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Abstract
We consider spatially homogeneous Hořava–Lifshitz models that perturb General
Relativity (GR) by a parameter v ∈ (0, 1) such that GR occurs at v = 1/2. We
describe the dynamics for the extremal case v = 0, which possess the usual Bianchi
hierarchy: type I (Kasner circle of equilibria), type II (heteroclinics that induce the
Kasner map) and type VI0,VII0 (further heteroclinics). For type VIII and IX, we
use a computer-assisted approach to prove the existence of periodic orbits which are
far from the Mixmaster attractor. Therefore we obtain a new behaviour which is not
described by the BKL picture of bouncing Kasner-like states.
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1 Introduction

Hořava proposed a renormalizable, higher order derivative gravity theory that recovers
general relativity (GR) in low energy butwith improved high-energy behaviors, see [1–
3]. This approach violates full spacetime diffeomorphism and introduces anisotropic
scalings of space and time. The deformation of the kinetics was firstly considered
by DeWitt in [4], whereas higher order derivatives in the potential was originally
suggested by Lifshitz in [5].

More precisely, Hořava gravity is a gauge theory formulated in terms of a lapse
N and a shift vector Ni , which serve as Lagrange multipliers for the constraints in a
Hamiltonian context, and a three-dimensional Riemannian metric gi j on the slices of
the preferred foliation. We consider projectable theories, when the lapse depends only
on time. These objects arise from a 3+1 decomposition of a 4-metric according to,

g = −N 2dt ⊗ dt + gi j (dx
i + Nidt) ⊗ (dx j + N jdt). (1.1)

In suitable units/scalings, the dynamics of Hořava vacuum gravity is governed by the
action

S =
∫

N
√
det gi j (T − V)dtd3x, (1.2a)

where T and V are given by

T = Ki j K
i j − λ(Kk

k)
2, (1.2b)

V = 1V + 2V + 3V + 4V + 5V + 6V + . . . , (1.2c)

= k1R + k2R
2 + k3R

i
j R

j
i + k4R

i
jC

j
i + k5C

i
jC

j
i + k6R

3 + . . . . (1.2d)

Here Ki j is the extrinsic curvature, R and Ri j are the scalar curvature and Ricci tensor
(of the spatial metric gi j ), respectively, while Ci j is the Cotton-York tensor [2], while
λ, k1, . . . , k6 are real parameters. Each potential term iV , where i = 1, . . . , 6, is
defined as the i th summand in (1.2d). Repeated indices are summed over according
to Einstein’s summation convention.

Full spacetime diffeomorphism invariance in GR fixes λ = 1 uniquely and set all
parameters of V in (1.2d) to zero, except k1 = −1 (i.e., V = −R), see [1, 2]. Thus GR
is a special case among the Hořava models. The introduction of λ changes the scaling
properties of the field equations, as does the introduction of additional curvature terms.
Since some of the curvature terms have different scaling properties, sums of such terms
in V result in that the field equations no longer are scale-invariant.

The classicalBelinski,Khalatnikov andLifshitz (BKL)picture suggests that generic
singularities in GR are: (i) vacuum dominated, (ii) local and (iii) oscillatory. In this
regard, vacuum spatially homogeneous cosmologies, the Bianchimodels, are expected
to play a key role in the dynamical asymptotic behaviour, see [6–10]. Similarly, the
Bianchi models in Hořava gravity are also expected to describe generic singulari-
ties, see [11–13]. In general, it is heuristically argued that there is an ‘asymptotically

123



Periodic orbits in Hořava–Lifshitz... Page 3 of 26 2

dominant’ curvature term in (1.2d) toward the initial singularity, yielding a respective
dominant Bianchi model, see [13, Appendix A].

InAppendix A, we deduce the dominant vacuumBianchi models in Hořava gravity:

�′+ = 4v(1 − �2)�+ + S+, (1.3a)

�′− = 4v(1 − �2)�− + S−, (1.3b)

N ′
1 = −2(2v�2 − 2�+) N1, (1.3c)

N ′
2 = −2(2v�2 + �+ + √

3�−)N2, (1.3d)

N ′
3 = −2(2v�2 + �+ − √

3�−)N3, (1.3e)

for some parameter v ∈ [0, 1], where the vector field is defined as follows

�2 := �2+ + �2−, (1.4a)

S+ := 2
[
(N3 − N2)

2 − N1 (2N1 − N2 − N3)
]
, (1.4b)

S− := 2
√
3 (N3 − N2) (N1 − N2 − N3) . (1.4c)

We denote ′ = d/dτ the time derivative with respect to a time variable such that
the singularity occurs as τ → ∞. The evolution equations (1.3) are bound to the
following constraint which restricts the phase spaceR5 to a four-dimensional invariant
submanifold

1 = �2 + �k . (1.5)

where �k := N 2
1 + N 2

2 + N 2
3 − 2N1N2 − 2N2N3 − 2N3N1.

Equations (1.3) describe vacuum spatially homogeneous models in GR when v =
1/2. Moreover, in [13, Appendix A.2], they argue that the equations (1.3) are expected
to asymptotically describe the dynamics of each individual potentials iV , where i =
1, . . . , 6, for the respective parameters,

1v := 1√
2(3λ − 1)

, 2v = 3v =
1v

4
, 4v =

1v

10
, 5v = 6v = 0. (1.6)

For example, the exact equations for vacuum spatially homogeneous λ-R models
arise for the parameter v = 1v, whereas a Hořava model with only a cubic potential
6V = k6R3 (i.e., with k1 = . . . = k5 = 0, k6 �= 0) has dominant asymptotic equation
with parameter v = 6v = 0.

For v = 1/2, the dynamics of equations (1.3) has been extensively considered
in the GR literature. A major achievement is the attractor theorem, which states that
the ω-limit set of generic solutions of Bianchi type IX is contained in the space of
solutions of Bianchi type I and II, also known as the Mixmaster attractor, see [14,
15]. Therefore, it is expected that the concatenation of heteroclinic orbits of Bianchi
type II and the induced map of Bianchi type I (the so-called Kasner map) play a key
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role in the dynamics. More rigorous results can be found, for example, in [16–19]. A
state of the art overview is provided in [8].

For v �= 1/2, some features of GR persist, such as the Bianchi hierarchy of invariant
sets. Type I consists of all Nα being zero, type II has a single non-zero Nα , types
VI0,VII0 have two non-zero Nα , and Bianchi types VIII, IX consist of three non-zero
Nα , see [13, 20].

We now investigate the dynamics of the equations (1.3) for the extremal case, v = 0,
which describes the asymptotics in case of a dominant cubic curvature term k6R3 in
(1.2d):

�′+ = 2
[
(N3 − N2)

2 − N1 (2N1 − N2 − N3)
]
, (1.7a)

�′− = 2
√
3 (N3 − N2) (N1 − N2 − N3) , (1.7b)

N ′
1 = 4�+N1, (1.7c)

N ′
2 = −2(�+ + √

3�−)N2, (1.7d)

N ′
3 = −2(�+ − √

3�−)N3, (1.7e)

bound to the constraint (1.5). Note that there is a conserved quantity given by

� := 3 |N1N2N3|2/3 such that �′ = 0. (1.8)

The remaining of the paper describes the dynamics within the Bianchi hierarchy:
Sect. 2 constructs the types I, II with the induced Kasner map, Sect. 3 reports on the
types VI0,VII0, and Sect. 4 describes types VIII, IX. Section 5 possess concluding
remarks.

2 Bianchi type I and II

Bianchi type I solutions are characterized by all Nα = 0, α = 1, 2, 3. The constraint
(1.5) reduces the phase space to the Kasner circle of equilibria:

K� :=
{
(�+, �−, 0, 0, 0) ∈ R

5 | �2+ + �2− = 1
}

. (2.1)

There are three special points in K� corresponding to the Taub representation of
Minkowski spacetime in GR. They are therefore called the Taub points and given by

T1 := (−1, 0) , T2 :=
(
1

2
,

√
3

2

)
, T3 :=

(
1

2
,−

√
3

2

)
. (2.2)

Note that the existence of the Kasner circle is independent on the parameter v ∈ [0, 1].
Its stability, however, depends strongly on the parameter and this affects the type II
solutions.
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Fig. 1 Projection of the Bianchi type II heteroclinics in each hemisphere IIα, α = 1, 2, 3, into the �-plane
with α-limits within int(Aα) and ω-limits in Acα

In general, linearization of Eq. (1.7) at K� results in N ′
1 = 2�+|K�N1, and thereby

the stability behaviour of N1 changeswhen�+|K� = 0.Wedefine theunstableKasner
arc, denoted by int(A1), to be the points in K� that are unstable in the N1 variable,
i.e., when �+ > 0. The closure of int(A1) is denoted by A1 and is given by

A1 := {
(�+, �−, 0, 0, 0) ∈ K� | �+ ≥ 0

}
. (2.3)

Note that A1 is a symmetric portion ofK� withQ1 := −T1 in themiddle. Equivariance
yields the arcs A2, A3, where the respective variables N2, N3 are unstable. Define
Aαβ := Aα ∩ Aβ and A := ∪αβ Aαβ , for distinct α, β = 1, 2, 3.

Bianchi type II solutions consist of three disjoint hemispheres with a common
boundary: the Kasner circle. More precisely, it is the set of solutions where two N -
variables are zero and one is nonzero, i.e. II1 ∪ II2 ∪ II3, where

II1 :=
{
(�+, �−, N1, 0, 0) ∈ R

5
∣∣∣ N1 > 0
N1

2 = 1 − �2

}
, (2.4)

and II2, II3 are obtained by symmetry with a different non-zero N -variable.
Solutions of (1.7) in the hemisphere II1 are heteroclinics between two Kasner

equilibria with α-limit sets in int(A1) and ω-limit in the complement Ac
1 := K�\A1.

indeed, (1.7) becomes �′− = 0 (i.e., �− is constant) and �′+ = −4(1 − �2), which
implies that �+ is monotonically decreasing for �2 < 1. Similarly for II2, II3, see
Fig. 1.

Thus, the heteroclinics in II1 induce a map from the α-limit set to the ω-limit set,
denoted by K1 : A1 → Ac

1. The map K1 is a reflection along the �−-axis given by
the linear isometry

K1 : A1 −→ K� \ A1 (2.5)

(�+, �−) �−→ (−�+, �−) . (2.6)

Analogous constructions in II2, II3 yield mapsK2,K3. Altogether, they induce a map
of the circle, called Kasner map K : K� → K�. Note that iterations of K represent a
heteroclinic chain formed by a sequence of Bianchi type II heteroclinic orbits. Note
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2 Page 6 of 26 K. E. M. Church et al.

Fig. 2 Left: All Kasner maps put together, where the map is multivalued in each (bold) region A. Middle-
left: Example of all possible iterates of p ∈ A13, which returns to p after a (multivalued) excursion.
Middle-right: The tangential points (i.e., the boundary of the bold region) form two period three orbits. The
existence of heteroclinic chains of period three was shown in [12] using the Kasner parameter u ∈ [1, ∞].
Right: An example of a period four, which contains the Taub point T1

that K is multivalued in the set A, whereas K is uniquely determined in each arc
Aα \ A, see Fig. 2. The multivalued character for v = 0 is reminiscent from the
case v ∈ (0, 1/2), where K can be formulated as a (non-hyperbolic discontinuous)
skew-product dynamical system, see [20].

Note that there are different orbits starting at the point p ∈ A13 in Fig. 2 (middle-
left). First, there is an orbit of period four through the maps K2 ◦ K3 ◦ K1 ◦ K3.
Second, there is a period six orbit through the maps K2 ◦ K1 ◦ K3 ◦ K2 ◦ K1 ◦ K3.
These orbits are not unique, i.e., there are other orbits of period four and six starting at
p through a different combination of maps. Thus, tracking different combinations of
period four and six orbits generate periodic orbits of any period 4 j + 6k for j, k ∈ N.
Moreover, there are also several aperiodic chains by alternating among the orbits of
period four and six while increasing the number of appearances of each chain (i.e.,
the first chain appears once, the second appears twice, the first chain appears three
times, the second appears four times, etc). Therefore, each point p ∈ K� generates a
plethora of multivalued dynamical possibilities. Next, we describe the orbit structure
and discrete dynamics of the map K.

Lemma 2.1 Each orbit of the Kasner mapK contains at most six different points such
that each of the six arcs of K� contains at most one point. Moreover,

(i) An orbit with exactly three points consists of a heteroclinic chain of minimal
period three which is composed solely of tangential points.

(ii) An orbit with exactly four points consists of heteroclinic chains of minimal period
four.

(iii) There are no orbits with only five points.
(iv) Consider a point inK� that has six points in its orbit. Thus, starting at this point,

there are periodic orbits of any even period 2n ≥ 4, n ∈ N, and aperiodic orbits.

Proof Note that the restricted mapK|Aα\A is a bijection in each of the six arcs of K�,
in contrast to the case v > 0. Moreover, it takes at least four iterates of K to re-enter
the same region of the six arcs again, except for the tangential points which consist of
the boundary of the multivalued region A. This proves (i) and (i i).

Next, we prove that any point in the circle has at most six points in its orbit, where
the points lie in different arcs. After at most six iterations of K, one of the six arcs
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is revisited by the pigeonhole principle. Moreover, between the first and the second
appearances of such a revisited arc, the map K is iterated by an even number of times
n ≤ 6. Denote such iterate by Kn := Kωn ◦ ... ◦ Kω1 for some ωk ∈ {1, 2, 3} where
k = 1, . . . , n. Note that Kn is the identity map, since each iterate of K is an isometry
which is a one-to-one correspondence between two arcs. Hence Kn amounts to a
rotation of each arc, which proves the claim.

In case that an orbit has five points, note that they must be in different arcs. By
symmetry, either the image or pre-image of these five points must also contain a sixth
point in the remaining arc (that had no point from the original five arcs). This proves
(i i i).

Lastly, consider an orbit with six points. Due to symmetry, there are three points in
the multivalued region A and three points in the single valued region. Thus, all orbits
have the same structure as in Fig. 2 (middle-left). In particular, there are periodic orbits
of any period 4 j + 6k for j, k ∈ N by concatenating different period four and six
orbits. Next, we show that this combination is able to generate periodic orbits of any
period 2n ≥ 4, i.e., for any n ∈ N, there are k = k(n), j = j(n) such that n = 2 j+3k.
There are two cases depending on the parity of n. Indeed, if n is even (resp. odd), then
choosing k even (resp. odd) implies that n − 3k is even in both cases. Thus, for any
k ≥ 0 with same parity as n such that n − 3k ≥ 0, one can define j := (n − 3k)/2.
Aperiodic chains occur by alternating orbits of period four and six while increasing
the number of appearances of each orbit. ��

Recall that the map K has different qualitative regimes depending on v. For v = 1/2,
the mapK is known to be generically chaotic, see [6, 9, 10, 21] and references therein.
For v ∈ (1/2, 1), the map K is chaotic in a Cantor set of measure zero, see [13]. For
v ∈ (0, 1/2), the (multivalued) mapK is chaotic, see [20]. Thus, v = 1/2 corresponds
to a bifurcation from non-generic to generic chaos. The case v = 0 also corresponds
to a bifurcation. However, the map K cannot be chaotic for v = 0, since it is given
by a sequence of linear isometries. Indeed, there is no sensitivity to initial conditions,
since any open set U ⊆ K� has six sets of same length as possible iterates. For the
same reason, there is no topological mixing. The only property of chaos that holds for
v = 0 is the density of periodic orbits.

3 Bianchi type VI0 and VII0

To obtain the equations for the type VI0 and VII0 models we set, without loss of
generality, N1 = 0, N2 > 0, N3 < 0 for type VI0, and N1 = 0, N2 > 0, N3 > 0 for
type VII0,

�′+ = 2(1 − �2+ − �2−), (3.1a)

�′− = 2
√
3(N 2

2 − N 2
3 ), (3.1b)

N ′
2 = −2(�+ + √

3�−)N2, (3.1c)

N ′
3 = −2(�+ − √

3�−)N3, (3.1d)
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2 Page 8 of 26 K. E. M. Church et al.

Fig. 3 Left: The stability ofK� in typeVI0,VII0. The (bold) set A2∩A3 has two unstable eigenvalues, A2\
A2∩A3 and A3\A2∩A3 have one unstable eigenvalue, and the (dashed) set SVI0,VII0 is stable.Middle: An
example of a typeVII0 heteroclinicwith initial data (�+, �−, N2, N3) = (−0.993,−0.115, 0.002, 0.001).
Right: The projection of such example onto the �-plane

and the constraint 1 − �2+ − �2− − (N2 − N3)
2 = 0.

Due to the constraint, the state spaces for the type VI0 and VII0 models with
N1 = 0 are 3-dimensional with a 2-dimensional boundary given by the union of the
invariant type II2, II3 and K� sets. The type VI0 and VII0 models also share the
region A2 ∩ A3 ⊆ K� in its boundary such that N2, N3 are unstable in int(A2 ∩ A3).
The stable set in K� is given by SVI0,VII0 := K�\int(A2 ∪ A3). See Fig. 3. Note
that the type VI0 has a relatively compact state space, whereas type VII0 has an
unbounded one. Indeed, the constraint implies that �2+ + �2− ≤ 1. For type VI0, note
that (N2 − N3)

2 = N 2
2 + N 2

3 + 2|N2N3|, and the constraint yields N 2
2 ≤ 1− �2 and

N 2
3 ≤ 1−�2, where the equalities hold for the II2 and II3 boundary sets, respectively.

For type VII0, introducing N± := N2 ± N3 imply that the constraint can be written
as �2 + N 2− = 1, and thus �± and N− are bounded, while N+ is unbounded.
Next, we prove that the solutions of (3.1) are heteroclinics and we describe their
α, ω-limit sets, following the lines of [13].

Proposition 3.1 In Bianchi typeVI0 the α-limit set for all orbits resides in A2 ∩ A3 ⊆
K�. The ω-limit set for all orbits resides in the set SVI0 .

Proof All type VI0 orbits satisfy �2 < 1, and thereby |�+| < 1, while �2 = 1
corresponds toK�, since the constraint yields (N2−N3)

2 = 0, and thus N2 = N3 = 0.
Equation (3.1) implies that�+ ismonotonically increasing, exceptwhen�2 = 1.Thus
limτ→±∞ �2 = 1, and hence limτ→±∞(N2, N3) = (0, 0), due to the constraints.
Therefore both the α- and ω-limit sets for all type VI0 orbits belong to the set K�. It
then follows from the stability properties of K� that the α-limit set (resp. ω-limit set)
for these orbits resides in the set A2 ∩ A3 (resp. SVI0 ). ��
Let us now turn to type VII0, but before presenting asymptotic results we first consider
the locally rotationally symmetric (LRS) type VII0 subset. This invariant set is given
by N− = 0 and�− = 0, where the constraint divides the LRS subset into two disjoint
invariant sets consisting of the two lines at �+ = 1 and �+ = −1, i.e.,

LRS± :=
{
(�+, 0, N2, N3) ∈ R

4
∣∣∣ �+ = ±1,

N2 = N3 �= 0

}
, (3.2a)
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where the superscript of LRS± is determined by the sign of �+. Let N := N2 =
N3 > 0. Then the flow on the LRS± subsets is determined by

N ′ = −2�+N , �+ = ±1. (3.3)

On LRS+, the variable N ∈ (0,∞) decreases from limτ→−∞ N = ∞ to 0, and
hence the orbit in the invariant line ends at Q1 ∈ K�. On LRS−, there is an orbit
that emanates from T1, where N ∈ (0,∞) subsequently increases, which results in
limτ→∞ N = ∞.

Proposition 3.2 In Bianchi type VII0 the α-limit set for all orbits reside in A2 ∩ A3 ⊆
K�, apart from the LRS+ set which is an orbit such that limτ→−∞ N = ∞, where
N := N2 = N3. The ω-limit set for all orbits resides in the stable set SVII0 ⊆ K�,
apart from the LRS− set which is an orbit such that limτ→∞ N = ∞.

Proof The exceptions follow from the previous analysis of the LRS type VII0 subset,
due to (3.3). Consider therefore type VII0 non-LRS orbits, i.e., orbits for which �2− +
N 2− > 0 and thereby |�+| < 1 due to the constraint. Note that in contrast to the type
VII0 unbounded state space, its boundary is given by the compact set II2 ∪ II3 ∪K�.
First we prove the result for ω-limit sets. Note that

�′+ = 2N 2−, �′′+|N−=0 = 0, �′′′+ |N−=0 = 24(N2 + N3)
2�2−. (3.4)

Thus �+ is increasing for all non-LRS orbits (i.e., orbits such that �2− + N 2− > 0),
except when N− = 0 (and thereby �− �= 0), which corresponds to an inflection point
in the growth of the positive quantity �+, due to (3.4). Thus all non-LRS− orbits
eventually enter the (positively) invariant set �+ > 0.

Moreover, the Lyapunov function Zsub := 1/|N2N3| > 0 satisfy Z ′
sub = 4�+Zsub.

Thus, Zsub > 0 is monotonically increasing in the invariant set �+ > 0, for all non-
LRS orbits. It follows that limτ→∞ Zsub = ∞ and thereby limτ→∞ N2N3 = 0. Thus
the ω-limit set of all non-LRS− orbits resides in the II2 ∪ II3 ∪ K� boundary set.
The same local analysis of this boundary set as in type VI0 yields the result for the
non-LRS− orbits in type VII0.

Next we prove the result for α-limit sets. Similar arguments as in the previous
discussion about ω-limit sets lead to the following: �+ is monotonically decreasing
when τ → −∞, which shows that the α-limit set for all non-LRS+ orbits resides in
the set A2 ∩ A3. ��

4 Bianchi type VIII and IX

We prove the existence of several periodic orbits, some of which are far from the
Mixmaster attractor consisting of Bianchi type I and II, see [14, 15]. This yields a
behaviour which is not described by the BKL picture. We structure our main result in
the following theorem.
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Theorem 4.1 The differential equation (1.7) possesses nontrivial periodic orbits
along which the constraint (1.5) is satisfied. In particular, there are periodic solu-
tions along which the product N1N2N3 is constant and equal to 10k , for each
k ∈ {1, 0,−1, . . . ,−7}.

Theorem 4.1 is proven by means of a computer-assisted approach. The implemen-
tation of the computer-assisted proofs is done in Julia (cf. [22]) with the packages
RadiiPolynomial.jl (cf. [23]) and IntervalArithmetic.jl (cf. [24]). The code for the
computer-assisted proofs may be found at [25]. The details of the method are pro-
vided in Sect. 4.1.

Recall that (1.7) has two conserved quantities: the product N1N2N3 in (1.8), and
the right-hand side of the constraint�2+�k in (1.5). A consequence of the computer-
assisted proof is that there exists a two-parameter family of periodic orbits defined
in a neighbourhood of each of the orbits in Theorem 4.1, parameterized by (�2 +
�k, N1N2N3) nearby (1, 10k), for k ∈ {1, 0,−1, . . . ,−7}. We have not computed
the size of these existence neighbourhoods.

Furthermore, we numerically computed the Floquet multipliers of each peri-
odic orbit in Theorem 4.1; the numerical integrations of the monodromy matrices
were done in Julia with the package DifferentialEquations.jl (cf. [26]). We expect
that there are three multipliers equal to unity, due to the two conserved quantities
(�2 + �k, N1N2N3) and the translation-invariance of the periodic orbit, which is
in agreement with our numerical results. For the two remaining multipliers, we con-
sistently found one stable (absolute value less than one) and one unstable (absolute
value greater than one) multiplier, which should influence the local dynamics. It is of
interest to describe the forward dynamics of solutions within the unstable manifold of
these periodic orbits, as we do not exclude the existence of homoclinic or heteroclinics
between them. In particular, the global attractor for v = 0 must be different than the
conjectured Mixmaster attractor of type I and II solutions for v > 0 in [13].

The projection of several orbits into the �-plane are plotted in Figs. 4 and 6. To
further assist in visualizing the periodic orbits in the�-plane as the conserved quantity
N1N2N3 decreases from 10 to 10−7, we have computed a numerical continuation of
the periodic orbits, together with their periods, through the entire range N1N2N3 ∈
[10−7, 10]. We have used Makie.jl [27] for visualization. While we believe that the
continuum of periodic orbits visible in the figures could be proven using validated
continuation methods (via the uniform contraction theorem, e.g. see [28, 29]), we
have made no attempt to do this here. Time series plots for some orbits are available
in Figs. 5 and 7.

Numerically, the continua of periodic orbits of Theorem 4.1 have boundaries
(N1N2N3 → 0) consisting of heteroclinic chains of lower Bianchi types. For type
VIII, we conjecture that the boundary consists of the type II heteroclinic chain of
period four that contains the Taub point T1, which is the limiting object of the (unique,
up to D3-symmetry) period four chain as v → 0. This is supported by the case
N1N2N3 = 10−7 in Fig. 4, its time series in Figs. 5 and 2 (right). For type IX, a
similar conjecture can be formulated. However, Fig. 7 suggests that the boundary con-
sists of one type II heteroclinic (when N1 > 0) and one type VII0 heteroclinic (when
N2 > 0, N3 > 0), see Fig. 3.
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Fig. 4 Left: Projection into the �-plane of some Bianchi type VIII periodic orbits of Theorem 4.1. Middle:
Numerical continuation of the Bianchi type VIII periodic orbits, for N1N2N3 = 10k , k ∈ [−7, 1]. For each
k = log10(N1N2N3), the projection of the periodic orbit in the �-plane is plotted, with parameterization
of time τ ∈ [0, 2πγ (k)], where 2πγ (k) is the period of the orbit (see the end of Sect. 4.1), and where the
colour is determined by the value of sin(τ/γ ); see the colour bar. Right: plot of the period as a function of
log10(N1N2N3), i.e. the period decreases monotonically with respect to N1N2N3

Fig. 5 Time series plots of the Bianchi type VIII periodic orbits for some N1N2N3 = constant. Row 1: 1
and 10−1 (left, right). Row 2: 10−4 and 10−7. One period plotted with time on the horizontal axis

4.1 Computer-assisted proofs

In this Section, we introduce the ideas behind the computer-assisted proofs (CAPs) of
existence of periodic orbits. It is worth mentioning that the field of CAPs in dynamics
is by now well-developed with some of the famous early pioneering works being the
proof of the universality of the Feigenbaum constant [30] and the proof of existence
of the strange attractor in the Lorenz system [31]. We refer the interested reader to the
survey papers [32–36], as well as the books [37–39].
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Fig. 6 Left: Projection into the �-plane of some Bianchi type IX periodic orbits of Theorem 4.1. Even
though these projections intersect the Kasner circle, note that the periodic orbits are far from the Mixmaster
with a fixed ‘distance’ N1N2N3. Middle: Numerical continuation of the Bianchi type IX periodic orbits,
for N1N2N3 = 10k , k ∈ [−7, 1]. Right: plot of the period as a function of log10(N1N2N3)

Fig. 7 Time series plots of the Bianchi type IX periodic orbits at the two extremes: N1N2N3 = 10 (left)
and N1N2N3 = 10−7 (right). One period plotted with time on the horizontal axis

In the present paper, we obtain CAPs via a Newton-Kantorovich like theorem (see
[40] for the original version and [41] for more details). Since the vector field in (1.7)
is analytic, then solutions are also analytic. Hence, we expand a periodic solution
in Fourier series and interpret its Fourier coefficients as isolated zeros of a mapping
amenable for a Newton-like method. The constructed (Newton-like) fixed-point oper-
ator is contracting in the vicinity of a numerical approximation of the zero yielding a
CAP via a Newton-Kantorovich argument. Our approach is inspired by the work of
Yamamoto [42], the infinite-dimensional Krawczyk operator [43] and more closely
by the approach proposed in [44]. Note that functional analytic methods of CAPs for
studying periodic orbits of differential equations go back to the work of Cesari on
Galerkin projections for periodic solutions [45, 46].

Recall that there are twoconservedquantities for solutions of (1.7), givenby�2+�k

which is the right-hand side in (1.5) and� in (1.8). Note that for the Bianchi types VIII
and IX with v = 0, the conserved quantity � is equivalent to the product N1N2N3
being constant. This yields a two-parameter family of periodic solutions; whence, to
isolate the periodic orbits, we search for 2π -periodic orbits of the following auxiliary
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ODE

d

dt
�+ = 2γ

[
(N3 − N2)

2 − N1 (2N1 − N2 − N3)
]

+ η1�+, (4.1a)

d

dt
�− = 2γ

√
3 (N3 − N2) (N1 − N2 − N3) , (4.1b)

d

dt
N1 = 4γ�+N1, (4.1c)

d

dt
N2 = −2γ

(
�+ + √

3�−
)
N2 + η2, (4.1d)

d

dt
N3 = −2γ

(
�+ − √

3�−
)
N3, (4.1e)

where γ, η1, η2 ∈ C are indeterminate constants.
Whenever η1 = η2 = 0, the Eqs. (4.1) reduce to the original system (1.7) scaled

by a factor γ . The constant γ arises from a time scaling, τ �→ t(τ ) := γ −1τ , which
turns a 2πγ -periodic solution into a 2π -periodic solution. The constants η1, η2 play
the role of unfolding parameters such that η1 = η2 = 0 under suitable conditions. The
next lemma, reminiscent of the approach presented in [47], gives sufficient conditions
for the periodic solutions of (4.1) to yield periodic solutions of (1.7).

Lemma 4.2 Let t ∈ R �→ (�+(t),�−(t), N1(t), N2(t), N3(t)) be a 2π -periodic
solution of (4.1). If �+, N1N3 are not identically zero and N1N3 has constant sign,
then η1 = η2 = 0.
Additionally, if γ ∈ (0,+∞), then τ ∈ R �→ (�+(γ −1τ),�−(γ −1τ), N1(γ

−1τ),

N2(γ
−1τ), N3(γ

−1τ)) is a 2πγ -periodic solution of (1.7).

Proof Given a 2π -periodic solution of (4.1), then N1N2N3 is also 2π -periodic such
that

0 =
∫ 2π

0

d

dt
(N1(t)N2(t)N3(t)) dt = η2

∫ 2π

0
N1(t)N3(t) dt . (4.2)

Since N1N3 has constant sign and is not identically zero, the previous equality implies
η2 = 0. Similarly, �2 + �k is 2π -periodic satisfying

0 =
∫ 2π

0

d

dt

(
�2 + �k

)
dt = 2η1

∫ 2π

0
�+(t)2 dt, (4.3)

where we used η2 = 0. Since �+ is not identically zero, the equality (4.3) implies
η1 = 0.

Lastly, since γ ∈ (0,+∞), it is straightforward to check that the derivative of
the solution τ ∈ R �→ (�+(γ −1τ),�−(γ −1τ), N1(γ

−1τ), N2(γ
−1τ), N3(γ

−1τ))

satisfies (1.7). ��
The periodic solutions of (4.1) are analytic, since they are solutions of an ODE defined
by an analytic vector field. Therefore, they admit a Fourier expansion whose Fourier
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coefficients decay exponentially. The Banach space of bi-infinite sequences with geo-
metric decay1 rate ν ≥ 1 is defined as

XFourier :=
{
a ∈ C

Z : |a|XFourier :=
∑
k∈Z

|ak |ν|k| < +∞
}

.

The Banach space XFourier becomes a Banach algebra with the discrete convolu-
tion denoted by ∗ : XFourier × XFourier → XFourier and defined by a ∗ b :={∑

l∈Z ak−lbl
}
k∈Z. Let X := X5

Fourier × C
3 be the Banach space equipped with the

norm

|x |X := max

(
max

j=1,...,5
|a j |XFourier , |γ |, |η1|, |η2|

)
, for all

x := (a1, a2, a3, a4, a5, γ, η1, η2) ∈ X .

Fix c ∈ R. Note that, in Theorem (4.1), we fix c = 10k for each k ∈ {1, 0, . . . ,−7}.
Requiring

(
�2 + �k

) |t=0 = 1, N1(0)N2(0)N3(0) = c, �+(0) = 0 and plugging

�+(t) =
∑
k∈Z

(a1)ke
ikt , �−(t) =

∑
k∈Z

(a2)ke
ikt ,

N1(t) =
∑
k∈Z

(a3)ke
ikt , N2(t) =

∑
k∈Z

(a4)ke
ikt , N3(t) =

∑
k∈Z

(a5)ke
ikt ,

into (4.1), yields the unbounded operator F : X → X given by

F(a1, a2, a3, a4, a5, γ, η1, η2) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2γ
[
(a5 − a4)

∗2 − a3 ∗ (2a3 − a4 − a5)
]

+ η1a1 − D(a1)

2γ
√
3 (a5 − a4) ∗ (a3 − a4 − a5) − D(a2)

4γ a1 ∗ a3 − D(a3)
−2γ (a1 + √

3a2) ∗ a4 + η2 − D(a4)
−2γ (a1 − √

3a2) ∗ a5 − D(a5)
E(a1)

(�2 + �k )(E(a1),E(a2),E(a3),E(a4),E(a5)) − 1
E(a3)E(a4)E(a5) − c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a∗2 := a ∗ a, D(a) = {ikak}k∈Z for all a ∈ XFourier such that D(a) ∈ XFourier
and E(a) = ∑

k∈Z ak for all a ∈ XFourier. Formally, D : XFourier → XFourier is the
representation of the (unbounded) differentiation operator, and E : XFourier → C is the
evaluation at zero functional. Note that we introduced the requirement that�+(0) = 0
to quotient out the temporal translation invariance of the periodic orbit; this specific
choice was motivated by numerical observations and symmetry of the system (1.7).
The CAP consists in showing the existence of x̃ := (ã1, ã2, ã3, ã4, ã5, γ̃ , η̃1, η̃2) ∈ X
such that

1 Note that XFourier is �1 when ν = 1 and the sequences do not enjoy decay. In case ν > 1, a sequence
a ∈ XFourier decays exponentially fast to zero with decay rate at least ν.
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(i) F(x̃) = 0 and
∑

k∈Z(ã j )keikt ∈ R for j = 1, . . . , 5 and all t ∈ [0, 2π). This
implies that ã1, ã2, ã3, ã4, ã5 are the Fourier coefficients of a real 2π -periodic
orbit of (4.1) given by (�+, �−, N1, N2, N3) := (

∑
k∈Z ã1eikt ,

∑
k∈Z ã2eikt ,∑

k∈Z ã3eikt ,
∑

k∈Z ã4eikt ,
∑

k∈Z ã5eikt ).
(ii) �+, N1N3 are not identically zero and N1N3 has constant sign for some γ ∈

(0,+∞). Thus τ ∈ R �→ (�+(γ −1τ),�−(γ −1τ), N1(γ
−1τ), N2(γ

−1τ),

N3(γ
−1τ)) is a real 2πγ -periodic solution of (1.7) according to Lemma 4.2.

To start with, one finds a numerical approximation of a periodic orbit of (1.7) with
approximate frequencyγ −1

0 > 0; thismaybe achieved via a combination of an iterative
procedure (e.g. Newton’s method or gradient descent) and numerical integration of
the vector fields. From the scaling τ �→ γ −1

0 τ , one obtains 2π -periodic functions
whose Fourier coefficients are denoted by a0,1, a0,2, a0,3, a0,4, a0,5. Consequently,
one has successfully produced a numerical periodic solution of (4.1) with parameters
γ = γ0 and η1 = η2 = 0. In other words, this process yields an approximate zero
x0 = (a0,1, a0,2, a0,3, a0,4, a0,5, γ0, η1, η2) of F .

The proof of (i) relies on the contraction of a fixed-point operator in a ball centred
at x0. Notably, the radius r0 of this ball is an a posteriori error bound for the numerical
approximation x0. Whence, (ii) amounts to a simple rigorous evaluation on [0, 2π ] of
Fourier series with a known error bound r0. The actual procedure for both (i) and (ii)
are purely technical and are given in Appendix B.

5 Conclusion

We have described the full stratification of invariant sets within the dynamical phase-
space of Bianchi models in HL gravity in case of a cubic dominant potential in (1.2d).
Similar to GR, the Bianchi type I consists of a circle of equilibria and type II consists
of heteroclinic orbits. However, the type II dynamics induce the Kasner map which
is not chaotic, in contrast to GR. This is in agreement with previous results in the
literature which concludes that the dynamics towards the singularity is oscillating, but
not chaotic, see [11, 12].

Moreover, we have proved the existence of several periodic orbits of Bianchi type
VIII and IX in Theorem 4.1, some of which are far from the Mixmaster attractor
consisting of Bianchi type I and II. This yields a behaviour which is not described by
the BKL picture of bouncing Kasner-like states. Hence, our present results indicate
that the asymptotic dynamics for v = 0 is different from GR, and in particular, the
global attractor of the ODE (1.7) is bigger than the usual Mixmaster. This shows that
the Kasner map induced by the type II solutions does not accurately approximate the
asymptotic dynamics of (1.7), in contrast to [11, 12]. Note that this is expected, since
the function� in (1.8), which is a Lyapunov function that accounts for the convergence
towards the Mixmaster for v > 0, becomes a conserved quantity satisfying �′ = 0
for v = 0.

Several questions posed in Sect. 4 for v = 0 remain to be answered. For example,
do the periodic orbits always occur in one-parameter families? What is the boundary
of such one-parameter families? Are there heteroclinic connections between periodic
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orbits for each constant value� ∈ R+?More generally, what is the overall asymptotic
dynamics for each fixed � ∈ R+, e.g. � ≡ 1? Is the qualitative dynamics for small �
(i.e. close to theMixmaster) similar to the one of large� (i.e. far from theMixmaster)?
What is the global attractor of the ODE (1.7) bound to the constraint (1.5)?
Beyond v = 0, the relationship of the periodic orbits in Theorem 4.1 with the subcrit-
ical case, v ∈ (0, 1/2), the critical GR case, v = 1/2, and similar models remains a
mystery. Are the center-stable manifolds (of a given one-parameter family of periodic
orbits for v = 0) the limiting object of an appropriate stable manifold (of a type II het-
eroclinic chain for v > 0), as v → 0? See [13, Conjectures 7.1-7.3]. aside from that,
note that the (three sets of) type II parallel heteroclinics orbits in HL described in Sec-
tion 2 bear some similarity to the (two sets of) Bianchi type VI−1/9 frame transitions
in Iwasawa frame. Can the ODE (1.7) shine a light on the conjecture of an attractor
for the exceptional Bianchi models of class B? See [9, 10, 48], and in particular, the
existence of periodic orbits for non-vacuum Bianchi type VI−1/9 models in [49, The-
orem 4.1]. Lastly, the model (1.7) also share some resemblance to a generalized Toda
problem in two dimensions and to the Hénon-Heiles system, see [13, Appendix A].
Thus the ODE (1.7) provides a simple toy model that poses new directions which may
guide the search for new conclusions as regards GR and other problems.

Acknowledgements PL was funded by CNPq, 163527/2020-2 and 160956/2022-6. JPL was funded by
NSERC.

Data availability We confirm that all relevant data are included in the article.

A. Derivation of the ODEmodel

We deduce the evolution equations (1.3) from the action (1.2a) following [13,
Appendix A]. For the vacuum HL class A Bianchi models, the action (1.2a) expressed
in terms of a symmetry adapted spatial (left-invariant) co-frame {ω1, ω2, ω3} yields
the field equations for the associated metric (1.1). Expressing the components of the
spatial metric in such a symmetry adapted spatial co-frame leads to that they become
purely time-dependent in diagonal form, see [50] and references therein. Setting the
shift vector Ni in (1.1) to zero, the diagonalized vacuumspatially homogeneous classA
metrics are given by

g = −N 2(t)dt ⊗ dt + g11(t) ω1 ⊗ ω1 + g22(t) ω2 ⊗ ω2 + g33(t) ω3 ⊗ ω3,(A.1)

where the lapse N (t) is a non-zero function determining the particular choice of time
variable.
In order to obtain simple Hamiltonian equations, we first focus on the kinetic part T
in equation (1.2b), which can be written as

T = (K 1
1)

2 + (K 2
2)

2 + (K 3
3)

2 − λ(K 1
1 + K 2

2 + K 3
3)

2, (A.2)
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where the extrinsic curvature is given by (K11, K22, K33) = (ġ11, ġ22, ġ33)/(2N )

such that ˙denotes a derivative with respect to t , and thus raising one of the indices,
we obtain that (K 1

1, K 2
2, K 3

3) = (ġ11/g11, ġ22/g22, ġ33/g33) /(2N ).
To simplify T , we make a variable transformation from the metric components to the
variables β0, β+, β−, first introduced by Misner [51–53],

g11 = e2(β
0−2β+), g22 = e2(β

0+β++√
3β−), g33 = e2(β

0+β+−√
3β−). (A.3)

This results in that T in equation (A.2) takes the form

T = 6

N 2

[
−
(
3λ − 1

2

)
(β̇0)2 + (β̇+)2 + (β̇−)2

]
. (A.4)

Note that the character of the quadratic form (A.4) changes when λ = 1/3. Since we
are interested in continuously deforming the GR case λ = 1, we restrict considerations
to λ > 1/3. To simplify the kinetic part further, we introduce a new variable βλ and a
density-normalized lapse function N , defined by

βλ :=
√
3λ − 1

2
β0, N := N

12
√
g
, (A.5)

where g = g11g22g33 = exp(6β0) is the determinant of the spatial metric in the
symmetry adapted co-frame, which leads to,

√
gNT = 1

2N
[
−(β̇λ)2 + (β̇+)2 + (β̇−)2

]
. (A.6)

It is convenient to define T :=
√
gN
N T = 12gT , so that N T is the kinetic part of the

Lagrangian for the present spatially homogeneous models, in analogy with the GR
case, see e.g., ch. 10 in [50]. The density-normalized lapse N is kept in the kinetic
term N T , since it is needed in order to obtain the Hamiltonian constraint, which is
accomplished by varying N in the Hamiltonian.

To proceed to a Hamiltonian description, we introduce the canonical momenta

pλ := − β̇λ

N , p± := β̇±

N . (A.7)

This leads to that T takes the form

T = 1

2

(
−p2λ + p2+ + p2−

)
. (A.8)

Similarly to the treatment of the kinetic part, we define

V := √
gNV/N = 12gV. (A.9)
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Due to (1.2d),

V = 1V + 2V + 3V + 4V + 5V + 6V + . . . , (A.10)

where

1V := 12k1gR, 2V := 12k2gR
2, 3V := 12k3gR

i
j R

j
i ,

(A.11a)
4V := 12k4gR

i
jC

j
i ,

5V := 12k5gC
i
jC

j
i ,

6V := 12k6gR
3. (A.11b)

The superscripts on AV (where A = 1, . . . , 6) thereby coincide with the subscripts of
the constants kA in (1.2d).

Based on (1.2a), this leads to a Hamiltonian H given by

H := √
gN (T + V) = N (T + V ) = 0, (A.12)

where T only depends on the canonical momenta pλ, p±, given by (A.8), and V only
depends on βλ, β±, given by (A.10) and (A.11).

In order to derive the ordinary differential equations for thesemodels via the Hamil-
tonian equations in terms of the variables βλ, β± and the canonical momenta pλ, p±,
we need to compute each AV (βλ, β±). We proceed with the simplest case that mini-
mally modifies vacuum GR in the present context, the vacuum λ-R models [54–56].
They are obtained from an action that consists of the generalized kinetic part in (1.2b),
i.e, by keeping λ (GR is obtained by setting λ = 1), and the vacuum GR poten-
tial in (1.2d), i.e., a potential arising from −R only, and hence when k1 = −1 and
k2 = k3 = k4 = k5 = k6 = 0 in (1.2d). These models suffice for our goal of deriving
the ODEs (1.3). The case that modifies GR with more general potentials, the HLmod-
els are similar and can be found in [13, Appendix A.2]. In particular, they heuristically
argue that a broad class of HL models possess a dominant potential with asymptotic
dynamics described by the λ-R models.
To obtain succinct expressions for the spatial curvature, and thereby the potential
V = 1V = −12gR, we introduce the following auxiliary quantities

m1 := n1g11 = n1e
2(2vβλ−2β+), (A.13a)

m2 := n2g22 = n2e
2(2vβλ+β++√

3β−), (A.13b)

m3 := n3g33 = n3e
2(2vβλ+β+−√

3β−). (A.13c)

Here we have introduced the parameter v, which is defined by the relation

v := 1√
2(3λ − 1)

, (A.14)

and hence β0 = 2vβλ due to (A.5). The parameter v plays a prominent role in the
evolution equations. Since we are interested in continuous deformations of GR with
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λ = 1, and thus v = 1/2, we restrict attention to v ∈ (0, 1). Specializing the general
expression for the spatial curvature in [57] to the diagonal class A Bianchi models
leads to

R1
1 = 1

2g
(m2

1 − (m2 − m3)
2), (A.15)

where R1
1 = g11R11 = g−1

11 R11, and similarly by permutations for R2
2 and R3

3. It
follows that the spatial scalar curvature R = R1

1 + R2
2 + R3

3 is given by

R = − 1

2g
(m2

1 + m2
2 + m2

3 − 2m1m2 − 2m2m3 − 2m3m1). (A.16)

This thereby yields the potential in (A.10) and (A.11) with k1 = −1:

V = 1V = −12gR = 6(m2
1 + m2

2 + m2
3 − 2m1m2 − 2m2m3 − 2m3m1),

(A.17)

where V depends on βλ and β± via m1, m2 and m3, according to equation (A.13).
The evolution equations forβλ,β±, pλ, p± are obtained fromHamilton’s equations,

where T and V in the Hamiltonian (A.12) are given by (A.8) and (A.17), respectively,
which yields

β̇λ = ∂H

∂ pλ

= −N pλ, ṗλ = − ∂H

∂βλ
= −N ∂V

∂βλ
, (A.18a)

β̇± = ∂H

∂ p±
= N p±, ṗ± = − ∂H

∂β± = −N ∂V

∂β± , (A.18b)

while the Hamiltonian constraint T + V = 0 is obtained by varying N .
Next, we choose a new time variable τ− := −βλ, which is directed toward the

physical past, since we are considering expanding models. This is accomplished by
setting N = p−1

λ in the first equation in (A.18a), and thereby N = 12
√
g/pλ, which

results in the following evolution equations:

dβλ

dτ−
= −1,

dpλ

dτ−
= − 1

pλ

∂V

∂βλ
, (A.19a)

dβ±

dτ−
= p±

pλ

,
dp±
dτ−

= − 1

pλ

∂V

∂β± . (A.19b)

We then rewrite the system (A.19) and the constraint T + V = 0 using the non-
canonical variable transformation,

�± := − p±
pλ

, Nα := −2
√
3

(
mα

pλ

)
, (A.20)

while keeping pλ. Note that �± = dβ±/dβλ = −dβ±/dτ−.
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These variables lead to a decoupling of the evolution equation for the variable pλ,

p′
λ = −4v(1 − �2)pλ, (A.21)

where ′ denotes the derivative d/dτ−. This yields the following reduced system of
evolution equations

�′± = 4v(1 − �2)�± + S±, (A.22a)

N ′
1 = −2(2v�2 − 2�+)N1, (A.22b)

N ′
2 = −2(2v�2 + �+ + √

3�−)N2, (A.22c)

N ′
3 = −2(2v�2 + �+ − √

3�−)N3, (A.22d)

while the Hamiltonian constraint T + V = 0 results in

1 − �2 − �k = 0, (A.22e)

where

�2 := �2+ + �2−, (A.23a)

�k := N 2
1 + N 2

2 + N 2
3 − 2N1N2 − 2N2N3 − 2N3N1, (A.23b)

S+ := 2[(N2 − N3)
2 − N1(2N1 − N2 − N3)], (A.23c)

S− := 2
√
3(N2 − N3)(N2 + N3 − N1). (A.23d)

Note that the variables �±, N1, N2 and N3, defined in (A.20), are dimensionless.
Dimensions can be introduced in various ways, but terms in a sum must all have the
samedimension. The constraint (A.22e) is such a sum. Since this sumcontains 1,which
obviously is dimensionless, it follows that�+,�−, N1, N2 and N3 are dimensionless,
and so is the time variable τ−, as follows from inspection of (A.22). The vacuum GR
equations are obtained by setting v = 1/2.

In [13, Appendix A.2], it is heuristically argued that a broad range of HL models
have asymptotic dynamics described by theλ-R evolution equations (A.22). To achieve
this, they useMisner’s approximation scheme of a ‘particle’ moving in a potential well
in (β+, β−) ∈ R

2 space as τ− = −βλ → ∞, which was introduced to understand
the initial Bianchi type IX singularity in GR, see [50–52, 58]. For HL, each potential
term in (1.2d) has its associated ‘moving walls’ that move with velocity iv. Among
those, there is a dominant potential term which yields the same evolution equations
as the λ-R models in (A.22), but with different parameters iv given by (1.6) instead
of the parameter v in (A.14).

B. Computer-assisted proof

We now proceed to prove the two remaining claims (i) and (ii) in Sect. 4.1.
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The following proposition is the core result to complete (i). More precisely, given a
numerical approximation x0 of a zero of F , it gives sufficient conditions to find the
radius r0 of a ball centred at x0 within which there exists a unique true zero x̃ of F .

Proposition B.1 Let R > 0 and x0 := (a0,1, a0,2, a0,3, a0,4, a0,5, γ0, 0, 0) ∈ X. Con-
sider a linear bounded injective operator A : X → X satisfying

|AF(x0)|X ≤ Y , (B.1a)

|I − ADF(x0)|B(X ,X) ≤ Z1, (B.1b)

sup
x∈cl(BR(x0))

|AD2F(x)|B(X2,X) ≤ Z2. (B.1c)

for some constants Y , Z1, Z2 ≥ 0. If there exists r0 ∈ [0, R] such that

Y + (Z1 − 1)r0 + Z2

2
r20 ≤ 0 and Z1 + Z2r0 < 1, (B.2)

then there exists a unique x̃ := (ã1, ã2, ã3, ã4, ã5, γ̃ , η̃1, η̃2) ∈ cl(Br0(x0)) such that
F(x̃) = 0.

Furthermore, if γ0 ∈ R and a0,1, a0,2, a0,3, a0,4, a0,5 are sequences of Fourier coef-
ficients of real Fourier series, then γ̃ , η̃1, η̃2 ∈ R and ã1, ã2, ã3, ã4, ã5 are sequences
of Fourier coefficients of real Fourier series.

Proof Theproof is constructive to provide practical computational insights. To summa-
rize, we construct the aforementioned operatorA and the bounds Y , Z1, Z2. Secondly,
we obtain a Newton-like operator T which is a contraction in cl(Br0(x0)), given that
the error bound r0 ∈ [0, R] satisfies (B.2). This yields a zero x̃ of F . Lastly, we address
the properties of x̃ given in the last paragraph of the proposition.

Firstly, given a fixed projection dimension number n ∈ N, consider the projection
operator πn : XFourier → XFourier defined by

(πna)k :=
{
ak, |k| ≤ n,

0, |k| ≥ n + 1,
for all a ∈ XFourier. (B.3)

This operator is extended to an operator (denoted with the same symbol) on X by

πnx = (πna1, π
na2, π

na3, π
na4, π

na5, γ, η1, η2), for all

x := (a1, a2, a3, a4, a5, γ, η1, η2) ∈ X . (B.4)

It is clear that πn is a projection and, defining π∞(n) := I − πn , we have the decom-
position X = πn X ⊕π∞(n)X . Intuitively, to obtain norms estimate in X , we carefully
split the bounds into a part in πn X handled by the computer and a part in π∞(n)X
controlled theoretically.

Introduce a Banach space X := X 5
Fourier × C

3, where

XFourier :=
{
a ∈ C

Z : |a|XFourier :=
∑
k∈Z

|ak |ν
|k|

|k|

}
.
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It is clear that the unbounded operator F can be interpreted as a bounded nonlinear
operator F : X → X . Similarly, consider the bounded linear operator L : X → X
given by

Lx :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−D(a1)
−D(a2)
−D(a3)
−D(a4)
−D(a5)
E(a1)∑5

j=1

[
∂a j (�

2 + �k)(a1, . . . , a5)
]
a1=a0,1,...,a5=a0,5

a j∑5
j=3

[
∂a j (E(a3)E(a4), E(a5))

]
a3=a0,3,a4=a0,4,a5=a0,5

a j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for all x := (a1, a2, a3, a4, a5, γ, η1, η2) ∈ X such that Lx ∈ X .
In this scope, let L|π∞(2n)X : π∞(2n)X → π∞(2n)X be defined as L|π∞(2n)X x =
π∞(2n)Lx for all x ∈ π∞(2n)X such that Lx ∈ X . Also, set A := Aπ2n +
L|−1

π∞(2n)X
π∞(2n) where A : π2n X → π2n X is defined as an approximation of

(π2nDF(x0)π2n)−1. By construction, the operator A : X → X is linear, bounded
and injective.

Let us give explicit formulae for the bounds Y , Z1, Z2:

1. For a, b ∈ πn XFourier, we have a ∗ b ∈ π2n XFourier. Hence, F(x0) ∈ π2n X and

|AF(u0)|X = |AF(u0)|X =: Y .

2. For a ∈ πn XFourier and Ma(b) := a ∗ b for all b ∈ XFourier, we have π2nMa =
π2nMaπ

3n . Hence,π2nDF(x0) = π2nDF(x0)π3n+π2nLπ∞(3n) andwe obtain

|I − ADF(x0)|B(X ,X)

= |I − (Aπ2n + L|−1
π∞(2n)X

π∞(2n))DF(x0)|B(X ,X)

= |I − Aπ2nDF(x0) + L|−1
π∞(2n)X

π∞(2n)L

+ L|−1
π∞(2n)X

π∞(2n)(DF(x0) − L)|B(X ,X)

≤ |π2n−Aπ2nDF(x0)π
3n|B(X ,X)+|L|−1

π∞(2n)X
|B(X ,X)|DF(x0)−L|B(X ,X)+

|A|B(X ,X)|π2nLπ∞(3n)|B(X ,X)

=: Z1.

3. By the triangle inequality, we obtain

sup
x∈cl(BR(x0))

|AD2F(x)|B(X2,X)

= sup
x∈cl(BR(x0))

|(Aπ2n + L|−1
π∞(2n)X

π∞(2n))D2F(x)|B(X2,X)

≤ (|A|B(X ,X) + |L|−1
π∞(2n)X

π∞(2n)|B(X ,X)) sup
x∈cl(BR(x0))

|D2F(x)|B(X2,X)
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≤ (|A|B(X ,X) + |L|−1
π∞(2n)X

π∞(2n)|B(X ,X))ζ

=: Z2,

for some ζ = ζ(x0, R) ≥ supx∈cl(BR(x0)) |D2F(x)|B(X2,X) obtained in practice
by applying the triangle inequality.

Consider the fixed-point operator T : X → X given by T (x) := x − AF(x), which
is twice Fréchet differentiable. By hypothesis, there exists r0 ∈ [0, R] satisfying the
bounds (B.2). On the one hand, a second-order Taylor expansion of T yields

|T (x) − x0|X ≤ Y + Z1r0 + Z2

2
r20 ≤ r0, for all x ∈ cl(Br0(x0)).

On the other hand, the Mean Value Theorem implies

|T (x1)−T (x2)|X ≤(Z1+Z2r0)|x1−x2|X < |x1 − x2|X , for all x1, x2 ∈ cl(Br0(x0)).

Thus, T satisfies the Banach Fixed-Point Theorem in cl(Br0(x0)): there exists a unique
x̃ ∈ cl(Br0(x0)) such that T (x̃) = x̃ . By injectivity of A, it follows that F(x̃) = 0.

Finally, wewant to prove that x̃ := (ã1, ã2, ã3, ã4, ã5, γ̃ , η̃1, η̃2) satisfy γ̃ , η̃1, η̃2 ∈
R and ã1, ã2, ã3, ã4, ã5 are sequences of Fourier coefficients of real Fourier series.
Mathematically, this means that γ̃ = γ̃ , η̃1 = η̃1, η̃2 = η̃2 and (ã j )k = (ã j )−k for all
k ∈ Z, j = 1, . . . , 5. Note that the overline represents the complex conjugacy.
For convenience, we introduce the symbol † : X → X defined by

†(x) =
({

(a1)−k

}
k∈Z ,

{
(a2)−k

}
k∈Z ,

{
(a3)−k

}
k∈Z ,

{
(a4)−k

}
k∈Z ,

{
(a5)−k

}
k∈Z ,

γ , η1, η2) , for all

x = (a1, a2, a3, a4, a5, γ, η1, η2) ∈ X .

In particular, if x = †(x) for some x = (a1, a2, a3, a4, a5, γ, η1, η2) ∈ X , then
a1, a2, a3, a4, a5 are Fourier coefficients of real functions.

By assumption x0 = †(x0). Note that | † (x̃) − x0|X = | † (x̃) − †(x0)|X = | † (x̃ −
x0)|X = |x̃−x0|X , i.e. †(x̃) ∈ cl(Br0(x0)). Also, it holds that F(†(x̃)) = †(F(x̃)) = 0.
Whence, by local uniqueness, x̃ = †(x̃) which concludes the proof. ��
Next, to complete (ii) in Sect. 4.1, consider a numerical approximation given by
x0 := (a0,1, a0,2, a0,3, a0,4, a0,5, γ0, 0, 0) ∈ πn X , where the truncation operator πn

is defined in (B.3)–(B.4), such that γ0 ∈ R and a0,1, a0,2, a0,3, a0,4, a0,5 are sequences
of Fourier coefficients of real Fourier series. Assume that Proposition B.1 is satisfied:
there exists r0 ∈ [0,+∞) and thus a unique x̃ := (ã1, ã2, ã3, ã4, ã5, γ̃ , η̃1, η̃2) ∈
cl(Br0(x0)) such that F(x̃) = 0 and γ̃ , η̃1, η̃2 ∈ R, ã1, ã2, ã3, ã4, ã5 are sequences of
Fourier coefficients of real Fourier series.

We now detail the algorithm to verify that �+(t) := ∑
k∈Z(ã2)keikt is not identi-

cally zero and N1N3(t) := ∑
k∈Z(ã3 ∗ ã5)keikt is not identically zero and does not

change sign.
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To evaluate �+, N1 and N3 rigorously, we use the interval enclosures

�+(t) ∈
⎛
⎝∑

|k|≤n

(a0,1)ke
ikt

⎞
⎠ + [−r0, r0], t ∈ R, (B.5a)

N j (t) ∈
⎛
⎝∑

|k|≤n

(a0, j+2)ke
ikt

⎞
⎠ + [−r0, r0], j ∈ {1, 3}, t ∈ R. (B.5b)

Firstly, to establish that �+ and N1N3 are not identically zero, we choose some times
t1, t2,∈ [0, 2π ] and compute the interval enclosures of �+(t1) (via (B.5a)), N1(t2)
and N3(t2) (via (B.5b)). If these intervals do not contain zero, then it must be the case
that �+(t1) �= 0 and N1(t2)N3(t2) �= 0.

Secondly, we show that N1N3 has constant sign in [0, 2π). It is sufficient to prove
that each of N1 and N3 does not have a zero in [0, 2π ]. Note that using (4.1c), (4.1e)
and Proposition B.1, we can rigorously bound the derivatives N ′

1 and N ′
3 as follows:

|N ′
1|∞ = sup

t∈[0,2π ]
|N ′

1(t)| ≤ 4(|γ0| + r0)(|a0,1|XFourier + r0)(|a0,3|XFourier + r0),

|N ′
3|∞ = sup

t∈[0,2π ]
|N ′

3(t)| ≤ 2(|γ0| + r0)(|a0,5|XFourier + r0)(|a0,1|XFourier

+ r0 + √
3(|a0,2|XFourier + r0)).

To verify that N1 and N3 have no zeros, we use an inductive argument; for clarity, we
present the argument only for N1 (the case of N3 is treated similarly). Set t0 := 0 and
evaluate the enclosure (B.5b) for N1(t0). If this enclosure does not contain zero, then
N1(t0) �= 0. Since |N ′

1|∞ is a Lipschitz constant for N1, there can be no zero in the
interval [t0, t0 + |N1(t0)|/|N ′

1|∞). Therefore, define the time iterates

t j := t j−1 +
∣∣∣∑|k|≤n(a0,3)ke

ikt j−1

∣∣∣ − r0

|N ′
1|∞

, j ∈ N.

By construction, N1 does not have a zero in [t0, t1]. As an inductive hypothesis,
suppose N1 does not have a zero in [t0, t j ] for some j ∈ N. We verify that N1(t j ) �= 0
using an inclusion check with (B.5b). Then, by construction, the interval [t0, t j+1]will
not contain zero. We halt the iteration as soon as some j∗ ∈ N is reached such that
t j∗ ≥ 2π .
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