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We investigate the ground-state properties of the nearest-neighbor S = 1 pyrochlore Heisenberg
antiferromagnet using two complementary numerical methods, density-matrix renormalization group
(DMRG) and pseudofermion functional renormalization group (PFFRG). Within DMRG, we are
able to reliably study clusters with up to 48 spins by keeping 20 000 SU(2) states. The investigated
32-site and 48-site clusters both show indications of a robust C3 rotation symmetry breaking of
the ground-state spin correlations and the 48-site cluster additionally features inversion symmetry
breaking. Our PFFRG analysis of various symmetry-breaking perturbations corroborates the find-
ings of either C3 or a combined C3/inversion symmetry breaking. Moreover, in both methods the
symmetry-breaking tendencies appear to be more pronounced than in the S = 1/2 system.

I. INTRODUCTION

Frustrated magnets continue to be on the forefront
of condensed matter research since they often realize
the fascinating situation where quantum fluctuations are
strong enough to suppress the onset of magnetic order
even at lowest temperatures and therefore are potential
hosts for quantum spin liquids. One of the prime three
dimensional candidates is the Heisenberg antiferromag-
net on the pyrochlore lattice – a cubic arrangement of
corner-sharing tetrahedra – which even in the classical
limit does not order magnetically due to a ground-state
degeneracy that grows exponentially in system size giv-
ing rise to a classical spin liquid.1,2 Recent research has
uncovered a striking variety of phenomena that emerges
out of this classical scenario, particularly, when small ef-
fects of quantum fluctuations are taken into account. For
example, adding small transverse spin interactions in a
pyrochlore Ising magnet – known as quantum spin ice
– gives rise to an emergent U(1) gauge theory, effective
magnetic monopoles and emergent light.3–6

On the other hand, the ground state properties of the
Heisenberg model in the extreme quantum case, S = 1/2,
remain elusive since the combination of three spatial di-
mensions and strong quantum fluctuations poses signif-
icant challenges for numerical methods. Yet, there has
been serious progress recently both for finite7–13 and zero
temperatures.14–16 Numerical linked-cluster5,9,17–25 and
high-temperature series expansions7,8 as well as the di-
agrammatic Monte Carlo technique10 are able to reach
nontrivial temperatures but cannot target the zero tem-
perature limit directly. Various state-of-the-art tech-
niques, including variational Monte Carlo,26 DMRG27

and PFFRG methods28 point towards a magnetically dis-
ordered ground state but with broken point-group sym-
metries. This questions the existence of a quantum spin-
liquid ground state and indicates that quantum spin ice

FIG. 1. Nearest-neighbor spin correlations 〈Si · Sj〉 for the
ground state of the (a) 32-site and (b) 48-site cluster. For
both cases only one cubic unit cell of the clusters are shown.
The widths of the lines correspond to the strength of the
correlation. The shaded tetrahedral units are only guides to
the eye. The values of the nearest-neighbor strong and weak
spin correlations are 〈Si ·Sj〉 ≈ −1.36 and 〈Si ·Sj〉 ≈ −0.09,
respectively for the 32-site cluster.

behavior may not survive in the extreme quantum limit
and for isotropic Heisenberg interactions.

In this situation, it is natural to ask what happens
between the extreme quantum and the (semi-) classical
limit, such as the S = 1 case, which is even less clear
than for S = 1/2. This is due to the fact that ad-
dressing the S = 1 case is much more difficult especially
for those methods (exact diagonalization, Lánczos tech-
niques) that depend on the size of the Hilbert space. As
an example, the current ED limit for S = 1/2 spins is
48 sites,29 whose Hilbert space (in the Sztot = 0 sector)
has a dimension of ∼ 1013. However, for S = 1 this
Hilbert space dimension is already reached, and even ex-
ceeded, for 32 sites (which corresponds to the 2 × 2 × 2
pyrochlore unit cell). Recent PFFRG studies of the J1-
J2 model16 revealed that already the S = 1 case ap-
pears to be surprisingly close to the classical limit, ex-
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cept for the nearest-neighbor Heisenberg model, where
a nonmagnetic phase is predicted, however, its width is
significantly reduced compared to the S = 1/2 case. The
rotation-invariant Green’s function technique30 also finds
an absence of long-range magnetic ordering where the
spin-spin correlation length is smaller than the lattice
constant. On another front, perturbative calculations
suggest an even stronger competition between magnet-
ically ordered and plaquette or dimer states than in the
S = 1/2 case.31 In conclusion, the difference between
the extreme quantum cases S = 1/2 and S = 1 remains
elusive.

There is also a strong motivation to obtain new in-
sights from experimental studies. The recently discov-
ered NaCaNi2F7 compound realizes a nearly ideal S = 1
Heisenberg model, which shows signatures of a quantum
spin liquid at low temperatures.32

In light of the very sparse results for the S = 1 case,
our goal is to make progress on the numerical front to-
wards solving this difficult problem. With large-scale
DMRG calculations we address the ground-state prop-
erties of clusters with N = 32 and 48 sites. Our main
finding is a robust C3 rotation symmetry breaking and
possibly an additional breaking of inversion symmetry.
Remarkably, such symmetry breaking tendencies appear
to be even larger compared to the spin-1/2 case. This is
also confirmed by our complementary PFFRG analysis
which indicates that either C3 rotation or a combination
of both C3 and inversion symmetries are broken while a
breaking of inversion symmetry alone seems unfavorable.

The rest of the paper is structured as follows: In Sec. II
we introduce the model and briefly describe properties
of the DMRG and PFFRG methods that are relevant
for our work. Thereafter, our results from both meth-
ods are presented in Sec. III, including real-space and
momentum-space spin-correlation functions, energies of
ground states and excited states as well as response func-
tions for symmetry breaking perturbations. The paper
ends with a conclusion in Sec. IV.

II. MODEL AND METHODS

We investigate the S = 1 Heisenberg model on the
pyrochlore lattice,

H = J
∑

〈i,j〉

Si · Sj , (1)

where Si = (Sxi , S
y
i , S

z
i )T is the three-component S =

1 spin operator on site i. The pyrochlore lattice is a
decorated fcc lattice, with the fcc lattice vectors a1 =
1
2 (1, 1, 0)T , a2 = 1

2 (1, 0, 1)T , a3 = 1
2 (0, 1, 1)T , together

with the tetrahedral basis b0 = 0, bi = 1
2ai, that is,

each lattice point can be written as Ri ≡ Rα,n1,n2,n3
=

n1a1 + n2a2 + n3a3 + bα, with integer n1, n2, n3 and
α ∈ {0, 1, 2, 3}.

cluster c1 c2 c3

32 2a1 2a2 2a3

48d (1, 1, 1)T (1, 0,−1)T (1,−1, 0)T

TABLE I. Frame vectors c1, c2, c3 of the two clusters used in
this work. The 32-site cluster respects all point symmetries
of the fcc lattice. The notation ”d” is used in order to follow
the convention of Ref. [27].

A. DMRG

We first use the DMRG method33–37 to address the
ground-state properties and low-lying excitations. Al-
though the method works best for one-dimensional sys-
tems, large-scale DMRG calculations have been able to
give valuable results for two-dimensional38 and recently
for three-dimensional systems27,39 well beyond the limi-
tations of exact diagonalization. However, compared to
the S = 1/2 case, the larger local Hilbert space also has
an impact on the system sizes that can be treated reliably
within DMRG. We consider two fully periodic clusters
with N = 32 and 48 sites. The superlattice spanned by
the periodic arrangement of 32-site clusters shares the
same octahedral point group Oh as the fcc lattice on
which the original pyrochlore lattice is based. On the
other hand, this symmetry group is partially broken in
the case of 48-site clusters. The lattice vectors of the
superlattice that is formed by these periodic cluster ar-
rangements are given in Table I. Enforcing the SU(2)
symmetry conservation provides a much more efficient
compression for S = 1 spins than for S = 1/2, however,
it does not compensate the growth of the Hilbert space
as we increase the size of the spin. We are able to keep
20 000 SU(2) block states, which are usually equivalent
to & 100 000 U(1) states. We map the three-dimensional
cluster via a ”snake” path to a one-dimensional topol-
ogy, then we use the single- and two-site variants of the
DMRG method40–43 to optimize the wave function and
extrapolate the energies to infinite bond dimensions us-
ing the two-site variance.44 We find that the results are
independent from the choice of the ”snake” path and the
initial state, corroborating the reliability of our calcula-
tions.

B. PFFRG

We also address the model using the PFFRG method.
This approach accesses the T = 0 properties of a spin
model via the vertex functions of the fermionic model
which is obtained by mapping from spins to pseudo-
fermions.45 In the standard case of spin-1/2 models, this
mapping is carried out via Abrikosov’s pseudo-fermion
representation. To implement spin-1 degrees of freedom,
we employ the approach of Ref. [46] by placing two copies
of spin-1/2 operators on each site.

Within the functional renormalization group’s exact
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infinite set of coupled differential equations, n-particle
fermionic vertex functions are coupled to those of one
order higher. By truncating this infinite hierarchy using
the standard one-loop plus Katanin scheme, we obtain
a finite solvable set of differential equations for the one-
and two-particle vertex functions where the renormaliza-
tion group parameter is an artificially introduced infrared
frequency cutoff Λ in the fermionic single-particle propa-
gator. The resulting flow equations are then solved start-
ing in the known infinite cutoff limit Λ→∞, and evolv-
ing the system towards Λ → 0 to obtain physical (i.e.
cutoff-free) fermionic vertex functions. The fermionic
two-particle vertex is related to the static spin-spin corre-
lation function χΛ

ij which is our main numerical outcome.
Necessary numerical approximations include neglecting
longer-range spin-spin correlations χΛ

ij , discretizing the
vertices’ frequency dependencies and applying a solving
algorithm with finite cutoff step-width to the renormal-
ization group equations. More precisely, in our calcula-
tions correlations of distances larger than five nearest-
neighbor spacings are neglected. Furthermore, frequency
dependencies of the two-particle vertex (self-energy) are
discretized via a frequency mesh with 64 (2000) points
distributed exponentially around zero frequency.

Since, by construction of the PFFRG method, the spin-
spin correlation functions χΛ

ij satisfy all symmetries of the
Hamiltonian, we have to apply small bias fields to inves-
tigate whether the non-magnetic phase of the nearest-
neighbor S = 1 pyrochlore Heisenberg model tends to-
wards spontaneous breaking of lattice symmetries. (Note
that the absence of magnetic long-range order associated
with broken time reversal symmetry has already been
confirmed in an earlier PFFRG study.16) This bias field
induces a variation of the couplings J in the Hamiltonian
of Eq. (1) for different nearest-neighbor bonds 〈i, j〉, that
is, J → Jij . More precisely, couplings are either strength-
ened (Jij = J + δ) or weakened (Jij = J − δ), according
to the symmetry breaking pattern to be probed (here
0 < δ � 1). We then monitor the system’s response to
such perturbations via the function χΛ

D,ijkl given by

χΛ
D,ijkl =

∣∣∣J
δ

χΛ
ij − χΛ

kl

χΛ
ij + χΛ

kl

∣∣∣ ,where Jij = J + δ, Jkl = J − δ .

(2)
Note that in the infinite cutoff limit, this response
function is normalized, χΛ→∞

D,ijkl = 1. A large increase

χΛ
D,ijkl � 1 in the cutoff free limit Λ → 0 hints towards

a phase in which the lattice symmetry, that maps the two
bonds 〈i, j〉 and 〈k, l〉 onto each another, is broken.

III. RESULTS

A. DMRG results

We begin with the discussion of the DMRG results for
the aforementioned two types of clusters. The ground-
state energies and triplet gaps are shown in Table II.

Cluster GS energy Triplet gap Singlet gap

32 −1.5396(4) 0.619(13) 0.248(22)

48d −1.520(6) 0.51(26) −

TABLE II. Ground-state energies per site and gaps within the
Stot = 0 sector (singlet gap) as well as to the Stot = 1 sector
(triplet gap) in units of J . The extrapolation error is defined
as the half distance between the best variational energy and
the extrapolated value. No value is given for the singlet gap
of the 48d cluster due to large numerical costs.

To put these numbers into context, the energy per site
estimation from the rotation invariant Green’s function
method is ∼ −1.4J ,30 which lies above our energies. In-
terestingly, the triplet gap of the 32-site cluster appears
to be almost equal to that of the S = 1/2 case where a
triplet gap size of 0.6872J has been found in Ref. [27].
On the other hand, for the 48d cluster the triplet gap is
significantly larger in the S = 1 case as in the spin-1/2
case where Ref. [27] reports a value of 0.36(3)J .

Next, we discuss the structure of the ground state by
considering the nearest-neighbor spin correlations, shown
in Fig. 1. Surprisingly, the 32-site cluster already ex-
hibits a well-defined pattern of spatially varying corre-
lations. The ground state exhibits lines along which
strong nearest-neighbor correlations 〈Si ·Sj〉 ≈ −1.36 are
present. In Fig. 1(a) these lines run along the directions
of the two face diagonals in the x-z plane and do not in-
tersect each other. All other nearest-neighbor spin corre-
lations (i.e., those on bonds with a finite separation along
the y-axis) are significantly weaker (〈Si · Sj〉 ≈ −0.09),
indicating that the system undergoes an effective dimen-
sional reduction towards 1D chains. This is further sup-
ported by the fact that the strong correlations along such
chains are surprisingly close to the nearest-neighbor cor-
relations of a spin-1 Heisenberg chain, where the liter-
ature reports 〈Si · Sj〉 ≈ −1.401.47,48 The selection of
the x-z plane in this state clearly indicates a broken C3

rotational symmetry around the [111] axis. It is worth
noting, that the same cluster with S = 1/2 spins does
not show any kind of symmetry breaking.27

To put the C3 rotation symmetry breaking on an even
stronger footing and remove any possible bias towards
low-entanglement states in the DMRG calculation, we
perform an additional analysis where we identify the
symmetry related states. The ground-state manifold of
the 32-site cluster is expected to be threefold degener-
ate – corresponding to the three choices of putting non-
intersecting lines in either the x-y, x-z, or y-z planes
– if the symmetry breaking is intrinsic. To prove that,
we determine the low-lying states in the Stot = 0 sec-
tor, which is done by optimizing the wave function with
the additional constraint that it should be orthogonal
to the previously optimized states. (By default, DMRG
converges to the state that has the smallest entangle-
ment with respect to the snake path used.) After that,
we again extrapolate the energies to the error-free limit,
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FIG. 2. Extrapolation of the energies (in units of J) of the
first four low-lying states in the Stot = 0 sector of the 32
site cluster. The data points with largest and smallest two-
site variances belong to the bond dimensions 4000 and 20000,
respectively. The bottom panel shows a sketch of the three de-
generate ground-state configurations, labeled by #1,#2,#3.

which is demonstrated in Fig. 2. Note that this approach
is different from the one used in Ref. [27], since it does
not require additional perturbations in the Hamiltonian,
however, it is only feasible for smaller system sizes due
to the consecutive orthogonalization, therefore this is not
feasible for the 48-site cluster. The results from Fig. 2
clearly indicate that the ground state is threefold degen-
erate and that the fourth level corresponds to the first
singlet excitation.

Continuing with the 48-site cluster, the correlation pat-
tern is more complex than for the 32-site cluster, see
Fig. 1(b). Although we cannot reach the same accuracy
and nice convergence for the 48-site cluster like for the
32-site one (the two-site variance is 6-times larger for the
48-site cluster than for the 32-site with 20 000 SU(2)
states), at first glance, the pattern looks quite similar.
While some chains in the x-z plane still show strong cor-
relations [particularly, the ones along the [1, 0, 1] direc-
tion in Fig. 1(b)], other chains are lacking strong and ho-
mogeneous correlations. Furthermore, correlations along
bonds with a finite separation along y-direction become
relevant. Further details of this state are revealed when
investigating the total spin of the individual tetrahedra
(
∑
i∈tetra Si)

2/(S(S + 1)), since this quantity indicates
the presence or absence of the inversion symmetry. This
is shown in Fig. 3, where we compare the S = 1/2 and
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FIG. 3. The (normalized) total spin squared of up and down
tetrahedra for the 48d cluster. The upper and lower panels
show the results for the S = 1/2 and S = 1 cases, respectively.
The numbers above the data points denote the corresponding
bond dimensions.

S = 1 cases for the same 48d cluster. In the S = 1/2 case,
the up and down energy densities merge in the error-free
limit, in contrast, they converge to different values for
S = 1, which suggests that the inversion symmetry is
broken for this cluster.

Altogether we can conclude that the symmetry break-
ing features occur already for smaller cluster sizes in the
S = 1 system compared to the S = 1/2 case (where
the C3 rotational symmetry is broken at N = 48 sites
and inversion with C3 rotational symmetry is broken for
N ≥ 64 sites) indicating stronger symmetry breaking ten-
dencies.

We also calculate the equal-time spin structure factor

S(Q) =
1

2N

∑

ij

〈Si · Sj〉c cos [Q · (Ri −Rj)] , (3)

where Ri denote the real-space coordinates of sites and
the index c denotes the connected part of the correla-
tion matrix [the factor 1/2 comes from normalization
1/(S(S + 1)) for spin S = 1]. This quantity is plotted in
Fig. 4 for the two clusters. The [hhl] cut is qualitatively
similar to that of the S = 1/2 system, that is, no sharp
Bragg peaks are present – at least for these system sizes –
indicating the absence of magnetic order. The streaks in
the Qz = 0 cut of the spin structure factor running along
one selected direction clearly reflect the breaking of the
C3 rotational symmetry for the 32-site and 48-sites clus-
ters. Particularly, for the 32-site cluster the signal shows
almost no modulation along Qy which corresponds to the
absence of correlations in the y-direction. For the 48-site
cluster, however, modulations become more pronounced,
in agreement with the onset of y-correlations as discussed
above.

It is worth highlighting experimental measurements of
the equal-time structure factor of NaCaNi2F7 which is
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FIG. 5. One-dimensional cuts of the spin structure factor
across the pinch point location for the 32 and 48-site clusters
as well as S = 1/2 and S = 1.

believed to be a nearly ideal realization of the nearest-
neighbor S = 1 Heisenberg antiferromagnet on the py-
rochlore lattice.32 The Qz = 0 cut in the experiments,
however, does not reflect this symmetry breaking, which
may be due to the fact that different domains are formed
in the sample and their superpositions result in a sym-
metric Qz = 0 signal.

Next, we discuss the fate of the pinch point feature
in the spin structure factor, which is characteristic for
the corresponding classical model and occurs at wave
vectors Q = (0, 0, 4π) and symmetry-related points. In
Fig. 5 we plot the spin structure factor along two one-
dimensional, orthogonal cuts through this pinch point
location for both the 32 and 48-site clusters as well as
S = 1/2 and S = 1. Note that for an ideal pinch point
the signal should feature a plateau around Qx = 0 in the
top panel of Fig. 5 and a narrow peak at Qz = 0 in the

bottom panel of Fig. 5. All curves show a clear deviation
from this ideal shape indicating that the classical pinch
points are significantly altered in the S = 1/2 and S = 1
models and rather appear as broad peaks. Although
sharp features are absent in our spin structure factors
for both clusters and spin lengths, we cannot ultimately
exclude the possibility that these peaks are the finite-size
remnants of magnetic long-range order occurring in the
thermodynamic limit. However, it is worth noting that
previous studies using PFFRG16 and rotation-invariant
Green’s function method30 do not detect magnetic order
for S = 1.

While we cannot perform a reasonable finite-size scal-
ing based on our data, we find for both cluster sizes a
slight narrowing of the peak along the Qz-cut (bottom
panel of Fig. 5) as one increases the spin from S = 1/2 to
S = 1. This is in qualitatively agreement with PFFRG16

and rotation-invariant Green’s function results30 and has
been interpreted as a sign of restoration of sharp pinch
points upon approaching the classical limit. Since the
width of the pinch point is associated with the fulfillment
of the “ice-rule constraint” (vanishing net magnetic mo-
ment in a tetrahedral unit) a sharpening of the pinch
point should come along with a decreasing total spin
per tetrahedron. This is, indeed, reflected in our results
where the net spin of a tetrahedron (cf. Fig. 3), taking
into account the normalization with respect to the spin
length, decreases from ∼ 1.23 for S = 1/2 to ∼ 0.92 for
S = 1 (32-site cluster).

B. PFFRG results

We will now show that, complementary to the DMRG,
the PFFRG supports the picture of an enhanced lattice
symmetry breaking for the ground state of the S = 1
model compared to the S = 1/2 model. To this end,
the flow behaviors of dimer response functions χΛ

D [see
Eq. (2)] for three different symmetry breaking scenarios
are investigated. In a previous work28, the same dimer
response functions were studied for the S = 1/2 model.
Since otherwise the same numerical settings were used, a
direct comparison is possible.

Our first perturbation (top left in the inset of Fig. 6)
strengthens the up-tetrahedra and weakens the down-
tetrahedra, resulting in a broken inversion symmetry.
The corresponding response function χD,i compares two
bonds related by inversion symmetry. The second pat-
tern (top right in the inset of Fig. 6) is the one of Fig. 1(a)
where non-intersecting lines are strengthened such that
C3 rotation symmetry is broken. Accordingly, the re-
sponse function χD,C3

considers two bonds which are re-
lated by a C3 rotation. The last perturbation (bottom
left and right in the inset of Fig. 6) breaks inversion and
C3 symmetry and corresponds to a proper dimer pattern
where each site is attached to exactly one strengthened
bond. In this case, two dimer responses can be defined:

The bonds contributing to χ
(1)
D,C3,i

are related by lattice
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FIG. 6. PFFRG flows of dimer responses χΛ
D [see Eq. (2)]

for different symmetry breaking perturbations. The insets
illustrate the symmetry breaking patterns where thick black
(thin gray) lines are the strengthened (weakened) bonds with
J → J+δ (J → J−δ). Furthermore, the two colored bonds in
each of the four insets indicates the two bonds (i, j) and (k, l)
for which the dimer response function in Eq. (2) is calculated.
The response function χD,C3 probes the system with respect

to the correlation pattern in Fig. 1(a). Note that χ
(1)
D,C3,i

and

χ
(2)
D,C3,i

correspond to the same perturbation but differ in the
two bonds which are used to calculate Eq. (2).

inversion symmetry while those of χ
(2)
D,C3,i

are related by
lattice C3 symmetry.

The four response functions of the S = 1 pyrochlore
Heisenberg antiferromagnet as a function of the renor-
malization group parameter Λ are shown in the main
panel of Fig. 6. The results are qualitatively similar to
those obtained for the S = 1/2 system in Ref. [28]. A
decrease of χD,i as the system flows from a high cut-
off Λ towards the physically relevant cutoff-free limit
Λ → 0 signifies that the ground state does not sup-
port a pure inversion symmetry breaking. On the other
hand, the responses in the presence of a pure C3 or com-
bined C3/inversion symmetry breaking perturbation all
undergo an increase to values larger than 10 in the cutoff-
free limit indicating a strong tendency to realize these
correlation patterns. Notably, though they are not ex-
actly equal, the largest dimer responses for those pertur-
bations are found to be defined on bonds related by C3

lattice symmetry, namely χD,C3
and χ

(2)
D,C3,i

. Most im-
portantly, in the limit Λ→ 0 these response functions are
approximately 1.4 times larger compared to the S = 1/2
model which indicates enhanced symmetry-breaking ten-
dencies in the S = 1 case.

Since the largest response functions χD,C3
and χ

(2)
D,C3,i

are almost equal, the PFFRG cannot ultimately iden-
tify the preferred symmetry breaking pattern and leaves
us with the conclusion that either C3 or combined
C3/inversion symmetries are broken, while an inversion

symmetry breaking alone seems to be ruled out. This
overall picture is remarkably similar to our DMRG re-
sults where, depending on the considered cluster, either
a C3 or a combined C3/inversion symmetry breaking is
found, while correlation patterns with broken inversion
symmetry only are not observed.

IV. CONCLUSIONS

We investigated the ground-state properties of the S =
1 pyrochlore Heisenberg antiferromagnet using DMRG
and PFFRG. Both methods are conceptionally very dif-
ferent, e.g., within DMRG we study two finite and pe-
riodic spin clusters with 32 and 48 sites. On the other
hand, PFFRG does not operate on a finite spin cluster
but instead limits the range of spin correlations and relies
on a fermionic mapping of the original spin Hamiltonian.
Despite these fundamental differences, both approaches
agree in their overall conclusion, in that the tendency
towards rotational or combined rotational and inversion
symmetry breaking is stronger in the S = 1 case than
for the S = 1/2 system. The inherent limitations of both
methods should, however, also be discussed. For exam-
ple, the small cluster sizes studied with DMRG do not al-
low an extrapolation to the thermodynamic limit. While
a possible cluster bias does not exist within PFFRG, this
approach relies on approximated (truncated) renormal-
ization group equations where multispin-correlations are
poorly incorporated. Hence, despite the coherent physi-
cal scenario revealed in this paper, we believe that further
investigation of this difficult problem is necessary.

It is again worth putting these results in the context
of available experimental findings.32 While our results for
the spin structure factor are consistent with experimen-
tal data, a symmetry breaking in the ground state must
be accompanied by a finite temperature phase transition,
which could serve as a corroboration of our findings. The
reported specific heat and entropy data down to 100 mK
do not exhibit any anomalies; it would, hence, be inter-
esting to search for a possible phase transition at even
lower temperatures.
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