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Abstract

Background: Statistical model building requires selection of variables for a model depending on the model’s aim. In
descriptive and explanatory models, a common recommendation often met in the literature is to include all variables
in the model which are assumed or known to be associated with the outcome independent of their identification
with data driven selection procedures. An open question is, how reliable this assumed “background knowledge” truly
is. In fact, “known” predictors might be findings from preceding studies which may also have employed inappropriate
model building strategies.

Methods: We conducted a simulation study assessing the influence of treating variables as “known predictors” in
model building when in fact this knowledge resulting from preceding studies might be insufficient. Within randomly
generated preceding study data sets, model building with variable selection was conducted. A variable was
subsequently considered as a “known” predictor if a predefined number of preceding studies identified it as relevant.

Results: Even if several preceding studies identified a variable as a “true” predictor, this classification is often false
positive. Moreover, variables not identified might still be truly predictive. This especially holds true if the preceding
studies employed inappropriate selection methods such as univariable selection.

Conclusions: The source of “background knowledge” should be evaluated with care. Knowledge generated on
preceding studies can cause misspecification.

Keywords: Background knowledge, Univariable selection, Backward elimination, Variable selection, Regression
model, Simulation study, Need for more data sharing

Background
Statistical regressionmodels play an important role in epi-
demiological and medical research. The scientific aims
behind those models should thereby carefully be differen-
tiated. While explanatory models should identify causal
relations and factors explaining differences in outcomes,
predictive models aim at predicting an outcome variable
with minimal prediction error, and descriptive models
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ideally capture the main associations of independent vari-
ables and outcome [1]. In many applications, several aims
might also be combined. In any case, consideration of the
aim of model building is essential for choosing the set of
independent variables for the model, as the interpreta-
tion of coefficients of the model changes with the selected
companion variables [2, 3]. In this work, we focus on the
descriptive and the predictive perspective as the theory
for identifying causal relations goes far beyond classical
variable selection techniques [4–6].
Variable selection is an essential aspect of model build-

ing in epidemiological and medical studies. Whenever
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the number of candidate predictors seems too large for
a meaningful interpretation or for a reliable prediction,
the question is how to separate the truly predictive vari-
ables from the non-predictive ones and how assumed
background knowledge influences this procedure. Many
procedures have been proposed to automatize this step
andmany articles have been published addressing the per-
formance of those procedures [2, 6–8]. As a consequence,
to get an overview of the relative performance of those
methods is a challenging task [9].
While general guidance on variable selection is still lack-

ing, several articles agree on the recommendation that
variable selection should always take background knowl-
edge into account [2, 8]. This very general recommenda-
tion must of course be adapted to specific situations, for
example if the study aim is to perform confounder selec-
tion, which however will not be investigated in this work.
In a systematic review screening four major epidemiolog-
ical journals, Walter et al. (2009) showed that 28% of the
medical studies incorporated background knowledge in
their analysis [10]. Ten years later, Talbot et al. updated
the review and the incorporation of prior knowledge
increased to 50% [11]. The importance of prior knowledge
indeed seems plausible and intuitive, especially, when
there is fundamental biologic evidence for a variable being
an important predictor or for being causally related to the
outcome. In absence of scientifically defensible assump-
tions, evidence may be insufficient and based on results
from few or weak preceding studies only. Walter et al.
explicitly state that “Prior knowledge can be documented
by referring to a study in the same population that resulted
in the identification of risk factors for the outcome under
study [...] or by one or more studies that identified each of
the potential confounders” [10]. The level of evidence for
such assumptions is, however, rarely questioned. Often,
these preceding studies are also based on some kind of
model building strategy producing a more or less reliable
subset of identified predictors. Such assumed background
knowledge, which is then transferred to the current study,
is thus uncertain. An intuitive statistical approach to deal
with uncertainty is the use of Bayesian methods, however
in the context of modelling background knowledge these
methods are seldom applied in practice. Talbot and Mas-
samba (2019) identified only one study out of 292 included
studies which incorporated background knowledge based
on a Bayesian approach [11]. Therefore, it seems cur-
rent practice to either include a variable as a “known”
predictor or to exclude it without considering a specific
prior distribution. Such an approach comes with uncer-
tainty, which depends on the appropriateness of variable
selection in the preceding studies [12]. We may there-
fore ask the question which model building and variable
selection techniques are most often applied in preceding
studies. As several systematic reviews showed [13, 14],

in many studies the method of univariable selection was
used meaning that predictors were identified by evalu-
ating unadjusted associations of candidate variables with
the outcome. This method is known since long to per-
form badly when confounding is present [15]. Another
commonly used approach, which is expected to perform
better, is backward elimination [15].
The objective of this paper is to evaluate the reliability

of evidence on predictor selection created by preceding
studies. Thereby, our interest lies in a low-dimensional
setting, meaning that the number of candidate predictors
is much lower than the studies’ sample size. To mimic a
situation often found in practice, we assumed that preced-
ing studies identified predictors by univariable selection
or backward elimination, and assessed the performance of
different strategies to combine the evidence from several
preceding studies by a simulation study.

Methods
We considered a data generating mechanism character-
ized by a linear regression model. “True” predictors are
characterized by a non-zero effect representing the “true
data generating mechanism”. To base the below described
simulation study on a realistic setting, we investigated a
model resembling a real study by Sheppard et al. [16]. In
there, the authors discuss that differences in blood pres-
sure measurements occur between a measurement in a
clinical environment and a measurement at home. They
developed a multivariable linear regression model with
the difference between diastolic blood pressure measured
at home and at the clinic as the dependent variable [16].
The independent variables were age (Xage) [ years], sex
(Xsex) [ 0/1], the first reading of the clinical blood pressure
(Xcbp.first) [mmhg], the difference of the first and a follow-
up reading of the clinical blood pressure (Xcbp.change)
[mmhg], the body mass index (Xbmi) [ kg

m2 ], the previous
diagnosis of hypertension (Xhistory) [ 0/1], the intake of
antihypertensive medication (Xantihyp) [ 0/1], the history
of cardiovascular diseases (Xcvd) [0/1] and the pulse pres-
sure (Xpp) [mmhg]. We assume in the following that the
data is generated by the model

Y = 36 − 0.08 · Xage + 3.33 · Xsex − 0.47 · Xcbp.first

+ 0.31 · Xcbp.change − 0.07 · Xbmi − 0.03 · Xhistory

+ 2.37 · Xantihyp − 0.4 · Xcvd − 0.06 · Xpp + ε,
ε ∼ N(0, σ 2).

(1)

This true generating mechanism contains only the true
predictors. The assumed coefficients of the above true
generating mechanism were adapted from the published
regression parameter estimates in the paper, but the inter-
action terms from the original study were excluded for the
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sake of simplicity. As a consequence, the intercept used
in here deviates from the original publication in order to
create reasonable values of the outcome. Moreover, the
covariance structure of the exemplary model was chosen
as reasonable as possible, but does not encode specific
causal assumptions.
Two frequently applied variable selection methods are

univariable selection and backward elimination with the
Akaike Information Criterion (AIC). Although from a the-
oretical point of view, the Bayesian Information Criterion
(BIC) as a model selection criteria may be preferred to
identify the true underlying model [17], the AIC is more
commonly applied in practice. In univariable selection,
the final model includes only those predictors which were
significant in univariable regressions. Backward elimi-
nation starts with the full model and iteratively cycles
between identifying the least significant predictor and
refitting the model without that predictor. The proce-
dure is stopped if no predictor can be removed without
increasing the AIC.
Note that although all variables in the true data generat-

ing mechanism are true predictors, the clinical relevance
of the predictors and the size of the coefficients are dif-
ferent, so the impact of not selecting a true predictor
is different as well. Therefore, we calculated the stan-
dardized regression coefficients of our data generating
mechanism, which are 0.528 for Xsex, − 0.406 for Xcbp.first ,
0.315 for Xantihyp, − 0.268 for Xage, 0.201 for Xcbp.change,
− 0.161 for Xpp, − 0.093 for Xbmi, − 0.050 for Xcvd and
− 0.004 for Xhistory. This should be kept in mind, when
interpreting the simulation results below.

Simulation and analysis
Our considered simulation study consisted of three steps.
In the first step, data were simulated and in steps 2 and
3, the simulated data were analysed further. In step 1,
three different “preceding” study data sets were generated
according to the model specified above. This first step is
highlighted in blue colour in Fig. 1. Subsequently, in step
2, variable selection was performed within each preced-
ing study, and for the final model of the “present” study, a
variable was considered as a “known” predictor if at least
one, at least two, or all three preceding studies identified
it as relevant. This part of the simulation study is graphi-
cally highlighted in green in Fig. 1. In step 3, the reliability
of background knowledge based on the preceding stud-
ies was evaluated with different performance indicators.
Thereby, the performance indicators assess performance
aspects related to descriptive and to predictive behaviour.
This third step of the simulation algorithm is highlighted
in orange in Fig. 1.
In the following, the three steps are described in more

detail. In the first step of the simulation study, three pre-
ceding study data sets were generated according to the

true data generating mechanism, including predictor and
non-predictor variables as specified in the following:

Step 1: data generation

To define the candidate predictors, we additionally added
a set of non-predictor variables denoted by Xnone1 to
Xnone11 to the true predictor set. To simulate candidate
predictors (including true predictors and non-predictor
variables), we used the R-package “simdata” [18]. This
package is inspired by a technical report by Binder et
al. [19]. It simulates data for covariates with a prede-
fined realistic joint distribution mimicking data from real
biomedical studies. This is achieved by first drawing mul-
tivariate normal deviates with a predefinded correlation
structure, and then transforming them to achieve specific
realistic marginal distributions of simulated predictors
and a realistic correlation structure between them. Note
that the application of transformations might change the
correlations. Figure 2 visualizes the respective discrete or
continuous marginal densities for the simulated variables.
The resulting average correlations are presented in the
Supplement [Figure S1]. While the distributions of the
true predictors were generated to derive clinically mean-
ingful values in accordance with the above true generating
mechanism, the distributions of non-predictor variables
were chosen with the intention to create variables with
complex correlation structures and a range of different
distributions.
The data generating code including the applied transfor-

mations is provided in the supplemental material. For data
generation, the variance σ 2 of the random error was set to
2 resulting in a R2 of about 0.75. This seemed to represent
a plausible situation where still some variance is present.
We considered the following specific simulation settings:

• Preceding studies with equal sample sizes
n = n1 = n2 = n3, where n ∈ {200, 500, 2000}.

• In addition, we considered seven scenarios where
at least two preceding studies show unequal sample
sizes, where n1, n2, n3 ∈ {200, 500, 2000}.

Step 2: variable selection

Within each preceding study data set, variable selection
was now performed to identify the respective predictors.
We thereby relied on the following two variable selection
techniques known to be often applied in applications:

• Univariable variable selection was considered with
upper p-value thresholds of αin ∈ {0.05, 0.2} mean-
ing that variables which showed a p-value smaller or
equal to αin were included in the full model of the
preceding study.

• In addition, we also considered backward elimina-
tion with the AIC as selection criterion.
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Fig. 1 Steps of the simulation study

Subsequently, each of the 20 candidate predictors (9
true predictors, 11 non-predictors) was considered as a
“known predictor” if it was identified by only one pre-
ceding study (rule 1), by at least two preceding studies
(rule 2) or by all three preceding studies (rule 3). The
set of predictors identified by these rules within the pre-
ceding studies was then considered as the set of “known
predictors” (background knowledge) for the current study.

Step 3: performance evaluation

As the true predictors are known, the reliability of back-
ground knowledge based on the preceding studies was
then evaluated by different performance indicators. The
following different performance measures were inves-
tigated, where we focused on correct predictor iden-
tification (descriptive aim) and prediction performance
(predictive aim). A discussion of suitable performance
measures can also be found in [19].

• First, we evaluated how often a specific rule to
quantify background knowledge from preceding
studies identified all and only the true predictors,
referred to as “model selection frequency” (MSF)
[12]. The rates were calculated as relative frequen-
cies over all 10,000 random replications. A value of

1 indicates that a rule is perfectly able to identify all
true predictors.

• Second, we also evaluated the average relative fre-
quency for each rule resulting in a correct identi-
fication of the true predictors referred to as “true
positive rate” (TPR). Here, the identified predictor
set might include additional variables with a zero
effect. The rates were again calculated as relative
frequencies over all random replications. The TPR
is always at least as high as the MSF. A value of 1
indicates again an ideal performance.

• Third, we calculated the average false positive and
false negative rates (FPR, FNR), also denoted as
type I and II errors as defined in [19]. In each
random replication, the number of falsely selected
non-predictor variables divided by the true number
of non-predictor variables (here 11) and number of
falsely not-selected true predictors divided by the
number of true predictor variables (here 9) were
evaluated. Both numbers were then averaged over
all random replications to give the FPR and FNR
for a scenario, respectively. Values of 0 indicate a
perfect performance.

• Fourth, we calculated the descriptive model selec-
tion frequency (DMSF), defined as the average



Hafermann et al. BMCMedical ResearchMethodology          (2021) 21:196 Page 5 of 12

Fig. 2 Density plots of the simulated variables

relative frequency over all iterations of models,
which selected the five most important predictors
according to standardized regression coefficients.
Considering our data generating mechanism, those
five variables were Xsex, Xage, Xcbp.first , Xantihyp and
Xcbp.change. Again, a value of 1 indicates perfect
selection of the five most important predictors. For
a model with a descriptive aim, the DMSF defines a
natural performance indicator.

• Finally, we calculated the average mean square pre-
diction error (MSPE) as the average over all simula-
tion runs over the mean of the squared differences
from the predicted and the observed outcome on a
simulated data set as proposed in [19]. Therefore,
we first generated a current data set of size n = 500
for estimation of the regression coefficients which
defines the proposed model. Then, we generated a
validating data set and performed prediction using
the proposed model. This prediction is then com-
pared to the true outcome of the validating data set,
which gives the MSPE. This procedure is repeated
to define the average MSPE. A value of 0 indicates a
perfect prediction. The MSPE is not bounded from
above, but its value can be used to compare dif-
ferent models. This performance measure naturally

captures the view of a predictive model, whereas
for a purely descriptive model the MSPE is less
important.

The investigated scenarios resulting from different sim-
ulation and analysis combinations are characterized by 1)
the sample sizes of the three simulated preceding stud-
ies, 2) the variable selection technique applied for the
preceding studies and 3) the selection criteria and thresh-
old (p-value or AIC). As we simulated three scenarios
with equal sample sizes for the preceding studies and
seven with unequal sample sizes, which could then all be
combined with either univariable selection (considered p-
value threshold of 0.05 or 0.2) or backward elimination
(AIC), this resulted in a total of 30 scenarios listed in detail
in Table 1. The simulations were implemented in R Ver-
sion 3.5 with 10’000 random replications for each setting
and a seed of 29112018 to assure reproducibility.

Results
Table 2 shows the resulting performance measures for the
30 selected scenarios presented in Table 1.
It can be seen that independently of the scenario, the

true predictor set was hardly ever selected with model
selection frequencies (MSF) always lower than 0.005
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Table 1 Investigated simulation scenarios

Scenario Sample size in prior Variable selection used in prior study

study

n1 n2 n3

S1_a 200 200 200 Univariable selection with p=0.05

S1_b Univariable selection with p=0.2

S1_c Backward Elimination with AIC

S2_a 500 500 500 Univariable selection with p=0.05

S2_b Univariable selection with p=0.2

S2_c Backward Elimination with AIC

S3_a 2000 2000 2000 Univariable selection with p=0.05

S3_b Univariable selection with p=0.2

S3_c Backward Elimination with AIC

S4_a 200 200 500 Univariable selection with p=0.05

S4_b Univariable selection with p=0.2

S4_c Backward Elimination with AIC

S5_a 200 500 500 Univariable selection with p=0.05

S5_b Univariable selection with p=0.2

S5_c Backward Elimination with AIC

S6_a 200 500 2000 Univariable selection with p=0.05

S6_b Univariable selection with p=0.2

S6_c Backward Elimination with AIC

S7_a 200 200 2000 Univariable selection with p=0.05

S7_b Univariable selection with p=0.2

S7_c Backward Elimination with AIC

S8_a 500 500 2000 Univariable selection with p=0.05

S8_b Univariable selection with p=0.2

S8_c Backward Elimination with AIC

S9_a 200 2000 2000 Univariable selection with p=0.05

S9_b Univariable selection with p=0.2

S9_c Backward Elimination with AIC

S10_a 500 2000 2000 Univariable selection with p=0.05

S10_b Univariable selection with p=0.2

S10_c Backward Elimination with AIC

for univariable selection and values lower than 0.04 for
backward elimination (columns 2, 6, 10).
Models containing all but not only true predictors were

identified more often as indicated by TPR values well
above MSF (columns 3, 7, 11). In the comparison of the
different rules, rule 1 was clearly the best with respect to
the TPR across all scenarios followed by rule 2 and rule 3.
This is intuitive as a model that only contains predictors
identified by at least one preceding study (rule 1) is more
likely to contain all true predictors than if the selection

is more restrictive. Across all scenarios, the univariable
selection with αin = 0.2 showed the highest TPR with
ranges of 0.644 to 0.992 for the most favourable rule 1,
whereas univariable selection with αin = 0.05 led to TPR
in the range between 0.247 to 0.912 and backward elim-
ination showed the worst TPR with a range of 0.325 to
0.475 for rule 1.
In contrast, rule 1 turned out to be the worst in terms of

FPR. Moreover, a higher p-value threshold for univariable
selection resulted in increased average FPR (columns 4,
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8). Backward elimination showed average FPR that were a
little lower than those for univariable selection with αin =
0.2 (columns 8, 12).
At the same time, a higher p-value threshold for univari-

able selection naturally resulted in lower FNR (columns
5, 9). For backward elimination, higher average FNR were
observed than for univariable selection with αin = 0.2
(columns 9, 13). Since for predictive models a low FNR
is desirable, rule 1 and a higher p-value threshold for
univariable selection would be preferred.
Whereas Table 2 provides performance measures across

the complete set of candidate predictors, in Fig. 3 the rates
of inclusion for the individual variables (true predictors
and non-predictors) are graphically summarized as func-
tions of the preceding study sample size (with assumed
equal sample sizes in all three preceding studies).
Figure 3 shows how well the different selection methods

and rules could yield a separation between the true pre-
dictors and the non-predictors. Ideally, the coloured lines
(true predictors) should take values close to 1 whereas
all black lines should be close to 0. Generally, it can
be observed that backward elimination allowed for the

best differentiation between true predictors and non-
predictors, whereas the univariable selection approaches
behaved similar, but a better separation was achieved with
αin = 0.05.
The univariable selection approaches tended to over-

look the true predictor Xcbp.change, with corresponding
true regression coefficient of 0.31, whereas backward
elimination did discover it. In contrast, for backward elim-
ination Xhistory with a regression coefficient of -0.03 had
the smallest inclusion frequency. Univariable selection,
however, did identify it correctly. This can be explained
as Xhistory was highly correlated to Xsex, which had a high
inclusion frequency. There is the general tendency that
the more preceding studies were required to identify the
same predictor, the better the differentiation between true
predictors and non-predictors became. In this view, rule 3
was the best, followed by rule 2 and rule 1.
For a model with a descriptive aim, it is important to

capture the variables that exhibit the strongest associa-
tions with the outcome in the multivariable context. This
was evaluated with the DMSF reported in Table 3. Here,
we identified a clear advantage of backward elimination.

Fig. 3 Rates of inclusion for the individual variables. Dashed, black lines refer to the non-predictors Xnone1 to Xnone11 and the solid coloured lines to
the true predictors. Sample sizes for all three preceding study data sets are assumed to be equal
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Table 3 Descriptive model selection frequencies (DMSF) for investigated simulation scenarios

Scenario S(*)_a: Univariable selection, S(*)_b: Univariable selection, S(*)_c: Backward elimination,

αin = 0.05 αin = 0.2 AIC

S1_(*) R1: 0.271 R1: 0.648 R1: 1

R2: 0.028 R2: 0.212 R2: 0.997

R3: 0.001 R3: 0.024 R3: 0.894

S2_(*) R1: 0.448 R1: 0.805 R1: 1

R2: 0.086 R2: 0.382 R2: 1

R3: 0.006 R3: 0.069 R3: 0.999

S3_(*) R1: 0.912 R1: 0.992 R1: 1

R2: 0.581 R2: 0.889 R2: 1

R3: 0.170 R3: 0.505 R3: 1

S4_(*) R1: 0.340 R1: 0.711 R1: 1

R2: 0.044 R2: 0.255 R2: 0.999

R3: 0.001 R3: 0.037 R3: 0.929

S5_(*) R1: 0.401 R1: 0.764 R1: 1

R2: 0.064 R2: 0.323 R2: 1

R3: 0.003 R3: 0.054 R3: 0.966

S6_(*) R1: 0.678 R1: 0.917 R1: 1

R2: 0.161 R2: 0.489 R2: 1

R3: 0.009 R3: 0.097 R3: 0.959

S7_(*) R1: 0.644 R1: 0.899 R1: 1

R2: 0.107 R2: 0.419 R2: 0.998

R3: 0.005 R3: 0.072 R3: 0.929

S8_(*) R1: 0.705 R1: 0.933 R1: 1

R2: 0.200 R2: 0.557 R2: 1

R3: 0.019 R3: 0.140 R3: 1

S9_(*) R1: 0.834 R1: 0.970 R1: 1

R2: 0.362 R2: 0.729 R2: 1

R3: 0.029 R3: 0.184 R3: 0.965

S10_(*) R1: 0.840 R1: 0.977 R1: 1

R2: 0.403 R2: 0.774 R2: 1

R3: 0.052 R3: 0.267 R3: 1

R1 Rule 1 (one out of three preceding studies identifies predictor); R2 Rule 2 (Two out of three preceding studies identify predictor); R3 Rule 3 (all three preceding studies
identify predictor)

Across all scenarios using backward elimination the
DMSF ranged from 0.895 to 1 whereas for univariable
selection with an αin = 0.05 the DMSF decreased to 0.001
for rule 3.
In order to evaluate the predictive performance of the

models, we report the MSPE in Table 4. The only clear
result is that the MSPE is always the lowest for rule 1
followed by rule 2 and rule 3 in all scenarios. This is in
line with expectations as rule 1 naturally selects models

with larger numbers of predictors than rules 2 and 3. The
MSPE does not generally decrease with sample size of
the preceding studies, which is due to the fact that for
the current data set a fixed sample size of 500 was used.
Moreover, there is no clear advantage of any selection
procedure used in the preceding studies.
Still, for reasonable preceding study sample sizes of

500, the probabilities of inclusion for the true predictors
were often considerably below 1 for all rules and selection
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Table 4 Mean square prediction error for investigated simulation scenarios

Scenario S(*)_a: Univariable selection, S(*)_b: Univariable selection, S(*)_c: Backward elimination,

αin = 0.05 αin = 0.2 AIC

S1_(*) R1: 4.521 R1: 4.173 R1: 4.293

R2: 4.669 R2: 4.362 R2: 4.250

R3: 4.933 R3: 4.536 R3: 4.307

S2_(*) R1: 4.252 R1: 4.151 R1: 4.227

R2: 4.349 R2: 4.147 R2: 4.186

R3: 4.401 R3: 4.183 R3: 4.231

S3_(*) R1: 4.088 R1: 4.466 R1: 4.278

R2: 4.157 R2: 4.503 R2: 4.244

R3: 4.265 R3: 4.683 R3: 4.239

S4_(*) R1: 4.102 R1: 4.133 R1: 3.942

R2: 4.261 R2: 4.320 R2: 3.966

R3: 4.604 R3: 4.485 R3: 4.038

S5_(*) R1: 4.319 R1: 4.144 R1: 4.231

R2: 4.409 R2: 4.258 R2: 4.198

R3: 4.686 R3: 4.419 R3: 4.297

S6_(*) R1: 4.460 R1: 4.133 R1: 4.000

R2: 4.479 R2: 4.162 R2: 4.335

R3: 4.727 R3: 4.303 R3: 4.377

S7_(*) R1: 4.342 R1: 4.111 R1: 4.223

R2: 4.665 R2: 4.215 R2: 4.234

R3: 4.993 R3: 4.429 R3: 4.325

S8_(*) R1: 4.127 R1: 4.864 R1: 4.083

R2: 4.251 R2: 4.965 R2: 4.089

R3: 4.429 R3: 5.119 R3: 4.113

S9_(*) R1: 4.074 R1: 4.619 R1: 4.012

R2: 4.167 R2: 4.617 R2: 3.998

R3: 4.369 R3: 4.767 R3: 4.061

S10_(*) R1: 4.058 R1: 4.047 R1: 4.018

R2: 4.142 R2: 4.115 R2: 3.991

R3: 4.212 R3: 4.337 R3: 4.009

R1 Rule 1 (one out of three preceding studies identifies predictor); R2 Rule 2 (Two out of three preceding studies identify predictor); R3 Rule 3 (all three preceding studies
identify predictor)

techniques. In addition, the probabilities of inclusion for
the non-predictors were mostly considerably above 0 for
all rules combined with univariable selection.

Discussion
The results of our simulation study suggest that the
variable selection techniques used in preceding stud-
ies may have major effects on the level of evidence for
what is called background knowledge. In our study, we

investigated how inappropriate selection methods in such
preceding studies can translate into poor representation
of background knowledge in a given study. The simulation
study showed that when the commonly applied univari-
able selection was used, the identified set of variables
might not be reliable, even when several preceding stud-
ies have identified the same predictor. The stability of the
identified predictor set is also limited if a more appro-
priate selection method such as backward elimination
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has been applied. Our results showed that choosing only
variables which have been pre-identified multiple times
does not necessarily improve the rates of correct inclu-
sion of true predictors in general, but only reduces the
rate of wrong inclusion for non-predictors. Moreover, our
results show that the predictive performance of the result-
ing models is also limited independent of the variable
selection procedure in the preceding studies.
The identification of true predictors by one or several

preceding studies also depends on the underlying sample
size and the number of candidate predictors. In the liter-
ature, the ratio of sample size and candidate variables is
assessed via the ratio of “events per variable” (EPV). A rule
of thumb says that at least 10 observations are required
per variable in linear regression models [20]. This implies
that for the situation considered in here with 20 candidate
variables, the sample size should be at least 200. How-
ever, with preceding studies of that size, results were not
yet satisfactory in our simulation study. Sometimes even a
recommendation of at least 50 EPV is given, which is bet-
ter in line with our results [21]. Recent development even
goes one step further, Riley et al. (2020) state that the cal-
culation of the sample size should also incorporate other
factors like the expected predictive performance of the
model [22]. Here, results improved only if very high sam-
ple sizes of 1000 or more were assumed, which in some
practical situations may not be achievable.
Thus, results shown here are limited for various reasons.

A very general point of criticism regarding simulation
studies is the assumption of the existence of a true under-
lying model. Several authors already declared that they
do not agree with this assumption [2, 21, 23]. Nonethe-
less, when evaluating the performance of a model, the
assumption of different data generatingmechanisms helps
in understanding and comparing properties of the evalu-
ated model building strategies. Despite analysing a broad
variety of scenarios, simulation studies are never able to
cover all possible settings eventually found in applications.
In here, the same simulation design was applied for all
three preceding data sets, whereas changes in the corre-
lation structure and the variable distributions might have
an impact.
Further, the relative amount of non-predictors impacts

the performance. We also investigated different settings
with fewer non-predictors referring to a lower signal-to-
noise ratio (results not shown). Even in this setting, where
it should be easier to identify the true predictors, the per-
formance measures indicated no relevant improvement
compared to the scenarios shown here.
In this work, we concentrated on a multivariable lin-

ear regression model. For future research, other regres-
sion model types with a nonlinear link function (logistic,
Cox regression) implying noncollapsibility issues could be

investigated. We assume that with such models, selection
uncertainty is even higher.
We have focused on background knowledge from a

black-or-white perspective, that is a predictor is either
included or not. Incorporating the uncertainty of back-
ground knowledge could most naturally be done by using
Bayesian hierarchical models, as e.g. done by Gracia et
al. (2015) [24] or using informative prior distributions in
an empirical Bayes approach [25]. Unfortunately, those
methods are rarely used in clinical research. As the aim of
our work was to assess the impact of commonly applied
methods, Bayesian methods were not further investigated
although they are worthwhile to be considered in applica-
tions.
As a further limitation, we only considered low dimen-

sional data. Generally, methodological results on model
building for low and high dimensional data might devi-
ate [26] so that our results cannot be transferred easily to
the situation of high dimensional data. A similar inves-
tigation of background knowledge in variable selection
for high-dimensional omics data was conducted by Liu et
al. [27]. They proposed to integrate background knowl-
edge along with marginal correlations in the prescreening
procedure of omics data before applying the LASSO. A
similar method was proposed by Bergersen et al. [28] who
directly integrated background knowledge by weighting
the penalties of each regression coefficient.
Note that within this work, we were interested in iden-

tifying the correct set of predictors and/or a good predic-
tion which is important in the context of descriptive and
predictive models. We did not focus on explanatory mod-
els and therefore did not assess the accuracy in estimation
of the regression coefficients. However, one interesting
aspect would be to look at the common recommendation
to control for all variables that are causes of either the
exposure or the outcome and not on the causal pathway
[29]. Nevertheless, poor methodology in preceding stud-
ies may also increase the risk to not correctly identify and
specify confounders in an explanatory study.

Conclusion
To conclude, we strongly advised to identify the source
and the level of evidence for so called “background knowl-
edge”. If background knowledge is only based on a few
preceding studies without sufficient biological support,
the methodology of these studies should be carefully
investigated, and uncertainties related to the selection or
non-selection of variables in such studies should be criti-
cally inferred [12]. This does not imply a recommendation
against the incorporation of background knowledge in
model building, but rather aims at making researchers
more sensitive to a critical appraisal of the existing evi-
dence.
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