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Abstract 

Background: The aim of this study was to evaluate the possibility of breath testing as a method of cancer detection 
in patients with oral squamous cell carcinoma (OSCC).

Methods: Breath analysis was performed in 35 OSCC patients prior to surgery. In 22 patients, a subsequent breath 
test was carried out after surgery. Fifty healthy subjects were evaluated in the control group. Breath sampling was 
standardized regarding location and patient preparation. All analyses were performed using gas chromatography 
coupled with ion mobility spectrometry and machine learning.

Results: Differences in imaging as well as in pre- and postoperative findings of OSCC patients and healthy partici-
pants were observed. Specific volatile organic compound signatures were found in OSCC patients. Samples from 
patients and healthy individuals could be correctly assigned using machine learning with an average accuracy of 
86–90%.

Conclusions: Breath analysis to determine OSCC in patients is promising, and the identification of patterns and the 
implementation of machine learning require further assessment and optimization. Larger prospective studies are 
required to use the full potential of machine learning to identify disease signatures in breath volatiles.
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Background
Approximately 354,864 new cases of oral cancer are diag-
nosed annually, and the number, which was associated 
with 177,384 deaths in 2018, is steadily increasing [1]. 
About 90% of oral cancers diagnosed are oral squamous 
cell carcinomas (OSCCs), which result in malignancies 
in men at least twice as often as women [2]. In Germany, 

the 5-year survival rate of patients diagnosed with OSCC 
varies between 63% (female) and 47% (male) [3]. Mortal-
ity is associated with the high recurrence rate and metas-
tases of OSCC, and the delayed diagnosis of the disease 
[4, 5]. Only one-third of OSCC are discovered at an early 
stage (0–I) [6, 7]. Therefore, the development of tests 
that enhance our capacity to screen high-risk (e.g. heavy 
tobacco and alcohol abuse) [8] and post-therapy patients 
is of great interest.

Breath analysis is not burdensome to patients, and is 
a rapid, non-invasive and inexpensive cancer screening 
tool. Its use has already been determined to be a promis-
ing approach to detect and differentiate various diseases, 
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gastrointestinal conditions, and cancer types, such as 
lung, breast, colorectal cancer [9–12]. In every exhaled 
human breath, specific volatile organic compounds 
(VOC) that are byproducts of normal cell metabolism 
can be identified. These compounds are also present in 
biofluids such as blood, saliva, urine and feces [13, 14]. 
The concentrations and types of VOCs present in the 
exhaled breath of cancer patients compared to healthy 
individuals may differ based on differences in levels of 
oxidative stress, which are enhanced in tumor tissues 
[15, 16]. Gas chromatography coupled with mass spec-
trometry (GC–MS) is considered the gold standard for 
VOC screening. However, the E-nose technique, which 
is based on breath analysis, has produced promising 
results in OSCC patients as well [17–19]. Schmutzhard 
et  al. [20] showed that a significant difference between 
VOC data from cancer patients relative to the two con-
trol groups could be detected using proton transfer-reac-
tion-mass spectrometry (PTR-MS). A study published 
by Hakim et  al. [21] revealed that data produced via 
GC–MS could be used to detect statistically significant 
differences between the breath compositions of three 
evaluated groups (OSCC/lung cancer/control). Fur-
ther, the authors were able to distinguish groups using a 
Nanoscale Artificial Nose. Gruber et al. [22] published a 
feasibility study comparing OSCC patients, benign tumor 
patients and healthy controls that identified three poten-
tial biomarkers of OSCC using GC–MS. Bouza et al. [23] 
concluded that aldehyde compounds had the capacity to 
function as OSCC biomarkers when detected using solid-
phase micro extraction followed by GC–MS. Further, 
Hartwig et  al. [24] published a pilot study that revealed 
the absence of three specific VOCs after curative surgery 
for OSCC when compared to a patient’s initial GC–MS 
spectrum, which indicated a correlation between OSCC 
and the specific VOCs identified.

Machine learning is a computational branch that emu-
lates human intelligence by learning from big data, and is 
applied in various fields, such as finances, entertainment 
or biological and medical applications to detect pat-
terns which are hard or impossible to see for the human 
eye [25]. During the last years, a wide range of machine 
learning approaches were developed for the early diag-
nosis of different kinds of cancer from images. These 
include breast cancer detection by analyzing digitized 
images of fine needle aspirates of breast masses [26], lung 
cancer prediction from computed tomography images 
[27, 28] and brain cancer detection using magnetic reso-
nance imaging [29]. Recent developments even include 
mobile applications for the detection of skin diseases via 
user-provided images, which are widely applicable and 
easy to use [30].

The aim of this study was to evaluate breath samples 
before and after surgery in a larger cohort using machine 
learning to compare OSCC patients with healthy smok-
ers to optimize the identification of signatures of OSCC 
using a recently introduced gas chromatography–ion 
mobility spectrometry (GC–IMS)-based method. Fur-
ther, we aim to enhance the applicability of the test by 
improving the detection of OSCC specific IMS signals 
that may be used to determine a VOC signature in future 
studies.

Patients and methods
Study population
In this prospective controlled study we collected breath 
samples from 55 patients with potential OSCC, as well 
as 50 breath samples from healthy controls. The Eth-
ics committee of the University formally approved the 
study (EA1/203/19). Written informed consent for study 
participation was obtained from study participants. All 
methods were carried out in accordance with relevant 
guidelines and regulations.

Patients between the age of 18 and 85 with OSCC in the 
oral cavity and oropharynx with surgical therapy pending 
were included in the study. Exclusion criteria included a 
diagnosis of other severe internal accompanying diseases, 
HIV infection and a Karnofsky performance status scale 
of less than 50%. All participants in the control group 
were required to be daily smokers, at least 18  years old 
and lack known malignant pre-existing conditions.

Sampling
Standardization of sampling in terms of location and 
patient instruction was known to be crucial from the lit-
erature and our pre-tests. Patients were instructed to fast 
at least 6  h before sampling and refrain from cleaning 
their teeth with toothpaste or mouthwash. Samples were 
also taken in a healthy control group under the same 
conditions and instructions. Patients were instructed to 
breathe a few times through the slightly opened mouth. 
Air from each participant’s breath was collected using 
a 5  mL Luer syringe directly from the mouth. During 
transport, each syringe was closed with a stopper to pre-
vent contamination. The procedure was repeated twice. 
All samples were analyzed within 20  min. Additionally, 
two syringes filled with room air were analyzed.

If analysis within 20 min was not possible (n = 2), the 
sample was transferred to a single use mylar bag (Quin-
Tron, Milwaukee, WI, USA), stored at room temperature 
and analyzed within 24 h [31]. During analysis we made 
sure that these samples did not differ significantly from 
the other samples. Sampling always took place the morn-
ing before surgery or panendoscopy.
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Gas chromatography/ion mass spectrometry (GC/IMS)
Breath sample analysis was executed using BreathSpec® 
(GAS Dortmund, Germany). The device facilitated two-
fold separation via GC combined with IMS to detect gas-
eous compounds in a mixture of analytes. VOCs were 
pre-separated based on their retention times via GC and 
detected using an IMS electrometer based on specific 
drift times needed to travel a fixed distance (drift tube) in 
a defined electric field.

Samples were injected using a 5  mL-Luer-syringe via 
a Luer-Lock-Adapter into the BreathSpec® (GAS Dort-
mund, Germany). Samples were heated to 60  °C while 
passing through the first transfer line and were pumped 

into the sample loop (40  °C). A carrier gas transported 
the sample gas in the loop to the GC column (60  °C). 
During the first separation, different VOCs pass through 
the GC capillary column (30  m × 0.53  mm, 0.5  μm) at 
various speeds due to their different retention times. 
Next, when passing through the second transfer line 
(60 °C), separated compounds consecutively are fed into 
the IMS ionization chamber (45 °C). The first separation 
reduces levels of competition between analytes for reac-
tant ions and enhances the sensitivity of IMS detection. 
VOCs are softly chemical-ionized initiated by a low-radi-
ation tritium (H3) source. The collision between fast elec-
trons emitted from the β-radiator (H3) with an inserted 

Fig. 1 CONSORT flow diagram
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reagent gas, which is followed by a cascade of reactions, 
generates reactant ions. This forms the so-called reac-
tion ion peak (RIP), which represents the number of ions 
available. The chemical ionization of analytes by reactant 

ions creates specific analyte ions, as long as the affinity 
of the analyte to the reactant ion is greater than its affin-
ity to water, which is typical for all heteroatom-organic 
compounds. Specific analyte ions travel at atmospheric 

Table 1 Characteristics of OSCC patients: Age, sex (m: male, f: female), smoking habits (+: smoker, −: non-smoker, +a: former smoker), 
ICD 10 code (*: recurrence), TNM classification

Patient no Age Sex Smoker ICD 10 Location TNM

1 76 M − C03.1 Lower gum T4a N0 M0

2 52 M + C03.1 Lower gum T4a N1 M0

3 61 M + C02.1 Border of tongue T2 N0 M0

4 59 M + C04.0 Anterior floor of mouth T1 N0 M0

5 62 M + C04.1 Lateral floor of mouth T3 N3b M0

6 53 M +a C02.1 Border of tongue T1 N0 M0

7 80 F + C03.0 Upper gum T4a N2c M0

8 60 F − C02.1 Border of tongue T1 N0 M0

9 76 F + C04.0 Anterior floor of mouth T1 N0

10 86 F +a C02.1 Border of tongue T3 N3b M1

11 74 F + C04.0 Anterior floor of mouth T1 N0 M0

12 89 M + C05.0* Hard palate T4a N0 M0

13 81 M − C03.0 Upper gum T4a N0 M0

14 63 M + C02.1 Border of tongue T3 N3b M0

15 76 M + C04.8 Overlapping lesion of floor of mouth T3 N1 M0

16 61 M +a C03.1 Lower gum T4a N0 M0

17 63 F + C14.8 Overlapping lip, oral cavity T4a N1 M0

18 75 M − C05.1 Soft palate T1 N1

19 71 M − C06.0 Cheek mucosa T1 N0 M0

20 72 M + C03.1 Lower gum T4a N3b M0

21 49 M + C03.1 Lower gum T4a N0 M0

22 58 F − C02.1 Border of tongue T1 N0 M0

23 62 M + C06.0 Cheek mucosa T4 N2 M0

24 83 M + C02.0 Dorsal surface of tongue T2 N0 M0

25 63 F + C04.8 Overlapping lesion of floor of mouth T4b N2 M0

26 63 F + C05.0 Hard palate T3 N2c

27 88 M +a C03.1 Lower gum T4b N2 M0

28 43 M + C02.0* Dorsal surface of tongue T4 N0 M0

29 81 F − C06.0 Cheek mucosa T4a N0 M0

30 44 M + C05.0 Hard palate T4a N2 M0

31 83 M + C04.9 Floor of mouth T2 N0 M0

32 58 M − C04.8* Overlapping lesion of floor of mouth T3 N0 M1

33 62 M − C02.1 Border of tongue T1 N0 M0

34 65 M + C04.0 Anterior floor of mouth T2 N0 M0

35 61 F − C03.1 Lower gum T1 N0 M0

Table 2 Summary table of the cohort

Male Female Smoker Non-smoker Former smoker T1/2 T3/4

Before surgery 24 11 21 10 4 14 21

After surgery 15 7 13 6 3 9 13



Page 5 of 12Mentel et al. BMC Oral Health          (2021) 21:500  

pressure versus a flow of inert drift gas in the drift tube, 
and the resulting ion current is measured using an elec-
trometer (drift length: 98  mm, electrical field strength: 
500 V/cm). IMS measurements are extremely fast (30 ms/
spectrum). The mass and geometric structure of an ion 
determines the drift time of each substance. Therefore, 
IMS can differentiate isomeric molecules.

To perform analyses, two breath samples and two 
room air samples were taken from each participant. One 
sample of the patient’s breath and one of the surround-
ing air was analyzed using the positive drift voltage IMS 
mode and one of each of the breath and air samples were 
assessed using the negative drift voltage mode. The total 
processing time for one sample was 10 min.

VOC analysis
For visualization and analysis of data, a software pro-
vided by the manufacturer was used (VOCal, Dortmund, 
Germany). GC separation of VOCs divided compounds 
based on their retention times in the capillary, which 
resulted in an offset feed into IMS and generated coor-
dinates on the y-axis of the pictorial representation. IMS 
was used to separate compounds according to their spe-
cific drift times in an electric field, which have been dis-
played as coordinates on the x-axis. These data produce 
a two-dimensional visualization scheme. The quanti-
fication of compounds was performed down to the low 
parts per billion (ppb) level, and data were used to create 
a z-axis in the software. Signal intensity was correlated 
with the analyte concentration of a sample. For analy-
sis, individual signals were marked manually, and signal 
intensity changes and the presence of recurring patterns 
were identified using tools in the software.

Machine learning
To work with the 2-dimensional images, which were 
produced using the manufacturer’s software, they were 
first transformed into integer arrays. To achieve this, the 
“Image module” from the Python library pillow (https:// 
pillow. readt hedocs. io/ en/ stable/ refer ence/ Image. html) 
was used to load the images. After successfully transfer-
ring the images into the Python script, they were subse-
quently converted to numpy arrays (https:// numpy. org/), 
using the function “asarray”. The resulting array consists 
of integer values specifying the color of each pixel in RGB 
format (https:// htmlc olorc odes. com/), so for each pixel 
in the original image, three color values are produced 

that represent its respective amount of red, green and 
blue. Furthermore, to assure all images were of the same 
size, all images were reshaped to a standard format 
of 200 × 200 pixels using the numpy function “resize”, 
since even a difference in size by one pixel could poten-
tially influence the results. As a last step, to ensure an 
equal importance of each feature, the multidimensional 
array representing the color values was collapsed into a 
1-dimensional array using the numpy function “ravel”.

To identify the best performing classifier, a number 
of different models were evaluated, including random 
forest [32], logistic regression [33], K nearest neighbors 
[34], and linear discriminant analysis [35]. All meth-
ods are implemented in the Python library Scikit-Learn 
(https:// scikit- learn. org/ stable/), and used with the 
respective recommended initial parameters. To build 
each model, depending on the comparison in question, 
the images were separated into the two categories of 
“true” and “false” respectively. To train and evaluate the 
performance of each model, the data was split into train-
ing and test set. The training set was used as input for 
the machine learning model, while the test set was hold 
back so it remained completely unknown to the machine 
learning model. After finishing the training, each image 
in the test set was then predicted by the machine learn-
ing model to be “true” or “false” and it was assessed if the 
model did the correct prediction. The prediction accu-
racy of each model was analyzed multiple times with 
varying sizes of training and test set. Initially, a tenfold 
cross-validation was performed [36], where the data set 
is split into 10 equally sized parts. Each of the 10 subsets 
is then used once as test set, with the remaining 9 parts 
being the training set for this specific case.

Additionally, the recall was evaluated using the leave-
one-out methodology [37]. In this case, the test set con-
sists only of a single data sample, while all remaining 
samples were used as a training set to build the model. 
Here, each image was used once as a test sample and 
therefore left out while training the model. Subsequently, 
the left-out test sample was predicted and the prediction 
was determined to be either true or false.

Results
Manual VOC evaluation
The study population consisted of 55 patients with sus-
pected OSCC before surgery and 50 healthy control sub-
jects. After applying exclusion criteria, some patients 
could not be included in the final data analysis (Fig. 1).

(See figure on next page.)
Fig. 2 Comparison of pre- and postoperative measurements. The heat map shows 25 areas of interest revealed using 44 measurements of 22 
patients before and after surgery in negative drift mode. Certain VOCs are present in all samples (areas 1, 2, 5, 9), and display different signal intensity 
(concentration), others are inconsistently observed (e.g. areas 6, 12, 14, 17, 20), and some VOCs are present in exclusively pre- or postoperative 
samples (e.g. areas 24 and 25)

https://pillow.readthedocs.io/en/stable/reference/Image.html
https://pillow.readthedocs.io/en/stable/reference/Image.html
https://numpy.org/
https://htmlcolorcodes.com/
https://scikit-learn.org/stable/
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Fig. 2 (See legend on previous page.)
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The preoperative analysis consisted of 35 patients (24 
men and 11 women) with an average age of 67.2  years. 
According to their medical history, 21 participants were 
smokers (60%), four were former smokers, ten were non-
smokers (28.6%) (Tables 1 and 2).

Postoperative sampling was carried out in 22 patients 
(some were lost during follow-up, Fig. 1). Breath samples 
were taken approximately 12 days after surgery. The con-
trol group included 50 healthy smokers (25 men and 25 
women), with an average age of 55 years.

To compare the occurrence of different VOC areas in 
the population and between preoperative and postop-
erative patients, signals in the visual representation that 
corresponded to substances in analyzed air were manu-
ally marked in all measurements. Data from one patient 
were placed in chronological order and compared using 

marked signal areas. It was revealed that certain sub-
stances occurred in almost all patients (areas 1, 2, 5, 9), 
while others appeared regularly, but not in every sample. 
Others were found very sporadically (areas 6, 12, 14, 17, 
20) and some areas were exclusively present in pre- or 
postoperative samples (areas 24, 25). (Fig.  2, Table  3). 
Some areas were overlapped by VOCs of disinfectants 
(e.g. ethanol) and were therefore excluded from further 
analysis.

Signal intensity changes were also assessed. Many sig-
nals differed in intensity depending on whether the anal-
ysis was preoperative or postoperative, and an increased 
intensity was associated with an elevated concentration 
of the respective substance in a sample. In general, sig-
nals detected within postoperative samples tended to be 
elevated relative to preoperative samples. A comparison 
of OSCC patients and the control group showed that the 
number and intensity of signals in healthy participants 
was elevated relative to OSCC patients (Fig. 3). In some 
cases, the precise evaluation of the control group was 
difficult due to the presence of overlap between strongly 
pronounced signals.

Machine learning
In the tenfold cross-validation process, pre- and post-
operative samples in positive drift mode could only be 
distinguished with a highest average accuracy of 0.65 
(Fig. 4a). For samples in negative drift mode, however, a 
highest average accuracy of 0.89 was obtained (Fig. 4b). 
Additionally, differentiating between preoperative tumor 
samples and healthy smoker samples using positive and 
negative drift mode could be done with a highest average 
accuracy of 0.90 and 0.86, respectively (Fig. 4c, d).

The estimated accuracy of the models was further con-
firmed using leave-one-out cross-validation, where logis-
tic regression was determined to be the best performing 
method overall. For pre- and postoperative samples 
assessed in positive drift mode, 35 of 61 images (57%) 
were classified correctly (Additional file 1: Table S1). For 
samples assessed using negative drift mode this ratio 
improved to 43 of 58 (74%, Additional file  1: Table  S2). 
Samples collected from preoperative tumor patients and 
healthy smokers were better differentiated. In samples 
assessed using positive drift mode, 60 of 72 samples (83%) 
were classified correctly (Additional file 1: Table S3), and 
in negative drift mode, 61 of 72 (85%) were predicted cor-
rectly (Additional file 1: Table S4). Additionally, we cre-
ated sub-groups matching patients with either T1/2 (18 
of 23) or T3/4 (28 of 33) tumors, female or male patients 
(16 of 35) and smoker or non-smoker (24/31) resulting in 
lower accuracies.

Table 3 Intensity changes in IMS signals between pre- and 
postoperative measurements: Area no. 1–25 (see Fig. 2), 
preoperative and postoperative signal count (n of 22 patients 
with IMS signal in measurement), Δ of IMS signal intensity (0: no 
or little changes, +: increased signal, −: decreased signal)

Area no Preoperative signal 
count

Postoperative signal 
count

Δ of 
IMS 
signal

1 21/22 20/22 0

2 21/22 19/22 0

3 20/22 17/22 +
4 21/22 17/22 −
5 20/22 18/22 +
6 13/22 19/22 +
7 20/22 14/22 0

8 16/22 13/22 0

9 22/22 22/22 0

10 16/22 13/22 0

11 20/22 15/22 −
12 12/22 15/22 +
13 15/22 12/22 −
14 13/22 13/22 0

15 21/22 16/22 −
16 20/22 11/22 −
17 7/22 11/22 0

18 11/22 14/22 +
19 10/22 12/22 +
20 4/22 13/22 +
21 17/22 17/22 0

22 9/22 9/22 0

23 19/22 18/22 0

24 0/22 2/22 0

25 1/22 0/22 0
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Discussion and conclusion
This study showed that sampling exhaled air from the 
oral cavity using disposable syringes and subsequent 
processing is possible by following a standardized pro-
tocol. This eliminates the time-consuming intermedi-
ate step of storing samples before analyzing that has 
been used frequently to date [9, 38]. Sampling was a 
quick procedure that was easy to carry out and to learn 

for the practitioner. Since it is a non-invasive method, 
patient acceptance was very high. In this study, no patient 
refused to participate. Data analysis, however, was more 
complicated and required a trained user with current 
knowledge of the method. The targeted, pre-selection of 
relevant substances and automated analysis of specific 
patterns is needed to make breath testing user-friendly, 
error-free and widely applied in the future. A critical 

Fig. 3 Comparison of preoperative OSCC patients with healthy controls. The heat map shows 25 areas of interest in 10 patients with OSCC (a), 10 
healthy controls (c) and correlations with the room air of OSCC patients (b) in positive drift mode. Area 6 is significantly more pronounced in OSCC 
patients than room air, therefore, the endogenous origin of analytes can be assumed and may be associated with OSCC. In contrast, the signal 
observed in Area 8 is significantly increased in room air samples, an external origin of analytes is likely. The greatest signal intensity within Area 13 
was observed for samples taken from the healthy control group
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point in the study design was to define the healthy vol-
unteers as smokers. The design aimed to make sure that 
signals from smoking habits would not mislead to the 
conclusion that by-products, from smoking are associ-
ated with OSCC, as also low-nicotine cigarettes lead 
to distortions in exhaled breath [39]. As some OSCC 
patients were self-reported non-smokers or former 
smokers, a control group should have been divided into 
smokers and non-smokers.

Various factors significantly influence the measure-
ment data including food supply, oral hygiene, oral 
flora, the existence of other severe pre-existing malig-
nant conditions, and the composition of air within the 
room [40–42]. To minimize these factors, samples from 
OSCC patients were consistently taken in the morning 
to observe a sobriety phase of at least 6  h. In addition, 

patients were asked to refrain from cleaning their teeth 
with toothpaste or mouthwash before sampling. Other 
pre-existing malignant conditions were an exclusion cri-
terion for study participation. Even with these precau-
tions, substances were present that were believed to be 
caused by food and oral hygiene products. A longer fast-
ing episode may be necessary for completely eliminating 
these types of by-products. Two breath samples had to 
be stored in Mylar bags according to a widely accepted 
standard and we double-checked these samples prior to 
analysis, but ome compounds/signals may have been not 
stable until GC/IMS [31, 43]. It was difficult to ensure 
the sobriety of participants in the control group and pre-
vent their use of oral hygiene products. This may have 
explained the enhanced intensity of signals observed for 
the group [44]. Also, substances from inhaled room air 

Fig. 4 Comparison of the prediction accuracy of different machine learning models using tenfold cross-validation. a Pre- and post-operative 
samples in positive drift mode, b pre- and post-operative samples in negative drift mode, c pre-operative tumor samples and healthy smokers in 
positive drift mode, d pre-operative tumor samples and healthy smokers in negative drift mode are compared. LR logistic regression, LDA linear 
discriminant analysis, KNN k-nearest neighbors, DT decision tree, GNB gaussian naive bayes, SVM support vector machine, RF random forest
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were recognizable in breath samples. Since these were 
hospital rooms, specific substances such as disinfectants 
were present in high quantities.

A comparison between OSCC patients and healthy 
smokers showed that certain substances were more 
prevalent in OSCC patients than healthy smok-
ers (Fig.  3). For example, area 11 was significantly 
more pronounced in healthy participants than OSCC 
patients. Since area 11 was present in the lowest quan-
tities in room air, it seems to be an endogenous human 
substance, which may be reduced as a result of OSCC. 
The structure of the compound should be evaluated 
in subsequent studies. A comparison between pre- 
and postoperative data revealed some substances that 
showed similar changes, e.g. the IMS signals of areas 
4, 11, 13, 15, and 16 decreased postoperatively (Fig. 2, 
Table 3).

Our results showed that a detailed breakdown of single 
substances within samples is complex, and that patient 
compliance with detailed instructions is extremely 
important. The identification of purely endogenous 
substances associated with OSCC is difficult [45]. An 
increased intensity of signals in postoperative samples 
may be explained by worsened oral hygiene after surgery 
as a result of intraoral wounds [46].

Machine learning was able to distinguish between 
the OSCC patients and healthy volunteers. With an 
increased amount of data, the differentiation between 
pre- and postoperative patients might be possible as 
well to find out signals that may be emitted exclusively 
by tumor tissues. This is supported by the encouraging 
tenfold cross-validation result for samples in negative 
drift mode, where an average accuracy of 0.89 could be 
attained. This accuracy needs to be further evaluated 
with a larger patient cohort. In a larger cohort, a sub-
group analysis of different tumor sizes, sex and smok-
ing status will be interesting as well. Furthermore, it has 
to be noted, that the models are currently optimized to 
achieve an optimal overall accuracy.

At this stage, the testing of high-risk patients for 
OSCC is not yet feasible. Further studies focussing on 
(1) pattern recognition using machine learning in a 
larger cohort and (2) in  vitro studies of tumor tissues 
using GC/MS to find out about specific VOCs with the 
help of libraries [47] must be carried out. The present 
study showed that breath sampling using GC/IMS was 
user-friendly and revealed results for the determina-
tion of OSCC in breath samples using machine learning 
with the highest achieved average accuracy of 86–90% 
when compared to healthy individuals. It also showed 
that breath sampling remains prone to interferences by 
by-products, so that further studies with much larger 

cohorts are necessary to remove interferences before 
going on with the development of an e-Nose that may 
be usable for early detection of OSCC.
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