSKEGWNNFASAFLIGGIGGAVVAYFLTSNLALIQ	168
9212	NPPKPVNSVTI-PNPPEAFQSNEGWNGFASAFLIGGIGGAVTAYFLTTNLALIQ	168
7203	NPPQPVATTTTGGQVPSTFKSPESWNNYISGFLIGGVGGAVFAYFVLTNIAIIK	169
7335	DVSSEISRNTLPYQPPEALSTDEGWSEFAGSFLIGGIGGAIFAYFLSANLPLLL	156
Chro_2988	SQEKSLVTVPRPNFAVTVPNVPDSLQAVDNWSQFSTGFFIGGIGGAIFAYLLLDNLNLFR	500
7120 9212 7203 7335 Chro 2988	GLVG 172 GLFG 172 NVFGGLFS 177 GSIAGA 162 AIPMIGS 507	

Fig. S7. Sequence alignments of PsaL from Anabaena 7120 with non-FaRLiP encoded PsaL1 subunits from *C. fritschii* 9212, *C. thermalis* 7203, *Synechococcus* 7335 and the PsaL domain of the Chro_2988 **protein from** *C. thermalis* 7203. The sequences for the PsaL1 subunits preferentially expressed under WL growth conditions in addition to the PsaL domain of the Chro_2988 protein have been aligned to show the presence or absence of 2 multiproline motifs (highlighted in blue and purple), commonly found in PsaL subunits that do not form trimeric complexes.

9212-WL	MAASFLPSIFVPLTGLVFPFVAMAFLFVYIEREDLVMAASFLPSIFVPLTGLVFPFVAMAFLFVYIEREDLV	36
7203-WL	MFSASFLPSILVPLTVLVFPSVAMALLFLYIEREDPSGI	39
7335-WL	MSASFLPTILVPTVGLVFPAIAMAALFLYIERGQATTGGESAPWGQVSEDSQTDVV-	56
9212-FRL	MVDMTQLTGDYAASWLPWIMIPLIFYILPFPVFAILFLWIQKEDSEQIQETDSNLAKVGELEAPKP	66
7203-FRL	MVDMTQLTGSYAASWLPWIMIPLIFYILPFPVFALIFIWIEKEAGTADEEV	51
7335-FRL	MVDATQLEGAYAAAWLPWIMIPMITYILPFPIFAIAFLWIEREGGEGGLDIDVMGSNAMSNEAMGRDISS	70

Fig. S8. Sequence alignments of FaRLiP encoded and non-FaRLiP encoded Psal subunits from *C. fritschii* **9212**, *C. thermalis* **7203** and *Synechococcus* **7335**. The sequences of both versions of the Psal subunit from all three organisms investigated in this study were aligned to show the presence of a motif at the N-terminus of the Psal2 proteins preferentially expressed under FRL growth conditions (orange) is absent in the Psal1 subunits that are expressed under WL.

Fig. S9. Analysis of pigments from cyanobacteria grown under FRL conditions. Pigments extracted from FRL-acclimated membranes from (**A**) *C. fritschii* 9212, (**B**) *C. thermalis* 7203 and (**C**) *Synechococcus* 7335 were separated by HPLC. Absorbance was monitored at 665 nm (top panels) to show the presence of Chl *a* and 707 nm (bottom panels) to show the presence of Chl *f*. (D) The identity of the pigments were confirmed by their characteristic absorption spectra. HPLC traces (panels **A**-**C**) were normalised to Chl *a* and Chl *f* peaks and absorption spectra (panel **D**) were normalised to the Qy transition peak. In **A-C** 0 min corresponds to the start of isocratic elution in 100 % methanol.

А

Fig. S10. Gallery of AFM images of thylakoid membranes from WL- and FRL-acclimated *C. thermalis* 7203. (A-C) AFM topographs of thylakoid membranes from *C. thermalis* 7203 grown under WL showing large areas of membrane containing PSI complexes in either a dimeric or tetrameric configuration. (D-E) Thylakoid membranes from FRL acclimated *C. thermalis* 7203 cells imaged by AFM showing PSI complexes in a trimeric configuration. Scale bars are 100 nm.

Fig. S11. Gallery of AFM images of thylakoid membranes from WL- and FRL-acclimated *C. fritschii* **9212.** (**A** and **B**) Thylakoid membranes from *C. fritschii* 9212 grown under WL imaged by AFM showing PSI complexes in either a dimeric or tetrameric configuration. (**C-D**) AFM imaging of thylakoid membranes from FRL acclimated *C. fritschii* 9212 cells showing PSI complexes in a trimeric configuration. Scale bars are 100 nm.

Fig. S12. Gallery of AFM images of thylakoid membranes from WL- and FRL-acclimated *Synechococcus* **7335.** (A and B) *Synechococcus* **7335** thylakoid membranes isolated from cells grown under WL imaged by AFM showing PSI complexes in either a dimeric or tetrameric configuration forming pseudo-crystalline arrays. (C) Thylakoid membrane patch from FRL acclimated *Synechococcus* **7335** cells imaged by AFM showing PSI complexes in a trimeric configuration in a disordered array. Scale bars are 100 nm.

Data S1. (separate file)

This data set is from *Chroococcidiopsis thermalis* PCC7203 cells were acclimated under white and far-red light illumination. Proteins were extracted from thylakoid membranes and digested with endoproteinase Lys-C and trypsin. The resultant peptide fragments were analysed by nanoLC-MS/MS as three technical repeats (Rep 1, 2, 3) and the mass spectra subjected to database searching by MaxQuant as described in Materials and Methods.

Protein abundance scores were derived by the iBAQ (intensity-based absolute quantification) method, as implemented by MaxQuant. These values were normalized using Perseus to the intra-analysis sum of iBAQ scores to compensate for random variability arising from sample loading and MS full-scan/product ion scan data-dependent acquisition patterns. The normalized abundance scores were then transformed to log(2). Missing values resulting from the non-detection of proteins in some analyses were replaced by imputation of random values (shown in blue) derived from a normal distribution and weighted to simulate expected low abundance scores, as implemented in Perseus using the default parameters.

Statistical analysis in Perseus was by a modified t-test to provide the significance threshold at p < 0.05. The -log(10) p-values and differences (FRL - WL iBAQ score averages) provide the data-points for the volcano plots in Fig. 4A, C (main article).

Data S2. (separate file)

This Data Set is derived from the same MaxQuant output as Data S1 and is confined to the photosystem subunits that were identified and quantified in both white and far-red light thylakoid protein extracts.

Abundance scores were derived by the Top-N method using tryptic peptide ion intensity values calculated by MaxQuant. These values were normalized using Perseus to the intra-analysis sum of peptide ion intensities to compensate for the random variability arising as described above. Each protein abundance score was determined by summing the normalized intensity values for the 1, 2 or 3 most intense peptide ions, depending on the number of peptides identified.

After transformation of the summed intensity values to log(2), statistical analysis was carried out as described above with the -log(10) p-values and differences (FRL - WL Top-N score averages) used to provide the data-points for the volcano plot in Fig. 4B (main article).