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A remaining carbon budget (RCB) estimates howmuch CO2 we can emit and still reach a

specific temperature target. The RCB concept is attractive since it easily communicates

to the public and policymakers, but RCBs are also subject to uncertainties. The expected

warming levels for a given carbon budget has a wide uncertainty range, which increases

with less ambitious targets, i.e., with higher CO2 emissions and temperatures. Leading

causes of RCB uncertainty are the future non-CO2 emissions, Earth system feedbacks,

and the spread in the climate sensitivity among climate models. The latter is investigated

in this paper, using a simple carbon cycle model and emulators of the temperature

responses of the Earth System Models in the Coupled Model Intercomparison Project

Phase 6 (CMIP6) ensemble. Driving 41 CMIP6 emulators with 127 different emission

scenarios for the 21st century, we find almost perfect linear relationship between

maximum global surface air temperature and cumulative carbon emissions, allowing

unambiguous estimates of RCB for each CMIP6 model. The range of these estimates

over the model ensemble is a measure of the uncertainty in the RCB arising from the

range in climate sensitivity over this ensemble, and it is suggested that observational

constraints imposed on the transient climate response in themodel ensemble can reduce

uncertainty in RCB estimates.

Keywords: remaining carbon budget, climate model emulator, climate sensitivity, CMIP6, transient climate

response, integrated assessment model

1. INTRODUCTION

The concept of remaining carbon budgets (RCBs) is appealing and highly applicable to climate
mitigation policy (Zickfeld et al., 2009). It allows us to relate a specific climate target to the
remaining greenhouse gases humans can release into the atmosphere and still comply with
this target. However, like all simple ideas in climate science, it demonstrates ambiguities and
uncertainties. Ambiguities arise as the number of specific definitions of temperature targets and
RCBs increase during efforts to make concepts and procedures precise. More important, however,
are the uncertainties arising from the large spread in model projections, including those of state-
of-the-art climate and Earth system models (ESMs). Notably, the spread across the ensemble of
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models and the corresponding uncertainties in their equilibrium
climate sensitivity (ECS) and RCB do not seem to diminish with
increasing model complexity. The state-of-the-art versions of
ESMs included in the Coupled Model Intercomparison Project
Phase 6 (CMIP6) show a span in ECS of 1.6–5.6 K with 10 models
out of 27 exceeding 4.5 K (Zelinka et al., 2020). The increase
in ECS is primarily linked to a stronger positive cloud feedback
in some of the models, although this is still under investigation.
The transient climate response (TCR), defined as the mean global
temperature anomaly in a 20-year period centered on year 70 in a
model experiment where CO2 concentrations increases by 1% per
year, shows a span of 1.3–3.0◦C in the CMIP6 experiments shown
in Table 1. In the remainder of this paper these are referred to as
1% per year experiments.

It is generally accepted that there is an approximate scenario
independence in the relationship between the cumulative CO2

emissions and the global mean surface air temperature (GSAT)
over a considerable range of realistic mitigation scenarios
(Allen et al., 2009; Gregory et al., 2009; Matthews et al., 2009;
Meinshausen et al., 2009; Gillett et al., 2013; Goodwin et al., 2015;
MacDougall and Friedlingstein, 2015; MacDougall, 2016; Rogelj
et al., 2016, 2019). More precisely, there is an approximately
linear relationship between the GSAT a given year and the
cumulative emissions up to that year. Moreover, it turns out that
in scenarios for which the emissions drop to zero at a given year,
the GSAT will peak approximately that year, and hence the peak
GSAT and the cumulative emissions up to the year of zero annual
emissions satisfy the same linear relationship. The increase in
GSAT per unit of emitted CO2 given by this linear relation is
called the transient climate response to cumulative emissions of
carbon (TCRE) (Gregory et al., 2009; Stocker et al., 2013).

In this paper, we compare the cumulative emissions after
2018 in emission scenarios from the Integrated Assessment
Modeling Consortium & International Institute for Applied
Systems Analysis (IIASA) (Huppmann et al., 2018). Details are
given in Figure 1 and Table 2. For those scenarios where annual
CO2 emissions have dropped to zero a year in this century, we
compute the cumulative emissions up to that year. For those
scenarios where annual emissions are still positive in year 2100,
we compute the cumulative emissions up to year 2100. The
corresponding GSAT values are evaluated for those years by
means of a simple impulse-response model, similar to the FaIR
model (Smith et al., 2018; Leach et al., 2020). A linear relationship
between GSAT and cumulative emissions computed this way is
estimated using linear regression, and the slope of the regression
line serves as an estimate of TCRE. We define a climate target
as a particular GSAT-value, e.g., 2.0◦C above the pre-industrial
baseline, and the estimated RCB for this target is obtained by the
estimated linear relationship.

The transient climate response obtained by this procedure is
the so-called effective transient climate response to cumulative
emissions of carbon (ETCRE), since the emission scenarios
contain other anthropogenic emissions than CO2 (Matthews
et al., 2017). The ETCRE includes warming from other
greenhouse gases than CO2, most importantly methane, and
for cooling effects due to atmospheric aerosols. In contrast,
the CO2-only TCRE is defined as the warming attributable to

CO2 forcing alone. One can estimate the CO2-only TCRE from
ESM experiments, driven by atmospheric CO2 concentration
increases by 1% per year. The CO2 emissions can be derived from
the specified atmospheric CO2 concentrations and the modeled
atmosphere-ocean and atmosphere-land CO2-fluxes, and hence
the CO2-only TCRE can be computed by dividing the GSAT
increase by the cumulative emissions. Using 15 CMIP5 models,
Gillett et al. (2013) find CO2-only TCRE in the range 0.22 −

−0.65◦C per 1,000 Gt CO2, with a mean of 0.44◦C per 1,000
Gt CO2. Analyzing 11 CMIP6 models, Arora et al. (2020) found
CO2-only TCRE in the range 0.33 − 0.58◦C per 1,000 Gt CO2,
with a mean of 0.44◦C per 1,000 Gt CO2.

The basis of these estimates are scenarios where atmospheric
CO2 concentration increases by 1% per year, and not scenarios
where we reduce emissions to mitigate climate change. The
reason why this does not pose a problem is the above mentioned
scenario-independence of the relation between the GSAT and
the cumulative emissions. The physical mechanism behind this
scenario-independence is a subtle balance between a delayed
warming of earlier emissions and a cooling associated with a
negative forcing due to CO2 uptake by oceans and land. If
all emitted CO2 would have remained in the atmosphere (no
sinks) the warming would be delayed due to the thermal inertia
of the ocean, and more so in scenarios with high emissions.
However, the net CO2 take-up by the ocean and land biosphere
will increase as atmospheric concentration increases, and the
ESMs indicate that the reduced CO2 forcing due to this uptake
approximately offsets the additional forcing represented by the
radiation imbalance due to the delayed warming of the ocean
surface. It also turns out that the warming is approximately
proportional to the size of the emission increment and not
strongly dependent on the background CO2 concentration. The
implication is the linear dependence of GSAT on cumulative
emissions, and hence the GSAT will not increase if the emissions
stop; the temperature maximum will coincide with the time
the annual emissions drop to zero (Matthews et al., 2017;
MacDougall et al., 2020).

There are several ways of adjusting CO2-only TCREs and
RCBs to obtain their effective counterparts. One method is to
estimate the fraction of the total radiative forcing attributable
to anthropogenic CO2-emissions. In the CMIP5 ensemble, the
multi-model mean ratio of CO2 forcing to total anthropogenic
forcing has been estimated to be 0.86 (Meinshausen et al., 2011;
Matthews et al., 2017), which yields a multi-model mean ETCRE
of 0.51◦C per 1,000 Gt CO2 based on the CO2-only estimate of
0.44◦C per 1,000 Gt CO2 (Gillett et al., 2013).

Another approach (Matthews et al., 2017) is to estimate the
ETCRE by dividing the observed 1861–2015 GSAT increase of
0.99◦C by the 1870–2015 cumulative CO2 emissions of 2,035 Gt
CO2 to obtain ETCRE = 0.49◦C per 1,000 Gt CO2. However,
in ambitious yet realistic future mitigation scenarios, where
emissions are brought rapidly to zero in this century, the ratio
of CO2 forcing to total anthropogenic forcing may deviate from
the historical estimates. The method applied in this paper is
to analyze open-source scenarios constructed using integrated
assessment models (IAMs) (Huppmann et al., 2018) (Figure 1
and Table 2). In these scenarios, the total emissions of various
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TABLE 1 | The parameters d1,d2,d3 are estimated weights for the three temperature responses with time constants 0.5, 10, 100 yrs, respectively, for the 41 CMIP6

models.

Earth system model d1 (K m2/W yrs) d2 (K m2/W yrs) d3 (K m2/W yrs) F2×CO2
(W m−2) ECS (K) TCR (K)

ACCESS-CM2 0.34 0.040 0.006 3.4 4.7 2.1

ACCESS-ESM1-5 0.49 0.035 0.005 2.8 3.9 1.9

AWI-CM-1-1-MR 0.45 0.031 0.003 3.6 3.2 2.1

BCC-CSM2-MR 0.60 0.020 0.004 3.1 3.0 1.7

BCC-ESM1 0.35 0.037 0.004 3.0 3.3 1.8

CAMS-CSM1-0 0.39 0.023 0.001 4.2 2.3 1.7

CanESM5 0.22 0.054 0.006 3.7 5.6 2.5

CAS-ESM2-0 0.62 0.029 0.003 3.3 3.5 2.1

CESM2 0.46 0.023 0.008 3.3 5.2 2.1

CESM2-FV2 0.61 0.027 0.007 2.9 5.2 2.0

CESM2-WACCM 0.65 0.026 0.005 3.3 4.7 2.3

CESM2-WACCM-FV2 0.27 0.037 0.007 2.9 4.8 1.7

CMCC-CM2-SR5 0.38 0.037 0.003 3.8 3.5 2.1

CNRM-CM6-1 0.17 0.051 0.004 3.6 4.9 2.2

CNRM-CM6-1-HR 0.50 0.038 0.003 4.0 4.3 2.4

E3SM-1-0 0.26 0.070 0.006 3.3 5.3 3.0

EC-Earth3-Veg 0.33 0.050 0.006 3.4 4.3 2.6

FGOALS-f3-L 0.47 0.022 0.002 4.1 3.0 1.9

FGOALS-g3 0.42 0.017 0.003 3.7 2.8 1.5

GFDL-CM4 0.59 0.028 0.004 3.2 3.9 2.0

GFDL-ESM4 0.39 0.026 0.001 3.8 2.6 1.6

GISS-E2-1-G 0.74 0.021 0.000 3.6 2.8 2.2

GISS-E2-1-H 0.39 0.033 0.003 3.5 3.1 1.9

GISS-E2-2-G 0.45 0.028 0.000 3.7 2.4 1.7

IITM-ESM 0.41 0.015 0.001 4.6 2.4 1.7

INM-CM4-8 0.53 0.022 0.002 2.7 1.8 1.3

INM-CM5 0.40 0.026 0.002 2.9 1.9 1.4

IPSL-CM6A-LR 0.32 0.046 0.006 3.4 4.6 2.3

KACE-1-0-G 0.01 0.037 0.006 3.3 4.4 1.4

MIROC-ES2L 0.41 0.024 0.001 4.1 2.7 1.8

MIROC6 0.23 0.028 0.002 3.7 2.6 1.3

MPI-ESM1-2-HR 0.43 0.021 0.003 3.6 3.0 1.7

MPI-ESM1-2-LR 0.39 0.024 0.002 4.2 3.0 1.8

MRI-ESM2-0 0.50 0.016 0.003 3.5 3.1 1.6

NESM3 0.70 0.034 0.003 3.7 4.8 2.7

NorCPM1 0.41 0.024 0.003 3.3 3.0 1.6

NorESM2-LM 0.67 0.003 0.003 3.4 2.6 1.5

NorESM2-MM 0.52 0.009 0.003 3.8 2.5 1.3

SAM0-UNICON 0.49 0.030 0.002 3.9 3.7 2.3

TaiESM1 0.44 0.037 0.003 4.0 4.3 2.4

UKESM1-0-LL 0.41 0.052 0.005 3.6 5.4 2.8

The table also contains the 4×CO2 forcing, ECS, and TCR derived from 4×CO2 and 1% experiments in each model.

greenhouse gasses and aerosols emissions are known, and we can
obtain corresponding temperatures using a simplified version of
the FaIR model (Smith et al., 2018; Leach et al., 2020). To assess
the uncertainties in RCBs, one should ideally explore an ensemble
of realistic mitigation scenarios using the full set of ESMs in the
CMIP6 ensemble, which is not feasible due to the computational
costs. In this study, we parameterize the temperature response

module in our simple model by fitting those model parameters to
the temperature response in two standard CO2-forcing scenarios
in each of the ESMs in the CMIP6 ensemble. Each of these
simple response models emulates the corresponding temperature
response to total forcing in the ESM. Combining this temperature
module with the greenhouse gas and aerosol forcing module in
the FaIR model we compute a temperature response to each of
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FIGURE 1 | Emissions of greenhouse gasses and aerosols in the scenarios listed in Table 2. (a): Carbon dioxide (CO2). (b): Methane (CH4). (c): Nitrous oxide (N2O).

(d): Ammonia (NH3). (e): Nitrogen oxide (NOx ). (f): Sulfur oxide (SOx ). (g): Organic carbon (OC). (h): Black carbon (BC). (i): Volatile organic compounds (VOC).

the emission scenarios, and the resulting GSAT time series and
CO2 emission time series in each of these model runs allows us
to analyze the relationship between cumulative emissions and
peak temperatures, and estimate ETCRE and RCBs. Our simple
modeling set-up, described in section 2, is based on generally
accepted results from the climate modeling literature, while
keeping them operational and straightforward.

The philosophy of our approach has similarities to that of
MacDougall et al. (2017). They emulated an ensemble of CMIP5
models by means of a climate model of intermediate complexity
parameterized to have the climate sensitivity, radiative forcing,
and ocean heat uptake efficiency as diagnosed from each CMIP5

model. However, their modeling framework was restricted to
1% per year experiments in the CMIP5 models which imposes
carbon fluxes between the atmosphere and ocean and the
atmosphere and terrestrial biosphere that may not be consistent
with a fully coupled system. Apart from using a different
emulator model and emulating a more recent generation of
CMIP models, the main novelty in our approach is the
application of the emulator model fitted to 41 CMIP6 model
versions to an ensemble of 127 emission scenarios for the twenty-
first century. The statistics of the estimates of ETRCE and
RCB are therefore based on 5,207 distinct simulations of the
emulator model.
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TABLE 2 | The Shared Socioeconomic Pathways (SSPs) and integrated assessment models (IAMs) that form the 127 emission scenarios shown in Figure 1.

AIM/CGE GCAM4 IMAGE MESSAGE-GLOBIOM REMIND-MAGPIE WITCH-GLOBIOM

SSP1-19 X X X X X X

SSP1-26 X X X X X X

SSP1-34 X X X X X X

SSP1-45 X X X X X X

SSP1-60 X

SSP1-Baseline X X X X X X

SSP2-19 X X X X

SSP2-26 X X X X X X

SSP2-34 X X X X X X

SSP2-45 X X X X X X

SSP2-60 X X X X X X

SSP2-Baseline X X X X X X

SSP3-34 X X X X

SSP3-45 X X X X

SSP3-60 X X X X

SSP3-Baseline X X X X X

SSP4-19 X

SSP4-26 X X X X

SSP4-34 X X X X

SSP4-45 X X X X

SSP4-60 X X X

SSP4-Baseline X X X X

SSP5-19 X X

SSP5-26 X X X

SSP5-34 X X X X X

SSP5-45 X X X X X

SSP5-60 X X X X X

SSP5-Baseline X X X X X

Note that the emission time series given in Figure 1 that can be used to drive ESMs for each SSP come in different versions from each IAM used to generate these time series. These

IAMs are indicated in the upper row in the table.

2. MODELING SET-UP

We use a simple modeling set-up where atmospheric CO2

concentrations are computed from the emissions, ECO2 (t), using
the approach of Leach et al. (2020) which builds on Smith et al.
(2018). Details are explained in those papers. The FAIR model
uses anthropogenic fossil fuel and land use CO2 emissions as
input and partitions them into four pools Ri;

CCO2 (t) = CCO2 ,PI +

4
∑

i=1

Ri(t) ,

where C CO2 ,PI = 280 ppm is the pre-industrial concentration.
The pools represent differing time scales of carbon uptake. Here
i = 1 represents uptake by geological processes, i = 2 the deep
ocean, i = 3 the biosphere, and i = 4 the ocean mixed layer. The
concentration in each pool varies according to the equation,

dRi

dt
= aiE CO2 (t)−

1

τ CO2 ,iα
Ri ,

where E CO2 (t) is the CO2 emission rate, ai is the partition
fraction (

∑4
i=1 ai = 1), and τ CO2 ,iα is the characteristic time

scale of the i’th pool, where the state-dependence is built into the
model by letting α depend on the global temperature T(t) and the
cumulative uptake Gu of agent u since initialization of the model;

Gu(t) =

4
∑

i=1

[

ai

∫ t

t0

E CO2 (s)ds− Ri(t)

]

.

The time t0 refers to the year 1750. The model for α is

α(T,Gu) = g0 exp

(

r0 + ruGu + rTT

g1

)

,

where r0 is the strength of pre-industrial uptake from the
atmosphere, ru is sensitivity of uptake from atmosphere to
cumulative uptake of agent since model initialization, and rT is
such sensitivity to model temperature. The parameters g0 and
g1 are determined by ai and τ CO2 ,i, i = 1, . . . , 4, and are not
independent parameters. The equations determining them are
given and explained in Leach et al. (2020).
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Wemodel the concentrations of methane and nitrous oxide as
linear responses of scenario data for emissions:

C CH4 (t) = C CH4 , PI +

∫ t

t0

G CH4 (t − s)E CH4 (s) ds .

and

C N2O(t) = C N2O, PI +

∫ t

t0

G N2O(t − s)E N2O(s) ds .

with G CH4 (t) = c CH4 e
−t/τ CH4 , and similarly for N2O.

The factors c CH4 and c N2O are chosen to yield the current
atmospheric methane and nitrous oxide concentrations based on
the emissions since 1750 (Boden et al., 2017; Saunois et al., 2020).
The pre-industrial concentrations are set to C CH4 , PI = 700 ppb
and C N2O, PI = 270 ppb.

The radiative forcing associated with greenhouse gas
concentrations is computed using Equations (7)– (9) in Smith
et al. (2018) with parameters presented in Table 3:

F CO2 =

[

ξ1(C CO2 − C CO2 , PI)
2 + ξ2|C CO2 − C CO2 , PI|

+ξ3(C N2O + C N2O, PI)+
F 2×CO2

ln(2)

)

]

ln

(

C CO2

C CO2 , PI

)

F CH4 =

[

ξ4(C CH4 + C CH4 , PI)+ ξ5(C N2O + C N2O, PI)+ ξ6

]

(
√

C CH4

µ
−

√

C CH4 , PI

µ

)

F N2O =

[

ξ7(C CO2 + C CO2 , PI)+ ξ8(C N2O + C N2O, PI)

+ξ9(C CH4 + C CH4 , PI)+ ξ10

](
√

C N2O

µ
−

√

C N2O, PI

µ

)

,

where µ = 1 ppm. The number F 2×CO2 is the forcing
associated with a CO2-doubling. This number is model-
dependent and obtained from the Gregory plots for the abrupt
4×CO2 experiments in the CMIP6 ensemble (Gregory et al.,
2004). Aerosol forcing is modeled to be proportional to
aerosol emissions:

F aero = γ NH3E NH3 + γ BCE BC

+ γ OCE OC + γ NOXE NOX + γ VOCE VOC

+ γ SOXE SOX + F aero, cloud(E BC,E OC,E SOX) ,

where the additional term

F aero, cloud(E BC,E OC,E SOX)

= F0
f (E BC,E OC,E SOX)− f (E

(1765)
BC ,E

(1765)
OC ,E

(1765)
SOX )

f (E
(2011)
BC ,E

(2011)
OC ,E

(2011)
SOX )− f (E

(1765)
BC ,E

(1765)
OC ,E

(1765)
SOX )

TABLE 3 | Overview of the model parameters used to compute greenhouse gas

concentrations, greenhouse forcing, and aerosol forcing, following the approaches

in Smith et al. (2018) and Leach et al. (2020).

Parameter Unit Value

CCO2 ,PI ppm 280

CCH4 ,PI ppb 700

CN2O,PI ppb 270

a1 ppm/Gt CO2 0.059

a2 ppm/Gt CO2 0.061

a3 ppm/Gt CO2 0.077

a4 ppm/Gt CO2 0.075

τCO2 ,1 yrs 1× 105

τCO2 ,2 yrs 394

τCO2 ,3 yrs 36.5

τCO2 ,4 yrs 4.3

τCH4
yrs 12.3

τN2O yrs 110

r0 30.4

ru 1/(Gt CO2) 4.8× 10−3

rT K−1 2.64

g0 0.01

g1 11.4

cCH4
ppb/(Mt CH4 yr−1) 0.34

cN2O ppb/(Mt N2O yr−1) 2× 10−4

ξ1 Wm−2/ppm2 −2.4× 10−7

ξ2 Wm−2/ppm 7.2× 10−4

ξ3 Wm−2/ppb −1.05× 10−4

ξ4 Wm−2/ppb −6.5× 10−7

ξ5 Wm−2/ppb −4.1× 10−6

ξ6 Wm−2 0.043

ξ7 Wm−2/ppm −4.0× 10−6

ξ8 Wm−2/ppb 2.1× 10−6

ξ9 Wm−2/ppb −2.45× 10−6

ξ10 Wm−2 0.117

γNH3
Wm−2/(Mt NH3 yr−1) −1.56× 10−3

γBC Wm−2/(Mt BC yr−1) 16× 10−3

γOC Wm−2/(Mt OC yr−1) −1.45× 10−3

γNOx Wm−2/(Mt NO2 yr−1) −3.6× 10−4

γVOC Wm−2/(Mt VOC yr−1) −3.8× 10−4

γSOx Wm−2/(Mt SO2 yr−1) −2.07× 10−3

F0 Wm−2 −0.45

β1 −1.95

β2 1/(Mt SO2 yr−1) 5.55× 10−3

β3 1/(Mt BC yr−1) 13.9× 10−3

accounts for aerosol-cloud indirect effect. Here
f (E BC,E OC,E SOX) = β1 ln(1+ β2E SOX + β3(E BC + E OC)). All
parameter values are listed in Table 3.

Our model for the temperature response is

T(t) =

∫ t

t0

GT(t − s)F tot(s)ds , (1)
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FIGURE 2 | The points are the GSAT from the first 150 yrs in 4×CO2 experiments and 1%-per-yr experiments in CMIP6. The solid curves are the simultaneous

least-squares estimates to the two time series of a linear response to the forcings F (t) = F4×CO2
2(t) and F (t) = F2×CO2

(log(1.01)/ log(2))t.
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with F tot = F CO2 + F CH4 + F N2O + F aero and

GT(t) =

3
∑

i=1

die
−t/τi .

To prevent statistical overfitting we use fixed, but well-separated
time scales τi, chosen to be 0.5, 10, and 100 yrs (Fredriksen
and Rypdal, 2017). The factors di are estimated simultaneously
from the first 150 yrs in 4×CO2 experiments in CMIP6, and
the first 150 yrs in experiments where the CO2 concentration
is increased by 1% per yr (Figure 2). The time series are drift-
adjusted using control runs of the CMIP6 models. The method
for estimation is linear regression and the forcings used are
F(t) = F 4×CO22(t), where 2(t) is the unit step function,
and F(t) = F 2×CO2 (ln(1.01)/ ln(2))t, for the two experiments,
respectively. The slow climate response, in this case the parameter
d3, is not well-constrained by 150-yr runs (Sanderson, 2020).
However, the analyses in presented in this paper only concern
GSAT up to the year 2100, and are insensitive to this uncertainty.
Table 1 shows the estimated parameters d1, d2, and d3 for the
41 models in the CMIP6 ensemble. The table also shows the
TCR, ECS, and F2×CO2 of each climate model. The ECS-values
are estimated using the standard Gregory-plot technique and
the TCR-values are obtained from the CMIP6 runs where CO2

concentrations are increased by 1% per year. Using the updated
HadCrut data set we set the present-day GSAT at 1.1◦C above
the 1850–1900 baseline (Morice et al., 2012). Historical CO2 and
methane emissions are obtained from Hoesly et al. (2018).

The integral in Equation (1) is computed as a discrete sum

t
∑

s=t0

GT(t − s+ δ)F tot(s)1s , (2)

where F tot(s) are annual forcing values and 1s = 1 yr. We
use δ = 0.5 yrs, which corresponds to the midpoint rule
in the approximation of the integral. Using δ = 0 will lead
to over-estimation of the temperature response compared to
the exact integrals used in the parameter estimation. Figure 3
shows that δ = 0.5 yrs gives agreement between the TCRs
estimated directly from the ESMs and the TCRs estimated from
the discrete-time emulators.

3. RESULTS

Our results show that the linear relationship between total
emissions andmaximumGSAT is an excellent approximation for
each temperature-responsemodel for cumulative emissions up to
5,000 Gt CO2 after 2018, but that the ETCRE varies considerably
over the ensemble of different temperature responses (Figure 4).
Over the ensemble we find a mean ETCRE of 0.42◦C per 1,000
Gt CO2, with a 66% confidence range of 0.35–0.47◦C per 1,000
Gt CO2 (Figure 5A). Here 66% confidence range means the
range between the 17 and 83% percentiles for the ensemble of
41 ETCREs estimated as the slope of the regression lines shown
in Figure 4. Throughout this paper, 66% confidence range always
refers to a range over a specified ensemble of models.

FIGURE 3 | Comparison of TCR estimated from the 1% per year experiments

in 41 ESMs and the TCR estimated in the corresponding emulators. The figure

shows that the computed climate response using the discretization in

Equation (2) is unbiased when using the midpoint rule, i.e., δ = 0.5 yrs.

Nijsse et al. (2020) have recently constrained TCR to the
range 1.3–2.1 K by leaving out models with TCR≥ 2.2 from the
ensemble. Restricting to this sub-ensemble, the 66% confidence
range for ETCRE is lowered to 0.33–0.40◦C per 1,000 Gt CO2
(Figure 5B).

The cumulative emissions (the RCB) for a given peak
temperature target, computed for each ESM, is estimated from
the regression line for that ESM in Figure 4. It allows us to
construct the histograms shown in Figures 6A–D. They show
how the cumulative emissions are distributed over the 41 ESMs
for four different temperature targets. We note that the RCB
varies by a factor of two over the model ensemble. Restricting
to the sub-ensemble of models with TCR< 2.2, we find the
histograms shown in Figures 6E–H. This restriction imposes a
significant constraint on the lower end of the RCB range for
each target, ruling out the more pessimistic estimates for the
remaining carbon budget.

The differences in ETCRE between the high- and low-
sensitivity models are illustrated in Figure 7 For the sub-
ensemble of climate models with TCR ≥ 2.2 K, the mean ETCRE
is 0.52◦C per 1,000 Gt CO2, with a 66% confidence range of
0.45–0.57◦C per 1,000 Gt CO2. For those climate models with
TCR < 2.2 K, the mean ETCRE is 0.37◦C per 1,000 Gt CO2, with
a 66% range of 0.30–0.43◦C per 1,000 Gt CO2. In Figure 8 the
maximumGSAT is plotted against the cumulative CO2 emission.
This cumulative emission is different for every emission scenario,
while the maximum GSAT varies across models for the same
scenario. Thus, there are 127 columns of points, one for each
scenario, and each point in the same column gives the GSAT
for a specific model driven by that scenario. Hence, each column
contains 41 points, where the blue points represents models in
the TCR< 2.2 K sub-ensemble, and the red points the models in
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FIGURE 4 | Estimates of ETRCE. Each panel contains 127 points representing maximum GSAT vs. cumulative CO2 emissions obtained from our simple emulator for

the indicated CMIP6 ESM, i.e., each point represents one of the 127 emission scenarios. The parameters d1,d2,d3 estimated for each ESM are shown in Table 1.

The regression lines demonstrate approximately linear relationships between total positive CO2 emissions between 2018 and 2100 and the maximum GSAT for the

ensemble of emission scenarios for each of the 41 different climate models in the CMIP6 ensemble. ETCRE estimates are obtained from the slopes of regression lines.

the TCR≥ 2.2 K sub-ensemble. The blue- and red-shaded areas
depict the 66% ranges of GSAT in the two sub-ensembles for each
scenario. We observe that the corresponding difference in RCB

between the two sub-ensembles grows approximately linearly
with increasing temperature target above 1.5 ◦C, and that model
uncertainty in RCB grows linearly with the temperature target.
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FIGURE 5 | (A) The histogram of ETCRE-values obtained by using the full set of temperature-response models. (B) The histogram of ETCRE-values obtained using

only temperature response models informed by CMIP6 models with TCR in the range 1.3–2.2 K.

The width of the 66% confidence range for RCB increases from
800 to 2,500 GtCO2 as the target increases from 1.5 to 3.0 ◦C.

Figure 8 shows that the estimated ETCRE scales linearly with
the TCR of the ESMs estimated from 150 yrs 1% per year
experiments. The estimated relationship is

ETCRE = a+ bTCR ,

with a = 0.21◦C per 1,000 Gt CO2 and b = 0.01 per 1,000 Gt
CO2. The TCR ranges from 1.3 to 3.0◦C in the CMIP6 ensemble,
corresponding to a range of 0.29 to 0.64◦C per 1,000 Gt CO2
in ETCRE.

4. DISCUSSION

The results shown in Figure 4 demonstrate the linearity of
the maximal GSAT response to cumulative emissions over the
ensemble of 127 SSP scenarios in all emulated CMIP6 models.
It allows accurate estimates (small spread over the ensemble of
scenarios) of the ETCRE associated with each emulated CMIP6
model. There is, however, a large spread in this model-specific
ETRCE over the CMIP6 ensemble as shown in Figures 5A,B.
The importance and novelty of these results are that the main
uncertainty of the ETRCE and the associated RCB is not due to
the spread of realistic emission scenarios, but rather the spread
of sensitivities over the CMIP6 model ensemble. Figure 8 also
demonstrates the close correlation between the ETRCE and the
transient climate response TCR over the CMIP6 ensemble, which
suggests that constraints obtained on the climate sensitivity,
leading for instance to removal of hyper-sensitive models from

the ensemble, will reduce the uncertainty in the estimates of the
ETRCE and the RCB.

The proportionality between TCRE and TCR is not new,
this was discussed in Gillett et al. (2013), and more recently
in Jones and Friedlingstein (2020). It is shown in this paper,
however, that it also holds for the ETCRE, i.e., as the non-CO2

emissions are taken into account. This may not come entirely
as a surprise, since studies based on the standard Representative
Concentration Pathways Scenarios RCP2.6, RCP4.5, RCP6.0, and
RCP8.5 show consistent dependence between non-CO2 and CO2

forcing throughout the twenty-first century (e.g., Williams et al.,
2017). The RCPs set pathways for greenhouse gas concentrations
from which the emission pathways are derived, and hence
do not represent realistic socioeconomic scenarios. The SSPs,
on the other hand, are based on narratives describing broad
socioeconomic trends that could shape future society. These are
intended to span the range of plausible futures, so we believe
that the confirmation of the proportionality for this ensemble of
scenarios strengthens the prospects of using the TCR to constrain
TCRE and RCB.

The design of our study precludes explicit study of uncertainty
due to model variation in the sensitivity of radiative forcing
from CO2 emission. This is because the parameters of module
of the emulator that computes forcing from emissions are
fixed and not fitted to each CMIP6 model. Our rationale for
not fitting all the coefficients of the module that calculates
forcing based on the input from emission scenarios is two-
fold: First, we would need to have available results from at
least one model run forced by such full emission scenarios for
all the 41 CMIP6 models in order to make such a calibration.
Second, Table 3 shows the additional 40 parameters that would
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FIGURE 6 | Estimates of RCB for different temperature targets. Panels (A–D) show histograms for the 1.5, 2.0, 2.5, and 3.0◦C-targets, respectively. (E–H) The same

estimates, but based only on the temperature response models informed by CMIP6 models with TCR in the range 1.3–2.2 K.

be fitted to each of these model runs. Even if only a subset
of the parameters were subject to fitting, the risk of statistical
overfitting would be unavoidable. It seems that one is left with

the choice between using a reasonably complex module with
fixed coefficients for computation of forcing from emission
input, or a very simple model with a few fitting parameters.
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FIGURE 7 | Each column of points shows maximum GSAT for a given

emission scenario, so their spread indicates the variance over the ensemble of

ESMs. The red points are for ESMs with TCR≥2.2 K, and the blue points for

ESMs with TCR<2.2 K.

In the former case, one will miss the variability among the
CMIP6 models when it comes to forcing calculations. In the
latter case, one may miss important mechanisms. We have
chosen the former option, and unfortunately that precludes
explicit evaluation of the contribution of some aspects of the
CMIP6 variability to the uncertainty in RCB. Thus, the real
ESM model uncertainty is probably greater than estimated in
this paper, but at present, we have no means of quantifying this
additional uncertainty.

The performance of the emulator model could be tested if
we had available CMIP6 model runs forced by the 127 emission
scenarios, or at least, by a selected few. In the CMIP6 database,
we find a few runs driven by selected SSPs, but we have not been
able to identify exactly the emission data input used in these
runs. As more data from CMIP6 runs becomes available, we hope
more comprehensive testing and refinement of the emulator will
be possible.

Our analyses show that estimates of RCBs are associated
with considerable uncertainty related to the global temperature
response to radiative forcing, quantified for example as the
spread over different members of the CMIP6 model ensemble.
We further show that model estimates of ETCRE correlate
strongly with TCR across models, which is convenient since
much effort is being made to use observations to constrain
the TCR and ECS. Cox et al. (2018) used the instrumental
temperature record to constrain ECS in the CMIP5 ensemble
to a 66% confidence interval of 2.2–3.4 K. This approach was
based on an assumed theoretical relation between ECS and
unforced temperature fluctuations, whereas the analysis reflected
the forced temperature responses (Brown et al., 2018; Po-Chedley
et al., 2018; Rypdal et al., 2018). To circumvent this issue,
Jiménez-de-la Cuesta and Mauritsen (2019) used observational

data of post 1970 warming to constrain ECS in the CMIP5
ensemble to a 95% confidence interval of 1.72–4.12 K. This
result is roughly consistent with the recent results of Sherwood
et al. (2020), who used multiple lines of evidence to argue that
ECS above 4.5 K is unlikely. The results of this paper suggests
that ruling-out the ESMs with the highest climate sensitivity
would narrow the uncertainty in ETCRE. An alternative, but
related, approach is to tune emulators to observational data
(Smith et al., 2018). The estimated uncertainty in ETCRE
corresponds directly to the uncertainty in RCB, which we find
to depend linearly on the temperature target. Hence, the less
ambitious the temperature target, the higher the uncertainty in
the corresponding RCB.

Since we use a relatively simple carbon cycle model,
there is an additional source of uncertainty that is not
accounted for, induced by potentially changing feedbacks
in the dynamics of the Earth system, which have been
shown to be a significant source of uncertainty for RCBs
(Jones and Friedlingstein, 2020). Permafrost thawing in
response to rising surface temperatures leads to the release
of greenhouse gases stored in high-latitude soils. The release
of these additional greenhouse gases will in turn accelerate
global warming.

The Amazon rainforest is another example of such a positive
feedback. It has been argued and observed in climate model
projections that the Amazon ecosystem might transition from
its current rainforest state to a state dominated by grassland
and savanna vegetation (Cox et al., 2004; Hirota et al., 2011;
Lovejoy and Nobre, 2018, 2019) which would be accompanied
by the release of large amounts of carbon dioxide to the
atmosphere. Carbon-cycle feedbacks have an overall accelerating
effect on global warming (Cox et al., 2000), and the situation
seems particularly evident for the Amazon. Increasing tree
mortality during a transition from rainforest to Savanna will
cause the rainforest to turn from a global carbon sink to
a global source of carbon (Brienen et al., 2015), as has
already happened temporarily during the severe droughts of
2005 and 2010 (Feldpausch et al., 2016). Climate-change-
induced dieback of the Amazon would lead to the release of
additional greenhouse gases, which would further accelerate
global temperature rise.

The Amazon rainforest also provides an example of
how anthropogenic forcing other than greenhouse gas
release can affect the climate system. Modeling evidence
suggests that only partial deforestation of the Amazon
rainforest might—through intricate couplings between
evapotranspiration, condensational latent heating, and
the South American low-level circulation system—lead to
a collapse of the South American monsoon system and
thus, ultimately, of the Amazon rainforest (Boers et al.,
2017).

As a third example, the ice-albedo feedback implies rising
temperatures in the Arctic, leading to accelerating sea ice
retreat, lowering albedo, and effectively increasing mean surface
temperatures regionally. This positive feedback contributes
to uncertainty in ETCRE, which translates to even more
considerable uncertainty in the amount of greenhouse gas

Frontiers in Climate | www.frontiersin.org 12 July 2021 | Volume 3 | Article 686058

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Rypdal et al. RCB and CMIP6 Temperature Response

FIGURE 8 | The approximately linear relationship between the estimated ETCRE and TCR of the CMIP6 model used to inform the temperature response model.

emissions we can allow to still limit peak temperature to
specified targets.

These three examples of positive Earth system feedbacks
are all—in some form—implemented in state-of-the-art models
such as the ones from the CMIP6 suite (Eyring et al., 2016),
and systematic searches have revealed many abrupt transitions
related to such positive feedbacks inmodel projections (Drijfhout
et al., 2015). Nevertheless, it is still assumed that state-of-the-art
models remain too stable (Valdes, 2011). The presence of positive
feedbacks and potential tipping points within the Earth system
adds a layer of uncertainty to RCBs that is extremely difficult
to quantify.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

MR, AJ, AM, EF, NB, and KR designed the study with input from
all authors. K-UE, H-BF, AM, and MR processed and analyzed
the CMIP6 data. MR, AJ, AM, and EF carried out the analyses.
MR, NB, RG, and KR wrote the original manuscript with input
from all authors, while KR wrote the revised version with input
from MR.

FUNDING

This was TiPES contribution #66; the TiPES 399 project has
received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement 401
No. 820970. This work was supported by the UiT Aurora Centre
Program, UiT The Arctic University of Norway (2020), and
the Research Council of Norway (project number 314570). NB
acknowledges funding by the Volkswagen foundation.

REFERENCES

Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A., Meinshausen,

M., et al. (2009). Warming caused by cumulative carbon emissions

towards the trillionth tonne. Nature 458, 1163–1166. doi: 10.1038/nature

08019

Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V.,

Friedlingstein, P., et al. (2020). Carbon-concentration and carbon-

climate feedbacks in CMIP6 models and their comparison to

CMIP5 models. Biogeosciences 17, 4173–4222. doi: 10.5194/bg-17-41

73-2020

Boden, T., Marland, G., and Andres, R. J. (2017). Global, Regional, and National

Fossil-Fuel Co2 Emissions (1751 - 2014). Carbon Dioxide Information Analysis

Center (CDIAC), Oak Ridge National Laboratory (ORNL).

Boers, N., Marwan, N., Barbosa, H. M. J., and Kurths, J. (2017). A deforestation-

induced tipping point for the south American monsoon system. Sci. Rep.

7:41489. doi: 10.1038/srep41489

Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd,

J., et al. (2015). Long-term decline of the amazon carbon sink. Nature 519,

344–348. doi: 10.1038/nature14283

Brown, P. T., Stolpe, M. B., and Caldeira, K. (2018). Assumptions for emergent

constraints. Nature 563, E1–E3. doi: 10.1038/s41586-018-0638-5

Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., and

Jones, C. D. (2004). Amazonian forest dieback under climate-carbon cycle

projections for the 21st century. Theoret. Appl. Climatol. 78, 137–156.

doi: 10.1007/s00704-004-0049-4

Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J. (2000).

Acceleration of global warming due to carbon-cycle feedbacks in a coupled

climate model. Nature 408, 184–187. doi: 10.1038/35041539

Cox, P. M., Huntingford, C., and Williamson, M. S. (2018). Emergent constraint

on equilibrium climate sensitivity from global temperature variability. Nature

553, 319–322. doi: 10.1038/nature25450

Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M., Huntingford,

C., et al. (2015). Catalogue of abrupt shifts in intergovernmental panel on

Frontiers in Climate | www.frontiersin.org 13 July 2021 | Volume 3 | Article 686058

https://doi.org/10.1038/nature08019
https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.1038/srep41489
https://doi.org/10.1038/nature14283
https://doi.org/10.1038/s41586-018-0638-5
https://doi.org/10.1007/s00704-004-0049-4
https://doi.org/10.1038/35041539
https://doi.org/10.1038/nature25450
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Rypdal et al. RCB and CMIP6 Temperature Response

climate change climate models. Proc. Natl. Acad. Sci. U.S.A. 112, E5777–E5786.

doi: 10.1073/pnas.1511451112

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J.,

et al. (2016). Overview of the coupled model intercomparison project phase

6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9,

1937–1958. doi: 10.5194/gmd-9-1937-2016

Feldpausch, T. R., Phillips, O. L., Brienen, R. J. W., Gloor, E., Lloyd, J., Lopez-

Gonzalez, G., et al. (2016). Amazon forest response to repeated droughts. Glob.

Biogeochem. Cycles 30, 964–982. doi: 10.1002/2015GB005133

Fredriksen, H.-B., and Rypdal, M. (2017). Long-range persistence in global surface

temperatures explained by linear multibox energy balance models. J. Clim. 30,

7157–7168. doi: 10.1175/JCLI-D-16-0877.1

Gillett, N. P., Arora, V. K., Matthews, D., and Allen, M. R. (2013). Constraining

the ratio of global warming to cumulative CO2 emissions using CMIP5

simulations*. J. Clim. 26, 6844–6858. doi: 10.1175/JCLI-D-12-00476.1

Goodwin, P., Williams, R. G., and Ridgwell, A. (2015). Sensitivity of climate to

cumulative carbon emissions due to compensation of ocean heat and carbon

uptake. Nat. Geosci. 8, 29–34. doi: 10.1038/ngeo2304

Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R.

B., et al. (2004). A new method for diagnosing radiative forcing and climate

sensitivity. Geophys. Res. Lett. 31:L03205. doi: 10.1029/2003GL018747

Gregory, J. M., Jones, C. D., Cadule, P., and Friedlingstein, P. (2009). Quantifying

carbon cycle feedbacks. J. Clim. 22, 5232–5250. doi: 10.1175/2009JCLI2949.1

Hirota, M., Holmgren, M., Van Nes, E. H., and Scheffer, M. (2011). Global

resilience of tropical forest and savanna to critical transitions. Science 334,

232–235. doi: 10.1126/science.1210657

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen,

T., et al. (2018). Historical (1750-2014) anthropogenic emissions of reactive

gases and aerosols from the community emissions data system (CEDS). Geosci.

Model Dev. 11, 369–408. doi: 10.5194/gmd-11-369-2018

Huppmann, D., Kriegler, E., Krey, V., Riahi, K., Rogelj, J., Calvin, K., et al.

(2018). IAMC 1.5◦C Scenario Explorer and Data Hosted by IIASA. Geneva:

Intergovernmental Panel on Climate Change.

Jiménez-de-la Cuesta, D., and Mauritsen, T. (2019). Emergent constraints on

earth’s transient and equilibrium response to doubled Co2 from post-1970s

global warming. Nat. Geosci. 12, 902–905. doi: 10.1038/s41561-019-0463-y

Jones, C. D., and Friedlingstein, P. (2020). Quantifying process-level uncertainty

contributions to TCRE and carbon budgets formeeting paris agreement climate

targets. Environ. Res. Lett. 15:074019. doi: 10.1088/1748-9326/ab858a

Leach, N. J., Jenkins, S., Nicholls, Z., Smith, C. J., Lynch, J., Cain, M., et al. (2020).

Fairv2.0.0: a generalised impulse-response model for climate uncertainty

and future scenario exploration. Geosci. Model Dev. Discuss. 2020, 1–48.

doi: 10.5194/gmd-14-3007-2021

Lovejoy, T. E., and Nobre, C. (2018). Amazon tipping point. Sci. Adv. 4:eaat2340.

doi: 10.1126/sciadv.aat2340

Lovejoy, T. E., and Nobre, C. (2019). Amazon tipping point: last chance for action.

Sci. Adv. 5:eaba2949. doi: 10.1126/sciadv.aba2949

MacDougall, A. H. (2016). The transient response to cumulative Co2 emissions: a

review. Curr. Clim. Change Rep. 2, 39–47. doi: 10.1007/s40641-015-0030-6

MacDougall, A. H., and Friedlingstein, P. (2015). The origin and limits of the near

proportionality between climate warming and cumulative CO2 emissions. J.

Clim. 28, 4217–4230. doi: 10.1175/JCLI-D-14-00036.1

MacDougall, A. H., Frölicher, T. L., Jones, C. D., Rogelj, J., Matthews, H. D.,

Zickfeld, K., et al. (2020). Is there warming in the pipeline? A multi-model

analysis of the zero emissions commitment from Co2. Biogeosciences 17,

2987–3016. doi: 10.5194/bg-17-2987-2020

MacDougall, A. H., Swart, N. C., and Knutti, R. (2017). The uncertainty

in the transient climate response to cumulative Co2 emissions arising

from the uncertainty in physical climate parameters. J. Clim. 30, 813–827.

doi: 10.1175/JCLI-D-16-0205.1

Matthews, H. D., Gillett, N. P., Stott, P. A., and Zickfeld, K. (2009). The

proportionality of global warming to cumulative carbon emissions.Nature 459,

829–832. doi: 10.1038/nature08047

Matthews, H. D., Landry, J.-S., Partanen, A.-I., Allen, M., Eby, M., Forster, P. M.,

et al. (2017). Estimating carbon budgets for ambitious climate targets. Curr.

Clim. Change Rep. 3, 69–77. doi: 10.1007/s40641-017-0055-0

Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler,

K., Knutti, R., et al. (2009). Greenhouse-gas emission targets for

limiting global warming to 2 ◦c. Nature 458, 1158–1162. doi: 10.1038/

nature08017

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,

Lamarque, J. F., et al. (2011). The RCP greenhouse gas concentrations

and their extensions from 1765 to 2300. Clim. Change 109:213.

doi: 10.1007/s10584-011-0156-z

Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D. (2012). Quantifying

uncertainties in global and regional temperature change using an ensemble

of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos.

117:D08101. doi: 10.1029/2011JD017187

Nijsse, F. J. M. M., Cox, P. M., andWilliamson, M. S. (2020). Emergent constraints

on transient climate response (TCR) and equilibrium climate sensitivity (ECS)

from historical warming in CMIP5 and CMIP6 models. Earth Syst. Dyn. 11,

737–750. doi: 10.5194/esd-11-737-2020

Po-Chedley, S., Proistosescu, C., Armour, K. C., and Santer, B. D.

(2018). Climate constraint reflects forced signal. Nature 563, E6–E9.

doi: 10.1038/s41586-018-0640-y

Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J., and Séférian, R. (2019).

Estimating and tracking the remaining carbon budget for stringent climate

targets. Nature 571, 335–342. doi: 10.1038/s41586-019-1368-z

Rogelj, J., Schaeffer, M., Friedlingstein, P., Gillett, N. P., van Vuuren, D. P., Riahi,

K., et al. (2016). Differences between carbon budget estimates unravelled. Nat.

Clim. Change 6:245. doi: 10.1038/nclimate2868

Rypdal, M., Fredriksen, H.-B., Rypdal, K., and Steene, R. J. (2018).

Emergent constraints on climate sensitivity. Nature 563, E4–E5.

doi: 10.1038/s41586-018-0639-4

Sanderson, B. (2020). Relating climate sensitivity indices to projection uncertainty.

Earth System Dyn. 11, 721–735. doi: 10.5194/esd-11-721-2020

Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B.,

et al. (2020). The global methane budget 2000-2017. Earth Syst. Sci. Data 12,

1561–1623. doi: 10.5194/essd-12-1561-2020

Sherwood, S., Webb,M. J., Annan, J. D., Armour, K. C., Forster, P.M., Hargreaves, J.

C., et al. (2020). An assessment of earth’s climate sensitivity using multiple lines

of evidence. Rev. Geophys. 58:e2019RG000678. doi: 10.1029/2019RG000678

Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar, R. J., Passerello, G. A., et al.

(2018). Fair v1.3: a simple emissions-based impulse response and carbon cycle

model. Geosci. Model Dev. 11, 2273–2297. doi: 10.5194/gmd-11-2273-2018

Stocker, T., Qin, D., Plattner, G.-K., Alexander, L., Allen, S., Bindoff, N., et al.

(2013). Technical Summary. Cambridge, UK; New York, NY: Cambridge

University Press.

Valdes, P. (2011). Built for stability.Nat. Geosci. 4, 414–416. doi: 10.1038/ngeo1200

Williams, R. G., Roussenov, V., Goodwin, P., Resplandy, L., and Bopp, L.

(2017). Sensitivity of global warming to carbon emissions: effects of heat and

carbon uptake in a suite of earth system models. J. Clim. 30, 9343–9363.

doi: 10.1175/JCLI-D-16-0468.1

Zelinka,M. D.,Myers, T. A.,McCoy, D. T., Po-Chedley, S., Caldwell, P.M., Ceppi,

P., et al. (2020). Causes of higher climate sensitivity in CMIP6models.Geophys.

Res. Lett. 47:e2019GL085782. doi: 10.1029/2019GL085782

Zickfeld, K., Eby, M., Matthews, H. D., and Weaver, A. J. (2009). Setting

cumulative emissions targets to reduce the risk of dangerous climate change.

Proc. Natl. Acad. Sci. U.S.A. 106, 16129–16134. doi: 10.1073/pnas.08058

00106

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Rypdal, Boers, Fredriksen, Eiselt, Johansen, Martinsen, Falck

Mentzoni, Graversen and Rypdal. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Climate | www.frontiersin.org 14 July 2021 | Volume 3 | Article 686058

https://doi.org/10.1073/pnas.1511451112
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1002/2015GB005133
https://doi.org/10.1175/JCLI-D-16-0877.1
https://doi.org/10.1175/JCLI-D-12-00476.1
https://doi.org/10.1038/ngeo2304
https://doi.org/10.1029/2003GL018747
https://doi.org/10.1175/2009JCLI2949.1
https://doi.org/10.1126/science.1210657
https://doi.org/10.5194/gmd-11-369-2018
https://doi.org/10.1038/s41561-019-0463-y
https://doi.org/10.1088/1748-9326/ab858a
https://doi.org/10.5194/gmd-14-3007-2021
https://doi.org/10.1126/sciadv.aat2340
https://doi.org/10.1126/sciadv.aba2949
https://doi.org/10.1007/s40641-015-0030-6
https://doi.org/10.1175/JCLI-D-14-00036.1
https://doi.org/10.5194/bg-17-2987-2020
https://doi.org/10.1175/JCLI-D-16-0205.1
https://doi.org/10.1038/nature08047
https://doi.org/10.1007/s40641-017-0055-0
https://doi.org/10.1038/nature08017
https://doi.org/10.1007/s10584-011-0156-z
https://doi.org/10.1029/2011JD017187
https://doi.org/10.5194/esd-11-737-2020
https://doi.org/10.1038/s41586-018-0640-y
https://doi.org/10.1038/s41586-019-1368-z
https://doi.org/10.1038/nclimate2868
https://doi.org/10.1038/s41586-018-0639-4
https://doi.org/10.5194/esd-11-721-2020
https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.1029/2019RG000678
https://doi.org/10.5194/gmd-11-2273-2018
https://doi.org/10.1038/ngeo1200
https://doi.org/10.1175/JCLI-D-16-0468.1
https://doi.org/10.1029/2019GL085782
https://doi.org/10.1073/pnas.0805800106
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

	Estimating Remaining Carbon Budgets Using Temperature Responses Informed by CMIP6
	1. Introduction
	2. Modeling Set-Up
	3. Results
	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References


