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Abstract

When we perceive a visual scene, we usually see an arrangement of multiple cluttered and

partly overlapping objects, like a park with trees and people in it. Spatial attention helps us

to prioritize relevant portions of such scenes to efficiently interact with our environments. In

previous experiments on object recognition, objects were often presented in isolation, and these

studies found that the location of objects is encoded early in time (before ∼150 ms) and in early

visual cortex or in the dorsal stream. However, in real life objects rarely appear in isolation but

are instead embedded in cluttered scenes. Encoding the location of an object in clutter might

require fundamentally different neural computations. Therefore this dissertation addressed the

question of how location representations of objects on cluttered backgrounds are encoded in

the human brain. To answer this question, we investigated where in cortical space and when in

neural processing time location representations emerge when objects are presented on cluttered

backgrounds and which role spatial attention plays for the encoding of object location. We

addressed these questions in two studies, both including fMRI and EEG experiments. The results

of the first study showed that location representations of objects on cluttered backgrounds emerge

along the ventral visual stream, peaking in region LOC with a temporal delay that was linked to

recurrent processing. The second study showed that spatial attention modulated those location

representations in mid- and high-level regions along the ventral stream and late in time (after

∼150 ms), independently of whether backgrounds were cluttered or not. These findings show

that location representations emerge during late stages of processing both in cortical space and

in neural processing time when objects are presented on cluttered backgrounds and that they

are enhanced by spatial attention. Our results provide a new perspective on visual information

processing in the ventral visual stream and on the temporal dynamics of location processing.

Finally, we discuss how shared neural substrates of location and category representations in the

brain might improve object recognition for real-world vision.
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Zusammenfassung

Wenn wir uns umschauen, sehen wir Objekte, die von weiteren Objekten umgeben sind.

Frühere Forschung zu Objekterkennung zeigte Objekte auf leeren Hintergründen und fand her-

aus, dass die Position von Objekten früh im Gehirn verarbeitet wird (vor ∼ 150 ms) und, dass

die Verarbeitung in frühen Arealen der visuellen Sehrinde oder dem dorsalen Pfad stattfand.

Allerdings erscheinen Objekte in der realen Welt selten auf leeren Hintergründen und die Ob-

jektposition könnte im Gehirn fundamental anders verarbeitet werden, wenn Objekte von vielen

anderen Objekten umgeben sind. Daraus leitet sich die Frage ab, wie die Position von Objekten

im Gehirn repräsentiert wird, wenn Objekte von anderen Objekten umgeben sind. Um diese

Frage zu beantworten, haben wir untersucht wo im Kortex und wann während der neuronalen

Verarbeitungszeit Repräsentationen der Objektposition entstehen, wenn Objekte von anderen

Objekten umgeben sind. Außerdem untersuchten wir, wie diese Repräsentationen von räumli-

cher Aufmerksamkeit beeinflusst werden. Diese Fragen beantworteten wir in zwei Studien mit

je einem fMRT- und einem EEG-Experiment. Die Resultate der ersten Studie zeigten, dass Ob-

jektpositionsrepräsentationen im ventralen Pfad verarbeitet werden, wenn Objekte von anderen

Objekten im Hintergrund umgeben sind und, dass diese Repräsentationen am höchsten im Areal

LOC sind. Die Repräsentationen benötigten eine längere Verarbeitungszeit aufgrund von rekur-

renten Verarbeitungsschritten. Die zweite Studie zeigte, dass diese Repräsentationen in mittleren

und höheren Arealen des ventralen Pfads und während späterer Verarbeitungszeiten (nach ∼150

ms) von räumlicher Aufmerksamkeit verstärkt werden. Dies war unabhängig davon, ob Objekte

auf leeren oder mit Objekten gefüllten Hintergründen gezeigt wurden. Diese Resultate zeigen,

dass Objektpositionsrepräsentationen in höheren Arealen im ventralen Pfad und spät in der neu-

ronalen Verarbeitungszeit verarbeitet werden, wenn Objekte von mehr Objekten umgeben sind

und, dass diese Repräsentationen von Aufmerksamkeit verstärkt werden. Unsere Resultate bieten

eine neue Perspektive auf etablierte Theorien visueller Verarbeitung im ventralen Pfad und auf

die zeitliche Dynamik von Positionsverarbeitung im Gehirn. Am Ende dieser Dissertation werden

mögliche Vorteile der gemeinsamen Verarbeitung von Objektkategorie und -position im gleichen

kortikalen Pfad für Objekterkennung besprochen.
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1 Introduction

When we observe the visual world around us, we effortlessly and automatically perceive a large

number of objects arranged into a visual scene: for example, during a walk in the park, we see

trees, benches, flowers, people and dogs. To localize individual objects within a scene, our visual

system needs to group single object parts into one object, assign overlapping objects to separate

entities and dissect objects from the background. During these processes, spatial attention helps

us to prioritize certain portions of the visual field while ignoring others to allocate resources to

the relevant parts of the scene (Desimone & Duncan, 1995). This thesis addresses the question

what the neural mechanisms are that allow us to localize an individual object within multiple

background objects in the visual world.

The neural computations needed to perceive objects in cluttered scenes occur so quickly,

that we usually do not even realize they are happening. The fragility of these complex brain

mechanisms only becomes evident once they fail. After suffering a stroke in the occipital and

ventral temporal lobes, a neuropsychological patient lost his ability to group object parts into

individual objects and had in particular problems with identifying overlapping and cluttered

objects (Humphreys & Riddoch, 1994; Riddoch & Humphreys, 1987; Humphreys & Riddoch,

1987). This neuropsychological disorder called integrative agnosia, has been observed in other

patients with similar ventral stream lesions (Behrmann et al., 1994). The failure of the perception

of cluttered objects demonstrates that there are distinct neural substrates that support this

mechanism and that lesioning these substrates leads to the failure of the perception of objects

in clutter.

Studying the neural mechanisms of location encoding in the human brain is important be-

cause, besides category, the location of an object is arguably one of the most fundamental object

properties that we need to interact with objects in daily life (Groen et al., 2022; Malcolm et al.,

2016). However, to date it is still unclear where and when the location of objects is encoded in

the brain and which role spatial attention plays for location encoding. In this thesis, we took the

background of objects into account to systematically uncover the mechanisms underlying object

location encoding in the human brain.

Decades of neuroscientific research on visual object recognition have established a compar-

atively clear and comprehensive picture of the steps involved in how human brains form rep-

resentations of isolated objects along the ventral visual stream (DiCarlo & Cox, 2007; DiCarlo
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et al., 2012; Goodale & Milner, 1992; Mishkin et al., 1983). This research has established the

basis for subsequent work on more complex representations of objects, e.g. of objects that are

partially occluded (Kar et al., 2019; Rajaei et al., 2019; Spoerer et al., 2017; Tang et al., 2014)

or objects in complex real-world scenes (Brandman & Peelen, 2017, 2019; Groen et al., 2018;

Kaiser et al., 2016, 2019; Peelen & Kastner, 2014; Seijdel et al., 2020). However, this research

has focused on the representation of object category (e.g. car, animal). Previous studies studying

location representations typically presented objects in isolation (Carlson, Hogendoorn, Fonteijn,

& Verstraten, 2011; Carlson, Hogendoorn, Kanai, et al., 2011; Cichy et al., 2011, 2013; Kay et

al., 2015). Therefore it is still an open question how the location of an object is represented in

the brain under more realistic circumstances, such as when the object’s visual surroundings are

cluttered.

Addressing this open question is crucial for understanding object location encoding in the

human brain because in the real world, objects rarely appear in isolation. Perceiving an object

in isolation does not require the grouping and segmentation operations which are needed to

segregate an object from clutter (Poort et al., 2016; Scholte et al., 2008; Seijdel et al., 2021),

suggesting that the neural mechanisms supporting these two cases are fundamentally different

(Groen et al., 2018; Hong et al., 2016; Li et al., 2009; Reddy & Kanwisher, 2007; Seijdel et al.,

2021). In isolation, objects automatically pop-out, which means that the object’s location should

be processed in a bottom-up manner (Itti & Koch, 2001). In contrast, with clutter, top-down

spatial attention might be beneficial to perceive the object. Therefore, the present dissertation

investigated the neural mechanisms of where and when the location of objects in clutter is encoded

in the human brain and which role spatial attentional modulation plays for location encoding.

1.1 Divergent cortical loci of object location representations

Unlike for location, there is a clear consensus on where in the brain object category representa-

tions emerge. Longstanding research has established that object category representations emerge

in a succession of hierarchical transformations that occur in sequential stages along the ventral

visual stream (Cichy, Khosla, et al., 2016; DiCarlo & Cox, 2007; DiCarlo et al., 2012; Goodale

& Milner, 1992; Mishkin et al., 1983). In a first step, early visual regions V1, V2 and V3 process

low-level features like line orientations and retinotopic location (Hubel & Wiesel, 1959, 1977;

Wandell et al., 2007; Wandell & Winawer, 2015). Subsequently, higher-order shape descriptors

and colour constancy are encoded in V4 (Pasupathy & Connor, 2002; Zeki & Marini, 1998). Fi-
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nally, object representations emerge in the lateral occipital complex (LOC) (Grill-Spector et al.,

2001; Malach et al., 1995) or in its primate object-selective equivalent inferior temporal cortex

(IT) (Cichy et al., 2014; Hung, 2005; Kiani et al., 2007; Kriegeskorte, Mur, Ruff, et al., 2008).

Category representations in these regions have reached a level of abstraction in which they are

invariant to transformations like the angle from which an object is perceived, its size on the

retina, clutter in the background of the object and its location in the visual field (Carlson, Ho-

gendoorn, Fonteijn, & Verstraten, 2011; Cichy et al., 2011; DiCarlo & Cox, 2007; Li et al., 2009;

Schwarzlose et al., 2008).

When looking at how the location of an object is represented in the brain, the picture that

emerges from previous literature is more heterogenous. Therefore, the first research question of

this dissertation was where in cortical space the location of objects is represented in the brain

when objects are presented under more realistic circumstances. Overall, previous studies linked

object location representations to three main brain areas: studies finding location representations

in early visual cortex (EVC) (Cichy et al., 2013; Golomb & Kanwisher, 2012; Wandell & Winawer,

2015), in the dorsal stream (Kravitz et al., 2011; Ungerleider & Haxby, 1994; Zachariou et al.,

2015) or in the ventral stream (Cichy et al., 2011, 2013; Golomb & Kanwisher, 2012; Hong

et al., 2016; Schwarzlose et al., 2008; Xu & Vaziri-Pashkam, 2021). Here, I will present three

testable hypotheses derived from these studies. Then I will explain the relevance of comparing

representations of objects on cluttered and isolated backgrounds to distinguish between these

hypotheses.

The first hypothesis posits that location representations are encoded in EVC (Fig. 1a, c, H1).

This view is derived from seminal studies, showing that visual space can be mapped out retino-

topically in V1 (Engel et al., 1994; Holmes, 1918; Tootell et al., 1988). For example, an early

lesion study showed that the visual field is flipped horizontally and vertically in V1, thus repres-

enting visual images reversed and inverted on its cortical surface (Holmes, 1918). Furthermore,

V1 contains cells that selectively fire when corresponding regions of the visual field are stimulated

(Hubel & Wiesel, 1977; Wandell et al., 2007), demonstrating its retinotopic organization. Since

receptive fields (RF) in V1 are small compared to RF in higher-level brain regions, V1 maps

out visual space with high spatial resolution (Wandell & Winawer, 2015). More recently, fMRI

studies showed that location information of isolated objects was highest in EVC (Cichy et al.,

2013; Golomb & Kanwisher, 2012), supporting the view that EVC is the main locus of location

representations in the brain.
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Figure 1: Hypotheses and predictions in study 1. a, The three hypotheses predict that location
representations emerge in EVC (H1), along the dorsal stream (H2) or along the ventral stream (H3).
b, When objects appear on blank backgrounds, the stimulation in the visual field directly maps onto
stimulated portions of EVC, allowing for direct read-out of the location. With clutter, this is not possible
because large parts of EVC are activated. c, fMRI predictions. H1 predicts that location information peaks
in EVC. With high clutter, H2 and H3 predict that location information emerges along the dorsal and
the ventral stream, respectively. d, EEG predictions. H1 predicts no delay for the emergence of location
representations between background conditions. H2 predicts that location representations emerge later
when clutter is present in the background than when it is not.

The second hypothesis posits that location representations are encoded in the dorsal stream

(Fig. 1a, c, H2). This view is based on seminal neuropsychological case studies of patients with

lesions in the dorsal stream, whose object localization behaviour was impaired, although object
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recognition performance was intact (Goodale & Milner, 1992; James et al., 2003; Milner et al.,

1991; Ungerleider & Haxby, 1994). These studies led to the dual-stream theory which proposed

that object category and location are processed along two separate pathways in the brain (Un-

gerleider & Haxby, 1994). In this framework, location representations emerge along the dorsal

stream, which is called the “where” pathway. Object category and identity emerge along the

ventral stream which called the “what” pathway in this framework.

Finally, we propose a novel, third hypothesis in which location representations emerge along

the ventral stream (Fig. 1a, c, H3). This view is based on a primate study in which location

representations were higher in primate object-selective area IT than in V4 (Hong et al., 2016),

suggesting an increase of location information from lower to higher-level ventral stream regions. In

humans, location representations were found in high-level ventral visual region LOC (Baeck et al.,

2013; Cichy et al., 2011, 2013; Golomb & Kanwisher, 2012; Schwarzlose et al., 2008). Traditionally,

both IT and LOC are known as object-selective regions which encode category representations

that are invariant to view-dependent properties like an object’s location (DiCarlo & Cox, 2007;

Grill-Spector et al., 2001). This suggests that location information is gradually removed along

the ventral stream and makes these regions rather counterintuitive candidates for the encoding

of location representations. However, LOC’s two subregions LO1 and LO2 are selective for the

processing of object shape and orientations (Silson et al., 2013), suggesting that LOC could be

sensitive to other category-independent properties like location, too. Furthermore, LOC has large

RF (Wandell & Winawer, 2015) with a peripheral bias (Sayres & Grill-Spector, 2008) which are

beneficial properties for encoding the location of objects in the periphery via distributed patterns

(Eurich & Schwegler, 1997; Snippe & Koenderink, 1992).

There are two reasons why previous studies could not dissociate between these three hy-

potheses and answer the question where location representations emerge. First, most studies

described above presented objects on blank backgrounds (Baeck et al., 2013; Cichy et al., 2011,

2013; Golomb & Kanwisher, 2012; Schwarzlose et al., 2008). While this enhanced experimental

control and established first insights about the encoding of object category and location, it lim-

its the generalizability to real-world vision. The clutter of real-world environments turns object

categorization and localization into a much more challenging problem for the visual system than

in the lab. When objects are presented on blank backgrounds in the lab, the retinotopic portion

of EVC is stimulated that corresponds to the position of the stimulus in the visual field, allowing

for direct location read-out from EVC (Fig. 1b, left). When an object is presented on a cluttered
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background however, this one-to-one mapping does not exist anymore because the entire EVC

is visually stimulated (Fig. 1b, right) and direct read-out is not possible anymore. Consequently,

presenting objects on cluttered backgrounds is especially important to distinguish the EVC hy-

pothesis (H1) from the other two hypotheses (H2, H3). Furthermore, when objects are embedded

in a cluttered scene, the visual system needs to perform additional grouping and segmentation

operations to disentangle objects from the background and from each other (Poort et al., 2016;

Scholte et al., 2008; Seijdel et al., 2021). It is likely that these operations require more in-depth

processing that can only be accomplished along the ventral or dorsal hierarchy instead of EVC.

The second reason why previous research could not dissociate between the three hypotheses

was that the only study that presented objects on natural scenes backgrounds was performed in

primates and had limited coverage of the brain (Hong et al., 2016). In this study electrodes were

placed in areas V4 and IT. However testing our three hypotheses additionally requires coverage

of EVC and of the dorsal stream. This can easily be accomplished in an fMRI experiment with

whole brain coverage. To address our first question where in cortical space the location of objects

is represented, we tested our three hypotheses in study 1.

1.2 The neural temporal dynamics of object recognition in realistic environ-

ments

Visual representations in the human brain can not only be mapped out across the cortex

but can also be measured emerging over time. Studying brain representations over time can

yield important insights about the temporal sequence in which object representations develop.

Some visual processes require more processing time compared to others and this allows us to

infer which representations require additional processing steps (Carlson et al., 2013; Cichy et al.,

2014; Isik et al., 2014; King & Dehaene, 2014). Object location has traditionally been regarded

as a low-level feature in visual neuroscience (Rice et al., 2014) and low-level features are thought

to be processed during the fast feedforward sweep of early visual processing stages (Contini et

al., 2017). For example, on blank backgrounds, location representations of objects can be read

out as early as 60 ms from the MEG signal (Carlson, Hogendoorn, Kanai, et al., 2011). This

early emergence might be related to the high salience of the object on a blank background which

allows for the encoding of the object’s location in a bottom-up manner (Itti & Koch, 2001).

However, no prior studies investigated when location representations emerge when objects are

presented on cluttered backgrounds. This is a crucial question, because disentangling an object
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from a cluttered background requires operations that group visual information into separate

objects and segments objects from the background and from other overlapping objects (Poort et

al., 2016; Scholte et al., 2008; Seijdel et al., 2021). These grouping and segmentation operations

have been related to recurrent processing (Lamme & Roelfsema, 2000; Seijdel et al., 2021, 2020)

which is known to require additional processing time (Camprodon et al., 2010; Rajaei et al.,

2019; Tang et al., 2014, 2018).

Studies on the temporal dynamics of category encoding demonstrate that presenting objects

under more realistic and complex circumstances can dramatically alter their temporal dynamics

(Kar et al., 2019), suggesting that this might also be the case for object location representations.

For example, category representations of objects on cluttered backgrounds emerge later than on

simple or on blank backgrounds (Groen et al., 2018; Seijdel et al., 2021). Similarly, presenting

objects that are partially occluded can delay the emergence of their category in neural signals

by up to 220 ms (Rajaei et al., 2019; Tang et al., 2014). These results highlight the importance

of studying object representations with more ecological validity and complexity. Simultaneously,

they raise the question how the temporal dynamics of location representations would be affected

when objects would be presented on cluttered backgrounds. Based on the research above on

category representations, our hypothesis was that the encoding of location representations of

objects in clutter would require additional processing steps resulting in an increased processing

time (Fig. 1d, H2). We tested this hypothesis in study 1.

1.3 Attentional modulation of object location representations

The previous two sections introduced the questions where and when the brain encodes ob-

ject location representations. However, vision is not merely the processing of incoming sensory

information in the brain. Visual representations in the brain can also be modulated by internal,

cognitive processes (Kastner & Ungerleider, 2000). A cognitive process of paramount importance

to visual perception that has been extensively studied is visual attention (Mangun, 1995; Maun-

sell, 2015; Squire et al., 2013). The role of spatial attention for location encoding of objects on

clutter is particularly important because spatial attention focuses neural resources on import-

ant parts of the visual field and helps us ignore irrelevant parts (Desimone & Duncan, 1995),

thereby alleviating the computational costs that clutter creates for the visual system (Reddy &

Kanwisher, 2007; Wolfe, 1994; Wolfe et al., 2011). Behaviourally, this has been demonstrated in

conjunction search (Treisman & Gelade, 1980) where a target letter is embedded among other
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letters which differ from the target by two or more features (e.g. colour, shape). The complexity

of the search display triggers top-down attentional resources and finding the target takes some

time (Treisman & Gelade, 1980). In contrast, finding the target in a pop-up search display where

the target differs by just one feature from distractors, is considerably faster because the target’s

salience captures attention in a bottom-up manner (Braun, 1994; Itti & Koch, 2001; Treisman

& Gelade, 1980; Wolfe et al., 2003). Similar neural processes might be at play when we perceive

natural objects on blank vs. on cluttered backgrounds: on blank backgrounds, the object pops

out and, therefore, its location should also be processed in a bottom-up manner during the feed-

forward sweep of visual processing, requiring minimal attentional and computational resources

(Itti & Koch, 2001; Treisman & Gelade, 1980; Wolfe, 1994; Wolfe et al., 2003). In contrast with

clutter, the cognitive and neural processes of perceiving the object might be more similar to a

conjunction search with covert spatial attention. This notion finds support in studies showing

stronger attentional modulation of high-level visual areas when objects are embedded in clutter

compared to when they are not (Lee & Maunsell, 2010; Reddy & Kanwisher, 2007).

Spatial coding in visual areas is essentially characterized by RF size and eccentricity bias of

neurons (Groen et al., 2022). Attention is known to modulate neural responses by increasing the

neural firing rates (Briggs et al., 2013; Desimone & Duncan, 1995; Reynolds & Chelazzi, 2004)

and by increasing the RF size and eccentricity bias of neurons that have a receptive field in

the attended location (Kay et al., 2015). Therefore, spatial attention might be tightly linked to

representing object location.

Previous research showed mixed results concerning the processing stage when attentional

modulation can be observed in brain measurements. Attentional modulation of visual represent-

ations has been observed both in low-level visual areas (Briggs et al., 2013; Herrero et al., 2013;

Khayat et al., 2006; Lakatos et al., 2008; Martínez et al., 2001; Noesselt et al., 2002; Roelfsema

et al., 1998) and high-level visual areas (Buffalo et al., 2010; Kay et al., 2015; Peelen & Kastner,

2011). In neural processing time, attentional modulation has been found both in early time win-

dows (Hillyard, Teder-Sälejärvi, & Münte, 1998; Hillyard, Vogel, & Luck, 1998; Luck et al., 2000;

Mangun, 1995) before the end of the feedforward sweep at ∼150 ms (Camprodon et al., 2010;

Fahrenfort et al., 2007; Koivisto et al., 2011; Lamme & Roelfsema, 2000; VanRullen & Thorpe,

2001) and in a late time window after the feedforward sweep (Battistoni et al., 2020; Groen et

al., 2016; Kaiser et al., 2016; Wyatte et al., 2014).
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The heterogeneity of these studies raises the question which role attentional modulation

plays for the encoding of object location. Specifically, we asked during which processing stage in

neural time and space covert spatial attention modulates location representations and whether

attentional modulation depends on the clutter level of the background. Based on studies us-

ing naturalistic stimuli, we hypothesized that we would find attentional modulation of location

representations during late processing stages in neural processing time and in cortical space (Bat-

tistoni et al., 2020; Kaiser et al., 2016; Kay et al., 2015; Peelen & Kastner, 2011). Based on the

ubiquity of attentional modulation across paradigms and stimuli, we hypothesized that we would

find attentional modulation independent of the background. We investigated these hypotheses

in study 2.

1.4 Research questions and hypotheses

In sum, the previous sections brought forward three research questions that were addressed in

this dissertation. The first question of this dissertation was where in cortical space the location of

objects is represented in the human brain when objects are presented in cluttered environments.

We formulated three hypotheses about where in cortical space the location of objects is encoded

in the human brain (Cichy et al., 2013; Golomb & Kanwisher, 2012; Hong et al., 2016; Kravitz

et al., 2011; Ungerleider & Haxby, 1994). According to hypothesis 1 this was in EVC, according

to hypothesis 2 it was in the dorsal stream and according to hypothesis 3 in the ventral stream

(Fig. 1a, c). We tested these hypotheses in an fMRI experiment in study 1 and further explored

the role of spatial attention for these representations in study 2.

The second question of this dissertation was when location representations emerge in the

human brain when objects are presented in cluttered environments. We hypothesized that dis-

entangling an object from the background requires additional processing steps which delay the

emergence of object location representations in time (Fig. 1d, H2; Groen et al., 2018; Seijdel

et al., 2021; Thorat et al., 2021). We tested this hypothesis in an EEG experiment in study 1

and subsequently investigated the role of spatial attention for the temporal dynamics of location

representations in study 2.

The third question of this dissertation was which role spatial attentional modulation plays for

the encoding of location representations in the human brain. We specifically investigated during

which processing stage attention modulates location representations and whether attentional

modulation depends on the clutter level of the background or not. Since earlier studies found
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attentional modulation of category representations during late processing stages in cortical space

and neural time (Battistoni et al., 2020; Kaiser et al., 2016; Kay et al., 2015; Peelen & Kastner,

2011), we hypothesized that also location representations would be modulated by attention during

late processing stages, independent of the background. We investigated this hypothesis in study 2

in an EEG and an fMRI experiment to characterize the processing stage of attentional modulation

in neural time and cortical space.

1.5 Methods overview

In sum, this dissertation addressed the three experimental questions 1) where across the

cortex location representations emerge when objects are presented on cluttered backgrounds

2) when those representations emerge and 3) which role spatial attentional modulation plays

during location encoding. To answer these three questions, we combined different neuroscientific

methods and analysis techniques to comprehensively investigate our experimental questions in

cortical space and in neural time.

In both studies we recorded an fMRI experiment to map out the cortical distribution of

location representations across the human brain and an EEG experiment to characterize their

temporal neural dynamics. We combined these methods to exploit their spatial and temporal

resolution, respectively. Although EEG can provide some coarse spatial information, fMRI has

much higher spatial resolution (Dale & Halgren, 2001; Huettel et al., 2009; Luck, 2014). Con-

versely, in typical fMRI settings the sluggishness of the hemodynamic response precludes measur-

ing temporal dynamics at the millisecond scale which was necessary here to distinguish between

feedforward and recurrent processing stages. In short, fMRI has a good spatial and poor temporal

resolution and the reverse is true for EEG (Dale & Halgren, 2001). Therefore, we combined these

two methods to characterize the spatiotemporal processing of object location representations

with high spatial and high temporal resolution.

In addition, in study 1 we modelled location representations in deep neural network models

(DNN). These models currently represent the best performing computational tools to predict

visual object representations in the ventral visual stream (Kubilius et al., 2019; Schrimpf et al.,

2020; Yamins & DiCarlo, 2016). They show, for example, a hierarchical correspondence with

neural processing in time and cortical space (Cichy, Khosla, et al., 2016; Güçlü & van Gerven,

2015; Yamins et al., 2014). Moreover, comparing different DNN architectures to brain represent-
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ations can provide information about the computations that underlie those brain representations

(Cichy & Kaiser, 2019; Kietzmann et al., 2019; Kriegeskorte & Douglas, 2018).

To analyse EEG and fMRI data in both studies, we applied a common analysis framework

using multivariate pattern classification (Carlson, Hogendoorn, Kanai, et al., 2011; Haynes, 2015;

Haynes & Rees, 2006; Isik et al., 2014). The advantage of this method compared to univariate

treatments of data lies in its increased sensitivity by reading out information from neural data

that lie in the joint pattern of combined fMRI voxels or EEG channels, rather than evaluating

the outcome at each voxel or channel individually (Friston et al., 1995). In this dissertation,

this analysis approach was additionally crucial to read out location information of objects on

cluttered backgrounds. With a univariate approach, the stimulation of broad parts of the visual

field would create unspecific activations in large portions of visual cortex that would not provide

sufficient information about the object’s location on a cluttered background (Fig. 1b, right).

Hypothesis 3, regarding the first question where location representations emerge, predicts a

shared neural substrate for object category and location representations. Therefore, it was pivotal

to measure location information that was not confounded by category information. To accomplish

this, we used a combination of a fully-crossed stimulus design with a cross-classification approach.

Specifically, in all experiments, we presented each object exemplar once in each location and with

each background (Fig. 2a). This stimulus design allowed us classify location information from

brain measurements while training and testing on different object categories (Fig. 2b). The result

of this cross-classification approach indicates that location information derived from training in

one object category generalizes to testing in another object category and is, therefore, independ-

ent of category information. This common classification framework of pairwise classification of

object location across categories was applied on data from the 4 experiments in this dissertation

and on the activations of the DNNs. For fMRI data, it resulted in a spatial profile of location

representations in ROIs and in a searchlight across the whole brain (Haynes & Rees, 2006, 2005).

For EEG data, this resulted in time courses of location representations (Carlson, Hogendoorn,

Kanai, et al., 2011; Isik et al., 2014). In the DNN activations, it resulted in a mechanistic profile

of location representations (Kriegeskorte & Douglas, 2018).
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Figure 2: Experimental design, analysis scheme and tasks. a, Experimental design in study 1.
Three object exemplars from four categories were presented in four locations with no, low and highly
cluttered backgrounds. This amounted to 144 individual stimuli that were presented during the experi-
ment. The experimental design and stimuli in study 2 were comparable to study 1. b, Cross-classification
scheme. In all experiments, location information was classified from neural data by training a classifier on
data associated with objects presented in two locations in the same category (here faces). This classifier
was then tested on data associated with the same locations in a different object category (here animals).
Objects are enlarged for visibility and did not extend into another quadrant in the original stimuli. c,
Experimental tasks in study 1. In the EEG experiment, participants pressed a button when a catch object
(glass) appeared. In the fMRI experiment, participants pressed a button when a stimulus was repeated
(1-back task). Catch trials were removed from the analysis. d, Experimental tasks in study 2 in the EEG
and fMRI experiments. In the condition with covert attention on the periphery, participants pressed a
button when a catch object (glass) appeared. Digits on fixation were task-irrelevant in this condition.
In the condition with attention on fixation, participants pressed a button when the digit 0 appeared on
fixation. Objects were task-irrelevant in this condition. Catch trials were removed from the analysis.

Beyond the individual strengths of fMRI, EEG and DNNs, these methods can also be com-

bined to bring forward new insights that cannot be provided by each method alone. To compare

representations across methods, we used representational similarity analysis (RSA) (Cichy &

Oliva, 2020; Cichy et al., 2014; Kriegeskorte, Mur, & Bandettini, 2008). RSA-based EEG-fMRI

fusion allowed us to make inferences about lateral recurrent processes within LOC (Cichy & Oliva,

2020; Cichy et al., 2014). Comparing representations from fMRI and DNNs using RSA further
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helped us fortify these conclusions to derive an algorithmic view of the underlying mechanism of

the empirical effects.

Finally, to characterize the neural dynamics of location representations across time, we applied

temporal-generalization analysis (TGA) (King & Dehaene, 2014). It has been suggested that

this method can reveal distinct underlying neural processes that cannot be distinguished in the

time courses (King & Dehaene, 2014). However, thus far, no methods existed to quantify and

distinguish the different patterns that can emerge within a time-generalization matrix. Here, we

developed a new analysis tool to assess whether two processes share neural information over a

temporal delay (King and Dehaene, 2014). Our tool quantifies asymmetric off-diagonal patterns

in the results of TGA when training and testing across two conditions with different temporal

profiles.
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2 Summary of Experiments

This section summarizes the two studies that this dissertation is based on. First I will in-

troduce the methods that were applied to all four experiments in the two studies, with slight

variations depending on imaging modality or paradigm. Each study consists of one EEG and

one fMRI experiment. In our experimental designs, we fully crossed the factors object category,

object location and background condition (Fig. 2a). Participants had to respond with a button

press on trials where a catch object appeared (Fig. 2c, d). Catch trials were not included in the

analysis and served to engage participants’ attention during the experiment. For data analysis,

we cross-classified location across categories as described above (Fig. 2b). The output of these

analyses was category-independent location information, measured in percent classification ac-

curacy, within background condition (study 1) or within background and attention condition

(study 2). The first study is published, and the second study is submitted to a peer-reviewed

journal. For further details on the methods, please refer to the original papers which are attached

to this thesis.

2.1 Study 1: The spatiotemporal neural dynamics of object location repres-

entations in the human brain

In this study, we addressed the first two questions of this dissertation: where and when in

the human brain object location representations emerge, when objects are presented on cluttered

backgrounds compared to blank backgrounds.

2.1.1 Experiment 1: fMRI and DNN experiment

To answer the first question, where in cortical space location representations emerge, we tested

three hypotheses in an fMRI experiment. The first hypothesis predicted location representations

to be highest in EVC, the second hypothesis in the dorsal, and the third hypothesis in the ventral

stream (Fig. 1a, c). To investigate the algorithmic plausibility of our results, we additionally

modelled the results in a DNN. To test our three hypotheses, we compared the amount of

location information across background conditions in EVC, in regions along the ventral and in

regions along the dorsal stream.

During the experiment, participants passively viewed the stimuli and catch trials were ex-

cluded from the analysis (1-back task, Fig. 2c, bottom). To test if location information was

14



highest in EVC (hypothesis 1), increased along the dorsal stream (hypothesis 2) or increased

along the ventral stream (hypothesis 3; Fig. 1a, c) when objects are presented with cluttered

backgrounds, we performed 2 repeated-measures ANOVAs along the ventral and dorsal streams,

comparing ROIs and background conditions.

Additionally, we determined the peak in location information across the whole cortex us-

ing a searchlight analysis. Our results of the ROI analysis showed that location representations

in the high clutter condition increased along the ventral stream towards LOC. A spatially un-

biased searchlight analysis confirmed this peak in LOC in the high clutter condition. A follow-up

analysis showed that this effect was stronger for the classification of location across- than within-

hemifields. These results were mirrored in a DNN, where location representations increased to-

wards higher layers in the high clutter condition.

Together, these results demonstrate that when objects are presented on cluttered back-

grounds, location representations emerge not in EVC or the dorsal, but in the ventral stream,

peaking in high-level region LOC. This provides evidence for hypothesis 3 (Fig. 1a, c; ventral

stream) and rules out hypothesis 1 (EVC) and 2 (dorsal stream).

2.1.2 Experiment 2: EEG experiment

The second question of this dissertation was when location representations emerge in time.

Our hypothesis was that location representations of objects on cluttered backgrounds emerge

later than with blank backgrounds in an EEG experiment (Fig. 1d). We tested this hypothesis

by determining the classification peaks in the EEG time courses of each background condition

and then testing the peak-to-peak latency differences between them.

During the experiment, participants passively viewed the stimuli, and all catch trials were ex-

cluded from the analysis (glass task, Fig. 2c, top). To quantify location representations over time,

we classified object location across category as described above, and subsequently determined

the classification peaks in the time course of each background condition and tested the delays

between them for significance. The results showed that in the high clutter condition, location

information peaked significantly later than in the no and low clutter conditions. In a subsequent

time-generalization analysis we cross-classified location information across the no and high clut-

ter conditions to determine if and when location information was shared between background

conditions. This analysis showed that location information in the no and high clutter condi-
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tions emerged during the same processing stage but with a delay in the high clutter condition.

EEG-fMRI fusion localized this shared processing stage to LOC.

Thus, the results from the EEG experiment provide evidence for the hypothesis that location

representations of objects in cluttered backgrounds emerge later than on blank backgrounds

(Fig. 1d). Since delays within the same processing stage cannot be explained by a feedforward

account, together the results from the time-resolved analysis, time-generalization analysis and

from the EEG-fMRI fusion analysis provide evidence that location representations emerge during

the recurrent processing stage in LOC.

2.1.3 Classification of object category in space and time

To investigate whether location and category representations share similar spatial and tem-

poral neural substrates, we performed the analyses described above in parallel also for the clas-

sification of category, independent of location information. These analyses represented a replica-

tion of earlier findings because the emergence of object category along the ventral stream (Cichy,

Pantazis, & Oliva, 2016; DiCarlo & Cox, 2007; DiCarlo et al., 2012; Goodale & Milner, 1992;

Mishkin et al., 1983) with a temporal delay when viewing conditions are challenging has already

been demonstrated in numerous studies (Groen et al., 2018; Kar et al., 2019; Rajaei et al., 2019;

Seijdel et al., 2021; Tang et al., 2014).

We performed the classification analysis described above, reversing the factors category and

location. Thus, we trained an SVM to classify between data associated with two object categor-

ies, training on data from objects in one location and testing on data from objects in another

location, thereby quantifying the amount of category information that was independent of loc-

ation information. This was done in ROIs and within and across time points. The fMRI results

of this analysis showed that category information likewise increased along the ventral stream.

In time, category information peaked later in the high clutter condition and emerged within the

same processing stage as with no clutter, suggesting the involvement of recurrent processing.

Overall, these results demonstrate that location and category representations share similar

neural substrates in space and time.

2.1.4 Contributions to open and reproducible science

To contribute to open science and increase the reproducibility of these results, we published

the preprocessed fMRI, DNN and EEG data and the experimental stimuli on OSF. The corres-
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ponding analysis code is publicly available via

github.com/graumannm/ObjectLocationRepresentations.

2.2 Study 2: Independent spatiotemporal effects of spatial attention and

background clutter on human object location representations

Study 1 showed that location representations of objects on cluttered backgrounds emerged

in LOC involving recurrent processing. Behavioral research showed a benefit of spatial attention

for the perception of objects in clutter (Treisman & Gelade, 1980; Wolfe, 1994), suggesting that

attention modulates objects on cluttered backgrounds during late stages of processing where

they emerge. However, neuroscientific evidence is mixed concerning whether attention modulates

neural responses during early (Briggs et al., 2013; Herrero et al., 2013; Hillyard, Vogel, & Luck,

1998; Hillyard, Teder-Sälejärvi, & Münte, 1998; Khayat et al., 2006; Lakatos et al., 2008; Luck

et al., 2000; Mangun, 1995; Martínez et al., 2001; Noesselt et al., 2002; Roelfsema et al., 1998) or

during late processing stages in space and time (Battistoni et al., 2020; Buffalo et al., 2010; Groen

et al., 2016; Kaiser et al., 2016; Kay et al., 2015; Peelen & Kastner, 2011; Wyatte et al., 2014),

suggesting that both early representations with blank backgrounds and late representations with

cluttered backgrounds could be modulated by attention. Therefore, in study 2, we addressed

the question which role attentional modulation plays during location encoding and whether

the processing stage of attentional modulation depends on the clutter level of the background

or not. We hypothesized that we would find evidence for attentional modulation of location

representations at late stages of processing, independent of which background an object was

presented on. We investigated this hypothesis in an EEG and an fMRI experiment to characterize

the stage of attentional modulation in neural processing time and in cortical space.

2.2.1 Experiment 1: EEG experiment

We began our investigation by addressing the third question of this dissertation about atten-

tional modulation in time, in an EEG experiment. We hypothesized that location representations

would be modulated by attention during late processing stages, independent of the background.

We tested this hypothesis by quantifying the difference between attention conditions over time,

in background conditions with no and with high clutter.

During the experiment, participants performed tasks that either directed their covert spatial

attention towards the objects in the periphery or that withdrew their spatial attention from the
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objects towards fixation (Fig. 2d). Both tasks involved the presentation of a catch object, either

on fixation or in the periphery. All stimuli were presented in both attention conditions, thus

visual stimulation was equal across attention conditions. To determine at which processing stage

in time attention modulates location representations, we classified location information across

categories as described above, within background and within attention condition. We found

that attention modulated both background conditions during late stages of processing after the

feedforward loop. Furthermore, this study replicated EEG results from study 1, showing that

location information with high clutter emerged with a temporal delay compared to no clutter.

Additionally, this study showed that this delay occurred in both attention condition and was

thus independent of attention.

In sum, the results of the EEG experiment confirmed the hypothesis that attention modulates

location representations after the feedforward loop, independent of background. Additionally,

they replicate the result from study 1 that location representations emerge with a delay when

objects are presented with cluttered backgrounds and extended the finding by showing that this

delay was independent of spatial attention.

2.2.2 Experiment 2: fMRI experiment

We then addressed the same, third question of this dissertation on the role of covert, spatial

attention for location encoding, in space in an fMRI experiment. Our hypothesis was that location

representations would be modulated by attention during late processing stages along the ventral

stream, independent of the background. We tested this hypothesis in ANOVAs with factors

attention and background in ROIs along the ventral stream.

The experimental design and tasks were the same as in the EEG experiment, with small

adjustments to accommodate the longer trial duration required for fMRI while keeping the session

duration within reasonable limits. We performed the same classification analysis as in the EEG

experiment across ventral stream ROIs and tested for main and interaction effects of the factors

background and attention with repeated-measures ANOVAs within each ROI. The results showed

that location representations in mid- and high-level areas V3 and LOC were modulated by

attention, independent of background. V4 was modulated by both attention and background. In

line with the results of study 1, location representations in EVC regions V1 and V2 were not

robust to background clutter and thus showed a main effect of background. The main effect of

background was independent of attention since we found no evidence for attentional modulation
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in V1 and V2. Also in line with study 1, we did not find evidence for widespread location

representations in the dorsal stream.

Overall, these results show that attention modulates location representations in mid- and

high-level ventral visual regions, independent of background. This provides evidence for our

hypothesis that attention modulates location representations during late processing stages in

space, independent of the background on which an object is presented.

2.2.3 Contributions to open and reproducible science

To contribute to open science and increase the reproducibility of these results, we publish

the preprocessed EEG and fMRI data on OSF. The corresponding analysis code will be publicly

available on github via github.com/graumannm/AttentionLocation.
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3 General Discussion

3.1 Summary

This dissertation investigated the spatiotemporal neural dynamics of location representations

when objects are presented on blank vs. cluttered backgrounds and the role of spatial attention

therein. This was examined by breaking down the problem into three questions, each comparing

location representations on blank vs. on cluttered backgrounds. First, we asked where the location

of objects is represented in cortical space. Second, we asked when the location of objects is

represented in time. Third, we asked which role spatial attentional modulation plays for the

encoding of object location. We addressed the first and second question in study 1 and the third

question in study 2.

Overall, study 1 demonstrated that location representations of objects on cluttered back-

grounds emerge along the ventral stream, peaking in LOC with a temporal delay that was linked

to recurrent processing. Study 2 showed that these representations late in time and in mid-

and high-level ventral stream regions benefit from attentional modulation, independent of back-

ground. These results provide evidence for the hypotheses that location representations emerge

towards late stages of the ventral stream, emerge late in time and are enhanced by attentional

modulation. This resolves long standing debates as to where and when location representations

are processed in the human brain and which role attentional modulation plays during location

encoding.

Our findings show that location information is not treated like a low-level property by the

brain when an object’s environment is cluttered. As opposed to what was previously suggested,

object location and category representations both emerge along the ventral stream hierarchy.

These findings demonstrate how approximating the complexity of real-world environments in an

experimentally controlled manner can reveal new insights about object representations in the

brain.

3.2 Location representations of objects with clutter emerge along the ventral

visual stream

The first question of this dissertation was where in cortical space the location of objects is

represented when objects are presented on blank vs. on cluttered backgrounds. We addressed this

question in an fMRI experiment in study 1 and found that location representations of objects on
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cluttered backgrounds emerged along the ventral visual stream, peaking in LOC. Study 2 showed

that these representations were enhanced by spatial attention. These results clearly support the

hypothesis that location representations emerge along the ventral visual stream and allowed us

to reject the hypotheses that location representations are encoded in EVC or the dorsal stream.

Our findings are consistent with previous studies finding location representations of objects

on blank backgrounds along the ventral visual stream, including LOC (Baeck et al., 2013; Cichy

et al., 2011, 2013; Golomb & Kanwisher, 2012; Schwarzlose et al., 2008; Xu & Vaziri-Pashkam,

2021). They also align with a primate study showing that location representations of objects on

natural scene backgrounds are higher in IT than in V4 (Hong et al., 2016). However, our results

go beyond previous findings in three important ways. First, comparing location representations

of objects on blank and cluttered backgrounds allowed us to rule out EVC as a candidate region.

Second, as opposed to the primate study which recorded activity only from V4 and IT (Hong

et al., 2016), we were able to compare results across three candidate regions by recording whole

brain fMRI data and to reliably pinpoint the locus of location representations in the human brain

to the ventral, rather than the dorsal stream or EVC. Third, we show that spatial attention helps

to encode the location of objects by focusing neural resources on the relevant parts of the visual

field and enhancing neural responses to the object’s location.

Our results have important implications for a seminal theory of visual perception, the dual-

stream theory (Mishkin et al., 1983; Ungerleider & Mishkin, 1982; Ungerleider & Haxby, 1994).

This theory posits that object category and location representations emerge along two separate

processing streams in the brain: according to this theory, category representations emerge along

the ventral stream and location representations emerge along the dorsal stream (Mishkin et

al., 1983; Ungerleider & Mishkin, 1982; Ungerleider & Haxby, 1994). However, recent studies

showed, that the division of location and category information into these two streams might not

be as strictly separated as initially proposed (Konen & Kastner, 2008). Those studies found that

category information is also present in the dorsal and location information in the ventral stream

(Carlson, Hogendoorn, Fonteijn, & Verstraten, 2011; Cichy et al., 2011, 2013; Konen & Kastner,

2008; Kourtzi et al., 2002). Our results are consistent with these studies and go beyond them by

showing that the ventral stream is the primary locus of object location representations.

How can the discrepancies between our finding and the dual-stream theory be explained?

One way to resolve these discrepancies is by looking at neuropsychological studies since the

dual stream theory was, among other evidence, based on neuropsychological findings. I will first
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discuss how case studies of patients with ventral and dorsal lesions are not contradicting our

results upon closer look. Then I will discuss what type of information the dorsal stream might

encode instead of object location representations.

The theory that the ventral stream is the "what" pathway and encodes object category repres-

entations is partly based on neuropsychological case studies showing impaired object recognition

in patients with ventral stream lesions (James et al., 2003; Ungerleider & Haxby, 1994). How-

ever, impairments of object recognition due to lesions in the ventral stream (agnosia) come in

many different forms (de Haan, 2019). For example, integrative agnosia patients are impaired at

tasks requiring figure-ground segmentation and grouping and have problems recognizing objects

in clutter (Behrmann et al., 1994; De Renzi & Lucchelli, 1993; Humphreys & Riddoch, 1987;

Riddoch & Humphreys, 1987). Thus, consistent with our findings, ventral stream lesions can

lead to impairments of the operations necessary to recognize cluttered objects. Grouping and

figure-ground segmentation are crucial for segregating objects from cluttered backgrounds and,

therefore, our results predict impaired object location perception in these patients, too. Future

studies could explicitly assess not only object category, but also location perception in patients

with ventral lesions to test this prediction.

Together, our results and the neuropsychological findings above suggest that the ventral, not

the dorsal stream encodes the location of objects in cluttered scenes. This however raises the

question what type of information is encoded by the dorsal stream. Early neuropsychological

findings that gave rise to the dual-stream theory found that patients with damage to dorsal

areas performed well in object categorization tasks but were impaired during object localization

(Goodale, 2011; Goodale & Milner, 1992; Ungerleider & Haxby, 1994). How can our findings

be consolidated with this? When taking a closer look at these studies, it becomes clear that

localization behavior rather than location perception was impaired in these patients, which does

not contradict our results (Goodale & Milner, 1992; Milner et al., 1991). The distinction between

behavior and perception is important because phenomena like blind sight have shown that it is

possible to use visual information, which is not consciously processed, for behavior (Weiskrantz,

1986). In the case of blind sight, information from spared EVC can be used to guide behavior

(Fendrich et al., 1992). Since our results showed that location representations of objects with

blank backgrounds are robustly encoded in EVC, it is possible that patients with ventral stream

lesions were able to use location information from spared EVC for behavior. In line with this

notion, later theories updated the name for the dorsal stream from "where" to "how" pathway,
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proposing that it supports vision for action rather than for spatial perception (Goodale & Milner,

1992; Milner & Goodale, 2006). Consistent with this notion, regions in parietal cortex play an

important role for coordinating vision and movement during reaching behaviors (Filimon et al.,

2009; Rossit et al., 2013). In our study, the intraparietal sulcus (IPS) hosted only very limited

amounts of location information. IPS is known to be activated during eye-movements (Pierrot-

Deseilligny et al., 2004) and selectively responds to tools (Chao & Martin, 2000). Tools have

affordances and consequently, their perception is directly linked to a possible action (Osiurak

et al., 2010). Our studies excluded both eye movements and the object category of tools, which

might be a reason why we did not find more location information in IPS. More recent work

suggests that the dorsal stream and the ventral stream are highly interconnected (Cloutman,

2013; Milner, 2017) and that the dorsal stream uses visual information from the ventral stream

for subsequent actions (Milner, 2017; van Polanen & Davare, 2015).

In sum, our results demonstrate that the ventral visual stream, rather than the dorsal stream

or EVC hosts location representations when objects are perceived on cluttered backgrounds and

are not linked to an action. Our results are consistent with neuropsychological studies finding

impaired grouping and figure-ground segmentation in patients with ventral stream lesions (De

Renzi & Lucchelli, 1993; Humphreys & Riddoch, 1987; Riddoch & Humphreys, 1987). More

recent research suggests that the dorsal stream is relevant for visually guided action rather than

location perception (Goodale & Milner, 1992; Milner & Goodale, 2006).

3.3 Location representations of objects with clutter emerge during the re-

current processing stage

The second question of this dissertation was when location representations emerge when ob-

jects are presented on cluttered backgrounds. We addressed this question in an EEG experiment

in study 1 and found that location representations of objects on cluttered backgrounds emerged

later in time than when objects were presented on blank backgrounds. This delay was linked to

recurrent processing in LOC. Study 2 additionally showed that the delays occurred independ-

ently of spatial attention. Our findings are notable for two reasons. First, for a long time core

object recognition was thought to rely on feedforward processing, without strong dependence on

recurrence (DiCarlo et al., 2012; Riesenhuber & Poggio, 1999). Second, although more recent

studies have demonstrated the involvement of recurrent processing in object recognition (Kar et
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al., 2019; Kietzmann et al., 2019; Rajaei et al., 2019; Tang et al., 2018), these studies focused

only on category, not location representations.

According to the feedforward account, core object recognition was the result of a series of

successive signal transformations along the ventral visual hierarchy, where information becomes

increasingly complex towards higher-level stages (DiCarlo et al., 2012). Information processing

was one-directional and recurrent processing was not necessary to solve object recognition in the

feedforward view (Serre et al., 2007). This notion was supported by studies showing that both

location and category representations of objects emerged within the first ∼150 ms of processing

(Carlson, Hogendoorn, Kanai, et al., 2011; Cichy et al., 2014; Isik et al., 2014; Thorpe et al., 1996;

VanRullen & Thorpe, 2001) which is a time window that can be linked to the initial fast feed-

forward sweep of visual processing (Camprodon et al., 2010; Fahrenfort et al., 2007; Koivisto et

al., 2011; Lamme & Roelfsema, 2000; VanRullen & Thorpe, 2001) from the retina, via the lateral

geniculate nucleus (LGN) and EVC up to category selective ventral regions like IT in primates

or LOC in humans (Cichy et al., 2014; Isik et al., 2014; Lamme & Roelfsema, 2000). However,

the visual system contains a large number of lateral and top-down connections (Felleman & Van

Essen, 1991) and more recent studies demonstrated that such recurrent connections play an in-

tegral part during object recognition (Kar & DiCarlo, 2020; Kar et al., 2019; Kietzmann et al.,

2019). Here, we extend these findings by showing that not only category representations, but

also location representations are computed involving recurrent processing. This suggests that re-

currence might be a ubiquitous mechanism involved in the processing of visual objects, including

their category-independent features (Thorat et al., 2021).

Consistent with our findings, previous work showed that recurrent processing is particularly

important when objects are presented in clutter and when objects are partially occluded (Groen

et al., 2018; Rajaei et al., 2019; Seijdel et al., 2020, 2021; Spoerer et al., 2017; Tang et al., 2014,

2018). For example, category representations of partially occluded objects emerge between 60 ms

(Rajaei et al., 2019) and 220 ms (Tang et al., 2014) later than non-occluded objects. These laten-

cies are comparable to the delays for location representations observed in our EEG experiments

(study 1: 177 ms; study 2: 116 ms and 79 ms). In some of the previous studies, a mask that was

presented after the stimulus, interrupted recurrent information flow, resulting in impaired object

recognition performance, demonstrating the contribution of recurrent processing (Fahrenfort et

al., 2007; Rajaei et al., 2019; Seijdel et al., 2021). These findings are further supported by compu-

tational modelling work, where recurrent DNNs perform better than feedforward DNNs on object
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categorization tasks with partially occluded objects or objects on complex backgrounds (Seijdel

et al., 2020, 2021; Spoerer et al., 2020, 2017). This lends further algorithmic plausibility to the

necessity of a recurrent neural architecture to solve object recognition under challenging viewing

conditions. As for category, in our study recurrent DNNs outperformed feedforward DNNs when

comparing location information magnitude and prediction strength of representations in LOC.

Modelling work in recurrent DNNs trained on object categorization showed that the location

of objects in clutter becomes increasingly explicit with each recurrent iteration (Thorat et al.,

2021). This indicates that recurrent loops directly maintain location information.

Thus, previous research extensively demonstrated the involvement of recurrent processing

for the representation of object category when viewing conditions are challenging. Our study

1 shows that this is also the case for location representations. This raises the question which

visual features of clutter trigger recurrent processing and which operations are performed during

the recurrent loop to process those features. A possible answer to this question is that cluttered

images are high in spatial coherence and contrast energy (Groen et al., 2018; Scholte et al., 2009).

These visual features drive recurrent responses in cluttered images (Groen et al., 2018; Seijdel

et al., 2021) and might therefore have triggered the recurrent computations observed in our

study. Furthermore, cluttered backgrounds require segmentation as well as grouping operations

and these operations are performed during the recurrent processing stage (Lamme & Roelfsema,

2000; Seijdel et al., 2020, 2021). Together, these empirical and modelling studies suggest that

clutter creates the need for recurrent computations which in turn increase both location and

category information over time.

3.4 Late attentional modulation of object location representations

Following up on the results of study 1, the third question of this dissertation was which role

spatial attentional modulation plays for the representation of object location. We addressed this

question in study 2 and found attentional modulation in a late time window after the feedforward

sweep and in mid- and high-level ventral areas, independent of background. Additionally, the

EEG experiment showed that the temporal delays between clutter conditions that were observed

in study 1, also occurred independent of attentional modulation in study 2.

The EEG experiment in study 2 showed that attention enhanced location representations

after the feedforward sweep ending at ∼150 ms (Camprodon et al., 2010; Fahrenfort et al., 2007;

Koivisto et al., 2011; Lamme & Roelfsema, 2000; VanRullen & Thorpe, 2001) but attention
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had no significant influence on the timing of the responses. The late emergence of location

representations was related to recurrent processing in study 1. Together, both studies suggest that

recurrence and attention operate independently of each other, but within the same time window.

Background clutter triggered recurrent processing which we measured in delayed responses. In

contrast, attention enhanced responses which we measured in higher location information. These

two processes likely have different underlying mechanisms: while delays due to recurrence are

related to iterative processing (Spoerer et al., 2020), attentional response enhancement is driven

by increased firing rates (Briggs et al., 2013; Maunsell, 2015).

Attention and recurrence have been proposed to operate on separate time scales, with recur-

rence starting before attention (Wyatte et al., 2014). Our results suggest instead that attention

and recurrence can operate independently of each other but within the same time window. An

interesting question for future research is why both processes coincide in time. One possibility is

that attention operates in a late time window because long-range feedback from PFC and parietal

cortices needs to travel to visual areas to trigger attentional modulation (Corbetta & Shulman,

2002; Squire et al., 2013) and that attention is fully independent of recurrent processing. Another

possibility is that attentional response enhancement depends on computations performed during

the recurrent loop.

In line with the EEG results showing attentional modulation at late processing stages in

time, the fMRI experiment in study 2 showed attentional modulation at late processing stages in

cortical space, in mid- and high-level visual areas. The next section will discuss possible reasons

why both location representations and attentional modulation increase along the ventral visual

stream and how this could explain improved location encoding in those areas.

3.5 Possible mechanisms of location encoding in the ventral stream

What are the mechanisms behind the encoding of location representations with attention in

high-level ventral visual cortex? The experiments in this thesis are not designed to answer this

question, but combined with previous research, our results can provide a basis for a theoretical,

mechanistic account.

The smallest building blocks of visual spatial processing in the brain are RF size and ec-

centricity of neurons and neuronal populations (Groen et al., 2022). High-level ventral visual

areas might robustly encode location representations of objects in clutter because these regions

might have RF properties that are advantageous. In particular, high-level ventral visual regions
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have RFs that are larger than in EVC (Wandell & Winawer, 2015). Large and overlapping RFs

could provide better spatial resolution for objects on clutter by capturing the object’s location

via distributed patterns (Kay et al., 2015). Such a mechanism has been described within the

coarse coding framework (Eurich & Schwegler, 1997; Snippe & Koenderink, 1992). In contrast,

the small RFs found in EVC (Wandell & Winawer, 2015) can provide high-spatial resolution

to encode objects on blank backgrounds via direct retinotopic activation of the corresponding

location in the visual field (Fig. 1b, left). With clutter, however, no such mapping is possible

because large parts of the visual field and hence of EVC are stimulated (Fig. 1b, right). Thus,

within this framework, large RF represent an advantage for spatial coding. Consistent with this

view, RFs are known to increase in size and overlap progressively along the ventral stream (Groen

et al., 2022; Wandell & Winawer, 2015), which could thus account for the increase of location

information along the ventral stream via the proposed coarse coding mechanism.

How could attention be beneficial within this framework? Attention increases RF size and

eccentricity (Kay et al., 2015) and this effect is stronger for larger RFs (Klein et al., 2014).

Thus, attention increases large RFs more than small RFs. Since RF size increases along the

ventral stream (Wandell & Winawer, 2015), this consequently suggests that the RFs of high-level

regions increase more with attentional modulation than small RFs in EVC (Klein et al., 2014).

Hence, a possible reason why both location representations and attentional modulation increase

along the ventral stream might be that attention aids location encoding in high-level ventral

visual areas by increasing their RF’s size (Kay et al., 2015; Klein et al., 2014).

In sum, coarse coding and attentional modulation of RF properties together provide a parsi-

monious mechanistic framework for location encoding along the ventral stream and provide a

possible explanation why both location representations and attentional modulation increase along

the ventral stream (Eurich & Schwegler, 1997; Snippe & Koenderink, 1992). This framework could

be tested with a combination of population receptive field (pRF) mapping and modelling work.

3.6 The role of location representations for object recognition

In study 1 we not only found location representations to increase along the ventral stream,

but we also replicated that location-invariant category representations are encoded in high-level

ventral visual cortex (Baeck et al., 2013; Cichy et al., 2011, 2013; Rust & DiCarlo, 2010; Schwar-

zlose et al., 2008). How and why does the ventral stream encode location-invariant category rep-

resentations and category-invariant location representations simultaneously (Cichy et al., 2011,
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2013; Schwarzlose et al., 2008)? The coarse coding mechanism described in the previous sec-

tion provides robustness to location translation needed for location-invariant category encoding

(Spirkovska & Reid, 1993), therefore accounting for the simultaneous, yet invariant encoding of

location and category. Thus, coarse coding provides a framework for achieving higher spatial

resolution despite clutter on one hand and location invariance on the other hand. Here I will

discuss three different lines of research which describe how location information could benefit

object recognition.

The first line of research shows how spatial coding and category encoding are connected in the

topography of visual areas. For scientific research it is important to establish category-invariant

location representations that are free of confounding category information. However, in the real

world we cannot separate a perceived object from its location and vice versa. Therefore, the

coexistence of location and category representations in the same brain regions is not surprising.

In fact, recent studies suggest that the coding of visual space and category might be tightly

linked. For example, many category-selective regions in high-level ventral visual cortex exhibit

eccentricity biases that are optimized for the categories that they encode (Groen et al., 2022).

For example the FFA, which is selectively activated for faces (Kanwisher et al., 1997) exhibits a

foveal bias and has small RFs (Finzi et al., 2021) which is beneficiary for recognizing faces which

are usually foveated. LOC and the PPA, which is selectively activated for scenes (Epstein &

Kanwisher, 1998), both exhibit a peripheral bias and have large RFs (Levy et al., 2001; Sayres &

Grill-Spector, 2008; Silson et al., 2015, 2016; Wandell & Winawer, 2015), which is advantageous

for perceiving objects and scenes because they are often perceived in the periphery (Groen et al.,

2017). Recently, it has been shown that these RF biases likely emerge along with the category-

selectivity of these brain regions and constrain the functional topography of high-level category

selective areas (Gomez et al., 2019).

The second line of research shows how recurrent processing of location representations might

improve object categorization. Specifically, a recent DNN study suggests that location inform-

ation is used during recurrent processing to focus neural resources on the part of a cluttered

scene containing the object and thereby improving categorization performance (Thorat et al.,

2021). Such a process might explain why both category and location processing depend on recur-

rence (Graumann et al., 2022; Kietzmann et al., 2019; Seijdel et al., 2021). Thus, it could be an

advantage to explicitly and independently represent location information in the brain to focus

subsequent neural processing steps on the relevant part of the visual field to create more fine-
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grained representations of object category that then become independent of location (DiCarlo &

Cox, 2007; Thorat et al., 2021).

Finally, the third line of research shows that location and category information might interact

in the brain to exploit the spatial structure of our environments to facilitate object recognition

(Kaiser et al., 2019; Võ et al., 2019). For example, object category representations are enhanced

when objects are presented at their typical locations, such as planes in the upper visual field and

carpets in the lower visual field (Kaiser & Cichy, 2018; Kaiser et al., 2018, 2014). Furthermore,

object recognition is faster and more accurate when objects are presented on congruent scenes

compared to incongruent scenes (Bar, 2004; Biederman, 1972; Oliva & Torralba, 2007; Seijdel

et al., 2020) and when they are presented in expected locations (Kaiser et al., 2019). Since the

studies in this thesis did not congruently and predictably combine objects and scenes, the above-

mentioned research poses limitations on the conclusions that we can draw from our results. These

limitations will be discussed in the next section.

3.7 Limitations

We highlight three relevant limitations of the studies presented here. The first limitation

of our studies is that it is unclear in how far our results would generalize to images where

objects congruently fit into the scene, e.g. a car on a street. Object-scene congruency could

potentially influence results because it has been shown that congruency between objects, scenes

and locations enhances both behavioral recognition performance (Kaiser et al., 2014; Võ et

al., 2019) and neural processing (Kaiser & Cichy, 2018; Kaiser et al., 2018), as described in

the previous section. In detail, it has been shown that presenting objects in congruent scenes

enhances detection speed, accuracy of object recognition and neural processing (Brandman &

Peelen, 2017, 2019; Kaiser et al., 2019; Võ et al., 2019). Scene context is used as information for

recognizing objects (Wischnewski & Peelen, 2021) and can aid object recognition when objects

are degraded (Brandman & Peelen, 2017). These interactions are causally related to activity in

scene selective cortex (Wischnewski & Peelen, 2021).

Despite this potential limitation, we chose to randomly pair objects, locations and background

scenes to avoid these systematic congruency effects. This was necessary to manipulate only clutter

while keeping all other influences constant and attribute our results to the contrast between

objects on blank vs. on cluttered backgrounds. Another reason to randomly pair objects and

scenes was that it was pivotal for our design to precisely control the positions of objects in the
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visual field to avoid noise or confounds from varying positions that objects have in naturally

occurring locations.

Future experiments could go beyond our design by systematically comparing location rep-

resentations in the brain when objects are presented on congruent vs. incongruent cluttered

backgrounds. However, based on a study on object categorization which found feedback signals

during the processing of objects in complex, congruent scenes, we predict that our results would

replicate with congruent scenes (Groen et al., 2018).

A second limitation is that we inferred the involvement of recurrent processing based on

converging evidence from multiple analyses, but we did not directly manipulate recurrence in

study 1. One possible direct manipulation to assess whether a visual process requires recurrent

processing is to include a condition during which the presented image is followed by a visual

mask (e.g. a scrambled image) (Fahrenfort et al., 2007; Seijdel et al., 2021). This mask interrupts

ongoing recurrent processes of a first stimulus by presenting a new stimulus (Fahrenfort et al.,

2007). Behavioral or neural measurements can then be compared between conditions with and

without masking. The rationale is that if a process depends on recurrent processing, behavioral

performance will be impaired and neural responses will be reduced in the masking condition,

compared to a condition with no masking (Fahrenfort et al., 2007; Rajaei et al., 2019; Seijdel

et al., 2021). Other possibilities to directly manipulate recurrent information flow include TMS

(Wischnewski & Peelen, 2021) and pharmacological interventions in monkeys (Kar & DiCarlo,

2020). Therefore, given our design we have indirect, but no direct evidence that the measured

signals late in time reflect recurrent processing.

Although we did not directly manipulate recurrence, we did find indirect, converging evidence

for the involvement of recurrence during the processing of location representations by combining

EEG, fMRI and DNN data in a number of analyses. First, the time-generalization analysis in

study 1 (Fig. 5e) shows that location representations of objects with cluttered backgrounds

are delayed but emerge during the same processing stage as with blank backgrounds. Second,

the subsequent EEG-fMRI fusion analysis (Fig. 5f) showed that this processing stage could be

localized to LOC. Since temporal delays within the same processing stage cannot be explained

by a purely feedforward account, these results strongly suggest the involvement of recurrence

via lateral connections within LOC (Graumann et al., 2022). Third, location representations

between objects with blank and cluttered backgrounds were shared in LOC, but not in other

regions (Supplementary Fig. 7), confirming the shared, delayed processing stages found in time
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to also exist in cortical space. Fourth, for objects with cluttered backgrounds, DNNs with a

recurrent architecture showed an advantage compared to shallow, feedforward neural networks

for encoding location representations of objects with cluttered backgrounds (Supplementary Fig.

3c). Fifth, recurrent DNNs additionally performed better than shallow feedforward DNNs in

predicting brain representations in LOC (Supplementary Fig. 3d). Together, this indicates that

recurrent architectures provide a better model for brain responses of objects in clutter than

feedforward architectures and thus add plausibility for the proposed mechanism. Based on this

converging evidence, we predict that a similar experiment including a masking condition would

result in reduced neural responses with masking, indicating recurrent processing.

Finally, the third limitation of the studies in this thesis is, that we cannot draw conclusions

as to whether our findings are behaviorally relevant, since we did not include a task on object

location that was part of the analysis. Decodable information in the brain and across time

does not automatically imply that this information is also used by the brain and is relevant for

behavior (De-Wit et al., 2016; Grootswagers et al., 2018; Williams et al., 2007). A possibility to

assess the behavioral relevance of these results would be to conduct an experiment that includes a

behavioral task that could subsequently be integrated with EEG and fMRI results using RSA. In

the behavioral task, objects could be presented in a large number of different locations on blank

or cluttered backgrounds and participants would have to perform a speeded object detection

task. Location representations could subsequently be classified from reaction time data, EEG

data and fMRI data separately, building RDMs for each of these modalities. The reaction time

RDM could be compared to the neural RDMs using RSA. This would yield an estimate of the

behavioral relevance of the neural representations across different brain regions and over time. An

alternative to this analysis would be the approach described in Grootswagers et al. (2018) during

which the reaction times are correlated to the hyperplane distances generated during classification

of EEG or fMRI data. Based on a previous study finding category representations in LOC to

be behaviorally relevant (Williams et al., 2007), we predict that also location representations in

LOC will be behaviorally relevant.

3.8 Methodological strengths

Our results demonstrate how combining methods can lead to a more comprehensive picture

of the underlying mechanisms. In particular, in study 1, combining fMRI and EEG results in a

common analysis framework (EEG-fMRI fusion; Cichy et al., 2014; Cichy & Teng, 2017; Cichy &
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Oliva, 2020) allowed us to draw conclusions about the cortical sources of the time course results.

This in turn allowed us to conclude that an early and a late process were related to the same

brain region (LOC) and infer the involvement of recurrence, which would not have been possible

with either of our methods (EEG or fMRI) alone. In general, converging evidence from different

methods can provide stronger evidence and clearer insights into neural mechanisms (Dale &

Halgren, 2001; Jorge et al., 2014). Single methods could be biased or yield a limited view on

neural mechanisms. One very obvious advantage is that EEG provides high temporal and low

spatial resolution while the opposite is true for fMRI (Dale & Halgren, 2001). However, the

underlying challenges of combining methods are the different temporal scales at which responses

are measured and units in which they are measured. EEG-fMRI fusion overcomes these challenges

by bringing EEG and fMRI results into a common representational space, that can be combined

independent of univariate response unit and magnitude. Therefore, it provides a suited method to

overcome methodological differences and combine results into a common framework. A limitation

of this method is that its signal-to-noise-ratio depends on the richness of the condition set and

that it can only be applied to parameters to which both modalities are sensitive (Cichy &

Oliva, 2020). For example it has not been established yet for parametric designs, where different

intensities, frequencies or speeds of the same variable are being compared. This could be achieved,

e.g. by creating RDMs using a support vector regression for continuous as opposed to categorical

variables.

3.9 Future directions

This thesis lays the groundwork for future research directions. Here, I propose two directions

that future studies could take to gain new insights about the encoding of location representations

in the brain.

The first direction is to investigate a causal relationship between recurrent processing in LOC

and location perception. This could be done for example in a TMS experiment. The experiment

could present participants with objects in various locations on blank or cluttered backgrounds

and subsequently present a grid and ask participants in which of the locations the object was

presented. TMS could be applied 1) at different time points to probe recurrent processing and

2) over different areas such as EVC, dorsal regions and LOC, to probe the causal relationship

between activations in a region and location perception. Based on this thesis, the prediction for
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such an experiment is that TMS over LOC after ∼200 ms should impair location perception of

objects on clutter.

Another way of investigating a causal relationship between location perception and activity

in LOC would be by conducting case studies with neuropsychological patients with lesions in

this region. Previous studies in agnosia patients already showed impaired object categorization

when recognition required grouping and segmentation because of clutter or overlapping objects

(De Renzi & Lucchelli, 1993; Riddoch & Humphreys, 1987). New studies could explicitly test

patients’ location perception for objects on cluttered backgrounds. Based on this thesis I predict

that patients with ventral damage will be impaired in both object recognition and the perception

of their location when objects are presented in cluttered environments.

The second direction that future research could take is to investigate which neural properties

allow LOC to encode location representations better than other regions. This could be done

using a pRF mapping paradigm or modelling experiment. Both methods could test the coarse-

coding theory described above which states that regions with larger, overlapping RFs can encode

location with higher resolution and are better suited to segment an object from its background.

A pRF mapping experiment could for example correlate pRF size and eccentricity to location

information in voxel groups across the ventral stream with and without spatial attention. A

modelling experiment could model RF size and overlap as kernel size and stride in a shallow

DNN, and compare how kernel size and stride affect location information across DNN layers.

The proposed mechanism above predicts that larger and overlapping RFs should be related to

increased location information for objects with cluttered backgrounds.

3.10 Conclusion

When we perceive the world around us, we rarely see an object in isolation, but we usually see

objects surrounded by a large number of other objects, resulting in cluttered environments that

we effortlessly navigate through in everyday life. This dissertation investigated the spatiotemporal

neural dynamics of object location representations when the object’s backgrounds are cluttered.

Our results show that location representations emerge along the ventral stream, peaking in LOC

involving recurrent processing when objects appear on cluttered backgrounds. Spatial attention

modulates location representations at late stages of processing in neural time and along the

ventral visual hierarchy, independent of the object’s background.
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To interact with objects in our environments, the two arguably 
most basic questions that our brains must answer are what 
objects are present and where they are. To address the first 

question and identify an object, we must recognize objects indepen-
dently of the viewing conditions of a given scene, such as where the 
object is located. A large body of research has shown that the ven-
tral visual stream1–4, a hierarchically interconnected set of regions, 
achieves this by transforming retinal input in successive stages 
marked by increasing tolerance and complexity. At its high stages in 
high-level ventral visual cortex, object representations are tolerant 
to changes in retinotopic location5–7.

In contrast, we know considerably less about how the brain 
determines where an object is located. Current empirical data imply 
three different theoretical accounts.

One hypothesis (H1) is that object location representations are 
already present at the early stages of visual processing (H1, Fig. 1a) 
and thus no further computation is required. Given the idea that 
ventral stream representations become successively more tolerant 
to changes in viewing conditions such as location1, it seems plau-
sible that object location representations are to be found at the 
early stages of the processing hierarchy. Consistent with this view, 
human studies using multivariate analysis have shown that object 
location is often strongest in early visual cortex8,9, likely related to 
its small receptive field size which allows for spatial coding with  
high resolution10.

An alternative account (H2) is that location representations 
emerge in the dorsal visual stream (H2, Fig. 1a)11. This view is sup-
ported by findings from neuropsychology2,4,11 and by studies finding 
object location information along the dorsal pathway2,12.

A third possibility is that location representations emerge 
through extensive processing but in the ventral visual stream (H3, 
Fig. 1a). This view receives support from the observation that object 
location information was found across the entire ventral visual 
stream including high-level ventral visual cortex in human5,8,9,13 and 
non-human primates14. In line with these observations, high-level 

ventral visual cortex is known to be retinotopically organized15–17 
and exhibits an eccentricity bias18–20.

How can we adjudicate between these hypotheses given the 
mixed empirical support? We propose that it is key to acknowl-
edge the importance of assessing object location representations 
under conditions that increase the complexity of the visual scene 
to increase ecological validity. Previous research typically investi-
gated object location representations by presenting cut-out objects 
on blank backgrounds. This creates a direct mapping between the 
location of visual stimulation and the active portions of retino-
topically organized cortex (Fig. 1b, left). In contrast, in daily life, 
objects appear on backgrounds cluttered by other elements21,22. 
This activates a large swath of cortex, independently of where the 
object is (Fig. 1b, right). Whereas in the former case location infor-
mation can be directly accessible through retinotopic activation 
in early visual areas (supporting H1), in the latter case additional 
processing might be required to distil out location information  
(supporting H2 or H3).

Taking the importance of background into consideration, we 
used a combination of methods to distinguish between the pro-
posed theoretical hypotheses. We used functional MRI (fMRI), 
deep neural networks (DNNs) and electroencephalography (EEG) 
to assess where, how and when location representations emerge in 
the human brain. We quantified the presence of location representa-
tions by the performance of a multivariate pattern classifier to pre-
dict object location from brain measurements.

Assessed in this way, the predictions for the hypotheses are as 
follows: If H1 is correct, independent of the nature of the object’s 
background, object location information peaks in early visual cor-
tex (Fig. 1c, left), early in the DNN processing hierarchy (Fig. 1d, 
left) and early during visual processing (Fig. 1e, left). For H2 and 
H3, the prediction of peak location information depends on the 
background. For cut-out isolated objects, location information is 
high across the entire dorsal and ventral pathways, and the pro-
cessing hierarchy of the DNN (Fig. 1c,d, middle and right, grey). 

The spatiotemporal neural dynamics of object 
location representations in the human brain
Monika Graumann   1,2 ✉, Caterina Ciuffi1, Kshitij Dwivedi   1,3, Gemma Roig   3 and 
Radoslaw M. Cichy   1,2,4 ✉

To interact with objects in complex environments, we must know what they are and where they are in spite of challenging 
viewing conditions. Here, we investigated where, how and when representations of object location and category emerge in the 
human brain when objects appear on cluttered natural scene images using a combination of functional magnetic resonance 
imaging, electroencephalography and computational models. We found location representations to emerge along the ventral 
visual stream towards lateral occipital complex, mirrored by gradual emergence in deep neural networks. Time-resolved analy-
sis suggested that computing object location representations involves recurrent processing in high-level visual cortex. Object 
category representations also emerged gradually along the ventral visual stream, with evidence for recurrent computations. 
These results resolve the spatiotemporal dynamics of the ventral visual stream that give rise to representations of where and 
what objects are present in a scene under challenging viewing conditions.
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In contrast, for objects appearing on cluttered backgrounds, object 
location information emerges late in the DNN hierarchy (Fig. 1d, 
right, blue) and late in time (Fig. 1e, middle and right, blue). H2 
and H3 differ in predicting location information to peak in dorsal 
(Fig. 1c, middle, blue) or ventral visual cortex (Fig. 1c, right, blue), 
respectively.

To anticipate, our results strongly support H3. When objects 
appear on cluttered backgrounds, object location representations 
emerge late in the hierarchy of the ventral visual stream and of the 
DNN, as well as late in time, indicating recurrent processing. A 
corresponding analysis of object category representations revealed 
an equivalent pattern of results with emergence along the ventral 
visual stream and temporal dynamics suggesting recurrence. Taken 
together, our results resolve where, when and how object represen-
tations emerge in the human brain when objects are viewed under 
more challenging viewing conditions.

Results
To investigate where, how and when representations of object loca-
tion emerge in the brain, we created a visual stimulus set (Fig. 2a) 
with the three orthogonal factors objects (three exemplars each in 
four object categories), locations (four quadrants) and backgrounds 
(three kinds: uniform grey, low- and high-cluttered natural scenes, 
referred to as ‘no’, ‘low’ and ‘high’ clutter). Collapsing across exem-
plars, we used a fully crossed design with four categories × four 
locations × three background conditions, resulting in 48 stimulus 
conditions. This design allowed us to also investigate representa-
tions of object category as a secondary question of the study.

To resolve human brain responses with high spatial and tem-
poral resolution, participants viewed images from the stimulus set 
while we recorded fMRI (N = 25) and EEG (N = 27) data in sepa-
rate sessions. Experimental parameters were optimized for each  

imaging modality (Fig. 2b). On each trial, participants viewed 
individual stimuli while fixating on a central fixation cross and 
performing a one-back (fMRI) or a detection task (EEG) to direct 
participants’ attention towards the images (Fig. 2b). Response trials 
were excluded from analysis.

We used multivariate pattern classification to track the emer-
gence of object location representations. We consider the peaks in 
information, that is, in classification, as indicators of where (fMRI) 
and when (EEG) location representations become most untangled 
and are thus explicitly represented1. In each case, we trained a sup-
port vector machine (SVM) to pairwise classify between activation 
patterns belonging to one object category shown at two different 
locations (Fig. 3a, faces at bottom left and right). We then tested the 
SVM on activation patterns of the same locations with a new object 
category (Fig. 3a, animals at bottom left and right). Repeated for all 
combinations of locations and categories, the averaged classification  
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Fig. 1 | Hypotheses and predictions about the pathway of object location 
representations in the human brain. a, H1: representations of object 
location emerge in early visual cortex and degrade along further processing 
stages. H2 and H3: object location representations emerge gradually 
along the dorsal (H2) or ventral (H3) visual stream. b, Left: when objects 
are presented on a blank background, object location in the visual field 
maps retinotopically onto early visual cortex, allowing for direct location 
read-out (grey). Right: when objects appear in a cluttered scene, large 
parts of early visual cortex are activated, hindering a direct read-out (blue). 
Representations are quantified as linearly classifiable object location 
information from brain or model activity patterns1. c, Predictions in space, 
colour-coded by background condition: no (grey), low (green) and high 
(blue) clutter. H1 predicts that independent of the object’s background, 
location information for the object is highest in early processing stages 
in space. H2 and H3 predict similar levels of location information with 
no clutter across the entire processing pathway in all assessments. 
For highly cluttered backgrounds, H2 and H3 predict the emergence of 
location representations in late processing stages of the dorsal (H2, c) and 
ventral (H3, c) stream. Location information in the low-clutter condition 
is expected to be in between the no- and the high-clutter condition. d, 
Computational model of the ventral visual stream. H1 (left) predicts highest 
location information in early layers of the model in all conditions. H3 
(right) predicts high location information across all layers with no clutter 
and highest location information in late layers with high clutter. Location 
information in the low-clutter condition is expected to be in between the 
other two conditions. Since this is a model of the ventral stream, it does not 
make predictions about the dorsal stream (H2). e, Location information 
in time. H1 predicts that location information peaks early in time in all 
conditions. Both H2 and H3 predict an early peak with no and a late peak 
with high clutter. The peak for low clutter is expected to be in between no 
and high clutter.
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accuracy quantifies object location information independent of 
object category. This procedure was performed in a space-resolved 
fashion for fMRI and in a time-resolved fashion for EEG (see 
Supplementary Fig. 1a for details).

The locus of object location representations. To determine the 
locus of object location representations, we used a regions of inter-
est (ROI) fMRI analysis, including early visual regions (V1, V2 
and V3) shared to the hierarchy of the ventral (V4 and LOC23) and 
the dorsal visual stream (intraparietal sulcus: IPS0, IPS1, IPS2 and 
superior parietal lobule (SPL)).

As expected, we found that most regions contained above-chance 
level location information in all background clutter conditions (Fig. 
3b; N = 25, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR 
corrected; see Supplementary Table 1 for P values). However, the 
amount of location information depended critically on the brain 
region and background condition.

Focusing on the ventral visual stream first, we observed similar 
amounts of location information across regions when objects were 
presented without clutter (Fig. 3b, grey bars). In contrast, when 

objects were presented on cluttered backgrounds, location informa-
tion emerged along the ventral visual processing hierarchy with less 
information in early visual areas than in LOC (Fig. 3b, green and 
blue bars; N = 25, 5 × 3 repeated-measures ANOVA, post hoc t tests 
Tukey corrected; see Supplementary Table 2 for P values). These 
results are at odds with H1, which predicts that location informa-
tion decreases along the ventral stream independent of background 
condition. Instead, the observed increase of location information 
along the ventral visual stream with cluttered backgrounds is con-
sistent with H3.

We ascertained these observations statistically with a 5 × 3 
repeated-measures ANOVA with factors ROI (V1, V2, V3, V4 and 
LOC) and background (no, low and high clutter). Besides both 
main effects (ROI: F(4,96) = 18.30, P < 0.001, partial η2 = 0.43; back-
ground: F(1.44,34.48) = 64.11, P < 0.001, partial η2 = 0.73), we crucially 
found the interaction to be significant (F(8,192) = 5.40, P < 0.001, par-
tial η2 = 0.18). As the interaction makes the main effects difficult 
to interpret, we conducted post hoc paired t tests (all reported in 
Supplementary Table 2, Tukey corrected). The statistical analysis 
confirmed all the qualitative observations: There were no significant  
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differences between ROIs in the no-clutter condition, except 
between V2 and V3 (P = 0.009) and between V2 and V4 (P = 0.001). 
There was more location information in LOC than in V1, V2 and 
V3 when background clutter (both low and high) was present than 
when it was not (Fig. 3b; all P < 0.03, see Supplementary Table 2 
for P values, Tukey corrected). This effect was robust for the com-
parison of locations across, but not within, visual hemifields (Fig. 
4a,b): post hoc tests comparing early visual areas versus LOC in the 
high-clutter condition were significant for the cross-hemifield clas-
sification (Fig. 4a; V1: P = 0.003; V2: P < 0.001; V3: P = 0.004, Tukey 
corrected), but not for the within-hemifield classification (Fig. 4b; 
V1: P = 0.697; V2: P = 0.281; V3: P = 1.00, Tukey corrected).

Focusing next on the dorsal visual stream, we observed low 
object location information independent of background condition 
(Fig. 3b; N = 25, 7 × 3 repeated-measures ANOVA). In the no- and 
low-clutter conditions, location information was higher in early 

visual cortex than in dorsal regions (N = 25, post hoc t tests, Tukey 
corrected; see Supplementary Table 3 for P values). This is inconsis-
tent with H2, which predicts an increase of object location informa-
tion along the dorsal stream.

Consistent with these qualitative observations, statistical testing 
by 7 × 3 repeated-measures ANOVA with factors ROI (V1, V2, V3, 
IPS0, IPS1, IPS2 and SPL) and background (no, low and high clut-
ter) did not provide statistical evidence for H2. We found significant 
main (ROI: F(3.16,75.93) = 36.2, P < 0.001, partial η2 = 0.60; background: 
F(2,48) = 35.8, P < 0.001, partial η2 = 0.60) and interaction effects 
(F(6.25,149.89) = 14.5, P < 0.001, partial η2 = 0.38). The post hoc tests 
showed that location information was higher in V1, V2 and V3 
compared with dorsal regions in the no- and low-clutter conditions 
(Fig. 3b, grey and green, except V1 and V2 versus IPS2 and SPL with 
low clutter, which were n.s.; see Supplementary Table 3 for P val-
ues). With high clutter, there was more location information in V3 
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Fig. 3 | fMRi results of location classification. a, Classification scheme for object location across category. We trained an SVM to distinguish between 
brain activation patterns evoked by objects of a particular category presented at two locations (here: faces bottom left and right) and tested the SVM 
on activation patterns evoked by objects of another category (here: animals) presented at the same locations. Objects are enlarged for visibility and did 
not extend into another quadrant in the original stimuli. b, Location classification in early visual cortex, ventral and dorsal visual ROIs (N = 25, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected). With no clutter, location information was high across early visual cortex and ventral ROIs. In the 
low- and high-clutter conditions, location representations emerged gradually along the ventral stream. In dorsal ROIs, location information was low, 
independent of background condition. Stars above bars indicate significance above chance (see Supplementary Tables 1, 2 and 3 for P values). Error bars 
represent s.e.m. Dots represent single subject data. c, fMRI searchlight result for classification of object location (N = 25, two-tailed Wilcoxon signed-rank 
test, P < 0.05, FDR corrected). Peak classification accuracy is indicated by colour-coded circles (no clutter: left V3 (grey, XYZ coordinates −19 mm, 
−97 mm, 13 mm); low clutter: left V1 (green, −5 mm, −86 mm, −3 mm); high clutter: left LOC (blue, −44 mm, −83 mm, 8 mm)). Millimetres (mm) 
indicate axial slice position along z axis in Montreal Neurological Institute space. d, Location classification in a DNN. In the high-clutter condition, location 
information emerged along the processing hierarchy, analogous to the ventral visual stream.
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than in IPS0, IPS1 and IPS2. Location classification in IPS3, IPS4 
and IPS5 did not reveal significant information above chance level 
(Fig. 4c; N = 25, two-tailed Wilcoxon signed-rank test, all P > 0.05 
FDR corrected, see Supplementary Table 1 for P values). Univariate 

responses were comparable across regions overall (Fig. 4d). Post 
hoc tests to a 9 × 3 repeated-measures ANOVA with factors ROI 
(V1, V2, V3, V4, LOC, IPS0, IPS1, IPS2 and SPL) and background 
(no, low and high clutter) revealed that responses were significantly 
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Fig. 4 | Location classification within and across hemifields, in iPS3–5 and univariate Roi results. a, Results of location classification across 
categories between visual hemifields (left up versus right up, left bottom versus right bottom). Similar to the classification across four locations, the 
repeated-measures ANOVA along the ventral stream (five ROIs × three clutter levels) yielded significant main (ROI: F(4,96) = 24.62, P < 0.001, partial 
η2 = 0.51; background: F(1.49,35.85) = 45.34, P < 0.001, partial η2 = 0.65) and interaction effects (F(8,192) = 2.95, P = 0.004, partial η2 = 0.11). Post hoc tests 
yielded results comparable to the main results (V1, V2 and V3 < LOC with high clutter). Stars above bars indicate significance above chance (N = 25, 
two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected). b, Location classification across categories within visual hemifields (left up versus 
left bottom, right up versus right bottom). As for the main analysis, the ANOVA yielded significant main (ROI: F(4,96) = 4.16, P = 0.004, partial η2 = 0.15; 
background: F(1.60,38.43) = 57.90, P < 0.001, partial η2 = 0.71) and interaction effects (F(8,192) = 5.84, P < 0.001, partial η2 = 0.20). The post hoc tests revealed a 
significant difference between V3 and LOC in the noclutter condition (P = 0.030). Stars above bars indicate significance above chance (N = 25, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected). c, Classification accuracies in IPS3, IPS4 and IPS5 were not significantly higher than chance level 
in all background conditions (N = 25, two-sided Wilcoxon signed-rank test, P > 0.05, FDR corrected). Error bars represent s.e.m. Dots represent single/
subject data. d, Absolute t values in each background condition and ROI, averaged across locations and categories. A 9 × 3 repeated-measures ANOVA 
with factors ROI and clutter revealed a significant main effect of ROI (F(2.60,62.43) = 9.19, P < 0.001, partial η2 = 0.18) and a significant interaction effect 
(F(3.40,81.64) = 9.89, P < 0.001, partial η2 = 0.03). Significant post hoc tests are listed in Supplementary Table 4. Overall, post hoc tests showed no clear 
pattern of results between early, ventral and dorsal areas, except for higher activation in V1 than in dorsal areas and LOC with no clutter. Stars above bars 
indicate significance above chance (N = 25, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected).
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higher in V1 compared with the other ROIs in the no-clutter condi-
tion (all P < 0.03; all P values listed in Supplementary Table 4, Tukey 
corrected), but there was no significant difference in activation 
between LOC and dorsal areas (Fig. 4d, all P values in Supplementary  
Table 4, Tukey corrected).

To explore whether any other brain regions beyond the investi-
gated ROIs contain location information, we used a spatially unbi-
ased fMRI searchlight analysis24. We did not find statistical evidence 
for location information beyond the ventral and dorsal stream, 
and the pattern of results was consistent with the outcome of the 
ROI analysis (Supplementary Fig. 2). There was widespread loca-
tion information (N = 25, two-tailed Wilcoxon signed-rank test, 
P < 0.05, FDR corrected) from the occipital cortex up into the dorsal 
(precuneus, superior parietal lobule) and ventral (fusiform gyrus) 
visual stream. Depending on background condition, location infor-
mation peaked in different visual areas. In the no-clutter condition, 
the peak was in left V3, in the low-clutter condition in left V1 and 
in the high-clutter condition in left LOC (Fig. 3c, see caption for 
coordinates). Distances between peaks were significantly larger 
than chance (N = 25, bootstrapping of condition labels, 10,000 
bootstraps, P < 0.05 one-tailed bootstrap test against chance level, 
Bonferroni corrected) between the no- and the high-clutter condi-
tion (Euclidean distance 15.9, CI 1.0–3.6, P < 0.001) and between 
the low- and the high-clutter condition (Euclidean distance 22.0, CI 
2.0–16.3, P = 0.002), but not for the no- and low-clutter condition 
(Euclidean distance 13.6, CI 1.4–14.7, P = 0.275).

Together, these results provide consistent evidence for the 
hypothesis that representations of object location across visual 
hemifields emerge in the ventral visual stream (H3) when objects 
appear in cluttered scenes.

Computational modelling. DNNs trained on object categorization 
are currently the best predicting models of ventral visual stream 
representations25–27 and show a spatiotemporal correspondence in 
their processing hierarchy to the visual brain25,28–30. Therefore, they 
constitute feasible biologically inspired models for computing com-
plex visual representations28,31. If such DNNs are useful models of 
visual processing in human visual cortex, they should show a simi-
lar pattern of results as the ventral visual stream in the representa-
tion of object location, too.

To evaluate this prediction, we chose the recurrent CORnet-S 
model because it is among the best-performing models on a bench-
mark for predicting neural responses in monkey inferior temporal 
cortex (IT)26,27 and approximates explicitly the hierarchy of the ven-
tral visual system. Each region of the ventral stream is modelled as 
one processing block with a corresponding name (V1Cor, V2Cor, etc.). 
Analogous to the fMRI analysis, we extracted the unit activation pat-
terns to our stimulus set at the last layer of each block and classified 
object location across category to identify the processing stage of the 
DNN at which object location representations emerge (Fig. 3d).

We found that in the no- and low-clutter conditions, location 
information was at or close to ceiling in all layers. In the high-clutter 
condition however, location information was low in V1Cor and 
emerged along the processing hierarchy. Qualitatively equivalent 
results were obtained in three other DNNs (Alexnet, ResNet-50 and 
CORnet-Z; Supplementary Fig. 3a–c), demonstrating the generaliz-
ability of the results pattern. This result was still robust in all four 
DNNs when limiting the classification to either horizontal or verti-
cal location comparisons (Supplementary Fig. 3e,f).

In sum, we found that DNNs trained on object categorization 
show a similar pattern of location representations along their pro-
cessing hierarchy as the human brain. This demonstrates how object 
location representations might be computed in biological systems. 
This result lends independent evidence against H1 and yields plau-
sibility to H3 since CORnet-S was built to model the ventral stream. 
However, this result cannot disambiguate between H2 and H3, as 

models of this kind have been found to predict human brain activity 
in both the ventral and dorsal stream32,33.

Temporal dynamics of object location representations. We con-
ducted time-resolved multivariate EEG analysis to determine the 
time course with which object location representations emerge. 
The general analysis scheme was the same as for the fMRI analysis 
presented above (Fig. 3a) but applied to time-specific EEG channel 
activation patterns rather than fMRI activation patterns.

The analysis revealed location information for all background 
clutter levels (Fig. 5a, N = 27, two-tailed Wilcoxon signed-rank test, 
P < 0.05, FDR corrected), but with different dynamics (Fig. 5b, see 
Supplementary Table 5 for classification onsets and peak values). 
We report peak latencies with 95% confidence intervals (N = 27, 
10,000 bootstraps). Whereas the peak latency was similar for the 
no- (140 ms (133–147 ms)) and the low-clutter (133 ms (121–
233 ms)) condition, it was delayed in the high-clutter condition 
(317 ms (250–336 ms)). Statistical analysis (N = 27, bootstrap test, 
10,000 bootstraps, P < 0.05, one-tailed bootstrap test against zero, 
FDR corrected) ascertained that the peak latency difference was 
significant between the high-clutter and the no-clutter conditions 
(N = 27, 177 ms (94–190 ms), P < 0.001) and between the high- and 
the low-clutter conditions (184 ms (16–196 ms), P = 0.023), but not 
between the no- and the low-clutter conditions (7 ms (−11–156 ms), 
P = 0.620). These delays were also robust when classifying locations 
across or within visual hemifields (Supplementary Fig. 4). A search-
light in EEG sensor space showed that location information at the 
peaks of the three background conditions was highest at occipital, 
occipito-parietal and occpito-temporal electrodes (Fig. 5c; N = 27, 
two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected 
across electrodes and time points; see Supplementary Fig. 5a–c for 
time courses), suggesting sources in those areas, which is in line 
with the fMRI searchlight results (Supplementary Fig. 2) and with 
univariate EEG topographies (Supplementary Fig. 5d–f).

In sum, this result shows that object location representations 
emerge later when objects appear on cluttered backgrounds than 
when they appear on blank backgrounds. This provides further 
concurrent evidence against H1 and is consistent with H2 and 
H3, that is, that object location representations emerge at late 
stages of visual processing when objects are viewed under complex  
visual conditions.

How is the delay in the peak latencies of the no- and the 
high-clutter conditions to be interpreted? Assuming that in object 
processing the brain runs through a series of distinct stages, we see 
two possible explanations.

One explanation is that the peak latency delay indicates a change 
in the processing stage at which object location representations 
emerge. This would mean that in the no-clutter condition, location 
representations emerge in an early stage whereas with high clutter 
they emerge during a different, later processing stage (the ‘change’ 
hypothesis). An alternative explanation is that the processing stage 
at which object location representations emerge remains the same, 
but its emergence is delayed in time in the high-clutter condition 
(the ‘delay’ hypothesis).

To distinguish between these explanations, we used temporal 
generalization analysis34, comparing the representational dynamics 
with which object location representations emerge in the no- and 
the high-clutter conditions across time (Fig. 5d). Used in this way, 
the time generalization analysis yields a two-dimensional matrix 
indexed in time, indicating at which time points location repre-
sentations in the no- and the high-clutter conditions are similar. 
We implemented time generalization by classifying object location 
across category and background condition for all time point combi-
nations (Fig. 5d and Supplementary Fig. 1b). Overall, we observed 
a large significant cluster of above-chance classification accuracies 
across the time generalization matrix (N = 27, two-tailed Wilcoxon 
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signed-rank test, P < 0.05, FDR corrected). While the ‘change’ 
hypothesis predicts highest classification accuracies on the diago-
nal, the ‘delay’ hypothesis predicts highest classification accuracies 
below the diagonal. The results are reported in Fig. 5e. We found that 
peak latencies in location information as tested across subjects were 
significantly shifted below the diagonal (mean Euclidean distance 
56.31 ms; N = 27, two-tailed Wilcoxon signed-rank test, P < 0.001, 
r = 0.65, s.e.m. 1.55; see Supplementary Fig. 6a for single-subject 
peaks), indicating that location representations in the no-clutter 
condition generalized to the high-clutter condition at later time 
points (Fig. 5e, white dashed outline). This result was confirmed 

in a supplementary analysis on the group-averaged peak in Fig. 5e 
(Euclidean distance 49.50 ms; 10,000 bootstraps; one-tailed boot-
strap test against zero, P = 0.010; 95% CI 14.14–77.78). Classification 
accuracies were significantly higher below than above the diagonal 
between ~120 and 240 ms in the no-clutter condition and from 
~200 ms in the high-clutter condition (N = 27, two-tailed Wilcoxon 
signed-rank test, P < 0.05, FDR corrected; Supplementary Fig. 6b).

Together, these results provide evidence for the ‘delay’ hypothesis 
and demonstrate that object location representations in the no- and 
the high-clutter condition emerge at the same processing stage with 
a temporal delay.
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Fig. 5 | Temporal dynamics of object location representations. a, Results of time-resolved location classification across category from EEG data. Results 
are colour coded by background condition, with significant time points indicated by lines below curves (N = 27, two-tailed Wilcoxon signed-rank test, 
P < 0.05, FDR corrected), 95% CI of peak latencies indicated by lines above curves. Shaded areas around curves indicate s.e.m. Inset text at arrows 
indicates peak latency (140 ms, 133 ms and 317 ms in the no-, low- and high-clutter condition, respectively). b, Comparison of peak latencies of curves in 
a. Error bars represent 95% CI. Stars indicate significant peak latency differences (P < 0.05; N = 27, bootstrap test with 10,000 bootstraps). c, Results of 
location across category classification searchlight in EEG channel space at peak latencies in no-, low- and high-clutter condition, down-sampled to 10 ms 
steps. Significant electrodes are marked in grey (N = 27, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected across electrodes and time points). 
d, Time generalization analysis scheme for classifying object location across category and background condition. The classification scheme was the same 
as in a with the differences that (i) the training set conditions always came from the no-clutter while the testing set conditions came from the high-clutter 
condition and (ii) training and testing was repeated across all combinations of time points for a peri-stimulus time window between −100 and 600 ms 
(see Supplementary Fig. 1b for details). Objects are enlarged for visibility and did not extend into another quadrant in the original stimuli. e, Results of the 
time generalization analysis. Dashed black lines indicate stimulus onset; oblique black line highlights the diagonal. Solid white outlines indicate significant 
time points (N = 27, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected). Dashed white outline highlights delayed clusters. f, EEG–fMRI fusion. 
Results represent the correlations between single-subject fMRI RDVs of classification accuracies and group-averaged RDVs of the EEG peaks in a. Stars 
above bars indicate significance above chance (N = 27, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected). Error bars represent the s.e.m. Dots 
represent single-subject data points.

NaTuRe HuMaN BeHaviouR | www.nature.com/nathumbehav



Articles NaTure HumaN BeHaviOur

Spatiotemporal similarity of location representations. Temporal 
delays for the same processing stage cannot be explained by a purely 
feedforward process, suggesting instead the involvement of recur-
rent processing. Recurrent processes could account for the observed 
delay with lateral connections within the same area35,36. The shared 
processing stage underlying early and late location representations 
in the no- and the high-clutter conditions should have a common 
origin in space, too. Based on the fMRI results, we hypothesized 
that this origin would be in LOC. To test this hypothesis directly, 
we used EEG–fMRI fusion based on representational similarity of 
object location representations37–39.

The processing stage at which location representations emerge 
corresponds to the peak latency of location classification in the EEG 
for the no- and the high-clutter condition. We thus determined 
whether location representations identified with EEG at these time 
points are representationally similar to those identified with fMRI 
in ventral stream regions for the no- and the high-clutter condition 
separately. Specifically, we averaged the representational dissimilar-
ity vectors (RDVs) of the time-resolved EEG classification accuracies 
in Fig. 5a across subjects and time points within the 95% confidence 
intervals over the peaks. This yielded one RDV per background 
condition that was then correlated with the single-subject RDV of 
an fMRI ROI in the same background condition. Results within 
background and ROI were averaged across fMRI participants.

We found a spatiotemporal correspondence with EEG peak 
latency for the no-clutter condition in V4 and LOC but for the 
high-clutter condition in LOC only (Fig. 5f; N = 25, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected). This estab-
lishes LOC as the cortical locus at which object location representa-
tions emerge independent of background condition, but involving 
additional recurrent processing when the background is cluttered. 
Post hoc tests to a 5 × 2 repeated-measures ANOVA with factors 
ROI (V1, V2, V3, V4 and LOC) and clutter (no and high) addition-
ally showed that correlations were higher in V4 and LOC than in 
V1, V2 and V3 with no clutter (see Supplementary Table 6 for P 
values; main effect of ROI: F(4,96) = 14.30, P < 0.001, partial η2 = 0.37; 
n.s. main effect of background: F(1,24) = 3.62, P = 0.069; interaction: 
F(4,96) = 8.17, P < 0.001, partial η2 = 0.25). The notion that loca-
tion representations emerge in LOC with recurrence when back-
ground is cluttered finds further support from a supplementary 
analysis showing that location representations with no and high 
clutter were significantly similar in LOC, but not in other regions 
(Supplementary Fig. 7; N = 25, two-tailed Wilcoxon signed-rank 
test, P < 0.05, FDR corrected). Furthermore, recurrent DNNs 
showed an advantage compared with shallow feedforward DNNs 
for the classification of location with high clutter and for the predic-
tion of location representations in LOC (Supplementary Fig. 3c,d; 
N = 25, 4 × 2 repeated-measures ANOVA). Together, these results 
suggest that location information of objects on highly cluttered 
scenes emerges in LOC with local recurrent processes.

Object category representations. The observation that representa-
tions of object location depend on the background on which the 
object appears immediately raises the question of whether represen-
tations of object category are affected by background, too. Previous 
research suggests opposite answers to this question. One line of 
research demonstrated that object representations in the ventral 
stream are modulated by the presence of other objects and the back-
ground on which they are viewed40–43. Another line of research has 
provided strong evidence that the ventral stream constructs object 
representations that are increasingly tolerant to changes in view-
ing conditions1,5,8, suggesting that object category representations 
should be unaffected by the background of the objects. Here we 
bring these two lines of research together by explicitly investigating 
how background impacts object category representations that are 
tolerant to location. To do this, we analysed EEG and fMRI data as 

described in previous sections but exchanging the role of experi-
mental factors location and category. In essence, we performed 
cross-classification analyses of category across location (Fig. 6a) to 
determine where and when location-tolerant object category repre-
sentations emerge in the human brain.

The locus of object category representations. We investigated object 
category representations tolerant to changes in location using an 
ROI-based fMRI analysis. We observed that location-tolerant object 
category could be classified in the ventral stream in V4 and LOC 
(Fig. 6b; N = 25, two-tailed Wilcoxon signed-rank test, P < 0.05, 
FDR corrected, all P values in Supplementary Table 1), but not at 
earlier stages and not in dorsal ROIs except IPS0 with high clutter 
(P = 0.005). This pattern was not influenced by the level of clutter, 
suggesting that object category representations that are tolerant to 
location variations are unaffected by the clutter level of the back-
ground on which the object appears.

These observations were statistically ascertained in a 5 × 3 
ANOVA along the ventral stream with factors ventral ROIs (V1, 
V2, V3, V4 and LOC) and background (no, low and high clutter), 
revealing a significant main effect of ROI (F(2.42,58.03)=21.97, P < 0.001, 
partial η2 = 0.48), but not of background (F(2,48) = 0.68, P = 0.510) 
and no interaction (F(8,192)=1.85, P = 0.070, see Supplementary 
Fig. 8 for searchlight results and Supplementary Table 7 for 
post hoc tests, Tukey corrected). In the 7 × 3 repeated-measures 
ANOVA along the dorsal stream with factors ROI (V1, V2, V3, 
IPS0, IPS1, IPS2 and SPL) and background (no, low and high 
clutter) we found no significant main effect (ROI: F(6,144)=1.38, 
P = 0.227; background: F(2,48) = 0.94, P = 0.396) or interaction effect  
(F(12,288) = 0.96, P = 0.463).

In sum, our results confirm that the ventral stream constructs 
object representations that are robust to changes in viewing condi-
tions and show in particular that location-tolerant category repre-
sentations emerge in the ventral stream unaffected by the clutter 
level in the object’s background.

Object category representations in time. Emergence of object cate-
gory representations can be delayed, for example when objects are 
occluded or are hard to categorize44–46. This suggests that object cat-
egory representations might emerge with a delay also when objects 
appear on cluttered backgrounds, for example because additional 
grouping and segmentation operations are necessary that depend 
on recurrence and hence require additional time47–49.

We therefore investigated whether background clutter influences 
the timing with which location-tolerant category representations 
emerge using time-resolved multivariate EEG analysis (Fig. 6c). We 
found that object category could be reliably classified for all back-
ground conditions from the EEG data (Fig. 6c, N = 27, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected), but with dis-
tinct temporal dynamics (see Supplementary Table 5 for classifica-
tion onsets and peak values). Classification peaks were 18 ms later 
in the high-clutter than in the no- and the low-clutter conditions 
(no clutter: 215 ms (213–219 ms); low clutter: 215 ms (203–236 ms); 
high clutter: 233 ms (214–303 ms)). The delay (95% difference CI 
no clutter: 16–173 ms; P < 0.001; low clutter: 13–171 ms; P = 0.029) 
was significant (N = 27, bootstrap test, 10,000 bootstraps, P < 0.05, 
one-tailed bootstrap test against zero, FDR corrected; Fig. 6d). 
Location-independent category information at the peaks of the 
three background conditions was most pronounced at occipital 
and temporal electrodes as revealed in the EEG searchlight in sen-
sor space (Fig. 6e and Supplementary Fig. 5g–i; N = 27, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected across elec-
trodes and time points). This is in line with the results from the 
fMRI searchlight analysis (Supplementary Fig. 8), together suggest-
ing neural sources of the peaks in Fig. 6c in occipital and temporal 
regions. Univariate EEG activity was strongest in occipital rather 
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Fig. 6 | Spatial and temporal dynamics of object category representations. a, Classification scheme of category across location. b, Location-tolerant 
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than in temporal electrodes (Supplementary Fig. 5,j,k,l). Together, 
this shows that cortical processing of object category requires more 
time when objects appear in cluttered scenes compared with artifi-
cial blank backgrounds.

Analogous to the delay in location processing (Fig. 5a,b,e), we 
asked whether this delay indicates a temporal shift in the processing 
cascade or reflects a change to a later processing stage. To disambigu-
ate, we classified object category across locations in a time generaliza-
tion analysis across the no- and the high-clutter conditions (Fig. 6f).

We identified three main clusters of high classification accuracy 
with timing corresponding roughly to the timing of the three peaks 
observed in the time courses of the no- and the high-clutter con-
ditions (Fig. 6g; see Supplementary Table 8 for timing details). To 
test whether category information in the no-clutter condition gen-
eralized to later time points in the high-clutter condition and thus 
was shifted below the diagonal, we computed the single-subject dis-
tances from the peak in the time generalization matrix to the diago-
nal. Category information peaks were significantly shifted below 
the diagonal as tested across subjects (mean Euclidean distance 
27.24 ms; N = 27, two-sided Wilcoxon signed-rank test, P = 0.025, 
r = 0.43, s.e.m. 2.50; single-subject peaks shown in Supplementary 
Fig. 6c), but not as tested for the group-averaged peak (Euclidean 
distance 28.28 ms; 10,000 bootstraps; one-tailed bootstrap test 
against zero, P = 0.230; 95% CI −7.07 to 35.35). Classification accu-
racies were significantly higher below than above the diagonal from 
~190 ms (no clutter) and ~240 ms (high clutter) until ~360 ms (no 
clutter) and ~400 ms (high clutter) (Supplementary Fig. 6d). This 
pattern of results suggests that object category representations of 
objects on blank and cluttered backgrounds emerge at a similar pro-
cessing stage. This stage emerges with a delay when objects are pre-
sented on cluttered backgrounds, indicating recurrent processing.

Discussion
Using multivariate analysis of fMRI and EEG data and computa-
tional model comparison, we resolved where, how and when object 
location representations emerge in the human brain. Our results 
are three fold and depend crucially on whether objects appeared on 
cluttered backgrounds or on blank backgrounds. First, location rep-
resentations emerged along the ventral visual pathway and peaked 
in region LOC when viewed on cluttered backgrounds. Second, this 
pattern of results was mirrored in DNNs trained on object categori-
zation. Third, location representations emerged later in time when 
objects were viewed on cluttered backgrounds than when viewed 
on blank backgrounds. In-depth analysis suggested that this delay 
indexed recurrent processing in LOC. Together, these results pro-
vide converging evidence against the hypothesis that object location 
is processed in early visual cortex (H1), and in addition the results 
in space provide evidence for the hypothesis that object location 
emerges along the ventral stream (H3, Fig. 1a). A corresponding 
analysis of object category representations revealed equivalently an 
emergence in the ventral visual stream, and a delay when objects 
appear on cluttered backgrounds due to a temporal shift in the pro-
cessing cascade, related to recurrent processing. Thus, the two argu-
ably most fundamental properties of objects, that is, what the object 
is and where it is, emerge in the ventral visual stream with a similar 
spatiotemporal processing pattern.

Our fMRI results single out the ventral stream with a peak in 
LOC (H3), rather than early visual areas (H1) or the dorsal stream 
(H2), as the processing hierarchy responsible for computing 
object location in the human brain when objects appear on clut-
tered backgrounds. This concurs with a primate study14 that found 
category-orthogonal object representations to emerge in IT (the 
putative homologue of human LOC50) rather than V4. Together, 
these results indicate that object location representations emerge 
along the ventral stream towards LOC when viewing conditions are 
realistic and challenging.

We observed that location representations with high clutter 
increased along the ventral stream for the classification of cross- 
but not within-hemifield locations. This pattern of results might be 
due to several factors. For one, statistical power is reduced when 
assessing results of cross- and within-hemifield location classifica-
tion separately rather than combined, the test for which our study 
was originally planned. Second, cross-hemifield location repre-
sentations might be more distinguishable as there is less integra-
tion of location information across than within hemispheres: 
cross-hemifield integration requires trans-callosal connections, 
whereas within-hemifield integration does not. Third, factors unre-
lated to location representations that however affect hemispheres 
differently, such as possible vascular changes, can contribute to the 
effect. Importantly, we do not see a difference between within- ver-
sus across-hemifield classification in the high-clutter condition in 
the EEG and DNN results, supporting our main conclusions and 
suggesting that the discrepancy in the fMRI results might be related 
to a decreased signal-to-noise ratio.

When objects are viewed on blank backgrounds rather than 
on cluttered backgrounds, location information can be read out 
from V1 because there is a direct mapping from stimulus loca-
tion to the retinotopic location in V1 that is activated. With clut-
ter, there is no such mapping (Fig. 1b) and therefore visual input 
is processed through the ventral visual stream cascade where LOC 
but not V1 reliably indicates object location representations. Under 
this assumption, location information in V1 might be an epiphe-
nomenon caused by artificial stimulation conditions, revealing 
information that can be measured by the experimenter but is not 
necessarily used by the brain51–53 and relevant for behaviour at this 
stage of processing. Our results thus further emphasize the impor-
tance of increasing image complexity to increase the ecological 
validity of experimental stimuli21. While our study was designed to 
establish the presence and nature of object location representations 
in the brain, it cannot establish the behavioural relevance of those 
representations. Future studies could investigate this, for example, 
by using speeded detection tasks for objects presented in different 
locations and relating detection speed and performance to location 
representations across the brain.

Our results are seemingly at odds with neuropsychological find-
ings showing that patients with ventral lesions performed well on 
localization tasks2. However, later studies showed that in fact just 
localization behaviour was intact in those patients54–56, but not loca-
tion perception. It is conceivable that these patients recruited sparse 
location information from spared early visual areas to accomplish 
the localization tasks (similar to blindsight) and that tasks involving 
more cluttered displays would have been more challenging for these 
patients. In line with this, other patients with occipito-temporal 
lesions had problems with tasks requiring figure–ground segmenta-
tion57 or perceptual grouping58, both of which are essential to dissect 
an object from its background in a cluttered scene. Thus, neuropsy-
chological studies taking background clutter into account are neces-
sary to resolve this issue.

While we do observe location information in dorsal and ven-
tral regions anterior and medial from LOC, the fMRI searchlight 
analysis (Supplementary Fig. 2) shows the peak in LOC. Why did 
location information not peak in other high-level ventral or dorsal 
areas? It is possible that IPS would represent object location more 
prominently if we optimized our stimulus selection for it by includ-
ing tools51. However, the univariate response profile of the dorsal 
and ventral ROIs in our study tentatively suggests comparable acti-
vations across ROIs (Fig. 4d and Supplementary Table 4), indicating 
that univariate activation was not the source of lower information 
in IPS. Likewise, it is possible that different stimuli (for example, 
faces) would have yielded stronger effects in other high-level, 
category-selective ventral regions (for example, fusiform face area 
or occiptal face area). Another possibility is that LOC has optimal 
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receptive field properties for the eccentricities used in this study59,60, 
which allows it to encode object location on clutter better than other 
high-level ventral ROIs. These questions need more investigation in 
future research.

Our empirical findings were reinforced by the observation that 
representations of object location emerge in DNNs in a similar way 
as they emerge in the human brain. Importantly, the DNNs used 
here were trained on object categorization and not localization. Our 
results thus show that representations of object properties for which 
the network is not optimized can emerge in such networks14. One 
limitation of our approach is that the models used here were specifi-
cally designed to model the ventral visual stream25–30, even though 
they have been shown to predict brain responses in the dorsal 
stream, too32,33. Therefore, the presented modelling results cannot 
distinguish between H2 and H3. Future studies could compare loca-
tion representations in DNNs that model the dorsal versus the ven-
tral stream and investigate how the model’s representations relate to 
brain representations in the two streams.

The time-resolved EEG analyses and the EEG–fMRI fusion 
analysis38 revealed together that location representations of objects 
with high clutter were delayed due to a temporal shift within the 
same processing stage in LOC. Since temporal delays at the same 
processing stage cannot be explained purely by a feedforward 
neural architecture, this indicates the involvement of recurrence. 
Physiologically, this might be implemented via lateral connections 
within LOC, resulting in slower information accumulation61,62. 
Furthermore, we found not only location but also object category 
representations to be delayed when objects were superimposed on 
natural scenes. Together with previous reports that object category 
processing can be delayed when objects are degraded, occluded or 
are hard to categorize44–46,48, our results add to the emergent view 
that recurrent computations are critically involved in the process-
ing of fundamental object properties such as what objects are62 and 
where they are in real world vision. Future studies could provide 
more direct evidence for recurrence by manipulating it experi-
mentally, for example, by adding a masking condition to the study 
design used here.

We find that both object category and object location representa-
tions emerged gradually along the ventral visual stream. This might 
seem counter-intuitive, given that transformations that lead to the 
emergence of category representations in LOC have been linked to 
building increasing tolerance to viewing conditions, in particular 
to changes in object location5–7. However, this apparent contradic-
tion is qualified by the observation that the observed tolerance to 
changes in viewing conditions is graded rather than absolute63, mir-
rored by the presence of cells in high-level ventral visual cortex with 
large overlapping receptive fields10,17. Such tuning properties provide 
the spatial resolution needed for localization64, while also providing 
robustness to location translation65, needed for object categorization.

In this study, we deliberately avoided congruence between objects 
and backgrounds, which is known to lead to interaction effects with 
category processing40. However, this deviation from normality in 
our stimulus set might have triggered mismatch responses that lead 
to additional recurrent processing for disambiguation or attentional 
responses triggered by atypical object appearance (for example, size 
and texture). Further, because objects and backgrounds did not 
form a coherent scene, objects and backgrounds might have been 
represented more independently. Another design limitation is that 
we constrain the number of locations to four to fully cross all stimu-
lus conditions while maintaining a feasible session duration. Future 
research will have to establish whether congruent versus incongru-
ent scene–object pairings yield different location representations 
on cluttered backgrounds and whether our results generalize to  
more locations.

What an object is and where an object is are arguably the two 
most fundamental properties that we need to know to be able to 

interact with objects in our environment. Our results reveal the 
basis of this knowledge by revealing representations of location and 
category in the human brain when viewing conditions are challeng-
ing, as encountered outside of the laboratory. Both object location 
and category representations emerge along the ventral visual stream 
towards LOC and depend on recurrent processing. Together, our 
results provide a spatiotemporally resolved account of object vision 
in the human brain when viewing conditions are cluttered.

Methods
Participants in EEG and fMRI experiments. The experiment was approved 
by the ethics committee of the Department of Education and Psychology of the 
Freie Universität Berlin (ethics reference number 104/2015) and was conducted 
in accordance with the Declaration of Helsinki. Twenty-nine participants 
participated in the EEG experiment, of whom two were excluded because 
of equipment failure (N = 27, mean age 26.8 years, s.d. 4.3 years, 22 female). 
Twenty-five participants (mean age 28.8 years , s.d. 4.0 years, 17 female) completed 
the fMRI experiment. The participant pools of the experiments did not overlap 
except for two participants. Sample size was chosen to exceed comparable 
magnetoencephalography, EEG and fMRI classification studies to enhance 
power8,9,43,66–68. All participants had normal or corrected-to-normal vision and  
no history of neurological disorders. All participants provided informed  
consent prior to the studies and received a monetary reward or course credit  
for their participation.

Experimental design. To enable us to investigate the representation of object 
location, category and background independently, we used a fully crossed design 
with factors of category (four values: animals, cars, faces and chairs; Fig. 2a, left, 
with three exemplars per category), location (four values: left up, left bottom, right 
up and right bottom; Fig. 2a left centre) and background clutter (three values: 
no, low and high clutter; Fig. 2a, right centre). This amounted to 144 individual 
condition combinations (12 object exemplars × 4 locations × 3 background clutter 
levels). We analysed the data at the level of category, effectively resulting in 48 
experimental conditions (4 categories × 4 locations × 3 background clutter levels).

Stimulus set generation. The stimulus material was created by superimposing 
three-dimensional (3D) rendered objects (Fig. 2a, left) with Gouraud shading 
in one of four image locations (Fig. 2a, left centre) onto images of real-world 
backgrounds (Fig. 2a, right centre).

In detail, in each category, one of the objects was rotated by 45°, one by  
22.5° and the third by −45° with respect to the frontal view to introduce equal 
variance in the viewing angle for each category. Locations were in the four 
quadrants of the screen (Fig. 2a, left centre). Expressing locations in degrees of 
visual angle, the object’s centre was 3° visual angle away from the vertical and 
horizontal central midlines (that is, 4.2° from image centre; Fig. 2a, right). The 
size of the objects was adjusted so that all of them fitted into one quadrant of the 
aperture, while maintaining a similar size (mean (s.d.) size: vertical, 2.4° (0.4°); 
horizontal, 2.2° (0.6°)).

We used backgrounds with three different clutter levels: no, low and high  
(Fig. 2a, right centre; note that example backgrounds shown here are for illustrative 
purposes and were not used in the experiment. The original stimulus material 
is available for download together with the data). We defined clutter as the 
organization and quantity of objects that fill up a visual scene69. In the no-clutter 
condition, the background was uniform grey. In the low- and the high-clutter 
condition, we selected a set of 60 natural scene images each from the Places365 
database (http://places2.csail.mit.edu/download.html) that had low or high 
clutter, respectively, and did not contain objects of the categories defined in our 
experimental design (that is, no animals, cars, faces or chairs). We converted the 
images to greyscale and superimposed a circular aperture of 15° visual angle. The 
visual angle was the same in the EEG and fMRI experiments.

We confirmed that our selection of low- and high-clutter images was 
appropriate by an independent behavioural rating experiment (N = 10) in 
which participants rated clutter level on a scale from 1 to 6 (mean (s.d.) clutter 
image rating: low clutter, 2.52 (0.85); high clutter, 5.04 (0.87); the difference was 
significant: N = 10, paired-sample t test, P < 0.0001, t = 14.96).

From the set of 60 low- and high-clutter images, we selected 48, one for 
each experimental condition of our experimental design. We then randomly 
paired objects to background images to avoid systematic congruencies between 
backgrounds and objects. This was done for each of the 20 runs of the EEG 
experiment and for the 10 runs of the fMRI experiment. This resulted in 144 
individual images per run, one for each condition (that is, 12 object exemplars 
× 4 locations × 3 background clutter levels). The remaining set of 12 low- 
and high-clutter images was used separately to create catch trials in the EEG 
experiment (see details below).

Experimental procedures. fMRI main experiment. Each participant completed 
one fMRI recording session consisting of ten runs (run duration 552 s), resulting 
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in 92 min of fMRI recording of the main experiment. During each run, each of the 
144 images of the stimulus set was shown once (denoted here as ‘regular’ trials) 
in random order. Image duration was 0.5 s, with a 2.5 s inter-stimulus interval 
(ISI). Images were presented at the centre of a black screen, overlaid with a red 
fixation cross in the centre. Participants were asked to fixate their eyes on the 
central cross at all times. Regular trials were interspersed every third to fifth trial 
(equally probable, in total 36 per run) with catch trials. Catch trials repeated the 
image shown on the previous trial (Fig. 2b, bottom). Participants were instructed 
to respond with a button press to these repetitions (that is, a one-back task). Catch 
trials were excluded from further analysis. Since this was a repeated-measures 
design, data collection and analysis were not performed blind to the conditions  
of the experiment.

fMRI localizer experiment. To define ROIs in early visual, dorsal and ventral visual 
stream areas, we performed a separate localizer experiment prior to the main 
fMRI experiment with images in three experimental conditions: faces, objects and 
scrambled objects. Each image shown in the localizer experiment consisted of four 
identical versions of an object presented at the four locations as defined in the 
main experiment (for example, one particular face shown in all four quadrants) to 
approximate the stimulation conditions of the main experiment.

The localizer experiment consisted of a single run lasting 384 s, comprising six 
blocks of presentation of faces, objects, scrambled objects and a blank background 
as baseline. Each stimulation block was 16 s long with presentations of 20 different 
objects (500 ms on, 300 ms off), including two one-back repetitions that participants 
were instructed to respond to with a button press. Stimulation block order was 
first order counterbalanced, with triplets of stimulation blocks being presented in 
random order and being interspersed regularly with blank background blocks.

EEG main experiment. The EEG experiment was a modified version of the fMRI 
main experiment with adjusted timing parameters and a different task (Fig. 2b, 
top). The EEG recording session consisted of 20 runs of 205 s each (that is, in total 
68 min). Twenty-three participants completed all 20 runs, while four participants 
completed fewer runs due to technical problems (12 runs, 17 runs and 2 × 13 
runs). Image duration was 0.5 s, with a 0.5 or 0.6 s ISI (equally probable) on regular 
trials. Participants were asked to fixate their eyes on the central cross at all times. 
Catch trials consisted of the presentation of the target object (a glass) at any of 
the four locations and on any type of background. Participants were instructed 
to respond with a button press to the glass (that is, a detection task), and to 
blink their eyes to minimize eye blink contamination on regular trials. To avoid 
contamination of movement and eye blink artefacts on subsequent trials, the ISI 
was 1 s on catch trials. Catch trials were excluded from further analysis. Since this 
was a repeated-measures design, data collection and analysis were not performed 
blind to the conditions of the experiment.

Pre-processing and univariate fMRI analysis. fMRI acquisition and pre-processing. 
We acquired MRI data on a 3-T Siemens Tim Trio scanner with a 12-channel 
head coil. We obtained a structural image using a T1-weighted sequence 
(magnetization-prepared rapid gradient-echo, 1 mm3 voxel size). For the main 
experiment and the localizer run, we obtained functional images covering the 
entire brain using a T2*-weighted gradient-echo planar sequence (repetition time 
2 ms, echo time 30 ms, 70° flip angle, 3 mm3 voxel size, 37 slices, 20% gap, 192 mm 
field of view, 64 × 64 matrix size, interleaved acquisition).

We pre-processed fMRI data using SPM8 (https://www.l.ion.ucl.ac.uk/spm/). 
This involved realignment, coregistration and normalization to the structural 
Montreal Neurological Institute template brain. fMRI data from the localizer was 
smoothed with an 8 mm full-width at half-maximum Gaussian kernel, but the 
main experiment data was left unsmoothed.

Univariate fMRI analysis. For the main experiment, we modelled the fMRI 
responses to the 48 experimental conditions for each run using a general linear 
model (GLM). The onsets and durations of each image presentation entered the 
GLM as regressors and were convolved with a haemodynamic response function. 
Movement parameters entered the GLM as nuisance regressors. For each of the 48 
conditions, we converted GLM parameter estimates into t values by contrasting 
each parameter estimate against the implicit baseline. This resulted in 48 
condition-specific t value maps per run and participant.

For the localizer experiment, we modelled the fMRI response to the three 
experimental conditions, entering block onsets and durations as regressors of 
interest and movement parameters as nuisance regressors before convolving 
with the haemodynamic response function. From the resulting three parameter 
estimates, we generated two contrasts. The first contrast served to localize 
activations in early, mid-level ventral and dorsal visual regions (V1, V2, 
V3, V4, IPS0, IPS1, IPS2 and SPL) and was defined as objects + scrambled 
objects > baseline. The second contrast served to localize activations in 
object-selective area LOC and was defined as objects > scrambled objects. In sum, 
this resulted in two t value maps for the localizer run per participant.

Definition of ROIs. To identify regions along the ventral and dorsal visual streams, 
we defined ROIs in a two-step procedure. We first defined ROIs using anatomical 

masks from a probabilistic atlas70 for both hemispheres combined (three early 
visual ROIs for regions shared between the ventral and dorsal stream (V1, V2 and 
V3), two ROIs in mid- and high-level ventral visual cortex (V4 and LOC) and 
four ROIs in dorsal visual cortex (IPS0, IPS1, IPS2 and SPL)). To avoid overlap 
between the ROI masks we removed all overlapping voxels. In a second step we 
selected the 325 most activated voxels of the participant-specific localizer results 
within the masks, using the objects > scrambled contrast for LOC and the objects 
& scrambled objects > baseline contrast for the remaining ROIs. This yielded 
participant-specific ROI definitions.

EEG acquisition and pre-processing. We recorded EEG data using an EASYCAP 
64-channel system and a Brainvision actiCHamp amplifier at a sampling rate of 
1,000 Hz. The electrodes were placed according to the standard 10–10 system. The 
data were filtered online between 0.03 and 100 Hz and re-referenced online to FCz.

Offline pre-processing was conducted using the EEGLAB toolbox (version 
14)71 and incorporated a low-pass filter with a cut-off at 50 Hz and epoching  
trials between −100 ms and 999 ms with respect to stimulus onset. Epochs  
were baseline corrected by subtracting the mean of the 100 ms prestimulus time 
window from the entire epoch. To clean the data from artefacts such as eye blinks, 
eye movements and muscular contractions, we used independent component 
analysis as implemented in the EEGLAB toolbox. SASICA72 was used to guide the 
visual inspection of components for removal. Components related to horizontal 
eye movements were identified using two lateral frontal electrodes (F7 and F8).  
In the last six participants, additional external electrodes were available that 
allowed for the direct recording of the horizontal electro-oculogram to identify 
and remove components related to horizontal eye movements. For blink artefact 
detection based on the vertical electro-oculogram, we used two frontal electrodes 
(Fp1 and Fp2). On average, 11 (s.d. 4) components were removed per participant. 
As a final step, we applied multivariate noise normalization to improve the 
signal-to-noise ratio and reliability of the data (following the recommendation  
of Guggenmos et al.73).

Object location classification from brain measurements. To determine the 
amount of location information independent of category present in multivariate 
brain measurements, we applied a common multivariate cross-classification 
scheme8,66–68. In essence, separately for each background condition, we classified 
location while assigning data from different object categories to the training and 
testing sets (Supplementary Fig. 1a). All classification analyses relied on binary 
c-support vector classification with a linear kernel as implemented in the libsvm 
toolbox74 (https://www.csie.ntu.edu.tw/cjlin/libsvm). Furthermore, all analyses 
were conducted in a participant-specific manner.

Spatially resolved multivariate fMRI analysis. We conducted an ROI-based and 
a spatially unbiased volumetric searchlight procedure24,75. For the ROI-based 
analysis, for each ROI separately, we extracted and arranged t values into pattern 
vectors for each of the 48 conditions and 10 runs. To increase the signal-to-noise 
ratio, we randomly binned run-wise pattern vectors into five bins of two runs, 
which were averaged, resulting in five pseudo-run pattern vectors. We then 
performed five-fold leave-one-pseudo-run-out cross-validation, training on four 
and testing on one pseudo-trial per classification iteration. In detail, we assigned 
four pseudo-trials per location condition of the same category to the training set 
(Supplementary Fig. 1a). We then tested the SVM on one pseudo-trial for each 
of the same two location conditions, but now from a different category, yielding 
per cent classification accuracy (50% chance level) as output. Equivalent SVM 
training and testing was repeated for all combinations of location and category 
pairs. With four locations that were all classified pairwise once, this resulted in six 
pairwise location classifications. In addition, each pairwise location classification 
was iterated across all possible training and testing combinations of the four 
categories. This yielded an additional 12 iterations per location classification across 
training and testing pairs of categories. Therefore, in total 72 (6 × 12) classification 
accuracies were averaged during each of the five-fold cross-validation iterations, 
resulting in 360 averaged accuracies in total. The result reflects how much 
category-tolerant location information was present for each ROI, participant and 
background condition separately.

The searchlight procedure was conceptually equivalent to the ROI-based 
analysis with the difference of the selection of voxel patterns entering the analysis. 
For each voxel vi in the 3D t value maps, we defined a sphere with a radius of 
four voxels centred around voxel vi. For each condition and run, we extracted 
and arranged the t values for each voxel of the sphere into pattern vectors. 
Classification of location across category proceeded as described above. This 
resulted in one average classification accuracy for voxel vi. Iterated across all voxels, 
this yielded a 3D volume of classification accuracies across the brain for each 
participant and background condition separately.

Time-resolved classification of location from EEG data. To determine the timing 
with which category-independent location information emerges in the brain, we 
conducted time-resolved EEG classification68,76. This procedure was conceptually 
equivalent to the fMRI location classification in that it classified location 
while assigning data from different categories to the training and testing sets 
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and was conducted separately for each background condition and participant 
(Supplementary Fig. 1a).

For each time point of the epoched EEG data, we extracted 63 EEG channel 
activations and arranged them into pattern vectors for each of the 48 conditions 
and 60 raw trials. To increase the signal-to-noise ratio, we randomly assigned raw 
trials into four bins of 15 trials each and averaged them into four pseudo-trials. 
The classification was conducted on those four pseudo-trials. We trained the SVM 
on three pseudo-trials and tested it on the remaining pseudo-trial, yielding per 
cent classification accuracy (50% chance level, binary classification) as output. 
This procedure was repeated 100 times with random assignment of trials to 
pseudo-trials, and across all combinations of location and all category pairs. As 
for the fMRI classification, in total 72 (6 location pairs × 12 category train–test 
pairs) classification accuracies were averaged. With 100 iterations to randomly 
assign trials to training and testing bins, this yielded a total of 7,200 classification 
accuracies, which were averaged per background condition and participant. The 
result reflects how much category-tolerant location information was present at 
each time point, participant and background condition separately.

Time-resolved EEG searchlight in sensor space. We conducted an EEG searchlight 
analysis resolved in time and sensor space (that is, across EEG channels)  
to gain insights into which EEG channels contained the highest amount of  
location information and therefore contributed most to the results of the 
time-resolved analysis described above. For the EEG searchlight, we conducted  
the time-resolved EEG classification as described above with the following 
difference: For each EEG channel c, we conducted the classification procedure  
on the five closest channels surrounding c. The classification accuracy was  
stored at the position of c. After iterating across all channels and down-sampling 
the time points to a 10 ms resolution, this yielded a classification accuracy map 
across all channels and down-sampled time points, for each participant and 
background condition separately.

Time generalization analysis of location from EEG data. To determine when object 
location representations are similar across background conditions and time, we 
used temporal generalization analysis34,38,68,76.

The procedure was equivalent to the multivariate time-resolved EEG 
location classification analysis but with two crucial differences. First, data from 
the no-clutter condition were assigned to the training set while data from the 
high-clutter condition were assigned to the testing set (Supplementary Fig. 1b). 
The second difference was that the SVM was not only tested on data from the same 
time point as that from which the testing data were derived, but additionally on 
data from each time point from the −100 to 600 ms peri-stimulus time window 
(in 10 ms steps). Like previously, training was conducted on three and testing on 
one pseudo-trial, resulting in 7,200 classification accuracies (6 location pairs × 12 
category train–test pairs × 100 randomization iterations), which were averaged 
per time point and participant. This resulted in a two-dimensional matrix of 
classification accuracies indicating the combination of time points in the no- and 
high-clutter conditions at which object location representations were similar in the 
no- and the high-clutter conditions.

Off-diagonal peak shift in time generalization matrix. To quantify whether 
classification accuracies were significantly higher below than on or above the 
diagonal, we computed the distance from the post-stimulus classification peak to 
the diagonal for single subjects. For this, we first determined the peak coordinates 
(px, py) along the x and y axes. We then computed the coordinates of the point on 
the diagonal that was closest to the peak using

bx =
(px + py)

2

since on the diagonal, bx = by. This allowed us to compute the shortest 
perpendicular Euclidean distance between the peak and the diagonal as

dEuclidean =
√

(px − bx)2 + (py − bx)2.

To be able to later test group distances against zero, we set

dEuclidean = dEuclidean × −1

for all cases where px < py, which is the case for all peaks above the diagonal.

Diagonal difference in temporal generalization matrix. To obtain a temporally 
resolved estimate of the time points at which the classification accuracy was  
higher below than above the diagonal, we subtracted the classification accuracies 
above the diagonal from the accuracies below the diagonal. Specifically, we 
subtracted each time point from the time point with the equivalent coordinates 
mirrored along the diagonal. For example, the time point with coordinates  
300 ms in the no-clutter (y axis) and 100 ms in the high-clutter (x axis) condition 
(above diagonal) was subtracted from the time point with coordinates 100 ms  
in the no-clutter (y axis) and 300 ms in the high-clutter (x axis) condition  
(below diagonal).

EEG–fMRI fusion. To determine the spatiotemporal correspondence between 
object location representations revealed at particular time points in the EEG signals 
and localized in particular cortical regions using fMRI, we used representational 
similarity analysis-based EEG–fMRI fusion37–39. We focused the analysis on 
representations emerging at peak latencies in the EEG and on ventral stream ROIs. 
The rationale for this approach is that time points and ROIs are linked if they 
represent object locations similarly, that is, if their representational geometries 
(dissimilarity relations between representations) are comparable.

As a measure of (dis-)similarity relations between location representations, 
we used the classification results from the multivariate analyses conducted. This 
choice assumes that representations for two locations will be classified more easily 
if they are more dissimilar. In detail, we considered the pairwise classification 
accuracies between all pairs of locations (six) and all training and testing pairs 
across categories (six) in both training and testing directions (two), resulting in 
a 72 × 1 RDV. For EEG, we extracted the RDVs for the time points within the 
confidence intervals around the EEG peak latency, averaged them across time 
points and, following the method employed previously32,77,78, averaged them across 
participants, resulting in one EEG RDV per background condition. For fMRI ROIs, 
we extracted the RDVs for each participant and background condition separately.

We compared fMRI and EEG RDVs for representational similarity by 
correlating (using Spearman’s R) the averaged EEG RDV with the subject-specific 
fMRI ROI RDVs, resulting in one correlation per subject, background condition 
and ROI.

Multivariate classification of category. We conducted a set of spatially resolved 
(fMRI: ROI and searchlight), time-resolved and temporally generalized analyses 
(EEG) of object category. The analyses were equivalent to the procedures described 
above with the crucial difference that the role of the experimental factors location 
and category was reversed (Fig. 6a,f).

Object location classification in DNNs. We investigated whether DNNs  
trained on object categorization display a similar pattern of gradually emerging 
location representations along their processing hierarchy as we observed in the 
human brain.

We selected the DNN CORnet-S for investigation, on the basis of its top 
performance in predictivity of neural responses in the ventral stream as quantified 
on the Brain-Score platform27. CORnet-S is a shallow recurrent DNN consisting of 
four computational blocks referred to as areas, analogous to ventral visual areas V1, 
V2, V4 and IT. Each block consists of four convolutional layers with self-recurrence 
and a skip connection followed by group normalization and a rectified linear unit. 
The response of the final IT block is averaged over the entire receptive field and 
mapped to categories using a fully connected linear decoder.

To investigate the representation of object location in CORnet-S, we performed 
multivariate pattern analysis analogous to the analysis performed on brain 
data, classifying object location across category separately for each background 
condition. For this, we extracted unit activations of the last layer in each block of 
the DNN after running a forward pass of the stimulus material from the 20 runs of 
the EEG experiment.

For the top layer of each block, we arranged the unit activations into  
pattern vectors for each of the 48 conditions and 60 trials. We then proceeded with 
the analysis as done with the EEG data (Supplementary Fig. 1a). We randomly 
assigned raw trials into four bins of 15 trials each and averaged them into four 
pseudo-trials. We trained the SVM on three pseudo-trials and tested it on the 
remaining pseudo-trial. This procedure was repeated 100 times with random 
assignment of trials to pseudo-trials, and across all combinations of location 
and all category pairs before results were averaged. This resulted in one averaged 
classification accuracy value per top layer of each CORnet-S block and per 
background condition. The result reflects how much category-tolerant location 
information was present in CORnet-S.

Statistical testing. Wilcoxon signed-rank test. We performed non-parametric 
two-tailed Wilcoxon signed-rank tests to test for above-chance classification 
accuracy at time points in the EEG time courses, in the EEG time generalization 
matrix, for Euclidean distances from peak to diagonal in the time generalization 
matrices, for above-chance classification in the ROI and fusion results and for 
significant voxels in the fMRI searchlight results. In each case, the null hypothesis 
was that the observed parameter (classification accuracy, correlation or Euclidean 
distance) came from a distribution with a median of chance-level performance 
(that is, 50% for pairwise classification and zero correlation or Euclidean distance). 
The resulting P values were corrected for multiple comparisons using false 
discovery rate (FDR) at 5% level if more than one test was conducted.

Bootstrap tests. We used bootstrapping to compute confidence intervals and 
to determine the significance of peak-to-peak differences in EEG latencies, 
peak-to-peak distances of fMRI searchlight classification peaks and for the distance 
from the group-averaged classification peak in the temporal generalization  
matrix to the diagonal in Figs. 5e and 6g. In each case, we sampled the participant 
pool 10,000 times with replacement and for each sample calculated the statistic  
of interest.
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For the fMRI searchlight peak distances, we first shuffled condition labels of 
two background conditions to then generate a distribution of peak distances under 
the null hypothesis.

To determine whether peak-to-peak Euclidean distances in searchlight 
classification maps were significantly longer than expected independent of 
background, we set P < 0.05. If the computed P value was smaller than this 
threshold with Bonferroni correction, we rejected the null hypothesis of no 
peak-to-peak distance.

For the EEG peak-to-peak latency differences, we bootstrapped the latency 
difference between two background conditions, yielding an empirical distribution 
that could be compared with zero.

To determine whether peak-to-peak latencies in the EEG time courses were 
significantly different from zero, we computed the proportion of values that were 
equal to or smaller than zero and corrected them for multiple comparisons using 
FDR at P = 0.05. To compute 95% confidence intervals for single peak latencies in 
the EEG time courses, we bootstrapped the peaks for each background condition 
and determined the 95% percentiles of this distribution.

ANOVAs. We ran sets of ANOVAs to test for main effects and the interaction 
between ROIs along the ventral and dorsal stream and background condition, 
which we detail below. For all reported ANOVAs, we tested whether the 
assumption of sphericity had been met using Mauchly’s test. Below, we report the 
effects for which the assumption of sphericity had been violated and for which the 
Greenhouse–Geisser estimates of sphericity were used to correct the degrees of 
freedom. For all remaining effects, the assumption of sphericity had been met.

To test for main effects and the interaction between ROIs along the ventral 
stream and background condition, we ran two 5 × 3 repeated-measures ANOVAs 
with within-subject factors of ROI (V1, V2, V3, V4 and LOC) and background (no, 
low and high clutter). The first ANOVA tested the results of location classification 
across categories. Mauchly’s test indicated that the assumption of sphericity had 
been violated for the main effect of background (P = 0.003). Therefore, the degrees 
of freedom were corrected using the Greenhouse–Geisser estimates of sphericity 
(ε = 0.72). The second ANOVA tested the results of category classification across 
locations. Mauchly’s test indicated that the assumption of sphericity had been 
violated for the main effect of ROI (P < 0.001). The degrees of freedom were 
corrected using the Greenhouse–Geisser estimates of sphericity (ε = 0.61).

To test for main effects and the interaction between ROIs along the dorsal 
stream and background condition, we ran two 7 × 3 repeated-measures ANOVAs 
with within-subject factors of ROI (V1, V2, V3, IPS0, IPS1, IPS2 and SPL) and 
background (no, low and high clutter). The first ANOVA tested the results 
of location classification across categories. Mauchly’s test indicated that the 
assumption of sphericity had been violated for the main effect of ROI (P < 0.001) 
and for the interaction (P = 0.028). Therefore, the degrees of freedom were 
corrected using the Greenhouse–Geisser estimates of sphericity (ε = 0.53 for the 
main effect of ROI, ε = 0.52 for the interaction). The second ANOVA tested the 
results of category classification across locations. Mauchly’s test indicated that the 
assumption of sphericity had been violated for the interaction (P < 0.001). The 
degrees of freedom were corrected using the Greenhouse–Geisser estimates of 
sphericity (ε = 0.59).

To test for main effects and the interaction in the results of the EEG–fMRI 
fusion, we ran a 5 × 2 repeated-measures ANOVA with factors of ROI (V1, V2, V3, 
V4 and LOC) and clutter (no, high). The assumption of sphericity had been met 
for all main and interaction effects.

All post hoc tests were conducted using pairwise t tests, and P values were 
corrected for multiple comparisons using Tukey correction.

Effect sizes. For the main and interaction effects of the ANOVAs, we computed the 
partial η2 using

Partial η
2
=

Sum of squares (SS)Effect
SSEffect + SSResidual

and the effect size estimate r (ref. 79) for the off-diagonal peak shifts across subjects, 
as tested with the Wilcoxon signed-rank test, using

r = Z
√

N
.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The experimental stimuli, fMRI data, EEG data and the neural network activations 
are publicly available via https://osf.io/7zswn/?view_only=21a714db58584ffeb283
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Study description In this study we recorded quantitative data separately from two experiments. 1) 3 Tesla functional magnetic resonance imaging 
(fMRI) data to acquire human brain activity data with high spatial resolution. 2) Electroencephalography (EEG) data to acquire human 
brain activity data with high temporal resolution. In both experiments, participants were performing a visual task while we recorded 
data.

Research sample 29 participants participated in the EEG experiment of which two were excluded because of equipment failure (N=27, mean age 26.8 
years, SD=4.3, 22 female). 25 participants (mean age 28.8, SD=4.0, 17 female) completed the fMRI experiment. The participant pools 
of the experiments did not overlap except for two participants. All participants provided informed consent prior to the studies and 
received a monetary reward or course credit for their participation. 

Sampling strategy Participants were selected according to the following requirements: 18-40 years old, with normal or corrected-to-normal vision, 
fulfillment of the MR security criteria (no implants or metal parts, tattoos, non-removable piercing, claustrophobia, pregnancy, 
neurological disorders, etc.). 
Sample size was chosen to exceed comparable M/EEG and fMRI classification studies to enhance power.

Data collection During both experiments, participants' responses were recorded with a computer, while the ongoing brain activity during the task 
was recorded using the 3T fMRI scanner (experiment 1) and the EEG (experiment 2). No one was present in the room together with 
the participants during the experiments. Blinding to the experimental conditions or the study hypothesis was not possible, but data 
was analyzed using a single pipeline for all subjects.

Timing 1) fMRI experiment: the data collection started February 2019 and ended in March 2019. 2) EEG experiment: the data collection 
started in May 2017 and ended in November 2017, with a short gap from July to September 2017 for data analysis.

Data exclusions 1) No participants were excluded in the fMRI experiment. 2) Two participants were excluded in the EEG experiment because of 
equipment failure.

Non-participation No participants declined participation or dropped out.

Randomization Participants were not allocated into experimental groups. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
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Recruitment Participants were recruited using the mailing lists for study participation of the psychology program, of the cognitive 
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Recruitment neuroscience program and of the medical studies program from the following Berlin universities: Freie Universität Berlin, 
Humboldt Universität zu Berlin, Charite.

Ethics oversight The study was approved by the ethics committee of the Department of Education and Psychology of the Freie Universität 
Berlin, Germany.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Event-related fMRI design.

Design specifications Each participant completed one fMRI recording session consisting of 10 runs (run duration: 552 s), resulting in 92 
minutes of fMRI recording of the main experiment. During each run, each of the 144 images of the stimulus set was 
shown once (regular trials). Image duration was 0.5 s, with a 2.5 s inter-stimulus-interval (ISI). Regular trials were 
interspersed every 3rd to 5th trial (equally probable, in total 36 per run) with catch trials. Catch trials repeated the 
image shown on the previous trial. Participants were instructed to respond with a button press to these repetitions (i.e. 
a one-back task). 

Behavioral performance measures Button presses and response times were recorded for each subject during the experiment. Responses were recorded to 
ensure that participants were directing their attention towards the stimuli. Response trials were excluded from analysis.

Acquisition

Imaging type(s) functional and structural MRI

Field strength 3 Tesla

Sequence & imaging parameters We acquired functional images covering the entire brain using a T2*-weighted gradient-echo planar sequence (TR=2, 
TE=30 ms, 70° flip angle, 3-mm3 voxel size, 37 slices, 20% gap, 192-mm field of view, 64 × 64 matrix size, interleaved 
acquisition).

Area of acquisition Whole brain.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We preprocessed fMRI data using SPM8. This involved realignment, coregistration and normalization to the structural MNI 
template brain. FMRI data from the localizer was smoothed with an 8 mm FWHM Gaussian kernel, but the main experiment 
data was left unsmoothed.

Normalization The normalization method applied on all functional brain data was non-linear. We entered the subject specific T1 structural 
image as source image and the MNI standard T1 provided in the SPM8 toolbox as template image.

Normalization template We used the T1 template in MNI space provided in the SPM8 toolbox.

Noise and artifact removal To remove movement artifacts from the fMRI time-series, we realigned the functional brain images in SPM8 using default 
parameters. In the GLM, movement parameters were entered as nuisance regressors. We applied no artifact removal for 
heart rate and respiration.

Volume censoring Was not applied.

Statistical modeling & inference

Model type and settings We performed multivariate pattern analysis on the brain activity data. Specifically, we trained and tested support-vector 
machines on the individual participants' data and performed a statistical analysis on classification results. 

Effect(s) tested Whole-brain: for all voxels, we tested whether classification accuracies significantly exceeded chance level. This was done 
separately for three background conditions (no, low and high background clutter).  
ROI: using a repeated-measures ANOVA with a 5×3 design, we tested for the interaction between 5 regions-of-interest in the 
ventral stream (V1, V2, V3, V4, LOC) and 3 background conditions (no, low and high cluttered backgrounds).  
Another repeated measures ANOVA with 7 ×3 design tested the interaction between 7 regions-of-interest in the dorsal 
stream (V1,V2,V3,IPS0,IPS1,IPS2,SPL) and 3 background conditions (no, low and high cluttered backgrounds).  
When the assumption of sphericity was violated, the degrees of freedom were corrected using the Greenhouse-Geisser 
estimates of sphericity. 

Specify type of analysis: Whole brain ROI-based Both
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Anatomical location(s)

We first defined ROIs in early visual cortex (V1, V2, V3), in the ventral stream (V4, LOC) and in the dorsal 
stream (IPS0,IPS1,IPS2,SPL) using anatomical masks from a probabilistic atlas (Wang et al., 2015) for both 
hemispheres combined. To avoid overlap between the ROI masks we removed all overlapping voxels. In a 
second step we selected the 325 most activated voxels in the participant-specific localizer results, using 
the objects > scrambled contrast for LOC and the objects & scrambled objects > baseline contrast for the 
remaining ROIs. This yielded participant-specific ROI definitions.

Statistic type for inference
(See Eklund et al. 2016)

We tested whether classification accuracies significantly exceeded chance-level. This was done per ROI and in the the whole-
brain searchlight it was done voxel-wise. In both cases we tested this with non-parametric, two-tailed Wilcoxon signed rank 
tests. In each case the null hypothesis was that the observed classification accuracies came from a distribution with a median 
of chance level performance (i.e., 50% for pairwise classification).

Correction The P-values resulting from the Wilcoxon signed rank tests were corrected for multiple comparisons using false discovery 
rate at 5% level under the assumption of independent or positively correlated tests. 

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis For the ROI-based analysis, for each ROI separately we extracted and arranged t-values into pattern vectors 
for each of the 48 conditions and 10 runs. To increase the SNR, we randomly binned run-wise pattern 
vectors into five bins of two runs which were averaged, resulting in five pseudo-run pattern vectors. We then 
performed 5-fold leave-one-pseudo-run-out-cross validation. In detail, we assigned four pseudo-trials per 
location condition of the same category to the training set. We then tested the SVM on one pseudo-trial for 
each of the same two location conditions, but now from a different category yielding percent classification 
accuracy (50% chance level) as output. Equivalent SVM training and testing was repeated for all 
combinations of location and category pairs before results were averaged. The result reflects how much 
category-tolerant location information was present for each ROI, participant and background condition 
separately. 
 
The searchlight procedure was conceptually equivalent to the ROI-based analysis with the difference of the 
selection of voxel patterns entering the analysis. 
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1 Abstract 15 

Spatial attention helps us to efficiently localize objects in cluttered environments. However, 16 

the processing stage at which spatial attention modulates object location representations 17 

remains unclear. Here we investigated this question identifying processing stages in time and 18 

space in an EEG and fMRI experiment respectively. As both object location representations 19 

and attentional effects have been shown to depend on the background on which objects appear, 20 

we included object background as an experimental factor. During the experiments, human 21 

participants viewed images of objects appearing in different locations on blank or cluttered 22 

backgrounds while either performing a task on fixation or on the periphery to direct their covert 23 

spatial attention away or towards the objects. We used multivariate classification to assess 24 

object location information. Consistent across the EEG and fMRI experiment, we show that 25 

spatial attention modulated location representations during late processing stages (>150ms, in 26 

middle and high ventral visual stream areas) independent of background condition. Our results 27 

clarify the processing stage at which attention modulates object location representations in the 28 

ventral visual stream and show that attentional modulation is a cognitive process separate from 29 

recurrent processes related to the processing of objects on cluttered backgrounds. 30 

  31 
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2 Introduction 32 

Spatial attention helps us to focus visual processing on the relevant portions of the visual field 33 

while ignoring its irrelevant portions (Desimone and Duncan, 1995). For example, spatial 34 

attention helps during navigation to determine where in visual space objects are located, 35 

allowing us to avoid obstacles and to reach desired targets better. 36 

 37 

While the importance of spatial attention is widely acknowledged, its neural basis remains 38 

incompletely understood. An important open question is, at which stage of the visual 39 

processing hierarchy attention modulates object location representations. Previous research 40 

yielded contradictory results. Considering the temporal emergence of attentional effects, some 41 

studies found attentional modulation early (Mangun, 1995; Hillyard et al., 1998a, 1998b; Luck 42 

et al., 2000) within a time window that corresponds to the initial bottom-up response within 43 

the first 150 ms (Lamme and Roelfsema, 2000; VanRullen and Thorpe, 2001; Fahrenfort et al., 44 

2007; Camprodon et al., 2010; Koivisto et al., 2011) while others found such effects only later 45 

(Wyatte et al., 2014; Groen et al., 2016; Kaiser et al., 2016; Battistoni et al., 2020). Similarly, 46 

considering the locus in the visual processing hierarchy some studies found attentional 47 

modulation already in V1 (Roelfsema et al., 1998; Martínez et al., 2001; Noesselt et al., 2002; 48 

Khayat et al., 2006; Lakatos et al., 2008; Briggs et al., 2013; Herrero et al., 2013) while others 49 

found such effects only or predominantly in higher-level brain regions (Buffalo et al., 2010; 50 

Peelen and Kastner, 2011; Kay et al., 2015). 51 

 52 

The contradiction might be resolved when considering together the processing stage at which 53 

object location representations emerge, the object’s viewing conditions and attentional 54 

modulation. Recent research has shown that viewing conditions influence the processing stage 55 

at which object location representations emerge. For example, object location representations 56 

emerge early for objects on blank and late on cluttered backgrounds (Hong et al., 2016; 57 

Graumann et al., 2022). Further, the surroundings of an object modulates the employment of 58 

spatial attention: spatial attention is more relevant for the localization of objects in clutter than 59 

in isolation (Treisman and Gelade, 1980; Wolfe, 1994).  60 

 61 

Here we set out to untangle the complex link between the processing stage at which object 62 

location representations emerge, its viewing conditions, and the effect of attentional 63 

modulation. 64 
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 65 

Our hypotheses are as follows. We set the stage by hypothesizing based on recent findings that 66 

the processing stage at which object location representations emerge depends on the object’s 67 

viewing conditions in particular its background (Graumann et al., 2022) independent of spatial 68 

attention. This replication hypothesis was termed HReplication (abbreviated HR; Fig. 1A,C). 69 

 70 

 71 

Figure 1. Experimental predictions based on hypotheses. A, Predictions for the effect of background on 72 
location information in the EEG experiment. HR predicts a delay in time for location information with high clutter 73 
compared to no clutter. B, Predictions for the effect of attention on location information in the EEG experiment. 74 
Predictions are based on HR in A. HD predicts that the time point when attentional modulation is highest depends 75 
on background: attentional modulation is highest at time points when location information is highest, depending 76 
on background condition. HS predicts that attentional modulation is always highest during late processing stages, 77 
independent of background condition. C, Predictions for the effect of background on location information in the 78 
fMRI experiment. HR predicts an increase along the ventral stream for location information with high clutter 79 
compared to no clutter. D, Predictions for the effect of attention on location information in the fMRI experiment. 80 
Predictions are based on HR in C. HD predicts that the region where attentional modulation is highest depends on 81 
background: attentional modulation is highest in regions where location information is highest, depending on 82 
background condition. HS predicts that attentional modulation always increases along the ventral stream, 83 
independent of background condition. 84 
 85 

 86 

On this basis we then theorize how an objects background impacts when (in time with respect 87 

to stimulus onset) and where (in the cortical processing hierarchy) attention modulates location 88 

representations. We propose two alternative hypotheses. 89 

 90 
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The first hypothesis is that attention and background interact: attention dynamically modulates 91 

location representations at the processing stage at which they first emerge, resulting in an 92 

interaction between background and attention (HDynamic, abbreviated HD; Fig. 1B,D). The 93 

alternative hypothesis is that attention modulates location representations statically and always 94 

during a late processing stage (Wyatte et al., 2014; Kay et al., 2015; Groen et al., 2016; Kaiser 95 

et al., 2016; Battistoni et al., 2020), independent of the background (HStatic, abbreviated HS; 96 

Fig. 1B,D). 97 

 98 

We investigated these hypotheses in an integrated research project consisting of an EEG and 99 

fMRI experiment in combination with multivariate pattern analysis methods. We manipulated 100 

background by presenting objects on backgrounds of different clutter levels, and attention by 101 

task instruction that attracted or diverted spatial attention from an object’s location. 102 

 103 

To anticipate, we first confirmed HR, i.e., object location representations emerged later in time 104 

and space when the object appeared on a cluttered background than on a blank background, 105 

independent of attention. We then found strong empirical support for HS. That is, attention 106 

modulates object location representations late in both time and space, independent of 107 

background. 108 

  109 
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3 Results 110 

For both the EEG and fMRI experiments the strategy to determine when and where attention 111 

modulates location representations was equivalent: first we sought to establish HR, i.e., that 112 

location representations of objects emerge at a later processing stage when objects are 113 

presented on cluttered backgrounds compared to blank backgrounds, independent of attention. 114 

On this basis we then arbitrated between HD and HS, i.e., whether attention dynamically 115 

modulates object location representations at different processing stages depending on 116 

background, or whether it statically modulated object location representations always at a late 117 

processing stage. 118 

 119 

The difference between the EEG and the fMRI analyses lies in the way that the processing 120 

stages are determined: EEG determines the temporal delay with respect to image onset (Fig. 121 

1A,B) and fMRI determines the region in the ventral visual stream (Fig. 1C,D) in which 122 

experimental effects emerge. 123 

 124 

In the following we give the specifics of the EEG and fMRI experiments, the precise 125 

predictions, and the results. We begin with the EEG experiment determining the timing of 126 

attentional modulation, followed by the fMRI experiment determining where in the visual 127 

processing hierarchy the attentional modulation occurs. 128 
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 129 
Figure 2. Experimental design and tasks. A, Experimental design in the EEG experiment. We used a fully 130 
crossed design with factors: object category, location, background and attention. Green translucent circles 131 
represent attentional width. B, Experimental design in fMRI experiment. The design was equivalent to the EEG 132 
experiment, except that the factors category and location had two levels. C, Trial timing and example condition 133 
in EEG experiment. D, Trial timing and example condition in fMRI experiment. E, Tasks. In the peripheral 134 
attention condition (left) participants responded with button press when a glass appeared in the periphery, while 135 
fixating their gaze on the central cross. Digits presented on fixation were task-irrelevant. In the fixation attention 136 
condition (right) participants responded with button press when the digit 0 appeared on fixation, while fixating on 137 
the central cross. Objects in the periphery were irrelevant in this task. Visual stimulation was the same in both 138 
tasks on regular trials (see bottom row ‘Button press: no’). 139 
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3.1 Attentional modulation of object location representations in time 140 

For the EEG experiment we used an experimental design with fully crossed experimental 141 

factors background and attention with two levels per factor (2 background condition levels × 2 142 

attention condition levels, Fig. 2A). 143 

 144 

In detail, participants saw objects from four different categories, each presented in four 145 

locations (Fig. 2A). The two background conditions were no and high clutter. Each object in 146 

each location was presented in both background conditions. Each combination of object 147 

category, location and background was then also crossed with the two levels of attention 148 

conditions: the peripheral and fixation attention conditions (Fig. 2A). Attention conditions 149 

were solely defined by the task that participants performed, while visual stimulation was 150 

identical (Fig. 2E). In the peripheral attention condition, participants directed their covert 151 

spatial attention to the periphery and responded to a catch object (glass) with button press (Fig. 152 

2A,E). In the fixation attention condition, participants performed a demanding task on fixation 153 

to remove their spatial attention from the objects in the periphery (Fig. 2A,E). 154 

 155 

 156 
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Figure 3. Classification schemes and results of EEG location classification. A, Scheme for the classification 157 
of object location across categories within any background and attention condition. We trained a support vector 158 
machine (SVM) to distinguish brain activation patterns evoked by objects of a particular category presented at 159 
two locations (here: faces bottom left and right) and tested the SVM on activation patterns evoked by objects of 160 
another category (here: animals) presented at the same locations. Objects are enlarged here for display purposes. 161 
In the experiment objects did not extend across quadrants. B, Results of time-resolved location across category 162 
classification from EEG data. Results are color-coded by background and attention condition, with significant 163 
time points indicated by lines below curves (N=26, P<0.05, FDR-corrected), 95% confidence intervals of peak 164 
latencies are indicated by lines above curves. Shaded areas around curves indicate SEM. C, Comparison of peak 165 
latencies of curves in B. Error bars represent 95% CIs. Stars indicate significant peak latency differences (N=26, 166 
bootstrap test with 10,000 bootstraps). D, Results of the location across category classification searchlight in EEG 167 
channel space at peak latencies (as shown in B) in each condition. Significant electrodes are indicated by grey 168 
dots (N=26, two-tailed Wilcoxon signed-rank test, P<0.05, FDR-corrected across electrodes and time points). E, 169 
Difference curves resulting from subtracting the time courses of the foveal from the peripheral attention condition 170 
in each background condition. Conventions as in B. 171 
 172 

In total, this 2 × 2 experimental design resulted in 4 factor combinations. We performed a time-173 

resolved and pair-wise classification analysis of location across category within each of these 174 

four factor combinations separately (Fig. 3A,B). This meant training a classifier to distinguish 175 

between millisecond-specific EEG pattern vectors associated with two locations and testing on 176 

a held-out testing data set associated with the same two locations. We performed the 177 

classification across object category, that is training on data associated with locations from one 178 

object category and testing on data from another category (Fig. 3A). This ensured that location 179 

classification results were not confounded with category information and allowed us to draw 180 

conclusion about location representations independent of object category representations. 181 

3.1.1 The temporal dynamics of object location representations with blank and cluttered 182 

backgrounds 183 

To lay the basis for later analyses on attentional modulation, we first tested HR, i.e., that 184 

location representations of objects with clutter emerge later than on blank backgrounds, 185 

independent of attention. For this we determined and compared the latencies of the 186 

classification peaks in the EEG time courses of both background conditions, assuming that the 187 

peaks represent the time points at which representations become most differentiable (DiCarlo 188 

and Cox, 2007). Our prediction was that location information would peak later in the high than 189 

in the no clutter condition, because dissecting objects from the background requires additional 190 

grouping and segmentation operations implemented in recurrent processing and thus increasing 191 

processing time (Groen et al., 2018; Seijdel et al., 2020, 2021; Graumann et al., 2022). 192 

 193 

The results of the time-resolved location classification are shown in Fig. 3B. We read out 194 

location information from the EEG signal in all background and attention conditions above 195 

chance level (N=26, two-tailed Wilcoxon signed-rank test, P<0.05, FDR-corrected). 196 



 10 

 197 

Focusing on peak latencies (95% confidence intervals reported in brackets, N=26, 10,000 198 

bootstrap samples), we observed that time courses in the no and high clutter conditions peaked 199 

at different times. In the no clutter condition, location information peaked early, regardless of 200 

attention condition (Fig. 3B; peak latency peripheral condition: 148 ms (135–153.5 ms); peak 201 

latency fixation condition: 137 ms (135–152 ms)). With high clutter, location information 202 

peaked later in both attention conditions (Fig. 3B; peripheral condition: 264 ms (232–365 ms); 203 

fixation condition: 216 ms (213–251 ms)). To test whether the peak latencies across 204 

background conditions were significantly different, we bootstrapped the peak-to-peak latency 205 

differences between pairs of no and high clutter condition peaks (Fig. 3C, 95% confidence 206 

intervals in brackets, N=26, bootstrap test, 10,000 bootstraps, FDR-corrected). This was done 207 

both within and across attention conditions. Overall, the results clearly and consistently support 208 

HR. Location information peaked significantly earlier in the no compared to the high clutter 209 

conditions independent of attention condition: Within attention condition, the peak-to-peak 210 

latency difference between background conditions was 116 ms (83–223 ms; P<0.001) in the 211 

peripheral attention condition and 79 ms in the fixation attention condition (63–114 ms; 212 

P<0.001). Across attention conditions, the delays between background condition peaks were 213 

also significant (peripheral attention and no clutter condition vs. fixation attention and high 214 

clutter condition: 68 ms delay, 63–105 m; P<0.001; fixation attention and no clutter condition 215 

vs. peripheral attention and high clutter condition: 127 ms delay, 83–224 ms, P<0.001). 216 

 217 

Additional analyses of the observed effects reproduced previously observed characteristics of 218 

object location representations (Graumann et al., 2022) and thus further supported HR. A 219 

searchlight analysis in EEG sensor space (Fig. 3D) localized the sources of the peaks to 220 

occipito-temporal electrodes (Fig. 3D), suggesting the locus of object location representations 221 

to be in occipital and temporal cortices. A supplementary time-generalization analysis (King 222 

and Dehaene, 2014) showed that location representations for objects on blank and cluttered 223 

background emerged within the same processing stage, but with a delay with cluttered 224 

backgrounds (Supplementary Fig. 1, Supplementary Methods 1). 225 

 226 

Together, these results provide empirical evidence for HR. 227 
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3.1.2 Late attentional modulation of location representations independent of background 228 

Affirming HR formed the basis for arbitrating between our main hypotheses HD and HS. HD 229 

predicts that attentional modulation is highest when location information is highest: with no 230 

clutter, it predicts an early modulation in time of location representations and with high clutter 231 

it predicts a late modulation in time (Fig. 1B). HS states that spatial attention modulates location 232 

representations always late, after the end of the bottom-up response at ~100-150 ms (Lamme 233 

and Roelfsema, 2000; VanRullen and Thorpe, 2001; Fahrenfort et al., 2007; Camprodon et al., 234 

2010; Koivisto et al., 2011). Thus, HD predicts an interaction between attention and background 235 

and HS predicts that they are independent. 236 

 237 

To assess HS and HD we determined the time course of attentional modulation in both 238 

background conditions. Attentional modulation was defined as an enhancement of 239 

representations (Desimone and Duncan, 1995; Reynolds and Chelazzi, 2004; Briggs et al., 240 

2013). To quantify attentional modulation, we subtracted classification accuracies in the 241 

fixation attention condition from the peripheral attention condition, within each background 242 

condition. Since visual stimulation was identical across attention conditions, we attributed 243 

differences between them to attentional modulation. 244 

 245 

Fig. 3E shows the result of this analysis. We found attentional modulation of location 246 

representations in both background conditions in a late time window, providing clear evidence 247 

for HS. In detail, we observed a significant positive difference in the no clutter condition 248 

starting from ~300 ms, reflecting attentional modulation (Fig. 3E; N=26, two-tailed Wilcoxon 249 

signed-rank test, P<0.05, FDR-corrected). In the high clutter condition, we found evidence for 250 

attentional modulation starting from 182 ms (Fig. 3E; N=26, two-tailed Wilcoxon signed-rank 251 

test, P<0.05, FDR-corrected), as reflected in a significant positive difference that lasted until 252 

the end of the time window. 253 

 254 

Together, these results show that attention modulates object location representations in a late 255 

time window after the bottom-up response, independent of background. This constitutes strong 256 

evidence for HS. 257 
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3.1.3 Dissecting transient and persistent components of attentional modulation 258 

 259 
Figure 4. EEG results of time-generalization analyses within each background and attention condition. 260 
Rows represent background and columns represent attention conditions. A, Location classification across 261 
categories and time points in the no clutter & peripheral attention condition. Horizontal and vertical black lines 262 
indicate stimulus onset, oblique black line highlights the diagonal. White outlines indicate significant time points 263 
(N=26, two-tailed Wilcoxon signed-rank test, P<0.05, FDR-corrected). B, Location classification across 264 
categories and time points in the no clutter & fixation attention condition. C, Difference matrix resulting from 265 
subtracting the matrices representing fixation (B) from peripheral attention (A) in the no clutter condition. Plot 266 
conventions as in A. D, Location classification across categories and time points in the high clutter & peripheral 267 
attention condition. E, Location classification across categories and time points in the high clutter & fixation 268 
attention condition. F, Difference matrix resulting from subtracting the matrices representing fixation (E) from 269 
peripheral attention (D) in the high clutter condition. 270 
 271 

While clearly supporting HS, the results hitherto do not yet characterize the temporal dynamics 272 

underlying attentional modulation of location representations. Typically during visual 273 

perception, time-resolved multivariate results reflect a conglomerate of both rapidly changing 274 

transient information flow as well as persistent activity which maintains certain types of 275 

information over long stretches of time (Cichy et al., 2014; King and Dehaene, 2014). 276 

 277 

Thus, here we investigated whether attention and background modulate persistent, transient or 278 

both aspects of location representations. For this we conducted temporal generalization 279 

analysis (King and Dehaene, 2014). This resulted in two-dimensional time generalization 280 

matrices, indexed in both dimensions in time indicating similarities of object location 281 

representation across time. While transient representations are reflected as high information on 282 

the diagonal of such matrices, persistent representations are found off-diagonal. 283 

 284 
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As previously, we classified location representation within background and attention condition, 285 

resulting in 4 time-generalization matrices (Fig. 4A,B,D,E), corresponding to the 4 286 

classification time courses above (Fig. 3B). We first present the single results ordered by 287 

background condition, before quantifying attentional modulation. 288 

 289 

In the no clutter condition, we found similar results in both attention conditions (Fig. 4A,B): 290 

location information peaked early at ~100 ms on the diagonal, representing transient 291 

information flow (N=27, P<0.05, two-tailed Wilcoxon signed-rank test, FDR-corrected). 292 

Starting from ~250 ms, location information generalized more broadly across time points, 293 

indicating persistent information. In the high clutter condition (Fig. 4D,E) information 294 

generalized broadly across time points starting from ~140 ms in both attention conditions, 295 

(N=27, P<0.05, two-tailed Wilcoxon signed-rank test, FDR-corrected), indicating persistent 296 

information. Transient information peaked on the diagonal starting from ~240 ms. 297 

 298 

We quantified attentional modulation as above (Fig. 3E) by comparing the classification results 299 

for the two attention conditions, subtracting the results of the fixation attention condition from 300 

the peripheral attention condition. 301 

 302 

We found that spatial attention modulated both transient and persistent representations in late 303 

time windows, independent of background. In the no clutter condition, attention modulated the 304 

persistent clusters from ~230 ms and both transient and persistent information from ~300 ms 305 

(Fig. 4C; N=27, P<0.05, two-tailed Wilcoxon signed-rank test, FDR-corrected). In the high 306 

clutter condition, spatial attention modulated location representations across the entire time 307 

window starting from ~180 ms (Fig. 4F; N=27, P<0.05, two-tailed Wilcoxon signed-rank test, 308 

FDR-corrected). 309 

 310 

In sum, we found that attention modulates both transient and persistent representations of 311 

object location representations in late time beyond 150 ms. 312 

  313 
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3.2 Clutter and attention independently affect location representations along the 314 

ventral visual stream 315 

 316 

Figure 5. Location across category classification results in the four conditions in early (V1, V2, V3), ventral (V4, 317 
LOC) and dorsal (IPS0-2, SPL) visual ROIs. Stars below bars indicate significant above-chance classification 318 
(N=20, two-tailed Wilcoxon signed-rank test, P<0.05 false discovery rate (FDR) corrected). Error bars represent 319 
standard error of the mean (SEM). A, ROIs on cortical surface. B, V1. C, V2. D, V3. E, V4. F, LOC. G, IPS0. H, 320 
IPS1. I, IPS2. J, SPL. 321 
 322 

ROI Main effect background Main effect attention Interaction effect 

V1 F(1,19)=9.88, P=0.005*, partial 

2=0.34 

 

F(1,19)=2.30, P=0.15, 

partial 2=0.11 

F(1,19)=0.00, P=0.97, 

partial 2=0.00 

V2 F(1,19)=11.60, P=0.003*, 

partial 2=0.38 

 

F(1,19)=0.94, P=0.35, 

partial 2=0.38 

F(1,19)=0.58, P=0.46, 

partial 2=0.03 

V3 F(1,19)=3.48, P=0.08, partial 

2=0.16 

 

F(1,19)=13.36, P=0.002*, 

partial 2=0.41 

 

F(1,19)=0.67, P=0.42, 

partial 2=0.03 

V4 F(1,19)=16.64, P<0.001*, 

partial 2=0.47 

 

F(1,19)=45, P<0.001*, 

partial 2=0.70 

F(1,19)=2.21, P=0.15, 

partial 2=0.10 
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LOC F(1,19)=0.08, P=0.78, partial 

2=0.00 

 

F(1,19)=24.04, P<0.001*, 

partial 2=0.56 

 

F(1,19)=0.06, P=0.81, 

partial 2=0.00 

IPS0 F(1,19)=0.29, P=0.60, partial 

2=0.02 

 

F(1,19)=1.40, P=0.25, 

partial 2=0.07 

 

F(1,19)=5.45, P=0.03, 

partial 2=0.22 

IPS1 F(1,19)=0.03, P=0.87, partial 

2=0.00 

F(1,19)=2.41, P=0.14, 

partial 2=0.11 

 

F(1,19)=0.53, P=0.47, 

partial 2=0.03 

IPS2 F(1,19)=0.97, P=0.34, partial 

2=0.05 

F(1,19)=0.58, P=0.46, 

partial 2=0.03 

 

F(1,19)=0.03, P=0.87, 

partial 2=0.00 

SPL F(1,19)=0.12, P=0.74, partial 

2=0.01 

F(1,19)=4.38, P=0.05, 

partial 2=0.19 

F(1,19)=0.72, P=0.41, 

partial 2=0.04 
Table 1. Results of the 2 × 2 repeated-measures ANOVA (N=20) with factors background (no clutter, high clutter) 323 
and attention (peripheral, fixation), analyzing location classification accuracies in 9 ROIs that were included in 324 
the analyses. Asterisks behind P-values indicate significance with FDR correction across number of comparisons 325 
(for 9 ROIs). 326 
 327 

We proceed to investigate which visual processing stages are modulated by background and 328 

attention in an fMRI experiment, determining processing stages by localizing and assessing 329 

cortical regions of the ventral visual stream (Fig. 1C,D). In this context HR predicts that location 330 

representations of objects emerge in higher regions along the ventral stream when objects are 331 

presented on cluttered backgrounds compared to blank backgrounds (Graumann et al., 2022; 332 

Fig. 1C). HD predicts that attentional modulation is high where location information is high 333 

(Fig. 1D): with no clutter, attention modulates location representations throughout the ventral 334 

stream and with high clutter attention modulates location representations in mid- or high-level 335 

visual areas. HS instead predicts that attentional modulation is high in mid- and high-level 336 

visual areas only, independent of background. 337 

 338 

The design of the fMRI experiment was equivalent to the design in the EEG experiment with 339 

a reduced number of levels for the factors category and location. This adaptation was made to 340 

accommodate the longer trial duration required for our fMRI event-related design (Fig. 2D) 341 

while maintaining a feasible session duration. We presented objects from two categories (faces, 342 

cars) in two locations (left and right horizontally from fixation; Fig. 2B) instead of four 343 

categories and locations. To characterize the effects of background and spatial attention on 344 

location representations in visual cortex, we defined regions-of-interest (ROIs) along the 345 

ventral stream, since HR predicted effects to emerge there based on previous studies (Hong et 346 

al., 2016; Graumann et al., 2022). We additionally included ROIs in the dorsal stream, since it 347 

has been implicated in visuospatial (Ungerleider and Haxby, 1994; Milner and Goodale, 2006; 348 
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Kravitz et al., 2011; Groen et al., 2022) and attentional processing (Silver et al., 2005; 349 

Szczepanski et al., 2010; Sprague and Serences, 2013). 350 

 351 

We classified location across category using an analogous classification scheme as in the EEG 352 

experiment. We trained a classifier on fMRI patterns associated with two locations of one 353 

object category and subsequently cross-validated the classifier on new testing data associated 354 

with the same locations of a new object category. This classification was performed in each 355 

ROI separately, for each level of the background condition (no clutter, high clutter) and for 356 

each level of attention conditions (periphery, fixation) separately, resulting in four 357 

classification accuracies per ROI and subject. We included three ROIs in early visual cortex 358 

(V1, V2, V3), two ROIs in the ventral stream (V4, LOC) and four ROIs in the dorsal stream 359 

(IPS0, IPS1, IPS2, SPL).  360 

 361 

We tested HR, HS and HD in 2 × 2 repeated-measures ANOVAs (N=20, FDR-correction for 362 

multiple comparisons) with factors background (no clutter, high clutter) and attention 363 

(peripheral, fixation) in all ROIs of the ventral and dorsal visual streams, focusing on the 364 

ventral visual stream first. 365 

 366 

Hypothesis HR predicted a main effect of background in early visual areas, but not in high-367 

level visual areas of the ventral visual stream. Consistent with the predictions of HR, we found 368 

significant main effects of background in early visual areas V1 and V2 (Fig. 5A,B; V1: 369 

F(1,19)=9.88, P=0.005, partial 2=0.34; V2: F(1,19)=11.56, P=0.003, partial 2=0.3), but not in 370 

mid- and high-level visual areas V3 and LOC (Table 1), except for V4, which also showed a 371 

main effect of background (F(1,19)=16.64, P<0.001, partial 2=0.47).  372 

 373 

On this basis arbitrating between HS and HD we found clear evidence for HS. Location 374 

information in mid- and high-level ventral visual areas V3, V4 and LOC all showed a 375 

significant main effect of attention (Fig. 5C,D,E; V3: F(1,19)=13.36, P=0.002, partial 2=0.41; 376 

V4: F(1,19)=45, P<0.001, partial 2=0.70; LOC: F(1,19)=24.04, P<0.001, partial 2=0.56), but no 377 

significant interaction between background and attention as would have been predicted by HD. 378 

 379 

Equivalent testing in the dorsal visual stream revealed no significant main or interaction effect 380 

in any regions along the dorsal stream (Fig. 5F,G,H,I; Table 1), consistent with the observation 381 
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that object location representations emerge rather along the ventral than the dorsal stream 382 

(Hong et al., 2016; Graumann et al., 2022). 383 

 384 

In sum, the results of the fMRI experiment concur with the results of the EEG experiment in 385 

providing evidence for HR and HS. Object location representations emerge gradually along the 386 

processing hierarchy of the ventral visual stream, and attention modulates object location 387 

representations in mid- and high-level ventral areas independent of the object’s background. 388 

  389 
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4 Discussion 390 

Using EEG and fMRI we investigated at which stage of the visual processing hierarchy 391 

attention modulates object location representations. Our results converge across the two 392 

experiments and imaging modalities into a common view. We reproduced the recent 393 

observation that object location representations emerge at later processing stages when 394 

presented on cluttered than on blank backgrounds (HR) and showed that this holds independent 395 

of attention. On this basis we examined the effect of attention on object location 396 

representations, finding that attention modulated location representations statically during late 397 

stages of visual processing in cortical time and space, independent of the object’s background 398 

(HS). 399 

4.1 Disentangling the influences of background and attention on the temporal dynamics 400 

of location representations 401 

Recent research has revealed that object location representations emerge later in the ventral 402 

visual processing hierarchy when objects appear on cluttered rather than on blank backgrounds 403 

(Hong et al., 2016; Graumann et al., 2022). However, it remained unclear to which degree this 404 

effect relied on or was influenced by attention or not. Previous research has highlighted 405 

attention as important for object perception under cluttered conditions (Treisman and Gelade, 406 

1980; Wolfe, 1994; Reddy and Kanwisher, 2007; Lee and Maunsell, 2010). Further, both 407 

temporal delays observed for object perception and attention have been related to recurrent 408 

processes (Tang et al., 2014; Kar et al., 2019; Rajaei et al., 2019; van Bergen and Kriegeskorte, 409 

2020), suggesting shared neural mechanisms. 410 

 411 

Here, we clarify the relationship and find a dissociation: while cluttered viewing conditions 412 

delay processing (see also time-generalization analysis in Supplementary Fig. 1, 413 

Supplementary Methods 1), spatial attention in contrast increases information without 414 

changing its timing. These results suggest that background clutter and attention have 415 

differential effects on object location processing. Background clutter, like other factors that 416 

increase image complexity, triggers local recurrent processes that can be measured in delayed 417 

responses (Tang et al., 2014, 2018; Groen et al., 2018; Kar et al., 2019; Rajaei et al., 2019; 418 

Seijdel et al., 2021; Graumann et al., 2022). In contrast, spatial attention triggers modulation 419 

of neural responses that can be measured as enhancement of response magnitude (Desimone 420 

and Duncan, 1995; Reynolds and Chelazzi, 2004; Briggs et al., 2013). 421 
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4.2 Attention modulates location representations later than the initial bottom-up 422 

response 423 

The EEG results revealed attentional modulation of location representations in a late time 424 

window beyond the first 150 ms of the bottom-up response independent of the object’s 425 

background. In-depth investigation further revealed that both transient and persistent neural 426 

components were modulated. This directly supports the hypothesis Hs that the processing stage 427 

of attentional modulation is static and refutes the hypothesis HD that the processing stage at 428 

which attention modulates location representations changes dynamically. 429 

 430 

Our results are seemingly at odds with earlier studies finding attentional modulation before 150 431 

ms in the P1 (Hillyard et al., 1998b; Luck et al., 2000; Itthipuripat et al., 2019) and the N1 432 

(Mangun, 1995; Hillyard et al., 1998a; Itthipuripat et al., 2019) component. How is this 433 

discrepancy to be explained? We believe that the viewing conditions and the choice of the 434 

stimulus are relevant. Above mentioned ERP studies employed simple artificial stimulation 435 

conditions which might elicit attentional modulation already early. However, later studies 436 

using naturalistic stimuli, comparable to the ones used here, did not find early attentional 437 

modulation (VanRullen and Thorpe, 2001; Groen et al., 2016; Kaiser et al., 2016; Battistoni et 438 

al., 2020). Together this questions the degree to which previously observed effects of early 439 

attentional modulation generalize to more complex stimuli and naturalistic viewing conditions 440 

encountered in the real world. 441 

 442 

Another contributing factor to the discrepancy could be that attentional enhancement of early 443 

neural responses is stronger when the visual task is more difficult or when visual processing is 444 

overloaded (Spitzer et al., 1988; Lavie, 1995; Luck et al., 2000; Boudreau et al., 2006; Chen et 445 

al., 2008) which might have been the case in earlier ERP studies e.g. by presenting stimuli in 446 

faster sequences (Hillyard et al., 1998b). In contrast in our experiment, stimuli in the no clutter 447 

condition were highly salient and presented long enough to be clearly visible. Future research 448 

comparing attentional modulation of artificial vs. real-world stimuli with different levels of 449 

task difficulty are needed to resolve this issue. 450 

4.3 Attentional modulation in mid- and high-level ventral visual areas 451 

Consistent with the EEG results indicating attentional modulation of later visual object 452 

processing stages in time, the fMRI experiment localized those modulations to mid- and high-453 

level ventral visual areas. While our results do not exclude the existence of attentional 454 
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modulation also in early visual cortex as observed previously (Roelfsema et al., 1998; Gandhi 455 

et al., 1999; Martínez et al., 2001; Noesselt et al., 2002; Khayat et al., 2006; Lakatos et al., 456 

2008; Briggs et al., 2013; Herrero et al., 2013; Itthipuripat et al., 2019), they suggest that the 457 

modulation might be strongest and thus most likely to be detected at later stages of ventral 458 

visual cortex (Murray and Wojciulik, 2004; Buffalo et al., 2010; Peelen and Kastner, 2014; 459 

Kay et al., 2015). Our results add further evidence towards the view that attentional modulation 460 

begins in higher processing stages and is then relayed back to lower stages (Buffalo et al., 461 

2010), which could be reflected as increasing attentional modulation along the ventral stream 462 

(Kay et al., 2015). 463 

4.4 Location representations of objects on cluttered backgrounds in the ventral stream 464 

The fMRI results reveal a double dissociation between the effects of clutter and attention on 465 

early and late ventral visual areas: early visual areas show an effect of background but not of 466 

attention, while the reverse is true for mid- and high-level visual areas. Put differently, we find 467 

that both robustness to clutter (Hong et al., 2016; Graumann et al., 2022) and attentional 468 

modulation increase along the ventral visual stream (Buffalo et al., 2010; Kay et al., 2015). We 469 

speculate that these phenomena depend on the common mechanistic and computational basis 470 

of receptive field size increases along the ventral visual stream. Attention increases population 471 

receptive field (pRF) size in higher-level ventral areas, thereby enhancing location sensitivity 472 

(Kay et al., 2015). Such pRF size increase might also simultaneously benefit object 473 

segmentation from cluttered backgrounds by encoding object location in global voxel patterns 474 

(Eurich and Schwegler, 1997; Kay et al., 2015). This benefit for object segmentation might in 475 

contrast not be present in early visual cortex where pRF size is small (Wandell and Winawer, 476 

2015) and cells respond in a location unspecific way across all stimulated portions of the visual 477 

field to both objects and background clutter. 478 

4.5 Limitations 479 

We highlight two limitations of our experimental designs that are important for the correct 480 

interpretation of the results. 481 

 482 

The first limitation is that in our experiment object locations and the content of the background 483 

are randomly paired and thus incongruent. In contrast, in the real world objects typically appear 484 

in locations congruent with the background scene. Attentional selection can exploit such 485 

relations between objects and backgrounds (Wolfe et al., 2011; Kaiser et al., 2019; Võ et al., 486 
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2019; Battistoni et al., 2020) on the basis of scene gist information (Oliva, 2005; Greene and 487 

Oliva, 2009). In our experiment this type of information cannot be exploited. Thus, when object 488 

locations and scene background are congruent, attentional modulation might be faster than 489 

revealed here. The flipside of the limitation is that our experimental design isolates the effect 490 

of clutter on visual processing and attentional modulation independent of congruency effects. 491 

To determine the effect of congruency of object location and background on visual processing, 492 

studies are needed that additionally investigate congruency as an experimental factor. 493 

 494 

Another limitation is that we did not directly assess the behavioral effects of attentional 495 

modulation on localization performance. Spatial attention benefits object localization in 496 

cluttered displays (Treisman and Gelade, 1980; Wolfe, 1994; Wolfe et al., 2011) by increasing 497 

processing speed. Future studies may combine assessment with brain imaging to link the effect 498 

of attention for objects on cluttered backgrounds in brain and behavior. 499 

4.6 Conclusion 500 

In daily life, we use our spatial attention to help us focus on relevant portions of the visual field 501 

in cluttered environments (Wolfe et al., 2011). Our results clarify that attention modulates 502 

object location representations at late processing stages, using both spatial and temporal 503 

markers. Furthermore, they establish that attentional modulation is a cognitive process which 504 

is separate from recurrent processes which are engaged when objects appear in cluttered 505 

environments. 506 

  507 
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5 Materials and Methods 508 

5.1 Participants in EEG and fMRI experiment 509 

27 participants completed the EEG experiment. One participant was excluded because of 510 

technical problems, resulting in 26 participants (mean age 26.42 years, SD=4.12, 19 female) 511 

included in the final EEG study. 23 participants completed the fMRI experiment, out of which 512 

one also participated in the EEG experiment. Three participants were excluded because they 513 

did not complete the whole experiment, resulting in 20 participants (mean age 26.71 years, 514 

SD=4.48, 13 female) included in the final fMRI study.  515 

All participants had no history of neurological disorders and normal or corrected-to-normal 516 

vision. Participants provided informed consent prior to the studies and participation was 517 

compensated with payment or course credit. The study was conducted in accordance with the 518 

Declaration of Helsinki and the ethics committee of the Department of Education and 519 

Psychology of the Freie Universität Berlin approved the study in advance. 520 

5.2 Experimental design 521 

5.2.1 EEG experimental design 522 

The experimental design in the EEG study comprised the four factors object category (animals, 523 

cars, faces, chairs, Fig. 2A left, with 3 exemplars per category), location (left up, left bottom, 524 

right bottom, right up, Fig. 2A left center), background (no and high clutter, Fig. 2A center) 525 

and attention (on periphery or on fixation, Fig. 2A right center). These four factors were fully 526 

crossed, to investigate them independently of each other. In total, this created 192 individual 527 

conditions (12 object exemplars × 4 locations × 2 background conditions × 2 attention 528 

conditions). For further analysis, data was collapsed across exemplars, so that data was 529 

analyzed at the level of category. Thus, the number of conditions for further analysis was 64 530 

(4 categories × 4 locations × 2 background conditions × 2 attention conditions, Fig. 2A right). 531 

 532 

5.2.2 fMRI experimental design 533 

The experimental factors in the fMRI experiment were the same as in the EEG experiment, but 534 

there were two instead of four levels for the factors category (cars, faces) and location (left, 535 

right; Fig. 2B). This resulted in 48 individual conditions (6 object exemplars × 2 locations × 2 536 

background conditions × 2 attention conditions). For further analysis, data was likewise 537 

collapsed across exemplars, so that data was analyzed at the level of category. Thus, the number 538 



 23 

of conditions for further analysis was 16 (2 categories × 2 locations × 2 background conditions 539 

× 2 attention conditions). 540 

5.3 Stimulus set generation 541 

5.3.1 Stimulus set generation: EEG experiment 542 

The experimental design in the EEG study comprised 96 individual stimulus conditions shown 543 

in each attention condition, as detailed in the previous section. To create these stimuli, each 544 

exemplar was superimposed onto backgrounds with or without scene images in four locations. 545 

First, to position object exemplars onto the four image locations, we projected the 3D rendered 546 

objects onto to the four quadrants of the screen (Fig. 2A, left center). Rendered objects did not 547 

extend beyond a quadrant. Each object’s center was positioned 3 degrees from the vertical and 548 

3 degrees from the horizontal central midline (i.e., 4.2 degrees diagonally from image center 549 

to fixation, Fig. 2A right), subtending 2.4 degrees (SD=0.4) in vertical and 2.2 degrees 550 

(SD=0.6) in horizontal extent.  551 

 552 

Second, each exemplar in each location was superimposed onto a background with no and with 553 

high clutter (Fig. 2A, center; the backgrounds shown here are comparable to the original 554 

backgrounds used in the experiments). We chose the background conditions no and high clutter 555 

to compare visual stimuli with low and high image complexity, respectively (Groen et al., 556 

2018). The no clutter condition was a uniform gray background. In the high clutter condition, 557 

we selected 60 natural scene images from the Places365 database 558 

(http://places2.csail.mit.edu/download.html) that did not contain objects of the categories 559 

included in our experimental design (i.e., no animals, cars, faces, chairs) and were highly 560 

cluttered (as defined by 10 independent subject ratings; for methods and results see Graumann 561 

et al., 2022). We converted the images to grayscale and superimposed a circular aperture of 15 562 

degrees. Original backgrounds are not shown because of copyright reasons but are available 563 

here: https://osf.io/85sak/?view_only=db183dde8f4b406aaba5dfc0dd0ae67d. 564 

 565 

From the set of 60 scene images, we selected 48 scene images to go with the 48 stimulus 566 

conditions within the high clutter condition (12 exemplars × 4 locations). To avoid systematic 567 

congruencies between objects and background images within the high clutter condition, 568 

stimulus conditions and backgrounds were randomly paired for each of the 20 runs into which 569 

the EEG experiment was divided (see below). Together with the 48 stimulus conditions in the 570 
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no clutter condition, this resulted in 96 individual images per run. The 12 remaining scene 571 

images from the set of 60 were used to create catch trials. 572 

5.3.2 Stimulus set generation: fMRI experiment 573 

Stimulus set generation for the fMRI experiment was equivalent to the EEG experiment, with 574 

the difference that objects were positioned on two instead of four image locations (Fig. 2B) 575 

4.2° to the left or right of the image’s center. In the fMRI experiment, each background 576 

condition had 12 individual stimulus conditions (6 exemplars × 2 locations). In combination 577 

with the 12 stimulus conditions in the no clutter condition, this resulted in 24 individual images 578 

per run. The 12 remaining scene images from the set of 60 were used to create 24 catch trials 579 

(1 catch object × 12 scene images × 2 locations), which were randomly presented during the 580 

fMRI experiment. 581 

5.4 Experimental procedures 582 

5.4.1 EEG main experiment 583 

Each of the 26 participants completed one EEG recording session with 20 runs (run duration: 584 

277 s). Overall, the EEG session lasted for 92 minutes. Participants performed attention tasks 585 

on separate runs. The EEG recording session consisted of 10 periphery attention runs and 10 586 

fixation attention runs in randomized order. Within each attention condition, there were 96 587 

individual stimulus conditions (12 exemplars × 4 locations × background conditions). Runs 588 

consisted of the presentation of regular trials and catch trials. In each run, there were 192 589 

regular trials, representing the 96 stimulus condition images were presented twice. These trials 590 

formed the basis for further analysis. On regular trials, digits between 1 and 9 were overlaid 591 

for 117 ms each, followed by a 50 ms presentation of the image and fixation cross after each 592 

digit (Fig. 2C). In total, stimuli were presented for 0.5 s followed by 0.5 or 0.6 s of ISI (equally 593 

probable; Fig. 2C). Participants were asked to fixate their eyes on the central cross at all times. 594 

 595 

On catch trials, a target was presented to which participants were asked to respond with button 596 

press (Fig. 2E). These trials were excluded from the analyses. Catch trials were presented on 597 

every 3rd to 5th trial (equally probable, in total 48 per run). Participants were instructed to 598 

respond with button press to catch trials and to blink their eyes to minimize eye blink 599 

contamination on subsequent trials. The ISI was 1s on catch trials to avoid contamination of 600 

movement and eye blink artefacts on subsequent trials. 601 

 602 
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In the periphery and the fixation attention condition different trials were task-relevant catch 603 

trials. In the periphery attention condition, catch trials were trials during which a target object 604 

(a glass) was presented (Fig. 2E). The target could be presented at any of the four locations and 605 

on any type of background. Digits on fixation were task-irrelevant in this attention condition. 606 

In the fixation attention condition, catch trials were trials during which the digit 0 appeared 607 

among any of the 3 digits that were presented on fixation during a single trial (Fig. 2E). The 608 

presented object in the periphery was task-irrelevant in this attention condition (Fig. 2E). The 609 

digit 0 never appeared on periphery attention runs and the glass never appeared on fixation 610 

attention runs. 611 

5.4.2 fMRI main experiment 612 

Each of the 20 participants completed one fMRI recording session with 20 runs (run duration: 613 

288 s). Overall, an fMRI recording in the main experiment lasted for 96 minutes. Each of the 614 

24 images of the stimulus set was shown 3 times in random order without back-to-back 615 

repetitions in each run. On each trial, the image was presented for 0.5 s at the center of a black 616 

screen. The inter-stimulus-interval (ISI) was 2.5 s (Fig. 2D). Images were overlaid with a red 617 

central cross for fixation. Participants were instructed to fixate their eyes on this cross 618 

throughout the experiment. Every 3rd to 5th trial (equally probable, in total 18 per run) a catch 619 

trial was presented. The tasks in the attention conditions and the catch objects were identical 620 

to the EEG experiment (Fig. 2E). Catch trials were excluded from further analysis. 621 

 622 

fMRI localizer experiment. Prior to the main fMRI experiment, participants completed a 623 

separate localizer run to define ROIs in early visual, dorsal and ventral visual stream. We 624 

presented images from three categories: faces, objects, and scrambled objects. Each image 625 

showed identical versions of the same object located left and right of fixation to stimulate the 626 

same retinotopic regions of visual cortex as the objects in the main experiment. 627 

 628 

The localizer run lasted for 384 s, during which we presented 6 stimulation blocks. Each block 629 

was 16 s long with presentations of 20 different objects from one of the three categories (500 630 

ms on, 300 ms off) block-wise. Each block included two one-back image repetitions to which 631 

participants had to respond to with a button press. The order of these blocks was first order 632 

counterbalanced: triplets of stimulation blocks were presented in random order and 633 

interspersed with blank background blocks. 634 
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5.5 EEG acquisition and preprocessing 635 

To record EEG data, we used the EASYCAP 64-channel system with a Brainvision actiCHamp 636 

amplifier at a sampling rate of 1,000 Hz and with an online filter between 0.03 and 100 Hz. 637 

The signal was online re-referenced to FCz. Electrode placement followed the standard 10-10 638 

system. Data was preprocessed offline with the EEGLAB toolbox version 14 (Delorme and 639 

Makeig, 2004). This comprised a low-pass filter with a 50 Hz cut-off, trial epoching in a peri-640 

stimulus time window between -100 ms and 999 ms, and baseline-correction by subtracting 641 

the mean of the 100 ms prestimulus time window from the entire epoch. We used independent 642 

component analysis (ICA) to clean the data from ocular and muscular artefacts. To guide the 643 

visual inspection of components for removal we used SASICA (Chaumon et al., 2015). To 644 

identify horizontal eye movement components, we used external electrodes from the horizontal 645 

electrooculogram (HEOG). We detected blink artefact and vertical eye movements using the 646 

two frontal electrodes Fp1 and Fp2. On average, we removed 18 (SD=5) components per 647 

participant. We finally applied multivariate noise normalization on the preprocessed data to 648 

improve the signal-to-noise ratio and reliability of the data (Guggenmos et al., 2018). 649 

5.6 Preprocessing and univariate fMRI analysis 650 

fMRI acquisition and preprocessing. MRI data was recorded using a 12-channel head coil on 651 

a 3T Siemens Tim Trio Scanner (Siemens, Erlangen, Germany). The structural image was 652 

acquired with a T1-weighted sequence (MPRAGE; 1-mm3 voxel size). To acquire functional 653 

data for the main experiment and the localizer run, we ran a T2*-weighted gradient-echo planar 654 

sequence (TR=2, TE=30 ms, 70° flip angle, 3-mm3 voxel size, 37 slices, 20% gap, 192-mm 655 

field of view, 64 × 64 matrix size, interleaved acquisition) on the entire brain. 656 

 657 

fMRI data was preprocessed using SPM8 (https://www._l.ion.ucl.ac.uk/spm/), involving 658 

realignment, coregistration and normalization to the structural MNI template brain. We 659 

smoothed functional data from the localizer run with an 8 mm FWHM Gaussian kernel, but 660 

the data from the main experiment were not smoothed. 661 

 662 

Univariate fMRI analysis. We modelled the fMRI responses of the experimental conditions at 663 

the level of category. This was done for each run in the main experiment separately using a 664 

general linear model (GLM). We entered onsets and durations of stimulus presentations per 665 

category, pooling exemplars and repetitions. Thus, each GLM was estimated based on 9 trials 666 

(3 exemplars × 3 condition repetitions per run) and was convolved with the hemodynamic 667 
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response function (hrf). We further entered movement parameters into the GLM as nuisance 668 

regressors. This resulted in 8 beta maps per attention condition run (2 categories × 2 locations 669 

× 2 backgrounds). For each run, we converted GLM parameter estimates into t-values by 670 

contrasting each parameter estimate against the implicit baseline for each condition. This 671 

resulted for each participant and attention condition run separately in 8 (2 categories × 2 672 

locations × background conditions) t-value maps per condition. In sum, this resulted in 8 t-673 

value maps per 10 runs, per 2 attention conditions and per participant, which were later used 674 

in the classification analysis. 675 

 676 

For the fMRI responses to the localizer experiment, we modelled the responses to objects, faces 677 

and scrambled objects by entering block onsets and durations as regressors of interest and 678 

movement parameters as nuisance regressors into the GLM and convolved them with the hrf. 679 

This resulted in three parameter estimates which we used to generate two contrasts that formed 680 

part of ROI definitions. The first contrast was defined as objects and scrambled objects > 681 

baseline and was used to localize activations in early, mid-level ventral and dorsal visual 682 

regions (V1, V2, V3, V4, IPS0, IPS1, IPS2, SPL). The second contrast was defined as objects 683 

and faces > scrambled objects and was used to localize activations in object-selective area 684 

LOC. Overall, this yielded two t-value maps for the localizer run for each participant. 685 

 686 

Definition of regions of interest. To define ROIs, we first applied anatomical masks and then 687 

selected voxels using appropriate contrasts from the functional localizer run. In detail, we first 688 

defined ROIs using anatomical masks from a probabilistic atlas (Wang et al., 2015) and 689 

combined these for both hemispheres. We included three masks in early visual cortex V1, V2 690 

and V3. V4 and LOC served as ROIs in mid- and high-level ventral visual cortex. We also 691 

 included four ROIs from dorsal visual cortex: IPS0, IPS1, IPS2 and SPL. We removed all 692 

overlapping voxels from these masks to avoid overlap between ROIs. The second step entailed 693 

selecting the most activated voxels of the participant-specific t-value maps of the localizer run 694 

within the previously defined anatomical masks. To keep the number of voxels constant 695 

between ROIs and participants, we determined the smallest ROI in any participant when 696 

overlaying the localizer t-value maps and the anatomical masks. This resulted in a minimum 697 

ROI size of 288 voxels. This was then the number of most activated voxels to select of the 698 

participant-specific localizer t-value maps within all anatomical masks and participants. To 699 

select voxels in LOC we used the objects & faces > scrambled contrast and to select voxels in 700 

the remaining ROIs we used the objects & scrambled objects > baseline contrast. This resulted 701 
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in ROI definitions that were specific to each participant with an equal number of voxels across 702 

ROIs and participants. 703 

5.7 Object location classification from brain measurements 704 

To measure location information in time using EEG and in space using fMRI, we applied 705 

multivariate classification (Carlson et al., 2011a; Cichy et al., 2011, 2013; Isik et al., 2014) of 706 

object location. Since object location and object category have partly overlapping neural 707 

fingerprints in time and space (Cichy et al., 2011; Graumann et al., 2022), we applied a cross-708 

classification scheme that avoided location information results to be confounded with category 709 

information (Carlson et al., 2011b; Isik et al., 2014). For this, we cross-classified locations 710 

across categories, meaning that during each classification of a given location pair, we trained 711 

and tested on different object categories. For all classification analyses described, we employed 712 

a binary c-support vector classification (C-SVC) with a linear kernel from the libsvm toolbox 713 

(Chang and Lin, 2011) (https://www.csie.ntu.edu.tw/cjlin/libsvm). This cross-classification 714 

scheme was applied separately within each background condition, within each attention 715 

condition and within each individual participant. The classification scheme was adapted to the 716 

specifics of the methods used here: it was applied per time point on the EEG data and per ROI 717 

in the fMRI data. 718 

 719 

Time-resolved classification of location from EEG data. The time-resolved EEG classification 720 

analysis (Carlson et al., 2011b; Isik et al., 2014) served to determine the temporal dynamics 721 

with which category-independent location information emerged in the brain.  722 

 723 

For each time point of the epoched EEG data, we extracted activations from 33 EEG channels. 724 

We chose the 33 central and posterior channels starting from the central midline, because we 725 

were interested in visual responses and previous studies had shown that location information 726 

was most pronounced in those areas (Graumann et al., 2022). We arranged activations from 727 

these channels into pattern vectors of 64 conditions and 60 raw trials. Raw trials were randomly 728 

arranged into four bins of 15 trials each and averaged by bin into four pseudo-trials to increase 729 

SNR. The classification procedure was repeated 100 times, each time assigning random trials 730 

into the bins before averaging into pseudo-trials. For classification, three of the pseudo-trials 731 

that came from two location conditions of the same category went into the training set. The 732 

model resulting from SVM classifier training was then tested on other pseudo-trials coming 733 

from the same two location conditions, but from a different category. The accuracy of the 734 
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classification procedure was measured in percent classification accuracy (50% chance level). 735 

This amounted to 6 pairwise location classifications since we had 4 locations that were all 736 

classified pairwise once. During each iteration of pairwise location classification, the SVM was 737 

trained and tested across all combinations of the four categories in the training and testing set. 738 

For example, for a given location classification, the SVM was trained on faces and tested on 739 

animals (Fig. 3A). Then the same procedure was applied combing the remaining categories. 740 

With four categories in total, this resulted in 6 classification iterations to combine all categories 741 

into training and testing pairs. The direction of all training and testing pairs was reversed once 742 

(e.g., training on animals and testing on faces and vice versa), yielding a total of 12 743 

classification iterations per pairwise location classification. We averaged 72 (6 location pairs 744 

× 12 category train/test pairs) classification accuracies in total per iteration. With 100 iterations 745 

with random trial assignment intro pseudo-trials, this resulted in 7,200 classification accuracies 746 

that were averaged per background condition, attention condition and participant. The result 747 

reflects the amount of location information that is independent of category at each time point, 748 

and within a background condition, attention condition and participant. 749 

 750 

Time-resolved EEG searchlight in sensor space. To gain insights into which EEG channels 751 

contained the highest amount of location information we conducted a time-resolved EEG 752 

searchlight analysis in EEG channel space. This analysis followed the same scheme as the time-753 

resolved EEG classification described above but extended it by one step: For each EEG channel 754 

c, the classification procedure was conducted not on all 33, but on the five closest channels 755 

surrounding c. The resulting classification accuracy was stored at the position of c. Iterating 756 

across all EEG channels with a temporal resolution downsampled to 10 ms steps, this yielded 757 

a map of classification accuracy across all channels and downsampled time points, for each 758 

participant, background condition and attention condition. 759 

 760 

Time generalization analysis of location from EEG data. To characterize the neural dynamics 761 

of object location representations across time, we used temporal generalization analysis 762 

(Carlson et al., 2011b; Cichy et al., 2014; Isik et al., 2014; King and Dehaene, 2014). 763 

 764 

In this analysis, the classification scheme was the same as in the time-resolved EEG 765 

classification but with the following extension: besides training and testing the SVM on data 766 

from the same time point, we additionally tested the SVM on data from all other time points 767 

within a -100 to 600 ms peristimulus time window, downsampled to a 10 ms temporal 768 
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resolution. This resulted in a two-dimensional matrix of classification accuracies, indexed in 769 

rows and columns by the time points of data used for training and testing the SVM. This matrix 770 

indicates how much location information was shared at a given combination of time points. 771 

This analysis was conducted within time point combination, background condition, attention 772 

condition and participant. 773 

 774 

Multivariate fMRI ROI analysis. The fMRI ROI classification analysis served to determine 775 

where category-independent location information emerged in the brain. For each ROI of the 776 

fMRI data, we extracted and arranged t-values into pattern vectors, one for each of the 16 777 

conditions and 10 runs of the main experiment. Raw trials were randomly arranged into five 778 

bins with two runs each and averaged by bin into five pseudo-runs to increase SNR. We then 779 

proceeded with a 5-fold leave-one-pseudo-run-out-cross validation procedure. During each 780 

classification iteration, we trained an SVM on 4 and tested it on one pseudo-trial. The 781 

classification scheme was conceptually equivalent to the EEG classification. Training and 782 

testing was conducted across the two different categories, with each being in the training set 783 

once. We averaged across the two different training and testing directions of the two categories. 784 

The result reflects how much category-tolerant location information was present for each ROI, 785 

participant, background and attention condition separately. 786 

5.8 Statistical testing 787 

Wilcoxon signed-rank tests. To test for above-chance classification accuracy at time points in 788 

the EEG time courses, in the EEG time-generalization matrix and for above-chance 789 

classification in the fMRI ROI results, we performed non-parametric two-tailed Wilcoxon 790 

signed-rank tests. The null hypothesis was always that the parameter being tested (i.e., 791 

classification accuracy) came from a distribution with a median of chance level (i.e., 50% 792 

classification accuracy for pairwise classification). We corrected the resulting P-values for 793 

multiple comparisons using false discovery rate at 5% level in every case where more than 794 

one test was conducted. 795 

 796 

Bootstrap tests. To estimate confidence intervals and to compute the significance of peak-to-797 

peak latency differences in the EEG time courses we used bootstrapping. We bootstrapped 798 

the participant pool 10,000 times with replacement and calculated the statistic of interest for 799 

each of the bootstrap samples. 800 

 801 
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For the peak-to-peak latency differences in the EEG time courses, we bootstrapped the latency 802 

difference between the peaks of the two time courses being compared. This resulted in a 803 

bootstrapped distribution that could be compared to zero. To determine the significance of 804 

peak-to-peak latencies in the EEG time courses, we computed the proportion of values that 805 

were equal to or smaller than zero and corrected them for multiple comparisons using FDR at 806 

P=0.05. For computing the 95% confidence intervals of peak latencies of each time course, we 807 

bootstrapped the peak and computed the 95% percentiles of this distribution. 808 

 809 

ANOVAs. We used repeated-measures ANOVAs to test for main effects and the interaction 810 

between the factors background and attention within ROIs. Since both factors had two levels, 811 

the assumption of sphericity was always met. 812 

 813 

All post-hoc tests were conducted using pairwise t-tests and P-values were corrected for 814 

multiple comparisons using Tukey correction. 815 

  816 
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Data availability 817 

The fMRI and EEG data will be publicly available at the time of publication via 818 

https://osf.io/hf6zp/. 819 

 820 

Code availability 821 

Analysis code will be publicly available at the time of publication via 822 

https://github.com/graumannm/AttentionLocation. 823 
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