
Bachelor at Institut für Informatik der Freien Universität Berlin

AG Corporate Semantic Web

Developing a service endpoint to integrate

semantic collection data from botanical

databases and other information systems

Marcus Ernst

First Reviewer: Prof. Dr. A. Paschke

Second Reviewer: Prof. Dr. C. Benzmüller

Berlin, 03.09.2021

Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand an-

derem als meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel

wie Berichte, Bücher, Internetseiten oder ähnliches sind im Literaturverzeich-

nis angegeben, Zitate aus fremden Arbeiten sind als solche kenntlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prü-

fungskommission vorgelegt und auch nicht veröffentlicht.

Berlin, den February 27, 2023

Marcus Ernst

Abstract

The digitization of botanical collections has increasingly brought biodiversity

research activities online. In order to make these data usable in the most

efficient way, various obstacles have to be overcome. One such obstacle is a

lack of ability to integrate information from other sources. While agreed upon,

machine-understandable data standards such as ABCD have resulted in con-

cepts that can already be described semantically, yet they are often transmitted

as free-text information. The utilization of identifiers for collectors has created

opportunities for the integration of data from external information systems.

However, since the identifiers used are not standardized and vary from institu-

tion to institution, this work aims to develop a web service demonstrating that

this problem can be overcome by applying appropriate Linked Data methods

on centralized knowledge bases such as Wikidata. After eliciting requirements

from participating CETAF institutions, an API was designed and implemented

on this basis that can integrate biographic, bibliographic, and collection data

into a single semantic file format by leveraging multiple endpoints. Thus, the

work shows that diverse identifiers used in collection databases do not have

to be a problem. Moreover, missing IDs for important information sources

such as Wikidata can be found and used. Heterogeneous data from different

sources can be merged using previously defined mappings, although such data

may not be available in semantic formats. Further sources of information could

thus be added in the future. Furthermore, a future focus on annotated geo-

graphic identifiers is also conceivable to additionally integrate semantic data

on collection object found locations.

Zusammenfassung

Die Digitalisierung von botanischen Sammlungen hat Forschungsaktivitäten

zur Biodiversität immer mehr ins Netz geführt. Um diese Daten möglichst ef-

fizient nutzbar zu machen, müssen verschiedene Hindernisse überwunden wer-

den. Eines dieser Hindernisse sind fehlende Integrationsmöglichkeit von Infor-

mationen aus anderen Quellen. Während vereinbarte, maschinenverständliche

Datenstandards wie ABCD dazu geführt haben, dass Konzepte bereits seman-

tisch beschrieben werden können, werden diese jedoch häufig als Freitextinfor-

mationen übertragen. Die Verwendung von Identifikatoren für Sammler*innen

hat die Möglichkeiten für die Integration von Daten aus externen Informa-

tionssystemen geschaffen. Da aber die verwendeten Identifikatoren nicht stan-

dardisiert sind und sich von Institution zu Institution unterscheiden, soll der

in dieser Arbeit entwickelte Web Service zeigen, dass dieses Problem über-

wunden werden kann, indem geeignete Linked-Data-Methoden auf zentralen

Wissensdatenbanken wie Wikidata angewendet werden. Nach der Erhebung

von Anforderungen mit beteiligten CETAF-Institutionen, ist auf dieser Basis

eine API entworfen und implementiert wurden, die sowohl biografische und

bibliografische als auch Sammlungsdaten über die Verwendung diverser End-

punkte in eine einzige Datei eines semantischen Formates integrieren kann.

Die Arbeit zeigt, dass die in den Sammlungsdatenbanken verwendeten unter-

schiedlichen Identifikatoren kein Problem darstellen müssen und auch fehlende

IDs für wichtige Informationsquellen wie Wikidata gefunden und verwendet

werden können. Heterogene Daten aus verschiedenen Quellen können über

zuvor definierte Mappings zusammengeführt werden, auch wenn diese nicht in

semantischen Formaten verfügbar sind. Weitere Informationsquellen könnten

somit in Zukunft hinzugefügt werden. Außerdem ist auch denkbar, annotierte

geographische Identifikatoren zu verwenden, um zusätzlich semantische Daten

über Fundorte von Sammlungsobjekten zu integrieren.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 2

2 Background 3

2.1 Biodiversity Informatics . 3

2.2 Semantic Web . 6

2.2.1 Semantic Web . 6

2.2.2 Ontology . 7

2.2.3 XML . 8

2.2.4 RDF . 8

2.2.5 SPARQL . 9

2.2.6 JSON-LD . 10

2.3 RESTful Web Services . 12

3 Requirements 15

3.1 Use cases . 15

3.2 Functional requirements . 16

3.3 Non-functional requirements . 17

4 Design 19

4.1 Information systems . 19

4.2 REST and alternatives . 20

4.3 Identifiers . 21

4.4 Resources and endpoints . 22

4.5 Architectural scheme . 23

5 Implementation 25

5.1 Technologies . 25

5.1.1 Slim Framework . 25

5.1.2 JsonLD . 25

i

5.1.3 EasyRDF . 25

5.2 Components . 26

5.3 SPARQL Queries . 27

5.4 Mappings . 28

5.4.1 Wikidata properties . 28

5.4.2 BHL responses . 29

5.4.3 Europeana responses . 31

5.5 Pagination . 31

5.6 Versioning . 31

5.7 Documentation . 32

6 Evaluation 33

6.1 Functional Requirements . 33

6.2 Non-functional requirements . 33

6.3 Performance testing . 34

7 Summary 35

7.1 Discussion . 35

7.2 Conclusion . 37

Bibliography 39

List of Figures

2.1 Example of a specimen representation in ABCD 4

4.1 External and internal structure of the API 24

5.1 Operation example: Bibliography call by using Wikidata ID . . 26

5.2 API Documentation using Swagger 32

6.1 Test diagram . 34

iii

List of Tables

3.1 Functional Requirements . 16

3.2 Non-functional Requirements 17

4.1 Endpoints and methods . 23

6.1 Evaluation of functional requirements 33

6.2 Evaluation of non-functional requirements 33

v

1 Introduction

1.1 Motivation

In recent years, institutions, such as museums holding botanical collection

databases have started publishing their collection object data as Linked Open

Data (LOD) and enriching it with links to semantic resources.[1][2] For in-

stance, botanical collection records in herbaria contain links to the Wikidata

page of the collector who gathered that plant in the field. Likewise, the in-

stitution itself is linked to this collection object via an institution predicate,

as well as to other collection objects. Together, these objects and links are

forming a graph containing statements about resources.

An example of such a graph exists in a triple store at the Botanic Garden

and Botanical Museum Berlin (BGBM) of the Freie Universität.[3] The store

holds data as subject-predicate-object statements and can be queried via a

SPARQL endpoint. The web-based demonstrator “CETAF Botany Pilot” was

co-ordinate as a demonstrator by BGBM, combining semantic collection data

from the triple store as well as information from other distributed resources

such as Wikidata or virtual library systems. This information is displayed in

a dynamic HTML page which is linked to the collection information system of

the BGBM.[4]

However, for integrating this data at other institutes, it has been necessary to

specify and develop a generic service that makes it possible to give access to

the data mentioned above in the Linked Data format JSON-LD. Designed as

close as possible to the REST architectural style, this API transforms client

requests for collector data into SPARQL queries to the mentioned triple store

and Wikidata and into various requests to other information systems such as

Biodiversity Heritage Library (BHL) or Europeana. Since different identifiers

for the collector might be used in the requests, the API must find the correct

collector IDs for each information source via Linked Data techniques. All data

obtained are then integrated into a JSON-LD file and returned to the client.

If the data exceeds a predefined threshold, it can also be returned paginated.

1

1.2. Outline

However, the creation of new resources or the deletion of existing resources,

e.g., in the triple store, has not been implemented in this project. The specifi-

cation of the service is based on a requirements analysis, created in cooperation

with selected European collections (Plantentuin Meise[5] and Botanical Gar-

den Berlin).

The source code is available in Gitlab1, the API can be tested in its Swag-

ger documentation2.

1.2 Outline

First, the subject-specific background from biodiversity informatics will be de-

scribed. Additionally, the evolution of the biodiversity research field will be

outlined in order to understand how the web service can provide support for

research activities (chapter 2.1). As the web service uses technologies from

the Semantic Web world, the idea, the fundamental concepts, and the stan-

dards of Semantic Web will be described in chapter 2.2. Some technical basics

about the REST architectural style will be provided and, additionally, reasons

stated for choosing this style by comparing it to its alternatives (chapter 2.3).

Subsequently, the functional and non-functional requirements for the tool are

extracted by describing several use cases that emerged from the discussions

with the collection institutions mentioned above (chapter 3). Coming from

that the design of the API will be sketched and the rationale behind some

design decisions elucidated (chapter 4). Following this, light will be shed on

the implementation of the API by briefly describing the technologies used and

explaining how information from different sources are brought into a knowl-

edge graph (chapter 5).

An Evaluation based on the previously identified requirements will be carried

out to see whether the expectations could be met (chapter 6). The last step is

to draw a conclusion. Problems encountered will be discussed and an outlook

will be given as to the possible direction of further development of the web

service (chapter 7).

1https://git.bgbm.org/mernst/bgbmapi_bsc
2https://api.bgbm.org/swagger/?url=https://api.bgbm.org/collector/v1/

swagger.json

2

https://git.bgbm.org/mernst/bgbmapi_bsc
https://api.bgbm.org/swagger/?url=https://api.bgbm.org/collector/v1/swagger.json
https://api.bgbm.org/swagger/?url=https://api.bgbm.org/collector/v1/swagger.json

2 Background

2.1 Biodiversity Informatics

”Over the last two decades, curators in Natural History Museums

as well as those responsible for ecological mapping or monitoring

projects started databasing their collection and observation infor-

mation. [...] In view of accelerating environmental changes, loss of

biodiversity, and a pressing need for fast decisions in environmen-

tal politics, this information base must be utilized to the greatest

possible extent.”[6, p.5]

For decades, changes in biodiversity have been discussed and studied by vari-

ous scientific disciplines. Among them there are traditional disciplines such as

botany as well as comparatively new disciplines such as biodiversity informat-

ics. But what does biodiversity mean?

The United Nations Biodiversity Convention defines biodiversity as ”the vari-

ability among living organisms from all sources [...] and the ecological com-

plexes of which they are part[...]”.[7] Numerous facets of this diversity can be

measured, e.g., to describe the quantity of different species worldwide or at

a specific place.[8] In addition to this spatial dimension, the temporal dimen-

sion of biodiversity can be studied as well since changes in biodiversity can

be observed starting from historical records. Biodiversity informatics utilizes

specimens as a link between past and present. Thus, it is possible to develop

comprehensive hypotheses, e.g., about entire ecosystems.[9] Moreover, a single

specimen record can be represented as a vector in a coordinate system spanned

by of a spatial and a time dimension.

Based on the scientific findings on biodiversity, political decisions on the use

and management of resources and ecosystems can emerge. Since accurate in-

formation has often not been available in the past, sustainability criteria have

been neglected in policy-making for a long time. The availability of comprehen-

sive data on the globe’s species and ecosystems not only supports researchers

in conducting further research activities, but also decision-makers in imple-

3

2.1. Biodiversity Informatics

menting more sustainable policies.[10]

Approximately 3 billion specimens are held in natural history and botanical

collections.[11] To answer contemporary research questions about biodiversity,

it has been recognized that the digitization of these collections can be of vital

importance. As of August 01, 2021, there are more than 200 million digitized

specimens from numerous herbaria in the data of Global Biodiversity Infor-

mation Facility (GBIF), an international data infrastructure for biodiversity

research.[12] This and other networks, as well as organizations provide various

portals for research activities to access these data. However, the lack of ser-

vices for analysis and publication, and especially a lack of integration of data

from different collections, can be major obstacles in scientific workflows.

In a first step common data standards had to be agreed upon before shar-

ing data from different herbaria. Formats like “Access to Biological Collection

Data” (ABCD)[13] and “DarwinCore“ (DwC)[14] are among such standards

that should facilitate the exchange of collection data. For example, ABCD de-

scribes a physical specimen by representing its data elements from collection

and observation data such as taxa, geographic information or the collector.[15]

In order to identify a specimen, the members of the Consortium of European

Figure 2.1: Example of a specimen representation in ABCD

Taxonomic Facilities (CETAF)[16] have agreed on the introduction of a sys-

4

tem of HTTP URI-based stable identifiers that allows the identification of the

specimen as a data body fully independent of name changes. The system in

its entirety follows Linked Open Data (LOD) principles and aims at introduc-

ing redirection mechanisms to both human-readable and machine-processable

representations. As a result, collection entries can be used much more easily

for data-driven studies, as linking data can be simplified, time is reduced, and

workflows can be automated. In addition, this system provides the basis for

semantic inference.[1]

Although standards such as ABCD can describe the concepts semantically,

the data is often still transferred in the form of free-text information. Due

to the different naming of a collector, assignments of specimens to the person

are complicated. The ambiguity of such free text information can become a

major problem: For example, there may be multiple spellings for a particular

collector name, or a collector may change his/her name during his/her lifetime.

Moreover, it is possible that two collectors have the same name.

In fact, behind this collector, a great treasure of further information might

be hidden, since this collector can be considered as a separate entity with its

meta-information, similar to a specimen. Unlike changes to taxa, which can

be split, for example, the metadata about a collector is not affected by name

changes - thus, it can be considered as the most stable data objects and can

be easily annotated accordingly.[17] This has already been done by numerous

CETAF institutions, providing the impetus for the development of the ”Botany

Pilot” demonstrator at BGBM to integrate both cross-collection data and data

from external information systems into one representation.[4]

According to Berendsohn, one of the key tasks of biodiversity informatics is

the development of web services that are able to exchange and integrate data

in order to achieve an increasing interoperability of data across collections.[15]

This allows following up on further interesting research questions: In which

regions did the collector focus his work? What specimens did the collector

publish about? Which collections contain a considerable number of the collec-

tor’s objects?

The web service developed in this project will contribute to the investigation

of these research questions by providing collector-centered linked data.

5

2.2. Semantic Web

2.2 Semantic Web

”The Semantic Web is not a separate Web but an extension of the

current one, in which information is given well-defined meaning,

better enabling computers and people to work in cooperation.” [18,

p.37]

The World Wide Web largely consists of unstructured information presented

in a human-understandable form, e.g., HTML web pages. The fact that peo-

ple can nevertheless access the information is due to optimized search engines,

that display search results sorted according to various criteria such as rele-

vance. These serve as an entry point to the information people are looking for.

However, search engines suffer from various problems that cannot easily be

resolved without structuring the information itself. For example, they return

a large number of results quickly, but these can be quite inaccurate.[19]

Another problem is the lack of recognition of semantic similarities, i.e., a search

for literature on a certain plant species does not yield rich results, although

this species has been published on in the last decades. This might happen if

that species was searched under an obsolete name - the semantic ”synonym”

relationship between new and old name is unknown to the machine.

Thus, in recent years, methods have been used to extract the meaning of

terms in statements. One approach is Natural Language Processing, which

uses techniques from computational linguistics as well as artificial intelligence

to separate statements written in natural language in order to understand the

meaning of the individual parts.[20] Another approach is the Semantic Web,

which will be described below.

2.2.1 Semantic Web

The Semantic Web forms an extension of the existing web. The data in existing

documents is to be represented in a machine-readable way from the beginning

and annotated by meta information (information about data). Tim Berners-

Lee can be considered as the central figure of the Semantic Web. His goal was

to make the semantics of information more heavily weighted. According to

Berners-Lee, the Semantic Web consists of three basic components:

1. structuring of information (e.g., by XML)

2. expression of meaning (e.g., by RDF)

6

3. ontologies (e.g., by RDFS or OWL)

Additional building blocks include cross-ontology logics and semantic agents.[18]

The W3C tries to promote this idea by introducing and maintaining standards

such as RDF. Such standards are intended to be as open and flexible as pos-

sible to ensure interoperability in the heterogeneous information space of the

Web.[21] Interoperability is reinforced by Linked Data: Linked Data helps to

achieve the vision of the Web of Data by linking the different data sources to

each other. Whenever a URI is available as information, it shall be used as

a name rather than a literal. Whenever an HTTP URI is available, it shall

be used since such addresses are more easily accessible to users. Whenever

machine-readable standards, such as RDF or SPARQL, are available, they

should be used. Whenever data is related to other sources, they should be

connected by integrating links to them and making their semantic relationship

explicit.[22] In this way, numerous knowledge graphs and ontologies can be

linked and build a global knowledge graph.

2.2.2 Ontology

Ontology comes from the Greek “ontologia”, which means ”essence of be-

ing”. In computer science, the term was then adopted to describe a model

that defines a system of concepts and objects in a particular domain through

relationships.[23]

An ontology consists of a list of concepts, which represents classes of objects,

and their interrelationships. Relationships specify, for example, whether one

term is a subclass of another one or how one class relates to another as a

property. Restriction rules specify the ranges and domains of properties. Ad-

ditionally, there are further specifications for classes and rules that allow logical

reasoning within the ontology.

To organize the knowledge of a domain, ontologies specify rules that the WWW

lacks. Thus, a whole range of problems can be solved, and two examples shall

be mentioned here:

• Terminological differences of synonyms can be resolved if these two terms

themselves have been explicated as synonyms by an attribute or a rela-

tion.

• The contextual meaning of a homonym, i.e., a term that can contain mul-

tiple meanings, can be resolved into a shared vocabulary by appropriate

7

2.2. Semantic Web

mapping.

In the last two decades, several standards have been introduced that can be

used to model and process ontologies. These include RDF, RDFS and OWL.

Also, various serializations have been developed for the representation of RDF.

In addition, SPARQL, a language for pattern search in ontologies, has been

developed.

2.2.3 XML

The extensible markup language (XML) is a meta-language that, strictly speak-

ing, is not a specification of the Semantic Web, but was developed primarily

to represent syntactically structured information.[24] Thus, it forms the basis

of the RDF/XML specification. XML is intended to separate the content of

a document from its formatting, but similar to HTML it works with tags to

denote elements.

Furthermore, nesting is used to represent hierarchical relationships among el-

ements, creating a machine-processable tree structure. Unlike HTML, XML

does not have fixed tags or constraints. These must first be defined in XML

schemas or vocabularies. There are several query languages for XML docu-

ments, e.g., XPath, which make it possible to search the XML tree and extract

information.

As mentioned above, XML is originally not designed to make the meaning of

the information machine-understandable - the meaning of the tags depends on

the application that interprets the document. This results from the univer-

sal interchangeability of the XML format. However, the goal of the Semantic

Web is universal validity of the meaning of statements. Therefore, the syn-

tactic interoperability of XML in RDF/XML has been extended by semantic

interoperability.[19]

2.2.4 RDF

Resource Description Framework (RDF) is a standard for describing structured

information that was originally intended to encode metadata about individual

web resources. It allows semantic statements to be constructed that are uni-

formly valid and thus interchangeable without meaning change. In addition,

this standard provides a data model that represents metadata and allows se-

mantic processing of this data. In RDF, a statement basically consists of an

8

object-attribute-value triple or, more generalized, an object-predicate-subject

triple. Databases that store a set of these triples are usually referred to as

triple stores. These triples can be represented in XML format (RDF/XML),

but also in other serializations such as Turtle or JSON-LD. An ontology can be

modeled in RDF Schema (RDFS) for lightweight variants and/or in Ontology

Web Language (OWL). The latter allows modeling of more expressive ontolo-

gies with more complex relationships between classes. Besides classes, prop-

erties are also described, their relationship to each other defined, and ranges

and domains specified. Therefore, relationships get an application-independent

meaning.

Objects of a statement are resources that are denoted with a Uniform Resource

Identifier (URI). This is often a URL but can also be any other identifier. URIs

also identify properties, which themselves define the relationship between re-

sources. In turn, subjects can be a resource or a literal. The latter are atomic

values such as strings, numbers, or dates.

URIs allow unique, unambiguous identifiers of the things of the Semantic Web.

Relationships between things can also be non-hierarchical, whereas in XML

they always have a hierarchical character due to embeddings. In general, a

set of triples can be described as a graph with directed edges, unlike XML

which spans a tree. This makes it easier to unify the knowledge graphs of two

resources.

2.2.5 SPARQL

The W3C Recommendation SPARQL Protocol And RDF Query Language

(SPARQL) is a query language that searches RDF graphs for specific patterns.

Essentially, its syntax is based on Turtle. SPARQL additionally provides the

feature to make queries and results more readable by using namespaces. As

in SQL, SELECT, FROM, and WHERE are components of the queries. SE-

LECT performs the projection function of the query to specify return variables,

FROM is an optional source specification and in WHERE the constraints and

variable names are determined. Such constraints can be graph patterns or

FILTER constraints with various operators (comparative, special, arithmetic,

boolean). Variable names can be used for objects and subjects as well as for

predicates.

The output format is determined by the keyword that starts the query: If

9

2.2. Semantic Web

SELECT is given, then the result is tabular. If the keyword CONSTRUCT is

used, then the result is an RDF result graph. Besides that, queries can also

start with two other keywords: ASK returns a Boolean value depending on

whether the pattern is matched. In cases where the properties of resources are

unknown, DESCRIBE is a suitable keyword. Hence, only the resource to be

described must be specified in the query, making the result graph contain all

statements found about the resource.

2.2.6 JSON-LD

”JSON has become the lingua franca of data on the web. It’s a

simple way to represent data that works well with client-side code

in web browsers.”[25, p.3]

Javascript Object Notation - Linked Data (JSON-LD, current version: 1.1)

is an RDF serialization that semantically extends the JSON format, making

it suitable for web services and data exchange due to its wide use. JSON

uses key-value pairs to represent data, separated by a colon and each enclosed

in quotes. Objects and their associated properties are each enclosed in curly

braces. Apart from literals, resource URIs are used in JSON-LD to denote

keys and values instead of simple string labels. A resource is described by

summarizing its properties and the objects of the statements separated by

commas. Since JSON-LD is an instance of RDF syntax, any RDF graph can

be serialized into a JSON-LD document. Conversely, however, not all JSON-

LD documents can be interpreted as RDF, since JSON-LD-specific differences

exist such as the use of blank nodes for properties. A special feature of JSON-

LD is the denotation of a vocabulary ”@context”. A vocabulary can either

be described within the same file or it is referenced to a web resource that

provides an ontology. More syntactic structures can be looked up in the W3C

specification of the JSON-LD standard.[26]� �
1 {

2 "@graph" : [{

3 "@id" : "http://w.jacq.org/object/W19810012214",

4 "description" : "A herbarium specimen of Potamogeton pectinatus L.

collected by Chase,A.",

5 "publisher" : "W",

6 "title" : "Potamogeton pectinatus L.",

7 "type" : "PreservedSpecimen",

10

8 "dwciri:recordedBy" : {

9 "@id" : "http://www.wikidata.org/entity/Q3822242"

10 },

11 "country" : "USA",

12 "eventDate" : "1900-09-03",

13 "family" : "Potamogetonaceae",

14 "genus" : "Potamogeton",

15 "institutionID" : "https://ror.org/01tv5y993",

16 "locality" : "S.W. end of Wolflake. Indiana",

17 "recordedBy" : "Chase,A."

18 }],

19 "@context" : {

20 "recordedBy" : {

21 "@id" : "http://rs.tdwg.org/dwc/terms/recordedBy"

22 },

23 "description" : {

24 "@id" : "http://purl.org/dc/terms/description"

25 },

26 "country" : {

27 "@id" : "http://rs.tdwg.org/dwc/terms/country"

28 },

29 "type" : {

30 "@id" : "http://purl.org/dc/terms/type"

31 },

32 "family" : {

33 "@id" : "http://rs.tdwg.org/dwc/terms/family"

34 },

35 "publisher" : {

36 "@id" : "http://purl.org/dc/terms/publisher"

37 },

38 "title" : {

39 "@id" : "http://purl.org/dc/terms/title"

40 },

41 "locality" : {

42 "@id" : "http://rs.tdwg.org/dwc/terms/locality"

43 },

44 "genus" : {

45 "@id" : "http://rs.tdwg.org/dwc/terms/genus"

46 },

47 "eventDate" : {

48 "@id" : "http://rs.tdwg.org/dwc/terms/eventDate"

49 },

50 "institutionID" : {

11

2.3. RESTful Web Services

51 "@id" : "http://rs.tdwg.org/dwc/terms/institutionID",

52 "@type" : "@id"

53 },

54 "dwciri" : "http://rs.tdwg.org/dwc/iri/",

55 "owl" : "http://www.w3.org/2002/07/owl#"� �
Listing 2.1: JSON-LD: Beispiel eines (gekürzten) Specimen-Eintrages aus dem

CETAF Triple Store

2.3 RESTful Web Services

”A Web service is a software system designed to support interop-

erable machine-to-machine interaction over a network.”[27]

This W3C definition describes the general function of a Web service. Depend-

ing on the type of a Web service, the specific definition may vary to some

extent. Further, Web services can be divided into REST-compliant services,

which provides a fixed set of stateless operations, and other services with ar-

bitrary additional operations. Important representatives of Web services are

Remote Procedure Calls (RPC), Simple Object Access Protocol (SOAP) and

Representation State Transfer (REST).[27] Previously involved in the devel-

opment of Hypertext Transfer Protocol standards, Fielding developed REST

in 2000 in his dissertation.[28]

REST is an architectural style defining only principles and constraints for de-

signing an interface - the implementation of the design, however, is up to the

developer. In his dissertation, Fielding derives this style from an arbitrary set

of architectures that are unconstrained (”null style”). Then, he defines further

architectural constraints that determine the design of the components and the

conditions between them, further restricting the set of possible architectures

until they satisfy the predefined REST constraints. Below, these constraints

will be described in more detail.[28]

1. Server-Client: This constraint is based on the separation of concerns

principle. While the client only sends requests to the server, the server

decides whether the request is accepted and executed or whether it is

rejected. Thus, both components are functionally separated and can be

maintained and developed independently.

12

2. Statelessness: The server or the API respectively does not store any

context information of the requests, i.e., each request must contain all

information necessary for processing. On the one hand, this leads to re-

dundant requests with complete request information increasing the net-

work load, but on the other hand, it also increases reliability if there is

incorrect information about past requests on the server side.

3. Cacheability: In the REST context, cacheability means that all responses

from the server to the client are implicitly or explicitly marked as cacheable

or non-cacheable. Therefore, the client is made able to cache data with

the information it receives. Comparing this constraint with the stateless-

ness constraint, the possible advantages and disadvantages are mirrored

here: If the client first checks whether the data to be queried is already

available in the local cache, this can save network traffic. On the other

hand, however, this can affect reliability, since the cached data can be

an outdated image of the current server-side data.

4. Layered System: A system of hierarchical layers means that each layer

only knows the respective neighboring layers. Since each layer is as-

signed its own area of responsibility, this layer architecture also fulfills

the principle of separation of concerns. The advantage of this is easier

maintainability as the consequences of modifying a single layer remain

manageable. An example of separate tasks is “authentication - caching -

data access”.

5. Code on Demand: This constraint is intended to allow the download

and client-side execution of code to extend its functionality. However,

Fielding points out that this constraint is optional.

6. Uniform Interface: This constraint is emphasized by Fielding as the key

difference between interfaces according to REST and those of other archi-

tectural styles. In his thesis, it is noted that the introduction of uniform

interfaces reduces functionality, since data can only be transferred in a

standardized way. However, since big data should be sent as efficiently as

possible, specialization is not of great relevance. Strictly speaking, this

constraint consists of four sub-constraints: Identification of resources,

manipulation of resources by representations, self-descriptive messages,

and hypermedia.

13

2.3. RESTful Web Services

14

3 Requirements

Prior to this project, partner institutions such as Plantentuin Meise were con-

tacted to elicit requirements. This information was first used to develop use

cases. Subsequently, the requirements were specified, for which it was neces-

sary to consider the different perspectives, e.g., developers and users.

3.1 Use cases

1. A web portal (Meise) provides a web page on occurrences of specimens.

A portal’s user wishes to learn more about the collector and wants bio-

graphical information to be displayed in a dedicated profile box. Once

activated by the user, the web page sends a request to the web ser-

vice containing the collector ID associated with the specimen. The web

page presents the biographical information on the fly in an info box in a

human-readable form.

2. A researcher uses a collector’s VIAF ID to search for both the specimens

associated with that person and the related literature to find out which

collected species or taxa that collector has published on. Using this ID,

the API finds all specimens from the herbaria of various institutions, as

well as bibliographic information from BHL and Europeana and provides

it in a JSON-LD file.

3. As part of the Synthesis+ Specimen Data Refinery project, it is planned

to enrich image object data with identifiers. The images are scanned via

OCR and the recognized names of the collectors are linked to person IDs.

The IDs are then linked to the associated person metadata by requesting

the web service developed in this work. The API is expected to give

access to the data easily and without using dedicated SPARQL queries.

The client can choose between JSON-LD or RDF/XML as output format.

15

3.2. Functional requirements

3.2 Functional requirements

Requirement ID Title Description Use Case
FR1 Providing collection

data from a requested
collector

The API provides a
document containing
all specimens and
associated metadata
from the triple store

(2)

FR2 Providing biographi-
cal data on a searched
collector

The API provides a
document containing
all biographical data
about the person

(1)

FR3 Providing biblio-
graphic data of a
collector

The API provides a
document that con-
tains all the biblio-
graphic data about
the person.

(2)

FR4 Provide an overall
summary of a collec-
tor

The information re-
sulting from the first
three requirements in
a compacted JSON-
LD file.

(3)

FR5 Finding all alterna-
tive URIs of a collec-
tor

The API must be
able to use Linked
Data methods to find
all existing alterna-
tive URIs.

(1), (2), (3)

FR6 Pagination The number of col-
lection objects can
be very high, slowing
down the API signifi-
cantly.

(2)

FR7 REST constraint
compliance

An easy-to-access
API without the
necessity of sending
SPARQL queries is
required

(1), (2), (3)

Table 3.1: Functional Requirements

16

3.3 Non-functional requirements

Requirement ID Title Description Use Case
NFR1 Versioning To ensure a stable API

as well as easy fur-
ther development of
the API, versioning is
used.

-

NFR2 Documentation Swagger is to be used
to create the docu-
mentation. All end-
points and available
methods are to be
publicly documented
here.

-

Table 3.2: Non-functional Requirements

17

3.3. Non-functional requirements

18

4 Design

A design of the Web service is to be developed from the requirements defined

in Chapter 3. Choosing REST as the applied architectural style emerged from

the elicited requirements which is outlined in section 4.2. The design serves as

a blueprint for the implementation of the API. The API is located between the

clients and the data sources and consists of three components which is shown

in Section 4.5. A specification of the client side is not done in this thesis. The

API provides an endpoint to access various sub-resources. As each sub-resource

satisfies one of the requirements (1-3), they differ in how they need to access

specific information systems. However, before the endpoint and resources are

described in more detail in this chapter, the requested information systems are

to be described first.

4.1 Information systems

1. CETAF Triple Store: The CETAF Triple Store, hosted at the BGBM,

integrates collection data from many partner institutions into a unique

database. The focus is on the collected specimens which exceed 10 mil-

lion. Each of these specimens represents a unique resource containing

numerous meta-information such as collector, scientific name, institution

or locality in the form of RDF triples. Collector IDs are resources and can

be linked to another collector ID via a “sameAs” property. The data is

provided via an open-access SPARQL endpoint that provides requested

data in non-semantic formats such as JSON or CSV, or in semantic for-

mats such as RDF/XML or JSON-LD.

2. Wikidata: Wikidata is a free knowledge database containing information

about almost 95 million data objects. Statements about these resources

are stored as RDF statements that can be edited by anyone in the user

interface. Since Wikidata is an international project, multilingual infor-

mation is also provided, e.g., about the description of the object or the

name spelling. A very important feature regarding this project is the fact

19

4.2. REST and alternatives

that Wikidata contains further identifiers and links to other information

systems, including the ones described below. Its data is made available

via a publicly available SPARQL endpoint providing the data as XML

or JSON.[29]

3. Biodiversity Heritage Library (BHL): BHL is a digital library that pro-

vides free access to biodiversity literature from the 15th to 21st centuries

from around the world. The collection totals over 59 million pages and

is operated by the Smithsonian Libraries and Archives, which aims to

digitize the natural history literature held by its members to promote

research activities in the biodiversity community. The BHL API pro-

vides its literature data as XML or JSON files via various REST-like

web services, requiring possession of an API key for access.[30]

4. Virtual Authority File (VIAF): VIAF is a service that merges author-

ity files from various globally distributed libraries into a single virtual

authority file and is operated by the Online Computer Library Center

(OCLC). Authority files are directories of standardized terms such as

persons and works. As entities, these terms have their individual URIs

and are linked to each other. In this project, the information about the

collector is of interest, e.g. international names and identifiers of other

information systems. The norm files on the collectors can be accessed

openly as RDF/XML or as JSON-LD documents.[31]

5. Europeana Europeana is an EU project to create a virtual library aiming

to make cultural and scientific works freely accessible for educational and

research purposes. It contains more than 50 million objects. The data

has been structured as an ontological data model, the European Data

Model (EDM), following the principle of the Semantic Web. Access to

the information is given via various APIs (REST, Search, SPARQL, etc.)

and is accordingly also offered as a JSON-LD file. An API key is required

to use the API.[32]

4.2 REST and alternatives

Apart from the REST architectural style, there is also the Simple Object Ac-

cess Protocol (SOAP) as a protocol for message transmission. The W3C rec-

ommendation was developed from the RPC variant XML-RPC and uses XML

20

as the format for its messages. SOAP provides features for authenticated trans-

mission and restricted access to remote system methods.[33] The latter aspect

makes SOAP a good choice for transmissions where operations beyond CRUD

are needed. However, this increases the scope of the implementation.

The requirements elicitation revealed the necessity of merely a small set of

available methods. However, SOAP is a protocol designed to implement more

complex methods. Retrieval methods implemented with REST based on HTTP

GET methods are sufficient to meet the requirements. Thus, the validation

overhead for the XML messages used in SOAP is avoided as well. Likewise,

authentication mechanisms are not required since the API is available to any

client and no sensitive data is used. As the REST constraints allow a flexible

implementation, the API can be easily extended following this prototype.

4.3 Identifiers

Since collections use different URIs to annotate collectors, e.g., Meise mainly

annotates their data with VIAF IDs in use case 1 (see 3.1), the API must be

able to provide collector data although the Wikidata ID is unknown. Besides

Wikidata IDs, the following identifiers may occur:

1. VIAF-IDs, e.g., 44697854

2. ORCiD-IDs, e.g., 0000-0001-9945-7606

3. Harvard-IDs, e.g., 379

Regular expressions can be used to recognize these identifiers. An equivalent

Wikidata ID can then be found using the following two mechanisms:

1. In the triple store, alternative identifiers for a collector are queried via

SPARQL and referenced with the http://www.w3.org/2002/07/owl#sameAs

property. If a Wiki ID has been found, the API continues. If not, then

the API is supposed to use the next method.

2. In Wikidata, an entity containing the specified ID is searched for via

its SPARQL endpoint. Beforehand, the given ID must be associated

with the corresponding provider and thus with the matching Wikidata

property. If a person with this ID exists, then the API continues. If

no person with this ID was found, then, depending on the requested

21

4.4. Resources and endpoints

resource, the API returns either all found specimens or an file containing

an empty graph.

At this point, it becomes clear how important Wikidata is as a central source

for person-related data. All identifiers to the previously described information

systems in section 4.1 are obtained from the SPARQL queries to the Wikidata

endpoint.

4.4 Resources and endpoints

The design of the resources is based on the requirements developed from the

use cases (see 3.1). Crucial is the REST-typical separation of the representa-

tions from resources, i.e., file extensions are not necessary to be used in the

URL, since the requested content format is negotiated via the information from

the request header.[34] Self-descriptive nouns are used for both the collector

resource and the listing of sub-resources such as the collection data or the lit-

erature resources. Strictly speaking, verbs should be used between resources

in the URL since resources are connected by predicates in statements. As the

integration of verbs could imply a method-oriented SOAP service, nouns are

to be used as a compromise.

In this API, results must be created from a collector-centric view, i.e., even col-

lection objects containing collectors as statement subjects must be found using

collector IDs. Therefore, a resource ”collector” is used. Three sub-resources

result from the use cases described above.

1. Collector: The document as a resource contains all information from the

required information systems (Requirement 4). Finally, in the result doc-

ument, the collector obtains an RDFS type (@type). Since the collector

can be identified as a ”person” and the shared vocabulary schema.org

derived from RDFS was created in order to support search engines, the

type ”schema:Person” is anntotated to the collector. Moreover, search

engine supportive vocabularies may facilitate collector searches via the

Web Portal mentioned in Use Case 1 (3).

2. Biography: This sub-resource returns all biographical data about the

person from Wikidata and VIAF. This includes, for example, the various

name spellings, birth and death dates, and descriptions. Since Wiki-

data uses its own vocabulary of properties with alphanumeric variants

22

such as ”P18”, these properties can be mapped into semantically similar

predicates from the schema.org vocabulary.

3. Collection: This sub-resource provides a list of all collected specimens

from the Triple Store directly and indirectly associated with the given

collector.

4. Bibliography: This sub-resource provides a list of all works published by

the collector from BHL and Europeana.

The endpoint can be accessed as described in Table 4.1. In this work, only

GET methods are provided, as they are sufficient to meet the requirements.

Method URL: host/collector/v1 Description
GET /{collectorId}/ Get data from of {collectorId}
GET /{collectorId }/biography Get biography resources of {collec-

torId}
GET /{collectorId }/collection Get collected specimen resources

of {collectorId}
GET /{collectorId }/bibliography Get literature resources of {collec-

torId}

Table 4.1: Endpoints and methods

4.5 Architectural scheme

The API consists of three components: The query component, the logic com-

ponent and the routing component. The REST-oriented separation of tasks

is implemented by this architecture. In this scheme, only the adjacent com-

ponents communicate with each other, which leads to easier maintenance and

development of the API.

23

4.5. Architectural scheme

Figure 4.1: External and internal structure of the API

24

5 Implementation

5.1 Technologies

5.1.1 Slim Framework

The Slim Framework[35] is a micro-framework for implementing APIs. Slim

provides core API functionalities such as routing, caching, logging or redirect-

ing. Basically, it is very well suited to develop fast prototypes with a small

amount of time due to its small functional scope. A micro-framework is ap-

propriate in this project as an API was developed that essentially pulls linked

data together and integrates it into a response file. Moreover, this framework

is already used in the existing API infrastructure at BGBM, where the API

will be integrated later. An alternative would be Laravel.[36] This full-stack

framework is well suited for more complex applications, e.g., by providing out

of the box functions for authentication or security. However, features like these

are not needed in this project.

5.1.2 JsonLD

JsonLD is a JSON-LD processor for PHP developed by Markus Lanthaler.[37]

It complies with the official requirements of the JSON-LD test suite. All JSON-

LD transformation algorithms such as flattening or expanding are provided.

Since the developer was already involved in the official specification of the

standard, this processor was chosen.

5.1.3 EasyRDF

EasyRDF is a PHP library by Nicholas Humfrey for processing RDF.[38] The

library provides a wide range of classes and methods to, for instance, create

graphs from resources, query SPARQL endpoints, and parse or serialize formats

into other formats. The supported formats RDF/XML and JSON-LD are

particularly relevant for this work. Currently, PHP libraries with this extent

of functionality do not exist. This library also utilizes this processor but does

25

5.2. Components

not access all functionalities in a suitable manner. This especially applies if

specification-compliant identifiers such as @id or @value are used, which can

be lost in the transformation algorithms called by EasyRDF.

5.2 Components

The routing component instantiates the logic component and determines which

method of the logic component is called depending on the requested route. Ba-

sically, it serves as the entrypoint to the endpoint. Additionally, it determines

the representation of the response based on the request’s header parameter

Accept:application/format. In this work, both RDF/XML and JSON-LD are

provided. The logic component operates depending on the selected route. On

Figure 5.1: Operation example: Bibliography call by using Wikidata ID

the one hand, it calls the corresponding request in the query component and,

on the other hand, it integrates the data from the endpoints into a graph that

26

is returned to the routing component after processing.

The query component provides basic query functions to the various database

endpoints. For the queries, cURL or EasyRDF is used. The latter is used

for the Wikidata SPARQL endpoint, as the use of cURL did not work, which

could be caused by missing header options in the request. However, their in-

troduction in the request led to errors in the queries to other endpoints.

5.3 SPARQL Queries

The API makes various SPARQL queries to the Triple Store and Wikidata

respectively. For example, in Wikidata, both the identifiers of the external

information systems and biographical information are queried if the Wikidata

identifier is known, whereas one other query looks for the collector’s Wikidata

entity and its ID by using identifiers of other systems. However, as an example,

only the Specimen query to the RDF store will be described in this section.

Basically, this SPARQL query identifies all specimen resources that are linked

to the searched collector ID via a predicate and constructs a result graph

that in turn contains all statements about each specimen. In more detail, the

WHERE specification combines three possible cases via UNION. In the first

case, all triples are queried that contain a subject that is linked to the searched

collector ID in a statement by the property dwciri:recordedBy.

1 PREFIX dwciri: <http://rs.tdwg.org/dwc/iri/>

2 PREFIX owl: <http://www.w3.org/2002/07/owl#>

3

4 CONSTRUCT

5 { ?subject ?predicate ?object. }

6 WHERE {

7 {

8 ?subject ?predicate ?object .

9 ?subject dwciri:recordedBy ?a .

10 VALUES ?a { <http://www.wikidata.org/entity/Q3822242> }

11 }UNION{

12 ?subject ?predicate ?object .

13 ?subject dwciri:recordedBy ?a .

14 ?b owl:sameAs ?a .

27

5.4. Mappings

15 VALUES ?b { <http://www.wikidata.org/entity/Q3822242> }

16 }UNION{

17 ?subject ?predicate ?object .

18 ?subject dwciri:recordedBy ?a .

19 ?a owl:sameAs ?b .

20 VALUES ?b { <http://www.wikidata.org/entity/Q3822242> }

21 }}

Listing 5.1: Specimen SPARQL query to the triple store

In the second case all triples are queried whose subject is part of a recordedBy

statement with a collector object, which itself is additionally the object of a

statement with the predicate owl:sameAs linked to the searched collector ID.

The third case is basically constructed similar to the second case. However,

the searched collector ID is here the object of the “sameAs” relation. The

reason for the distinction between case two and three is the unidirectionality

of the property in a single statement, i.e., a subject of a statement cannot

simultaneously be the object. These pattern cases can also be written in

abbreviated form in SELECT queries. In CONSTRUCT clauses, however,

these relations must be written out and are not allowed in an abbreviated

form. The reason for not using a SELECT clause here is the available format:

JSON-LD documents are only offered by the endpoint of the triple store if

CONSTRUCT queries are used.

5.4 Mappings

As described in the Resources section 4.4, some responses require proper map-

pings, e.g., if the source does not return a semantic format. In this API,

mappings to different vocabularies are performed in two cases. In another

case, the data is condensed to the core relevant to the content according to the

identified requirements.

5.4.1 Wikidata properties

As an additional requirement a human friendly representation of the infor-

mation from Wikidata was given. Therefore, the following properties with

alphanumeric abbreviations are mapped.

28

1. Statements about BHL (P4081), VIAF (P214), and Europeana (P7704):

The properties indicating that an entity contains statements about the

respective IDs are mapped to the schema:sameAs property in the result

graph. Since Wikidata does not return the IDs as URLs, their respective

domain addresses are added.

2. Statements about image links (P18): The property of this statement is

mapped to the predicate schema:image.

3. Statements about date of birth and date of death (P569/P570): The

properties of these statements are mapped to the predicates

schema:birthDate and schema:deathDate, respectively.

5.4.2 BHL responses

The BHL endpoint returns the data in a JSON file without Linked Data exten-

sion. For literature information, other ontologies and vocabularies are avail-

able, such as BIBO.[39] However, for consistency, the following information is

mapped into the schema.org vocabulary.

1. Linking to the person entity: Combined with the @reverse keyword, the

schema:author property is used to represent the set containing works

written by the given collector.

2. BHL entries as book entity: BHL entries with the ”BHLType” value

”Title” are mapped to an entity of the type schema:Book containing the

BHL title URL as identifier (@id). In addition, the following mappings

are applied in this case:

• Title -> schema:name

• PublicationDate -> schema:datePublished

• PublisherName -> schema:publisher

• PublisherPlace -> schema:location

For the publisher information, a corresponding entity of type

schema:Organization is created in the form of a blank node (without ID),

which is directly linked to the book entity.� �
1 else {

2 if ($value["Genre"] == "Article") {

29

5.4. Mappings

3 $currentWork["@id"] = $value["PartUrl"];

4 $currentWork["@type"] = "http://schema.org/Article";

5 $currentWork["http://schema.org/name"] = $value["Title"];

6 if (isset($value["PageRange"])) {

7 $currentWork["http://schema.org/pageStart"] = explode("

--", $value["PageRange"])[0];

8 if (count(explode("--", $value["PageRange"])) == 2) {

9 $currentWork["http://schema.org/pageEnd"] = explode(

"--", $value["PageRange"])[1];

10 }

11 }

12 if (isset($value[’ContainerTitle’])) {

13 $currentWork["http://schema.org/isPartOf"] = array(’

@type’ => ’http://schema.org/PublicationIssue’, ’

http://schema.org/datePublished’ => $value["Date"],

’http://schema.org/volumeNumber’ => $value["Volume"

], ’http://schema.org/isPartOf’=> array(’@type’ => ’

http://schema.org/Periodical’, ’http://schema.org/

name’ => $value["ContainerTitle"]));

14 }

15 $result[’@reverse’][’http://schema.org/author’][] =

$currentWork;

16 }

17 }� �
Listing 5.2: Logic component: Mapping of an BHL ’Article’ entity into a

schema entity

3. BHL Entries as Article Entity: Since botanists often publish in jour-

nals, articles frequently occur in the BHL data whose ”Genre” data field

contains the value ”Article”. This case must be handled separately, i.e.,

the data must be transformed to entities of the semantically appropriate

type schema:Article. The BHL ”PartURL” is used as the identifier of the

entity. The pages of the journal where the article is located are mapped

this way:

• PageRange -> schema:pageStart + schema:pageEnd

According to the schema.org documentation, the journal must be mapped

into a ”PublicationIssue” type entity, which is part of a ”Periodical” type

entity. While the latter then contains the name of the journal, the ”Pub-

30

licationIssue” entity is linked to information such as the publication year

as well as to the issue number using the corresponding properties of the

vocabulary.

5.4.3 Europeana responses

Two of the available Europeana endpoints are used to search for media entities

and their respective metadata: The search API and the record API. While the

search endpoint queries all item IDs for a given Europeana collector ID, the

record API queries single items. Theoretically, it would also be possible to

use the results of the search API for the result graph. However, since these

are not in a Linked Data format and further do not comply with EDM, the

Record API is additionally queried for every single record. The latter returns

the data in a format that is compliant with the EDM. The items in the re-

sponses are represented as sub-units, of which the following are filtered out by

the logic component: Item, Provider and Europeana Proxy, and Provider and

Europeana Aggregation (see [40, p.22]). These sub-items contain the informa-

tion relevant for the API, e.g., the link to the collector’s Europeana ID via

dc:creator.

5.5 Pagination

Since the number of specimens queried in the collection endpoint might be

extensive, pagination is necessary for data minimization. Therefore, an offset-

based pagination has been implemented. The query is limited to the value

5,000 to limit the response time. The client sets the offset using the ?page

parameter. If additional pages are not available, the following statement is

omitted from the result document:� �
1 <collector-url?page={current-page = x}> as:next <collector-url?page={

current-page = x+1}>� �

5.6 Versioning

The URL contains a version number to make the API easily extensible without

losing backward compatibility. Thus, all enhancements can be implemented

31

5.7. Documentation

separately in a new version. The URL will be structured according to this

scheme: host/version/collector/...

5.7 Documentation

Swagger is to be used for the documentation of the interface. This tool is

suitable for describing the used endpoints of a REST API in a machine and

human readable format like YAML or JSON. The OpenAPI specification is

used as the specification. It documents the endpoints responses and describe

what the request parameters and request objects are. This is done indepen-

dently of the programming language used to implement the API. Further, the

SwaggerUI tool can be used to create an interactive console that provides easy

access for the user to understand the API. The OpenAPI specifications provide

documentation options for both the ”code first” and ”design first” approaches.

The first approach is used in this work.

Figure 5.2: API Documentation using Swagger

32

6 Evaluation

6.1 Functional Requirements

Requirement ID Title Use Case Y / N / Partially
FR1 Providing collec-

tion data from a
requested collec-
tor

(2) Y

FR2 Providing bio-
graphical data
on a searched
collector

(1) Y

FR3 Providing biblio-
graphic data of a
collector

(2) Y

FR4 Provide an overall
summary of a col-
lector

(3) Y

FR5 Finding all alter-
native URIs of a
collector

(1), (2), (3) Y

FR6 Pagination (2) Y
FR7 REST constraint

compliance
(1), (2), (3) Partially

Table 6.1: Evaluation of functional requirements

6.2 Non-functional requirements

Requirement ID Title Use Case Y / N / Partially
NFR1 Versioning - Y
NFR2 Documentation - Y

Table 6.2: Evaluation of non-functional requirements

33

6.3. Performance testing

6.3 Performance testing

During the development stage, performance tests were carried out to deter-

mine efficient LIMIT values in the specimen queries. According to Miller[41],

1,000ms interruption is perceived as noticeable, but not an interruption. The

range of about 1,500-2,000ms was set as a tradeoff to not fall below a thresh-

old of 5,000 triples in the response. This reduces the number of paginated

follow-up requests. Furthermore, by tagging the response data as cacheable, a

large part of the second requests can be intercepted via the client cache. The

latter is important in web portals like that described in Use Case 1. Jmeter[42]

was used as the test software and different loads were tested. The following

diagram shows the response times of three test groups with 10 threads and 50

requests in 10 seconds. The peaks are often caused by delays in the various

endpoints, such as Wikidata.

Figure 6.1: Test diagram

34

7 Summary

7.1 Discussion

The objective of this work was to develop an API capable of integrating dis-

tributed botanical collection data, publications, and biographical information

about a collector through the use of a person ID. The basic requirements to

achieve this are botanical collections enriching their data with identifiers and

making them available so that they can be stored in a central triple store.

Furthermore, it could be shown that the use of different collector IDs in the

different institutions does not have to be an obstacle for the integration of the

data. By using central knowledge bases such as Wikidata, alternative identi-

fiers for the person can be found and thus data from different collections can

be assigned to a single person. The inclusion of appropriate sameAs predicates

in queries has also been helpful in addressing this issue.

However, to meet the requirements that emerged from discussions with the

BGBM’s partner institutions, this was not the only problem to be solved.

Other problems, such as the availability of non-semantic data through the Bio-

diversity Heritage Library (BHL), could only be solved by mapping this infor-

mation into a shared vocabulary, schema.org. This vocabulary was chosen pri-

marily for consistency, as the collector itself is an object of type schema:Person.

Nevertheless, it should be mentioned here that there are a number of other vo-

cabularies for this purpose.[39]

Another issue in the project was the choice of a suitable API design. Based

on the requirements, it was clear that the API had to be easy to access and

that it should not require a great amount of prior knowledge of SPARQL for

its use. From sketching the necessary implementations in alternatives such as

SOAP and from the knowledge gained from related work[43], the choice fell

on the REST architectural style. Moreover, this style should facilitate future

enhancements of functionality and the integration of data from other informa-

tion systems. Also, REST strongly influenced the layout of the individual API

components - a distinct separation of the functions is intended to make the

35

7.1. Discussion

maintenance of the API as convenient as possible.

However, some problems arose during the project that could not be solved

within the scope of this work. One of them concerns the REST constraint

HATEOAS. Hypermedia is intended to facilitate navigation through the API

by allowing the use of paths to deeper resources in the URL. In this API, this

means that starting from the collector as the central entity, it is possible to

navigate to the lists of publication objects, Europeana objects, and collection

objects (level 1), and subsequently to each of the single objects (level 2). Level

1 can be accessed, level 2 however not, which is due to the following consider-

ations.

For instance, the collection objects from the distributed collections are denoted

with local object identifiers whose domains differ between institutions.[1] In

HATEOAS, local IDs in the API URL could be used to navigate to the object.

However, since these objects do not have centrally assigned identifiers, it can-

not be ruled out that two objects with different URIs from different collections

share the same local identifier. Although this is rather unlikely, distinguisha-

bility cannot be guaranteed. One approach in this regard is to assign local

identifiers via a sameAs statement in the RDF store, but this would require

the stability of these identifiers to be guaranteed. The identifiers of objects

from Europeana, for example, are queried on the fly - here the API itself would

have to make ID assignments accordingly. Another option is to use a modified

object ID in the navigation URL, e.g. replacing the slashes with underscores

and including the domain.

Owing to this problem, the REST constraints could be met only partially.

Hence, the API is not RESTful. According to the Richardson Maturity Model,

an API is only RESTful if it also reaches the highest level, Hypermedia Con-

trols. [44] That is, the API could currently rather be classified as RESTlike.

Accordingly, a contradiction in the elicited requirements can be seen here: a

REST API is to be developed that does not have to offer hypermedia up to

the level 2 mentioned before. As other institutions may be interested in hy-

permedia functions in the API, a possible compromise could be to use the URI

conventions already discussed.

In the context of this work, component tests have not been carried out at this

point. In consultation with the partners, these will be conducted during the in-

tegration into their services. This will require the development of a test model

in which, e.g., the different responses of the external information systems are

36

considered, creating a recognisable distinction between an unsent data situa-

tion and an unavailable resource situation.

Along with annotating collector identifiers, CETAF institutions have already

started annotating collection objects with geographic identifiers.[45] Previously

available as free text only, the use of URIs (e.g. of GeoNames[46]) allows to

integrate geographic entity information. Thus, all locations where the collec-

tor was active might be retrieved via an additional API endpoint. Different

founds at different times are linked to a location identifier - another step in

the integration of Linked Data in biodiversity research.

7.2 Conclusion

This thesis covers the implementation of a generic service for the integration

of semantic data and it was shown that the enrichment of collection data with

identifiers of different domains can be overcome. For this, it was necessary to

develop methods that can associate different identifiers to a single collector.

Linked data mechanisms searching central knowledge bases such as Wikidata

for biographical data and identifiers, as well as using links in the collection data

held in an RDF store. Integration of information from external information

systems such as BHL could be provided via mappings into shared vocabular-

ies.

Moreover, it was evaluated and discussed whether the requirements elicited

with the partners could be fully met. While the key functionalities could be

implemented, the HATEOAS constraint of the REST architectural style could

not be fully implemented. In the discussion, the basic problem of identifiers

in the URL causing this issue was discussed. Additionally, basic requirements

for the future implementation of this functionality were outlined. To conclude,

the implementation of HATEOAS was not yet necessary in the context of this

work, but could become important in future enhancements if new use cases

emerge due to new partners or the integration of additional information sys-

tems.

An API was developed, documented via Swagger, which can be easily inte-

grated into partner institutions’ systems through open access requirements.

Machine-understandable collection data, as well as biographical and biblio-

graphical information about a collector, can also be provided when an arbi-

trary ID from previously defined domains is used. The API developed in this

37

7.2. Conclusion

thesis is also the starting point for data integration via the use of additional

identifiers. Semantic annotations to collection object occurrence locations have

already been started. Therefore, it is considered to design another endpoint to

geographic information that provides collection objects to a given geographic

identifier.

38

Bibliography

[1] A. Güntsch, R. Hyam, G. Hagedorn, S. Chagnoux, D. Röpert, A. Casino,

G. Droege, F. Glöckler, K. Gödderz, Q. Groom, J. Hoffmann, A. Holle-

man, M. Kempa, H. Koivula, K. Marhold, N. Nicolson, V. S. Smith, and

D. Triebel, “Actionable, long-term stable and semantic web compatible

identifiers for access to biological collection objects,” Database : the jour-

nal of biological databases and curation, vol. 2017, no. 1, 2017.

[2] Q. Groom, R. Hyam, and A. Güntsch, “Data management: Stable identi-

fiers for collection specimens,” Nature, vol. 546, no. 7656, p. 33, 2017.

[3] “Botanischer Garten und Botanisches Museum Berlin,” 01.09.2021.

[Online]. Available: https://bo.berlin/

[4] “Botany Pilot Search,” 20.08.2021. [Online]. Available: https://services.

bgbm.org/botanypilot/

[5] “Plantentuin meise,” 01.09.2021. [Online]. Available: https://www.

plantentuinmeise.be/fr/

[6] W. G. Berendsohn, Ed., Resource Identification for a biological collection

information service in Europe (BioCISE): Results of the Concerted Action

”BioCISE Resource Identification” funded by the European Commission,

DG XII, within the EU Fourth Framework’s Biotechnology Programme,

August 1, 1997 to december 31, 1999. Berlin-Dahlem: Botanical Garden

and Botanical Museum, 2000.

[7] Convention on biological diversity. s.l.: Environmental Law and Institu-

tions Programme Activity Centre, 1992.

[8] A. Purvis and A. Hector, “Getting the measure of biodiversity,”

Nature, vol. 405, no. 6783, pp. 212–219, 2000. [Online]. Available:

https://www.nature.com/articles/35012221

39

https://bo.berlin/
https://services.bgbm.org/botanypilot/
https://services.bgbm.org/botanypilot/
https://www.plantentuinmeise.be/fr/
https://www.plantentuinmeise.be/fr/
https://www.nature.com/articles/35012221

Bibliography

[9] I. N. Sarkar, “Biodiversity informatics: organizing and linking information

across the spectrum of life,” Briefings in bioinformatics, vol. 8, no. 5, pp.

347–357, 2007.

[10] J. L. Edwards, M. A. Lane, and E. S. Nielsen, “Interoperability of

biodiversity databases: Biodiversity information on every desktop,”

Science, vol. 289, no. 5488, pp. 2312–2314, 2000. [Online]. Available:

http://www.jstor.org/stable/3077957

[11] B. P. Hedrick, J. M. Heberling, E. K. Meineke, K. G. Turner, C. J. Grassa,

D. S. Park, J. Kennedy, J. A. Clarke, J. A. Cook, D. C. Blackburn, S. V.

Edwards, and C. C. Davis, “Digitization and the future of natural history

collections,” BioScience, vol. 70, no. 3, pp. 243–251, 2020.

[12] “Gbif,”01.08.2021. [Online]. Available: https://www.gbif.org/occurrence/

charts

[13] “Abcd - access to biological collection data,” 05.08.2019. [Online].

Available: https://abcd.tdwg.org/

[14] “Darwin core - darwin core,” 30.07.2021. [Online]. Available: https:

//dwc.tdwg.org/

[15] W. G. Berendsohn, A. Güntsch, N. Hoffmann, A. Kohlbecker, K. Luther,

and A. Müller, “Biodiversity information platforms: From standards to

interoperability,” ZooKeys, no. 150, pp. 71–87, 2011.

[16] Consortium of European Taxonomic Facilities - CETAF, “Cetaf -

homepage v2 - consortium of european taxonomic facilities - cetaf,”

19.07.2021. [Online]. Available: https://cetaf.org/

[17] Q. Groom, A. Güntsch, P. Huybrechts, N. Kearney, S. Leachman,

N. Nicolson, R. D. M. Page, D. P. Shorthouse, A. E. Thessen, and E. Has-

ton, “People are essential to linking biodiversity data,” Database : the

journal of biological databases and curation, vol. 2020, 2020.

[18] T. I. BERNERS-LEE, J. HENDLER, and O. R. LASSILA, “The

semantic web,” Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[Online]. Available: http://www.jstor.org/stable/26059207

40

http://www.jstor.org/stable/3077957
https://www.gbif.org/occurrence/charts
https://www.gbif.org/occurrence/charts
https://abcd.tdwg.org/
https://dwc.tdwg.org/
https://dwc.tdwg.org/
https://cetaf.org/
http://www.jstor.org/stable/26059207

Bibliography

[19] G. Antoniou and F. van Harmelen, A semantic Web primer, 2nd ed., ser.

Cooperative information systems. Cambridge, Mass.: MIT Press, 2008.

[20] Natural language processing, 2001. [Online]. Available: http://surface.

syr.edu/cgi/viewcontent.cgi?article=1019&context=cnlp

[21] “Resource description framework (rdf): Concepts and abstract

syntax,” 09.10.2018. [Online]. Available: https://www.w3.org/TR/2004/

REC-rdf-concepts-20040210/

[22] “Linked data - design issues,” 06.11.2017. [Online]. Available: https:

//www.w3.org/DesignIssues/LinkedData.html

[23] “ontology - wiktionary,” 20.08.2021. [Online]. Available: https:

//en.wiktionary.org/wiki/ontology

[24] “Xml essentials - w3c,” 19.06.2019. [Online]. Available: https:

//www.w3.org/standards/xml/core

[25] R. Page, “Towards a biodiversity knowledge graph,” Research Ideas and

Outcomes, vol. 2, p. e8767, 2016.

[26] “Json-ld 1.1,” 08.07.2020. [Online]. Available: https://www.w3.org/TR/

json-ld11/

[27] “Web services architecture,” 09.10.2018. [Online]. Available: https:

//www.w3.org/TR/ws-arch/#introduction

[28] Roy T. Fielding, Architectural Styles and the Design of

Network-based Software Architectures, 2000. [Online]. Available:

https://www.researchgate.net/publication/216797523 Architectural

Styles and the Design of Network-based Software Architectures

[29] “Wikidata,” 30.08.2021. [Online]. Available: https://www.wikidata.org/

wiki/Wikidata:Main Page

[30] “Biodiversity heritage library,” 30.08.2021. [Online]. Available: https:

//www.biodiversitylibrary.org/

[31] “Viaf,” 01.02.2021. [Online]. Available: https://viaf.org/

41

http://surface.syr.edu/cgi/viewcontent.cgi?article=1019&context=cnlp
http://surface.syr.edu/cgi/viewcontent.cgi?article=1019&context=cnlp
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://en.wiktionary.org/wiki/ontology
https://en.wiktionary.org/wiki/ontology
https://www.w3.org/standards/xml/core
https://www.w3.org/standards/xml/core
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/ws-arch/#introduction
https://www.w3.org/TR/ws-arch/#introduction
https://www.researchgate.net/publication/216797523_Architectural_Styles_and_the_Design_of_Network-based_Software_Architectures
https://www.researchgate.net/publication/216797523_Architectural_Styles_and_the_Design_of_Network-based_Software_Architectures
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.biodiversitylibrary.org/
https://www.biodiversitylibrary.org/
https://viaf.org/

Bibliography

[32] Europeana Pro, “Europeana data model | europeana pro,” 30.08.2021.

[Online]. Available: https://pro.europeana.eu/page/edm-documentation

[33] “Soap version 1.2 part 1: Messaging framework (second edition),”

02.10.2017. [Online]. Available: https://www.w3.org/TR/soap12-part1/

[34] Pascal Giessler, Michael Gebhart, Dmitrij Sarancin, Roland Steineg-

ger, and Sebastian Abeck, “Best practices for the design of

restful web services,” Proceedings - International Conference on

Software Engineering, vol. 10, pp. 392–397, 2015. [Online].

Available: https://www.researchgate.net/publication/301694429 Best

Practices for the Design of RESTful Web Services

[35] Slim Framework, “Slim framework,” 23.08.2021. [Online]. Available:

https://www.slimframework.com/

[36] “Laravel - the php framework for web artisans,” 03.09.2021. [Online].

Available: https://laravel.com/

[37] GitHub, “Github - lanthaler/jsonld: Json-ld processor for php,”

31.08.2021. [Online]. Available: https://github.com/lanthaler/JsonLD

[38] N. Humfrey, “Easyrdf - rdf library for php,” 31.08.2021. [Online].

Available: https://www.easyrdf.org/

[39] “Linked open vocabularies (lov),” 31.08.2021.

[40] “Europeana data model primer,” 14.07.2013. [Online]. Available: https:

//pro.europeana.eu/files/Europeana Professional/Share your data/

Technical requirements/EDM Documentation/EDM Primer 130714.pdf

[41] R. B. Miller, “Response time in man-computer conversational transac-

tions,” in Proceedings of the December 9-11, 1968, fall joint computer

conference, part I on - AFIPS ’68 (Fall, part I). New York, New York,

USA: ACM Press, 1968.

[42] “Apache jmeter - apache jmeter™,” 22.01.2021. [Online]. Available:

https://jmeter.apache.org/

[43] Markus Schröder, Jörn Hees, Ansgar Bernardi, Daniel Ewert,

and Steffen Stadtmüller, Simplified SPARQL REST API - CRUD

42

https://pro.europeana.eu/page/edm-documentation
https://www.w3.org/TR/soap12-part1/
https://www.researchgate.net/publication/301694429_Best_Practices_for_the_Design_of_RESTful_Web_Services
https://www.researchgate.net/publication/301694429_Best_Practices_for_the_Design_of_RESTful_Web_Services
https://www.slimframework.com/
https://laravel.com/
https://github.com/lanthaler/JsonLD
https://www.easyrdf.org/
https://pro.europeana.eu/files/Europeana_Professional/Share_your_data/Technical_requirements/EDM_Documentation/EDM_Primer_130714.pdf
https://pro.europeana.eu/files/Europeana_Professional/Share_your_data/Technical_requirements/EDM_Documentation/EDM_Primer_130714.pdf
https://pro.europeana.eu/files/Europeana_Professional/Share_your_data/Technical_requirements/EDM_Documentation/EDM_Primer_130714.pdf
https://jmeter.apache.org/

Bibliography

on JSON Object Graphs via URI Paths, 2018. [Online]. Avail-

able: https://www.researchgate.net/publication/324982439 Simplified

SPARQL REST API - CRUD on JSON Object Graphs via URI Paths

[44] Ivan Salvadori and Frank Siqueira, “A maturity model

for semantic restful web apis,” 2015. [Online]. Avail-

able: https://www.researchgate.net/publication/281287283 A Maturity

Model for Semantic RESTful Web APIs

[45] D. Röpert, F. Reimeier, J. Holetschek, and A. Güntsch, “Se-

mantic annotation of botanical collection data,” Biodiversity In-

formation Science and Standards, vol. 3, 2019. [Online]. Avail-

able: https://www.researchgate.net/publication/333756870 Semantic

Annotation of Botanical Collection Data

[46] “Geonames,” 28.08.2021. [Online]. Available: https://www.geonames.org/

43

https://www.researchgate.net/publication/324982439_Simplified_SPARQL_REST_API_-_CRUD_on_JSON_Object_Graphs_via_URI_Paths
https://www.researchgate.net/publication/324982439_Simplified_SPARQL_REST_API_-_CRUD_on_JSON_Object_Graphs_via_URI_Paths
https://www.researchgate.net/publication/281287283_A_Maturity_Model_for_Semantic_RESTful_Web_APIs
https://www.researchgate.net/publication/281287283_A_Maturity_Model_for_Semantic_RESTful_Web_APIs
https://www.researchgate.net/publication/333756870_Semantic_Annotation_of_Botanical_Collection_Data
https://www.researchgate.net/publication/333756870_Semantic_Annotation_of_Botanical_Collection_Data
https://www.geonames.org/

	Introduction
	Motivation
	Outline

	Background
	Biodiversity Informatics
	Semantic Web
	Semantic Web
	Ontology
	XML
	RDF
	SPARQL
	JSON-LD

	RESTful Web Services

	Requirements
	Use cases
	Functional requirements
	Non-functional requirements

	Design
	Information systems
	REST and alternatives
	Identifiers
	Resources and endpoints
	Architectural scheme

	Implementation
	Technologies
	Slim Framework
	JsonLD
	EasyRDF

	Components
	SPARQL Queries
	Mappings
	Wikidata properties
	BHL responses
	Europeana responses

	Pagination
	Versioning
	Documentation

	Evaluation
	Functional Requirements
	Non-functional requirements
	Performance testing

	Summary
	Discussion
	Conclusion

	Bibliography

