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Understanding microbiome 
dynamics via interpretable graph 
representation learning
Kateryna Melnyk 1*, Kuba Weimann 2 & Tim O. F. Conrad 2

Large-scale perturbations in the microbiome constitution are strongly correlated, whether as a driver 
or a consequence, with the health and functioning of human physiology. However, understanding 
the difference in the microbiome profiles of healthy and ill individuals can be complicated due to the 
large number of complex interactions among microbes. We propose to model these interactions as 
a time-evolving graph where nodes represent microbes and edges are interactions among them. 
Motivated by the need to analyse such complex interactions, we develop a method that can learn 
a low-dimensional representation of the time-evolving graph while maintaining the dynamics 
occurring in the high-dimensional space. Through our experiments, we show that we can extract graph 
features such as clusters of nodes or edges that have the highest impact on the model to learn the 
low-dimensional representation. This information is crucial for identifying microbes and interactions 
among them that are strongly correlated with clinical diseases. We conduct our experiments on both 
synthetic and real-world microbiome datasets.

Complex microbiome ecosystems have a strong impact on the health and functioning of human physiology. 
Large-scale perturbations in the microbiome constitution are strongly correlated, whether as a driver or a con-
sequence, with clinical diseases, such as inflammatory bowel disease1,2, obesity3, and some types of cancer4–7.

Many studies have been aimed at accurately differentiating the disease state and at understanding the differ-
ence in the microbiome profiles of healthy and ill individuals8,9. However, most of them mainly focus on various 
statistical approaches, omitting microbe-microbe interactions between a large number of microbiome species 
that, in principle, drive microbiome dynamics. In addition, some studies make use of the concept of a potential 
landscape in physics10–12, giving completely new insight into the analysis of microbiome dynamics. Namely, a 
healthy human microbiome can be considered as a metastable state lying in a minimum of some potential land-
scape. The system of time-evolving interactions of species appears to be equilibrated for a short timescale but 
at larger timescales a disease or other strongly impacting factors, such as antibiotic exposure, makes the system 
undergo transitions from one metastable state (healthy) to other metastable states (diseased).

Detecting metastable states and associated interactions of species, which undergo changes from one meta-
stable state to others, is complicated by the high dimensionality and the compositional nature of microbiome 
data. Therefore, we propose a method that simplifies the analysis and prediction of the large-scale dynamics of 
microbiome composition by projecting this system onto a low-dimensional space. First, to allow interactions 
between species to change over time, we represent the system as a time-evolving graph with nodes being microbes 
and edges being interactions between microbes. Second, we define two key components of our method: (1) the 
Transformer13 that learns both structural patterns of the time-evolving graph and temporal changes of the micro-
biome system, and (2) contrastive learning that makes the model maintain metastability in a low-dimensional 
space. To assess the performance of our method, we apply it to the synthetic data from Melnyk et al.14, which has 
known underlying dynamics, and to two real-world microbiome datasets, i.e. MovingPic9 and Cholera Infection15. 
Furthermore, we will show that it is feasible to extract topological features of the time-evolving graph which are 
associated with metastable states and have the highest impact on how the model learns the low-dimensional 
representation of the time-evolving graph with metastability. This information can help in differentiating the 
microbiome profile of healthy and diseased individuals.

Our main contribution is presenting a model that learns a low-dimensional representation of the time-
evolving graph with metastable behaviour in an unsupervised manner. We show in experiments that the meta-
stability governing the time-evolving graph is preserved by the model. By interpreting the output of the model 
with respect to the input, we demonstrate that it is feasible to extract topological features of the time-evolving 
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graph, which define each metastable state. These features can be used to identify a set of microbes that drive the 
microbiome constitution to undergo transitions from one metastable state to others.

Related work
We can broadly categorize methods for graph representation learning into semi-supervised or unsupervised 
methods and methods for static or time-evolving (dynamic) graphs. A good overview of the current state of 
methods for time-evolving and for static graph representation techniques can be found in (Kazemi et al.16, Barros 
et al.17 and Cui et al.18, Zhang et al.19), respectively. The most recent survey on both time-evolving graphs and 
static graphs is presented in Khoshraftar et al.20.

Static graph representation.  Approaches for static graph representations can be classified into two cat-
egories – those which learn the representation of nodes and those which learn the representation of sub-struc-
tures of the graphs. The first category tends to encode nodes of the graph in a low-dimensional space such that 
their topological properties are reflected in the new space (node2vec21, DeepWalk22). Most studies are focused 
on node representation learning, and only a few learn the representation of the whole graph (graph2vec23).

Representing an entire graph using node embeddings is a challenging task because pooling a graph into a 
vector representation usually introduces an extreme information bottleneck. Simple approaches to this problem 
aggregate all node embeddings (e.g., sum or average) or create a “master node” that is connected to all the other 
nodes in the graph. Recent graph pooling operations can learn hierarchical representations that greatly reduce 
the size of a graph. For instance, the authors in Ying et al.24 propose a differentiable graph pooling module called 
DiffPool that learns to assign nodes to clusters, resulting in a gradual pooling of the graph. Further improvements 
to hierarchical pooling can potentially reduce the number of parameters, the complexity of the operator, and they 
might increase the overall performance. For instance, SAGPool25 proposes the self-attention mechanism using 
graph convolution in the graph pooling, and HGP-SL26 introduces a structure learning mechanism. In contrast 
to these approaches, we leverage the self-attention mechanism of the Transformer13 in our model and we add a 
master node that attends to every node in the graph. This simple graph pooling only marginally increases the 
number of parameters and the computational complexity of the model. Furthermore, we use the initial represen-
tation of the master node to inject the topological information of the time-snapshot graph at a previous time step.

Dynamic graph representation.  Representing a time-evolving graph in a low-dimensional space is an 
emerging topic that is still being investigated. Among recent approaches, DynGEM27 uses the learned represen-
tation from the previous time step to initialize the current time step representation. Such initialization keeps the 
representation at the current time step close to the learned representation at the previous time step. The exten-
sion of the previous method is dyngraph2vec28, where authors have made it possible to choose the number of 
previous time steps that are used to learn the representation at the next time step. Moreover, dyngraph2vec uses 
recurrent layers to learn the temporal transitions in the graph. Unlike this method, we utilize the multi-head 
attention mechanism13 to capture the temporal changes in the time-evolving graph.

Another category of methods that are successful in graph representation learning is Graph Neural Networks. 
One of the methods is EvolveGCN29 which applies the graph neural network for static graphs to dynamic graphs 
by introducing a recurrent mechanism to update the network parameters. The authors focus on the graph con-
volutional network and incorporate a recurrent neural network to capture the dynamics of the graph. Recently, 
attention-based methods have been extensively proposed. One of them is DynSAT30 which learns a dynamic 
node representation by considering topological structure (neighbourhood) and historical representations fol-
lowing the self-attention mechanism. However, one of the disadvantages of these methods for our problem is 
that time-evolving graphs with metastability usually consist of many time steps, which results in the increase of 
time that is needed to learn a low-dimensional representation. Another disadvantage is that all these methods 
capture the dynamic of nodes and, as a result, output the low-dimensional representation of nodes.

Results
Datasets.  Here, we briefly describe the datasets used to evaluate the model. Besides experiments with syn-
thetic datasets, we show the application of our method to real-world microbiome data. Both the idea of generat-
ing synthetic datasets and the idea of pre-processing real-world datasets are explained in more detail in Melnyk 
et al.14. An overview of the datasets used in this paper is shown in Table 1.

Synthetic data.  To estimate how the proposed method can capture the dynamics of the time-evolving graph 
and learn a proper low-dimensional representation, we generate synthetic datasets with known topological and 
temporal patterns (for more details see Melnyk et al.14). We make use of a molecular dynamics inspired problem, 
namely diffusion in a two-dimensional energy landscape given by the following stochastic differential equation

with the potential function:

where s is the number of metastable states or wells, Wt is a standard Wiener process, β is the inverse temperature 
that controls the transition between states. The higher β , the less likely the transition from one state to another 
is. We use the potential function (2) with s = 3 to generate a time-evolving graph with three metastable states 

(1)dXt = −∇V(Xt)dt +
√

2β−1dWt
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(pos_3WellGraph). For the synthetic datasets with 2 metastable states, pos_2WellGraph and npos_2WellGraph, 
we use the following potential function, which is often called a double-well potential:

To construct a time-evolving graph G = {G1, . . .GT } , one trajectory S = {(xi1, x
i
2)}

T
i=1 is generated using 

SDE 1. Then, a fully-connected graph is defined with the number of nodes n and each node has a coordinate 
(aj , bj), j = 1, . . . , n . For each t, we draw a circle with a centre in the point (x(t)1 , x

(t)
2 ) and with a pre-defined radius 

r. We then remove all edges between vertices that are inside the circle at time t. In order to add noise to the data 
we randomly remove edges outside the circle as well.

We further split our synthetic datasets into two categories: positional and non-positional data. Positional 
data means that we use the positional encoding (see Sect. “Methods” below for details) before training the 
model. Non-positional data means that we do not use positional encoding, as the topological structure of the 
time-evolving graph can be understood without providing the positional information of the node. We define 
these two categories to empirically show that our model does not rely on the positions of nodes if the topological 
patterns of each state are clearly defined.

Positional data.  This synthetic data has a topological structure that is difficult to distinguish without the posi-
tions of nodes. We briefly describe the three-step process, which generates the positional time-evolving graph:

•	 We sample the trajectory S = {(x
(i)
1 , x

(i)
2 )}Ti=1 using SDE (1), and the corresponding potential function (2) 

or (3).
•	 Then we choose the number of nodes n, and assign random coordinates (aj , bj), j = 1, . . . , n to each of these 

nodes. This is done because we need to know the locations of discriminating features of the metastable states.
•	 In the final step, we define discriminating topological features for each state. Let G0 be a complete graph. In 

the case of the s-well potential, we generate Gt , ∀t, t = 1, . . . ,T by drawing a circle with the centre at (xt1, x
t
2) 

and the radius r and randomly removing edges between nodes that are inside the current circle. In addition, 
to address the noise in the real-world data, we also remove edges outside the current circle. For double-well 
potential, we remove edges between nodes, which satisfy bj > 1

T

∑T
i=1 x

i
1.

We can see that the graph features of different states are difficult to distinguish, and the model will fail to dis-
criminate between metastable states in the time-evolving graph. As an illustration of that, we provide Fig. 1. 
There are two states A and B of the time-evolving graph G that are characterized by removed edges in the right 
part of G for the state A and in the left part of the graph for state B. Topologically, states have the same neigh-
bourhood structures, which will result in the same points in the low-dimensional space. The same occurs for 
our synthetic dataset: nodes in the circles determine metastable states, and the neighbourhoods of these nodes 
are almost identical for the model.

Non‑positional data.  This type of data has a dissimilar topological pattern to the positional data. The time-
evolving graph is generated in the same way as the positional synthetic dataset, except instead of removing a 
random number of edges between nodes that fall in the circle, we remove edges between nodes in the circle in 
such a way that each node has a particular number of neighbours. We define the number of removed neighbours 
of nodes arbitrarily and differently for each state.

Real‑world dataset.  MovingPic.  This dataset, originally introduced in Caporaso et al.9, is the first real-world 
dataset on which we evaluate our model. In this study, one male and one female were sampled daily at three body 
sites (gut, skin, and mouth) for 15 months and for 6 months, respectively. To obtain a time-evolving graph, we 
pre-process Operational Taxonomic Units (OTU) that contain the number of 16S rDNA marker gene sequences 
that are observed for each taxonomic unit in each sample. Let D ∈ R

T×p be an OTU table, where T is the num-
ber of time points and p is the number of OTUs. As this data does not have any obvious perturbations, such as 
antibiotics exposure or diseases, which could potentially create a metastable structure, an artificial noisy signal 
is added to the data. The Pearson correlation between two OTUs is computed, and then the initial time-snapshot 
graph is constructed. To construct time-snapshot graphs at each time step, we have used the OTU table to 

(3)V(x) =
x4

4
−

x2

2
.

Table 1.   Statistics of each dataset used in this paper.

Name # Nodes # Edges (avg.) # Time steps # States

npos_2WellGraph 150 10821 10000 2

pos_2WellGraph 100 4109 10000 2

pos_3WellGraph 150 10869 10000 3

CholeraInf 96 106 34 2

MovingPic 919 10602 658 2
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remove edges between nodes14. If the OTU count for a particular node is zero, then the edge is removed between 
this node and its neighbouring nodes.

CholeraInf.  This dataset has been introduced in a study about the recovery from Vibrio Cholera infection15. 
Here, faecal microbiota was collected from seven cholera patients from disease (state 1) through recovery (state 
2) periods. Moreover, in our experiment, we use the microbiome of one patient, since the variation in the micro-
biome constitution among individuals can have an impact on the result of the model. The time-evolving graph 
is obtained in the same way as it has been done for the MovingPic dataset.

Visualization and comparative analysis.  In this part, we focus on verifying the qualitative performance 
of our model. As a first experiment, we visualize the resulting graph embedding to evaluate how separated the 
metastable states are in the low-dimensional space. As a second experiment, we compare our model with the 
following methods: a simple baseline chosen from state-of-the-art methods for dimensional reduction, namely, 
Principal Component Analysis (PCA), two kernel-based methods graphKKE14 and WL kernel31, and two graph 
representation learning methods node2vec21 and graph2vec23.

•	 PCA is a method for dimensional reduction. To be able to apply this method to the time-evolving graph, we 
flatten an adjacency matrix of each time-snapshot graph into a vector.

•	 The graphKKE approach is proposed for learning the embedding of a time-evolving graph with metastability. 
It is a graph kernel-based method that combines a transfer operator theory and a graph kernel technique.

•	 The WL kernel decomposes graphs into rooted subgraphs using a relabelling process and computes feature 
vectors based on the number of initial and updated labels.

•	 The graph2vec approach projects the set of static graphs, and it comprises two main components: (1) Weis-
feiler– Lehman relabeling process and (2) the skip-gram procedure from doc2vec32.

•	 The node2vec algorithm is a node representation method that uses breadth-first search and depth-first search 
to extract local and global information from the static graph.

Evaluation metric.  In order to conduct the comparison analysis, we use a standard clustering evaluation metric 
— Adjusted Rand Index(ARI). The ARI values lie in the range [−1; 1] with 0 representing random clustering 
and 1 being the highest correspondence to the ground-truth data. We report ARI on the test set for all datasets.

Experimental setup.  First, we examine the evolution of the graph embedding by visualizing it at the beginning, 
in the middle and at the end of the training of the model. To do so, we use the graph embedding ĝ = {ĝ1, . . . , ĝT } , 
where ĝi ∈ R

d with d = 2 . For all synthetic datasets, we set the hyperparameter l to be 3, the batch size to be 64, 
and the number of epochs to be 200 for both pos_3WellGraph and npos_2WellGraph. For real-world data, the 
batch size is set to 64 for MovingPic and 6 for the CholeraInf dataset. We use the Adam optimizer with default 
parameters, the number of heads of the Transformer is 4 and the number of layers in the Transformer is 3. The 
temperature parameter of the contrastive loss is 1 for all datasets. As the graphKKE method approximates the 
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Figure 1.   The example of a time-evolving graph with metastability where two states A and B are difficult to 
distinguish since they are topologically the same. Red dashed edges are removed from the time-evolving graph 
G.
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eigenfunctions of a transfer operator, the dimension of the graph embedding equals the number of metastable 
states in the time-evolving graph. This means that we need to apply a dimensional reduction method to be able 
to visualize it. Thus, PCA is applied to the output of graphKKE with the number of components to be 2. We also 
apply PCA to the flattened adjacency matrices with the number of components to be 2. Moreover, since we are 
interested in whether metastable states of the original space correspond to the clusters of points in the reduced 
space, the points of the graph embeddings are coloured according to the original ground truth metastable states.

For the comparison analysis, we obtain graph embeddings from other methods in the following way. We set 
the number of dimensions of graph embeddings to 32 for our method, node2vec, graph2vec and PCA. We use 
the implementations for node2vec and graph2vec with the default hyperparameters provided by the authors. In 
the graphKKE method, the number of dimensions of the final graph embedding equals the number of metasta-
ble states in the time-evolving graph. Finally, we apply the k-means method to cluster points of the final graph 
embeddings of each method. However, node2vec is developed to learn node representations, which is why, to 
obtain embeddings of the entire time-snapshots graph, we average node embeddings of each time-snapshot 
graph.

Result and discussion: synthetic data.  The evolution of the graph embedding during the training for both syn-
thetic datasets — npos_2WellGraph and pos_3WellGraph — are illustrated in Fig. 2. The visualization demon-
strates that during the training, our model tends to capture the underlying metastable structure in the time-evolv-
ing graph. Moreover, at the end of the training, we see that our model learns the graph embedding maintaining 
the initial metastable dynamics. In the case of the npos_2WellGraph dataset, there is no obvious split between 
the two metastable states, the reason is that the initial SDE trajectory has points that are located on the boundary 
between two metastable states. Furthermore, we compare the initial SDE trajectory and the final graph embed-
ding obtained from our model with d = 1 for npos_2WellGraph and with d = 2 for pos_3WellGraph. The result 
for npos_2WellGraph is presented in Fig. 3a which shows that two trajectories are almost identical. The same 
result can be seen for pos_3WellGraph in Fig. 3b. These results indicate that the model is capable of extracting 
the underlying metastable dynamics in the time-evolving graph.

In Table 2, we can see that the results of visualization are reinforced by the high ARI values of our model. From 
the table can also be seen that the graphKKE method outperforms our model in the case of the pos_2WellGraph 
and pos_3WellGraph datasets. However, if we aim to have lower dimensionality of the graph embedding, then 
this method will fail to produce the same clustering accuracy. As the evidence for the visualization of the graph 
embedding obtained with graphKKE (Fig. 5), we see that graphKKE + PCA fails to produce a visualization 
with clear separated metastable states. Moreover, considering the results of other graph representation learning 
(Table 2), node2vec fails completely to learn the graph embedding of the time-evolving graph and graph2vec 
performs poorly on all synthetic datasets except npos_2WellGraph. It remains unclear whether graph2vec strug-
gles to identify states in the positional data because states do not have unique topological patterns, or because 
this method is not meant to capture temporal changes.

Result and discussion: real‑world data.  In the case of real-world datasets, the evolution of the graph embed-
ding during the training for MovingPic and CholeraInf are presented in Fig. 4. As it was in the case of synthetic 
datasets, our method is also able to identify the metastable behaviour in the time-evolving graph and preserve it 
in the new space. For CholeraInf we have added time points from the original dataset to see if the new space has 
the same time order as it was in the original high-dimensional space. If we compare the visualization of graph 
embedding from other methods, the result for MovingPic shown in Fig. 5c shows that all methods give relatively 

Figure 2.   The evolution of the graph embedding of the time-evolving graph G during the training of our model 
on (a) npos_2WellGraph and (b) pos_3WellGraph. The points are coloured according to ground-truth labels.
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the same visualization. However, for the CholeraInf (Fig. 5d) our model preserves consecutive time points in the 
new space which indicates that one metastable state (healthy) follows other metastable states (ill).

The second part of this experiment aims at comparing our model with other dimensional reduction methods 
in the clustering task. Again from Table 2 it is evident that our model performs significantly better than WL 
kernel, graph2vec and node2vec. Node2vec performs poorly across all datasets, which is the result of a lower-
order substructure embedding method meaning that it can model only local similarities and fails to learn global 
topological similarities.

Temperature parameter.  To understand the importance of the temperature τ in the contrastive loss, we train the 
model with different temperature values on npos_2WellGraph. The values between 0.05 and 1.0 have been cho-
sen. According to Wang et al.33, the model with a small temperature tends to generate a more uniform distribu-
tion of graph embeddings and be less tolerant to similar samples. In our case, we have not noticed any dramatic 
changes in the performance. The ARI score for different temperature values can be seen in Fig. 6.

Interpretability.  An improved understanding of how the microbiome contributes to health and well-being 
can drive and accelerate the development of microbiome-based treatments. The most important question, 
which has not been answered yet, is which species or interactions of species are responsible for or affected by 
the changes which the microbiome undergoes from one state (healthy) to another state (diseased or antibiotic 
exposure). The presence of such valuable information can significantly improve modern treatments of various 
diseases. We assume that if it is feasible for the model to successfully find and discriminate metastable states, 
then there might be topological features in the time-evolving graph that make these metastable states different. 
Therefore, the main objective of this section is to provide insight into to which extent the model learns meta-
stable states based on true discriminating topological features. And with regard to real-world data, we aim to 
find topological features of the time-evolving graph that make the two states, the cholera infection period and 
recovery period, different.

To achieve this, we will use an approach from Chefer et al.34 which is based on layer-wise relevance propaga-
tion (LRP)35. LRP is the family of explanation methods that leverages the layered structure of the network. It 
explains the prediction of a neural network classifier by backpropagating the neuron activation on the output 
layer to the previous layers until the input layer is reached.

The authors34 address the lack of the conservation property in the attention mechanism, which is an essential 
assumption of LRP and the numerical issues of the skip connections by applying a normalization to the computed 
relevance score. Moreover, they make use of the attention weights and propose to compute the final relevance 

Figure 3.   The comparison of an initial trajectory sampled from the SDE (1) (top) and the final graph 
embedding for (bottom): (a) the npos_2WellGraph dataset and (b) for the pos_3WellGraph dataset.
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scores by multiplying the relevance score of each Transformer layer with the gradient of the corresponding 
attention matrix summed up across the “head” dimension.

Unlike the original LRP and the approach mentioned in the last paragraph, where the decomposition starts 
from the classifier output corresponding to the target class, we have a similarity model that rather measures how 
similar a graph embedding of the time-snapshot graphs Gt is to the embedding of the graph-snapshot Gt+1 . For 
this reason, we start the redistribution from the layer where we compute the graph embedding ĝt until the input 
layer is reached, and the final relevance is computed. We compute a relevance score for each time-snapshot graph 
in the test set. To obtain discriminating features of the whole state, we sum up relevance scores of time-snapshot 
graphs of each state.

Result and discussion: synthetic dataset.  We conduct this experiment on the npos_2WellGraph and the Chol-
eraInf datasets. The result for npos_2WellGraph is demonstrated in Fig. 7. From the result, it is clear that the 
model can find topological features in the time-evolving graph that are unique for each metastable state. How-
ever, the interpretation of state 2 (Fig. 7b) highlights all nodes in the upper part of the time-snapshot graph, 
which is a true discriminating feature, whereas the interpretation of state 1 in turn shows only 4 nodes in the 
lower part of the time-snapshot graph. There is a necessity to mention that we have modelled the synthetic 
datasets in such a way that we know the location of nodes in the time-snapshot graphs. In the case of real-world 
datasets, we do not have the coordinates of nodes.

Result and discussion: real‑world dataset.  Here we focus on obtaining relevance scores for the real-world data-
set, namely, CholeraInf. The result of LRP is presented in Fig. 8a for the diarrhea period (state 1) and in Fig. 8b 
for the recovery period (state 2). Both sub-figures show a correlation network of species that has been com-
puted based on the OTU table (see more details about how this data has been pre-processed in Melnyk et al.14). 
The nodes represent species and the edges indicate the interactions between species. The colours encode the 
normalized relevance scores with higher values meaning the greater importance for the model and with lower 
values meaning the insignificance of nodes. If the colour of a node with the same label in both sub-figures is 
significantly different, this means that this node or interactions of this node with other nodes are discriminative 
features of metastable states. For example, the relevance score of node 82 is significant for state 1 (Fig. 8a) but 
not for state 2 (Fig. 8b).

Unlike the synthetic dataset, we do not know the ground truth discriminative features for this dataset. Further 
study of these results is needed to investigate if these interpretations have a biological meaning. For instance, 
there have been done numerous works36 that are mainly focused on statistical analysis to justify which bacteria/
species are affected by, or on the contrary, cause shifts in microbiome compositions. Using the detected species 
from these works, we can compare them with the nodes that have shown the biggest impact on the model output.

Discussion
We have presented a new approach that can simplify the analysis of time-evolving graphs with assumed meta-
stability. Through an extensive set of experiments on both synthetic and real-world datasets, we have demon-
strated that our approach is capable of projecting a time-evolving graph into a low-dimensional space retaining 
the metastable properties of the system. Moreover, we have illustrated one of the possible applications of this 
approach to microbiome data that enhances the analysis of metagenomic data in a way that takes into account a 
huge number of interactions among species. We have shown that by explaining the output of the model, we can 
find topological graph features, such as nodes or edges, that make the model arrive at a certain graph embedding. 
Concerning microbiome data, it means that our method coupled with a proper interpretation strategy can help 
to reveal underlying disease patterns in the data.

There are several directions for future work: 1) how to construct a time-evolving graph from metagenomic 
data such that it contains real dynamics occurring in the microbiome; 2) further biological analysis of results 
obtained from the interpretability of the model; 3) visualization of topological graph features, such as nodes 
and edges, that have impacted the model the most, and 4) mathematical explanation of how the model learns a 
graph embedding of the time-evolving graph maintaining metastable dynamics.

Table 2.   Adjusted Rand Index (ARI) for the comparative analysis on the graph clustering task. ARI close to 
1 corresponds to greater accuracy in correctly identifying the ground truth states, and an ARI value close to 0 
stands for random clustering.

Dataset graphKKE WL kernel graph2vec node2vec PCA our model

npos_2WellGraph 0.99 0.98 0.90 0.00 0.95 0.96

pos_2WellGraph 0.97 0.97 0.05 0.00 0.94 0.82

pos_3WellGraph 0.93 0.11 0.00 0.00 0.36 0.80

MovingPic 0.99 0.56 0.42 0.08 0.54 0.99

CholeraInf 0.88 0.65 0.29 −0.02 0.77 0.87



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2058  | https://doi.org/10.1038/s41598-023-29098-7

www.nature.com/scientificreports/

Method
We first briefly introduce all necessary notations and definitions, which are used in the paper, and state the 
problem.

Definitions.  A graph G is a pair (V,  E) with a non-empty set of nodes V(G) and a set of edges 
E(G) = {(vi , vj) | vi , vj ∈ V} . The set V(G) often represents the objects in the data and E(G) the relations 
between objects. We define the adjacency matrix of the graph G as the n× n matrix A with Aij = 1 if the edge 
(vi , vj) ∈ E(G) , and 0 otherwise, where n =| V |.

Next, we define a metastability property, which was first mentioned in14. Consider a time-evolving graph G 
as a sequence of graphs G = (G1, . . . ,GT ) at consecutive time points {1, . . . ,T} for some T ∈ N , and Gt being 
a time-snapshot of G at time t. The time-evolving graph G exhibits metastable behavior if G can be partitioned 
into s subsets G = G1 ∪ · · · ∪Gs for some s ≪ T such that for each time point t ∈ {1, . . . ,T} and i, j = 1, . . . , s , 
we have the following:

Figure 4.   The evolution of the graph embedding of the time-evolving graph G during the training of our model 
on (a) CholeraInf and (b) MovingPic. The points are coloured according to ground-truth labels.

Figure 5.   The graph embeddings of the time-evolving graph G for (a) npos_2WellGraph, (b) pos_3WellGraph, 
(c) MovingPic and (d) CholeraInf. From left to right: PCA on adjacency matrices, PCA on eigenfunctions of 
graphKKE and the result of our model.
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Figure 6.   Adjusted Rand Index on the model trained on npos_2WellGraph with different temperature values of 
the contrastive loss. The red.

Figure 7.   Fully-connected graphs for npos_2WellGraph dataset with nodes coloured based on the relevance 
scores of the LRP method that are summed across 2 states: (a) State 1 and (b) State 2. The locations of 2 states 
are obtained by clustering points of the graph embedding of the time-evolving graph via k-means.

Figure 8.   Co-occurrence interaction graphs of CholeraInf dataset with nodes coloured based on relevance 
scores of the LRP method, which are summed across each state: (a) diarrhea period and (b) recovery period. 
The locations of states are obtained by clustering points of the graph embedding of the time-evolving graph via 
k-means. The dark brown colour indicates nodes with the highest importance.
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where P(·) is a transition probability, and G1, . . . ,Gs are called metastable states of the time-evolving graph G , 
where s is the number of states.

Problem statement.  We define our problem as follows: Given a time-evolving graph  G = (G1, . . . ,GT ) 
with assumed metastability property (4), we aim to represent each time-snapshot Gt  as a vector in a low-dimen‑
sional space Rd , maintaining the metastable behaviour of G , where d is a number of dimensions of the reduced 
space.

In this section, we describe how we train the model to embed time-snapshot graphs into a low-dimensional 
space, maintaining the metastable behaviour of the graph. We first use the Transformer13 to compute the embed-
ding of a time-snapshot graph. Further, we add a recurrent mechanism to the Transformer that facilitates the 
learning of temporal changes across consecutive time-snapshot graphs. Finally, we use contrastive learning to 
make representations of consecutive time-snapshots graphs, which share metastable behaviour, close.

Transformer.  The Transformer is currently the state-of-the-art method in the field of NLP, where it has 
shown tremendous success in handling long-term sequential data. Recently, it has become a leading tool in 
other domains such as computer vision37 and graph representation learning38,39. We use the encoder part of the 
Transformer to learn node embeddings in each time-snapshot graph. The encoder has several stacked multi-
head attention layers followed by a feed-forward layer. There is a residual connection around each of these two 
sub-layers that is also followed by a normalization layer.

Intuitively, the self-attention in time-snapshot graphs relates different nodes of the graph in order to compute 
a new representation of every node in the graph which we refer as a node embedding.

(4)
{

P(Gt+1 ∈ Gi | Gt ∈ Gj) ≪ 1, if i �= j
P(Gt+1 ∈ Gi | Gt ∈ Gj) ≈ 1, if i = j,
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Input.  Let G = {G1, ...,GT } be a time-evolving graph with node features {xvt }v∈V(Gt ) , t = 1, . . . ,T . The input 
node features of each time-snapshot graph Gt are embedded to dm-dimensional latent features via a linear pro-
jection and added to pre-computed node positional encodings. We demonstrate on two synthetic datasets with 
different topological structures that our model performs well in both cases: with positional information of nodes 
and without it. Moreover, in order to capture the topological structure of a single time-snapshot graph Gt , we 
feed an adjacency matrix At to the Transformer as a mask, and we set attention weights to 0 whenever the cor-
responding adjacency matrix entries are 0.

Model architecture.  Further, we explain important details of the training of the model. The overview of the 
model architecture can be found in Fig. 9.

Let T = {tk}
B
k=1 be a set of randomly sampled time points, and GT = {Gt1 , . . . ,GtB } be a mini-batch of 

time-snapshots graphs sampled from G with a mini-batch size B. To facilitate the learning of temporal changes, 
we share the embedding of a time-snapshot graph with the consecutive time-snapshot graph in the temporal 
sequence. We define a master node that is connected to all nodes in the time-snapshot graph. Initially, the master 
node is represented as a learnable, randomly initialized vector. The Transformer computes the embedding of the 
master node, which we consider as a graph embedding. This graph embedding is then passed as the initial master 
node to the consecutive time-snapshot graph in the temporal sequence. We control the length of the temporal 
sequence with the hyperparameter l. Moreover, since we connect the master node with all other nodes in each 
time-snapshot graph, the size of the adjacency matrix changes, At ∈ R

(n+1)×(n+1).
Formally, we update the graph embedding zt of the time-snapshot graph Gt recursively as follows:

where R is the Transformer that updates node embeddings as discussed, zt ∈ R
dm is a master node, xt is a vector 

of node features, and At ∈ R
(n+1)×(n+1) is an adjacency matrix of Gt.

Finally, we project the graph embedding zt ∈ R
dm of the time-snapshot graph Gt into the space with the 

dimension d, where a downstream task is defined. We denote the final embedding of the time-snapshot graph 
with ĝt ∈ R

d:

where W and b are learnable parameters. We use two hidden layers and a non-linear activation function in 
order to project the graph embedding ĝt into the space, where the contrastive learning is defined, as it is done 
in Chen et al.40.

Furthermore, we explain how we use contrastive learning to make embeddings of consecutive time-snapshots 
graphs to preserve the metastable behaviour in the low-dimensional space.

zt = R(zt−1, xt ,At),

ĝt = Wzt + b

...

...

Transformer Transformer Transformer

Transformer Transformer Transformer

Zt + 1

Zt

Z tZ(t - ) + 1

Zt - 1Zt - 

gt + 1

gt

Gt - Gt - 1

Gt+1GtG(t - ) + 1

Maximise 
similarity

MLP

MLP

Low-dimensional 
representation

Gt

( )

Figure 9.   Overview of the method proposed in this paper.
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Contrastive learning.  Intuitively, contrastive representation learning can be considered as learning 
by comparing. Thus, the goal is to find a low-dimensional space where samples from the same instance are 
pulled closer, and samples from different instances are pushed apart. Formally, given a vector of input samples 
xi , i = 1, . . . ,B with corresponding labels yi ∈ {1, . . . ,C} among C classes, contrastive learning aims to learn 
a function fθ (x) that can find the low-dimensional representation of x such that examples from the same class 
have similar representations, and samples from different classes are far away from each other in the new space. 
One always needs to have negative and positive samples to apply contrastive learning, For this reason, we make 
the following assumption.

Assumption. According to the definition of metastability (4), the probability of two consecutive time-snapshot 
graphs Gt and Gt+1 being similar is almost 1 and so should be the probability for their graph embeddings ĝt and 
ĝt+1.

In other words, we consider a pair of graph embeddings (ĝt , ĝt+1) as a positive pair and pairs (ĝt , ĝt+j) as 
negative pairs, where j is randomly sampled from {2, . . . ,T} . It is feasible for negative samples to be of the same 
metastable state as the positive sample, but at different time points.

We use InfoNCE41 with ĝt+1 being the positive sample:

where τ is a temperature hyperparameter and the similarity is measured by the dot product. The experiments 
from Wang et al.33 have shown that the temperature hyperparameter is important in controlling the local separa-
tion and global uniformity of the embedding distribution. Minimizing this loss function forces the parameters 
of the model to be tuned such that graph embeddings of two consecutive time-snapshot graphs are as close as 
possible. The detailed algorithm can be found in Algorithm 1.

Positional encoding.  Most graph neural networks learn structural node information that is invariant to the 
node positions. However, there are cases when topological information is not enough. To demonstrate this, we 
conduct experiments on two different synthetic datasets. The first data has metastable states with defined graph 
features that can be distinguished only by the position information of nodes. Each metastable state in the second 
data has specific graph features, which are easily distinguished with just topological information.

To incorporate the positional information, we use the same positional encoding as in Gehring et al.42:

where pos, i and dm denote a position of the node in the time-snapshot graph, the dimension in the positional 
encoding and the dimension of node embedding, respectively.

Through a set of various experiments in the next section, we demonstrate on synthetic and real-world datasets 
that our method is capable of learning a graph embedding of the time-evolving graph.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.

Code availability
Code can be found here: https://​github.​com/k-​melnyk/​deep-​metas​tabil​ity.

Received: 8 September 2022; Accepted: 30 January 2023

References
	 1.	 Joossens, M. et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60, 631–637. 

https://​doi.​org/​10.​1136/​gut.​2010.​223263 (2011).
	 2.	 Mottawea, W. et al. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat. Commun. 7, 

13419 (2016).
	 3.	 Menni, C. et al. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. 41, 

1099–1105. https://​doi.​org/​10.​1038/​ijo.​2017.​66 (2017).
	 4.	 Sánchez-Alcoholado, L. et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers 12, 

1406. https://​doi.​org/​10.​3390/​cance​rs120​61406 (2020).
	 5.	 Parida, S. & Sharma, D. The microbiome and cancer: Creating friendly neighborhoods and removing the foes within. Can. Res. 

81, 790–800. https://​doi.​org/​10.​1158/​0008-​5472.​CAN-​20-​2629 (2021).
	 6.	 Chattopadhyay, I. et al. Exploring the role of gut microbiome in colon cancer. Appl. Biochem. Biotechnol. 193, 1780–1799 (2021).
	 7.	 Chambers, L. et al. The microbiome and gynecologic cancer: Current evidence and future opportunities. Curr. Oncol. Rep. 23, 92 

(2021).
	 8.	 Mukherjee, A. et al. Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial 

response to petroleum hydrocarbon contamination in diverse environments. Sci. Rep. 7, 1–22. https://​doi.​org/​10.​1038/​s41598-​
017-​01126-3 (2017).

	 9.	 Caporaso, J. et al. Moving pictures of the human microbiome. Genome Biol. 12, 1–8. https://​doi.​org/​10.​1186/​gb-​2011-​12-5-​r50 
(2011).

L = − log
exp

(
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