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We derive the general dispersion relation for interfacial waves along a planar viscoelastic boundary
that separates two viscoelastic bulk media, including the effect of gravity. Our unified theory
contains Rayleigh waves, capillary-gravity-flexural waves, Lucassen waves, bending waves in elastic
plates, and the standard dispersion-free sound waves, as limiting cases. To illustrate our results,
we consider waves at a viscoelastic interface immersed in water and at an air-water interface. We
furthermore investigate waves at a viscoelastic interface separating two identical viscoelastic bulk
media, for which we consider both Kelvin-Voigt and Maxwell materials, as applicable to polymer gels
and solutions. For all cases, we study how material properties determine the crossovers, scaling, and
existence regimes of the various interfacial waves. Since we include viscoelastic effects for all media
involved, our theory allows to model waveguiding phenomena in biology, such as pressure pulses in
axon membranes, which are possibly relevant for acoustic nerve pulse propagation phenomena.

I. INTRODUCTION

Waves at interfaces are well-known and can be ob-
served in everyday life. A classical example is the
capillary-gravity wave on an incompressible Newtonian
fluid under the influence of gravity [1–6]. For high enough
frequencies, the capillarity dominates over the effects of
gravity and the dynamics of the capillary wave is dom-
inated by the effects of surface tension; the displace-
ment of the interface is then predominantly perpendic-
ular to the interface. The theory of this wave has been
extended to include interfacial properties, such as bend-
ing rigidity [7], and to include viscoelastic shear response
in the bulk, as applicable to e.g. gels [8]. If the inter-
face responds viscoelastically to compression, then a sec-
ond type of surface wave can coexist with the capillary-
gravity wave. We refer to this interfacial pressure wave
as Lucassen wave [9–12]; it has recently received atten-
tion because of its possible relevance for acoustic nerve
pulse propagation [13–16]. The Lucassen wave is essen-
tially a sound wave along the interface and its displace-
ment is predominantly in the plane of the interface. For
elastic materials where the interfacial properties are neg-
ligible, a third kind of surface wave exists, which is called
the Rayleigh wave [17]. While for a purely elastic mate-
rial only one such solution exists, for a viscoelastic ma-
terial, two wave solutions with distinct dispersion rela-
tions can coexist [18, 19]. Viscoelastic Rayleigh waves
are of particular interest e.g. in geophysics, as a model for
earthquake-generated waves [20], or in material engineer-
ing, to non-invasively measure mechanical properties of
media [21]. In a scenario where gravitation, surface ten-
sion and bulk shear viscosity are simultaneously nonzero,
capillary-gravity-viscous (CGV) surface waves can exist,
which are different from all the above waves, and have
only very recently been discovered [22].

Localized waves at fluid interfaces have recently gained
renewed attention in the search of a more complete pic-
ture of nerve pulse propagation [23–29]. While the stan-

dard Hodgkin-Huxley model is successful in modeling the
observed electrical phenomena, it is known that a me-
chanical displacement propagates alongside the electrical
pulse [30, 31]. The biological relevance of these mechan-
ical waves is not resolved conclusively, however, it has
been conjectured that mechanical waves accompanying
the action potential serve a physiological function and
that inclusion of these mechanical phenomena into ex-
isting theories would provide a more complete picture of
nerve pulse propagation [23–29].

For the modeling of biologically relevant surface wave
phenomena, a natural theoretical model is given by a
viscoelastic interface separating two viscoelastic media.
In the biological setting, e.g. when comparing the ax-
oplasm to the extracellular fluid separated by an axon
membrane, the bulk media on both sides will rarely differ
so much as to justify neglecting one of them. Hydrody-
namic modes of a thin viscoelastic material at the inter-
face between two Newtonian fluids were already discussed
in Ref. [32]. The dynamics of viscoelastic membranes sep-
arating two Newtonian fluids have been studied with re-
gard to microrheological studies of such membranes [33].
Recently, a comprehensive dispersion relation has been
derived for linear waves at a surfactant layer separating
two Newtonian fluids, supporting capillary-gravity waves
and Lucassen waves as solutions [34, 35]. However, the
general case of two in general different viscoelastic media
separated by a viscoelastic interface has not been consid-
ered before.

For a single viscoelastic half-space, which is an ap-
propriate model if one of the bulk media is negligible,
recently a general surface wave dispersion relation was
derived, which containes Rayleigh, capillary-gravity, and
Lucassen waves as limiting cases [22]. This allowed to dis-
cuss the relation between those waves: For water, mod-
eled as an almost incompressible viscoelastic medium, the
Lucassen wave transforms into a Rayleigh wave at high
frequencies. Waves on half-spaces of a viscoelastic solid
were investigated numerically in order to model rheolog-
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ical applications in Refs. [36, 37], while capillary waves
on viscoelastic half-spaces have been studied numerically
in Refs. [38, 39].

If the media at the two sides of an elastic interface
can be neglected, then transversal oscillations of the in-
terface are described by elastic plate theory [40], while
compression waves within the interface are described by
a standard wave equation.

For capillary-gravity waves, the relation between the
model of two fluid half-spaces and the model of just one
fluid half-space has been explored [34], but the general re-
lation between the theories for interfacial waves with two
fluid half-spaces, one fluid half-space, and an oscillating
plate in vacuum, has not been discussed.

In the present work, we derive the general dispersion
relation for waves at planar viscoelastic interfaces sep-
arating two different linear isotropic homogeneous vis-
coelastic half-spaces including the effects of gravity. By
considering a general dispersion relation, we quantify the
existence regimes of each of the aforementioned wave so-
lutions and assess which material properties are relevant
for the respective wave modes and frequency regimes. We
show how the interfacial capillary-gravity and Lucassen
waves follow from a factorization of the general dispersion
relation. After considering the symmetric case, where
the two bulk media have the same properties, we then
first discuss the limit where one of the bulk media is
negligible, and second the limit where both bulk media
can be neglected. Our theory furthermore allows us to
study the interrelations of the various limiting cases. For
example, our derivation shows explicitly that the elas-
tic plate equation can be considered as a limit of the
capillary-gravity-flexural wave, i.e. the capillary-gravity
wave for an interface with bending rigidity, a result which
we have not encountered in the existing literature. The
one-dimensional wave equation, in turn, is recovered as
a limit of the Lucassen wave.

We go on to discuss several explicit scenarios. We
consider localized waves at a water-water interface, and
at an air-water interface (where we show that the half-
space of air can be neglected). We then consider the
case of an interface separating two viscoelastic bulk me-
dia, modeled via Kelvin-Voigt and Maxwell materials,
respectively. For every explicit scenario, we highlight the
different power-law scalings of phase velocities and prop-
agation distances emerging from the model.

The organization of this paper is as follows: In Sec. II,
we establish the framework of our calculations and de-
rive a general dispersion relation for our setup: In Sec.
II A, we review linear viscoelasticity and explain how the
viscoelastic properties of the interface enter the theory in
the form of boundary conditions. In Sec. II B, we demon-
strate how, for our setup, the harmonic wave ansatz leads
to a conditional equation whose solutions describe travel-
ing waves localized at the interface. In Sec. II C, we show
that the conditional equation factorizes under appropri-
ate conditions, leading to generalized approximate dis-
persion relations for capillary-gravity-flexural waves and

viscoelastic medium I

viscoelastic medium III

viscoelastic medium II

FIG. 1. In this work, we consider a planar viscoelastic inter-
face (medium II), which is located at z = 0 and separates two
viscoelastic bulk media (media I and III), which are infinitely
extended in the half-spaces z < 0, z > 0. All viscoelastic
media are modeled as linear, isotropic, homogeneous. We in-
clude gravitational acceleration, which acts in the negative
z-direction. We consider wave solutions that travel in the x
direction, and are translationally invariant in y, and decay
exponentially away from the interface at z = 0.

Lucassen waves. In Sec. III, we discuss how special cases
known from the literature arise in various limits, namely
the symmetric case, where media I, III are equal, the situ-
ation where medium III is absent, here called asymmetric
case, and waves on a free membrane. In Sec. IV, after
a review of viscoelastic relaxation functions for Newto-
nian fluids, we then consider numerical solutions of both
the general dispersion relation and the appropriate lim-
its, focusing on waves at the water-water interface and
on waves at the air-water interface, showing that air is
mostly negligible when paired with water. We investigate
interfaces of viscoelastic bulk media, specifically poly-
mer gels, modeled as Kelvin-Voigt materials, and con-
centrated polymer solutions, modeled as Maxwell-fluids.
For all example systems, we discuss the different power-
law scalings and crossovers in detail. Finally, in Sec. V
we summarize our findings and discuss implications as
well as applications.

Because there is a great variety of notations in hydro-
dynamics and viscoelasticity theory, we have compiled a
list of all material parameters appearing in this paper in
Appendix A.

II. GENERAL DISPERSION RELATION FOR
WAVES AT VISCOELASTIC INTERFACES

We study localized waves at a viscoelastic interface be-
tween two viscoelastic media, as illustrated in Fig. 1. We
choose the coordinate system such that the interface is
at z = 0, and refer to the bulk media in the lower and
upper half-spaces as medium I and medium III, respec-
tively. The interface itself we call medium II. We assume
all displacements to be small, and use the linear theory
of viscoelasticity for the description of media I and III.
Medium II enters the dynamics via the boundary condi-
tions at the interface.
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The following derivation is a generalization of Ref. [22]
and follows the standard derivation of Rayleigh waves
[17].

A. Linear Viscoelasticity

In each of the two bulk media, the linearized equations
for momentum conservation are given at a position r =
(x, y, z) and time t as [41]

ρM (r, t)∂2t uM,j(r, t) = ∂kσM,jk(r, t) + FM,j(r, t) (1)

for j ∈ {x, y, z}, where M ∈ {I, III} denotes the bulk
medium, so that for z < 0 we have M = I and for z > 0
we have M = III, ρM (r, t) is the respective mass density,
uM (r, t) is the displacement field, FM (r, t) is an external
force, and where we use the Einstein summation conven-
tion for repeated indices. We assume linear, isotropic,
and homogeneous compressible bulk media, for which the
stress tensor components σM,jk(r, t) depend on the dis-
placement via the viscoelastic stress-strain relation [41]

σM,jk(r, t) =

∫ ∞
−∞

gM,s(t− t′)∂t′εM,jk(r, t′) dt′

+
δjk
3

∫ ∞
−∞

[gM,d(t− t′)− gM,s(t− t′)] ∂t′εM,ll(r, t
′) dt′ ,

(2)

where the components of the strain tensor are given by
εM,jk = (∂juM,k + ∂kuM,j) /2, and by the Einstein sum-
mation convention we have εM,ll = ∂luM,l = ∇ · uM .
For homogeneous media, the shear and dilational relax-
ation functions gM,s(t), gM,d(t) are independent of posi-
tion, and to ensure causality are equal to zero for neg-
ative arguments t. With our parametrization Eq. (2)
we can model any linear, isotropic, and homogeneous
bulk medium. In Sec. IV below we consider three dif-
ferent models for the bulk fluids, namely the Newtonian,
Kelvin-Voigt and Maxwell fluid models. In these cases,
the response functions gM,s and gM,d can be written in
terms of viscosities and elastic moduli. We note that
while water is usually modeled as a Newtonian fluid, in
the THz regime the Newtonian fluid model needs to be re-
placed by more general relaxation functions [42]. For the
interface, medium II, we assume a purely viscous shear
response with viscosity η2D, a viscoelastic response un-
der dilation with viscosity η′2D, and a position-dependent
surface tension σ2D(r, t), as explained in App. C. For
out of plane deformations, we consider a bending rigidity
κ2D and a transverse viscosity η⊥2D, which accounts for
the lateral friction between molecules in the interfacial
zone [43]. Furthermore, the interface has a surface ex-
cess mass area density ρ2D. The surface excess mass is
defined as the difference of the actual mass present close
to the interface of the system and the mass of a refer-
ence system in which the bulk concentrations in the two
phases remain uniform up to the interface [44]. A review

for the derivation of the continuum-mechanical bound-
ary conditions of two bulk media divided by such a vis-
coelastic interface was given by Kralchevsky et. al. [43];
the resulting linearized stress-continuity condition for the
displacement field at z = 0 has been derived in Ref. [22],
and is reproduced in App. C. Further below, we use this
continuity condition to relate the two solutions uI(r, t),
uIII(r, t) at the interface z = 0.

We consider gravity as external force, FM (r, t) =
−gρM êz, where g = 9.81 m/s2 is the gravitational accel-
eration and êz is the unit vector pointing in the positive
z-direction. We use the surface gravity approximation
[45], for which the effect of gravity on media I, II, and
III, only enters at the boundary condition z = 0 and not
in the equations of motion of the bulk media; for more
details see Ref. [22].

B. Harmonic Wave Ansatz and Resulting
Dispersion Relation

To solve the momentum conservation Eq. (1) for bulk
medium M , we describe the displacement fields uM (r, t)
via displacement potentials ϕM (r, t), ψM (r, t) as

uM = ∇ϕM + ∇×ψM . (3)

If the temporal Fourier transforms of the displacement
potentials satisfy the Helmholtz equations

ρM (−iω)ϕ̃M =
1

3
(2g̃M,s + g̃M,d) ∆ϕ̃M (4)

ρM (−iω)ψ̃M,j =
1

2
g̃M,s∆ψ̃M,j , for j ∈ {x, y, z} ,

(5)

where ∆ = ∂2x + ∂2y + ∂2z is the Laplace operator and the
tilde signifies the temporal Fourier transform, then the
displacement fields Eq. (3) fulfill the linearized momen-
tum conservation Eq. (1) for a linear, isotropic, homo-
geneous viscoelastic material with stress-strain relation
Eq. (2) and without external forces, as appropriate for
the surface gravity approximation, as outlined in App. B.
The densities ρM in Eqs. (4), (5) denote the constant
equilibrium densities of the steady state solution, around
which we perturb [22]. To obtain a stable equilibrium
around which the linear wave solutions are derived by
perturbation, we assume that ρI ≥ ρIII, i.e. that the less
dense medium is always in the z > 0 half-space.

The harmonic wave ansatz [17] consists of choosing the
displacement potentials

ϕM (x, z, t) = ΦM exp
(
−λ−1M,l|z|

)
exp [i (kx− ωt)] ,

(6)

ψM,j(x, z, t) = ΨM exp
(
−λ−1M,t|z|

)
exp [i (kx− ωt)] δjy ,

(7)

where j ∈ {x, y, z}, M ∈ {I, III}, and we assume the
angular frequency ω ∈ R is a given parameter, while the
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wave number k, the decay lengths λM,l, λM,t, and the
coefficients ΦM , ΨM ∈ C depend on ω. For M = I we
have z < 0, and for M = III we have z > 0, so that
the requirement that the displacement decays to zero as
|z| → ∞ implies Re(λ−1M,l), Re(λ−1M,t) > 0. Our choice
ω ∈ R, k ∈ C means we consider plane wave solutions
with frequency ω, which are damped as they propagate
along the x-axis, and that we will later solve for k(ω).

Direct substitution shows that in each half-space, the
harmonic wave ansatz fulfills Eqs. (4), (5) if [22]

λ−2M,l(k, ω) = k2 + γ2M (ω) (8)

λ−2M,t(k, ω) = k2 + α2
M (ω) , (9)

where we define

γ2M (ω) :=
3(−iω)ρM

2g̃M,s(ω) + g̃M,d(ω)
(10)

α2
M (ω) :=

2(−iω)ρM
g̃M,s(ω)

. (11)

Equations (8), (9) and the requirement Re(λ−1M,l),

Re(λ−1M,t) > 0 determine λ−1M,l, λ
−1
M,t uniquely [46]. Phys-

ically it makes sense that these decay lengths perpen-
dicular to the interface are fully determined by the bulk
properties.

For a given frequency ω, the harmonic wave ansatz
then contains five unknowns, namely k, ΦI, ΨI, ΦIII,
ΨIII. To obtain a dispersion relation k(ω) we now use
the displacement- and stress boundary conditions at the
interface. Continuity of the two non-vanishing compo-
nents of the displacement field at z = 0, and the stress
boundary conditions at z = 0, yield a homogeneous lin-
ear system of four equations for the four coefficients ΦI,
ΨI, ΦIII and ΨIII, which is given explicitly in App. C. For
a propagating wave with nonzero amplitude, this linear
system of equations needs to have a nontrivial solution,
which means that the determinant of the coefficient ma-
trix must vanish. Equating this determinant with zero
then gives rise to the general dispersion relation

0 = 4
(
k2Π̃2D + g(ρI − ρIII)− ω2ρ2D

)
×
[

(k2g̃2D − iωρ2D)(k2 − λ−1I,l λ
−1
I,t )(k2 − λ−1III,lλ

−1
III,t) + iωρIλ

−1
I,l (k2 − λ−1III,lλ

−1
III,t) + iωρIIIλ

−1
III,l(k

2 − λ−1I,l λ
−1
I,t )

]
+ 4(k2g̃2D − iωρ2D)ω2

[
ρIλ
−1
I,t (k2 − λ−1III,lλ

−1
III,t) + ρIIIλ

−1
III,t(k

2 − λ−1I,l λ
−1
I,t )

]
+ g̃I,s(k

2 − λ−1III,lλ
−1
III,t)

[
iωg̃I,s

(
−4k2λ−1I,l λ

−1
I,t + (k2 + λ−2I,t )2

)
+ 2ρ2Dgk

2
(

2λ−1I,l λ
−1
I,t − (k2 + λ−2I,t )

) ]
+ g̃III,s(k

2 − λ−1I,l λ
−1
I,t )

[
iωg̃III,s

(
−4k2λ−1III,lλ

−1
III,t + (k2 + λ−2III,t)

2
)
− 2ρ2Dgk

2
(

2λ−1III,lλ
−1
III,t − (k2 + λ−2III,t)

) ]
+ (−iω)g̃I,sg̃III,s

[
2k2(k2 + λ−2I,t )(k2 + λ−2III,t) + α2

Iα
2
III(λ

−1
I,t λ

−1
III,l + λ−1III,tλ

−1
I,l )

+ 8k2λ−1I,l λ
−1
I,t λ

−1
III,lλ

−1
III,t − 4k2λ−1I,l λ

−1
I,t (k2 + λ−2III,t)− 4k2λ−1III,lλ

−1
III,t(k

2 + λ−2I,t )

]
, (12)

where we introduced the in-plane membrane relaxation
function

(−iω)g̃2D(ω) := (−iω)(η2D + η′2D) +K2D (13)

and the out-of-plane membrane relaxation function

Π̃2D(k, ω) := (−iω)η⊥2D + σ2D + k2κ2D , (14)

where η⊥2D denotes the transverse viscosity, which was
introduced in Sec. II A. Because η2D and η′2D only appear

summed together in Eq. (13), we in the following set
η′2D = 0, with the understanding that η2D includes the
effects of both interfacial shear and dilational viscosity.

The above Eq. (12) describes general surface waves at
the viscoelastic interface between two viscoelastic bulk
fluids, and is the main result of this paper. If the effect
of gravity is removed, g = 0, then the equation becomes
symmetric under the interchange of the indices I↔ III.

A solution k(ω) of Eq. (12) represents a surface wave
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solution; the corresponding phase velocity c(ω) and prop-
agation distance β−1(ω) are given by

c(ω) =
ω

Re (k(ω))
, (15)

β−1(ω) =
1

Im (k(ω))
. (16)

For decaying plane wave solutions that travel in the pos-
itive x-direction, we are therefore interested in solutions
k(ω) with Re(k(ω)), Im(k(ω)) > 0. For later reference
we note that from Eqs. (15), (16) it follows that if

k ∼ ων (17)

for some real number ν, then

c ∼ ω1−ν , β−1 ∼ ω−ν . (18)

As it stands, Eq. (12) is too complicated to allow for
general analytic solutions. However, as we discuss in the
following sections, and as has been noted for special cases
before [8, 32, 47, 48], many known surface wave types can
be retrieved from this equation in suitable limits.

C. Factorization of the Dispersion Relation

If for both bulk media (M ∈ {I, III}) the condition [22]

3ωρM
|2g̃M,s(ω) + g̃M,d(ω)|

� |k2(ω)| � 2ωρM
|g̃M,s(ω)|

(19)

holds, and additionally assuming that the gravitational
force on the interface can be neglected, i.e.

ρ2Dg � ω|g̃M,s(ω)| , M ∈ {I, III} , (20)

then Eq. (12) factorizes to

0 =
[
k2Π̃2D + g(ρI − ρIII)− ω2(ρ2D + ρIλI,l + ρIIIλIII,l)

]
×
[
k2g̃2D − iω (ρ2D + ρIλI,t + ρIIIλIII,t)

]
. (21)

By equating either of the two factors with zero, we ob-
tain two independent dispersion relations. Whether a
solution k(ω) of either of the resulting equations fulfills
the factorization conditions Eqs. (19), (20) can of course
only be checked a posteriori.

According to Eqs. (8), (9), in the limit Eq. (19) we
obtain

λ−2M,t ≈ α
2
M , λ−2M,l ≈ k

2 . (22)

Both inequalities in Eq. (19) can be interpreted physi-
cally. According to Eqs. (3), (6), (8), the left inequal-
ity implies that λ−2M,l ≈ k2, so that ∇ · uM ≈ 0, which
means that the medium is almost incompressible. The
right inequality in Eq. (19), on the other hand, can be

interpreted physically as a long-wavelength limit. The
inequality implies that λ−2M,t ≈ α2

M in Eq. (22), which

according to Eqs. (7), (9) means that the decay length
of the transversal potential ψM away from the interface
at z = 0 is much smaller than the modulus of the in-
verse wave number, 1/|k|, with which the wave propa-
gates along the interface, i.e. 1/|k| � |λM,t|. Since these
two interpretations are non-exclusive, wavenumbers that
satisfy the two inequalities in Eq. (19) describe interfacial
wave solutions in the long-wavelength limit surrounded
by almost incompressible bulk media.

The first factor in Eq. (21) yields a generalization of the
dispersion relation for capillary-gravity-flexural waves on
a viscoelastic interface between two unbounded fluids,
and can be rearranged as

Π̃2Dk
2+(ρI−ρIII)g = ω2 (ρ2D + ρIλI,l + ρIIIλIII,l) , (23)

where Π̃2D is given by Eq. (14). Using Eq. (14), assuming

the bending rigidity in Π̃2D is negligible, a crossover from
surface-tension driven waves to a transverse-viscosity
dominated response occurs at the frequency

ωσ2D ≡
σ2D
η⊥2D

. (24)

We give a physical interpretation of Eq. (23) by observ-
ing that the equation formally looks similar to a Fourier
transformed wave equation with additional restoring
force. This becomes more obvious upon rewriting the
equation as

Π̃2D(ik)2−(ρI−ρIII)g = (−iω)2 (ρ2D + ρIλI,l + ρIIIλIII,l) .
(25)

The right-hand side contains a factor (−iω)2, which rep-
resents a second temporal derivative and hence describes
an acceleration. The effective area mass density which
couples to this inertia is given by the sum of the sur-
face excess mass area density ρ2D and the effective area
mass densities associated with the longitudinal part of
the wave, i.e. ρIλI,l and ρIIIλIII,l, respectively. To see
this, we note that according to Eq. (6), λM,l represents
the penetration depth of the longitudinal part of the
wave into bulk medium M , so that ρMλM,l is the effec-
tive area mass density of the longitudinal oscillation in
medium M . That the longitudinal part of the displace-
ment is dominant for capillary-gravity-flexural waves is
plausible, as for inviscid incompressible Euler flow the
capillary-gravity dispersion relation can be derived as-
suming only a longitudinal displacement field [3]. The
inertia term in Eq. (25) is balanced by a linear restoring
force, with strength (ρI − ρIII)g, and a force coupling to

the surface deformation, represented by Π̃2D(ik)2. Ac-
cording to Eq. (14), this force has elastic, dissipative,
and bending, components. Performing an inverse Fourier
transform of Eq. (25) is not straightforward, for two rea-
sons. First, λM,l depends on both k and ω via a complex
square root, so that it in general does not correspond
to a simple spatial or temporal derivative in real space.
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Second, since we here derive the dispersion relation via
the harmonic wave ansatz, the physical interpretation of
the function that obeys the inverse-Fourier-transformed
Eq. (25) is not obvious. From comparing the dispersion
relation Eq. (25) with the stress tensor boundary con-
ditions for the surface displacement in the z-direction,
which is given in App. C, it is plausible that Eq. (25) is
the Fourier transformed equation of motion for the sur-
face displacement in the z-direction; however, showing
this rigorously is beyond the scope of the current work.

The second factor in Eq. (21) corresponds to a gener-
alization of the Lucassen dispersion relation [10, 12], and
results in

k2 =
iω

g̃2D
(ρ2D + ρIλI,t + ρIIIλIII,t) , (26)

where g̃2D is defined in Eq. (13). This equation also has a
physical interpretation in terms of a force balance equa-
tion [16]. To see this, we first rewrite the dispersion re-
lation as

−iω(ik)2g̃2D = (−iω)2(ρ2D + ρIλI,t + ρIIIλIII,t) . (27)

For a half-space filled with an incompressible Newto-
nian fluid, and bounded by a purely elastic membrane,
it has been shown that Eq. (27) describes the interfa-
cial displacement in the x-direction, so that the equa-
tion describes a compression wave. Furthermore, for
the Newtonian-fluid model the inverse Fourier transform
has been carried out explicitly, to derive a fractional
wave equation [16]. We here recall the interpretation of
Eq. (27) as equation of motion for the in-plane interface
displacement: The right-hand side has a factor (−iω)2,
and hence corresponds to the acceleration of the inter-
face. The effective area mass density relevant for this
inertia term consists of three contributions, namely the
surface excess mass area density ρ2D, and the effective
area mass density of the bulk media oscillating above
and below the interface, which for the Lucassen wave is
dominated by the transversal motion and hence given by
ρIλI,t and ρIIIλIII,t. The penetration depth of the wave
into the bulk medium, λM,t, in general depends on the
angular frequency ω, so that the effective area mass den-
sity becomes frequency-dependent. Because of this, it
is not possible to explicitly perform the inverse Fourier
transform of Eq. (27) without specifying the viscoelastic
response of the bulk media. The left-hand side of Eq. (27)
describes the force with which the interface responds to
local compression along the interface, as described by
the factor (ik)2. Using Eq. (13) the prefactor becomes
−iωg̃2D(ω) = (−iω)η2D + K2D, so that local compres-
sion of the interface leads to both an elastic response,
described by K2D, and dissipation, described by η2D.

The generalized Lucassen dispersion relation Eq. (27)
gives rise to several crossover frequencies. Whether for
a given frequency the inertia term is dominated by the
bulk media or the interface can be estimated by compar-
ing ρ2D with ρI|λI,t|+ ρIII|λIII,t|. By equating these two

expressions, and using λ−1M,t ≈ αM together with Eq. (11),

we obtain the corresponding crossover frequency ωρ2D as
solution of the equation

√
ρI|g̃I,s(ωρ2D)|+

√
ρIII|g̃III,s(ωρ2D)|√

2ωρ2D
= ρ2D , (28)

where both g̃I,s, g̃III,s are evaluated at ωρ2D. If the expres-
sion on the left-hand side of this equation, when eval-
uated at an angular frequency ω, is much larger than
the expression on the right-hand side, inertia effects of
the bulk media dominate over those of the interface, and
vice versa. Similarly, whether the response of the mem-
brane to compression is dominated by elasticity or vis-
cosity switches at the crossover frequency

ωelastic
2D ≡ K2D

η2D
. (29)

For ω � ωelastic
2D , the membrane response is predomi-

nantly elastic, whereas for ω � ωelastic
2D , viscous dissipa-

tion dominates.

We remark that λM,l and the bending properties κ2D
and η⊥2D (which are contained in Π̃2D) only enter the dis-
persion relation Eq. (23), while λM,t and the in-plane vis-
coelastic response of the surface, described by η2D, K2D

(which are contained in g̃2D), only enter Eq. (26). This
is consistent with the picture of the capillary-gravity-
flexural wave as a transversal wave which contains signif-
icant out-of-plane deformation, and the Lucassen wave
as a pressure wave in the interface which is dominated
by the displacement in the plane of the interface [16].

The factorization Eq. (21) generalizes previous fac-
torizations derived for an interface at a fluid half-space
[22, 32, 47]. That a factorization like Eq. (21) does not
always hold for physically relevant parameters was al-
ready predicted by Lucassen [47], and in the context of
a fluid half-space is an established experimental result
[8, 48]. Equation (12) therefore contains more informa-
tion as compared to Eq. (21), as the full dispersion rela-
tion allows to infer the range of validity of each limiting
case, as well as the interrelations between the limiting
cases.

III. ANALYTICAL LIMITING CASES

A. Symmetric Scenario

We now assume that media I and III have the same
properties, i.e. that ρ ≡ ρI = ρIII, g̃s ≡ g̃I,s = g̃III,s,
g̃d ≡ g̃I,d = g̃III,d, so that α ≡ αI = αIII, λl ≡ λI,l = λIII,l,
λt ≡ λI,t = λIII,t. In this case, the dispersion relation
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Eq. (12) simplifies to

0 = (k2Π̃2D − ω2ρ2D)(k2 − λ−1l λ−1t )

×
[
(k2g̃2D − iωρ2D)(k2 − λ−1l λ−1t ) + 2iωρλ−1l

]
+ 2ω2ρλ−1t (k2g̃2D − iωρ2D)(k2 − λ−1l λ−1t )

− 1

2
iωg̃2sλ

−1
l λ−1t

(
α4 + (k2 − λ−2t )2

)
, (30)

which also factorizes under the assumptions Eq. (19),
Eq. (20), to yield

0 =
[
k2Π̃2D − ω2(ρ2D + 2ρλl)

]
×
[
k2g̃2D − iω (ρ2D + 2ρλt)

]
. (31)

This equation follows alternatively from the previous fac-
torization (21), and shows that in the symmetric scenario
gravitational acceleration becomes irrelevant. Equating
each of the two factors in Eq. (31) with zero yields gener-
alizations of the well-known capillary and Lucassen waves
at interfaces separating two identical media [3, 10].

B. Asymmetric Scenario

We now consider the asymmetric case, where medium
III can be neglected in comparison to medium I. Typi-
cally, this is the case when medium I is much denser than
medium III. The dispersion relation for this case has been
derived before [22], and proceeds similar to Sec. II, but
without explicitly taking into account the displacement
above the interface, z > 0. The resulting equation is [22]

0 = 4
(
k2Π̃2D + ρIg − ω2ρ2D

)
×
[
(k2g̃2D − iωρ2D)

(
k2 − λ−1I,l λ

−1
I,t

)
+ iωρIλ

−1
I,l

]
+ 4

(
k2g̃2D − iωρ2D

)
ω2ρIλ

−1
I,t

+ g̃I,s

[
iωg̃I,s

(
−4k2λ−1I,l λ

−1
I,t + (k2 + λ−2I,t )2

)
+2ρ2Dgk

2
(

2λ−1I,l λ
−1
I,t − (k2 + λ−2I,t )

)]
, (32)

This equation also follows from the full dispersion rela-
tion Eq. (12) in the limit

ρIII
ρI
� 1, |λIII,lk| ≈ 1, |λIII,t| . |λI,t| , (33)

where |λIII,lk| ≈ 1 is obeyed for a medium III that is
almost incompressible.

We now give a short summary of the waves described
by Eq. (32), and refer the reader to Ref. [22] for more
details.

Upon removing the effects related to the surface (ρ2D =

0, g̃2D = 0, Π̃2D = 0) and also gravity (g = 0), Eq. (32)
becomes

4k2λ−1I,l λ
−1
I,t =

(
k2 + λ−2I,t

)2
, (34)

where λ−1I,l , λ−1I,t are given by Eqs. (8), (9). This is the

classical Rayleigh conditional equation [17] whose solu-
tions lead to the known (viscoelastic) Rayleigh waves
[18, 19]. For a viscoelastic bulk material Eq. (34) has two
dinstinct solutions k(ω) [18, 19]. In particular, there are
two distinct solutions to Eq. (34) for the vacuum-water
interface, which are shown in Fig. 7 in App. D.

Similarly to Sec. II C, the conditional equation (32)
factorizes if the inequalities Eqs. (19), (20), hold for the
half-space. Equation (32) then becomes

0 =
[
k2Π̃2D + ρIg − ω2(ρ2D + ρIλI,l)

]
×
[
k2g̃2D − iω (ρ2D + ρIλI,t)

]
, (35)

which equivalently follows from Eq. (21) in the limit
Eq. (33). By equating each of the factors of Eq. (35) with
zero, we obtain two equations which correspond to two
different wave solutions [22]. The first factor yields a gen-
eralization of the capillary-gravity-flexural surface wave,
the second a generalization of the Lucassen wave. As
has been shown before, for high frequencies the factoriza-
tion Eq. (35) can break down, and a frequency-dependent
transition from the Lucassen wave to a Rayleigh wave can
occur [22].

For an incompressible Newtonian fluid, the second fac-
tor in Eq. (35), which corresponds to the Lucassen wave
solution, has been shown to be the Fourier transform of
a fractional wave equation [16]. Using a simplified sys-
tem that describes interfacial pressure waves in elastic
monolayers at the water-air interface via coupling a one-
dimensional wave equation, representing the dynamics of
the interface, to a parabolic equation on the half-space
below, a mathematically rigorous limit leading to a frac-
tional wave equation is presented in Ref. [49].

C. Free Membrane

To obtain the dispersion relation for a free membrane
in vacuum, we consider a limit of Eq. (32) in which
medium I is negligible compared to the interface. This is
the case if

ρIλI,t
ρ2D

� 1,
ρIλI,l
ρ2D

� 1, (36)

which means that the oscillating mass of the motion be-
low the membrane is negligible compared to the mem-
brane surface excess mass area density. The conditional
equation (32) then factorizes as

0 = (k2Π̃2D − ω2ρ2D)(k2g̃2D − iωρ2D) , (37)

which is alternatively obtained from Eq. (35) in the limit
Eq. (36).

Equating the first factor in Eq. (37), which comes from
the capillary wave factor in Eq. (35), with zero and sub-

stituting the definition of Π̃2D, Eq. (14), yields

−κ2D(−ik)4+η⊥2D(−iω)(−ik)2+σ2D(−ik)2 = ρ2D(−iω)2 ,
(38)
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which is a generalization of the classical dispersion rela-
tion of a bending wave in an elastic plate [40], recovered
in the limit η⊥2D = 0, σ2D = 0. If the first factor of
Eq. (37) is equal to zero, it can be seen directly from
the system of equations used to derive the general dis-
persion relation in App. C that Φ = 0 in Eq. (6), so that
the displacement field u corresponding to the dispersion
relation Eq. (38) is purely transversal.

Using the definition of g̃2D, Eq. (13), and equating
the second factor of Eq. (37) with zero, yields a one-
dimensional wave equation

(−ik)2K2D + (−iω)(−ik)2η2D = (−iω)2ρ2D . (39)

If Eq. (39) holds, it can be seen from the system of equa-
tions used to derive the general dispersion relation in
App. C that Ψ = 0 in Eq. (7), so that the displacement
field u is purely longitudinal. Thus, while in general both
the longitudinal and transversal displacements in Eq. (3)
are necessary to fulfill momentum conservation and the
boundary conditions, for a membrane in vacuum the two
fields decouple.

IV. EXAMPLE SYSTEMS

A. Newtonian fluid as bulk medium

1. Viscoelastic relaxation functions for compressible
Newtonian fluid

To apply our theory to situations where water is at
least one of the bulk media and gravity is present,
we need to relate the viscoelastic stress-strain relation
Eq. (2) to the usual stress-strain relation for a compress-
ible Newtonian fluid. This is done by including gravity,
modeled as an external force FM,i = −δizρMg, into the
argumentation usually carried out to derive sound waves
in bulk media [3, 4, 45], see Ref. [22] for more details. For
a compressible Newtonian fluid, the shear and dilational
relaxation functions follow as

g̃M,s = 2ηM , (40)

g̃M,d(ω) = 3η′M +
3KM

−iω
, (41)

where ηM , η′M are the shear- and dilational viscosity of
medium M , and KM is the modulus of compression (bulk
modulus) of the fluid, which for adiabatic compression is
related to the sound velocity cM as KM = ρMc

2
M [3]. The

relaxation function Eq. (41) describes the response of a
Kelvin-Voigt material and switches from a predominantly
elastic to a viscous response if ω exceeds the crossover
frequency

ωM,d ≡
KM

η′M
. (42)

For the effect of gravity, we use the surface gravity
approximation [45], for which effects of gravity only enter
in the boundary conditions at z = 0, c.f. App. C.

If the Newtonian fluid is weakly compressible, such
that ηM , η′M � 3KM/ω, then the factorization condi-
tions Eq. (19) become

KM

3ω
� ωρM
|k|2

� ηM
2
. (43)

Substituting the relaxation functions Eqs. (40), (41), into
the generalized capillary-gravity-flexural dispersion rela-
tion Eq. (23), we obtain

Π̃2Dk
2 = ω2

(
ρI + ρIII

k
+ ρ2D

)
− (ρI − ρIII)g , (44)

where we use that λ−1M,l ≈ k holds in the limit Eq. (43).

If Π̃2D ≈ σ2D, then Eq. (44) is the classical dispersion
relation for capillary-gravity waves for Newtonian fluids
[50].

On the other hand, the Lucassen dispersion relation
Eq. (26) yields

k2 =
iω

g̃2D

(√
ρIηI
−iω

+

√
ρIIIηIII
−iω

+ ρ2D

)
, (45)

where we use that λ−1M,t ≈ (−iωρM/ηM )1/2 holds in the

limit Eq. (43). Substituting the definition of g̃2D (13)
into Eq. (45), we obtain

k =

√√√√ρ2Dω2 + eiπ/4
(√

ρIηIω3 +
√
ρIIIηIIIω3

)
K2D − iωη2D

, (46)

where we have chosen the complex square root that leads
to a positive real part for k, so that the resulting wave
propagates in the positive x-direction. This is a general-
ization of the Lucassen dispersion relation [9–12], which
was originally derived for a half-space filled with an in-
compressible Newtonian fluid, and without taking into
account interfacial inertia. Upon neglecting the mem-
brane viscosity, η2D = 0, Eq. (46) reduces to one cen-
tral result from Ref. [35], where the Lucassen wave was
discussed for elastic interfaces separating two Newtonian
fluids.

For future reference, we note that for the Lucassen
wave on a Newtonian fluid, the crossover frequency at
which the interfacial inertia dominates over the bulk fluid
inertia is obtained by substituting the shear relaxation
function Eq. (40) into Eq. (28), which yields

ωρ2D =

(√
ρIηI +

√
ρIIIηIII

ρ2D

)2

. (47)

For angular frequencies above ωρ2D, the Lucassen wave
behaves thus like the one-dimensional wave equation so-
lution for a free membrane, Eq. (39). This will be used
to estimate crossover frequencies in Secs. IV A 2, IV A 3,
IV B 1, IV B 2.
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2. Water-Water Interface

The Newtonian fluid model deserves further attention,
since water, which is ubiquitous and fundamentally im-
portant for life on earth, is very well described as a New-
tonian fluid up to angular frequencies slightly below the
THz regime [42, 51–53], as we discuss further below.

We consider water at 25 ◦C for medium I and III,
and use the parameters [54] η ≈ 1 · 10−3 Pa · s, η′ ≈
3 · 10−3 Pa · s, ρ ≈ 1 · 103 kg/m3, c ≈ 1.5 · 103 m/s.
For the interface, we use the parameters g = 9.81 m/s2,
ρ2D = 1 · 10−6 kg/m2, η2D = 1 · 10−9 Pa · s ·m, η′2D = 0,
η⊥2D = 1 · 10−9 Pa · s · m, K2D = 34 · 10−3 N/m,
σ2D = 5·10−3 N/m, κ2D = 3·10−19 N·m, appropriate for
a planar DPPC bilayer immersed in water. The values
for σ2D and K2D are obtained for monolayers via mea-
suring Langmuir isotherms [14, 55], the shear viscosity
η2D for a DPPC bilayer is estimated from measurements
of diffusing lipids in lipid membranes [56, 57], while the
bending rigidity κ2D is extracted from weakly deforming
bilayer vesicles [58, 59]. Although the values for σ2D and
K2D are obtained for monolayers, we assume for our nu-
merical study that the corresponding values for a bilayer
are comparable. For the transverse membrane viscosity
η⊥2D, we did not find any experimentally measured values
for a DPPC membrane in the literature; we therefore use
the same value as for η2D. For Langmuir monolayers in a
trough, the surface excess mass area density ρ2D can be
calculated as the quotient of added lipid mass and trough
area. We use a typical value for DPPC monolayers in the
context of surface wave measurements [14].

The Newtonian fluid model Eqs. (40), (41) describes
bulk water in a limited frequency range, and starts to
break down on time scales comparable to those of the
individual water molecule dynamics [42, 51–53]. For ex-
ample, the shear response starts to deviate from Eq. (40)
on the timescale of water molecule rearrangements in
the hydrogen bond network, corresponding to frequen-
cies ω & 1011 s−1[42, 51–53]; similar effects are expected
for the dilational response. In fact, as we will see below,
the dilational crossover frequency Eq. (42) is of the or-
der of 1011 s−1 for water. Likewise, for molecular length
scales we expect that the assumption of a homogeneous
medium will break down [51], and that the dependence
of the fluid response on the distance from the interface
will become relevant [60]. Therefore, while our analysis
below extends to angular frequencies ω = 1014 s−1, the
high-frequency range ω = 1011 s−1 to ω = 1014 s−1 is in-
cluded primarily to study the mathematical behavior of
the dispersion relation, and is not expected to accurately
describe the response of actual water in an experimental
system. To put these high frequencies into perspective,
we note that in experiments usually lower frequencies are
considered. For example, Ref. [48] observed thermally ex-
cited capillary waves on the free surface of water via laser
light scattering for angular frequencies of ω ≈ 106 s−1.
In Ref. [13], sound waves on lipid monolayers were mea-
sured for angular frequencies of up to ω ≈ 107 s−1. There

exist, however, bulk experiments that probe the non-
Newtonian response of water at ω ≈ 1011 s−1 without
an interface present [52]. Note that by using the vis-
coelastic response functions published in Ref. [42], it is
possible to include the non-Newtonian high-frequency re-
sponse of bulk water into our theory; however, this is out
of the scope of the present work.

We numerically solve the full dispersion relation
Eq. (12), which is equivalent to Eq. (30) in the symmetric
case, as well as the factorization Eq. (31) for k for a wide
range of frequencies ω. By comparing whether a solu-
tion of the factorized equation agrees with the respective
solutions of the full equation, we can assess whether the
factorization Eq. (31) holds for our particular choice of
materials. For the two distinct solutions for k(ω) that
we find, we calculate the phase velocities and propaga-
tion distances via Eqs. (15), (16). In Fig. 2 (a), (c) we
compare the results to phase velocities and propagation
distances obtained from numerical solutions of the factor-
ized dispersion relation, Eq. (31), which for a Newtonian
fluid are given by Eqs. (44), (45) with ρ ≡ ρI = ρIII,
η ≡ ηI = ηIII.

The phase velocity of one numerical solution of the
full dispersion relation Eq. (30) agrees with the capillary-
gravity-flexural wave (CGW) dispersion relation Eq. (44)
for most of the frequency range considered. For an-
gular frequencies ω � 107 s−1, the bulk inertia dom-
inates over the interfacial inertia in Eq. (44), so that
k3 ≈ 2ω2ρ/σ2D, where we use that for the frequencies and

wave numbers in that regime it holds that Π̃2D ≈ σ2D.
This approximate expression for k implies k ∼ ω2/3, and
consequently c = ω/k ∼ ω1/3, as observed in the fig-
ure. According to Eq. (24), at the crossover frequency
ωσ2D ≡ σ2D/η

⊥
2D = 5 · 106 s−1, the viscous dissipation

term in the interfacial response Π̃2D starts to dominate
over the surface tension, so that Π̃2D ≈ −iωη⊥2D. The
right-hand side of Eq. (44) is still dominated by the
bulk inertia, so that k ∼ ω1/3, and hence c ∼ ω2/3,
as indicated in Fig. 2 (a) by a black bar. Finally, at
ωd ≡ K/η′ = 5 ·1011 s−1, the dilational viscosity starts to
dominate over the elastic response in Eq. (41); the com-
pressibility of the fluid starts to become more relevant,
and the solution corresponding to the capillary-flexural
wave seizes to exist at ωmax

CG ≈ 3.4 · 1011 s−1. While this
breakdown of the capillary-flexural wave is an interesting
mathematical fact, we emphasize again that at frequen-
cies in the THz regime, the assumption that water be-
haves as a Newtonian fluid breaks down, and Eqs. (40),
(41) need to be amended to obtain a physically accu-
rate description of the viscoelastic properties of water
at such high frequencies [42, 51–53]. The phase velocity
of the second solution of Eq. (30) agrees with the Lu-
cassen wave dispersion relation Eq. (45) almost perfectly
throughout the frequency range considered, except for
a discontinuity at the frequency ωd = 5 · 1011 s−1, where
the dilational bulk response switches from elasticity dom-
inated to viscous. The crossover frequencies Eqs. (29),
(47), associated with the Lucassen wave are given by
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FIG. 2. (a), (c) Properties of waves at an interface separating two Newtonian fluids with identical parameters, as discussed
in Sec. IV A 2. Parameters are given in Sec. IV A, and correspond to a DPPC membrane (interface) and water (bulk). The
full dispersion relation Eq. (30) (solid blue and green lines) and the equations that correspond to the individual factors of
the factorized symmetric dispersion relation Eq. (31), i.e. Eqs. (44) (dashed purple line) and (45) (dashed red line), are
solved numerically, to obtain the wave number k as a function of ω. The corresponding (a) phase velocity and (c) propagation
distance is then calculated using Eqs. (15), (16). (b), (d) Phase velocities and propagation distances for an air-water interface, as
discussed in Sec. IV A 3. Both the full dispersion relation Eq. (12) (solid blue and green lines) and the equations corresponding
to the individual factors of the factorized asymmetric dispersion relation Eq. (35) (dashed red and purple lines) are solved
numerically, and the resulting wavenumber k(ω) is used to calculate c, β−1 via Eqs. (15), (16). Additionally, the solution of the
asymmetric vacuum-water dispersion relation Eq. (32) is shown for comparison (dotted orange line). For all subplots, vertical
dashed lines denote the various crossover frequencies discussed for (a), (c) in Sec. IV A 2, and for (b), (d) in Sec. IV A 3; while
green dash-dotted lines denote crossovers in the capillary-gravity-flexural wave (CGW), blue dashed lines indicate crossovers
in the Lucassen wave. Red dotted lines highlight the frequencies at which solutions of the full dispersion relation disappear.
The power-law scalings of c and β−1 within each scaling regime are indicated by black bars.

ωρ2D = 4 · 1012 s−1, ωelastic
2D = 3.4 · 107 s−1. For frequen-

cies ω � ωelastic
2D , the Lucassen wave dispersion relation is

thus approximately given by K2Dk
2 ≈ 2eiπ/4

√
ρηω3, so

that k ∼ ω3/4 and hence c ∼ ω1/4, as shown by a black
bar in Fig. 2 (a). At the crossover frequency ωelastic

2D , the
interfacial viscosity starts to dominate over the interfa-

cial elasticity, so that −iωη2Dk2 ≈ 2eiπ/4
√
ρηω3, and

hence k ∼ ω1/4, which implies c ∼ ω3/4, as observed
approximately in Fig. 2 (a). The slight deviations from
the expected scaling might indicate that the factoriza-
tion condition does not hold perfectly in this regime. For
very large frequencies ω � ωρ2D, the Lucassen dispersion
relation approximately yields k2 ≈ iωρ2D/η2D, meaning
k ∼ ω1/2 from which we obtain c ∼ ω1/2. The onset
of this regime can be observed in Fig. 2 (a), (c) at the
highest frequencies shown.

In Fig. 2 (c) we show the propagation distances β−1,
defined in Eq. (16), corresponding to the solutions of both

the full and factorized dispersion relations; we calculate
the propagation distances using the same complex wave
numbers k(ω) as used for Fig. 2 (a). Overall, both the fac-
torized capillary-gravity-flexural wave and the Lucassen
wave propagation distances agree with the full solution,
and show scalings fully consistent with Eqs. (17), (18)
and the local scalings of k with ω discussed in the con-
text of Fig. 2 (a). The only exception to this is the low-
frequency regime of the capillary-flexural wave, where the
factorized dispersion relation Eq. (44) predicts a propa-
gation distance orders of magnitude larger as compared
to the full dispersion relation Eq. (30). Furthermore, the
expected scaling of β−1 ∼ ω−2/3 for the capillary-gravity-
flexural wave for angular frequencies ω � 107 s−1 does
not fit perfectly to the prediction of Eq. (30), so that
real and imaginary parts of k(ω) scale differently with
ω in this regime. This shows that while the factorized
dispersion relation Eq. (44) captures the real part of the
wave number properly, for the imaginary part the full
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dispersion relation is necessary.
We show example displacement plots of a Lucassen and

capillary-gravity-flexural wave (CGW) at ω ≈ 103 s−1

in Fig. 3 (a), (c), respectively. The displacement plots
are generated by solving Eq. (30) for k(ω) to obtain the
displacement potentials φ, ψ via Eqs. (6), (7). The dis-
placement field is then obtained via Eq. (3). In Fig. 3, all
displacement fields are shown for frequencies lower than
the first crossover frequencies in Fig. 2, i.e. in the elastic
regime for the Lucassen wave and in the surface tension
driven regime for the capillary-gravity-flexural wave, re-
spectively. Displacements at frequencies higher than the
first crossover frequency are shown in Fig. 8 in App. E. In
all plots, the displacements of the bulk media are shown
as blue and red colored grids, representing water and air,
respectively. The interface is shown as a green line. We
include the dominant decay lengths of the wave as well
as trajectories of single volume elements in black. Note
that in the harmonic wave ansatz the displacement is
translationally invariant in the y-coordinate and has no
displacement in that direction, so that the cross-sections
shown in Fig. 3 and Fig. 8 are independent of the y co-
ordinate, which is perpendicular to the plotted xz-plane.
We include animated versions of all displacement plots
in the Supplemental Material (SM) [61]. Comparing the
Lucassen wave at the water-water interface in Fig. 3 (a)
to the capillary-gravity-flexural wave at the water-water
interface in Fig. 3 (c), the most prominent difference is
that the displacement of the interface is purely longitu-
dinal (in the x-direction) for the Lucassen wave, while
for the capillary-gravity-flexural wave, the displacement
of the interface is purely transversal (in the z-direction).
Away from the interface, both Lucassen and capillary-
gravity-flexural waves have finite longitudinal as well as
transversal displacements.

In addition to the displacements plots, we show pres-
sure maps and velocity fields of the example waves dis-
cussed above in Fig. 4. The pressure is calculated as a
perturbation to the steady state solution of a fluid at
rest, and is given by [22]

PM (r, t) = P0 −KM∇ · uM , (48)

where P0 is the pressure at z = 0. In our pressure
maps, we only show the difference of pressure in the
bulk to the pressure in the interface, i.e. we set P0 = 0.
Consistent with the surface-gravity approximation, we in
Eq. (48) only consider the bulk pressure changes due to
local compression and expansion of the fluid. The ve-
locity field is obtained by taking the temporal derivative
of the harmonic wave ansatz Eq. (3). Pressures and ve-
locity fields at frequencies higher than the first crossover
frequency are shown in Fig. 9 in App. E. We include ani-
mated versions of all pressure plots in the SM. Comparing
the pressure profile of the Lucassen wave at the water-
water interface in Fig. 4 (a) to the pressure profile of the
capillary-gravity-flexural wave at the water-water inter-
face in Fig. 4 (c), the most prominent difference is that
the capillary-gravity-flexural wave has pressure nodes at

the interface, i.e., a change in the sign of the pressure
at the interface, whereas the Lucassen wave exhibits no
pressure nodes. Instead it is very well seen that the Lu-
cassen wave is a pressure wave along the interface. The
velocity field for the Lucassen wave shows that velocities
are predominantly directed towards and away from the
direction of wave travel, and their magnitude decreases
when moving away from the interface as well as from the
site of initial excitation x = 0. For the capillary-gravity-
flexural wave, the velocity field shows a rotating behavior,
with the direction of rotation alternating from clockwise
to counter-clockwise at each pressure node. The decay
lengths are comparable to those of the Lucassen wave.

3. Air-Water Interface

Experiments on lipid monolayers often measure mem-
brane properties on a trough of water [8, 13–15], which
corresponds to a planar viscoelastic interface with water
and air as bulk materials I and III. In theoretical mod-
eling of air-water interfaces, one usually only considers
the water dynamics below the membrane, and does not
explicitly consider the dynamics of the air above. This
can be intuitively explained by the much lower density
and viscosity of air in comparison to water. In this sec-
tion, we compare predictions of our full dispersion rela-
tion Eq. (12) to the factorized half-space dispersion rela-
tion Eq. (35), to demonstrate that the air dynamics can
indeed be neglected.

For medium I we use water, modeled as a compressible
Newtonian fluid with the parameters from Sec. IV A 2.
To model air as medium III, we also use the compressible
Newtonian fluid model from Sec. IV A 1; at 25 ◦C, the
relevant parameters are [54] ηIII ≈ 18.2·10−6 Pa·s, η′III =
0, ρIII ≈ 1.2 kg/m3, cIII ≈ 343 m/s.

For a wide range of frequencies, we numerically solve
both the full dispersion relation Eq. (12) and the disper-
sion relations pertaining to each of the two factors of the
half-space dispersion relation Eq. (35). We subsequently
use Eqs. (15), (16), to evaluate the corresponding phase
velocities and propagation distances, and show the re-
sults in Fig. 2 (b), (d). For comparison, we also include
the capillary-gravity-flexural wave solution of the full dis-
persion relation in the asymmetric case Eq. (32).

For the capillary-gravity-flexural wave, we observe that
the phase velocities predicted by the full dispersion rela-
tion agree perfectly with the asymmetric dispersion rela-
tion throughout, and with the factorized half-space dis-
persion relation up until ωI,d ≡ KI/η

′
I = 5 · 1011 s−1; at

this frequency, the dilational response of the water below
the interface becomes dominated by the viscosity, and at
ωmax
CG = 3.41 · 1011 s−1 the capillary-gravity-flexural wave

solution disappears, similar to the symmetric case dis-
cussed in Sec. IV A 2 above. In contrast to the symmetric
case, for the half-space, the phase velocity is not mono-
tonic, but has a minimum at ω ≈ 102 s−1. This min-
imum denotes the crossover from capillarity-dominated
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FIG. 3. Plots of the displacement field u(r, t) of Lucassen and capillary-gravity-flexural waves (CGW) in the elastic and
surface-tension dominated regime, respectively. The scaling is chosen such that the respective dominant decay lengths into
the bulk media, 1/Re(λ−1

M,t) and 1/Re(λ−1
M,l), as well as the propagation distance β−1 = 1/Im(k) are well visible in the plot.

The displacement of the interface is shown as a green line. Bulk water displacement is shown as a blue grid, whereas bulk
air displacement is shown as a red grid. Decay lengths and volume element trajectories are shown in black. (a) Lucassen
wave at water-water interface with ω = 1.02 · 103 s−1. (b) Lucassen wave at air-water interface with ω = 1.04 · 103 s−1. (c)
Capillary-gravity-flexural wave at water-water interface with ω = 1.02 ·103 s−1. (d) Capillary-gravity-flexural wave at air-water
interface with ω = 1.04 · 103 s−1.

to gravity-dominated dispersion, and its location follows
from Eq. (44), by equating the left-hand side of the equa-
tion with the gravitational term, as

ωCG =

(
(ρI − ρIII)3 · g3

(ρI + ρIII)2 · σ2D

)1/4

≈ 117 s−1 , (49)

where we use that for the frequencies and wave numbers
involved Π̃2D ≈ σ2D holds, as follows from Eq. (14), and
employ the gravity-wave dispersion relation (see just be-
low) to eliminate k from the equation. For frequencies
ω � ωCG, the right-hand side of the dispersion rela-
tion Eq. (44) is dominated by the gravitational term, so
that k ≈ ω2/g · (ρI + ρIII)/(ρI − ρIII) ∼ ω2. Accord-
ing to Eq. (18), we thus have c ∼ ω−1, as observed in
Fig. 2 (b). This gravity-wave regime is not present in
the symmetric scenario, because for ρI = ρIII the right-
most term in Eq. (44) vanishes. For the phase veloc-

ity of the Lucassen wave solution, we observe very good
agreement between the full dispersion relation and the
factorized half-space solution throughout. Even close to
the frequency ωmax

CG = 3.41 ·1011 s−1, where the capillary-
gravity-flexural wave solution disappears, the factorized
Lucassen dispersion relation does not deviate from the
full dispersion relation. This is in contrast to the sym-
metric scenario shown in Fig. 2 (a), and presumably be-
cause, in the present case, ωmax

CG = 3.41 ·1011 s−1 is closer
to the crossover frequency ωρ2D = 1012 s−1, at which the
inertia of the interface starts to dominate over bulk prop-
erties, so that the crossover in the bulk viscoelastic re-
sponse is already less relevant for the dispersion relation.

The propagation distance of the capillary-gravity-
flexural wave, shown in Fig. 2 (d), displays a behavior
similar to the symmetric case depicted in Fig. 2 (c): For
frequencies above ωσ2D ≡ σ2D/η⊥2D = 5·106 s−1, where the
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FIG. 4. Pressure maps and velocity fields corresponding to the waves shown in Fig. 3. Velocity fields are shown as black
arrows, where arrow lengths correspond to the magnitude of the velocity. The pressure is shown as a heatmap, where a
red-blue colormap is used for water pressure. The air pressure is indicated by a purple-green colormap. The pressure in the
bulk fluids is always shown relative to the pressure at the interface, i.e. setting P0 = 0 in Eq. (48). Scalings have been chosen
equal to the plots shown in Fig. 3. (a) Lucassen wave at water-water interface with ω = 1.02 · 103 s−1. (b) Lucassen wave at
air-water interface with ω = 1.04 · 103 s−1. (c) Capillary-gravity-flexural wave at water-water interface with ω = 1.02 · 103 s−1.
(d) Capillary-gravity-flexural wave at air-water interface with ω = 1.04 · 103 s−1.

surface viscosity dominates over the surface tension, the
propagation distance of the full capillary-gravity-flexural
wave agrees with the factorized half-space results. Below
the crossover frequency ωσ2D, the two formulas Eqs. (12),
(35) predict different propagation distances. The propa-
gation distance predicted by the full dispersion relation
of the asymmetric case Eq. (32) agrees with the full dis-
persion relation even below ωσ2D, except for very low fre-
quencies ω . 102 s−1. Also note that the propagation
distances β−1 of the capillary-gravity-flexural wave scale
differently than β−1 ∼ ω−2, as observed in Fig. 2 (d).

To summarize this section so far, for an air-water
interface, the factorized half-space dispersion relation
Eq. (35) overall constitutes a good approximation to
the full dispersion relation Eq. (12) for both capillary-
gravity-flexural and Lucassen waves. However, for the
capillary-gravity-flexural wave, the factorized equation
fails to predict the breakdown of the wave at high fre-
quencies, and overestimates the propagation distances at
low frequencies.

As for the water-water case discussed above, we include
example displacement plots of a Lucassen and capillary-
gravity-flexural wave at ω ≈ 103 s−1 in Fig. 3 (b), (d),
respectively. Comparing the Lucassen wave at the air-
water interface in Fig. 3 (b) to the capillary-gravity-
flexural wave at the air-water interface in Fig. 3 (d),
it transpires that the displacements in Lucassen wave
are dominated by longitudinal components, while the
displacements of the capillary-gravity-flexural wave are
dominated by transversal components. However, both
the interface and the bulk fluids possess finite longitudi-
nal and transversal components in both waves. For the
Lucassen wave, there is an asymmetry in the vertical de-
cay lengths: the vertical decay length of air 1/Re(λ−1III,t)
is significantly larger than its counterpart for water,
1/Re(λ−1I,t ). Meanwhile, for the capillary-gravity-flexural

wave, the dominating vertical decay lengths 1/Re(λ−1I,l )

and 1/Re(λ−1III,l) are symmetrical. As before, we addi-
tionally show pressure maps and velocity fields of the
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Lucassen and capillary-gravity-flexural wave at the air-
water interface in Fig. 4 (b), (d). For the Lucassen wave,
it transpires that both the air half-space and the wa-
ter half-space exhibit regions of alternating negative and
positive pressure, corresponding to the compression and
expansion of the interface, similarly to the water-water
case. However, the regions of maximum pressure in the
two half-spaces do not perfectly align. For the capillary-
gravity-flexural wave, as for the water-water interface
shown in Fig. 4 (c), there are pressure nodes visible,
however they are slightly shifted along the x-direction,
meaning that absolute pressure maxima do not coincide
for the two bulk fluids.

Comparing the Lucassen wave at the water-water in-
terface in Fig. 3 (a) to the Lucassen wave at the air-
water interface in Fig. 3 (b), the most prominent dif-
ference is that the motion of the water-water interface
is purely longitudinal, while the motion of the air-water
interface possesses also a transversal component. This
is due to the asymmetry in the vertical decay lengths
1/Re(λ−1I,t ) and 1/Re(λ−1III,t), respectively. Also note that

the horizontal decay length 1/Im(k) is larger in the asym-
metric case than in the symmetric case. Comparing the
capillary-gravity-flexural wave at the water-water inter-
face in Fig. 3 (c) to the capillary-gravity-flexural wave
at the air-water interface in Fig. 3 (d), the overall dis-
placements look rather similar. The dominating vertical
decay lengths are given by 1/Re(λ−1I,l ) and 1/Re(λ−1III,l),
which are equal in both the water-water and air-water
scenario. As for the Lucassen wave, also for the capillary-
gravity-flexural wave the horizontal decay length 1/Im(k)
is larger for the air-water case as compared to the water-
water case. The motion of the water-water interface is
purely transversal, while the air-water interface possesses
a longitudinal component. To sum up, the displacement
of the water-water interface is purely longitudinal for the
Lucassen wave and purely transversal for the capillary-
gravity-flexural wave, while differences in bulk fluids in-
troduce an additional transversal and longitudinal com-
ponent to the interface, respectively. Overall, horizontal
decay lengths are larger in the air-water case than in the
water-water case.

B. Viscoelastic Bulk Media

One advantage of both our general dispersion relation
Eq. (12), and the factorization Eq. (21), is that these
relations are derived for arbitrary linear, homogeneous,
isotropic viscoelastic bulk media. While in the previous
Sec. IV A we used Newtonian fluids as bulk media, in
the present section we consider interfacial waves for two
other viscoelastic bulk materials.

More explicitly, we consider the dispersion relation of
the Lucassen wave solution on polymer gels and polymer
solutions as bulk media. We here focus on the Lucassen
wave, as this is the relevant pressure wave for biological
scenarios related to nerve pulse propagation [15, 16]. In

particular, a viscoelastic membrane surrounded by two
viscoelastic media serves as a model for the cell mem-
brane of a neuron, separating the hydrogel axoplasm and
extracellular fluid.

1. Polymer gels as bulk media: Kelvin-Voigt model

The elastic properties of polymer gels are determined
by the density of entanglements between individual poly-
mer chains. A characteristic of a gel are the extremely
long lifetimes of entanglements. On timescales relevant
to the wave phenomena we investigate, we can therefore
assume permanent crosslinks between chains [62]. In the
linear regime, the polymer gel can thus be modeled as
a purely elastic polymer network immersed in a viscous
Newtonian solvent. We model this as a Kelvin-Voigt ma-
terial. For this, we leave the dilational relaxation func-
tion (41) unchanged, and use a shear relaxation function

g̃M,s(ω) = 2ηM +
2EM
−iω

, (50)

where ηM is the fluid viscosity, while EM is the fluid elas-
tic modulus under shear. A systematic bottom-up theory
for the linear frequency-dependent viscoelastic response
of a polymeric network can be found in Ref. [63]. On
a phenomenological level, the Kelvin-Voigt model cor-
responds to a viscoelastic circuit comprised of a purely
viscous damper and purely elastic spring, connected in
parallel [41, 42].

From Eq. (50) the characteristic crossover frequency of
the Kelvin-Voigt material follows as

ωKV
M =

EM
ηM

, (51)

below which the shear response is dominated by elas-
ticity, g̃M,s(ω) ≈ 2EM/(−iω). Above the crossover fre-
quency ωKV

M , the shear response is approximately that
of a Newtonian fluid, i.e. g̃M,s(ω) ≈ 2ηM , which is con-
stant as a function of ω. Equation (51) implies that the
Kelvin-Voigt material has a characteristic timescale of
τKV
M = 1/ωKV

M .
Starting from the analytical solution of the general-

ized Lucassen-wave Eq. (26) and inserting the shear re-
laxation function Eq. (50) for λM,t in Eq. (9), we obtain
the analytical Lucassen-wave solution for a viscoelastic
membrane at the interface of two polymer gels as

k =

√√√√ρ2Dω2 + eiπ/4
(√

RI(ω) +
√
RIII(ω)

)
K2D − iωη2D

, (52)

where

RM (ω) = ρMηMω
3

(
1 + i

ωKV
M

ω

)
, (53)
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and where all complex square roots are chosen to have
positive real part. For ω � ωKV

M , we have RM (ω) ≈
ρMηMω

3 and Eq. (52) reduces to the Lucassen dispersion
relation for a Newtonian fluid, Eq. (46).

As an explicit example we consider a symmetric sys-
tem with Kelvin-Voigt bulk media, with elastic moduli
E ≡ EI = EIII = 0.1 Pa, as in Ref. [62]. For the
other bulk and interface parameters we use the same as
in Sec. IV A 2; according to Eq. (51), this results in a
Kelvin-Voigt crossover frequency ωKV = 102 s−1.

In Fig. 5 (a), (c), we compare the predictions of
Eq. (52) to both the full symmetric dispersion relation
Eq. (30), and the factorized Lucassen relation Eq. (46)
for a symmetric Newtonian fluid system. As expected,
for ω � ωKV

M the two factorized solutions Eqs. (46), (52),
lead to indistinguishable phase velocities and propaga-
tion distances, and differ only for ω . ωKV

M , when the
elastic component in Eq. (50) is non-negligible. A so-
lution that is similar to the Lucassen wave for the full
dispersion relation Eq. (30) exists only in the frequency
range ω > ωmin

KV = 2.29 s−1, where it is well-described
by Eq. (52), except for a discontinuity at the frequency
ω = 8.4 ·1010 s−1, as observed in Sec. IV A 3. To rational-
ize the low-frequency breakdown of the Lucassen wave,
we show in App. F, that as ω approaches ωmin

KV = 2.29 s−1

from above, the real part of λ−1t approaches zero, so that
the transversal decay length of the Lucassen wave di-
verges. The wave solution therefore does not decay any
longer away from the interface, and hence ceases to be a
surface wave solution.

In summary, we observe that the Lucassen wave breaks
down for angular frequencies shortly below ωmin

KV , when
the bulk media responds predominantly elastically. For
angular frequencies above ωmin

KV , the Lucassen wave be-
haves as the corresponding wave solution for purely vis-
cous fluids, as seen in Fig. 2 (a), (c), and in particular
displays the same scaling regimes.

2. Polymer solutions as bulk media: Maxwell model

In contrast to the polymeric gel, the elastic properties
of a solution of rather short polymer chains in liquid sol-
vent are determined by finite lifetime interchain entangle-
ments. Polymer chains may disentangle themselves from
neighboring chains by diffusion, a process called repta-
tion [62]. The characteristic time of a chain to diffuse
out of the loose polymer network is called reptation time,
and the characteristic macroscopic stress relaxation time
τM ≡ 1/ωMW

M of such a polymer solution scales directly
with the reptation time [62]. Polymer solutions can be
modeled as a Maxwell fluid with shear relaxation func-
tion

g̃M,s(ω) =
2ηM

1− iωτM
, (54)

which for small angular frequency ω � ωMW
M = 1/τM

reduces to the Newtonian fluid model Eq. (40). On a

phenomenological level, a Maxwell fluid corresponds to a
purely viscous damper and a purely elastic spring, con-
nected in series [41, 42]. This is in contrast to the Kelvin-
Voigt model, where damper and spring are connected
in parallel. While the Maxwell model describes a fluid,
meaning that it features a purely viscous response in the
low-frequency limit ω � ωMW

M , the Kelvin-Voigt model
describes a solid with a purely elastic response in the limit
ω � ωKV

M . It should be noted that real polymer gels are
in fact described by more than two viscoelastic regimes
and must be modeled by a combination of Kelvin-Voigt
and Maxwell models.

The relevance of the Maxwell model goes beyond poly-
mer solutions: As mentioned in Sec. IV A 2, in the THz
regime also pure water deviates from a Newtonian fluid
model, and descriptions of water on such short timescales
are based on the Maxwell model and generalizations
thereof [42]. For high-concentration glycerol solutions,
non-Newtonian behavior in the shear viscosity can be
observed at lower frequencies, namely in the GHz regime
[42].

Substituting the Maxwell-model shear relaxation func-
tion into the generalized Lucassen wave Eq. (26), we ob-
tain

k =

√√√√ρ2Dω2 + eiπ/4
(√

ρIηIω3

1−iωτI +
√

ρIIIηIIIω3

1−iωτIII

)
K2D − iωη2D

, (55)

which for ω � ωMW
M ≡ 1/τM reduces to the dispersion

relation Eq. (46) of a Newtonian fluid.
As an example, we consider a symmetric system with

Maxwell fluids as bulk media. For the characteristic
Maxwell frequency we use ωMW ≡ ωMW

I = ωMW
III =

103 s−1, so that τ ≡ 1/ωMW ≡ τI = τIII = 10−3 s. For
all other bulk and interface parameters we consider the
same values as in Sec. IV A 2.

In Fig. 5 (b), (d), we compare phase velocities
and propagation distances based on Eq. (55) to those
obtained from the full symmetric dispersion relation
Eq. (30) and the Lucassen wave dispersion relation for
a Newtonian fluid, Eq. (46). For frequencies ω � ωMW,
where the Maxwell fluid behaves like a Newtonian fluid,
all three dispersion relations lead to identical phase veloc-
ities and propagation distances, with a scaling that fol-
lows from Eqs. (17), (18), and the classical Lucassen wave
scaling k ∼ ω3/4, as previously observed in Fig. 2 (a), (c).
This is in contrast to the Kelvin-Voigt model considered
in the section above, where the solution differs from that
of a Newtonian fluid for frequencies below the character-
istic crossover frequency. For frequencies ω � ωMW, the
approximate scaling behavior of Eq. (55) can be obtained
by considering the numerator and denominator inside the
square root separately. We first consider the numera-
tor. Using Eq. (28), and approximating g̃s ≈ 2η/(−iωτ)
as appropriate for ω � ωMW, the crossover from bulk-
dominated to interface-dominated inertia occurs at the
angular frequency ωρ2D = 2

√
ρη/τ/ρ2D ≈ 6.3 · 107 s−1;

this crossover here occurs at a significantly lower fre-
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FIG. 5. Phase velocities c and propagation distances β−1 for Lucassen waves at an interface separating viscoelastic materials.
Phase velocities and propagation distances are obtained from k(ω) via Eqs. (15), (16). For (a), (c), the viscoelastic bulk
materials are two Kelvin-Voigt materials with identical properties, as discussed in Sec. IV B 1. To obtain k(ω), the full symmetric
dispersion relation Eq. (30) (solid blue line), the Kelvin-Voigt Lucassen dispersion relation Eq. (52) (dashed red line), and the
Newtonian-fluid Lucassen dispersion relation Eq. (46) (dotted green line), are evaluated numerically. For (b), (d), two Maxwell
fluids with identical parameters are considered as bulk materials, c.f. Sec. (IV B 2). To obtain k(ω), each of the dispersion
relations Eqs. (30) (solid blue line), (39) (dotted orange line), (46) (dotted green line), (55) (dashed red line), is evaluated
numerically. For all subplots, vertical dashed lines denote crossover frequencies as discussed in Sec. IV B 1 for (a), (c), and in
Sec. IV B 2 for (b), (d). Blue dashed lines denote crossovers in the Lucassen wave. Red dashed lines highlight the frequencies at
which solutions of the full dispersion relation disappear. The crossover to the free membrane limit is colored orange for better
distinguishability. The power-law scalings of c and β−1 within each scaling regime are indicated by black bars.

quency as compared to a Newtonian fluid with the same
density and viscosity, for which in Sec. IV A 2 we ob-
tained 1012 s−1. Interestingly, such a behaviour is not
seen in the Kelvin-Voigt model solution above. The
crossover from elastic to viscous interface response, de-
scribed by the denominator of the dispersion relation
Eq. (55), follows via Eq. (29) as ωelastic

2D = K2D/η2D =
3.4 · 107 s−1, which for our system parameters is very
close to ωρ2D. For ωMW � ω � ωelastic

2D , ωρ2D, the dis-
persion relation is dominated by bulk inertia and inter-
face elasticity; the wave number scales approximately
as k ∼ (

√
ρη/τω/K2D)1/2 ∼ ω1/2, which according

to Eq. (18) implies c ∼ ω1/2, β−1 ∼ ω−1/2. In this
non-Newtonian frequency regime, the dispersion rela-
tions Eqs. (55), (30) agree perfectly, and are markedly
different from the Newtonian fluid Eq. (46). This is in
contrast to the Kelvin-Voigt model, where viscoelastic
and Newtonian solutions coincide for frequencies above
the characteristic crossover frequency. For ω � ωelastic

2D ,
ωρ2D, the Lucassen wave is dominated by interfacial iner-
tia and interface viscosity, and the wave number scales

as k ∼
√
ρ2Dω/η2D ∼ ω1/2, so that the scaling c ∼ ω1/2,

β−1 ∼ ω−1/2 also holds at this frequency. That the dis-
persion relation is dominated by the interface for high
frequencies is highlighted by the free-interface dispersion
relation Eq. (39), which is also shown in Fig. 5 (b), (d),
and which agrees with the Maxwell dispersion relations
for ω � ωelastic

2D , ωρ2D. The interface dominance is also the
reason why the Newtonian-fluid dispersion relation starts
to agree with the Maxwell-fluid dispersion relation again
at the highest frequencies shown: The bulk properties
are simply not relevant anymore.

In Fig. 6, we show a phase diagram illustrating the
crossover frequencies of the Lucassen wave solution for
a viscoelastic membrane surrounded by two half-spaces
consisting of a polymer solution in water, described by
a Maxwell-fluid model, where we denote our choice of
τ = 10−3 s with a black dashed line. It can be seen
that for higher values of τ , the two crossovers happen
at frequencies further away from each other, whereas for
smaller values of τ , the crossover frequencies converge,
until eventually the transition from the Newtonian-fluid
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FIG. 6. Phase diagram showing the crossover frequencies
found from the analytical solution of the Lucassen wave on
the polymer solution-polymer solution interface Eq. (55). The
crossover from Newtonian to Maxwell-fluid is denoted by
ωMW (blue line), whereas the crossover to the free membrane
limit is denoted by ωρ2D (orange line). The red dotted line

shows the crossover from elastic to viscous response ωelastic
2D .

The black dashed line shows our choice of τ = 10−3 s as an
example.

behavior to the free membrane limit occurs without an in-
termediate Maxwell-model regime. The vertical red dot-
ted line denotes the crossover frequency ωelastic

2D from elas-
tic to viscous interfacial response, as defined in Eq. (29).
This line intersects the horizontal black dashed line very
closely to the crossover from bulk-dominated Maxwell-
model dispersion to free-membrane interface-dominated
dispersion, highlighting again that the two crossovers
(bulk to interface dominated wave; elastic to viscous in-
terfacial response) occur simultaneously in Fig. 5 (b), (d).

In summary, we observe that the Lucassen wave at
the interface of Maxwell-fluids introduces two new scal-
ing regimes with a power-law k ∼ ω1/2, which are dis-
tinctly different from the corresponding wave solution in
the purely viscous case except for the highest frequencies
shown. Moreover, the crossover frequency ωρ2D marking
the dominance of the interface properties over bulk prop-
erties occurs at a lower frequency than in the correspond-
ing Newtonian-fluid case.

V. DISCUSSION AND CONCLUSIONS

In the present work we derive the general conditional
Eq. (12), which governs linear waves at planar viscoelas-
tic interfaces that separate two linear, homogeneous,
isotropic viscoelastic bulk materials. We show how vis-
coelastic Rayleigh waves, and generalizations of capillary-
gravity-flexural and Lucassen waves, as well as the equa-
tions from elastic plate theory, follow from our general
relation. Focussing mainly on the Lucassen wave, we nu-
merically solve the general dispersion relation, and com-

pare the result to analytical limiting cases, for several ex-
plicit example systems, including a viscoelastic interface
separating two Newtonian fluids, Kelvin-Voigt materials,
and Maxwell fluids. For each case we identify and inter-
pret the intermediate power-law scaling regimes of the
wave phase velocity and propagation distance. Quantify-
ing existence regimes and studying interrelations between
different limiting cases is only possible via a theory which
incorporates all relevant properties simultaneously. Our
discussion of crossovers (Fig. 2 and Fig. 5) thus has to
be based on such a unifying theory, which we provide in
Sec. II.

From a theoretical perspective, our work unifies the
derivation of a wide variety of surface waves, and un-
covers relations between them. For example, our re-
sults make explicit that oscillations of an elastic plate
in vacuum are in fact a limiting case of capillary-gravity-
flexural waves. Our theory thus enables to systematically
study the interrelations and parameter- and frequency-
dependent crossovers between different wave solutions.
This will in particular serve as a bridge to connect the ex-
tensive literature on waves on viscoelastic materials [64–
66] to the literature on water wave theory [3, 4, 67].

From a more practical perspective, our results have
several applications: Just as viscoelastic Rayleigh waves
can be used to measure properties of the material they
are excited on [38], or the damping of capillary waves can
be used to infer the viscosity of a Newtonian fluid [68],
the dispersion relations we derive here can be used to de-
termine mechanical properties of both interface and bulk
media, a topic which continues to be of importance in
soft matter physics [38, 56, 69, 70]. More explicitly, after
experimentally identifying the various power-law scaling
regimes of phase velocity and propagation distance of
periodically excited Lucassen waves, the analytical vis-
coelastic Lucassen dispersion relation can be inverted to
extract the characteristic viscoelastic timescales of the
system under consideration. In particular, the high-
frequency properties of viscoelastic surface waves provide
a route to probe the non-Newtonian nature of water on
short time scales; here, the surface-wave approach can
complement established bulk-based experiments [52].

From a biophysical perspective, our theory for Lu-
cassen waves in the presence of viscoelastic bulk media
serves as a starting point for investigating the proper-
ties of interfacial sound pulses as carriers of informa-
tion, which has possible relevance for acoustic nerve pulse
propagation phenomena [13–15]. Interfaces in biological
systems are typically immersed in a hydrogel environ-
ment, for which a viscoelastic description is more appro-
priate than a simple Newtonian fluid model. In this con-
text it will be particularly interesting to understand how
bulk viscoelasticity changes the properties of nonlinear
sound waves at interfaces, which so far have exclusively
been studied for Newtonian bulk fluids [15, 16]. One par-
ticularly interesting aspect of the Lucassen wave is the
dependence of phase velocities and propagation distances
on the membrane compressibility K2D, which according
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to Eqs. (15), (16), (46), is, for a wave dominated by mem-
brane elasticity and viscous bulk inertia, given by

c ∼
√
K2D , (56)

β−1 ∼
√
K2D . (57)

In our continuum model, modifications in the physical
system under consideration are incorporated by chang-
ing the model parameters. For example, an axon mem-
brane with a myelin sheath around it can be modeled
as an effective interface, with an effective area modu-
lus K2D, assuming that myelin sheath and axon mem-
brane are rigidly connected. Although direct experi-
mental measurements are lacking, it is predicted that
a myelin membrane has a larger area modulus K2D as
compared to the membrane of an unmyelinated axon
[23, 71–73]. We would therefore expect that myelina-
tion increases the area modulus of the effective axon in-
terface, which according to Eqs. (56), (57), would then
both speed up pressure waves and enhance their prop-
agation distance. As has been noted before in the con-
text of pressure waves in cylinders [23], this acceleration
of the pulse is similar to what is observed in saltatory
conduction, where myelinated axons lead to action po-
tentials that travel faster, as compared to their unmyeli-
nated counterparts. We emphasize that this is not the
textbook view on saltatory conduction, for which com-
pelling explanations already exist in the framework of the
Hodgkin-Huxley model. Similarly, if anesthetics solvated
in the lipid membrane indeed decrease the area modulus
K2D, as suggested in Ref. [23], the Meyer-Overton rule,
which states that the effectiveness of an anesthetic is di-
rectly proportional to its solubility in a lipid membrane
[74, 75], would be fully consistent with the properties
of the Lucassen wave, which according Eqs. (56), (56),
leads to slower and more strongly damped waves, and
hence less efficient pulse propagation. Again, we stress
that also for the Meyer-Overton phenomenon, there exist
theories which do not utilize mechanical pulses as means
of signal transduction [76–79].

A possible extension of this work includes the effects of
a time-dependent external force acting on the interface,
providing a theory to be used for surface microrheology
[36, 37]. Furthermore, it will be interesting to extend
this work to other geometries, e.g., on cylinders, where
one bulk fluid has finite depth and the interface is curved
[80, 81].

Appendix A: Table of parameters

In Tab. I, we summarize all parameters that appear in
this paper. The parameters for media I, II and III were
all introduced in Sec. II.

TABLE I. Parameters appearing in our description of the vis-
coelastic media. For the bulk media parameters, the index
M ∈ {I, III} labels the medium.

bulk media

g̃M,s(ω) shear relaxation func.

g̃M,d(ω) dilational relaxation func.

ρM (volume) mass density

ηM shear viscosity

η′M dilational viscosity

KM bulk modulus

EM elastic modulus

in Kelvin-Voigt model

τM stress relaxation time

in Maxwell model

c speed of sound

P pressure

interface

η2D in-plane shear viscosity

η′2D in-plane dilational viscosity

η⊥2D transversal shear viscosity

κ2D bending rigidity

−σ2D 2D pressure

ρ2D (area) mass density

g̃2D(ω) in-plane relaxation func.

Π̃2D out-of-plane relaxation func.

bulk media & interface

g gravitational acceleration

Appendix B: Derivation of Helmholtz equations

In the following we give a short derivation as to why
potential functions ϕ̃ and ψ̃ which solve the Helmholtz
Eqs. (4) and (5) also solve the linearized equations for
momentum conservation Eq. (1) with viscoelastic stress-
strain relation Eq. (2).
Since the convolutional integrals in Eq. (2) are consider-
ably simpler in Fourier space, we start by writing down
the temporal Fourier transform of Eqs. (1), (2) in the
surface gravity approximation, c.f. Ref. [22],

ρM (−iω)ũM,j = ∂k

(
g̃M,s(ω)ε̃M,jk

+
δij
3

(g̃M,d(ω)− g̃M,s(ω))ε̃M,ll

)
(B1)

for j ∈ {x, y, z}, where the components of the stress
tensor are given by ε̃M,ij = (∂j ũM,k + ∂kũM,j)/2 and
the displacement is a function of space and frequency,
ũM = ũM (r, ω). We furthermore use the decomposition
of the displacement into curl-free and divergence-free po-
tentials (3), so that

ũM,j = ∂jϕ̃M + εjkl∂kψ̃M,l , (B2)



19

where εjkl denotes the three-dimensional Levi-Civita
symbol [82]. We proceed to insert Eq. (B2) into Eq. (B1).
A quick calculation yields that

ε̃M,ll = Tr(ε̃M ) = ∆ϕ̃M , (B3)

where ∆ = ∂2x + ∂2y + ∂2z is the Laplace operator. After
some mathematical transformations, we find furthermore
that

∂k ε̃M,jk = ∂j∆ϕ̃M +
1

2
εjkl∂k∆ψ̃M,l . (B4)

Combining Eqs. (B2), (B3), (B4) into Eq. (B1), one ob-
tains

ρM (−iω)(∂jϕ̃M + εjkl∂kψ̃M,l) =

= g̃M,s(∂j∆ϕ̃M +
1

2
εjkl∂k∆ψ̃M,l)

+
1

3
(g̃M,d − g̃M,s)∂j∆ϕ̃M , (B5)

finally leading to

0 = ∂j

(
ρM (−iω)ϕ̃M −

1

3
(2g̃M,s + g̃M,d)∆ϕ̃M

)
+ εjkl∂k

(
ρM (−iω)ψ̃M,l −

1

2
g̃M,s∆ψ̃M,l

)
. (B6)

From the form of Eq. (B6) we can immediately see that
if Eqs. (4), (5) hold, then Eq. (B6) is fulfilled.

Appendix C: Derivation of linear system of
equations determining the full dispersion relation

A review of the derivation of the continuum mechani-
cal boundary conditions of two bulk media divided by a
viscoelastic surface was given by Kralchevsky et. al. [43].
The interface is assumed to have a purely viscous shear
response with viscosity η2D, a viscoelastic response under
dilation with viscosity η′2D and a position-dependent sur-
face tension σ. For out-of-plane deformations, a bending
rigidity κ2D and a transverse viscosity η⊥2D is taken into
account. Furthermore, the interface has an area mass
density ρ2D. In Ref. [22], it is shown that the surface
tension of the interface can be written as

σ2D(r, t) = σ2D +K2D∂βuβ , (C1)

where σ2D is the constant equilibrium surface tension,
K2D is the 2D modulus of compression of the sur-
face, and we use the convention that Greek indices run
over {x, y}, while Latin indices run over {x, y, z}. The
position-dependent surface tension Eq. (C1) is necessary
to model interfaces with insoluble surfactants, such as
DPPC membranes on water. This is because insolu-
ble surfactants do not simply move into the bulk upon
compression of the membrane, which leads to a finite

interfacial compressibility. In fact, only for a finite inter-
facial compressibility K2D can interfacial pressure wave
(Lucassen wave) solutions arise from the general disper-
sion relation, as is shown in Refs. [16, 22]. Combining
Eq. (C1) with the results of Ref. [43], the boundary con-
ditions

ρ2D∂
2
t u2D,α = (σIII,zα − σI,zα)

+ (K2D + η′2D∂t) ∂α∂βu2D,β

+ η2D∂t∂
2
βu2D,α , for α ∈ {x, y}

(C2)

ρ2D∂
2
t u2D,z = (σIII,zz − σI,zz)− ρ2Dg (1− ∂βu2D,β)

+
(
σ2D + η⊥2D∂t − κ2D∂2β

)
∂2βu2D,z (C3)

are derived in Ref. [22]. Here, ρ2D is the constant equi-
librium surface excess mass area density of the interface,
u2D is the displacement of the interface, and all functions
of position are understood to be evaluated at z = 0.

Including gravitational restoring forces in the bound-
ary condition, the temporal Fourier transform of the
stress tensor Eq. (2) at the interface z = 0 is given by
[22]

σ̃jk(ω) = −δjk [δ(ω)P0 − gρũz(ω)]

+ (−iω)g̃s(ω)ε̃jk(ω)

+ δjk
−iω

3
[g̃d(ω)− g̃s(ω)] ε̃ll(ω) , (C4)

where P0 is the constant background pressure at z = 0
and the displacement field u and its derivatives are un-
derstood to be evaluated at z = 0. Note that according
to the surface gravity approximation [45], the gravita-
tional acceleration of the bulk media only enters in the
boundary conditions via Eq. (C4) [22].

The continuity conditions at the interface z = 0 are
obtained by calculating the displacement field Eq. (3)
from the harmonic wave ansatz Eqs. (6), (7) for z > 0
and z < 0, respectively, and equating them at z = 0.
This yields the two linear equations

(
ik −λ−1I,t −ik −λ

−1
III,t

λ−1I,l ik λ−1III,l −ik

)
ΦI

ΨI

ΦIII

ΨIII

 =

(
0

0

)
, (C5)

where λ−1I,l , λ
−1
I,t , λ

−1
III,l, λ

−1
III,t are given by Eqs. (8), (9).

The stress continuity equations are obtained by calculat-
ing σ̃I,ij , σ̃III,ij and ũ2D,i = (ũI,i|z=0 + ũIII,i|z=0) /2 for
the displacement field Eq. (3), and then substituting the
result into Eqs. (C2), (C3). For Eq. (C2), only the α = x
case is needed, since a short calculation shows that the
α = y equation is fulfilled trivially. For the stress tensors
of media I, III we use the generalized form Eq. (C4) to
include effects of gravity [22]. The resulting equations for
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the stress boundary conditions are

0 = ik
[
iωρ2D − k2g̃2D − 2g̃I,sλ

−1
I,l

]
ΦI

+
[
λ−1I,t

(
−iωρ2D + k2g̃2D

)
+ g̃I,s(k

2 + λ−2I,t )
]

ΨI

+ ik
[
iωρ2D − k2g̃2D − 2g̃III,sλ

−1
III,l

]
ΦIII

+
[
− λ−1III,t

(
−iωρ2D + k2g̃2D

)
− g̃III,s(k2 + λ−2III,t)

]
ΨIII (C6)

and

0 = [λ−1I,l

(
ω2ρ2D − k2Π̃2D − 2gρI

)
− k2ρ2Dg + iωg̃I,s

(
k2 + λ−2I,t

)
]ΦI

+ ik[ω2ρ2D − k2Π̃2D − 2gρI

+ λ−1I,t (2iωg̃I,s − gρ2D)]ΨI

+ [−λ−1III,l

(
ω2ρ2D − k2Π̃2D + 2gρIII

)
− k2ρ2Dg − iωg̃III,s

(
k2 + λ−2III,t

)
]ΦIII

+ ik[ω2ρ2D − k2Π̃2D + 2gρIII

+ λ−1III,t(2iωg̃III,s + gρ2D)]ΨIII , (C7)

where again λ−1I,l , λ−1I,t , λ−1III,l and λ−1III,t are given by Eqs.

(8), (9), and where g̃2D(ω), Π̃2D(k, ω) are defined via
Eqs. (13), (14).

The homogeneous linear system of Eqs. (C5), (C6),
(C7) for the coefficients ΦI, ΨI, ΦIII and ΨIII has a non-
trivial solution if and only if the determinant of the coef-
ficient matrix is zero. Calculating this determinant and
equating it with zero, we obtain the conditional Eq. (12).

Appendix D: Rayleigh waves at the vacuum-fluid
interface

As discussed in Sec. III B, we find a Rayleigh-type sur-
face wave equation for the water-vacuum interface. More
explicitly, upon removing the effects related to the sur-
face (ρ2D = 0, g̃2D = 0, Π̃2D = 0), Eq. (32) becomes
Eq. (34), i.e.

4k2λ−1I,l λ
−1
I,t =

(
k2 + λ−2I,t

)2
.

This equation gives rise to two Rayleigh-type wave solu-
tions k(ω). A plot showing the two solutions of Eq. (34)
at the vacuum-water interface is shown in Fig. 7.

Appendix E: Example visualizations in the
dissipative regime

We include example displacement plots of a Lu-
cassen and capillary-gravity-flexural wave (CGW) at ω ≈
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FIG. 7. Traditional Rayleigh wave solutions at the vacuum-
water interface. The dispersion relation for the traditional
Rayleigh wave Eq. (34) is solved numerically to obtain the
wave number k as a function of ω. Phase velocities and prop-
agation distances are obtained from k(ω) via Eqs. (15), (16).

108 s−1 at the water-water interface in Fig. 8 (a), (c)
and at the air-water interface in Fig. 8 (b), (d), respec-
tively. As opposed to the plots in Fig. 3 in Sec. IV A,
all displacement fields are shown for frequencies above
the first crossovers, i.e., in the dissipative regime. In
this regime, the membrane response is dominated by
the interfacial shear viscosity η2D for the Lucassen wave
and by the interfacial transversal viscosity η⊥2D for the
capillary-gravity-flexural wave, respectively. Again, the
water-water interface displacements are purely longitu-
dinal for the Lucassen wave and purely transversal for
the capillary-gravity-flexural wave, while the bulk fluid
elements have finite longitudinal and transversal compo-
nents in both cases.

In addition to the displacement plots, we include pres-
sure maps and velocity fields of the example waves in the
dissipative regime described above in Fig. 9. We include
animated versions of all plots in the SM.

Appendix F: Breakdown of Lucassen wave on
Kelvin-Voigt interface

As discussed in Sec. IV B 1, at ωmin
KV = 2.29 s−1, the nu-

merical Lucassen wave solution of Eq. (30) seizes to exist.
In Fig. 10, we show that the real part of λ−1t (k, ω) ap-
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FIG. 8. Displacement plots of Lucassen and capillary-gravity-flexural waves (CGW) in the dissipative regime. The scaling
is chosen such that the wave-type specific dominant decay-lengths into the bulk media 1/Re(λ−1

M,t) and 1/Re(λ−1
M,l) as well

as the propagation distance β−1 = 1/Im(k) are of the same order of magnitude and visible in the plot. The displacement
of the interface is shown as a green line. Bulk water displacement is shown as a blue grid, whereas bulk air displacement is
shown as a red grid. Decay length and volume element trajectories are shown in black. (a) Lucassen wave at water-water
interface with ω = 1.01 · 108 s−1. (b) Lucassen wave at air-water interface with ω = 1.04 · 108 s−1. Note that the vertical decay
length into air 1/Re(λ−1

I,t ) is too large to include in the diagram without rendering the displacements too small to observe. (c)

Capillary-gravity-flexural wave at water-water interface with ω = 1.01 ·108 s−1. (d) Capillary-gravity-flexural wave at air-water
interface with ω = 1.04 · 108 s−1.

proaches zero as ω approaches ωmin
KV = 2.29 s−1, so that

the transversal decay length diverges; the wave hence
ceases to be a surface wave, which rationalizes the break-
down of the Lucassen wave.
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and H. Möhwald, Surface viscoelasticity of phospholipid
monolayers at the air/water interface, Colloid and Poly-
mer Science 274, 1183 (1996).

[56] E. P. Petrov, R. Petrosyan, and P. Schwille, Transla-
tional and rotational diffusion of micrometer-sized solid
domains in lipid membranes, Soft Matter 8, 7552 (2012).

[57] E. P. Petrov and P. Schwille, Translational Diffusion in
Lipid Membranes beyond the Saffman-Delbrück Approx-
imation, Biophysical Journal 94, L41 (2008).

[58] C.-H. Lee, W.-C. Lin, and J. Wang, All-optical measure-
ments of the bending rigidity of lipid-vesicle membranes
across structural phase transitions, Physical Review E
64, 020901 (2001).

[59] N. Delorme and A. Fery, Direct method to study mem-
brane rigidity of small vesicles based on atomic force
microscope force spectroscopy, Physical Review E 74,
030901 (2006).

[60] A. Schlaich, J. Kappler, and R. R. Netz, Hydration Fric-
tion in Nanoconfinement: From Bulk via Interfacial to
Dry Friction, Nano Letters 17, 5969 (2017).

[61] See Supplemental Material for animated versions of dis-
placement plots, pressure profiles and velocity fields.

[62] J. L. Harden, H. Pleiner, and P. A. Pincus, Hydrody-
namic surface modes on concentrated polymer solutions
and gels, The Journal of Chemical Physics 94, 5208
(1991).

[63] T. Hiraiwa and R. R. Netz, Systematic bottom-up theory
for the viscoelastic response of worm-like chain networks,
EPL (Europhysics Letters) 123, 58002 (2018).

[64] J. M. Carcione, Wave Fields in Real Media: Wave Prop-
agation in Anisotropic, Anelastic, Porous and Electro-
magnetic Media, 2nd ed., Handbook of Geophysical Ex-
ploration: Seismic Exploration (Elsevier Science, Ams-

terdam; Oxford, 2007).
[65] I. A. Viktorov, Rayleigh and Lamb waves: physical theory

and applications, Ultrasonic technology (Plenum Press,
New York, 1967).

[66] R. D. Borcherdt, Viscoelastic waves in layered media
(Cambridge University Press, Cambridge, 2009).

[67] U. Seifert and S. A. Langer, Viscous Modes of Fluid
Bilayer Membranes, Europhysics Letters (EPL) 23, 71
(1993).

[68] F. Behroozi, J. Smith, and W. Even, Stokes’ dream: Mea-
surement of fluid viscosity from the attenuation of capil-
lary waves, American Journal of Physics 78, 1165 (2010).
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