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ABSTRACT

The quantum internet is one of the frontiers of quantum information science. It will revolutionize the way we communicate and do other tasks,
and it will allow for tasks that are not possible using the current, classical internet. The backbone of a quantum internet is entanglement
distributed globally in order to allow for such novel applications to be performed over long distances. Experimental progress is currently being
made to realize quantum networks on a small scale, but much theoretical work is still needed in order to understand how best to distribute
entanglement, especially with the limitations of near-term quantum technologies taken into account. This work provides an initial step toward this
goal. In this work, we lay out a theory of near-term quantum networks based on Markov decision processes (MDPs), and we show that MDPs pro-
vide a precise and systematic mathematical framework to model protocols for near-term quantum networks that is agnostic to the specific imple-
mentation platform. We start by simplifying the MDP for elementary links introduced in prior work and by providing new results on policies for
elementary links in the steady-state (infinite-time) limit. Then, we show how the elementary link MDP can be used to analyze a complete quantum
network protocol. We then provide an extension of the MDP formalism to two elementary links. Here, as new results, we derive linear programing
relaxations that allow us to obtain optimal steady-state policies with respect to the expected fidelity and waiting time of the end-to-end link.
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creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0084653

TABLE OF CONTENTS
I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
II. A MARKOV DECISION PROCESS FOR

ELEMENTARY LINKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
A. Generating elementary links . . . . . . . . . . . . . . . . . . . 3

1. Ground-based transmission . . . . . . . . . . . . . . . . 4
2. Transmission from satellites . . . . . . . . . . . . . . . . 6

B. Definition of the MDP. . . . . . . . . . . . . . . . . . . . . . . . 6
C. Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1. The memory-cutoff policy . . . . . . . . . . . . . . . . . 9
D. Example: Satellite-to-ground entanglement

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1. Quantum state of an elementary link . . . . . . . . 9
2. Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

III. ENTANGLEMENT DISTILLATION AND JOINING
PROTOCOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A. Entanglement distillation . . . . . . . . . . . . . . . . . . . . . . 15
B. Joining protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1. Entanglement swapping protocol. . . . . . . . . . . . 17
2. GHZ entanglement swapping protocol . . . . . . . 18
3. Graph state distribution protocol. . . . . . . . . . . . 19

IV. ANALYSIS OF A QUANTUM NETWORK
PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A. Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B. Waiting time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
C. Key rates for quantum key distribution . . . . . . . . . 23

V. A MARKOV DECISION PROCESS BEYOND
THE ELEMENTARY LINK LEVEL . . . . . . . . . . . . . . . . . . 23

A. An MDP for two elementary links . . . . . . . . . . . . . 23
B. Optimal policies via linear programing . . . . . . . . . . 25

VI. SUMMARY AND OUTLOOK . . . . . . . . . . . . . . . . . . . . . 26

I. INTRODUCTION

The quantum internet1–5 is envisioned to be a global-scale
interconnected network of devices which exploits the uniquely
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quantum-mechanical phenomenon of entanglement. By operating in
tandem with today’s Internet, it will allow people all over the world to
perform quantum communication tasks, such as quantum key distri-
bution (QKD),6–11 quantum teleportation,12–14 quantum clock syn-
chronization,15–18 distributed quantum computation,19 and
distributed quantum metrology and sensing.20–22 A quantum internet
will also allow for exploring fundamental physics23 and for forming an
international standard time.24 Quantum teleportation and QKD are
perhaps the primary use cases of the quantum internet in the near
term. In fact, there are several metropolitan-scale QKD systems
already in place.25–32

Scaling up beyond the metropolitan level toward a global-scale
quantum internet is a major challenge. All of the aforementioned tasks
require the use of shared entanglement between distant locations on
the Earth, which typically has to be distributed using single-photonic
qubits sent through either the atmosphere or optical fibers. It is well
known that optical signals transmitted through either the atmosphere
or optical fibers undergo an exponential decrease in the transmission
success probability with distance,33–35 limiting direct transmission dis-
tances to roughly hundreds of kilometers. Therefore, one of the central
research questions in the theory of quantum networks is how to over-
come this exponential loss, thus distributing entanglement over long
distances efficiently and at high rates.

A quantum network can be modeled as a graph G ¼ ðV ;EÞ,
where the vertices V represent the nodes in the network and the edges
in E represent quantum channels connecting the nodes, see Fig. 1.
Then, the task of entanglement distribution is to transform elementary
links, i.e., entanglement shared by neighboring nodes, to virtual links,
i.e., entanglement between distant nodes, see the right-most panel of
Fig. 1. In this context, nodes that are not part of the virtual links to be
created can act as quantum repeaters, i.e., helper nodes whose purpose
is to mitigate the effects of loss and noise along a path connecting the
end nodes, thereby making the quantum information transmission
more reliable. Specifically, quantum repeaters perform entanglement
distillation36–38 (or some other form of quantum error correction),
entanglement swapping,12,39 and possibly some form of routing, in
order to create the desired virtual links. Protocols for entanglement
distribution in quantum networks have been described from an
information-theoretic perspective in Refs. 40–47, and limits on com-
munication in quantum networks have been explored in Refs. 40–54.
Linear programs, and other techniques for obtaining optimal

entanglement distribution rates in a quantum network, have been
explored in Refs. 53 and 55–57. However, information-theoretic analy-
ses are agnostic to physical implementations, and generally speaking,
the protocols and the rates derived apply in an idealized scenario in
which quantum memories have high coherence times, and quantum
gate operations have no error.

What are the fundamental limitations on near-term quantum
networks? Such quantum networks are characterized by the following
elements:

• Small number of nodes;
• Imperfect sources of entanglement;
• Non-deterministic elementary link generation and entanglement
swapping;

• Imperfect measurements and gate operations;
• Quantum memories with short coherence times;
• No (or limited) entanglement distillation/error correction.

A theoretical framework taking these practical limitations into
account would act as a bridge between statements about what can be
achieved in principle (which can be answered using information-
theoretic methods) and statements that are directly useful for the
purpose of implementation. The purpose of this work is to present the
initial elements of such a theory of near-term quantum networks.

The main contribution of this work is to frame quantum network
protocols in terms of Markov decision processes (MDPs) and to place
the Markov decision process for elementary links introduced in Ref.
58 within an overall quantum network protocol. More specifically, the
contributions of this work are as follows:

(1) In Sec. II, we start by recapping the model for elementary link
generation presented in Ref. 58. Along the way, we present
Lemma II.1. While the result of Lemma II.1 is generally well
known, to the best of our knowledge, its proof is not readily
accessible, and thus, we provide the proof here. Then, as a new
contribution, we show that the Markov decision process (MDP)
for elementary links introduced in Ref. 58 can be written in a
simpler manner in terms of different variables. Furthermore,
we emphasize that the figure of merit associated with the MDP,
as introduced in Ref. 58, takes into account both the fidelity of
the elementary link and its success probability. To the best of
our knowledge, such a figure of merit has not been considered
in prior work. The simplified form of the MDP allows us to

FIG. 1. Graphical depiction of a quantum network and entanglement distribution. (Left) The physical layout of the quantum network is described by a hypergraph G, which
should be thought of as fixed, in which the vertices represent the nodes (senders and receivers) in the network and the (hyper)edges represent quantum channels that are
used to distribute entangled states (elementary links) shared by the corresponding nodes. (Center) At any point in time, only a certain number of elementary links in the net-
work may be active. By “active,” we mean that an entangled state has been distributed successfully to the nodes and the corresponding quantum systems stored in the respec-
tive quantum memories. Active bipartite links are indicated by a red line, and active k-partite elementary links, k � 3, corresponding to the hyperedges are indicated by a blue
bubble. (Right) An entanglement distribution protocol transforms elementary links to virtual links, which are indicated in orange, thus leading to a new graph for the network.
The protocol is described mathematically by an LOCC channel.
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derive two new results. The first new result is Theorem II.4,
which gives us an analytic expression for the steady-state value
of an elementary link undergoing an arbitrary time-
homogenous policy. The second new result is Theorem II.5,
which allows us to determine the optimal steady-state value of
the elementary link using a linear program. We demonstrate
the usefulness of the MDP approach to modeling elementary
links in Sec. II D, in which we provide an extended example of
elementary links generated via satellite-to-ground transmission.

(2) In Sec. III, we describe entanglement distillation protocols and
protocols for joining elementary links (in order to create virtual
links) in general terms as local operations and classical commu-
nication (LOCC) quantum instrument channels. We then pre-
sent three joining protocols and write them down explicitly as
LOCC channels. Doing so allows us to determine the output
state of the protocol for any set of input states, including input
states that are noisy as a result of device imperfections, etc.
This, in turn, allows us to compute the fidelity of the output
state with respect to the ideal target state that would be
obtained if the input states were ideal. Formulas for the fidelity
at the output of the protocols are presented as Proposition III.1,
Proposition III.2, and Proposition III.3. In particular,
Proposition III.1 provides a formula for the fidelity at the out-
put of the usual entanglement swapping protocol, which, to the
best of our knowledge, is not explicitly found in prior works.
Prior works typically use (as an approximation) the product of
the individual elementary link fidelities in order to obtain the
fidelity after entanglement swapping.

(3) In Sec. IV, we present a quantum network protocol that com-
bines the Markov decision process for elementary links with
known routing and path-finding algorithms. Then, we provide
a general method for determining waiting times and key rates
for the quantum key distribution for this protocol.

(4) In Sec. V, we provide a first step toward extending the elemen-
tary link MDP by defining an MDP for two elementary links
with entanglement swapping. We then show how to approxi-
mate waiting times using a linear program, and we find that
this linear programing approximation reproduces exactly the
known analytic results on the waiting time for such a sce-
nario.59 However, our result is more general, allowing us to
compute waiting times for arbitrary parameter regimes, while
the analytic results are true only for restricted parameter
regimes. Broadly speaking, having linear-programing approxi-
mations to the waiting time and other important quantities of
interest (such as fidelity) will be important when considering
MDPs for larger networks.

This work is the one in a long line of work on quantum repeaters,
taking device imperfections and noise into account, beginning with
the initial theoretical proposal,60,61 and then resulting in a vast body of
work.56,57,59,62–91 (See also Refs. 92–95 and the references therein.) All
of these proposals deal almost exclusively with a single transmission
line connecting a sender and a receiver. However, for a quantum inter-
net, we need to go beyond a single transmission line, and we need to
consider multiple transmission lines operating in parallel. A unified
and self-consistent theoretical framework will help to guide real-world
implementations. It is our hope that this work provides a good starting
point along this line of thought and leads to a better understanding of

how realistic, near-term quantum devices could be used to realize
large-scale quantum networks and, eventually, a global-scale quantum
internet.

II. A MARKOV DECISION PROCESS FOR ELEMENTARY
LINKS

We start by presenting a Markov decision process (MDP) for ele-
mentary links, as introduced in Ref. 58. To be specific, this is an MDP
for an arbitrary edge of the graph corresponding to a quantum network.
However, unlike Ref. 58, we present the MDP in much simpler terms in
which we need not explicitly keep track of the quantum state. Through
this simplification, we are able to establish a new result, Theorem II.4,
which gives us the steady-state fidelity of an elementary link undergoing
an arbitrary time-homogenous (stationary) policy. We start by describ-
ing the physical model of elementary link generation, considering two
specific examples of transmission channels. Then, we define the MDP
corresponding to this model of elementary link generation.

A. Generating elementary links

Our model for elementary link generation is the one considered
in Ref. 58 and illustrated in Fig. 2, based on the samemodel considered
in prior work.76,96–98 Consider an arbitrary physical link in the net-
work. For every such physical link, there is a source station that pre-
pares and distributes an entangled state to the corresponding nodes. In
general, all of these source stations operate independently of each
other, distributing entangled states as they are requested. Specifically,
we have the following.

• The source produces a k-partite quantum state qS, k � 2, and
sends it to the nodes via a quantum channel S, leading to the

FIG. 2. Our model for elementary link generation in a quantum network consists of
source stations associated with every elementary link that distributes entangled
states to the corresponding nodes.76,96–98
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state SðqSÞ. Here, k is the number of nodes belonging to an edge,
with k ¼ 2 corresponding to ordinary, bipartite edges (such as
the red edges in Fig. 1) and k � 3 corresponding to hyperedges
(such as the blue bubbles in Fig. 1).

• The modes perform a heralding procedure, which is a protocol
involving local operations and classical communication. It can be
described by a quantum instrument fM0;M1g, whereM0 and
M1 are completely positive trace non-increasing maps such that
M0 þM1 is trace preserving. These maps capture not only the
probabilistic nature of the heralding procedure but also the vari-
ous imperfections of the devices that are used to perform the pro-
cedure. The map M0 corresponds to failure of heralding and
M1 corresponds to success. The probability of successful trans-
mission and heralding is

p ¼ Tr ðM1 � SÞðqSÞ
� �

; (1)

and the states conditioned on success and failure are,
respectively,

r0 :¼ 1
p
ðM1 � SÞðqSÞ; (2)

s1 :¼ 1
1� p

ðM0 � SÞðqSÞ: (3)

The superscript “0” in r0 indicates that, upon success of the her-
alding procedure, the quantum systems have been immediately
stored in local quantum memories at the nodes and have not yet
suffered from any decoherence.

• The state of the quantum systems after m 2 f0; 1; 2;…g time
steps in the quantum memories is given by

rðmÞ :¼ N�mðr0Þ; (4)

where N is a quantum channel that describes the decoherence of
the individual quantum memories at the nodes.

For specific, realistic noise models for the heralding and for the
quantum memories as well as for other realistic parameters for ele-
mentary link generation, we refer to Refs. 57 and 99–104.

1. Ground-based transmission

The most common medium for quantum information transmis-
sion for communication purposes is photons traveling through either
free space or fiber-optic cables. These transmission media are modeled
well by a bosonic pure-loss/attenuation channel Lg,105 where g 2 ð0; 1�
is the transmittance of the medium, which, for fiber-optic or free-space
transmission, has the form g ¼ e�L=L0 ,33–35 where L is the transmission
distance and L0 is the attenuation length of the fiber.

Before the k quantum systems corresponding to the source state
qS are transmitted through the pure-loss channel, they are each
encoded into d bosonic modes with d � 2. A simple encoding is the
following:

j0di :¼ j1; 0; 0;…; 0i; (5)

j1di :¼ j0; 1; 0;…; 0i; (6)

..

.

jðd � 1Þdi :¼ j0; 0; 0;…; 1i; (7)

sometimes called the d-rail encoding. In other words, using d bosonic
modes, we form a qudit quantum system by defining the standard
basis elements of the associated Hilbert space by the states correspond-
ing to a single photon in each of the dmodes. We let

jvaci :¼ j0; 0;…; 0i; (8)

denote the vacuum state of the d modes, which is the state containing
no photons.

In the context of photonic state transmission, the source state qS

is typically of the form jwSihwSj, where

jwSi ¼
ffiffiffiffiffi
pS0

q
jvaci þ

ffiffiffiffiffi
pS1

q
jwS

1i þ
ffiffiffiffiffi
pS2

q
jwS

2i þ � � � ; (9)

where jwS
ni is a state vector with n photons in total for each of the k

parties, and the numbers pSn � 0 are probabilities, so thatP1
n¼0 p

S
n ¼ 1. For example, in the cases k¼ 2 and d¼ 2, the following

source state is generated from a parametric down-conversion process
(see, e.g., Refs. 106 and 107):

jwSi ¼
X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

rn

eq
jwS

ni; (10)

jwS
ni ¼

1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

Xn
m¼0
ð�1Þmjn�m;m;m; n�mi; (11)

where r and q are parameters characterizing the process. One often
considers a truncated version of this state as an approximation, so
that107

jwSi ¼ ffiffiffiffiffi
p0
p j0; 0; 0; 0i þ

ffiffiffiffiffi
p1
2

r
ðj1; 0; 0; 1i þ j0; 1; 1; 0iÞ

þ
ffiffiffiffiffi
p2
3

r
ðj2; 0; 0; 2i þ j1; 1; 1; 1i þ j0; 2; 2; 0iÞ; (12)

where p0 þ p1 þ p2 ¼ 1.
Typically, the encoding into bosonic modes is not perfect, which

means that a source state of the form (9) is not ideal, and that the
desired state is given by one of the state vectors jwS

j i, and the other
terms arise due to the naturally imperfect nature of the source. For
example, for the state in (12), the desired bipartite state is the maxi-
mally entangled state

jWþi ¼ 1ffiffiffi
2
p ðj1; 0; 0; 1i þ j0; 1; 1; 0iÞ: (13)

Once the source state is prepared, each mode is sent through the
pure-loss channel. Letting

Lg;ðdÞ :¼ ðLgÞ�d (14)

denote the quantum channel that acts on the dmodes of each of the k
systems, the overall quantum channel through which the source state
qS is sent is

S~g;ðk;dÞ :¼ Lg1;ðdÞ � Lg2;ðdÞ � � � � � Lgk;ðdÞ; (15)

where~g ¼ ðg1; g2;…; gkÞ and gj is the transmittance of the medium
to the jth node in the edge. The quantum state shared by the k nodes
after transmission from the source is then qS;out ¼ S~g;ðk;dÞðqSÞ.
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Now, it is known (see, e.g., Ref. 108) that the action of the bosonic
pure-loss channel on any linear operator rd encoded in dmodes accord-
ing to the encoding in (7) is equivalent to the output of an erasure chan-
nel.109,110 In general, a d-dimensional quantum erasure channel EðdÞp , with

p 2 ½0; 1�, is defined as follows. Consider the vector space C
d with ortho-

normal basis elements fj0i; j1i;…; jd � 1ig and the vector space C
dþ1

with orthonormal basis elements fj0i; j1i;…; jd � 1i; jdig. Then, for
every linear operator X 2 LðCdÞ; EðdÞp ðXÞ ¼ pX þ ð1� pÞjdihdj. Note
that the output is an element of LðCdþ1Þ. In particular, note that the vec-
tor jdi is orthogonal to the input vector space C

d .
Lemma II.1 (Pure-loss channel with a d-rail encoding108). Let

d � 2. For every linear operator X acting on a d-dimensional Hilbert
space defined by the basis elements in (5)–(7), we have that

Lg;ðdÞðXÞ ¼ ðLgÞ�dðrdÞ (16)

¼ gX þ ð1� gÞTr X½ �jvacihvacj: (17)

Proof. To start, the bosonic pure-loss channel has the following Kraus
representation:111,112

LgðqÞ ¼
X1
‘¼0

ð1� gÞ‘

‘!

ffiffiffi
g
p a†aakqak†

ffiffiffi
g
p a†a; (18)

where a and a† are the annihilation and creation operators of the
bosonic mode, respectively, which are defined as ajni ¼

ffiffiffi
n
p
jn� 1i

for all n � 1 (with aj0i ¼ 0) and a†jni ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

jnþ 1i for all
n � 0.

Now, every linear operator X acting on a d-dimensional space
that is encoded into d bosonic modes as in (5)–(7) can be written as

X ¼
Xd�1
‘;‘0¼0

a‘;‘0 j‘dih‘0dj; (19)

for a‘;‘0 2 C. Using (18), it is straightforward to show that

Lgðj0ih0jÞ ¼ j0ih0j; (20)

Lgðj0ih1jÞ ¼ ffiffiffi
g
p j0ih1j; (21)

Lgðj1ih0jÞ ¼ ffiffiffi
g
p j1ih0j; (22)

Lgðj1ih1jÞ ¼ ð1� gÞj0ih0j þ gj1ih1j: (23)

Using this, we find that

ðLgÞ�dðj‘dih‘0djÞ ¼
gj‘dih‘dj þ ð1� gÞjvacihvacj if ‘ ¼ ‘0;
gj‘dih‘0dj if ‘ 6¼ ‘0:

(
(24)

Therefore,

ð‘gÞ�dðXÞ ¼ g
Xd�1
‘;‘0¼0

a‘;‘0 j‘dih‘0dj þ ð1� gÞ
Xd�1
‘¼0

a‘;‘

 !
jvacihvacj

(25)

¼ gX þ ð1� gÞTr X½ �jvacihvacj (26)

as required. �

After transmission from the source to the nodes, the heralding
procedure typically involves doing measurements at the nodes to

check whether all of the photons arrived. In the ideal case, the quan-
tum instrument fM0;M1g for the heralding procedure corresponds
simply to a measurement in the single-photon subspace defined by
(5)–(7). To be specific, let

K1 :¼ PðdÞ (27)

:¼ j0dih0dj þ j1dih1dj þ � � � þ jðd � 1Þdihðd � 1Þdj; (28)

K0 :¼ 1Hd � K0; (29)

where PðdÞ is the projection onto the d-dimensional single-photon
subspace defined by (5)–(7) and 1Hd is the identity operator of the full
Hilbert space Hd of the d bosonic modes. Then, letting ~x 2 f0; 1gk
and defining

K~x :¼ Kx1 � Kx2 � � � � � Kxk ; (30)

the mapsM0 andM1 have the following form:

M1ð�Þ ¼ K
~1ð�ÞK~1 ; (31)

L0ð�Þ ¼
X

~x 2 f0; 1gk
~x 6¼~1

K~x ð�ÞK~x : (32)

These maps correspond to perfect photon-number-resolving detectors.
However, the detectors are typically noisy due to dark counts and
other imperfections (see, e.g., Ref. 107), so that in practice, the maps
M0 andM1 will not have the ideal forms presented in (31) and (32).

Let

erð0Þ :¼ ðM0 � SÞðqSÞ; (33)erð1Þ :¼ ðM1 � SÞðqSÞ: (34)

Then, if the source produces the ideal quantum state, such as the state
in (13), so that qS ¼ Wþ ¼ jWþihWþj, and if the heralding procedure
is also ideal, then using (16), we obtain

erð1Þ ¼ g1g2W
þ; (35)

erð0Þ ¼ g1ð1� g2Þ
Pð2Þ

2
� jvacihvacj

þ ð1� g1Þg2jvacihvacj �
Pð2Þ

2

þ ð1� g1Þð1� g2Þjvacihvacj � jvacihvacj; (36)

which means that the transmission-heralding success probability as
defined in (1) is simply p ¼ Tr½erð1Þ� ¼ g1g2.

Remark II.2 (Multiplexing). In practice, in order to increase
the transmission-heralding success probability, multiplexing strate-
gies are used. The term “multiplexing” here refers to the use of a
single transmission channel to send multiple signals simulta-
neously, with the signals being encoded into distinct (i.e., orthogo-
nal) frequency modes, see, e.g., Ref. 113. If M � 1, distinct
frequency modes are used, then the source state being transmitted
is ðqSÞ�M . If p denotes the probability that any single one of the
signals is received and heralded successfully, then the probability
that at least one of the M signals is received and heralded success-
fully is 1� ð1� pÞM .
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2. Transmission from satellites

Let us now consider the model of elementary link generation pro-
posed in Ref. 114 in which the entanglement sources are placed on sat-
ellites orbiting the Earth. For further information on satellite-based
quantum communication, we refer to Ref. 115 for a review, and we
refer to Refs. 116–119 for more detailed modeling of the satellite-to-
ground quantum channel than what we consider here.

When modeling photon transmission from satellites to ground sta-
tions, we must take into account background photons. Here, we analyze
the scenario in which a source on board a satellite generates an
entangled photon pair and distributes the individual photons to two
parties, Alice (A) and Bob (B), on the ground. We allow the distributed
photons to mix with background photons from an uncorrelated thermal
source. Also, as before, we use the bosonic encoding defined in (5)–(7),
but we stick to d¼ 2, i.e., qubit source states and, thus, bipartite elemen-
tary links. In this scenario, it is common for the two modes to represent
the polarization degrees of freedom of the photons, so that

jHi � j02i ¼ j1; 0i; (37)

jVi � j12i ¼ j0; 1i; (38)

represent the state of one horizontally and vertically polarized photon,
respectively.

Let �n be the average number of background photons. Then, as
done in Ref. 114, we can define an approximate thermal background
state as

eH�n
:¼ ð1� �nÞjvacihvacj þ �n

2
jHihHj þ jVihV jð Þ: (39)

The transmission channel from the satellite to the ground stations is
then

Lgsg;�nðqA1A2
Þ :¼ TrE1E2 U

gsg
A1E1 � U

gsg
A2E2

� �
qA1A2

� eH�n

E1E2

� ��
	 U

gsg
A1E1 � U

gsg
A2E2

� �†�
; (40)

where Ugsg is the beamsplitter unitary (see, e.g., Ref. 105) and A1 and
A2 refer to the horizontal and vertical polarization modes, respectively,
of the dual-rail quantum system being transmitted, similarly for E1
and E2. Note that for �n ¼ 0, the transformation in (40) reduces to the
one in (16) with d¼ 2.

The transmittance gsg generally depends on atmospheric condi-
tions (such as turbulence and weather conditions) and on orbital
parameters (such as altitude and zenith angle).117–119 In general, if the
satellite is at the altitude h and the path length from the satellite to the
ground station is L, then

gsgðL; hÞ ¼ gfsðLÞgatmðL; hÞ; (41)

where

gfsðLÞ ¼ 1� exp � 2r2

wðLÞ2

 !
; (42)

wðLÞ :¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L

LR

	 
2
s

; (43)

LR :¼ pw2
0k
�1; (44)

and

gatmðL; hÞ ¼
ðgzenatmÞ

sec f if � p
2
< f <

p
2
;

0 if jfj � p
2
;

8>><>>: (45)

with gzenatm the transmittance at zenith (f ¼ 0). In general, the zenith
angle f is given by

cos f ¼ h
L
� 1
2
L2 � h2

R�L
; (46)

for a circular orbit of altitude h, with R� 
 6378 km being the Earth’s
radius. The following parameters, thus, characterize the total transmit-
tance from satellite to ground: the initial beam waist w0, the receiving
aperture radius r, the wavelength k of the satellite-to-ground signals,
and the atmospheric transmittance gzenatm at zenith. Throughout the rest
of this section, we take114 r¼ 0.75 m, w0 ¼ 2:5 cm, k ¼ 810nm, and
gzenatm ¼ 0:5 at 810nm.116

For a source state qS
AB, with A � A1A2 and B � B1B2, the quan-

tum state shared by Alice and Bob after the transmission of the state
qS
AB from the satellite to the ground stations is

qS;out
AB ¼ Lgð1Þsg ;�n1

A � Lgð2Þsg ;�n2

B

� �
ðqS

ABÞ; (47)

where gð1Þsg and gð2Þsg are the transmittances to the ground stations and
�n1 and �n2 are the corresponding thermal background noise parame-
ters. In Sec. IID, we look at a specific example of a source state qS

AB
and, thus, provide an explicit form for the state qS;out

AB . We also consider
the heralding procedure defined by (28)–(32) and, thus, provide
explicit forms for the states r0 and s1 in (2) and (3) corresponding to
success and failure, respectively, of the heralding procedure.

B. Definition of the MDP

Having described the physical model of elementary link genera-
tion in Sec. IIA, let us now proceed to the definition of the Markov
decision process (MDP) for an elementary link. Note that while the
formalism of Sec. IIA gives us a mathematical description of the quan-
tum state of an elementary link immediately after it is successfully gen-
erated, the MDP formalism provides us with a systematic framework
to define actions on an elementary link and their effects on the quan-
tum state over time.

Before starting, let us briefly summarize the definition of a
Markov decision process (MDP); we refer to Appendix A for more
details and a detailed explanation of the notation being used. An MDP
is a mathematical model of an agent performing actions on a system
(usually called the environment). The system is described by a set S of
(classical) states, and the agent picks actions from a set A.
Corresponding to every action, a 2 A is a jSj 	 jSj transition matrix
Ta, such that the matrix element Taðs0; sÞ is equal to the probability of
transitioning to the state s0 2 S, given that the current state is s 2 S

and the action a 2 A is taken.
The results of Ref. 58 show us that, for the purposes of tracking

the quantum state of an elementary link over time as well as its fidelity
to a target pure state, it is enough to keep track of the time that the

AVS Quantum Science PERSPECTIVE scitation.org/journal/aqs

AVS Quantum Sci. 4, 030501 (2022); doi: 10.1116/5.0084653 4, 030501-6

VC Author(s) 2022

https://scitation.org/journal/aqs


quantum systems of the elementary link reside in their respective
quantum memories. With this observation, we can define a simpler
MDP for elementary links.

• States: The states in our elementary link MDP are defined by
the set S ¼ f�1; 0; 1;…;m?g, which correspond to the num-
ber of time steps that the quantum systems of the elementary
link have been sitting in their respective quantum memories.
The state �1 corresponds to the elementary link being inac-
tive, and m? corresponds to the coherence time of the quan-
tum memory. Specifically, if tcoh is the coherence time of the
quantum memory (say, in seconds), and the duration of the
every time step (in seconds) is Dt (based on the classical com-
munication time between the nodes in the elementary link),
then m? ¼ ðtcoh=DtÞ. From now on, we refer to m? as the maxi-
mum storage time of the elementary link. We use M(t), t 2N,
to refer to the random variables (taking values in S) corre-
sponding to the state of the MDP at time t. We also associate
to the elements in S orthonormal vectors fjmigm2S, and we
emphasize that these vectors should not be thought of as rep-
resenting quantum states but as representing the extreme
points of a probability simplex associated with the set S, see
Appendix A for details.

• Actions: The set of actions is A ¼ f0; 1g, where 0 corresponds to
the action of “wait” and “1” corresponds to “request.” In other
words, at every time step, the agent can decide to keep their
quantum systems currently in memory or to discard the quan-
tum systems and perform the elementary link generation proce-
dure again.
The transition matrices T0 and T1 corresponding to the two
actions are defined as follows:

T0 ¼ 1
ð�Þ þ BðþÞ; (48)

T1 ¼ jgpihcj; (49)

where

1
ð�Þ :¼ j�1ih�1j; (50)

BðþÞ :¼
Xm?�1

m¼0
jmþ 1ihmj þ j�1ihm?j; (51)

jgpi :¼ ð1� pÞj�1i þ pj0i; (52)

jci ¼
Xm?

m¼�1
jmi: (53)

(Note that we define our transition matrices such that probability
vectors are applied to them from the right, see Appendix A for
details.) The transition matrix T 0 describes what happens to the
elementary link when the action a ¼ 0 (wait) is taken by the
agent: if the elementary link is currently inactive, then it stays
inactive; if the elementary link is active and it is in memory for
less than m? time steps, then the memory time is incremented by
one; if the elementary link is active and it has been in memory
for m? time steps, then because the coherence time of the mem-
ory has been reached (as per the definition of m?), the elementary
link becomes inactive. If the action a ¼ 1 (request) is taken, then
regardless of the current state of the elementary link, the state

changes to �1 (inactive) with probability 1� p, meaning that the
elementary link generation failed, or it changes to 0 with proba-
bility p, meaning that the elementary link generation succeeded.
These two possibilities are captured by the probability vector
jgpi.We use A(t), t 2N, to refer to the random variable (taking
values in the set A) corresponding to the action taken at time t.
We let HðtÞ ¼ ðMð1Þ;Að1Þ;Mð2Þ;Að2Þ;…;Aðt � 1Þ;MðtÞÞ be
the history, consisting of a sequence of states and actions, up to
time t, with Hð1Þ ¼ Mð1Þ.

• Figure of merit: Our figure of merit for an elementary link is the
following function:

f ðmÞ :¼
hwjrðmÞjwi if m 2 f0; 1; 2;…;m?g
0 if m ¼ �1

(
(54)

¼ ð1� dm;�1ÞhwjrðmÞjwi; (55)

where rðmÞ is defined in (4) and jwi is a target state vector for
the elementary link. (For example, if the elementary link contains
two nodes, then jwi could be the state vector for the two-qubit
maximally entangled state.) We emphasize that the function f is
not just the fidelity of the elementary link—it also depends
implicitly on the probability that the elementary link is active
because if f was simply the fidelity of the elementary link,
then instead of the definition f ð�1Þ ¼ 0, we would have
f ð�1Þ ¼ hwjs1jwi, where s1 ¼ ð1=ð1� pÞÞðM0 � SÞðqSÞ is the
quantum state corresponding to failure of the heralding proce-
dure, see (3). We illustrate the importance of this distinction,
therefore the usefulness of this figure of merit for designing and
evaluating protocols, in Sec. II D 2 a, specifically Fig. 7. To the
best of our knowledge, this figure of merit has not been consid-
ered in prior work.

A policy is a sequence p ¼ ðd1; d2;…Þ of decision functions
dt : S 	 A ! ½0; 1�, which indicate the probability of performing a
particular action conditioned on the state of the system,

dtðsÞðaÞ ¼ Pr AðtÞ ¼ ajSðtÞ ¼ s½ �: (56)

For a particular policy p ¼ ðd1; d2;…; dt�1Þ, the probability of a par-
ticular history ht ¼ ðm1; a1;m2; a2;…; at�1;mtÞ of states and actions
is (see Appendix A2)

Pr HðtÞ ¼ ht
� �

p ¼ Pr Mð1Þ ¼ m1½ �
Yt�1
j¼1

Tajðmjþ1;mjÞdjðmjÞðajÞ:

(57)

Then, the quantum state of the elementary link is58

qpðtÞ ¼
X
ht

Pr HðtÞ ¼ ht
� �

p jh
tihht j � rðtjhtÞ; (58)

rðtjhtÞ ¼ ð1� dmt ;�1ÞrðmtÞ þ dmt ;�1s
1; (59)

where we recall that rðmtÞ is given by (4).
We are interested primarily in the expected value of the function

f defined in (55) at times t 2N,

eFpðtÞ :¼ E f ðMðtÞÞ½ �p; (60)
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for policies p ¼ ðd1; d2;…; dt�1Þ. We are also interested in the proba-
bility that the elementary link is active at time t 2N, which is given by

XpðtÞ :¼ 1� Pr MðtÞ ¼ �1½ �p: (61)

From this, the expected fidelity of the elementary link is given by

FpðtÞ :¼
eFpðtÞ
XpðtÞ : (62)

We are interested in the maximum value of the function eFpðtÞ
defined in (60) among all policies p,

sup
p

eFpðtÞ ¼ sup
p

Xm?

m¼0
f ðmÞPr MðtÞ ¼ m½ �p: (63)

A policy p achieving the supremum is called an optimal policy.
In the steady-state (infinite-time) limit, we are interested in the

maximum value of eFpðtÞ among all time-homogeneous (stationary)
policies p ¼ ðd; d;…Þ, i.e., policies in which a fixed decision function
d is used at every time step,

sup
d

lim
t!1

eF ðd;d;…ÞðtÞ ¼ sup
d

Xm?

m¼0
f ðmÞ lim

t!1
Pr MðtÞ ¼ m½ �ðd;d;…Þ; (64)

if the limit exists.

C. Policies

In Ref. 58, it was shown that a policy that achieves the optimal
value in (63) can be determined using a backward recursion algorithm.
We restate this algorithm here for completeness.

Theorem II.3 (Optimal finite-time policy for an elementary
link58). For all t 2N, the optimal expected fidelity of an elementary
link with success probability p 2 ½0; 1� is given by

sup
p

eFpðtÞ ¼
X
m12S

max
a12A

w2ðm1; a1Þ; (65)

where

wjðhj�1; aj�1Þ ¼
X
mj2S

max
aj2A

wjþ1ðhj�1; aj�1;mj; ajÞ; (66)

for all j 2 f2; 3;…; t � 1g, and

wtðht�1; at�1Þ ¼
X
mt2S
hm1jgpi

Yt�1
j¼1

Tajðmjþ1;mjÞ

0@ 1Af ðmtÞ: (67)

Furthermore, the optimal policy is deterministic and given by
p ¼ ðd�1 ; d�2 ;…; d�t�1Þ, where

d�j ðhjÞ ¼ max
a2A

wjþ1ðhj; aÞ 8 j 2 f1; 2;…; t � 1g: (68)

Intuitively, the result of Theorem II.3 tells us that, for finite times,
the optimal policy can be found by optimizing the individual actions
going “backwards in time,” by first optimizing the final action at time
t – 1, then optimizing the action at time t � 2, etc., and then finally
optimizing the action at time t¼ 1. This is, indeed, the case because
from (68), we see that the optimal action at the first time step is

obtained using the function w2, but from (66), we see that to calculate
w2, we need w3, and to calculate w3, we need w4, etc., until we get to the
function wt for the final time step, which we can calculate using (67).

While the optimal policy for finite times was determined in
Ref. 58, the steady-state value of the expected fidelity under arbitrary
stationary policies [i.e., the value in (64)] was not determined. We now
show that the limit in (64) exists, and we determine its value for
arbitrary decision functions.

Theorem II.4 (Steady-state expected value of an elementary
link). Let p be the success probability of generating an elementary link
in a quantum network, and let d be a decision function, such that
dðmÞð0Þ ¼ aðmÞ is the probability of executing the action wait and
dðmÞð1Þ ¼ 1� dðmÞð0Þ ¼ �aðmÞ is the probability of executing the
action request. Then, if the elementary link undergoes the stationary
policy ðd; d;…Þ, then

lim
t!1

eF ðd;d;…ÞðtÞ ¼Xm?

m¼0
f ðmÞsdðmÞ; (69)

where

sdð�1Þ ¼
1
Nd

1� p 1�
Ym?

m0¼0
aðm0Þ

 ! !
; (70)

sdð0Þ ¼
1
Nd

p�að�1Þ; (71)

sdðmÞ ¼
1
Nd

p�að�1Þ
Ym�1
m0¼0

aðm0Þ; m 2 1;…;m?f g; (72)

with

Nd ¼ 1� p 1�
Ym?

m0¼0
aðm0Þ

 !
þ p�að�1Þ 1þ

Xm?

m¼1

Ym�1
m0¼0

aðm0Þ
 !

:

(73)

Proof. See Appendix D. �

Using Theorem II.4, we can determine the optimal steady-state

value of the function eF ðd;d;…Þ, thus the optimal decision function d, by
optimizing the quantity in (69) with respect to m? independent varia-
bles að�1Þ; að0Þ;…; aðm?Þ subject to the constraints aðmÞ 2 ½0; 1�
for allm 2 f�1; 0; 1;…;m?g. [Recall from the statement of Theorem
II.4 that the variables aðmÞ are directly related to the decision function
d.] Alternatively, we can use the following linear program in order to
obtain an optimal policy.

Theorem II.5 (Linear program for the optimal steady-state value
of an elementary link). Consider an elementary link in a quantum net-

work with maximum memory time m?. Let jf i :¼
Pm?

m¼�1 f ðmÞjmi.
Then, the optimal steady-state value of the elementary link, namely, the
quantity in (64), is equal to the solution of the following linear program:

maximize hf jvi;
subject to 0 � jwai � jvi � 1 8 a 2 f0; 1g;

hcjvi ¼ 1;

jw0i þ jw1i ¼ jvi ¼ T0jw0i þ T1jw1i;

(74)

where the optimization is with respect to the ðm? þ 1Þ-dimensional vectors
jvi; jw0i; jw1i, and the inequality constraints on the vectors are
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componentwise. For every feasible point of this linear program, we obtain a
decision function d as follows: dðmÞðaÞ ¼ ðhmjwai=hmjviÞ for all m
2 f�1; 0; 1;…;m?g and a 2 f0; 1g. If hmjvi ¼ 0, then we set dðmÞð0Þ
¼ aðmÞ and dðmÞð1Þ ¼ 1� aðmÞ for an arbitrary aðmÞ 2 ½0; 1�.

Proof. The linear program in (74) is a special case of the linear
program presented in Proposition A.2 in Appendix A. The main
assumption of that result is that the MDP be ergodic, which is true in
this case by Theorem II.4. �

1. The memory-cutoff policy

An example of a stationary policy is thememory-cutoff policy, which
has been considered extensively in prior work.58,59,63–65,97,98,100,120–123 This
is a deterministic policy that is defined by a cutoff time t? 2N0 [ f1g,
where N0 :¼ f0; 1; 2;…; g, such that t? � m?. Then,

aðmÞ ¼
0 if m ¼ �1;
1 if m 2 f0; 1;…; t? � 1g;
0 if m ¼ t?:

8><>: (75)

Then, by Theorem II.4, we haveNd ¼ 1þ t?p, so that

lim
t!1

eFt?ðtÞ ¼ p
1þ t?p

Xt?
m¼0

f ðmÞ; (76)

for all t? 2N0, which agrees with Ref. 58 [Eq. (4.15)], which was
obtained using different methods. We also obtain

lim
t!1

Ft?ðtÞ ¼ 1
t? þ 1

Xt?
m¼0

f ðmÞ; (77)

for all t? 2N0.
For t? ¼ 1, we have, for all t � 1,58

eF1ðtÞ ¼Xt�1
m¼0

f ðmÞpð1� pÞt�ðmþ1Þ; (78)

X1ðtÞ ¼ 1� ð1� pÞt ; (79)

F1ðtÞ ¼
Xt�1
m¼0

f ðmÞ pð1� pÞt�ðmþ1Þ

1� ð1� pÞt
: (80)

In what follows, we make use of the following definitions for the
deterministic decision functions corresponding to the memory-cutoff
policy:

dt
?ðmÞ :¼

0 if m 2 f0; 1;…; t? � 1g;
1 if m ¼ �1; t?;

(
(81)

d1ðmÞ :¼
0 if m 2 f0; 1; 2;…g;
1 if m ¼ �1:

(
(82)

D. Example: Satellite-to-ground entanglement
distribution

In this section, we present an example of an analysis of elemen-
tary links based on the satellite-to-ground transmission model pre-
sented in Sec. IIA 2 based on Ref. 114.

1. Quantum state of an elementary link

In Sec. IIA 2, we defined the transmission channel corresponding
to the transmission of entanglement from a satellite to two ground sta-
tions. In particular, if we consider two ground stations, one corre-
sponding to Alice and one corresponding to Bob, then given a state
qS
AB produced by the source on the satellite, the state after the trans-

mission of the system A to Alice and the system B to Bob is given
by (48)

qS;out
AB ¼ Lgð1Þsg ;�n1

A � Lgð2Þsg ;�n2

B

� �
ðqS

ABÞ; (83)

where gð1Þsg and gð2Þsg are the transmittances to the ground stations and
�n1 and �n2 are the corresponding thermal background noise
parameters.

After transmission, we assume a heralding procedure defined by
post-selecting on coincident events using (perfect) photon-number-
resolving detectors. One can justify this assumption because, in
the high-loss and low-noise regimes (gð1Þsg ; g

ð2Þ
sg ; �n 
 1), the probability

of four-photon and three-photon occurrences is negligible compared
to two-photon events. Therefore, upon successful heralding, the
(unnormalized) quantum state shared by Alice and Bob is

erABð1Þ :¼ PAB L
gð1Þsg ;�n1

A � Lgð2Þsg ;�n2

B

� �
ðqS

ABÞPAB; (84)

where

PAB :¼ ðjHihHjA þ jVihV jAÞ � ðjHihHjB þ jVihV jBÞ; (85)

is the projection onto the two-photon-coincidence subspace. Note that
the projection PAB is exactly the projection K1 � K1, with K1 defined
in (28). Then, the transmission-heralding success probability is, as per
the definition in (1),

p :¼ Tr erABð1Þ½ � (86)

¼ Tr PAB L
gð1Þsg ;�n1

A � Lgð2Þsg ;�n2

B

� �
ðqS

ABÞ
h i

: (87)

Now, let us take the source state qS
AB to be the following:

qS
AB ¼ fSU

þ
AB þ

1� fS
3

	 

ðU�AB þWþAB þW�ABÞ; (88)

where fS 2 ½0; 1� and

U6
AB :¼ jU6ihU6jAB; (89)

W6
AB :¼ jW6ihW6jAB; (90)

jU6iAB :¼ 1ffiffiffi
2
p ðjH;HiAB 6 jV ;ViABÞ; (91)

jW6iAB :¼ 1ffiffiffi
2
p ðjH;ViAB 6 jV ;HiABÞ: (92)

Using (88), we obtain an explicit form for the (unnormalized) stateerABð1Þ in (84).
Proposition II.6 (Quantum state of a satellite-to-ground elemen-

tary link114) Let gð1Þsg ; g
ð2Þ
sg ; �n1; �n2 2 ½0; 1�, and consider the source state

qS
AB given by (88). Then, after successful heralding, the (unnormalized)

state erABð1Þ given by (84) is equal to
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erABð1Þ ¼ PAB L
gð1Þsg ;�n1

A � Lgð2Þsg ;�n2

B

� �
ðqS

ABÞPAB

¼ 1
2

fSðaþ bÞ þ 1� fS
3

	 

ðaþ 2c� bÞ

	 

UþAB

þ 1
2

fSða� bÞ þ 1� fS
3

	 

ðaþ 2cþ bÞ

	 

U�AB

þ 1
2

fScþ
1� fS
3

	 

ð2aþ cÞ

	 

WþAB

þ 1
2

fScþ
1� fS
3

	 

ð2aþ cÞ

	 

W�AB; (93)

where

a :¼ x1x2 þ y1y2; b :¼ z1z2; c :¼ x1y2 þ y1x2; (94)

and

xi :¼ ð1� �niÞgðiÞsg þ
�ni

2
1� 2gðiÞsg
� �2

þ gðiÞsg
� �2	 


; (95)

yi :¼ �ni

2
1� gðiÞsg
� �2

; (96)

zi :¼ ð1� �niÞgðiÞsg � �nig
ðiÞ
sg 1� 2gðiÞsg
� �

; (97)

for i 2 f1; 2g.
From (93), we have that the transmission-heralding success prob-

ability is given by

p ¼ Tr erABð1Þ½ � ¼ aþ c ¼ ðx1 þ y1Þðx2 þ y2Þ; (98)

so that the quantum state shared by Alice and Bob conditioned on suc-
cessful heralding is, as per the definition in (2),

r0
AB ¼

erABð1Þ
p

: (99)

a. Success probability and fidelity. Let us now evaluate the quality
of entanglement transmission from a satellite to two ground stations.
For illustrative purposes, and for simplicity, we focus primarily on the
simple scenario depicted in Fig. 3, in which a satellite passes over the

midpoint between two ground stations, although the same analysis
can be done even when this is not the case. Since the satellite is an
equal distance away from both ground stations, we have gð1Þsg ¼ gð2Þsg .
We also let �n1 ¼ �n2. This means that x1 ¼ x2 � x; y1 ¼ y2 � y, and
z1 ¼ z2 � z, so that

a ¼ x2 þ y2; b ¼ z2; c ¼ 2xy

ðgð1Þsg ¼ gð2Þsg ¼ gsg and �n1 ¼ �n2 ¼ �nÞ:
(100)

In this scenario, given a distance d between the ground stations and an
altitude h for the satellite, by simple geometry, the distance L between
the satellite and either ground station is given by

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R�ðR� þ hÞ sin2 d

4R�

	 

þ h2

s
; (101)

where R� is the radius of Earth.
Now, let us consider the transmission-heralding success probabil-

ity p in (98). Due to the altitude of the satellites, there typically has to
be multiplexing of the signals (see Remark II.2) in order to maintain a
high probability of both ground stations receiving the entangled state.
In Fig. 4, we plot the success probability with multiplexing, which is
given by 1� ð1� pÞM , where M is the number of distinct frequency
modes used for multiplexing.

FIG. 3. Optical satellite-to-ground transmission.114 Two ground stations g1 and g2
are separated by a distance d with a satellite at an altitude h at the midpoint. Both
ground stations are the same distance L away from the satellite, so that the total
transmittance for two-qubit entanglement transmission (one qubit to each ground
station) is g2sg, where gsg ¼ gfsgatm, with gfs given by (42) and gatm given by (45).
Reprinted with permission from Khatri et al., npj Quantum Inf. 7, 4 (2021).
Copyright 2021 Author(s), licensed under a Creative Commons License.

FIG. 4. Plots of the transmission-heralding success probability as well as the initial
fidelity of the quantum state r0

AB conditioned on successful heralding for the situation

depicted in Fig. 3 in which gð1Þsg ¼ gð2Þsg ¼ gsg and �n1 ¼ �n2 ¼ �n. Indicated is the
threshold fidelity of 1=2 beyond which the state r0

AB is entangled (see Proposition
II.7). The success probability is shown in a multiplexing setting with M ¼ 105 (see
Remark II.2). Also, we have let �n ¼ 10�4 and fS ¼ 1.
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We also plot in Fig. 4 the fidelity of the initial state, which is given
by

Fð1Þ ¼ hUþjr0
ABjUþi ¼

1
p
eFð1Þ; (102)

eFð1Þ ¼ hUþjerABð1ÞjUþi (103)

¼ 1
2
fSðaþ bÞ þ 1

2
1� fS
3

	 

ðaþ 2c� bÞ; (104)

with a, b, and c given by (94) in general and by (100) in the special
case depicted in Fig. 3.

The fidelity of r0
AB with respect to UþAB is related in a simple way to

the entanglement of r0
AB. In particular, by the partial positive transpose

(PPT) criterion,124,125 r0
AB is entangled if and only if its fidelity with

respect to UþAB is strictly greater than 1=2, and this leads to constraints on
the loss and noise parameters of the satellite-to-ground transmission.

Proposition II.7. The quantum state r0
AB after the successful sat-

ellite-to-ground transmission, as defined in (99), is entangled if and
only if the fidelity of the source state in (88) satisfies fS > ð1=2Þ, and

2ðfS � 1Þaþ ð4fS � 1Þb� ð1þ 2fSÞc > 0; (105)

with a, b, and c given by (94) in general and by (100) in the special
case depicted in Fig. 3.

Proof. Observe that the state r0
AB is a Bell-diagonal state of the

form

r0
AB ¼ ðaþ bÞUþAB þ ða� bÞU�AB þ cWþAB þ cW�AB; (106)

where a; b; c � 0 [when fS > ð1=2Þ]. Indeed, the coefficient of UþAB in
(93) can be written as

1
2
fSaþ

1
2

1� fS
3

	 

ðaþ 2cÞ þ 1

2
fSb�

1
2

1� fS
3

	 

b; (107)

and the coefficient of U�AB in (94) can be written as

1
2
fSaþ

1
2

1� fS
3

	 

ðaþ 2cÞ � 1

2
fSb�

1
2

1� fS
3

	 

b

	 

: (108)

We can, thus, make the following identifications:

a � 1
aþ c

1
2
fSaþ

1
2

1� fS
3

	 

ðaþ 2cÞ

	 

; (109)

b � 1
aþ c

1
2
fSb�

1
2

1� fS
3

	 

b

	 

; (110)

c � 1
2
fScþ

1
2

1� fS
3

	 

ð2aþ cÞ: (111)

Now, using the PPT criterion,124,125 we have that r0
AB is entangled if

and only if hUþjr0
ABjUþi > ð1=2Þ. Then, from (102), we have that

hUþjr0
ABjUþi ¼

1
2
fS
aþ b
aþ c

þ 1
2

1� fS
3

	 

aþ 2c� b

aþ c
; (112)

so we require

1
2
fS
aþ b
aþ c

þ 1
2

1� fS
3

	 

aþ 2c� b

aþ c
>

1
2
: (113)

Simplifying this leads to

2ðfS � 1Þaþ ð4fS � 1Þb� ð1þ 2fSÞc > 0; (114)

as required. �

Now, for the scenario depicted in Fig. 3, we have that
x1 ¼ x2 ¼ x; y1 ¼ y2 ¼ y, and z1 ¼ z2 ¼ z, so that from (100), we
have a ¼ x2 þ y2; b ¼ z2, and c ¼ 2xy. Substituting this into (105)
leads to 2ðfS � 1Þðx2 þ y2Þ þ ð4fS � 1Þz2 � 2ð1þ 2fSÞxy > 0 as the
condition for r0

AB to be entangled. We plot this condition in Fig. 5.
The inequality gives us the colored regions, and the values
within the regions are obtained by evaluating the fidelity according
to (102).

b. Key rates for QKD. Let us also consider key rates for quantum
key distribution (QKD) between Alice and Bob, who are at the ends of
the elementary link whose quantum state is r0

AB (conditioned on suc-
cessful transmission and heralding), as given by (100). We consider
the BB84, six-state, and device-independent (DI) QKD protocols, and
we calculate the secret key rates using known asymptotic secret key
rate formulas, which we review (along with other necessary back-
ground on QKD) in Appendix C.

Recalling from the proof of Proposition II.7 that r0
AB is a quan-

tum state of the form

r0
AB ¼ ðaþ bÞUþAB þ ða� bÞU�AB þ cWþAB þ cW�AB; (115)

with a, b, and c defined in (109)–(111), it is easy to show using
(C2)–(C6) that the quantum bit-error rates (QBERs) for the BB84 and
six-state protocols are

Qðd;hÞBB84 ¼
1
2
ðQx þ QzÞ ¼

3
4
� 1
2
b� a; (116)

Qðd;hÞ6�state ¼
1
3
ðQx þ Qy þ QzÞ ¼

2
3
ð1� ðaþ bÞÞ: (117)

For the device-independent protocol, we assume that the correlation is

such that the quantum bit-error rate is Qðd;hÞDI ¼ Qðd;hÞ6-state and

Sðd;hÞ ¼ 2
ffiffiffi
2
p
ð1� 2Qðd;hÞDI Þ. Then, assuming that M signals per second

are transmitted from the satellite, the secret-key rate (in units of secret
key bits per second) is given by eK ¼ pMK, where p ¼ aþ c is the suc-
cess probability of elementary link generation and K is the asymptotic

FIG. 5. Plots of the entanglement region for the state r0
AB obtained after a success-

ful satellite-to-ground transmission for the scenario depicted in Fig. 3. The regions
are defined by the condition Fð1Þ > ð1=2Þ, with F(1) the fidelity of the state r0

AB
with the maximally entangled state, see (102) and Proposition II.7. For both plots,
we assume fS ¼ 1. For the right-hand plot, we take �n1 ¼ �n2 ¼ 10�4.
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secret key rate per copy of the state r0
AB, which depends on the proto-

col under consideration. Using the formulas in Appendix C, we obtain

eK BB84ðd; hÞ ¼ Mðaþ cÞKBB84ðQðd;hÞBB84Þ; (118)

eK 6-stateðd; hÞ ¼ Mðaþ cÞK6-stateðQðd;hÞ6-stateÞ; (119)eKDIðd; hÞ ¼ Mðaþ cÞKDIðQðd;hÞDI ; Sðd;hÞÞ: (120)

We plot these secret key rates in Fig. 6.
In Fig. 6, notice that the region of non-zero secret key rate is larg-

est for the six-state protocol, with the region for the BB84 protocol
being smaller and the region for the DI protocol being even smaller.
This is due to the fact that the error threshold for the DI protocol is
the smallest among the three protocols, with the error threshold for
the BB84 protocol slightly larger, and the error threshold for the six-
state protocol the largest.

c. Quantum memory model. Having examined the quantum state
immediately after successful transmission and heralding, let us now
consider a particular model of decoherence for the quantummemories
in which the transmitted qubits are stored. For illustrative purposes,
we consider a simple amplitude damping decoherence model for the
quantum memories. The amplitude damping channel Ac is a qubit
channel, with c 2 ½0; 1�, such that126

Acðj0ih0jÞ ¼ j0ih0j; (121)

Acðj0ih1jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
j0ih1j; (122)

Acðj1ih0jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
j1ih0j; (123)

Acðj1ih1jÞ ¼ cj0ih0j þ ð1� cÞj1ih1j: (124)

Note that for c ¼ 0, we recover the noiseless (identity) channel. We
can relate c to the coherence time of the quantum memory, which we
denote by tcoh, as follows (Ref. 127, Sec. 3.4.3):

c :¼ 1� e�1=tcoh : (125)

Note that infinite coherence time corresponds to an ideal quantum
memory, meaning that the quantum channel is noiseless. Indeed, by
relating the noise parameter c to the coherence time as in (125), we
have that tcoh ¼ 1) c ¼ 0.

Form 2N0 applications of the amplitude damping channel, it is
straightforward to show that

A�mc ðj0ih0jÞ ¼ j0ih0j; (126)

A�mc ðj0ih1jÞ ¼
ffiffiffiffiffiffi
km

p
j0ih1j; (127)

A�mc ðj1ih0jÞ ¼
ffiffiffiffiffiffi
km

p
j1ih0j; (128)

A�mc ðj1ih1jÞ ¼ ð1� kmÞj0ih0j þ kmj1ih1j; (129)

where km :¼ e�m=tcoh ¼ ð1� cÞm. Then, for allm 2N0,

rABðmÞ :¼ ðA�mc � A�mc Þðr0
ABÞ (130)

¼ ak2m þ b� 1
2

	 

km þ

1
2

	 

UþAB (131)

þ ak2m þ �b� 1
2

	 

km þ

1
2

	 

U�AB (132)

þkm
1
2
� akm

	 

WþAB (133)

þkm
1
2
� akm

	 

W�AB (134)

þ 1
2
ð1� kmÞ jUþihU�jABþjU�ihUþjAB

� �
;

(135)

where a and b are given by (110) and (111), respectively. Note that we
have assumed that the memories corresponding to systems A and B
have the same coherence time. It follows that

f ðmÞ :¼ hUþjðA�mc � A�mc Þðr0
ABÞjUþi (136)

¼ ak2m þ b� 1
2

	 

km þ

1
2
: (137)

Note that f ðmÞ � f ð0Þ for allm 2N0.

2. Policies

a. Memory-cutoff policy. Let us now consider the memory-cutoff
policy, which we defined in Sec. II C. Using (77) and (78), along with
the expression for f(m) in (138), for every cutoff t? 2N0, we obtain

lim
t!1

eF t?ðtÞ ¼ p
1þ t?p

Xt?
m¼0

ak2m þ b� 1
2

	 

km þ

1
2

	 

; (138)

lim
t!1

Ft?ðtÞ ¼ 1
t? þ 1

Xt?
m¼0

ak2m þ b� 1
2

	 

km þ

1
2

	 

: (139)

Then, using the fact that km ¼ e�m=tcoh , it is straightforward to show
that

FIG. 6. Asymptotic secret key rates for the BB84, six-state, and device-independent
(DI) quantum key distribution protocols for the scenario depicted in Fig. 3. When
calculating the error rates in (116) and (117), we take fS ¼ 1. To calculate the key
rates in (118)–(120), we have taken M ¼ 109.
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Xt?
m¼0

km ¼ e�t
?=2tcoh

sinh
1þ t?

2tcoh

	 

sinh

1
2tcoh

	 
 ; (140)

Xt?
m¼0

k2m ¼ e�t
?=tcoh

sinh
1þ t?

tcoh

	 

sinh

1
tcoh

	 
 : (141)

Therefore, in the steady-state limit,

lim
t!1

eFt?ðtÞ ¼ ape�t
?=tcoh

1þ t?p

sinh
1þ t?

tcoh

	 

sinh

1
tcoh

	 
 þ pe�t
?=2tcoh

1þ t?p
b� 1

2

	 


	
sinh

1þ t?

2tcoh

	 

sinh

1
2tcoh

	 
 þ 1
2
ðt? þ 1Þp
1þ t?p

;

(142)

lim
t!1

Ft?ðtÞ ¼ ae�t
?=tcoh

t? þ 1

sinh
1þ t?

tcoh

	 

sinh

1
tcoh

	 


þ e�t
?=2tcoh

t? þ 1
b� 1

2

	 
 sinh
1þ t?

2tcoh

	 

sinh

1
2tcoh

	 
 þ 1
2
: (143)

For t? ¼ 1, from (78), we obtain

eF1ðtÞ ¼Xt�1
m¼0

ak2m þ b� 1
2

	 

km þ

1
2

	 

pð1� pÞt�1�m; (144)

for all t � 1. Evaluating the sums leads to

eF1ðtÞ ¼ ape2=tcoh e�2t=tcoh � ð1� pÞt
� �

1� e2=tcohð1� pÞ

þ b� 1
2

	 

pe1=tcoh e�t=tcoh � ð1� pÞt

� �
1� e1=tcohð1� pÞ

þ 1
2

1� ð1� pÞt
� �

: (145)

Then, for all p 2 ð0; 1�, we obtain limt!1 eF1ðtÞ ¼ ð1=2Þ.
Let us now focus primarily on the t? ¼ 1 memory-cutoff

policy by considering an example. Consider the situation depicted
in Fig. 3, in which we have two ground stations separated by a
distance d and a satellite at the altitude h that passes over the mid-
point between the two ground stations. Now, given that the ground
stations are separated by a distance d, it takes time at least 2d=c to
perform the heralding procedure, as this is the round-trip commu-
nication time between the ground stations (c is the speed of light).
We, thus, take the duration of each time step in the decision pro-
cess for the elementary link to be 2d=c. If the coherence time of the
quantum memories is x seconds, then tcoh ¼ ðxc=2dÞ time steps. In

Fig. 7, we plot the quantities eF1ðtÞ (solid lines), F1ðtÞ (dashed
lines), and X1ðtÞ (dotted lines) for the t? ¼ 1memory-cutoff pol-
icy under this scenario.

FIG. 7. The t? ¼ 1 memory-cutoff policy for satellite-to-ground elementary link
generation for various ground distances d and satellite altitudes h, according to the
situation depicted in Fig. 3. The solid lines are eF1ðtÞ [as given by (145)], the
dashed lines are F1ðtÞ, and the dotted lines are X1ðtÞ ¼ 1� ð1� pÞt [see
(79)], where p ¼ 1� ð1� ðaþ cÞÞM , with a and c given by (100) and M ¼ 105,
respectively. We let fS ¼ 1 be the fidelity of the source, we let �n1 ¼ �n2 ¼ 10�4 be
the average number of background photons, and we take the memory coherence
times to be 1 s (top) and 60 s (bottom). The dots are placed at the maxima of the
curves for eF1ðtÞ.
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In Fig. 7, we can see the trade-off among the quantities eF , F, and
X. On the one hand, the fidelity F1ðtÞ is always highest at time t¼ 1,
as we expect, but at this point, the probability X1ðtÞ that the elemen-
tary link is active is simply p. Since we want not only a high fidelity for
the elementary link but also a high probability that the elementary link
is active, by optimizing eF , it is possible to achieve a higher elementary
link activity probability at the expense of a slightly lower fidelity.
Specifically, in Fig. 7, we see that for every choice of d and h, there
exists a time step tcrit � 1 at which eF is maximal. At this point, the ele-
mentary link activity probability is 1� ð1� pÞtcrit , which, in many
cases, is dramatically greater than p, while the fidelity F1ðtcritÞ is only
slightly lower than the fidelity at time t¼ 1. Therefore, by waiting until
time tcrit, it is possible to obtain an elementary link that is almost deter-
ministically active, while incurring only a slight decrease in the fidelity.
The time tcrit, obtained by optimizing the quantity eF1ðtÞ with respect
to time t and can be found using the formula in (145), can be viewed
as the optimal time t that should be chosen for the quantum network
protocol presented in Fig. 13. We refer to Ref. 128 for an argument
similar to the one presented here, except that in Ref. 128, the time tcrit
is obtained by considering a desired value of the fidelity F1ðtÞ rather
than by optimizing eF1ðtÞ with respect to t, which is what we do here.

b. Forward recursion policy. The forward recursion policy is
defined as the time-homogeneous policy, such that the action at time t
is equal to the one that maximizes the quantity eFpðt þ 1Þ at the next
time step. The corresponding decision function is58

dFRðmÞ ¼
1 if m ¼ �1;
0 if m � 0 and f ðmþ 1Þ > pf ð0Þ;
1 if m � 0 and f ðmþ 1Þ � pf ð0Þ:

8>><>>: (146)

Observe that if p¼ 1, then the second condition in (146) is always
false because of the fact that f ðmÞ � f ð0Þ for all m 2N0, see (137).
Therefore, when p¼ 1, we have that dFRt ¼ d0t , i.e., the forward recur-
sion policy is equal to the t? ¼ 0 memory-cutoff policy, see (82). We
now show that the forward recursion policy reduces to a memory-
cutoff policy even when p< 1.

Proposition II.8. Consider the satellite-to-ground bipartite ele-
mentary link generation with �n1 ¼ �n2 ¼ 0 and fS ¼ 1, and let
p 2 ð0; 1Þ be the transmission-heralding success probability, as given
by (98). Let tcoh be the coherence time of the quantum memories, as
defined in Sec. IID 1. Then, for all t � 1

dFR ¼
d1 if p � 1

2
;

dt
?

if p >
1
2
;

8>><>>: (147)

where

t? ¼
l
� tcoh

2
ln ð2p� 1Þ � 1

m
: (148)

In other words, if p � ð1=2Þ, then the forward recursion policy is
equal to the t? ¼ 1 memory-cutoff policy; if p > ð1=2Þ, then the for-
ward recursion policy is equal to the t? memory-cutoff policy, with t?

given by (148).
Remark II.9. The result of Proposition II.8 goes beyond elemen-

tary link generation with satellites because we assumed that

�n1 ¼ �n2 ¼ 0 and fS¼ 1. As a result of these assumptions, the result of
Proposition II.8 applies to every elementary link generation scenario
(such as ground-based elementary link generation as described in Sec.
IIA 1) in which the transmission channel is a pure-loss channel, the
heralding procedure is described by (28)–(32), the source state is equal
to the target state, and the quantum memories are modeled as in
Sec. IID 1.

Proof. For the state r0
AB as given by (2), using (138), the second

condition in (147) translates to

ak2mþ1 þ b� 1
2

	 

kmþ1 þ

1
2
> pðaþ bÞ (149)

) p <
ak2mþ1
aþ b

þ
b� 1

2

	 

kmþ1

aþ b
þ 1
2ðaþ bÞ : (150)

In the case �n1 ¼ �n2 ¼ 0 and fS ¼ 1, we have that a ¼ b ¼ ð1=2Þ, so
that the inequality in (150) becomes

p <
1
2

e�2ðmþ1Þ=tcoh þ 1
� �

: (151)

Now, this inequality is satisfied for all m 2N0 if and only if
p � ð1=2Þ. In other words, if p � ð1=2Þ, then for all possible memory
times, the action is to wait if the elementary link is currently active,
meaning that the decision function in (146) becomes

dFRðmÞ ¼ 1 if m ¼ �1;
0 if m � 0;

(
(152)

which is precisely the decision function d1 for the t? ¼ 1 memory-
cutoff policy, see (82).

For p 2 ð1=2; 1Þ, whether or not the inequality in (151) is satis-
fied depends on the memory time m. Consider the largest value of m
for which the inequality is satisfied and denote that value by mmax.
Since the action is to wait, at the next time step, the memory value will
be mmax þ 1, which by definition will not satisfy the inequality in
(149). This means that for all memory times strictly less than
mmax þ 1, the forward recursion policy dictates that the wait action
should be performed if the elementary link is currently active. As soon
as the memory time is equal to mmax þ 1, then the forward recursion
policy dictates that the request action should be performed. This
means thatmmax þ 1 is a cutoff value. In particular, by rearranging the
inequality in (151), we obtain

m < � tcoh
2

ln ð2p� 1Þ � 1; (153)

which means that

mmax ¼
j
� tcoh

2
ln ð2p� 1Þ � 1

k
(154)

and

t? ¼ 1þmmax ¼
l
� tcoh

2
ln ð2p� 1Þ � 1

m
; (155)

as required. �

Observe that the cutoff in (148) is equal to zero for all
p � ð1=2Þð1þ e�2=tcohÞ. This means that p¼ 1 is not the only
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transmission-heralding success probability for which the forward
recursion policy is equal to the t? ¼ 0 memory-cutoff policy.
Intuitively, for ð1=2Þð1þ e�2=tcohÞ � p � 1, the transmission-
heralding success probability is high enough that it is not necessary to
store the quantum state in memory—for the purpose of maximizing
the expected value of eF , it suffices to request a new quantum state at
every time step. At the other extreme, for 0 � p � 1=2, the probability
is too low to keep requesting—for the purpose of maximizing the
expected value of eF , it is better to keep the quantum state in memory
indefinitely.

c. Backward recursion policy. Finally, to end this section, let us
consider the backward recursion policy, which we know to be optimal
from Theorem II.3. We perform the policy optimization for small
times, just as a proof of concept.

In Fig. 8, we plot optimal values of eFpðt þ 1Þ for a single ele-
mentary link, except now we plot them as a function of the ground
station distance d and the satellite altitude h as per the situation
depicted in Fig. 3. We also plot the elementary link activity probabil-
ity Xpðt þ 1Þ and the expected fidelities Fpðt þ 1Þ associated with
the optimal policies. As before, we assume that fS ¼ 1, but unlike
before, we assume that �n1 ¼ �n2 ¼ 10�4, and we consider multiplex-
ing with M ¼ 105 distinct frequency modes per transmission. We
assume a coherence time of 1 s throughout. For small distance-
altitude pairs, we find that the optimal value is reached within five
time steps. For these cases, it is worth pointing out that the optimal
value of eFpðt þ 1Þ corresponds to an elementary link activity proba-
bility Xpðt þ 1Þ of nearly one, while the fidelity (although it drops, as
expected) does not drop significantly, meaning that the elementary
link can still be useful for performing entanglement distillation of
parallel elementary links or for creating virtual links. It is also inter-
esting to point out that for a ground distance separation of
d¼ 2000 km, the optimal values for satellite altitude h¼ 1000 km are
higher than for h¼ 500 km. This result can be traced back to the top-
left panel of Fig. 4, in which we see that the transmission-heralding
success probability curves for h¼ 500 km and h¼ 1000 km cross
over at around 1700 km, so that h¼ 1000 km has a higher probability
than h¼ 500 km when d¼ 2000 km.

III. ENTANGLEMENT DISTILLATION AND JOINING
PROTOCOLS

In Sec. II, we discussed elementary links in a quantum network,
how to model the generation of elementary links, and how to model
them in time in terms of a Markov decision process. The description
of an elementary link in terms of a Markov decision process allows us
to determine, as a function of time, the quantum state of an elemen-
tary link. Keeping in mind the overall goal of entanglement distribu-
tion, i.e., the creation of long-distance virtual links, the next step in an
entanglement distribution protocol is to take elementary links, to
improve their fidelity using entanglement distillation, and then to join
them in order to create the virtual links (using, e.g., entanglement
swapping). In this section, we explain how to model entanglement dis-
tillation protocols and joining protocols using LOCC channels. We
refer to Appendix B 2 for a detailed explanation of LOCC channels.
The explicit description of these protocols as LOCC channels is impor-
tant because, as we saw in Sec. II, the quantum state of an elementary
link will not always be the ideal entangled state with respect to which

joining protocols are typically defined. It is, therefore, important to
understand how the protocols will act when the input states are not
ideal.

A. Entanglement distillation

The term “entanglement distillation” refers to the task of taking
many copies of a given quantum state qAB and transforming them, via
an LOCC protocol, to several (fewer) copies of the maximally
entangled state UAB. Typically, with only a finite number of copies of
the initial state qAB, it is not possible to perfectly obtain copies of the
maximally entangled state, so we aim, instead, for a state rAB whose
fidelity FðUAB;rABÞ to the maximally entangled state is higher than
the fidelity FðUAB;qABÞ of the initial state. Mathematically, the task of
entanglement distillation corresponds to the transformation

FIG. 8. Optimal values of eFp
ðt þ 1Þ, along with the associated values of Xpðt þ 1Þ

and fidelities Fpðt þ 1Þ, for a single elementary link distributed by a satellite to two
ground stations, according to the symmetric situation depicted in Fig. 3. We assume
that fS ¼ 1 and that �n1 ¼ �n2 ¼ 10�4, and we assume that the quantum memories
have a coherence time of 1 s. We also assume multiplexing with M ¼ 105 distinct
frequency modes per transmission.
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q�nAB 7!LAnBn!AmBmðq�nABÞ ¼ r�mAB ; (156)

where n;m 2N,m< n, andLAnBn!AmBm is an LOCC channel.
Typically, in practice, we have n¼ 2 and m¼ 1, with the task

being to transform two two-qubit states q1
A1B1

and q2
A2B2

to a two-
qubit state rA1B1 having a higher fidelity to the maximally entangled
state than the initial states. Protocols achieving this aim are typically
probabilistic in practice, meaning that the state rA1B1 with higher fidel-
ity is obtained only with some non-unit probability.

We are not concerned with any particular entanglement distilla-
tion protocol in this work. All we are concerned with is their mathe-
matical structure. In particular, entanglement distillation protocols
that are probabilistic can be described mathematically as an LOCC
instrument, which we now demonstrate with a simple example,
depicted in Fig. 9, which comes from Ref. 36. In this protocol, Alice
and Bob first apply the CNOT gate to their qubits and follow it with a
measurement of their second qubit in the standard basis. They then
communicate the results of their measurement to each other. The pro-
tocol is considered successful if they both obtain the same outcome
and a failure otherwise. This protocol has the following corresponding
LOCC instrument channel:

LA1A2B1B2!A1B1 q1
A1B1
� q2

A2B2

� �
¼ j0ih0j � ðK0

A � K1
BÞðq

iso;1
A1B1 � qiso;2

A2B2
ÞðK0

A � K1
BÞ

†
�

þðK1
A � K0

BÞðq
iso;1
A1B1
� qiso;2

A2B2
ÞðK1

A � K0
BÞ

†
�

þ j1ih1j � ðK0
A � K0

BÞðq
iso;1
A1B1
� qiso;2

A2B2ÞðK
0
A � K0

BÞ
†

�
þðK1

A � K1
BÞðq

iso;1
A1B1
� qiso;2

A2B2
ÞðK1

A � K1
BÞ

†
�
; (157)

where

Kx
A � Kx

A1A2!A1
:¼ hxjA2

CNOTA1A2 8 x 2 f0; 1g; (158)

Kx
B � Kx

B1B2!B1 :¼ hxjB2
CNOTB1B2 8 x 2 f0; 1g: (159)

Furthermore, the states qiso;j
AjBj
; j 2 f1; 2g are defined as

qiso;j
AjBj :¼ T U

AjBj
ðqj

AjBj
Þ (160)

:¼
ð
U

UAj � �UBj

� �
ðqj

AjBjÞ UAj � �UBj

� �†
; (161)

where T U is the isotropic twirling channel, see, e.g., Ref. 129 (Example
7.25).

It is a straightforward calculation to show that if
f1 ¼ hUjq1

A1B1
jUi and f2 ¼ hUjq2

A2B2
jUi are the fidelities of the initial

states with the maximally entangled state, then the protocol depicted
in Fig. 9, with corresponding LOCC channel given by (157), succeeds
with probability,

psucc ¼
8
9
f1f2 �

2
9
ðf1 þ f2Þ þ

5
9
; (162)

and the fidelity of the output state rA1B1 with the maximally entangled
state (conditioned on success) is

hUjrA1B1 jUi ¼
1

psucc

10
9
f1f2 �

1
9
ðf1 þ f2Þ þ

1
9

	 

: (163)

The above example illustrates a general principle, which is that
entanglement distillation protocols that are probabilistic (and her-
alded) can be described using LOCC instrument channels. Specifically,
let G ¼ ðV ;EÞ be the graph corresponding to the physical links in a
quantum network. Given an element e 2 E with n parallel edges
e1; e2;…; en, every probabilistic entanglement distillation protocol has
the form of an LOCC instrument channel of the following form:

De
e1���en!e1���en0 ð�Þ ¼ j0ih0j � D

e;0
e1���en!e1���en0 ð�Þ

þj1ih1j � De;1
e1���en!e1���en0 ð�Þ; (164)

where De;0
e1���en!e1���en0 and D

e;1
e1���en!e1���en0 are completely positive trace

non-increasing LOCC maps, such that De;0
e1���en!e1���en0 þ D

e;1
e1���en!e1���en0

is a trace-preserving map, thus an LOCC quantum channel.
Specifically, De;0

e1���en!e1���en0 corresponds to failure of the protocol and
De;1

e1���en!e1���en0 corresponds to success of the protocol.

B. Joining protocols

Let us now discuss joining protocols, such as entanglement swap-
ping. We can describe such protocols using LOCC instrument chan-
nels, just as with entanglement distillation protocols. As above, let
G ¼ ðV ;EÞ be the graph corresponding to the physical links in a
quantum network. A path in a graph is a sequence w ¼ ðv1; e1;
v2; e2;…; en�1; vnÞ of vertices and edges that specifies how to get from
the vertex v1 to the vertex vn. Given a path w of active elementary links
in the network, the joining channel Lw!e0 that forms the new virtual
link e0 is given in the probabilistic setting by

Lw!e0 ð�Þ ¼ j0ih0j � L0w!e0 ð�Þ þ j1ih1j � L1w!e0 ð�Þ; (165)

where L0
w!e0 and L1w!e0 are completely positive trace non-increasing

LOCC maps, such that L0w!e0 þ L1w!e0 is a trace-preserving map, thus
an LOCC quantum channel. Specifically, L0w!e0 corresponds to failure
of the joining protocol, and L1w!e0 corresponds to success of the join-
ing protocol. Given an input state qw corresponding to the given
path w, the success probability of the joining protocol is psucc
¼ Tr½L1w!e0 ðqwÞ�, and the state conditioned on success is

FIG. 9. Depiction of the simple entanglement distillation protocol as described in
Ref. 36. The protocol takes two isotropic states qiso;j

Aj Bj
; j 2 f1; 2g [see (161)] and

transforms them probabilistically to a state with higher fidelity.
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1
psucc
L1w!e0 ðqwÞ: (166)

Note that as input states to the maps L0w!e0 and L1w!e0 , we could have
arbitrary states of the elementary links along the path w. In particular,
depending on the elementary link policy, they could be states of the
form (59), which take into account the noise in the quantum memo-
ries and other device imperfections arising during the process of gen-
erating the elementary links.

The precise joining protocol, and thus, the explicit form for the
maps L0w!e0 and L1w!e0 , depends on the type of entanglement that is
to be created. For bipartite entanglement, we consider entanglement
swapping in Sec. III B 1. For tripartite GHZ entanglement, we describe
a protocol in Sec. III B 2, and for multipartite graph states, we describe
a protocol in Sec. III B 3.

1. Entanglement swapping protocol

Let qA~R1~R2���~RnB
be a multipartite quantum state, where n � 1 and

~Rj � R1
j R

2
j is an abbreviation for two the quantum systems R1

j and R
2
j .

The entanglement swapping protocol with n intermediate nodes is
defined by a Bell-basis measurement of the systems~Rj, i.e., a measure-
ment described by the positive operator-valued measure (POVM)
fUz;x : z;x 2 ½d�g, where ½d� ¼ f0;1;…;d� 1g; Uz;x ¼ jUz;xihUz;xj,
and

jUz;xi :¼ ðZzXx � 1ÞjUi; (167)

are the qudit Bell state vectors, with

jUi :¼ 1ffiffiffi
d
p
Xd�1
k¼0
jk; ki: (168)

The operators Z and X are the discrete Weyl operators,129 which are
defined as

Z :¼
Xd�1
k¼0

e2pik=djkihkj; X :¼
Xd�1
k¼0
jkþ 1ihkj: (169)

Conditioned on the outcomes (zj, xj) of the Bell measurement on ~Rj,

the unitary Zz1þ���þzn
B Xx1þ���þxn

B is applied to the system B, where the
addition is performed modulo d. Let~z ;~x 2 ½d�	n and define

M~z ;~x
~R1~R2���~Rn

:¼ Uz1;x1
~R1
� Uz2;x2

~R2
� � � � � Uzn;xn

~Rn
; (170)

W~z ;~x
B :¼ Zz1þ���þzn

B Xx1þ���þxn
B ; (171)

where the addition in the second line is performed modulo d. Then,
the LOCC quantum channel corresponding to the entanglement
swapping protocol with n � 1 intermediate nodes is

LES;n
A~R1���~RnB!AB

qA~R1���~RnBð Þ

:¼
X

~z ;~x2 d½ �	n
Tr~R1���~Rn

M~z ;~x
~R1���~Rn

W~z ;~x
B qA~R1���~RnBð Þ W~z ;~x

B

� �†� �
: (172)

The standard entanglement swapping protocol39 corresponds to
the input state

qA~R1~R2���~RnB
¼ UAR1

1
� UR2

1R
1
2
� � � � � UR2

n�1R
1
n
� UR2

nB: (173)

This scenario is shown in Fig. 10. Indeed, it can be shown that

LES;n
A~R1���~RnB!AB

UAR1
1
�UR2

1R
1
2
��� ��UR2

n�1R
1
n
�UR2

nB
� �¼UAB: (174)

Furthermore, the standard teleportation protocol12 corresponds to
n¼ 1 and the input state

qA~R1B
¼ rR1

1
� UR2

1B
; (175)

where A ¼1 is a trivial (one-dimensional) system and rR1
1
is an arbi-

trary d-dimensional quantum state, so that

LES;1
~R1!B
ðrR1

1
� UR2

1B
Þ ¼ rB; (176)

as expected.
Proposition III.1 (Fidelity after entanglement swapping). For all

n � 1 and all states q1
AR11
;q2

R2
1R

1
2
;…; qnþ1

R2
nB
, the fidelity of the maximally

entangled state with the state after entanglement swapping of
q1
AR1

1
;q2

R2
1R

1
2
;…;qnþ1

R2
nB

is given by

hUjABL
ES;n
A~R1���~RnB!AB

q1
AR1

1
� q2

R2
1R

1
2
� � � � � qnþ1

R2
nB

� �
jUiAB

¼
Xd�1

~z ;~x2 d½ �	n
hUz0;x0 jq1

AR1
1
jUz0 ;x0 ihUz1;x1 jq2

R2
1R

1
2
jUz1;x1i � � �

hUzn;xn jqnþ1
R2
nB
jUzn;xni; (177)

where z0 ¼ �z1 � z2 � � � � � zn and x0 ¼ �x1 � x2 � � � � � xn.
Proof. See Appendix E 1. �

A simple way to make the entanglement swapping protocol prob-
abilistic is to modify the measurement operators M~z ;~x

~R1���~Rn
in the ideal

protocol as follows:

M~z ;~x
~R1���~Rn

! eM~z ;~x ;~a
~R1���~Rn

:¼ Kz1;x1;a1
~R1

� � � � � Kzn;xn;an
~Rn

; (178)

where fKzj ;xj;aj
~Rj

gzj ;xj;aj2f0;1g; j 2 f1; 2;…; ng are POVMs, such that

K
zj ;xj;1
~Rj

¼ qjU
zj;xj
~Rj
; (179)

FIG. 10. A chain of five nodes corresponding to the entanglement swapping protocol
with n¼ 3 intermediate nodes. The red lines represent maximally entangled states.
The goal of the entanglement swapping protocol is to establish entanglement
between A and B. The protocol proceeds by first performing a Bell-basis measure-
ment on the systems at the nodes ~Rj ; 1 � j � n, and communicating the results
of the measurement to B, who applies a correction operation based on the
outcomes.
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X
zj;xj2f0;1g

K
zj;xj ;0
~Rj

¼ ð1� qjÞ1~Rj
: (180)

The values qj 2 ½0; 1� represent the success probability of the Bell-
basis measurement at the jth intermediate node. We then define the
LOCC instrument channel for the probabilistic entanglement swap-
ping protocol as follows:

eLES;n

A~R1���~RnB!AB qA~R1���~RnBð Þ

:¼ j0ih0j � eLES;n;0

A~R1���~RnB!AB qA~R1���~RnBð Þ

þj1ih1j � eLES;n;1

A~R1���~RnB!AB qA~R1���~RnBð Þ; (181)

where

eLES;n;1

A~R1���~RnB!AB qA~R1���~RnBð Þ

:¼
X

~z ;~x2f0;1gn
Tr~R1���~Rn

eM~z ;~x ;~1
~R1���~Rn

W~z ;~x
B qA~R1���~RnBð Þ W~z ;~x

B

� �†� �
(182)

¼ q1 � � � qnLES;n
A~R1���~RnB!AB

qA~R1���~RnBð Þ (183)

and

eLES;n;0

A~R1���~Rn!AB qA~R1���~RnBð Þ

:¼
X

~z ;~x;~a 2 f0; 1gn

~a 6¼~1

Tr~R1���~Rn
eM~z ;~x ;~a
~R1���~Rn

W~z ;~x
B qA~R1���~RnBð Þ W~z ;~x

B

� �†� �
:

(184)
Then, the success probability of the protocol is

Tr eLES;n;1

A~R1���~RnB!AB qA~R1���~RnBð Þ
h i

¼ q1 � � � qn; (185)

for every state qA~R1���~RnB
.

2. GHZ entanglement swapping protocol

The previous example takes a chain of Bell states and transforms
them into a Bell state shared by the end nodes of the chain. In this
example, we look at a protocol that takes the same chain of Bell states
and transforms them instead to a multi-qubit GHZ state, which is
defined as130

jGHZni :¼ 1ffiffiffi
2
p ðj0i�n þ j1i�nÞ: (186)

We call this protocol as the GHZ entanglement swapping protocol.
The protocol for transforming a chain of two Bell states to a

three-party GHZ state is shown in Fig. 11. First, the two qubits R1
1 and

R2
1 in the central node are entangled with a CNOT gate, followed by a

measurement of R2
1 in the standard basis (with corresponding POVM

fj0ih0j; j1ih1jg). The result x 2 f0; 1g is communicated to B, where
the correction operation Xx

B is applied. The LOCC channel corre-
sponding to this protocol is

LGHZ;1
A~R1B

qA~R1Bð Þ ¼
X1
x¼0

Kx
~R1
� Xx

B

� �
qA~R1B

Kx
~R1
� Xx

B

� �†
; (187)

where

Kx
~R1

:¼ hxjR2
1
CNOT~R1

; (188)

CNOT~R1
:¼ j0ih0jR1

1
� 1R2

1
þ j1ih1jR1

1
� XR2

1
: (189)

The protocol shown in Fig. 11, with the corresponding LOCC
quantum channel in (187), can be easily extended to a scenario with
n> 1 intermediate nodes. In this case, the node~R1 starts by apply-
ing the gate CNOT~R1

to its qubits and then measuring the qubit
R2
1 in the standard basis. The outcome of this measurement is sent

to the node ~R2, and the corresponding correction operation is
applied to the qubit R1

2. Then, the gate CNOT~R2
is applied to the

qubits at ~R2, followed by a standard-basis measurement of R2
2 and

communication of the outcome to ~R3 and a correction operation
on R1

3. This proceeds in sequence until the nth intermediate node
~Rn, which sends its measurement outcome to B, which applies the
appropriate correction operation. The LOCC channel for this pro-
tocol is

LGHZ;n
A~R1���~RnB!AR1

1���R1
nB

qA~R1���~RnBð Þ :¼
X

~x2f0;1gn
P~x~R1���~RnB

qA~R1���~RnBð ÞP~x †~R1���~RnB
;

(190)

where

P~x~R1���~RnB
:¼ Kx1

~R1
� Kx2

~R2
Xx1
R1
2
� � � � � Kxn

~Rn
Xxn�1
R1
n
� Xxn

B ; (191)

for all~x 2 f0; 1gn. If the input state to this channel is

qA~R1���~RnB
¼ UAR1

1
� UR2

1R
1
2
� � � � � UR2

n�1R
1
n
� UR2

nB; (192)

then the output is a ðnþ 2Þ-party GHZ state given by the state vector
jGHZnþ2iAR1

1���R1
nB

as defined in (186), i.e.,

FIG. 11. The GHZ entanglement swapping protocol with one intermediate node. The
two qubits in the central node are entangled using the CNOT gate, after which the
qubit R2

1 is measured in the standard basis. The result x 2 f0; 1g of the measure-
ment is communicated to B, where the gate Xx

B is applied.
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LGHZ;n
A~R1���~RnB!AR1

1���R1
nB

UAR1
1
� UR2

1R
1
2
� � � � � UR2

n�1R
1
n
� UR2

nB
� �

¼ jGHZnþ2ihGHZnþ2j: (193)

Proposition III.2 (Fidelity after GHZ entanglement swapping). For all
n � 1 and for all states q1

AR1
1
; q2

R2
1R

1
2
;…;qnþ1

R2
nB
, the fidelity of the

ðnþ 2Þ-party GHZ state with the state after the GHZ entanglement
swapping of q1

AR1
1
;q2

R2
1R

1
2
;…; qnþ1

R2
nB

is

hGHZnþ2jLGHZ;n
A~R1���~RnB!AR1

1���R1
nB

q1
AR1

1
� q2

R2
1R

1
2
� � � � � qnþ1

R2
nB

� �
jGHZnþ2i

¼
X1

z1;…;zn¼0
hUz1þ���þzn;0jqAR1

1
jUz1þ���þzn;0i

	 hUz1;0jq2
R2
1R

1
2
jUz1;0i � � � hUzn;0jqnþ1

R2
nB
jUzn;0i: (194)

Proof. See Appendix E 2. �

The GHZ entanglement swapping protocol can be made proba-
bilistic in a manner similar to the entanglement swapping protocol.
We start by writing (190) as follows:

LGHZ;n
A~R1���~RnB!AR1

1���R1
nB

qA~R1���~Rnð Þ

¼
X

~x2f0;1gn
TrR2

1���R2
n
j~xih~xjR2

1���R2
n
C~R1���~Rn

X~xR1
2���R1

nB
qA~R1���~RnBð Þ

h
	 XR1

2���R1
nB
C~R1���~Rn

i
; (195)

where

C~R1���~Rn
:¼ CNOT~R1

� � � � � CNOT~Rn
; (196)

X~xR1
2���R1

nB
:¼ Xx1

R1
2
� � � � � Xxn

B : (197)

Then, to make the protocol probabilistic, we can make the following
simple modification:

j~xih~xjR2
1���R2

n
! K~x ;~aR2

1���R2
n

:¼ Kx1;a1
R2
1
� � � � � Kxn;an

R2
n
; (198)

where fKxj ;aj
R2
j
gxj;aj2f0;1g; j 2 f1; 2;…; ng are POVMs, such that

Kxk;1
R2
j
¼ qjjxjihxjjR2

j
; (199)X

xj2f0;1g
K

xj ;0
R2
j
¼ ð1� qjÞ1R2

j
: (200)

The values qj 2 ½0; 1� represent the success probability of the
standard-basis measurement at the jth intermediate node. Then, we
define the LOCC quantum instrument channel for the GHZ entangle-
ment swapping protocol as follows:eLGHZ;n

A~R1���~RnB!AR1
1���R1

nB
qA~R1���~RnBð Þ

:¼ j0ih0j � eLGHZ;n;0

A~R1���~RnB!AR1
1���R1

nB
qA~R1���~RnBð Þ

þj1ih1j � eLGHZ;n;1

A~R1���~RnB!AR1
1���R1

nB
qA~R1���~RnBð Þ; (201)

whereeLGHZ;n;1

A~R1���~RnB!AR1
1���R1

nB
qA~R1���~RnBð Þ

¼
X

~x2f0;1gn
TrR2

1���R2
n

K~x ;
~1

R2
1���R2

n
C~R1���~Rn

X~xR1
2���R1

nB
qA~R1���~RnBð ÞX~xR1

2���R1
nB
C~R1���~Rn

h i
¼q1…qnLGHZ;n

A~R1���~RnB!AR1
1���AR1

nB
qA~R1���~RnBð Þ (202)

andeLGHZ;n;0

A~R1���~RnB!AR1
1���R1

nB
qA~R1���~RnBð Þ

:¼
X

~x;~a 2 f0; 1gn

~a 6¼~1

TrR1
1���R1

n
K~x ;~aR1

1���R1
n
C~R1���~Rn

X~xR1
2���R1

nB
qA~R1���~RnBð Þ

h

	 X~xR1
2���R1

nB
C~R1���~Rn

i
: (203)

Then, the success probability of the protocol is

Tr eLGHZ;n;1

A~R1���~RnB!AR1
1���R1

nB
qA~R1���~RnBð Þ

h i
¼ q1…qn; (204)

for every state qA~R1���~RnB
.

3. Graph state distribution protocol

We now consider an example of distributing an arbitrary graph
state, which can be viewed as a special case of the procedure consid-
ered in Ref. 73. A graph state131–133 is a multi-qubit quantum state
defined using graphs.

Consider a graph G ¼ ðV ;EÞ, which consists of a set V of verti-
ces and a set E of edges. For the purpose of this example, G is an undi-
rected graph, and E is a set of two-element subsets of V. The graph
state jGi is an n-qubit quantum state jGiA1���An

with n ¼ jV j, which is
defined as

jGiA1���An
:¼ 1ffiffiffiffiffi

2n
p

X
~a2f0;1gn

ð�1Þ
1
2~a

TAðGÞ~a j~ai; (205)

where A(G) is the adjacency matrix of G, which is defined as

AðGÞi;j ¼
1 if fvi; vjg 2 E;

0; otherwise;

(
(206)

and~a is the column vector ða1;…; anÞT. It is easy to show that

jGiA1���An
¼ CZðGÞðjþiA1

� � � � � j þ iAn
Þ; (207)

where jþi :¼ 1ffiffi
2
p ðj0i þ j1iÞ and

CZðGÞ :¼ �
fvi;vjg2E

CZAiAj ; (208)

with CZAiAj :¼ j0ih0jAi
� 1Aj þ j1ih1jAi

� ZAj being the controlled-Z
gate.

Now, consider the scenario depicted in Fig. 12 in which n¼ 4
nodes share Bell states with a central node. The task is for the central
node to distribute the graph state jGi to the outer nodes. One possible
procedure is for the central node to locally prepare the graph state and
then to teleport the individual qubits using the Bell states. However, it
is possible to perform a slightly simpler procedure that does not
require the additional qubits needed to prepare the graph state locally.
In fact, the following deterministic procedure produces the required
graph state jGi shared by the nodes A1;…;An.

1. The central node applies CZðGÞ to the qubits R1;…;Rn.
2. On each of the qubits R1;…;Rn, the central node performs the

measurement defined by the POVM fjþihþj; j�ih�jg, where
j6i ¼ 1ffiffi

2
p ðj0i6j1iÞ. The outcome is an n-bit string
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~x ¼ ðx1;…; xnÞ, where xi ¼ 0 corresponds to the “þ” outcome
and xi ¼ 1 corresponds to the “�” outcome. The central node
communicates outcome xi to the node Ai.

3. The nodes Ai apply Zxi to their qubit. In other words, if xi ¼ 0,
then Ai does nothing, and if xi ¼ 1, then Ai applies Z to their
qubit.

Let us prove that this protocol achieves the desired outcome.
First, we observe that

jUiA1R1
� � � � � jUiAnRn

¼ 1ffiffiffiffiffi
2n
p

X
~a2f0;1gn

j~aiA1���An
j~aiR1���Rn

: (209)

Then, after the first step, the state is

1ffiffiffiffiffi
2n
p

X
~a2f0;1gn

j~aiA1���An
CZðGÞj~aiR1���Rn

¼ 1ffiffiffiffiffi
2n
p

X
~a2f0;1gn

ð�1Þ
1
2~a

TAðGÞ~a j~aiA1���An
j~aiR1���Rn

; (210)

where we have used the fact that

CZðGÞj~ai ¼ ð�1Þ
P

i;j:fvi ;vjg2E
aiaj j~ai ¼ ð�1Þ

1
2~a

TAðGÞ~a j~ai: (211)

Then, we find that for every outcome string ðx1;…; xnÞ of the mea-
surement on the qubits R1;…;Rn, the corresponding (unnormalized)
post-measurement state is

1
2n

X
~a2f0;1gn

ð�1Þ
1
2~a

TAðGÞ~a ð�1Þa1x1þ���þanxn j~aiA1���An
: (212)

Then, using the fact that Zxjai ¼ ð�1Þaxjai for all x; a 2 f0; 1g, we
find that at the end of the second step, the (unnormalized) state is

1
2n
ðZx1

A1
� � � � � Zxn

An
Þ
X

~a2f0;1gn
ð�1Þ

1
2~a

TAðGÞ~a j~aiA1���An

¼ 1ffiffiffiffiffi
2n
p ðZx1

A1
� � � � � Zxn

An
ÞjGiA1���An

; (213)

for all ðx1;…; xnÞ 2 f0; 1gn. From this, we see that up to local Pauli-z
corrections, the post-measurement state is equal to the desired graph
state jGi with probability 1=2n for every measurement outcome string
ðx1;…; xnÞ. Once all of the nodes Ai receive their corresponding out-
come xi and apply the correction Zxi

Ai
, the nodes A1;…;An share the

graph state jGi. As a result of the classical communication of the mea-
surement outcomes and the subsequent correction operations, the
protocol is deterministic.

The protocol described above has the following representation as
an LOCC channel:

LðGÞAn
1R

n
1!An

1
qAn

1R
n
1ð Þ

:¼
X

~x2f0;1gn
Z~xAn

1
� h~xjRn

1
H�nCZðGÞRn

1

� �
qAn

1R
n
1ð Þ

	 Z~xAn
1
� CZðGÞ†Rn

1
H�nj~xiRn

1

� �
; (214)

for every state qAn
1R

n
1
, where H ¼ jþih0j þ j�ih1j is the Hadamard

operator, and we have let

Z~xA1���An
:¼ Zx1

A1
� � � � � Zxn

An
: (215)

We have also used the abbreviation An
1 � A1A2…An, and similarly for

Rn
1 . Using the fact that

CZðGÞH�nj~xi ¼ Z~x jGi; (216)

for all~x 2 f0; 1gn, and letting

jG~x i :¼ Z~x jGi; (217)

we can write the channel in the following simpler form:

LðGÞAn
1R

n
1!An

1
qAn

1R
n
1ð Þ ¼

X
~x2f0;1gn

Z~xAn
1
� hG~x jRn

1

� �
qAn

1R
n
1ð Þ Z~xAn

1
� jG~x iRn

1

� �
:

(218)

From this, we see that the protocol can be thought of as measuring the
systems R1;…;Rn according to the POVM jG~x ihG~x j


 �
~x2f0;1gn and,

conditioned on the outcome~x , applying the correction operation Z~x

to the systems A1;…;An. Note that jG~x ihG~x j

 �

~x2f0;1gn is, indeed, a
POVM due to the fact that

jG~x i ¼ CZðGÞH�nj~xi; (219)

for all~x 2 f0; 1gn, which follows from (216) and (217), so thatX
~x2f0;1gn

jG~x ihG~x j¼CZðGÞH�n
X

~x2f0;1gn
j~xih~xj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

1

H�nCZðGÞ†¼1: (220)

Proposition III.3 (Fidelity after graph state distribution). For all
n � 2, every graph G with n vertices, and all two-qubit states
q1
A1R1

; q2
A2R2

;…;qn
AnRn

, the fidelity of the graph state jGi with the state
after the graph state distribution protocol applied to
q1
A1R1

; q2
A2R2

;…;qn
AnRn

is

hGjLðGÞAn
1R

n
1!An

1
q1
A1R1
� � � � � qn

AnRn

� �
jGi

¼
X

~x2f0;1gn
hUz1;x1 jq1

A1R1
jUz1;x1ihUz2;x2 jq2

A2R2
jUz2;x2i

� � � hUzn;xn jqn
AnRn
jUzn;xni; (221)

where the column vector ~z ¼ ðz1;…; znÞT is given by ~z ¼ AðGÞ~x ,
with A(G) the adjacency matrix of G.

Proof. See Appendix E 3. �

In order to make the graph state distribution protocol probabilis-
tic, we can make the following modification:

jG~x ihG~x jRn
1
! K~x ;aRn

1
; (222)

where fK~x ;aRn
1
g~x2f0;1gn;a2f0;1g is a POVM, such that

K~x ;1Rn
1
¼ qjG~x ihG~x jRn

1
; (223)X

~x2f0;1g
K~x ;0Rn

1
¼ ð1� qÞ1Rn

1
: (224)

The value q 2 ½0; 1� represents the success probability of the measure-
ment defined by the POVM fjG~x ihG~x jRn

1
g~x2f0;1gn . Then, we define
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the LOCC quantum instrument channel for the graph state distribu-
tion protocol as follows:eLðGÞAn

1R
n
1!An

1
ðqAn

1R
n
1
Þ :¼ j0ih0j � eLðGÞ;0An

1R
n
1!An

1
ðqAn

1R
n
1
Þ

þj1ih1j � eLðGÞ;1An
1R

n
1!An

1
ðqAn

1R
n
1
Þ; (225)

whereeLðGÞ;1An
1R

n
1!An

1
ðqAn

1R
n
1
Þ

¼
X

~x2f0;1gn
TrRn

1
Z~xAn

1
� K~x ;1Rn

1

� �
qAn

1R
n
1ð Þ Z~xAn

1
� 1Rn

1

� �� �
¼ qLðGÞAn

1R
n
1!An

1
ðqAn

1R
n
1
Þ (226)

and

eLðGÞ;0An
1R

n
1!An

1
ðqAn

1R
n
1
Þ ¼

X
~x2f0;1gn

TrRn
1

Z~xAn
1
�K~x ;0Rn

1

� �
qAn

1R
n
1ð Þ Z~xAn

1
�1Rn

1

� �� �
:

(227)Then, the success probability of the protocol is

Tr eLðGÞ;1An
1R

n
1!An

1
ðqAn

1R
n
1
Þ

h i
¼ q; (228)

for every state qAn
1R

n
1
.

IV. ANALYSIS OF A QUANTUM NETWORK PROTOCOL

In Secs. II and III, we described in detail how to model elemen-
tary links in a quantum network using Markov decision processes.
Then, we showed how to model entanglement distillation protocols
and joining protocols (such as entanglement swapping) as LOCC
channels. The upshot of these developments is that they give us a
method for determining the quantum states of elementary and virtual
links in a quantum network that depends explicitly on the underlying
device parameters and noise processes that characterize the device,
thereby allowing us to perform a more realistic analysis of entangle-
ment distribution protocols, as we now show in this section.

In this section, we analyze a simple entanglement distribution
protocol. Recall from Sec. I that the entanglement distribution refers to
the task of creating virtual links—entanglement between non-adjacent
nodes—from elementary links, which are entangled states shared by
adjacent (physically connected) nodes. An entanglement distribution
protocol can be thought of as a graph transformation, as done in
Refs. 128 and 134 and depicted in Fig. 1. Starting with the graph
G ¼ ðV ;EÞ of physical links in the network, the goal is to realize a
new graph Gtarget ¼ ðV ;EtargetÞ consisting of virtual links in addition
to elementary links, such as the graph in the right-most panel of Fig. 1.

The protocol that we consider consists of two steps: generate ele-
mentary links and then perform joining protocols based on the given
target graph. The protocol is described more formally in Fig. 13.
Starting with the graph G ¼ ðV; EÞ of elementary links, all of the ele-
mentary links independently undergo policies pe, with e 2 E. After
t � 1 time steps, an algorithm128,134,135 finds paths for creating the vir-
tual links specified by the target graph Gtarget, and the corresponding
joining protocols are performed. If the entire target network cannot be
achieved in t time steps, then a decision is made to either conclude the
protocol with the current configuration or to continue for another t
time steps under the same policies.

Remark IV.1. Note that in the protocol described in Fig. 13, the
virtual links are created only when all of the required elementary links
are active. This is of course not the most general procedure because it
is in general possible to join some of the elementary links along a path
while waiting for others to become active. To handle such general pro-
cedures requires developing MDPs for systems of multiple elementary
links. While this is the subject of ongoing future work, we provide an
example of how to extend the elementary-link MDP framework of
Sec. II to a system of two elementary links, in which entanglement
swapping is included, in Sec. V. We also note that the protocol in Fig.
13 uses fixed routing and path-finding algorithms from Refs. 128, 134,
and 135. It is possible, in principle, to develop an MDP that takes into
account routing. Doing so would allow us to obtain protocols that
simultaneously optimize the actions of the elementary links, the join-
ing operations, and the actions corresponding to routing, either
directly using dynamic programing algorithms such as the one in
Theorem II.3, or through reinforcement learning. These possibilities,
and other possibilities for developing more sophisticated protocols
using MDPs, are interesting directions for future work.

A. Fidelity

In order to quantify the performance of the protocol described in
Fig. 13, it is natural to ask what the fidelity of the resulting states of the
elementary and virtual links are to prescribed target states. Thus, let us
begin by showing, in general terms, how we could calculate the fidelity
after t time steps of our protocol.

First, we note that all of the elementary links are independent
of each other. This is due to the fact that we assume that every node
has a separate quantum system for every one of the elementary
links associated with that node. Furthermore, we assume that every
elementary link undergoes its own policy independent of the other
elementary links. Therefore, after t time steps, the quantum state of
the network is

q~pGðtÞ ¼ �
e2E

qpe
e ðtÞ; (229)

FIG. 12. Depiction of a protocol for distributing a graph state among four nodes
A1; A2; A3; andA4, all of which initially share Bell states with the central node.
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where ~p ¼ fpe : e 2 Eg is a collection of policies for the individual
elementary links, and every state qpe

e ðtÞ is given by (59), namely,

qpe
e ðtÞ ¼

X
ht

Pr HeðtÞ ¼ ht
� �

pe
jhtihht j � reðtjhtÞ: (230)

Recall from (57) that Pr½HeðtÞ ¼ ht �pe
is the probability of the history

ht with respect to the policy pe, and reðtjhtÞ is the quantum state of
the elementary link conditioned on the history ht, given by (60).

The state in (230) is a classical-quantum state that contains both
classical information about the history of elementary link and the
quantum state of the elementary link conditioned on every history. If
we condition on an elementary link corresponding to e 2 E being
active at time t, then the expected quantum state of the elementary
link at time t is58

�qpe
e ðtÞ :¼ 1

Xpe
e ðtÞ

X
ht :mt 6¼�1

Pr HeðtÞ ¼ ht
� �

pe
reðtjhtÞ: (231)

From these states, we can calculate the quantum states of the virtual
links in the target graph that are created via joining protocols. In gen-
eral, the states are of the form (166). As a concrete example, let us con-
sider the usual entanglement swapping protocol from Sec. IIIB 1. Let
w ¼ ðv1; e1; v2; e2;…; en; vnþ1Þ be a path between two non-
neighboring nodes v1 and vnþ1, such that the entanglement swapping
protocol along this path creates the virtual link given by the edge
fv1; vnþ1g. The quantum state at the input of the entanglement swap-
ping protocol is �n

j¼1�q
pej
ej ðtÞ, and the output state conditioned on the

success of the protocol is LES;nð�n
j¼1�q

pej
ej ðtÞÞ, where we recall the defi-

nition of LES;n in (172).
After the appropriate joining protocols are performed, and

conditioned on their success, we obtain the target graph Gtarget

¼ ðV ;EtargetÞ, and the corresponding quantum state has the form
�e2Etarget xe, where if e is a virtual link, obtained via a joining protocol,
then xe is given by (166). Now, the target quantum state is simply a
tensor product of the target states corresponding to the edges of the
target graph, i.e., �e2Etarget x

target
e . Therefore, by multiplicativity of fidel-

ity with respect to the tensor product, the fidelity of the quantum state
after the protocol is equal to

Q
e2Etarget Fðxe;x

target
e Þ. For the virtual

links, individual fidelities in this product can be calculated using the
formulas presented in Sec. III B.

B. Waiting time

In addition to the fidelity, another relevant figure of merit is the
expected waiting time, which is a figure of merit that indicates how
long it takes (on average) to establish an elementary or a virtual link.
This figure of merit has been considered in prior work in the context
of both a linear chain of quantum repeaters and general quantum
networks.59,65,98,121,136–138

When defining the waiting times, we imagine a scenario in which
elementary link generation is continuously occurring in the net-
work,128 and that an end-user request for entanglement occurs at a
time treq � 0. The waiting time is then the number of time steps from
time treq onward that it takes to establish the entanglement.

Definition IV.2 (Elementary link waiting time). Let G ¼ ðV ;EÞ
be the graph corresponding to the elementary links of a quantum net-
work and let e 2 E. For all treq � 0, the waiting time for the elemen-
tary link corresponding to the edge e is defined to be

WeðtreqÞ :¼
X1

t¼treqþ1
tXeðtÞ

Yt�1
i¼treqþ1

ð1� XeðiÞÞ: (232)

Then, the expected waiting time is

E WeðtreqÞ
� �

p
¼

X1
t¼treqþ1

tPr Xeðtreq þ 1Þ ¼ 0;…;Xeðtreq þ tÞ ¼ 1�p;
�

(233)

where p is an arbitrary policy for the elementary link corresponding to
the edge e.

We make the following definition for the waiting time for a col-
lection of elementary links.

Definition IV.3 (Collective elementary link waiting time). Let
G ¼ ðV ;EÞ be the graph corresponding to the elementary links of a
quantum network, and let treq � 0. For every subset E0 � E, the wait-
ing time for the elementary links corresponding to the elements of E0

is defined to be

WE0 ðtreqÞ :¼
X1

t¼treqþ1
tXE0 ðtÞ

Yt�1
i¼treqþ1

ð1� XE0 ðiÞÞ; (234)

where XE0 ðtÞ :¼
Q

e2E0 XeðtÞ.

FIG. 13. Outline of a quantum network protocol based on Markov decision pro-
cesses. Every elementary link in the network follows a policy for t � 1 time steps.
At the end of the t time steps, the appropriate paths in the network are found, and
the corresponding joining protocols are performed in order to achieve the network
corresponding to the target graph Gtarget.
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In other words, the collective elementary link waiting time is the
time it takes for all of the elementary links given by E0 to be simulta-
neously active, and its expected value is

E WE0 ðtreqÞ
� �

p
¼
X1

t¼treqþ1
tPr XE0 ðtreqþ1Þ¼ 0;…;XE0 ðtreqþ tÞ¼ 1�~p ;
�

(235)

where~p ¼ ðpe : e 2 E0Þ is an arbitrary collection of policies for the
elementary links corresponding to E0. If we consider a collection of
elementary links, all undergoing the t? ¼ 1 memory-cutoff policy,
then

E WE0 ðtreqÞ
� �

1 ¼
XM
k¼1

M

k

 !
ð�1Þkþ1 1þ ð1� pkÞtreqþ1

pk

 !
;

pk :¼ 1� ð1� pÞk:

(236)

Proofs of this result using various different techniques can be found in
Refs. 65, 98, and 139. In Appendix F, we prove this result within the
framework introduced here by explicitly evaluating the formula in
(235).

Definition IV.4 (Virtual link waiting time). Let G ¼ ðV ;EÞ be
the graph corresponding to the elementary links of a quantum net-
work, and let treq � 0. Given a pair v1; vn 2 V of distinct non-
adjacent vertices and a path w ¼ ðv1; e1; v2; e2;…; en�1; vnÞ between
them for some n � 2, the virtual link waiting time along this path is
defined to be the amount of time it takes to establish the virtual link
given by the edge fv1; vng,

Wfv1;vng;wðtreqÞ :¼WEwðtreqÞ
X1

t¼treqþ1
tYwð1� YwÞt�1; (237)

where Ew ¼ fe1; e2;…; en�1g is the set of edges corresponding to the
path w, WEwðtreqÞ is the collective elementary link waiting time from
Definition IV.3, and YEw is a binary random variable for the success of
the joining protocol along the path w, so that Yw ¼ 1 corresponds to
success of the joining protocol and Yw ¼ 0 to failure. We define Yw
andWEw to be independent random variables.

The formula for the virtual link waiting time in Definition IV.4 is
based on the formula in Ref. 59. It corresponds to the simple strategy
of waiting for all of the elementary links along the path w to be estab-
lished, and performing the measurements for the joining protocol.
Note that this strategy is consistent with our overall quantum network
protocol in Fig. 13.

C. Key rates for quantum key distribution

In order to determine secret key rates between arbitrary pairs of
nodes in a quantum network, we need to keep track of the quantum
state of the relevant elementary links as a function of time. The follow-
ing discussion and formulas for secret key rates are based on Ref. 113.

Suppose that K is a function that gives the number of secret key
bits per entangled state shared by the nodes of either an elementary
link or a virtual link. (K is, for example, the formula for the asymptotic
secret key rate of the BB84, six-state, or device-independent protocol.)
Then, suppose that G ¼ ðV ;EÞ is the graph corresponding to the
elementary links of a quantum network. Consider a collection

e0 :¼ fv1;…; vkg 62 E of distinct nodes corresponding to a virtual link
for some k � 2, and let w be a path in the physical graph leading to
the virtual link given by e0. An entanglement swapping protocol is per-
formed along the path w in order to establish the bipartite virtual link.
Conditioned on the success of the joining protocol, the quantum state
of the virtual link is given by (166), namely,

1
psucc
L1w!e0 ðqwÞ; (238)

where

psucc ¼ Tr L1w!e0 ðqwÞ
� �

; (239)

is the success probability of the joining protocol. Then, the secret key
rate (in units of secret key bits per second) for the virtual link along
the path w is

eKe0;w ¼ psucc�
rep
e0 K: (240)

Here, K is calculated using the state in (238). The repetition rate �repe0
in this case is a function of the end-to-end classical communication
time required for executing the joining protocol.

V. A MARKOV DECISION PROCESS BEYOND
THE ELEMENTARY LINK LEVEL

The developments so far in this work constitute an analysis of
quantum networks using a Markov decision process (MDP) for ele-
mentary links. As we have seen, the framework of MDPs is useful
because it allows us to model noise processes and imperfections that
are present in near-term quantum technologies, and thus, allows us to
understand the limits on the performance of near-term quantum net-
works. An important question is how useful the MDP formalism will
be in practice when scaling up to model systems of more than one ele-
mentary link. In this section, we provide an MDP for a system of two
elementary links, taking entanglement swapping into account. We
note that in the recent work,140 MDPs for repeater chains with two,
three, and four elementary links have been considered, but the defini-
tion of the MDP here differs from the one in Ref. 140 because here we
take decoherence of the quantummemories into account.

We start this section by defining the basic elements of the MDP,
and then, we show how to obtain optimal policies using linear pro-
graming. In particular, we formulate the optimal expected waiting
time to obtain the end-to-end virtual link and the optimal expected
fidelity of the end-to-end virtual link as linear programs. Then, we
show that prior analytical results on the expected waiting time for two
elementary links under the memory-cutoff policy,59 known only in the
“symmetric” scenario when the two elementary links have the same
transmission-heralding success probability and the same memory cut-
off, can be reproduced. However, we note that our linear programing
procedure can be applied even in non-symmetric scenarios.

A. An MDP for two elementary links

Let p1 and p2 be the success probabilities for generating the two
elementary links, and let q be the probability of successful entangle-
ment swapping. Note that p1 and p2 are defined exactly as in Sec. IIA.
In particular,

p1 ¼ Tr ðM1
1 � S1ÞðqS

1Þ
� �

; (241)
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p2 ¼ Tr ðM1
2 � S2ÞðqS

2Þ
� �

; (242)

whereM1
j ; j 2 f1; 2g are the completely positive maps corresponding

to the success of the heralding procedure for the jth elementary link,
Sj is the transmission channel from the source to the nodes for the jth
elementary link, and qS

j is the state produced by the source associated
with the jth elementary link, see Fig. 14. We also define the states

r0
j ¼

1
pj
ðM1

j � SjÞðqS
j Þ; (243)

rjðmÞ ¼ N �mj ðr0
j Þ; j 2 f1; 2g; (244)

where N j is the quantum channel describing the decoherence of the
quantummemories associated with the jth elementary link.

Now, recall that in the case of the one elementary link considered
in Sec. II B, the state variable was just the memory timeM(t), referring
to the time for which the quantum state of the elementary link was
held in the memories of the nodes, and the actions consisted of either
keeping the elementary link or discarding it and generating a new one.
Now, in the case of two elementary links, we must keep track of the
memory time of both elementary links, and we also store information
about whether or not the virtual (end-to-end) link is active. The
actions are similar to before, consisting of the same elementary link
actions as before, but now, we define an additional action for perform-
ing the entanglement swapping operation. Formally, we have the
following:

• States: The states of the MDP are elements of the set
S ¼ X	M1 	M2, where X ¼ f0; 1g indicates whether or not
the end-to-end link is active, M1 ¼ f�1; 0; 1;…;m?

1g is the set of
possible states of the first elementary link (with the elements of
the set having the same interpretation as in the elementary link
MDP), and M2 ¼ f�1; 0; 1;…;m?

2g is the set of possible states of
the second elementary link. In particular, m?

1 and m?
2 are the

maximum storage times of the two elementary links, correspond-
ing to their coherence times, see Sec. II B. To these states, we
associate the (standard) probability simplex spanned by the
orthonormal vectors jxi � jm1i � jm2i, with x 2 X; m1 2 M1,
and m2 2 M2, and we often use the abbreviation jsi � jx;m1;m2i
� jxi � jm1i � jm2i for every s ¼ ðx;m1;m2Þ 2 S.

• We use SðtÞ ¼ ðXðtÞ;M1ðtÞ;M2ðtÞÞ; t 2N, to refer to the ran-
dom variables (taking values in S) corresponding to the state of
the MDP.

• Actions: The set of actions is A ¼ f00; 01; 10; 11;��g, where the
different actions have the following meanings:
• 00: Keep both elementary links.
• 01: Keep the first elementary link, discard, and regenerate the
second.

• 10: Discard and regenerate the first elementary link, keep the
second.

• 11: Discard and regenerate both elementary links.
• ��: Perform entanglement swapping.
We use A(t), t 2N, to refer to the random variables (taking
values in the set A) corresponding to the actions taken.
We let HðtÞ ¼ ðSð1Þ;Að1Þ; Sð2Þ;Að2Þ;…;Aðt � 1Þ; SðtÞÞ be
the history, consisting of a sequence of states and actions, up
to time t 2N, with Hð1Þ ¼ Sð1Þ.

• Figure of merit: For the elementary link MDP defined in Sec. II B,
recall that the figure of merit was essentially the fidelity of the ele-
mentary link, but scaled by a factor corresponding to the proba-
bility that the elementary link is active. We define the figure of
merit here in an analogous fashion as follows:

f ðx;m1;m2Þ

¼ hwjLES;1ðr1ðm1Þ � r2ðm2ÞÞjwi if x ¼ 1; m1;m2 � 0;

0; otherwise;

(
(245)

where we recall that LES;1 is the entanglement swapping channel
for one intermediate node, as defined in Sec. III B 1, and jwi is a
target pure state vector, which, in this context, is typically the
maximally entangled state jUi as defined in (168).

Let us now proceed to the definition of the transition matrices for
our MDP. Unlike the elementary link scenario, in this scenario of two
elementary links, we want not only for the fidelity and success proba-
bility of the end-to-end link to be high but also for the average amount
of time it takes to generate the end-to-end link to be low—in other
words, we want the expected waiting time to be low as well. Therefore,
in order to address the expected waiting time in our MDP, we define
the transition matrices in such a way that states corresponding to an
active end-to-end link [i.e., states s ¼ ðx;m1;m2Þ 2 S such that
x¼ 1] are absorbing states. By doing this, the expected waiting time is
nothing but the expected time to absorption, which is a standard result
in the theory of Markov chains, see, e.g., Ref. 141. We note that this
idea of relating the expected waiting time of a quantum repeater chain
to the absorption time of a Markov chain has already been used in
Ref. 121; however, here, we apply this idea in the more general context
of an MDP, while also taking memory decoherence and other device
imperfections explicitly into account.

Let Ta
j denotes the transition matrix for the jth elementary link,

as defined in (48) and (49), for a 2 f0; 1g. Then, using those elemen-
tary link transition matrices, we define the transition matrices for our
MDP for two elementary links as follows:

T00 :¼ j0ih0j � T0
1 � T0

2 þ j1ih1j � 11 � 12; (246)

T01 :¼ j0ih0j � T0
1 � T1

2 þ j1ih1j � 11 � 12; (247)

T10 :¼ j0ih0j � T1
1 � T0

2 þ j1ih1j � 11 � 12; (248)

T11 :¼ j0ih0j � T1
1 � T1

2 þ j1ih1j � 11 � 12; (249)

T�� :¼ j0ih0j � ð1� qÞjgp1 ; gp2ihcþ1 ; cþ2 j
�

þ S1 � j�1ih�1j þ j�1ih�1j � S2

þ j�1;�1ih�1;�1j þ j�1;�1ih�1;m?
2j

þj�1;�1ihm?
1;�1jÞ

þ j1ih0j � q1
þ
1 � 1

þ
2 þ j1ih1j � 11 � 12; (250)

where

jcþj i ¼
Xm?

j

m¼0
jmi; (251)
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1j ¼
Xm?

j

m¼�1
jmihmj; (252)

1
þ
j ¼

Xm?
j

m¼0
jmihmj; (253)

Sj ¼
Xm?
j �1

m¼0
jmþ 1ihmj; (254)

and jgpj i; j 2 f1; 2g is defined exactly as in (53).
First, let us observe that every transition matrix has a block struc-

ture, with the blocks defined by the transitions of the status of the end-
to-end link. Specifically, we can write every transition matrix Ta as

Ta ¼
Ta
0!0 Ta

1!0

Ta
0!1 Ta

1!1

 !
; a 2 A; (255)

where the sub-blocks Ta
x!x0 are the block corresponding to the transi-

tion of the status of the virtual link from x 2 f0; 1g to x0 2 f0; 1g.
(We note, as before, that probability vectors are applied to transition
matrices from the right, see Appendix A.) From this, we see that for
the actions 00; 01; 10; and 11, the transition matrices are of the follow-
ing block-diagonal form:

Tjk ¼ Tj
1 � Tk

2 0

0 11 � 12

 !
; j; k 2 f0; 1g: (256)

Therefore, for these transition matrices, because the entanglement
swapping action is not performed, the transition from x¼ 0 to x¼ 1 is
not possible. Consequently, if the end-to-end is initially inactive
(x¼ 0), then it stays inactive, and each elementary link transitions
independently according to the elementary link transition matrices
from Sec. II B. If the end-to-end link is initially active (x¼ 1), then
nothing happens to the states of the elementary links, in accordance
with the definition of an absorbing state. For the action �� of entangle-
ment swapping, we have three non-zero blocks. The block T��

0!0
means that the end-to-end link is initially inactive and stays inactive,
which can happen in one of several ways:

• Both elementary links are initially active, but the entanglement
swapping fails, after which both elementary links are regenerated.
This possibility is given by the term ð1� qÞjgp1 ; gp2ihcþ1 ; cþ2 j.

• Both elementary links are initially inactive. In this case, they both
remain inactive after the entanglement swapping action, and this
is given by the term j�1;�1ih�1;�1j.

• One of the elementary links is active, but the other is not. In this
case, the memory time of the active elementary link is incre-
mented by one, corresponding to the “shift” operator Sj on the
active elementary link, while the inactive elementary link remains

inactive. These possibilities are given by the terms S1 � j�1ih�1j
and j�1ih�1j � S2.

• One of the elementary links is inactive, and the other has reached
is maximum memory time. In this case, the inactive elementary
link remains inactive, and the other elementary link transitions
to the �1 state because the maximum time m?

j was reached.
These possibilities are given by the terms j�1;�1ihm?

1;�1j and
j�1;�1ih�1;m?

2j.

The block T��

0!1 corresponds to a transition from the end-to-end
link initially being inactive to being active, which happens when the
entanglement swapping succeeds. Since the entanglement swapping is
possible only when both elementary links are active, and because we
want to keep track of the memory times of the elementary links at the
moment the entanglement swapping is performed, this block is given by
q1
þ
1 � 1

þ
2 . Finally, the block T��

1!1 corresponds to the end-to-end link
being active already; thus, in accordance with the definition of an absorb-
ing state, this block is given simply by 11 � 12, as with the other actions.

Now, just as we defined a memory-cutoff policy for elementary
links in Sec. II C 1, we can define a memory-cutoff policy for the sys-
tem of two elementary links that we are considering here. Suppose
that the first elementary link has cutoff time t?1 � m?

1, and the second
elementary link has cutoff time t?2 � m?

2. Then, we define the decision
function such that if both elementary links are active, then an entan-
glement swap is attempted; otherwise, one of the actions 01, 10, or 11
is performed, depending on which elementary links are active. This
leads to the following definition of the deterministic decision function:

dð0;m1;m2Þ ¼

01; m1 2 f0;…; t?1 � 1g; m2 ¼ �1;
10; m1 ¼ �1; m2 2 f0;…; t?2 � 1g;
11; ðm1;m2Þ ¼ ð�1;�1Þ; ð�1; t?2Þ; ðt?1 ;�1Þ;
��; m1 2 f0;…; t?1g; m2 2 f0;…; t?2g;

8>>><>>>:
(257)

for all m1 2 M1 and m2 2 M2. Note that it is only necessary to define
the decision function on the transient states ð0;m1;m2Þ and not the
absorbing states ð1;m1;m2Þ because the figures of merit that we are
concerned with [such as the expected value of the function f in (245)
and the expected waiting time to absorption] do not depend on the
values of the decision function on absorbing states.

B. Optimal policies via linear programing

Having defined the basic elements of the MDP for two elementary
links with entanglement swapping, let us now look at optimal policies.
We are concerned both with the figure of merit defined in (245) and with
the expected waiting time to obtain an end-to-end link. In Appendix A4,
we show that both quantities can be bounded using linear programs. In
fact, the results in Appendix A4 go beyond the MDP for two elementary
links that we consider here because the linear programs apply to general
MDPs with arbitrary state and action sets and transition matrices.

Theorem V.1 (Linear program for the optimal expected value for
two elementary links). Given a system of two elementary links, along
with the associated MDP defined in Sec. VA, the optimal expected
value of the function f defined in (247) is bounded from above the fol-
lowing linear program:

FIG. 14. Two elementary links with entanglement swapping at the central node.
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maximize hf j1; xi;
subject to 0 � jwai � jxi 8 a 2 A;

0 � jvai � jyi 8 a 2 A;X
a2A

X1
i¼0

Ta
0!ijwai ¼ j0ijxi;X

a2A
jwai ¼ jxi;

jyi �
X
a2A

Ta
0!0jvai ¼ jgp1ijgp2i;X

a2A
jvai ¼ jyi;

T��

0!1jv��i ¼ jxi;

(258)

where the optimization is with respect to the ðm?
1 þ 2Þ � ðm?

2 þ 2Þ-
dimensional vectors jxi; jyi; jwai; jvai; a 2 A, and the inequality
constraints are component-wise. Every set of feasible points
jxi; jyi; jwai; jvai; a 2 A of this linear program defines a stationary
policy with the decision function d, whose values for the transient
states ð0;m1;m2Þ are as follows:

dð0;m1;m2ÞðaÞ ¼
h0;m1;m2jwai
h0;m1;m2jxi

; (259)

for all m1 2 M1; m2 2 M2, and a 2 A. If h0;m1;m2jxi ¼ 0, then we
can set dð0;m1;m2Þ to be an arbitrary probability distribution over
the setA of actions.

Remark V.2. Note that in the theorem statement above, we
defined the action of the decision function only for the transient states.
For the absorbing states, we can set the decision function to be arbi-
trary because neither the expected value of the MDP nor the expected
waiting time to absorption is affected by the value of the decision func-
tion on absorbing states, see Appendix A3.

Theorem V.3 (Linear program for the optimal expected waiting
time for two elementary links). Given a system of two elementary
links, along with the associated MDP defined in Sec. VA, the optimal
expected waiting time is bounded from below by the following linear
program:

minimize hcjxi;
subject to 0 � jwai � jxi 8 a 2 A;

jxi �
X
a2A

Ta
0!0jwai ¼ jgp1ijgp2i;X

a2A
jwai ¼ jxi;

(260)

where the optimization is with respect to the ðm?
1 þ 2Þ � ðm?

2 þ 2Þ-
dimensional vectors jxi and jwai; a 2 A, and the inequality con-
straints are component-wise. Every set of feasible points
jxi; jwai; a 2 A of this linear program defines a stationary policy
with decision d, whose values for the transient states ð0;m1;m2Þ (see
Remark V.2) are as follows:

dð0;m1;m2ÞðaÞ ¼
h0;m1;m2jwai
h0;m1;m2jxi

; (261)

for all m1 2 M1; m2 2 M2, and a 2 A. If h0;m1;m2jxi ¼ 0, then we
can set dð0;m1;m2Þ to be an arbitrary probability distribution over
the set A of actions.

We now show that the linear program in (260) reproduces the
known analytical result in Ref. 59, Eq. (5), for the expected waiting

time for two elementary links with the same success probability p and
cutoff time t?,

3� 2pð1� ð1� pÞt
?

Þ � 2ð1� pÞt
?

qpð2� pð1� 2ð1� pÞt?Þ � 2ð1� pÞt?Þ
: (262)

In Fig. 15, we plot this function along with the optimal value obtained
for the linear program in (260). We find that the two curves coincide
for all values of the transmission-heralding probability p and the
entanglement swapping success probability q considered. This pro-
vides us not only a sanity check on the linear program but also evi-
dence that the memory-cutoff policy in (257) is optimal, at least in the
symmetric scenario. We also note that the result in (262) holds only in
the symmetric scenario in which both elementary links have the same
transmission-heralding success probability, while the linear program
in (260) can be used to determine the optimal expected waiting time
in arbitrary parameter regimes.

VI. SUMMARY AND OUTLOOK

The central topic of this work is the theory of near-term quan-
tum networks—specifically, how to describe them and how to
develop protocols for entanglement distribution in practical scenar-
ios with near-term quantum technologies. The goal in this area of
research is to develop protocols that can handle multiple-user
requests, work for any given network topology, and adapt to
changes in topology and attacks to the network infrastructure, with
the ultimate goal being the realization of the quantum internet. In
this work, we have laid some of the foundations for this research
program. The core idea is that Markov decision processes (MDPs)
provide a natural setting in which to analyze near-term quantum
network protocols. We illustrated this idea in this work by first ana-
lyzing the MDP for elementary links first introduced in Ref. 58,
simplifying its formulation and presenting some new results about

FIG. 15. The expected waiting time for an end-to-end for a system of two elemen-
tary links, as depicted in Fig. 14. We let p1 ¼ p2 ¼ p be the transmission-heralding
success probability for both elementary links, and we denote by q the success
probability for entanglement swapping. We compare the known analytical result for
this scenario [Ref. 59, Eq. (5)], with cutoff t? ¼ 5 [see (262)], to the solution
obtained by the linear program in (260), with maximum storage time m? ¼ 5.
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it. We then considered the example of satellite-to-ground elemen-
tary link generation under the lens of the elementary link MDP. We
then showed how the elementary link MDP can be used as part of
an overall quantum network protocol. Finally, we provided a first
step toward using the MDP formalism for more realistic, larger net-
works, by providing an MDP for two elementary links. We showed
that important figures of merit such as the fidelity of the end-to-
end link as well as the expected waiting time for the end-to-end
link can be obtained using linear programs.

Moving forward, there are many interesting directions to pursue.
The MDPs introduced in this work are not entirely general because
they do not model protocols for arbitrary repeater chains and arbitrary
networks. Thus, to start with, extending the MDP for two elementary
links to repeater chains of arbitrary length is an interesting direction
for the future work. In this direction, we expect that linear and possibly
even semi-definite relaxations of the expected value of the end-to-end
link and of the expected waiting time, such as those in Theorem V.1
and Theorem V.3, are going to be crucial in the analysis of longer
repeater chains because the size of the MDP (the number of states and
actions) will grow exponentially with the number of elementary links.

Going beyond repeater chains to general quantum networks, it is
of interest to examine protocols involving multiple cooperating agents.
When we say that agents “cooperate,” we mean that they are allowed
to communicate with each other. In the context of quantum networks,
agents who cooperate have knowledge beyond that of their own nodes.
If every agent cooperates with an agent corresponding to a neighbor-
ing elementary link, then the agents would have knowledge of the net-
work in their local vicinity, and this would, in principle, improve
waiting times and rates for entanglement distribution. Furthermore,
the quantum state of the network would not be a simple tensor prod-
uct of the quantum states corresponding to the individual edges, as we
have in (229) when all the agents are independent. See Refs. 128 and
135 for a discussion of nodes with local and global knowledge of a
quantum network in the context of routing.

Finally, another interesting direction for future work is to develop
quantum network protocols based on the decision processes that
incorporate queuing models for requests for links of a specific type
between specific nodes, see, e.g., Refs. 90 and 142. Then, one can calcu-
late quantities such as the time needed to fulfill all requests. We can
also calculate the “capacity” of the network defined in the context of
queuing systems as the maximum number of requests that can be ful-
filled per unit time.
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APPENDIX A: OVERVIEW OF MARKOV DECISION
PROCESSES

In this section, we provide a brief overview of the concepts from
the theory of Markov decision processes (MDPs) that are relevant for
this work. We mostly follow the definitions and results as presented in
Ref. 145 while using the notation defined in Appendix A1.

1. Notation

Throughout this work, we deal with probability distributions
defined on a discrete, finite set of points. It is very helpful to write
these probability distributions as vectors in a (standard) probability
simplex. We do this as follows. Consider a finite set X. To this set,
we associate the orthonormal vectors fjxigx2X in RjXj, which
means that hxjx0i ¼ dx;x0 for all x; x0 2 X. The probability simplex
corresponding to X is then formally defined as all convex combina-
tions of the vectors in fjxigx2X,

DX :¼
X
x2X

pxjxi : 0 � px � 1;
X
x2X

px ¼ 1
� �

: (A1)

This set is in one-to-one correspondence with the set of all proba-
bility distributions defined on X. Specifically, let P : X! ½0; 1� be a
probability distribution (probability mass function) on X, i.e.,
PðxÞ 2 ½0; 1� for all x 2 X and

P
x2X PðxÞ ¼ 1. The unique proba-

bility vector jPiX 2 DX corresponding to P is

jPiX :¼
X
x2X

PðxÞjxi: (A2)

We drop the subscript X from jPiX whenever the underlying set X
is clear from the context. It is important to note and to emphasize
that the vector jPi does not represent a quantum state—the braket
notation is used merely for convenience. Normalization of the prob-
ability vector is then captured by defining the following vector:

jcXi :¼
X
x2X
jxi: (A3)

We often omit the subscript X in jcXi when the underlying set X is
clear from the context. Then

hcjPi ¼
X
x2X

PðxÞ ¼ 1: (A4)

It is often the case that a probability distribution is associated with a
random variable X taking values in X, so that PðxÞ � PXðxÞ
¼ Pr½X ¼ x� for all x 2 X. In this case, for brevity, we sometimes
write the probability vector as

jXi � jPXi ¼
X
x2X

Pr X ¼ x½ �jxi: (A5)

Now, consider another random variable Y taking values in the finite
set Y. We regard stochastic matrices mapping X to Y (i.e., matrices
of conditional probabilities Pr½Y ¼ yjX ¼ x�) as linear operators
with domain DX and codomain DY,
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TY jX :¼
X
x 2 X

y 2 Y

Pr Y ¼ yjX ¼ x½ �jyihxj; (A6)

and we denote the matrix elements by

TYjXðy; xÞ :¼ hyjTYjX jxi ¼ Pr Y ¼ yjX ¼ x½ � 8 x 2 X; y 2 Y:

(A7)

We then have, by definition of a stochastic matrix,

hcYjTYjX ¼ hcXj; (A8)

which captures the fact that the columns of a stochastic matrix sum
to one. Then, if jPXi 2 DX is a probability distribution correspond-
ing to X, then the action of the matrix TY jX on jPXi, which results
in the probability distribution jPYi 2 DY corresponding to Y, can
be written as

jPYi :¼ TY jX jPXi: (A9)

In particular, for all y 2 Y

PYðyÞ :¼ hyjPYi (A10)

¼ hyjTYjX jPXi (A11)

¼
X
x2X

Pr Y ¼ yjX ¼ x½ �PXðxÞ: (A12)

Finally, we discuss joint probability distributions. Consider two

finite sets X and Y and the set DX	Y � RjX	Yj of all (joint) probability

distributions on X	 Y. Now, because RjX	Yj ffi RjXj �RjYj, we can
regard DX	Y as the convex span (convex hull) of tensor product ortho-
normal vectors jxi � jyi; x 2 X; y 2 Y. Thus, every jQiXY 2 DX	Y
can be written as

jQiXY ¼
X

ðx;yÞ2X	Y
Qx;yjxi � jyi: (A13)

We frequently use the abbreviation jx; yi � jxi � jyi in this paper.
Then, marginal distributions can be obtained as follows:

jQiX :¼ ð1X � hcYjÞjQiXY ¼
X
x2X

X
y2Y

Qx;y

	 

jxi; (A14)

jQiY :¼ ðhcXj � 1YÞjQiXY ¼
X
y2Y

X
x2X

Qx;y

	 

jyi; (A15)

where

1X :¼
X
x2X
jxihxj; 1Y :¼

X
y2Y
jyihyj: (A16)

These concepts for probability distributions defined on two sets can
be readily extended to probability distributions defined on sets of
the form X1 	 X2 	 � � � 	 Xn for all n � 2.

2. Definitions

A Markov decision process (MDP) is a stochastic process that
models the evolution of a system with which an agent is allowed to
interact. Formally, an MDP is defined as a collection,

hS;A; fTaga2A; ri; (A17)

consisting of the following elements:

• A set S of the allowed states of the system. We consider finite
state sets throughout this work. The sequence ðSðtÞ : t 2NÞ of
random variables taking values in S describes the state of the sys-
tem at all times t 2N.

• A set A of actions that the agent is allowed to perform on the sys-
tem. We consider finite action sets throughout this work. The
sequence ðAðtÞ : t 2NÞ of random variables taking values in S

describes the action taken by the agent at all times t 2N.
• A set fTaga2A of transition matrices, which are stochastic matri-
ces with domain DS and codomain DS. Specifically

Ta ¼
X
s;s02S

Pr Sðt þ 1Þ ¼ s0jSðtÞ ¼ s;AðtÞ ¼ a
� �

js0ihsj; (A18)

for all t 2N. These matrices determine how the system evolves
from one time to the next conditioned on the actions of the
agent.

• A function r : S	 A! R that quantifies the reward that the
agent receives at every time step based on the current state of the
system and the action that it takes.

The history up to time t 2N of an MDP is the random sequence
HðtÞ :¼ ðSð1Þ;Að1Þ;…;Aðt � 1Þ; SðtÞÞ, with Hð1Þ ¼ Sð1Þ. By the
Markovian nature of an MDP, the probability distribution of every his-
tory ht ¼ ðs1; a1;…; at�1; stÞ is equal to

Pr HðtÞ ¼ ht
� �

¼ Pr Sð1Þ ¼ s1½ �
Yt�1
j¼1

Tajðsjþ1; sjÞdjðsjÞðajÞ; (A19)

where

djðsjÞðajÞ :¼ Pr AðjÞ ¼ ajjSðjÞ ¼ sj
� �

(A20)

is the probability distribution of actions at time j conditioned on
the current state of the system. We refer to dj : S	 A! ½0; 1� as a
decision function. Note that

P
a2A djðsÞðaÞ ¼ 1 for all s 2 S. The

sequence

p ¼ ðd1; d2;…Þ (A21)

of decision functions at all times t 2N is known as a policy of the
agent. In the context of this work, policies should be thought of as
synonymous with protocols for quantum networks.

Given a decision function d, we define the following linear
operators acting on DS:

Dd
a :¼

X
s2S

dðsÞðaÞjsihsj; 8 a 2 A: (A22)

Then, it is straightforward to show that the linear operator

Pd :¼
X
a2A

TaDd
a (A23)

from DS to DS is a stochastic matrix with elements

hs0jPdjsi ¼ Pr Sðt þ 1Þ ¼ s0jSðtÞ ¼ s
� �

; (A24)

for all t 2N and all s; s0 2 S.
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Remark A.1. Observe that for a fixed decision function d, the
set fDd

aga2A of linear operators defined in (A22) forms a positive
operator-valued measure (POVM). Indeed, by definition, all of the
operators are positive semidefinite; furthermore, by definition of the
decision function in (A20)X

a2A
Dd
a ¼

X
a2A

X
s2S

dðsÞðaÞjsihsj (A25)

¼
X
s2S

X
a2A dðsÞðaÞ

	 

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼1 8s2S

jsihsj (A26)

¼
X
s2S
jsihsj (A27)

¼ 1S: (A28)

The transition matrices Pd as defined in (A23) allow us to
determine the probability distribution of the state of the system at
every time t 2N for a given policy. Specifically, for a policy
p ¼ ðd1; d2;…Þ

jSðtÞip :¼
X
s2S

Pr SðtÞ ¼ s½ �pjsi (A29)

¼ Pdt�1 � � � Pd2Pd1 jSð1Þi; (A30)

where

jSð1Þi :¼
X
s2S

Pr Sð1Þ ¼ s½ �jsi (A31)

is the probability distribution for the system at the initial time t¼ 1.

a. MDPs with absorbing states

We call a state s 2 S absorbing if Tajsi ¼ jsi for all a 2 A. In
other words, once the system reaches the state s, it always stays
there, meaning that Pdjsi ¼ jsi for all decision functions d. Every
state that is not absorbing is called transient if there is non-zero
probability that, starting from such a state, the system will even-
tually reach an absorbing state. We can partition the set S of all
states into disjoint sets: S ¼ Stra [ Sabs, where Sabs is the set of
absorbing states and Stra is the set of transient states. We can
then rewrite the set fjsigs2S as fj0; sigs2Stra

[ fj1; sigs2Sabs
, leading

to the following block structure for the transition matrices Ta:

Ta¼j0ih0j�Ta
0!0þj0ih1j�Ta

1!0þj1ih0j�Ta
0!1þj1ih1j�Ta

1!1;

(A32)

where Ta
0!0 is the block describing transitions between transient

states, Ta
1!0 is the block describing transition between an absorbing

state and a transient state, Ta
0!1 is the block describing transitions

between a transient state and an absorbing state, and Ta
1!1 is the

block describing transitions between absorbing states. Note that by
our definition of an absorbing state, Ta

1!0 ¼ 0 and Ta
1!1 ¼ 1Sabs

for
all a 2 A. Similarly, for a decision function d, we can write the
matrices Dd

a; a 2 A, in block form as

Dd
a ¼ j0ih0j � Dd

að0Þ þ j1ih1j � Dd
að1Þ; (A33)

Dd
að0Þ ¼

X
s2Strans

dðsÞðaÞjsihsj; (A34)

Dd
að1Þ ¼

X
s2Sabs

dðsÞðaÞjsihsj: (A35)

Consequently, the transition matrix Pd in (A23) has the following
form:

Pd ¼ j0ih0j � Qd þ j1ih0j � Rd þ j1ih1j � 1Sabs
(A36)

� Qd 0
Rd 1Sabs

	 

; (A37)

where

Qd ¼
X
a2A

Ta
0!0D

d
að0Þ; (A38)

Rd ¼
X
a2A

Ta
0!1D

d
að0Þ: (A39)

3. Figures of merit

While the primary figure of merit in a Markov decision pro-
cess is the expected reward, in this work, we are mostly interested
in what we call functions of state (such as the fidelity) and the
absorption time (corresponding to the waiting time for a virtual
link).

Functions of state. In this work, we are also interested in func-
tions f : S! R of the state of the system. We can associate to such
functions the vector

jf i :¼
X
s2S

f ðsÞjsi: (A40)

Then, for a policy p ¼ ðd1; d2;…Þ, we are interested in the expected
value of the random variable f ðSðtÞÞ for all t 2N, i.e., the quantity

E f ðSðtÞÞ½ �p ¼
X
s2S

f ðsÞPr SðtÞ ¼ s½ �p: (A41)

Using (A29) and (A30), we immediately obtain

E f ðSðtÞÞ½ �p ¼ hf jSðtÞip (A42)

¼ hf jPdt�1 � � � Pd2Pd1 jSð1Þi: (A43)

With respect to stationary policies p ¼ ðd; d;…Þ, we are also inter-
ested in the asymptotic quantity

lim
t!1

E f ðSðtÞÞ½ �ðd;d;…Þ ¼ lim
t!1
hf jðPdÞt�1jSð1Þi; (A44)

if the limit exists, along with the optimal value

sup
d

lim
t!1
hf jðPdÞt�1jSð1Þi: (A45)

Expected waiting time to absorption. Finally, for MDPs with
absorbing states, we are interested in the expected waiting time to
absorption with respect to stationary policies, i.e., the expected
number of time steps needed to reach an absorbing state when
starting from a transient state and following a stationary policy. It is
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a standard result of the theory of Markov chains (see, e.g., Ref. 141,
Theorem 9.6.1) that in this setting, with a transition matrix as in
(A37), if the initial distribution of states is given by the probability
vector j0; Strð1Þi (entirely in the transient block), then the expected
waiting time to absorption with respect to the policy ðd; d;…Þ is
hcjStra

ð1Stra � QdÞ�1jStrað1Þi. We are then interested in the follow-
ing optimal value:

inf
d
hcjStra

ð1Stra � QdÞ�1jStrað1Þi: (A46)

4. Linear programs

We now present linear programs for estimating the values of
the figures of merit presented in Appendix A 3 in the steady-state
limit with a time-homogeneous (stationary) policy. Linear pro-
grams have been used for MDPs in various different ways.145–149

The linear programs we consider here are similar to those in the
aforementioned references, but we present them here in the nota-
tion introduced at the beginning of this section. We start by consid-
ering a general MDP, not necessarily with absorbing states.

Proposition A.2 (Linear program for the steady-state expected
function value). Consider an MDP as defined in Appendix A 2
along with a function f : S! R of the state of the MDP. Among
decision functions d for which the limit limt!1 ðPdÞt�1 exists, the
optimal steady-state expected value of f, namely, the quantity in
(A45), is equal to the solution of the following linear program:

maximize hf jvi;
subject to 0 � jwai � jvi � 1 8 a 2 A;X

s2S
hsjvi ¼ 1;X

a2A
jwai ¼ jvi ¼

X
a2A

Tajwai;

(A47)

where the optimization is with respect to jSj-dimensional vectors
jvi and jwai; a 2 A, and the inequality constraints are component-
wise. Every set of feasible points jvi; jwai; a 2 A of this linear pro-
gram defines a stationary policy with the decision function d as
follows:

dðsÞðaÞ ¼ hsjwai
hsjvi ; 8 s 2 S; a 2 A: (A48)

Proof. By the assumption that limt!1 ðPdÞt�1 exists and is unique, we
have that limt!1 ðPdÞt�1 ¼ jvihcj for some probability vector jvi
such that hsjvi 2 ð0; 1� for all s 2 S and Pdjvi ¼ jvi. (Note that all ele-
ments hsjvi are strictly greater than zero, see, e.g., Ref. 145, Theorem
A.2.) Therefore, limt!1E½f ðSðtÞÞ�ðd;d;…Þ ¼ hf jvi. Furthermore, using

the fact that Pd ¼
P

a2AT
aDd

a , we have
P

a2ATaDd
ajvi ¼ jvi. Now, let

jwai :¼ Dd
a jvi. By recalling that Dd

a ¼
P

s2S;a2AdðsÞðaÞjsihsj, we see
that hsjwai ¼ dðsÞðaÞhsjvi, so that the elements hsjwai can be thought
of as the joint probabilities Pr½SðtÞ ¼ s;AðtÞ ¼ a� (in the steady state).
This means that hsjwai 2 ½0; 1� and also that hsjwai � hsjvi, for all
s 2 S and a 2 A. Then, using the fact that

P
a2AD

d
a ¼ 1S, we obtainP

a2Ajwai ¼ jvi. By uniqueness of the stationary probability vector
jvi, the result follows.

The construction of the decision function d in (A48) follows
from Ref. 145, Theorem 8.8.2. Both hsjwai and hsjvi are obtained
from the linear program, and because hsjvi is strictly positive, we
can divide in order to get dðsÞðaÞ, and the condition

P
a2Ajwai

guarantees that
P

a2AdðsÞðaÞ ¼ 1 for all s 2 S, as required for a
conditional probability. This completes the proof. �

We now consider the optimal expected value of a function f :
S! R in the steady-state limit when there are absorbing states in
the MDP. We now show how to obtain an upper bound using a lin-
ear program.

Proposition A.3 (Linear programing relaxation for the steady-
state expected function value for an MDP with absorbing states).
Consider an MDP with absorbing states, as defined in Appendix
A 2 a, along with a function f : S! R of the state of the MDP.
Then, the optimal steady-state expected value of f, namely, the
quantity in (A45), is bounded from above by the solution to the fol-
lowing linear program:

maximize hf j1; xi;
subject to 0 � jwai � jxi 8 a 2 A;

0 � jvai � jyi 8 a 2 A;X
a2A

X1
i¼0

Ta
0!ijwai ¼ j0ijxi;X

a2A
jwai ¼ jxi;

jyi �
X
a2A

Ta
0!0jvai ¼ jStrað1Þi;X

a2A
jvai ¼ jyi;X

a2A
Ta
0!1jvai ¼ jxi;

(A49)

where jStrað1Þi is the initial jStraj-dimensional probability vector of
the MDP (entirely in the transient block), the optimization is with
respect to jStraj-dimensional vectors jxi; jyi; jvai; jwai; a 2 A, and
the inequality constraints are component-wise. Every set of feasible
points jxi; jyi; jvai; jwai; a 2 A of this linear program defines a sta-
tionary policy with the decision function d for the transient states as
follows:

8 s 2 Stra; a 2 A : dðsÞðaÞ ¼ hsjwai
hsjxi : (A50)

If hsjxi ¼ 0 as well as for s 2 Sabs, we can set d(s) to an arbitrary
probability distribution.

Proof. For every decision function d, for the transition matrix
in (A37), it is known that141

lim
t!1
ðPdÞt�1 ¼

0 0

Rdð1Stra � QdÞ�1 0

 !
: (A51)

Therefore,

lim
t!1

E f ðSðtÞÞ½ �ðd;d;…Þ ¼ hf j j1ih0j � ðRdð1Stra � QdÞ�1Þ
� �

j0ijStrað1Þi:

(A52)

Now, let
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jxi ¼ Rdð1Stra � QdÞ�1jStrað1Þi; (A53)

jyi ¼ ð1Stra � QdÞ�1jStrað1Þi: (A54)

Then, it is easy to verify that

Pdj0ijxi ¼ j0ijxi; (A55)

ð1Stra � QdÞjyi ¼ jStrað1Þi; (A56)

Rdjyi ¼ jxi: (A57)

Then, as in the proof of Proposition A.2, we define

jwai ¼ Dd
að0Þjxi; (A58)

jvai ¼ Dd
að0Þjyi; (A59)

for all a 2 A. Then, by the same arguments as in the proof of
Proposition A.2, we have that 0 � jwai � jxi and 0 � jvaijyi for
all a 2 A, and

P
a2Ajwai ¼ jxi;

P
a2Ajvai ¼ jyi. Combining the

constraints in (A55)–(A57) along with the definitions and con-
straints for the vectors jwai and jvai leads to the constraints in
(A49). Optimizing with respect to these constraints, therefore,
results in a value that cannot be less than the value in (A45), lead-
ing to the desired result. The construction of the decision function
in (A50) results from the definition of jwai and the reasoning anal-
ogous to that given in the proof of Proposition A.2. This completes
the proof. �

Finally, we show how to bound the expected absorption time
of an MDP with absorbing states using a linear program.

Proposition A.4 (Linear programing relaxation for the
expected waiting time to absorption). Consider an MDP with
absorbing states, as defined in Appendix A 2 a. The minimum
expected waiting time to reach an absorbing state, namely, the
quantity in (A46), is bounded from below by the following linear
program:

minimize hcjxi;
subject to 0 � jwai � jxi 8 a 2 A;

jxi �
X
a2A

Ta
0!0jwai ¼ jStrað1Þi;X

a2A
jwai ¼ jxi;

(A60)

where jStrað1Þi is the initial jStraj-dimensional probability vector of
the MDP (entirely in the transient block), the optimization is with
respect to jStraj-dimensional vectors jxi; jwai; a 2 A, and the
inequality constraints are component-wise. Every set of feasible
points jxi; jwai; a 2 A of this linear program defines a stationary
policy with the decision function d for the transient states as follows:

dðsÞðaÞ ¼ hsjwai
hsjxi 8 s 2 S; a 2 A: (A61)

If hsjxi ¼ 0, then we can set d(s) to be an arbitrary probability
distribution.

Proof. We start with the fact that, for a given decision function
d, the expected waiting time to absorption is given by
hcjStra

ð1Stra � QdÞ�1jStrað1Þi. Now, let

jxi ¼ ð1Stra � QdÞ�1jStrað1Þi: (A62)

Then, we have that ð1Stra � QdÞjxi ¼ jStrað1Þi. Using the definition
of Qd in (A38), we obtain jxi �

P
a2AT

a
0!0jwai ¼ jStrað1Þi, where

jwai ¼ Dd
að0Þjxi; a 2 A. The definition of jwai is the same as in the

proof of Proposition A.3; thus, for the same reasons as in that proof,
we have that 0 � jwai � jxi for all a 2 A and

P
a2Ajwai ¼ jxi. It is

then clear that, by optimizing the quantity hcjxi with respect to jxi
and jwai; a 2 A, the result can be no greater than the optimal
expected time to reach an absorbing state, leading to the desired
result. Then, given feasible points jxi and jwai; a 2 A, the function
d defined by (A61) is a valid decision function whenever hsjxi is
non-zero. This completes the proof. �

APPENDIX B: QUANTUM STATES AND CHANNELS

In this section, we summarize some standard material on
quantum states and channels, which can be found in Refs. 126,
129, and 150–152. Given a quantum system A with an associated
Hilbert space HA, the quantum state of A is given by a density
operator acting on HA: a linear operator qA : HA ! HA that is
positive semi-definite and has unit trace, i.e., qA � 0 and
Tr½qA� ¼ 1.

A type of quantum state that we frequently encounter in this
work is a classical-quantum state, which is a quantum state of the
form

qXA ¼
X
x2X

pðxÞjxihxjX � qx
A; (B1)

where X is a finite set, p : X! ½0; 1� is a probability mass function,
and fqx

Agx2X is a set of quantum states. Classical-quantum states
can be used to model scenarios in which classical information
accompanies the state of a quantum system. Specifically, if a quan-
tum system A is prepared in a state from the set fqx

Agx2X according
to the probability distribution defined by p, then knowledge of the
label x 2 X is stored in the classical register X.

Given two quantum states q and r, their fidelity is defined to
be153

Fðq;rÞ :¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q
p

r
ffiffiffi
q
pq� �	 
2

: (B2)

The fidelity quantifies the closeness of two quantum states. In par-
ticular, Fðq; rÞ ¼ 1 if and only if q ¼ r, and Fðq;rÞ ¼ 0 if and
only if q and r are supported on orthogonal subspaces. If one of the
states, say r, is pure, then it is straightforward to show that

Fðq; jwihwjÞ ¼ hwjqjwi: (B3)

The fidelity is also multiplicative, meaning that

Fðq1 � q2;r1 � r2Þ ¼ Fðq1;r1ÞFðq2; r2Þ; (B4)

for all states q1;q2;r1;r2.
A quantum channel is a mathematical description of the evo-

lution of a quantum system. Let LðHAÞ denotes the vector space
of linear operators acting on the Hilbert space HA. A linear map
T : LðHAÞ ! LðHBÞ is often called a superoperator, and it is such
that
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T ðaX þ bYÞ ¼ aT ðXÞ þ bT ðYÞ; (B5)

for all a; b 2 C and all X;Y 2 LðHAÞ. It is often helpful to explicitly
indicate the input and output Hilbert spaces of a superoperator T :
LðHAÞ ! LðHBÞ by writing T A!B. The identity superoperator is
denoted by idA, and it satisfies idAðXÞ ¼ X for all X 2 LðHAÞ.

A quantum channel N A!B is a linear, completely positive, and
trace-preserving superoperator acting on the vector space LðHAÞ of
linear operators of the Hilbert space HA of the quantum system A.
Given an input state qA of the system A, the output is the state of a
new quantum system B given by N A!BðqAÞ.
• A superoperator N is completely positive if the map idk �N is
positive for all k 2N, where idk : LðCkÞ ! LðCkÞ is the identity
superoperator. In other words, ðidk �NÞðXÞ � 0 for every linear
operator X � 0.

• A superoperator N is trace preserving if Tr½N ðXÞ� ¼ Tr½X� for
every linear operator X.

1. Quantum instruments

Let A be a quantum system with an associated Hilbert space
HA. A measurement of A is defined by a finite set fMx

Agx2X of linear
operators acting on HA, called a positive operator-valued measure
(POVM), that satisfies the following two properties:

• Mx
A � 0 for all x 2 X;

•
P

x2XM
x
A ¼ 1A.

Elements of the set X label the possible outcomes of the mea-
surement. Given a state qA, the probability of obtaining the out-
come x 2 X is given by the Born rule as Tr½Mx

AqA�.
As a generalization of a measurement, a quantum instrument

is a finite set fMxgx2X of completely positive trace non-increasing
maps, such that the sum

P
x2XMx is a trace-preserving map, thus a

quantum channel. {A trace non-increasing map N A!B satisfies
Tr½N A!BðXAÞ� � Tr½XA� for every positive semi-definite linear
operator XA.} The quantum instrument channelM associated with
the quantum instrument fMxgx2X is defined as

Mð�Þ :¼
X
x2X
jxihxj �Mxð�Þ: (B6)

A quantum instrument fMxgx2X can be thought of as a generalized
form of a measurement in which the completely positive maps Mx

represent the evolution of the quantum system conditioned on the out-
come x. The trace non-increasing property of the mapsMx represents
the fact that the outcome x occurs probabilistically. Specifically, the
probability of obtaining the outcome x is equal to Tr½MxðqÞ�, which
can be thought of as a generalized form of the Born rule stated above.
The quantum instrument channel in (B6) can be thought of as an oper-
ation that stores both the outcome x of the instrument in the classical
register and the corresponding output state.

2. LOCC channels

Consider two parties, Alice and Bob, who are spatially sepa-
rated. Suppose that they have the ability to perform arbitrary quan-
tum operations (quantum channels, measurements, and
instruments) in their respective labs, and that they are connected by
a classical communication channel. It is often the case that Alice

and Bob are also connected by a quantum channel and/or share an
entangled quantum state, and their task is to make use of these
resources as sparingly as possible in order to accomplish their
desired goal. Their local operations and classical communication
(LOCC) can be used freely to help with achieving the goal, which
could be feedback-assisted quantum communication38 (see also Ref.
152), which includes quantum teleportation and entanglement
swapping,12–14,39 or it could be entanglement distillation.38 In the
network setting, the task is repeater-assisted quantum communica-
tion. Here, we focus on the basic mathematical definition of an
LOCC channel and provide some examples. For more mathematical
details about LOCC channels, we refer to Ref. 154.

Consider the scenario shown in Fig. 16, which is an LOCC pro-
tocol with t rounds. The LOCC channel corresponding to this pro-
tocol, i.e., the channel mapping the input systems A0B0 to the
output systems AtBt at the end of the tth round of the protocol, can
be derived as follows.

We start with the initial state r0
A0B0

shared by Alice and Bob.
In the first round, Alice acts on her system A0 with a quantum
instrument channelM0

A0!X1A1
, which leads to the following output:

r0
A0B0 7!MA0!X1A1ðr0

A0B0
Þ ¼

X
x12X1

jx1ihx1jX1
�M0;x1

A0!A1
ðr0

A0B0Þ;

(B7)

where X1 is a finite set and fM0;x1
A0!A1

gx12X1
is a quantum instru-

ment. The classical register X1 is then communicated to Bob, who
applies the conditional quantum instrument channel given by

N 0
X1B0!X1Y1B1

ðjx1ihx1jX1
� sB0Þ ¼ jx1ihx1jX1

�N 0;x1
B0!Y1B1

ðsB0Þ;
(B8)

where N 0;x1
B0!Y1B1

is a quantum instrument channel, i.e.,

N 0;x1
B0!Y1B1ðsB0Þ ¼

X
y12Y1

jy1ihy1jY1
�N 0;x1;y1

B0!B1
ðsB0Þ; (B9)

with fN 0;x1;y1
B0!B1

gy12Y1
being a quantum instrument, i.e., every

N 0;x1;y1
B0!B1 is a completely positive trace non-increasing map andP
y12Y1
N 0;x1;y1

B0!B1
is a trace-preserving map. Bob sends the outcome

y1 2 Y1 of the quantum instrument to Alice. This completes the
first round, and the quantum state shared by Alice and Bob is

qX1Y1A1B1
ð1Þ

:¼ M0
A0!X1A1

�N 0
X1B0!X1Y1B1

� �
ðr0

A0B0
Þ (B10)

¼
X

x1 2 X1

y1 2 Y1

jx1; y1ihx1; y1jX1Y1
� M0;x1

A0!A1
�N 0;x1;y1

B0!B1

� �
ðr0

A0B0Þ

(B11)

¼
X

x1 2 X1

y1 2 Y1

jx1; y1ihx1; y1jX1Y1
� erA1B1ð1; x1; y1Þ; (B12)

where, in the last line, we let

erA1B1ð1; x1; y1Þ :¼ M0;x1
A0!A1

�N 0;x1;y1
B0!B1

� �
ðr0

A0B0
Þ: (B13)
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Now, in the second round, Alice applies the conditional quan-
tum instrument channel given by

M1
X1Y1A1!X1Y1X2A2

ðjx1; y1ihx1; y1jX1Y1
� qA1

Þ
:¼ jx1; y1ihx1; y1jX1Y1

�M1;x1;y1
A1!X2A2

ðqA1
Þ; (B14)

where M1;x1;y1
A1!X2A2

is a quantum instrument channel in which the
underlying quantum instrument fM1;x1;y1;x2

A1!A2
gx22X2

is conditioned
on the histories fðx1; y1Þ : x1 2 X1; y1 2 Y1g of hers and Bob’s
prior outcomes. She sends the outcome x2 2 X2 of the quantum
instrument to Bob, who then applies the conditional quantum
instrument channel given by

N 1
X1Y1X2B1!X1Y1X2Y2B2ðjx1; y1; x2ihx1; y1; x2jX1Y1X2

� sB1Þ
:¼ jx1; y1; x2ihx1; y1; x2jX1Y1X2

�N 1;x1;y1;x2
B1!Y2B2ðsB1Þ; (B15)

whereN 1;x1;y1;x2
B1!Y2B2 is a quantum instrument channel in which the under-

lying quantum instrument fN 1;x1;y1;x2;y2
B1!B2 gy22Y2

depends on the prior
outcomes x1 2 X1; y1 2 Y1; and x2 2 X2. The outcome of the instru-
ment is y2 2 Y2, so that, at the end of the second round, the state
shared by Alice and Bob is

qX1Y1X2Y2A2B2
ð2Þ ¼

X
h2
jh2ihh2jH2

� erA2B2ð2; h2Þ; (B16)

where we used the abbreviations

H2 � X1Y1X2Y2; (B17)

h2 � ðx1; y1; x2; y2Þ 2 X1 	 Y1 	 X2 	 Y2; (B18)

and

erð2; h2Þ :¼ M1;x1;y1;x2
A1!A2

�M0;x1
A0!A1

�N 1;h2

B1!B2
� N 0;x1;y1

B0!B1

� �
ðr0

A0B0Þ:
(B19)

Let hj :¼ ðx1; y1;…; xj; yjÞ 2 X1 	 Y1 	 � � � 	 Xj 	 Yj be the
history up to j steps, j 2 f1; 2;…; g. Proceeding in the manner pre-
sented above, at the jth step of the protocol, Alice and Bob apply
conditional quantum instrument channels of the form:

Mj
HjAj!HjXjþ1Ajþ1

jhjihhjjHj
� qAj

� �
¼ jhjihhjjHj

�Mj;hj

Aj!Xjþ1Ajþ1
ðqAj
Þ

(B20)

and

N j
HjXjþ1Bj!Hjþ1Bjþ1

jhj; xjþ1ihhj; xjþ1jHjXjþ1
� rBj

� �
¼ jhj; xjþ1ihhj; xjþ1jHjXjþ1

�N j;hj;xjþ1
Bj!Yjþ1Bjþ1ðrBjÞ; (B21)

where

Mj;hj

Aj!Xjþ1Ajþ1
ðqAj
Þ ¼

X
xjþ12Xjþ1

jxjþ1ihxjþ1jXjþ1
�Mj;hj;xjþ1

Aj!Ajþ1
ðqAj
Þ

(B22)

and

N j;hj ;xjþ1
Bj!Yjþ1Bjþ1

ðrBjÞ ¼
X

yjþ12Yjþ1

jyjþ1ihyjþ1jYjþ1
�N j;hj ;xjþ1;yjþ1

Bj!Bjþ1 ðrBjÞ:

(B23)

Therefore, at the end of the tth round, the classical-quantum state
shared by Alice and Bob is

qHtAtBt ðtÞ ¼
X
ht
jhtihht jHt

� erAtBt ðt; htÞ; (B24)

where Ht � X1Y1 � � �XtYt ; ht ¼ ðx1; y1; x2; y2;…; xt ; ytÞ,

erðt; htÞ ¼ St;h
t

A0!At
� T t;ht

B0!Bt

� �
ðr0

A0B0
Þ; (B25)

St;h
t

A0!At
:¼Mt�1;htt�1;xt

At�1!At
� � � � �M1;ht1;x2

A1!A2
�M0;x1

A0!A1
; (B26)

T t;ht

B0!Bt
:¼ N t�1;ht

Bt�1!Bt
� � � � � N 1;ht2

B1!B2
� N 0;ht1

B0!B1 ; (B27)

and we have defined htj :¼ ðx1; y1; x2; y2;…; xj; yjÞ for all
j 2 f1; 2;…; t � 1g.

Now, if Alice and Bob discard the history of their outcomes,
then this corresponds to tracing out the classical history register Ht,
and it results in the state

rAtBt ðtÞ :¼ TrHt qHtAtBt ðtÞ
� �

(B28)

¼
X
ht
erAtBt ðt; htÞ (B29)

FIG. 16. Depiction of a t-round LOCC protocol between Alice and Bob. The channelsM0;M1;…;Mt�1 represent Alice’s local operations, the channels N 0
;N 1

;…;N t�1

represent Bob’s local operations, and the registers H1;H2;…;Ht represent the classical communication to and from Alice and Bob. The final quantum state rAtBt ðtÞ shared by
Alice and Bob has the form shown in (B30).
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¼
X
ht
ðSt;h

t

A0!At
� T t;ht

B0!Bt Þðr
0
A0B0Þ; (B30)

which is of the form

LAB!ÂB̂ð�Þ :¼
X
x2X
ðSxA!Â � T

x
B!B̂Þð�Þ: (B31)

Here, fSxgx2X and fT xgx2X are completely positive trace non-
increasing maps, such that the sum

P
x2X Sx � T

x is a trace-
preserving map.

Note that the sum
P

htSt;h
t � T t;ht in (B30) is, indeed, a trace-

preserving map because for every j 2 f1; 2;…; t � 1g, history hj�1

up to time j � 1, and linear operator XAj�1Bj�1 ,X
xj ;yj

Tr Mj�1;hj�1;xj
Aj�1!Aj

�N j�1;hj�1;xj ;yj
Bj�1!Bj

� �
ðXAj�1Bj�1Þ

h i
¼
X
xj

Tr Mj�1;hj�1;xj
Aj�1!Aj

�
X
yj

N j�1;hj�1;xj ;yj
Bj�1!Bj

 !
ðXAj�1Bj�1Þ

" #
(B32)

¼
X
xj

TrAj M
j�1;hj�1;xj
Aj�1!Aj

ðTrBj�1 ½XAj�1Bj�1 �Þ
h i

(B33)

¼ TrAj

X
xj

Mj�1;hj�1;xj
Aj�1!Aj

ðTrBj�1 ½XAj�1Bj�1 �Þ
" #

(B34)

¼ Tr XAj�1Bj�1

� �
; (B35)

where we have used the fact that
P

yjN
j�1;hj�1;xj ;yj
Bj�1!Bj andP

xjM
j�1;hj�1;xj
Aj�1!Aj

are trace-preserving maps. By applying this recur-

sively at all time steps, it follows that for every linear operator
XA0B0 ,

Tr
X
ht
ðSt;h

t

A0!At
� T t;ht

A0!At
ÞðXA0B0Þ

� �
¼ Tr XA0B0½ �: (B36)

So we conclude that the sum
P

htSt;h
t � T t;ht is a trace-preserving

map.
Remark B.1 (LOCC instruments). From (B24) and (B25), the

classical-quantum state qHtAtBt ðtÞ after t rounds of an LOCC proto-
col is

qHtAtBt ðtÞ ¼
X
ht
jhtihht jHt

� St;h
t

A0!At
� T t;ht

B0!Bt

� �
ðr0

A0B0Þ: (B37)

Let us observe that this state has exactly the form of the output state
of a quantum instrument channel. In particular, letting

Lt;h
t

A0B0!AtBt :¼ St;h
t

A0!At
� T t;ht

B0!Bt
; (B38)

we see that the state qHtAtBt
ðtÞ can be regarded as the output state

of an LOCC instrument, i.e., a finite set Lx
AB!ÂB̂


 �
x2X of completely

positive trace non-increasing LOCC maps, such that the sumP
x2XLx

AB!ÂB̂ is a trace-preserving map, thus an LOCC quantum
channel.

APPENDIX C: QUANTUM KEY DISTRIBUTION

In this section, we provide a brief overview of the quantum key
distribution (QKD). We refer to Refs. 8–11 and 155–157 for

pedagogical introductions and reviews of the state-of-the-art in
QKD research.

Let us consider the following scenario of so-called entangle-
ment-based QKD. Suppose that Alice and Bob have access to a
source that distributes entangled states qAB to them, and that their
task is to use many copies of this quantum state to distill a secret
key. The general strategy of Alice and Bob is to measure their
quantum systems. Based on their measurement statistics, they
decide whether or not to use their classical measurement data to
distill a secret key. The measurement statistics are of the following
form:

pABðx; yja; bÞ :¼ Tr½ðPa;x
A � Kb;y

B ÞqAB�;
x 2 X; y 2 Y; a 2 A; b 2 B; (C1)

where A and B are finite sets of POVMs, such that fPa;x
A gx2X is a

POVM for Alice’s measurement for all a 2 A and fKb;y
B gy2Y is a

POVM for Bob’s measurement for all b 2 B.
BB84 and six-state protocols.
Two well-known device-dependent protocols that we discuss

here are the BB846 and six-state158,159 protocols. The original for-
mulation of these protocols is as so-called prepare-and-measure
protocols, which do not require Alice and Bob to share entangle-
ment. However, these protocols can be viewed from an
entanglement-based point of view in which Alice and Bob possess
an entangled state, see Ref. 156 for a discussion on the equivalence
of entanglement-based and prepare-and-measure-based protocols,
and Ref. 160 for a more general discussion of the security of pre-
pare-and-measure-based and entanglement-based QKD protocols.
In this device-dependent scenario, we explicitly assume that the
state qAB is a two-qubit state, and the correlation in (C1) is given by
the measurement of the qubit Pauli observables X, Z, and Y ¼ iXZ.
In other words, the sets A and B indicate which observable to be
measured, and the sets X and Y contain the outcomes of the mea-
surements. It can be shown via certain symmetrization procedures
that, without loss of generality, qAB is a Bell-diagonal state, see Refs.
156 and 161 for details. It then suffices to estimate the following
three quantities, called quantum bit-error rates (QBERs), in order to
characterize the eavesdropper’s knowledge:

Qx :¼Tr ðjþihþjA�j�ih�jBÞqAB

� �
þTr ðj�ih�jA�jþihþjBÞqAB

� �
(C2)

¼ 1
2
ð1� Tr ðX � XÞqAB½ �Þ; (C3)

Qy :¼ Tr ðj þ iihþijA � j � iih�ijBÞqAB

� �
þ Tr ðj � iih�ijA � j þ iihþijBÞqAB

� �
(C4)

¼ 1
2
ð1þ Tr ðY � YÞqAB½ �Þ; (C5)

Qz :¼ Tr ðj0ih0jA � j1ih1jBÞqAB

� �
þ Tr ðj1ih1jA � j0ih0jBÞqAB

� �
(C6)

¼ 1
2
ð1� Tr ðZ � ZÞqAB½ �Þ; (C7)

where j6i ¼ 1=
ffiffiffi
2
p� �
ðj0i6j1iÞ and j6ii ¼ 1=

ffiffiffi
2
p� �
ðj0i6 ij1iÞ. For

example, Qx is simply the probability that Alice and Bob’s
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measurement outcomes disagree when they both measure the
observable X, and similarly for Qy and Qz.

A standard figure of merit for QKD protocols is the number of
secret key bits obtained per copy of the source state, see, e.g., Ref.
161 for precise definitions. For the BB84 protocol, the asymptotic
secret key rate is162–167

KBB84ðQÞ ¼ 1� 2h2ðQÞ; (C8)

where Q ¼ 1
2 ðQx þ QzÞ and

h2ðQÞ :¼ �Q log2ðQÞ � ð1� QÞ log2ð1� QÞ; (C9)

is the binary entropy. For the six-state protocol, the asymptotic
secret key rate is158,168

K6-stateðQÞ ¼ 1þ 1� 3Q
2

	 

log2 1� 3Q

2

	 

þ 3Q

2
log2

Q
2

	 

;

(C10)

where Q ¼ 1
3 ðQx þ Qy þ QzÞ.

Remark C.1. The QBERs Qx;Qy; andQz in (C2), (C4), and
(C6), respectively, have a useful interpretation in terms of the fidel-
ity of an arbitrary two-qubit state qAB to the maximally entangled
state UAB. In particular

hUjqABjUi ¼ 1� 1
2
ðQx þ Qy þ QzÞ; (C11)

for every two-qubit state qAB. It is easy to see this by noting that

UAB ¼
1
4

1A � 1B þ XA � XB � YA � YB þ ZA � ZBð Þ: (C12)

Then, using the definitions in (C2), (C4), and (C6), we obtain (C11).
Device-independent protocols.
The device-independent protocol that we present here is the

one introduced in Refs. 169 and 170, and the basic idea behind the
protocol comes from the protocol in Ref. 7. The security of the pro-
tocol is based on the violation of a Bell inequality, specifically the
Clauser-Horne-Shimony-Holt (CHSH) inequality171 (see Ref. 172
for a pedagogical introduction). In this protocol, unlike the device-
dependent protocols shown above, it is not required to assume that
qAB is a two-qubit state. However, like the device-dependent proto-
cols considered above, there are symmetrization procedures and
other reductions from which it can be argued that qAB is a two-
qubit Bell-diagonal state without loss of generality, see Refs. 169
and 170 for details. The correlation in (C1) is given by the measure-
ment of observables P0

A;P
1
A; andP

2
A for system A and observables

Q1
B andQ

2
B for system B, and we assume that they all have spectral

decompositions of the following form:

Pj
A ¼ Pj;0

A �Pj;1
A ; j 2 f0; 1; 2g; (C13)

Tk
B ¼ Kk;0

B � Kk;1
B ; k 2 f1; 2g: (C14)

In other words, A ¼ f0; 1; 2g; B ¼ f1; 2g, and X ¼ Y ¼ f0; 1g.
Two quantities in this case characterize the secret key rate

S :¼ Tr P1
A � T1

B þ P1
A � T2

B þ P2
A � T1

B � P2
A � T2

B

� �
qAB

� �
; (C15)

and the quantum bit-error rate (QBER) Q, which is defined as

Q :¼ Tr ðP0;0
A � K1;1

B ÞqAB

h i
þ Tr ðP0;1

A � K1;0
B ÞqAB

h i
: (C16)

As with the QBERs defined previously, the QBER here is the
probability that the outcomes of Alice and Bob disagree when a
measurement of P0

A is performed by Alice and a measurement of
T1
B is performed by Bob. The asymptotic secret key rate is

then170,173

KDIðQ; SÞ ¼ 1� h2ðQÞ � h2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS=2Þ2 � 1

q
2

 !
: (C17)

APPENDIX D: PROOF OF THEOREM II.4

To prove this, we use (A44). First of all, it is straightforward to
show that the transition matrix Pd given by the definition in (A23)
is equal to

Pd ¼ ð1� p�að�1ÞÞj�1ih�1j þ p�að�1Þj0ih�1j

þð1� p�aðm?ÞÞj�1ihm?j þ p�aðm?Þj0ihm?j

þ
Xm?�1

m¼0
ðaðmÞjmþ 1ihmj þ p�aðmÞj0ihmj

þ ð1� pÞ�aðmÞj�1ihmjÞ: (D1)

With this, we can verify that the vector jMð1Þid
:¼
Pm?

m¼�1 sdðmÞjmi is a unit-eigenvalue probability vector of Pd,
i.e., that PdjMð1Þid ¼ jMð1Þid . This is the unique such vector
because the Markov chain defined by the transition matrix Pd is
ergodic, which can be straightforwardly verified. Therefore, by ergo-
dicity, the stationary vector jMð1Þi is unique and
limt!1 ðPdÞt�1 ¼ jMð1Þihcj, see, e.g., Ref. 145, Theorem A.2.
Therefore, using (A44), we obtain the desired result.

APPENDIX E: PROOFS FROM APPENDIX B

1. Proof of Proposition III.1

Let qA~R1���~RnB
be an arbitrary state. Then

hUjABL
ESn
A~R1���~RnB!AB

qA~R1���~RnBð ÞjUiAB
¼

X
~x ;~z2 d½ �	n

hUa;bjAB � hUz1;x1 jR1
1R

2
1
� � � � � hUzn;xn jR1

nR
2
n

� �
qA~R1���~RnBð Þ

	 jUa;biAB � jUz1;x1iR1
1R

2
1
� � � � � jUzn;xniR1

nR
2
n

� �
; (E1)

where

a :¼ z1 þ � � � þ zn; b :¼ x1 þ � � � þ xn: (E2)

Using

jUz;xi ¼ ðZzXx � 1ÞjUi (E3)

¼ 1ffiffiffi
d
p
Xd�1
k¼0

e2piðkþxÞz=djkþ x; ki (E4)
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and

jj; ki ¼ 1ffiffiffi
d
p

Xd�1
z;x¼0

e�2pijz=ddj;kþxjUz;xi; (E5)

we obtain

jUa;biAB � jUz1;x1i~R1
� jUz2;x2i~R2

� � � � � jUzn;xni~Rn

¼ 1ffiffiffiffiffiffiffiffiffi
dnþ1
p

Xd�1
k0;k1;…;kn¼0

e2piðk0þbÞa=d
Yn
‘¼1

e2piðk‘þx‘Þz‘=d
 !

	 jk0 þ b; k0iABjk1 þ x1; k1iR1
1R

2
1

	 jk2 þ x2; k2iR1
2R

2
2
…jkn þ xn; kniR1

nR
2
n

(E6)

¼ 1ffiffiffiffiffiffiffiffiffi
dnþ1
p

Xd�1
k0;k1;…;kn¼0

e2piðk0þbÞa=d
Yn
‘¼1

e2piðk‘þx‘Þz‘=d
 !

	 jk0 þ b; k1 þ x1iAR1
1

	 jk1; k2 þ x2iR2
1R

1
2
� � � jkn; k0iR2

nB
: (E7)

Now

jk0þb;k1þ x1iAR1
1
¼ 1ffiffiffi

d
p

Xd�1
z00;x

0
0¼0

e�2piðk0þbÞz
0
0=ddk0þb;k1þx1þx00 jU

z00;x
0
0iAR1

1
;

(E8)

‘ 2 1;…; n� 1f g : jk‘; k‘þ1 þ x‘þ1iR2
‘
R1
‘þ1

¼ 1ffiffiffi
d
p

Xd�1
z0
‘
;x0
‘
¼0

e�2pik‘z
0
‘
=ddk‘;k‘þ1þx‘þ1þx0‘ jU

z0
‘
;x0
‘iR2

‘
R1
‘þ1
; (E9)

jkn; k0iR2
nB
¼ 1ffiffiffi

d
p

Xd�1
z0n;x

0
n¼0

e�2piknz
0
n=ddkn;k0þx0n jU

z0n;x
0
niR2

nB
: (E10)

Therefore

jUa;biAB � jUz1;x1i~R1
� jUz2;x2i~R2

� � � � � jUzn;xni~Rn

¼ 1
dnþ1

Xd�1
k0;…; kn ¼ 0

z00 ;…; zn0 ¼ 0

x00 ;…; xn0 ¼ 0

e2piðk0þbÞa=d
Yn
‘¼1

e2piðk‘þx‘Þz‘=d
 !

	 e�2piðk0þbÞz
0
0=ddk0þb;k1þx1þx00

Yn�1
‘¼1

e�2pik‘z‘0 =ddk‘;k‘þ1þx‘þ1þx‘0

 !

	 e�2piknz
0
n=ddkn;k0þx0n jU

z00;x
0
0iAR1

1
�
n�1

‘¼1
jUz0

‘
;x0
‘iR2

‘
R1
‘þ1
jUz0n;x

0
niR2

nB
:

(E11)

Evaluating the sums with respect to k0;…; kn, starting with kn and
proceeding backward to k0, we obtain

jUa;biAB� jUz1;x1i~R1
�jUz2;x2i~R2

� � � �� jUzn;xni~Rn

¼ 1
dn

Xd�1
z00 ;…;zn0 ¼ 0

x00 ;…;xn0 ¼ 0

e�2pi=dab
Yn
‘¼1

e2pi=dðx‘þx
0
‘
þ���þxnþx0nÞz‘

 !

	
Yn
‘¼1

e�2pi=dðx
0
‘
þx‘þ1þx0‘þ1þ���þxnþx

0
nÞz0‘

 !
e2pi=dðz

0
1þ���þz0nÞb

	jU2a�z01�����z0n;�x01�����x0niAR1
1
�
n�1

‘¼1
jUz0

‘
;x0
‘iR2

‘
R1
‘þ1
jUz0n;x

0
niR2

nB
; (E12)

where for the sum with respect to k0, we used the identity

Xd�1
k¼0

e2pika=d ¼ dda;0; (E13)

which holds for all a 2 f0; 1;…; d � 1g. Now, observe that

jU2a�z01�����z0n;�x01�����x0niAR1
1
¼ Z2a

A jU�z
0
1�����z0n;�x01�����x0niAR1

1
: (E14)

Using this, along with the fact that ðZz
AÞ

†Zz
A ¼ 1 for all

z 2 f0; 1;…; d � 1g, and after much simplification and repeated
use of (E13), we obtainX
~x ;~z2 d½ �	n

hUa;bjAB � hUz1;x1 jR1
1R

2
1
� � � � � hUzn;xn jR1

nR
2
n

� �
qA~R1���~RnBð Þ

	 jUa;biAB � jUz1;x1iR1
1R

2
1
� � � � � jUzn;xniR1

nR
2
n

� �
¼

X
~z 0;~x 02 d½ �	n

hU�z01�����z0n;�x01�����x0n jAR1
1
�
n�1

‘¼1
hUz0

‘
;x0
‘ jR2

‘
R1
‘þ1
hUz0n;x

0
n jR2

nB

	 

	 qA~R1���~RnBð Þ

	 jU�z01�����z0n;�x01�����x0niAR1
1
�
n�1

‘¼1
jUz0

‘
;x0
‘iR2

‘
R1
‘þ1
jUz0n;x

0
niR2

nB

	 

;

(E15)

which leads to the desired result.

2. Proof of Proposition III.2

Let qA~R1���~RnB
be an arbitrary state. We then have

hGHZnþ2jLGHZ;n
A~R1���~RnB!AR1

1���R1
nB
ðqA~R1���~RnB

ÞjGHZnþ2i

¼ 1
2

X1
x;x0¼0

X
~x2f0;1gn

hx; x;…; xjLxnn � � � L
x2
2 L

x1
1

	 ðqA~R1���~RnB
ÞLx1†1 Lx2†2 � � � Lxn†n jx0; x0;…; x0i; (E16)

where

L
xj
j :¼ hxjjR2

j
CNOT~Rj

X
xj
R1
jþ1

(E17)

¼ hxjjR2
j

X1
x0¼0
jx0ihx0jR1

j
� Xx0

R2
j

 !
ð1~Rj
� X

xj
R1
jþ1
Þ (E18)
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¼
X1
x0¼0
jx0ihx0jR1

j
� hxj þ x0jR2

j
� X

xj
R1
jþ1
: (E19)

Then

Lxnn � � � L
x2
2 K

x1
1 ¼

X1
x01;…;x0n¼0

jx01;…; x0ni

	 hx01; x02 þ x1; x
0
3 þ x2;…; x0n þ xn�1jR1

1R
1
2���R1

n

� hx1 þ x01; x2 þ x02;…; xn þ x0njR2
1R

2
2���R2

n
� Xxn

B ;

(E20)

so that, using (E5) with d¼ 2

hx; x;…; xjAR1
1R

1
2���R1

nB
Lxnn …Lx22 L

x1
1

¼ hxjAhx; x þ x1; x þ x2;…; x þ xn�1jR1
1R

1
2���R1

n

	 hx1 þ x; x2 þ x;…; xn þ xjR2
1R

2
2���R2

n
hx þ xnjB (E21)

¼ hx; xjAR1
1
hx þ x1; x þ x1jR2

1R
1
2

	 hx þ x2; x þ x2jR2
2R

1
3
� � � hx þ xn; x þ xnjR2

nB
(E22)

¼ 1ffiffiffiffiffiffiffiffiffi
2nþ1
p

X1
~z2f0;1gn

ð�1Þz1xð�1Þz2ðxþx1Þ � � � ð�1Þznþ1ðxþxnÞ

	 hUz1;0jAR1
1
hUz2;0jR2

1R
1
2
� � � hUznþ1;0jR2

nB
: (E23)

We substitute this into (E16), simplify, and then make use of the
following identity:

X
~c2f0;1gn

ð�1Þ~c
T~x ¼ 2nd~x ;~0 : (E24)

This leads to

hGHZnþ2jLGHZ;n
A~R1���~RnB!AR1

1���R1
nB

qA~R1���~RnBð ÞjGHZnþ2i

¼
X1

z2;…;znþ1¼0
hUz2þ���þznþ1;0jhUz2;0j � � � hUznþ1;0j

	 qA~R1���~RnBð ÞjUz2þ���þznþ1;0ijUz2;0i � � � jUznþ1;0i: (E25)

This holds for every state qA~R1���~RnB
, so it holds for the tensor prod-

uct state in the statement of the proposition, thus completing the
proof.

3. Proof of Proposition III.3

Let qAn
1B

n
1
be an arbitrary 2n-qubit state. Then, by definition of

the channel LðGÞ, we have that

hGjLðGÞ qAn
1R

n
1ð ÞjGi ¼

X
~c2f0;1gn

hG~c jAn
1
� hG~c jRn

1

� �
qAn

1R
n
1ð Þ

	 jG~ciAn
1
� jG~ciRn

1

� �
; (E26)

where we recall the definition of jG~ci in (219). Now

jG~ciAn
1
� jG~ciRn

1
¼ 1

2n
X

~a;~b2f0;1gn
ð�1Þc1ða1þb1Þþ���cnðanþbnÞ

	 ð�1Þ
1
2~a

TAðGÞ~aþ1
2
~b
T
AðGÞ~b j~aiAn

1
� j~biRn

1
; (E27)

and, for all~a;~b 2 f0; 1gn

j~aiAn
1
� j~biRn

1
¼ 1ffiffiffiffiffi

2n
p

X
~x ;~z2f0;1gn

ð�1Þa1z1þ���þanzndb1;a1þx1 � � �

	 dbn;anþxn jU
z1;x1iA1R1

� � � � � jUzn;xniAnRn ;

(E28)

where we have used (E5). Then

jG~ciAn
1
� jG~ciRn

1
¼ 1

ð2nÞ
3
2

X
~a;~x ;~z2f0;1gn

ð�1Þ~c
T~xþ~aT~z

	 ð�1Þ
1
2~a

TAðGÞ~aþ1
2ð~aþ~xÞ

TAðGÞð~aþ~xÞjUx1;z1iA1R1

� � � � � jUzn;xniAnRn
: (E29)

Now, because A(G) is a symmetric matrix, we have that
~aTAðGÞ~x ¼~xTAðGÞ~a. We, thus, obtain

ð�1Þ
1
2~a

TAðGÞ~aþ1
2ð~aþ~xÞ

TAðGÞð~aþ~xÞ ¼ ð�1Þ~a
TAðGÞ~xþ1

2~x
TAðGÞ~x ; (E30)

so that

jG~ciAn
1
� jG~ciRn

1
¼ 1

ð2nÞ
3
2

X
~a;~x ;~z2f0;1gn

ð�1Þ~c
T~xþ~aT~z

	 ð�1Þ
1
2~x

TAðGÞ~xþ~aTAðGÞ~x jUz1;x1iA1R1

� � � � � jUzn;xniAnRn
: (E31)

Therefore, using (E24), we find thatX
~c2f0;1gn

hG~c jAn
1
� hG~c jRn

1

� �
qAn

1R
n
1ð Þ jG~ciAn

1
� jG~ciRn

1

� �

¼ 1

ð2nÞ2
X

~a;~a 0;~z ;~z 0;~x2f0;1gn
ð�1Þ~a

TðAðGÞ~xþ~zÞþ~a 0TðAðGÞ~xþ~z 0Þ

	 hUz1;x1 jA1R1
� � � � � hUzn;xn jAnRn

� �
qAn

1R
n
1ð Þ

	 jUz01;x
0
1iA1R1

� � � � � jUz0n;xniAnRn

� �
: (E32)

Using (E24), two more times in the summation with respect to ~a
and~a0 finally lead to

X
~c2f0;1gn

hG~c jAn
1
� hG~c jRn

1

� �
qAn

1R
n
1ð Þ jG~ciAn

1
� jG~ciRn

1

� �
¼

X
~x2f0;1gn

hUz1;x1 jA1R1
� � � � � hUzn;xn jAnRn

� �
qAn

1R
n
1ð Þ

	 jUz1;x1iA1R1
� � � � � jUzn;xniAnRn

� �
; (E33)
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where~z ¼ AðGÞ~x . Since this holds for every state qAn
1R

n
1
, it holds for

the tensor product state in the statement of the proposition, which
completes the proof.

APPENDIX F: PROOF OF EQUATION (236)

By definition

Pr WE0 ðtreqÞ ¼ t
� �

1 ¼ Pr XE0 ðtreq þ 1Þ ¼ 0;…;XE0 ðtreq þ tÞ ¼ 1
� �

1:

(F1)

Note that

Pr WE0 ðtreqÞ ¼ 1
� �

1 ¼ Pr XE0 ðtreq þ 1Þ ¼ 1
� �

1

¼ ð1� ð1� pÞtreqþ1ÞM ¼ pMtreqþ1; (F2)

which holds because all of the elementary links are generated
independently and because they all have the same success
probability.

Now, for t � 2, our first goal is to prove that

Pr WE0 ðtreqÞ ¼ t
� �

1 ¼ ð1� ð1� ptreqþ1Þð1� pÞt�1ÞM

� ð1� ð1� ptreqþ1Þð1� pÞt�2ÞM: (F3)

In order to prove this, let us for the moment take treq ¼ 0. Then,
XE0 ð1Þ ¼ 0 means that at least one of the M elementary links is not
active in the first time step, and the same for all subsequent time
steps except for the tth time step in which all of the M elementary
links are active. Then, because t? ¼ 1, the links that are active in
the first time step always remain active. This means that we can
evaluate Pr½WE0 ð0Þ ¼ t�1 by counting the number of elementary
links that are inactive at each time step. For example, for t¼ 2, we
obtain

Pr XE0 ð1Þ ¼ 0;XE0 ð2Þ ¼ 1½ �1

¼
XM
k1¼1

M

k1

 !
ð1� pÞk1|fflfflfflfflffl{zfflfflfflfflffl}
k1inactive links

in the first

time step

pM�k1|fflffl{zfflffl}
M � k1 active

links in the

first time step

pk1|{z}
remaining k1

inactive links

succeed in the

second time step

(F4)

¼ pM
XM
k1¼1

M
k1

	 

ð1� pÞk1 : (F5)

Similarly, for t¼ 3, we find that

Pr XE0 ð1Þ ¼ 0;XE0 ð2Þ ¼ 0;XE0 ð3Þ ¼ 1½ �1

¼
XM
k1¼1

M

k1

 !
ð1� pÞk1pM�k1

Xk1
k2¼1

k1
k2

 !
ð1� pÞk2pk1�k2pk2

(F6)

¼ pM
XM
k1¼1

Xk1
k2¼1

M
k1

	 

k1
k2

	 

ð1� pÞk1ð1� pÞk2 : (F7)

In general, then, for all t � 2

Pr WE0 ð0Þ ¼ t½ �1
¼ Pr XE0 ð1Þ ¼ 0;…;XE0 ðtÞ ¼ 1½ �1

¼ pM
XM
k1¼1

Xk1
k2¼1

Xk2
k3¼1
� � �

Xkt�2
kt�1¼1

M

k1

 !
k1

k2

 !
k2

k3

 !
� � �

	
kt�2

kt�1

 !
ð1� pÞk1ð1� pÞk2 � � � ð1� pÞkt�1 (F8)

¼
XM
k1¼1

M

k1

 !
ð1�pÞk1pM�k1

	pk1
Xk1
k2¼1

Xk2
k3¼1
� � �
Xkt�2
kt�1¼1

k1

k2

	 

k2

k3

	 

� � � kt�2

kt�1

	 

ð1�pÞk2 � � �ð1�pÞkt�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pr Wð1Þ
k1
ð0Þ¼t�1

� �
(F9)

¼
XM
k1¼1

M
k1

	 

ð1� pÞk1pM�k1Pr Wk1ð0Þ ¼ t � 1

� �
1: (F10)

Using this, we can immediately prove the following result by induc-
tion on t:

Pr WE0 ð0Þ ¼ t½ �1 ¼ ð1� ð1� pÞtÞM � ð1� ð1� pÞt�1ÞM : (F11)

Indeed, from (F2), we immediately have that this result holds for
t¼ 1. Similarly, using the fact that

XM
k1¼1

M
k1

	 

ð1� pÞk1 ¼ �1þ ð2� pÞM

¼ 1
pM
ð1� ð1� pÞ2ÞM � ð1� ð1� pÞÞM
� �

;

(F12)

we see that (F11) holds for t¼ 2 as well. Now, assuming that (F11)
holds for all t � 2, using (F10), we find that

Pr WE0 ð0Þ ¼ t þ 1½ �1

¼
XM
k1¼1

M

k1

 !
ð1� pÞk1pM�k1Pr Wk1ð0Þ ¼ t

� �
1 (F13)

¼
XM
k1¼1

M

k1

 !
ð1� pÞk1pM�k1

	 ð1� ð1� pÞtÞk1 � ð1� ð1� pÞt�1Þk1
� �

(F14)

¼ ð1� ð1� pÞtþ1ÞM � ð1� ð1� pÞtÞM; (F15)

as required. Therefore, (F11) holds for all t � 1.
We are now in a position to prove (F3). Recall that for the

t? ¼ 1 policy, Pr½XðtÞ ¼ 1�1 ¼ 1� ð1� pÞt ¼ pt . Therefore, at
time step treq þ 1, the probability that k1 � 1 elementary links are

inactive is ð1� ptreqþ1Þ
k1 , and the probability that M � k1 elemen-

tary links are active is pM�k1treqþ1. In the subsequent time steps, each

inactive elementary link from the previous time step is active with
probability p and inactive with probability 1� p. Therefore
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Pr WE0 ðtreqÞ ¼ t
� �

1

¼
XM
k1¼1

M

k1

 !
ð1� ptreqþ1Þ

k1pM�k1treqþ1
Xk1
k2¼1

k1

k2

 !
ð1� pÞk2pk2�k1 � � �

� � �
Xkt�2
kt�1¼1

kt�2

kt�1

 !
ð1� pÞkt�1pkt�2�kt�1pkt�1 (F16)

¼
XM
k1¼1

M

k1

 !
ð1� ptreqþ1Þ

k1pM�k1treqþ1p
k1
Xk1
k2¼1
� � �

� � �
Xkt�2
kt�1¼1

k1
k2

 !
� � �

kt�2
kt�1

 !
ð1� pÞk2 � � � ð1� pÞkt�1 (F17)

¼
XM
k1¼1

M
k1

	 

ð1� ptreqþ1Þ

k1pM�k1treqþ1Pr Wk1ð0Þ ¼ t � 1
� �

1 (F18)

¼ ð1� ð1� ptreqþ1Þð1� pÞt�1ÞM

� ð1� ð1� ptreqþ1Þð1� pÞt�2ÞM; (F19)

which is precisely (F3).
Now, for brevity, let eq � 1� ptreqþ1; q � 1� p. Then

Pr WE0 ðtreqÞ ¼ t
� �

1 ¼ ð1� eqqt�1ÞM � ð1� eqqt�2ÞM (F20)

¼
XM
k¼0

M
k

	 

ð�1Þkðeqqt�1Þk �XM

k¼0

M
k

	 

ð�1Þkðeqqt�2Þk (F21)

¼
XM
k¼1

M
k

	 

ð�1Þkeqkðqt�1Þkð1� q�kÞ: (F22)

Then, using the fact that

X1
t¼2

tðqkÞt�1 ¼ qkð2� qkÞ
ð1� qkÞ2

; (F23)

we obtain

E WE0 ðtreqÞ
� �

1 ¼
X1
t¼1

tPr WE0 ðtreqÞ ¼ t
� �

1 (F24)

¼ ð1� eqÞM þXM
k¼1

M

k

 !
ð�1Þkeqk

	 qkð2� qkÞ
ð1� qkÞ2

 !
ð1� q�kÞ (F25)

¼ ð1� eqÞM þXM
k¼1

M

k

 !
ð�1Þkþ1eqk

	 1þ 1
1� qk

	 

(F26)

¼ ð1� eqÞM þXM
k¼1

M
k

	 

ð�1Þkþ1eqk 1þ 1

pk

	 

(F27)

¼ ð1� eqÞM þXM
k¼1

M
k

	 

ð�1Þkþ1eqk

þ
XM
k¼1

M
k

	 

ð�1Þkþ1 ð1� pkÞtreqþ1

pk
(F28)

¼ 1þ
XM
k¼1

M
k

	 

ð�1Þkþ1 ð1� pkÞtreqþ1

pk
; (F29)

where in the second-last line, we used the fact thateqk ¼ ð1� pkÞtreqþ1. Finally, using the fact that

1 ¼
PM

k¼1

	
M
k



ð�1Þkþ1, we obtain

E WE0 ðtreqÞ
� �

1 ¼
XM
k¼1

M
k

	 

ð�1Þkþ1 1þ ð1� pkÞtreqþ1

pk

 !
; (F30)

as required.
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