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We studied the effects of the quantum delocalization in space of the hydrogen

atoms of water in the aggregation process of two fullerene molecules. We

considered a case using a purely repulsive water–fullerene interaction, as such a

situation has shown that water-mediated effects play a key role in the

aggregation process. This study becomes feasible, at a reduced

computational price, by combining the path integral (PI) molecular dynamics

(MD) method with a recently developed open-system MD technique.

Specifically, only the mandatory solvation shell of the two fullerene

molecules was considered at full quantum resolution, while the rest of the

system was represented as a mean-field macroscopic reservoir of particles and

energy. Our results showed that the quantum nature of the hydrogen atoms

leads to a sizable difference in the curve of the free energy of aggregation; that

is, that nuclear quantum effects play a relevant role.
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Introduction

The aggregation of large hydrophobic nanoparticles in water is a subject of interest

for its technological and environmental relevance. In particular, the C60 fullerene,

which is produced in a massive manner by, for example, the arc discharge of graphite

electrodes (Montellano Lopez et al., 2011), is the most studied hydrophobic

nanoparticle in water, both experimentally (Labille et al., 2009; Chae et al., 2010;

Ma et al., 2010; Meng et al., 2010; Voronin et al., 2014) and theoretically (Li et al.,

2005a; Li et al., 2005b; Maciel et al., 2011; Zangi, 2014; Makarucha et al., 2016). In this

context, the potential of mean force as a function of the C60 fullerene–fullerene

distance (PMF), that is, the ensemble-averaged fullerene–fullerene space-dependent

force (Kirkwood, 1935; Darve, 2006), has been studied using several classical MD

approaches (Makarucha et al., 2016). The PMF explains, in terms of (free) energy cost,

the process of aggregation of the fullerene molecules, that is, how the two solutes reach

aggregation by breaking the hydrogen bonding network of water and coming near

each other. Simulation results based on classical models showed that aggregation

eventually occurs without any significant energy barrier. However, the classical

models used in previous work do not explicitly describe any quantum feature of
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water and, thus, cannot account for its potential effects on the

strength or flexibility of the hydrogen bonds. In this context,

the question of interest is whether the use of a quantum

molecular model leads to different results compared to a

corresponding classical model in the aggregation process.

When a long-range interaction between the carbon atoms

of the fullerene and the oxygen atoms of water is used to

model the system, water-mediated effects are not relevant in

PMF determination (Li et al., 2005b); thus, one can conclude

that nuclear quantum effects of water are not likely to play a

key role. However, when a purely repulsive C-O interaction is

used to model the system, the aggregation process is

dominated by the water-mediated effects (Li et al., 2005b);

therefore, nuclear quantum effects may become relevant.

Experimental results promote the hypothesis that water-

mediated effects actually regulate the aggregation (Voronin

et al., 2014). The present study tested the relevance of the

quantum nature of the hydrogen atoms in the C60-C60

aggregation process at room conditions by modeling the

C-O interaction as a purely repulsive interaction. This

study applied the PIMD technique within the Adaptive

Resolution approach (AdResS) (Praprotnik et al., 2005;

Praprotnik et al., 2008; Wang et al., 2013; Agarwal et al.,

2015; Delle Site and Praprotnik, 2017; Delle Site et al., 2019;

Cortes-Huerto et al., 2021). The AdResS technique reduces

simulation costs by requiring high (quantum) resolution only

in the mandatory solvation region, while the rest of the system

is treated at a lower resolution and a small computational cost.

The size of the high-resolution region can be automatically

and precisely defined by the AdResS method (Lambeth et al.,

2010). Our results showed that, at the qualitative level, the

PMF calculated with the quantum model did not differ from

the PMF calculated with the various classical models; however,

a one-to-one quantitative comparison with the TIP4P rigid

model; i.e., the closest classical model to our quantum model,

showed a sizable difference. Specifically, the depth of the

minimum of the PMF curve differed such that one could

see the classical model building a strong rigid cage around

the aggregated fullerene molecules (deeper minimum), while

in the quantum case, the H-bonding network was more flexible

and easier to break (less deep minimum). These interesting

results add to the methodological message of the paper

demonstrating the utility of the open system MD approach

to make possible tests of this kind with feasible computational

resources. This report is organized as follows: we first provide

a brief but essential review of the PIMD idea/technique,

followed by the essential description of the AdResS/open

system approach and its features. Although this method

was previously validated for the quantum water model used

here, we further validate the method by studying the solvation

of a single fullerene in water and compare the results with

simulations of reference. As anticipated, the case of a single

fullerene also allowed the precise determination of the

minimal solvation region of the two fullerene molecules

and, thus, automatically fixed the minimum

fullerene–fullerene distance in the PMF calculation. The

discussion and conclusions close the paper, while the

technical and computational details of the simulations are

reported in the Supplementary Appendix.

The essentials of path integral
molecular dynamics

Light atoms, such as the hydrogen atoms of water, are

strongly characterized by quantum effects that lead to their

delocalization in space. The path integral technique is a

theoretical tool that satisfactorily describes such effects [see

e.g., (Feynman and Hibbs, 1965) and references therein]. In

particular, a practical method that approaches realistic systems

with satisfactory results is the computational technique known as

path integral (PI) molecular dynamics (MD) (Tuckerman, 2010;

Tuckerman et al., 2014). In essence, one can use a classical

potential and delocalize the interatomic interactions by

FIGURE 1
Graphical illustration of the path integral/polymer ring
representation of two interacting water molecules of the TIP4P 4-
sitemodel used in this work (Habershon et al., 2009). Oxygen (red),
hydrogen (blue), and additional sitemodel (green). Each site is
represented by a polymer ring; for graphical convenience, only five
beads per atom/site are drawn although 30 beads per atom/site
are used in the real simulation. Atoms of different molecules
interact through bead–bead interactions. The beads involved in
the interatomic/intersite interactions are only the beads with the
same label (here represented as 1, 2, 3, 4, and 5) of each atom/site.
For simplicity, the oxygen–hydrogen interaction is illustrated. The
interaction potential has a classical form as the potentials used in
the atomistic simulation; however, in this case, the bead–bead
interaction is scaled by the number of beads.
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representing each atom as a polymer ring in which each bead

represents an interaction site for the corresponding bead of

another atom. The spatial deformation of the ring-polymer

during an effectively classical simulation mimics the quantum

delocalization of the atom in space (Figure 1); in principle, the

larger the number of beads, the more accurate the description of

the quantum effect of spatial delocalization.

However, in this representation, each bead counts as a degree

of freedom; thus, the cost of simulation, compared to the

equivalent classical representation, increases proportionally to

the number of beads. This aspect implies a sizable increase in the

overall simulation costs compared to classical systems. In general,

an atom requires at least 16 beads for a first approximation of a

realistic quantum representation. Thus, simulations of a system

with 1,000 water molecules represented by a three-site water

model with each atom represented by a ring-polymer of 16 beads

(thus, 48 degrees of freedom per molecule) become essentially

prohibitive, although in practice 30–32 beads are considered the

standard for trustworthy simulations (Agarwal and Delle Site,

2015). However, such calculations are expensive and, in

particular, for the case of the fullerene–fullerene PMF

calculations in the present study, are prohibitive using

standard computational resources. Overcoming this challenge

requires the use of simulation tools that drastically reduce the

mandatory degrees of freedom but provide reliable results. One

such method is the recently developed open system MD

technique (Delle Site et al., 2019) based on the AdResS

technique which has been extensively tested regarding its

merging to PIMD (Poma and Delle Site, 2010; Poma and

Delle Site, 2011; Potestio and Delle Site, 2012; Agarwal and

Delle Site, 2015; Agarwal and Delle Site, 2016; Evangelakis

et al., 2021).

The basics of the adaptive resolution
technique

AdResS treats an open subregion of the simulation domain at

full quantum resolution and the rest as a thermodynamic

reservoir of energy and particles, that is, as a large domain of

non-interacting particles (tracers) thermalized by an external

thermostat [the latest version is described in Delle Site et al.

(2019) and Evangelakis et al. (2021)]. Figure 2 illustrates the

concept, showing a high-resolution region (PI) embedded in a

(usually) much larger region of tracers (TR) thermalized by an

external reservoir that assures the correct thermodynamic

conditions. Between the high-resolution and tracer regions is

the so-called Δ (transition) region in which the molecules are at

high resolution and experience the external (one-body)

thermodynamic force. This force, together with the action of

the thermostat, assures the physically consistent exchange of

particles between the high-resolution and tracer regions. In

essence, the additional force corrects from any difference in

the chemical potential between the different regions and

ensures the exchange of particles at the chemical potential of

a reference (full high-resolution) system. The calculation of the

thermodynamic force is performed self-consistently during the

equilibration run of the AdResS system (Poblete et al., 2010;

Fritsch et al., 2012; Wang et al., 2013; Agarwal et al., 2014;

Gholami et al., 2021a; Gholami et al., 2021b). Tracer particles

entering the Δ region acquire the chemical structure of the water

molecule and the corresponding path integral resolution; on the

contrary, molecules leaving the Δ region for the TR region lose

their high resolution and become non-interacting particles.

Recent results have demonstrated the reliability of this

technique for the four-site water model used here with

30 beads per atom, which means that molecules entering the

TR region lose 120 degrees of freedom, while molecules entering

the Δ region acquire 120 degrees of freedom (Evangelakis et al.,

2021). The size of the Δ region is equal to the cut-off distance of

the interaction potential such that there is no missing interaction

between molecules in the PI and TR regions. The data on the PI

region are used to calculate the properties of the open system,

while the Δ region represents a sort of artificial region needed to

implement the boundary conditions for the PI region so that

molecules entering the PI region are automatically equilibrated

with the PI environment at the thermodynamic conditions

required by the study. The next section considers the

solvation of a single fullerene in water and confirmed the

reliability of the technique. We also define the maximal region

of interest in the fullerene–fullerene aggregation.

FIGURE 2
Graphical illustration of the AdResS model for the simulation
of liquid water solvating two fullerene molecules.
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Test of validity of the method:
Solvation of a single fullerene in water

To define a physically meaningful open region for the PI

resolution region of AdResS, the physical consistency was

routinely checked in the AdResS: 1) the water density in the

AT + Δ region should reproduce, within some numerical

accuracy, the full reference PI simulation value. The

thermodynamic force in Δ ensures that (1) is satisfied. 2)

The radial distribution functions should reproduce, within

some numerical accuracy, the reference full PI simulation

value. These functions represent relevant structural

properties that characterize a liquid and its solvation action

at certain thermodynamic conditions. In addition, at the

statistical mechanics level, their combination expresses the

probability distribution function of the system in

configuration space up to the two-body approximation

(Wang et al., 2013; Agarwal et al., 2015; Evangelakis et al.,

2021). 3) The probability distribution function of the particle

number in PI, P(N), must be consistent with P(N) of an

equivalent subregion in the full reference path integral

simulation so that the exchange of particles between the PI

region and the reservoir (TR) is physically consistent. The

concurrent fulfillment of 1, 2, and 3 assures that the explicit

quantum degrees of freedom of the PI region are sufficient to

reproduce the key features of solvation, while the explicit

quantum degrees of freedom outside this region are not

relevant for characterizing its physical property and, thus,

can be represented by a generic thermodynamic bath. The

size of the PI region automatically defines the minimal

extension of the mandatory solvation shell and the maximal

fullerene–fullerene distance in the PMF calculation (Delle Site,

2022). The maximum fullerene–fullerene distance of interest in

a PMF calculation can be accurately determined by the

minimum size of the region around each fullerene. Here,

water molecules, with their quantum degrees of freedom,

directly influence the behavior of the fullerene; beyond this

distance, water acts only as a thermodynamic bath and the

corresponding hydrogen bonding structure has no direct effect

on the fullerene. Regarding the PMF calculation, if the

maximum fullerene–fullerene distance is equal to the sum of

the radii of the smallest mandatory solvation shells of the single

fullerenes, then automatically for larger distances, the two

fullerenes do not experience the perturbation of the

hydrogen bonding network caused by the other; thus,

distances beyond these maximal values are of no interest in

the PMF calculation. Figures 3–5 show the calculation of the

water density, the various radial distribution functions, and the

P(N) for three different sizes of the PI region. The case of

1.22 nm agrees in a highly satisfactory manner with the results

of the reference full path integral simulation; thus, it validates

the technique as reliable to simulate a physically consistent

open region. Moreover, 1.22 nm represents the mandatory

solvation region and implies that 2.44 nm is the largest

fullerene–fullerene distance to be considered in the PMF

calculation.

PMF of aggregation of two C60
molecules

As discussed previously, for the solvation of two fullerene

molecules, the radius of the mandatory solvation shell is twice

that of the single fullerene molecule, that is, 2.44 nm. This is also

the maximal distance that must be considered for the calculation

of the PMF. Figure 6 shows the PMF curve calculated for the

quantum model with the PIMD-AdResS simulation, compared

to the equivalent classical rigid model. Qualitatively, the

aggregation process does not differ in the two cases and the

aggregation eventually happens without any significant energy

barrier. However, the aggregation in the classical model is

energetically more favorable than in the quantum model as

the two fullerene molecules approach a closer distance. Once

the two fullerene molecules have come in contact, the system falls

into a deeper minimum for the classical simulation compared to

the quantum case. Thus, the aggregated fullerene molecules are

more stable in the classical case compared to that in the quantum

case, with a substantial difference in (free) energy of about 7 kcal/

mol. At this point, the quantum model is the direct extension of

the classical model, that is, its force field is enhanced by the intra-

molecular flexibility (OH bond stretching and HOH angular

potential) together with the ring polymer representation of the

atoms. The straightforward implication is that the molecular

flexibility and the quantum delocalization of the H atoms can

sizably influence the (re)organization hydrogen bonding

network. For a purely repulsive C-O potential, as used in this

study, the aggregation is driven by water-mediated effects; in

other words, by the reorganization of the OH-bonding network

as the two fullerenes approach each other. The curves in Figure 6

suggest that the degree of reorganization of the OH-bonding

network passing from two cages localized around each fullerene,

when the fullerenes are far apart, to a large cage that embeds both,

once they aggregate, is higher in the classical case than in the

quantum case. This idea was also hypothesized previously

(Agarwal et al., 2017). Agarwal et al. (2017) also reported a

less structured OH-bonding network in the quantum case

compared to the classical case. The authors speculated, based

on experimental data, that this result may imply a different

characterization of aggregated C60 molecules when quantum

effects are considered. In that study, calculations of the

aggregation process were not yet possible using standard

computational resources and were defined as “feasible in the

near future.” The current results fill this gap and provide a

quantitative argument for their hypothesis. A detailed analysis

of the structure and dynamics of the bonding network would

require the calculation of time correlation functions to explain in
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FIGURE 3
Particle number density calculated in the AdResS setup and compared to the density calculated in the reference simulations for three different
radii of the PI region, namely, r= 1 nm, r= 1.1 nm, and r= 1.22 nm. All three figures show sufficient agreement with the reference density. For r= 1nm,
despite a satisfactory agreement in theΔ region, the AdResS density close to the fullerene shows a slight disagreement with the reference density. For
r = 1.1 nm in the Δ region, the accuracy of the density with respect to the density of reference is slightly beyond the 5% threshold. r = 1.22 nm
shows satisfactory agreement over the whole range and the accuracy of the density in the Δ region is within 5% compared to the reference value. 5%
is usually considered a satisfactory threshold.

FIGURE 4
Bead–bead radial distribution functions for hydrogen–hydrogen (A), oxygen–hydrogen (B), and carbon–oxygen (C) calculated in the PI region
of AdResS and the equivalent subregion of the reference simulation. Since these curves are calculated only in a subregion, they are not normalized.
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detail the dynamics of the aggregation. Such a study, which

requires much longer trajectories and the careful use of the

thermostat only in regions where the dynamics is not

investigated, goes beyond the scope of the present study,

which aimed to characterize only the static structural

properties of aggregation. In this context, the effect of the

flexibility of the quantum model becomes evident in the

hydrogen–hydrogen radial distribution function (Figure 7).

The hydrogen atoms are the true quantum particles of the

systems. In their spatial correlation, the quantum

delocalization and the induced flexibility of the bonds are

clearly expressed. Within the range of 1.0 − 2.5�A, the well-

structured classical model differs from the quantum model, in

which the probability is spread across the whole range. Regarding

the technical advantages of the AdResS, the explicit

computational gain is still modest compared to its full

potential as the parallelization of the code is not yet optimized.

The straightforward comparison with full path integral

simulations currently leads to a factor 3. Although not yet

optimal, it is already a non-trivial gain as it reduces the

requested computational resources to one-third. This

difference becomes significant when a large number of

calculations are required, as shown in the present case for the

determination of the PMF. The additional advantages of this

method include the possibility of determining the maximum

distance required in a PMF by reducing the need to sample

distances that are not relevant but that cannot be excluded a

priori. Finally, the drastic reduction in the number of degrees of

freedom requires a much lower allocation memory, while full

FIGURE 5
Particle number probability distributions calculated in the PI region and the equivalent subregion of the reference simulation.

FIGURE 6
PMF for the path integral model using AdResS compared to
the reference full atomistic classical simulation. The PMF is
calculated as a function of the distance between the centers of
mass of the C60 molecules. The zero of each curve was
chosen to be the corresponding bulk solvation energy, that is, the
value of the PMF at the plateau.

FIGURE 7
Hydrogen–hydrogen radial distribution function for a pure
water system. The classical rigid model (black line) has a first
sharply localized peak, while the quantummodel (red line) spreads
the probability over 1 Å. Further effects are visible, although in
a light form, also beyond the intramolecular and first neighbor
molecule environment.
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path integral simulations would require so much memory that

would a priori prevent groups without significant computational

resources from performing such simulations.

Conclusion

We applied the open system MD technique based on the

AdResS protocol to study the aggregation of two C60 fullerene

molecules in water considering quantum nuclear effects. After

validating the simulation techniques and the corresponding

technical set-up, we determined the PMF as a function of the

centers of the mass distances of the two solutes. These

calculations were performed for the quantum case and for the

classical case where molecules are modeled as rigid objects. Only

purely repulsive interactions between water and the C60 molecule

were considered. In such cases, water-mediated effects have been

shown to play a major role. In the case of a potential with an

attractive part, this part would play a key role in the aggregation

process; thus, the role of the H-bonding network becomes negligible.

The difference in the PMF curve of aggregation was qualitatively

similar, that is, aggregation occurs without barriers. However,

quantitatively, the difference was sizable. This result can be

interpreted as the combined effect of the molecular flexibility and

the quantum delocalization of H atoms in the reorganization of the

H-bonding network in the quantum case. Thus, nuclear quantum

effects are very relevant in the aggregation process if a purely

repulsive fullerene–water potential is used to model the

interaction. From the methodological aspect, the results of this

study demonstrated that the open system MD approach can

significantly reduce the computational resource requirements,

thus permitting studies to be performed that would otherwise be

significantly more expensive.
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