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ABSTRACT: When described by a one-dimensional reaction
coordinate, pair-reaction rates in a solvent depend, in addition to
the potential barrier height and the friction coefficient, on the
potential shape, the effective mass, and the friction relaxation
spectrum, but a rate theory that accurately accounts for all of these
effects does not exist. After a review of classical reaction-rate
theories, we show how to extract all parameters of the generalized
Langevin equation (GLE) and, in particular, the friction memory
function from molecular dynamics (MD) simulations of two
prototypical pair reactions in water, the dissociation of NaCl and of
two methane molecules. The memory exhibits multiple time scales
and, for NaCl, pronounced oscillatory components. Simulations of
the GLE by Markovian embedding techniques accurately
reproduce the pair-reaction kinetics from MD simulations without any fitting parameters, which confirms the accuracy of the
approximative form of the GLE and of the parameter extraction techniques. By modification of the GLE parameters, we investigate
the relative importance of memory, mass, and potential shape effects. Neglect of memory slows down NaCl and methane
dissociation by roughly a factor of 2; neglect of mass accelerates reactions by a similar factor, and the harmonic approximation of the
potential shape gives rise to slight acceleration. This partial error cancellation explains why Kramers’ theory, which neglects memory
effects and treats the potential shape in harmonic approximation, describes reaction rates better than more sophisticated theories. In
essence, all three effects, friction memory, inertia, and the potential shape nonharmonicity, are important to quantitatively describe
pair-reaction kinetics in water.

■ INTRODUCTION
Pair reactions in water, such as the association and dissociation
of ions or hydrophobic molecules, are fundamental in
biological and chemical processes and are commonly described
by diffusive motion of the pair distance in a one-dimensional
potential landscape.1−4 The most important signatures of such
reactions are the rates at which a pair dissociates or is created,
which determine the turnover of complex biological reaction
networks and the efficiency of large-scale chemical applica-
tions. Reaction-rate theory has a long history and dates back to
Arrhenius,5 who discovered the exponential dependence of
reaction time on the free-energy or potential barrier height that
separates reactants and products along a suitably chosen
reaction coordinate. In a solvent, the reacting solutes
experience friction,1−4,6−8 which determines the pre-exponen-
tial factor of the Arrhenius law. But the mass of the reactants
also influences the rate of a reaction. In fact, in his landmark
paper, Kramers showed that reaction times exhibit a minimum
at an intermediate value of the ratio of the effective friction and
mass of a given reaction coordinate, a phenomenon that is
called Kramers’ turnover.1,9

However, the assumption of instantaneous friction,
employed in early theories, breaks down whenever there is

no pronounced separation between time scales of fast solvent
relaxation and slow diffusion along the reaction coordinate,
which is the case even for the simplest pair reactions in
water.10,11 One strategy is to circumvent such non-Markovian
effects and to reduce friction memory by using suitable
multidimensional reaction coordinates that explicitly account
for solvent degrees of freedom.12−15 Alternatively, the
generalized Langevin equation (GLE),16,17 which explicitly
accounts for time-dependent friction due to solvent relaxation,
can be used to model reaction rates18−34 and transition-path
times.35−37

Different analytical rate theories based on the GLE have
been developed but necessarily rely on various approximations,
the effects of which are difficult to disentangle.22,32,38,39 This is
where numerical solutions of accurately parametrized GLEs
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become instrumental. The extraction of memory kernels from
general time series data is an active field of research,33,40−45 in
particular in the context of reaction kinetics.10,30,46−49 With
recent methodological advances, it is possible to extract
memory kernels from trajectories in the presence of arbitrary,
not necessarily harmonic, potentials and to numerically solve
the resulting GLE by Markovian embedding techni-
ques.23,31,50,51 While the one-dimensional GLE may in
principle contain nonlinear friction contributions, the approx-
imate linear friction GLE, which only includes a linear coupling
of the velocity to a friction kernel with no further dependencies
on position or velocity, becomes valid for a broad class of
systems under well-defined conditions;52 this explains why it
accurately describes the dynamics of very different physical
systems.31,51 In this connection, it is important to note that
most existing reaction-rate theories are in fact based on the
approximate linear friction GLE.
As simple model systems, we consider the dissociation and

association kinetics of two different pair reactions in water,
NaCl and methane, which exhibit drastically different
hydration properties. Ions are favorably dissolved in water by
the formation of a strongly ordered hydration shell,53−55

whereas nonpolar small objects such as methane are repelled
from water and induce strong water−water hydrogen bonding
in their hydration shell.56−58 In fact, NaCl ion-pair dissociation
in water has been widely studied,12−14,30,46,49,54,59−64 and the
failure of a Markovian kinetic model along a one-dimensional
reaction coordinate,12,13,62,65 the relevance of inertial62 and
memory effects,30,46,49,61 has been demonstrated. In contrast,
the reaction dynamics of hydrophobic molecules has received
less attention. We analyze the reaction dynamics of these two
systems based on extensive MD simulation trajectories of
single reactant pairs in explicit water, from which we extract all
parameters of the one-dimensional linear friction GLE in terms
of the natural reaction coordinate, namely, the distance
between the two reactants: These are the potential (or free-
energy) landscape, the reduced mass, and the memory friction
kernel that in general exhibits multiple time scales and
oscillatory components.
As a crucial first step, we demonstrate by simulations of the

GLE that it accurately reproduces the kinetics of the
underlying MD simulations, which is nontrivial since the
GLE could in principle also contain nonlinear friction
contributions.52,66 In a second step, we investigate how the
pair-dissociation kinetics change when we independently vary
the memory times and the effective mass, encompassing the
Markovian limit of vanishing memory time and the over-
damped limit of vanishing mass.
Throughout this paper, we determine reaction rates from

mean first-passage times, τMFP, which can be conveniently
extracted from long simulation trajectories and which
accurately reproduce barrier escape times, as we have shown
previously.22 We find that for both NaCl and methane, the
neglect of memory slows down dissociation by roughly a factor
of 2, while the neglect of mass accelerates dissociation by a
similar factor. When neglecting both memory and mass, partial
error cancellation takes place, but dissociation still slows down
considerably. Approximating the free-energy landscape by a
harmonic barrier also introduces significant errors. Thus, it
transpires that for the quantitative prediction of reaction times,
memory, finite mass, and nonharmonic potential effects must
be simultaneously taken into account, and the GLE is the

appropriate tool to disentangle the effects of these different
contributions on reaction times.
The free-energy barriers for the dissociation of NaCl and

methane are about 4 kBT and 2 kBT, respectively; these are
typical barrier heights not only of molecular association and
dissociation reactions in water but also of dihedral stereo-
isomerization23 as well as fast protein folding transitions.67

Most reaction-rate theories rest on assumptions that become
only valid in the limit of high free-energy barriers. Since many
transitions in biophysical chemistry are in fact characterized by
rather low barrier heights of the order of only a few kBT and
experimental transition rates are customarily interpreted in
terms of reaction-rate theories, we therefore also compare the
results from our simulations with reaction-rate-theory
predictions. Interestingly, it turns out that, due to partial
error compensation, Kramers’ theory,1 which neglects memory
as well as nonharmonic potential effects, predicts the NaCl
dissociation time better than Grote/Hynes (GH) theory,38

which only neglects nonharmonic potential effects. It follows
that agreement between the predictions of a particular
reaction-rate theory and experimental or simulation results
does not necessarily mean that the approximations made in
deriving the reaction-rate theory are valid for the specific
system.

■ SIMULATION MODEL AND THEORETICAL
FRAMEWORK

We analyze the dynamics of single NaCl and methane pairs
from MD simulations in SPC/E water at 300 K as described in
the Methods section. The distance between the two reactants
is used as the reaction coordinate x, along which a weak
harmonic confining potential Ucon(x) = kx2/2 is applied to
prevent the reactants from diffusing apart and thereby to
increase the number of association and dissociation events.
The potential or free energy of a NaCl ion pair, U(x) =
−kBT log(p(x)), obtained from the distribution function p(x),
is shown in Figure 1A as a solid line. The contact pair (CP)
state is separated by a barrier of 4.37 kBT, located at the
transition state (TS), from the solvent-separated pair (SSP)
state. Snapshots from the MD simulation illustrate the different
states in Figure 1A. In fact, the TS in this one-dimensional
projection corresponds to an ensemble of disparate states that
do not single out well the actual TS in an enlarged
multidimensional description.12,15 This however is not a
problem for our kinetic description using the GLE, since
non-Markovian effects, caused by dimensional reduction, are
fully accounted for. Note that the confinement potential
Ucon(x) changes the barrier height from the CP to the TS state
slightly, as seen by comparing U(x) (solid line) and U(x) −
Ucon(x) (broken line) in Figure 1A. Thus, the presence of a
confining potential influences the reaction times, and it in fact
also influences the shape of the extracted memory kernel, in
agreement with previous results for confined molecules68 (see
Supporting Information (SI) section I for details); this,
however, does not affect our general conclusions that memory,
inertial, and potential-shape effects influence barrier-crossing
times. The actual NaCl interaction potential, obtained by
subtracting the centrifugal contribution and the confinement
potential, Uint(x) = U(x) − Ucon(x) + 2kBT log(x) (dotted line
in Figure 1A), goes for large separations x to a constant. Note
that in order to describe the simulated NaCl pair dynamics
along x, the potential U(x) has to be used within the GLE.
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In the following, we concentrate on the dissociation kinetics
starting from the CP state, which we characterize by the mean
first-passage time, τMFP.

22 For this, we obtain from a single long
MD trajectory first-passage times (FPTs), defined as the time
span between passing through the initial position xi and
reaching the final position xf for the first time. In Figure 1B, a
few FPTs for the passage from the CP to the SSP state from an
actual MD trajectory are shown, the average of all FPTs gives
τMFP. In Figures 1B,C, the dynamics of the NaCl ion-pair
separation is shown on three different time scales, which
illustrates the stochastic nature of the barrier-crossing
dynamics that is characterized by the waiting time in the CP
state on the order of τMFP ≈ 70 ps.
In order to reveal the mechanisms that control the pair-

reaction dynamics, we use the GLE that includes a general
nonlinear potential U(x) and a memory friction kernel Γ(t):

= [ ] +mx t t t x t t U x t t( ) ( ) ( )d ( ) ( )
t

0 (1)

Here, m is the effective mass and η(t) is a Gaussian random
force with vanishing mean ⟨η(t)⟩ = 0 and correlations
⟨η(t)η(t′)⟩ = kBTΓ(t − t′). The GLE in eq 1 neglects
nonlinear friction effects, which is valid when correlations
between velocities and random forces are independent of x52

and has been successfully used to model the dynamics of
protein folding and molecular vibrations.31,51 We will further
below validate the linear friction GLE in eq 1 by comparison
with MD data. All parameters in eq 1 are extracted from
simulation trajectories: The mass is obtained from the
equipartition theorem =m k T x t/ ( )B

2 and is demonstrated
to be independent of x in SI section II, as indeed expected for a
linear distance coordinate.52 The potential follows from the
distribution p(x) via U(x) = −kBT log(p(x)), and the memory
friction kernel Γ(t) is extracted from the simulation trajectory
by numerical inversion of eq 1.31,51

In order to validate the linear friction GLE and its
parametrization, we need to compare predictions of the GLE
with the MD simulation results. For this, the GLE is
numerically solved using Markovian embedding, for which
the memory kernel is parametrized as a sum of exponentially
decaying and oscillating components according to51,69−71
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where i
e and i

o denote the memory times of the non-
oscillating and oscillating memory components, ωi denotes the
oscillation frequency, and i

e and i
o denote the amplitudes of

the memory components. The parametrization of the memory
kernel is done in a way such that the long-time friction
coefficient γ, defined by the integral = t t( )d

0
, is given

by = +i i
e

i i
o and thus is independent of the memory

time scales.
In the Markovian limit, i.e., when all memory times go to

zero, the memory kernel takes the form Γ(t) → 2γδ(t). In this
limit, the GLE eq 1 reduces to the ordinary Langevin equation
(LE)72

= [ ] +mx t x t U x t t( ) ( ) ( ) ( ) (3)

where the random force ξ(t) has zero mean and is correlated
according to ⟨ξ(t)ξ(t′)⟩ = 2γkBTδ(t − t′). In the limit m → 0,
the overdamped LE is obtained from eq 3, which neglects
memory as well as inertial effects. The numerical effort of
simulating the GLE in eq 1 is linear in the number of fit
functions in eq 2 and thus amounts to n + l + 1 times the effort
of simulating the LE in eq 3. Additionally, the simulation effort
scales as the inverse of the discretization time step, which has
to be on the order of the shortest time scale of the system,
which can be either the shortest memory time scale in eq 2 or
the inertial time scale m/γ.
Most analytical rate theories are on the harmonic level and

approximate the potential quadratically around the barrier top
and the potential well. We investigate the accuracy of this
approximation, which becomes exact only in the infinite-barrier
height limit, in SI section III by a perturbation analysis in terms

Figure 1. (A) Effective potential U(x) of a single NaCl ion pair in
SPC/E water as a function of the ion separation x as obtained from
molecular dynamics (MD) simulations in the presence of a weak
harmonic confining potential Ucon(x) (solid line). The broken line
denotes U(x) − Ucon(x), and the dotted line denotes the interaction
potential Uint(x) for which also the centrifugal potential contribution
has been subtracted. Snapshots from the MD simulations illustrate the
contact pair (CP), the solvent-separated pair (SSP) (both at the
potential minima), and the transition state (TS) at the potential
maximum. (B,C) Example trajectories of the interionic distance x on
three different time scales, 2, 20, and 200 ps. The mean first-passage
time τMFP between the initial CP state and the final SSP state is
calculated from the average of all first-passage times (FPTs); see main
text for details.
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of cubic and quartic potential corrections. The classical
Kramers’ expression for the escape of a massive particle over
a barrier that is subject to memoryless friction, as described by
LE eq 3, valid in the medium-to-high friction regime, reads1

= +
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where the barrier frequency = U m/max max depends on
the potential curvature =U U x( )max max at the barrier top
located at xmax. For low friction γ/m → 0, this expression
r e p r odu c e s t h e t r a n s i t i o n - s t a t e t h e o r y l im i t

= e2 U
Kr TST min

1 0, where β−1 = kBT is the thermal
energy, U0 denotes the barrier height, and = U m/min min is
the oscillation frequency at the minimum xmin with

=U U x( )min min .73 In the high-friction limit, γ/m → ∞, eq 4
reduces to = e U U2 /

m
U

Kr TST max min
max

0 which is

linear in the friction coefficient γ. Note that eq 4 misses the
correct scaling in the low-friction or high-mass limit,

em
U

U
MFP

0

0, where τMFP scales inversely proportional to

γ, which was also derived by Kramers.1 An exact expression for
τMFP in the Markovian limit, valid for arbitrary mass and
friction and using the quadratic potential approximation, was

derived by Mel’nikov and Meshkov (MM)74 (see SI section
IV).
The GH prediction for τMFP in the presence of memory

acting at a harmonic barrier reads38

=GH
max

TST (5)

where the frequency λ is determined by the solution of the
equation = + m/( ( )/ )max

2 and ( ) denotes the
Laplace-transformed memory friction kernel Γ(t) acting at
the barrier. In the Markovian limit, i.e., for short memory time,
one has =( ) and the GH expression reduces to the
Kramers’ medium-to-high-friction result in eq 4. Note that in
the limit of high mass or long memory time, GH theory
reproduces the transition-state theory result, τGH = τTST, which
means that it misses both the correct high-mass limit,
characterized by em

U
U

MFP
0

0,1,74 as well as the correct

long-memory-time limit, where τMFP scales as e U
MFP

2 0

.22,39

In the overdamped Markovian limit, nonharmonic potential
effects can be analytically treated and τMFP between initial and
final positions, xi and xf, is given as75

=x x dx x e xe( , ) ( ) di f
x

x
U x

x

x
U x

MFP
( ) ( )

i

f

min (6)

Figure 2. Analysis of NaCl dissociation dynamics in water. (A,B) Memory friction kernel (A) and its integral (B) from MD simulations (blue solid
lines) compared with a fit according to eq 2 (yellow broken lines) which is a sum of two exponential and two oscillatory components (red broken
lines). The fit parameters are given in the legend. (C) Potential U(x) is shown as a gray solid line (right scale) with the extrema indicated by
vertical gray dotted lines. Profiles of τMFP(xf) (left scale) starting from the CP state are shown from MD simulations (blue solid line), from
simulations of the GLE eq 1 (blue short-dashed line), from the theory in the overdamped Markovian limit eq 6 (blue long-dashed line), and from
simulations of the LE eq 3 in the zero-mass limit (blue dotted line). (D) Contour plot of the CP-SSP dissociation τMFP from GLE simulations as a
function of the mass and memory-time scaling parameters ϵ and α. The gray solid lines illustrate the paths shown in (E−G). (E−G) τMFP for the
CP-SSP dissociation reaction as a function of ϵ = α (E), α for ϵ = 1 (F), and ϵ for α = 1 (G). Predictions according to Kramers’ theory eq 4 (dotted
lines), GH theory eq 5 (solid lines), MM theory (dashed-dotted line), and the overdamped Markovian theory eq 6 (broken lines) are shown for
comparison. Simulations of the LE according to eq 3 are shown as a dash-double-dotted line in F. The error bars of the GLE simulation results in
E−G are smaller than the symbol size.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Perspective

https://doi.org/10.1021/acs.jpcb.2c05923
J. Phys. Chem. B 2022, 126, 10295−10304

10298

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05923/suppl_file/jp2c05923_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c05923?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c05923?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c05923?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c05923?fig=fig2&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c05923?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Here, γ(x) denotes a general position-dependent friction
profile and xmin a reflecting boundary. Equation 6 can be
inverted and thereby used to determine γ(x) from measured
profiles of τMFP(xi , xf).

76,77 In fact, position-dependent friction,
determined by a different approach, has been shown to
reproduce NaCl dissociation dynamics from simulations.63

However, memory effects give rise to spurious spatially
dependent friction profiles when analyzed on the Markovian
level.31 Furthermore, spatially dependent friction cannot
simultaneously describe dissociation and association kinetics,
which demonstrates the presence and importance of memory,
as shown in SI section V. In fact, the assumption of a friction
memory kernel that is independent of position is in this paper
shown to be very accurate; the Markovian assumption, i.e., the
neglect of memory effects, on the contrary is shown not to be
accurate. As we demonstrate in SI section III, using a harmonic
approximation for the free energy U(x) around its minimum
and its barrier and in the high-barrier limit, the τMFP between
arbitrary initial and final positions to the left and right of a
barrier predicted by eq 6 equals the Kramers’ prediction eq 4
in the high-friction limit. In fact, the Kramers’, MM, and GH
rate theories do not depend on the precise locations of the
initial and final positions of τMFP, which is a consequence of the
high-barrier assumption inherent in their derivations, but the
dependence of τMFP on the final position is not very
pronounced (the dependence of τMFP on the initial position
is even weaker and displayed in SI section VI). It therefore is
instructive to compare analytical rate-theory results for τMFP
with MD and GLE simulation results. We show in SI section
III by a perturbative analysis beyond the harmonic
approximation that deviations between the Kramers’ high-
friction approximation and eq 6 are for not too low barrier
height mostly due to the harmonic approximation and not so
much due to the high-barrier assumption, which opens up
routes to systematically improve upon literature rate theories.

■ RESULTS AND DISCUSSION
The memory kernel Γ(t) for NaCl extracted from MD
simulations is shown in Figure 2A (blue line), and its running
integral in Figure 2B (blue line) starts to increase at a few fs
and plateaus at about 4 ps. The shape of Γ(t) is rather similar
to previous results for single anions and cations in water,78

which demonstrates that memory is caused not only by ion−
ion interactions but also by hydration effects. A fit using the
sum of two exponentially decaying and two oscillating
components according to eq 2, shown in Figure 2A,B as a
yellow broken line, is in near perfect agreement with the
extracted data and will be used for all further GLE modeling.
The individual memory components are shown as red broken
lines, and their parameters are given in the legend.
In Figure 2C, the potential U(x) is shown (gray line)

together with the τMFP(xf) profile from MD (blue solid line)
for an initial position xi at the minimum of U(x) as a function
of the final positions xf, which corresponds to dissociation from
the CP state (corresponding results for the inverse association
reaction are reported in SI section VII). The dependence of
τMFP on the initial position xi is very weak, as demonstrated
and analytically explained in SI section VI. The τMFP(xf) profile
from the GLE eq 1 with all parameters extracted from MD
simulations (blue short-dashed line) agrees very well with the
MD data (blue solid line). This presents a crucial validation of
the linear friction GLE eq 1 and of the extracted parameters.

The GLE is not only able to reproduce the MD data, it also
allows us to analyze the effects of varying mass and memory
times on the dissociation kinetics in a nonharmonic potential
landscape, which is not possible with MD simulations and also
not with analytical rate theories. For this, we scale the mass m
in the GLE by a factor ϵ according to m = ϵmMD. Likewise, we
scale all memory times by a second factor α according to

=i i
MD and =i i

1 MD, which ensures a smooth
crossover to the Markovian limit as α → 0. Since the friction
coefficient γ is independent of α, by changing the value of α we
are able to disentangle the effects of memory times and
memory amplitudes, the latter being characterized by the
friction coefficient γ, on the reaction kinetics. In the
overdamped Markovian limit, i.e. for α, ϵ → 0, τMFP is given
by eq 6, shown as a long-dashed line in Figure 2C and
compared with simulations of the LE eq 3 in the m → 0 limit
(dotted line). Both results agree nicely with each other,
validating the numerical procedures used, but exhibit
significantly longer τMFP than the MD data by a factor of
almost two to the right of the free-energy barrier, which clearly
demonstrates the significance of inertia and memory effects for
reaction dynamics.
The effect of gradually and simultaneously reducing inertial

and memory effects is demonstrated in Figure 2E, where τMFP
from the CP to the SSP state obtained using the GLE is shown
as a function of α = ϵ (circles). The overdamped Markovian
limit from eq 6 (broken horizontal line) is approached by the
GLE data in the limit α = ϵ → 0, as expected. The Kramers’
prediction eq 4 (dotted line) is evaluated using the friction
coefficient γ and mass m extracted from the MD data and using
the fitted potential curvatures Umin and Umax in the well and at
the barrier top (see SI section VIII for details of the fitting
procedure). It exhibits an almost negligible dependence on ϵ,
which shows that in the Markovian limit there are no
discernible inertial effects. The significant difference between
the broken and dotted lines is due to the harmonic-potential
and high-barrier approximation in Kramers’ theory. Interest-
ingly, the Kramers’ prediction (dotted line) is for α = ϵ = 1
closer to the GLE result than the more accurate numerical
solution of eq 6 (broken horizontal line) which does not use
the harmonic-potential nor the high-barrier approximation;
this is due to a subtle error compensation between the
harmonic-potential/high-barrier and Markovian approxima-
tions, as we will discuss in more detail further below. As
mentioned before, due to the high-barrier approximation, the
Kramers’ prediction does not depend on the locations of the
initial and final positions used in the definition of τMFP (as is
the case for the MM and GH reaction-rate theories), while the
MD and GLE simulation results obviously do, as demonstrated
in Figure 2C and in SI Section VI. This is a general
shortcoming of the high-barrier approximation employed in
analytical theories and should be kept in mind when
comparing with MD or GLE simulation results.
To disentangle inertial and memory effects, we in Figure 2F

show τMFP for NaCl dissociation from the CP to the SSP state
using the GLE eq 1 as a function of the memory scaling
parameter α for original mass ϵ = 1 (circles). τMFP exhibits a
pronounced minimum close to the original memory time α =
1, which demonstrates that memory accelerates barrier
crossing for short and intermediate memory times but slows
down barrier crossing for very long memory times. The barrier-
crossing speed up for intermediate memory times, including
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the original memory time α = 1, can be intuitively understood
by a simplified picture: Memory friction pushes against the
direction of the previous velocity and thereby supports barrier
crossing for a certain time after an unsuccessful barrier-crossing
attempt.22 In the Markov limit α → 0, the GLE data converge
to the result obtained by simulations of the LE with finite mass
eq 3 (dash-double-dotted horizontal line), as expected. The
Kramers’ prediction eq 4 (dotted horizontal line) is shifted
down relativ to the LE result eq 3 due to the harmonic
potential approximation, as discussed before. Except an overall
shift to shorter times, GH theory eq 5 (solid line) nicely
reproduces the GLE data for not too large α values and
converges to the Kramers’ prediction in the Markovian limit α
→ 0, which reflects that GH theory can be viewed as a
correction to the Kramers’ theory. In the long memory-time
limit, α → ∞, GH theory converges to the transition-state
theory time and therefore misses the quadratic scaling with the
memory time indicated by the black solid line.22,39,79 We again
observe that Kramers’ theory (dotted horizontal line), which
neglects memory effects as well as nonharmonic potential
effects, agrees better with the GLE data for original memory
time, i.e., for α = 1, than GH theory, which includes memory
effects, and the LE eq 3, which includes the full potential
shape.
In Figure 2G, the NaCl dissociation time, τMFP, from the CP

to the SSP state, using the GLE is shown as a function of the
mass scaling parameter ϵ for the original memory times, i.e., for
α = 1 (circles). The dissociation time monotonically increases
with growing mass. For the original mass, ϵ = 1, τMFP is
considerably larger than in the overdamped limit, ϵ → 0, an
effect that is underestimated by Kramers’ theory (dotted line),
MM theory (dash-dotted line), and to a certain degree also by
GH theory (solid line). So we see that inertial effects are more
important for non-Markovian than for Markovian systems. GH
theory and Kramers’ theory converge to transition-state theory
for large mass with a characteristic mMFP scaling
(straight broken line), which deviates from the τMFP ∼ m
scaling (straight solid line) for Markovian systems in the large-
mass limit, as predicted by MM theory. In the low mass limit,
on the other hand, Kramers’ and MM theories converge. The
GLE data show a slow crossover to the τMFP ∼ m scaling for
large mass. Again, we see that due to error cancellation,

Kramers’ theory agrees almost perfectly with the GLE data for
original mass (ϵ = 1) but also for slightly enhanced mass, as
would be relevant for heavier reactants.
The dependence of the NaCl dissociation time τMFP on mass

and memory time as obtained from the GLE is illustrated in
Figure 2D in a contour plot as a function of α and ϵ, where
three regimes can be broadly distinguished: the memory-
speed-up regime (for low mass and intermediate memory
time), the inertial slow-down regime (for large mass), and the
memory-slow-down regime (for long memory time). The gray
square indicates α = ϵ = 1, i.e., the original system parameters,
and the gray solid lines indicate the one-dimensional cuts
shown in Figure 2E−G.
In Figure 3A, we compare the NaCl dissociation time from

the CP to the TS at the barrier top for the four different
relevant limiting scenarios, namely (from left to right), the case
with original mass and memory, the Markovian limit with
original mass, the overdamped limit (using ϵ = 0.01 in the
GLE) with original memory, and the overdamped Markovian
limit. Note that the comparison of the various limits with the
original MD simulations for the transition from the CP state to
the barrier top in Figure 3A is slightly different than that for
the transition from the CP to the SSP state in Figure 2E−G.
The blue bars denote simulation results using the GLE, eq 1,
and the LE, eq 3, with the latter being used in the limit α, ϵ →
0, employing the full nonharmonic potential U(x). We see that
the MD and GLE results for original memory and mass agree
very nicely with each other. The dissociation time in the
Markovian limit with original mass is roughly doubled, and in
the overdamped limit with original memory, it is roughly half,
compared to the MD result (denoted by a broken horizontal
line). In the overdamped Markovian limit, we see that the LE
simulations (blue bar) and the exact integral formula eq 6
(gray bar) agree nicely with each other, as expected, and that
their agreement with the MD result is slightly better than that
for the GLE results when either the original mass or memory is
used. This reflects partial error compensation of the neglect of
mass and memory, as amply discussed above. Kramers’ theory
eq 4 (yellow bar), which in addition employs a harmonic
potential-shape and high-barrier approximation, slightly lowers
the dissociation time and thus further improves the agreement
with the MD data, another manifestation of error cancellation

Figure 3. (A,B) Summary of memory friction and mass effects on the pair dissociation dynamics of NaCl and methane in water at 300 K. The bars
denote τMFP from the CP to the TS state from MD (gray bars and horizontal broken lines) and from simulations of the GLE eq 1 (blue bars) in the
different limits of the memory and mass scaling parameters, α and ϵ. The theoretical overdamped Markovian limit eq 6 is shown as light-gray bars,
and Kramers’ theory eq 4 for high friction is shown as yellow bars. Error bars for the simulations denote the standard deviation of block averages,
and error bars of Kramers’ theory are estimated from the dominant errors in the harmonic fits to the potentials, as shown in SI section VIII. (C)
Dissociation profiles τMFP(xf) for two methane molecules in water starting from the CP state from MD (blue solid line), from simulation of the
GLE eq 1 (blue short-dashed line), from the overdamped Markovian theory eq 6 (blue long-dashed line), and from simulation of the LE eq 3 in the
zero-mass limit (blue dotted line). The potential U(x) is shown as a gray solid line (right scale), vertical lines denote the CP, TS, and SSP states.
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(note that the Kramers’ formula eq 4 is divided by 2 for the
comparison since the final state is the barrier top).
Interestingly, the well-to-barrier-top dissociation shows
reduced nonharmonic potential corrections in comparison
with the well-to-well dissociation discussed in Figure 2,
meaning that the Kramers’ result in Figure 3A (yellow bar)
agrees rather well with the prediction from the integral formula
eq 6 (gray bar), as will be explained in detail further below.
To demonstrate that our findings are not specific to ion

dissociation, we show in Figure 3B,C results for the
dissociation dynamics of a pair of methane molecules in
water at 300 K (the detailed analysis is presented in SI section
IX). In Figure 3C, we show the free energy from the MD
simulations (gray line) together with τMFP profiles starting from
the free-energy minimum, corresponding to the CP state, for
varying final position xf. We compare results from MD
simulations (blue solid line) and corresponding GLE
simulations (blue short-dashed line) and find, as for NaCl,
good agreement. The τMFP profiles for the overdamped
Markovian limit from eq 6 (blue long-dashed line) and from
simulations of the LE eq 3 in the overdamped limit (blue
dotted line) agree nicely with each other and are significantly
higher than the MD results. The comparison of methane
dissociation times from the CP to the TS at the barrier top
using different approximations in Figure 3B is similar to the
NaCl results in Figure 3A and demonstrates significant and
compensating memory and mass effects.
All analytical rate theories we compare with, namely MM,

GH and Kramers’ theory, use the harmonic approximation for
the well and barrier regions of the pair potentials, which
becomes accurate only in the high-barrier limit. The
comparison of Kramers’ theory eq 4 with eq 6 in Figure 2E
demonstrates that the harmonic approximation is not very
good for NaCl dissociation from well to well, and it becomes
better for the NaCl dissociation from well to barrier top in
Figure 3A. To shed light on that, in Figure 4, we compare the
τMFP from Kramers’ theory eq 4 in the high-friction limit
(colored solid lines) with the exact integral formula eq 6 (gray

solid lines) as a function of barrier height U0, using the
potential U(x) with a linearly scaled amplitude and the friction
coefficient γ for NaCl from MD simulations. Data are shown
for going from the CP to the TS, i.e., to the barrier top (blue
and thin gray lines), and from the CP to the SSP, i.e., over the
barrier from well to well (yellow and thick gray lines). The
exponential scaling for U0 → ∞ is clearly seen. The relative
difference between the two predictions, given in the inset,
decreases with U0, as expected. The decrease however is quite
slow and scales to leading order as U0

1 for the CP-SSP and as
U0

1/2 for the CP-TS transitions, which is accurately predicted
by a perturbative analysis (gray lines), see SI section III for
details. The effect of the harmonic approximation is
considerable for the CP-SSP transition and decreases the
dissociation time by about 25% for a barrier height of U0 ≈ 5
kBT, as also seen in Figure 2D. The effect of the harmonic
approximation is much less drastic for the CP-TS reaction,
contrary to what would be expected based on the leading-order
perturbation results, which is due to a subtle compensation of
cubic and quartic potential effects at the barrier top, as
explained in SI section III. Therefore, while for high barriers
the harmonic-potential approximation, employed in all
analytical rate theories, is valid, nonharmonic potential effects
are significant at moderate barrier heights as encountered for
dissociation reactions in water and many other reactions in
biophysical chemistry and cannot be disregarded.

■ CONCLUSIONS
The dissociation dynamics of a NaCl and a methane−methane
pair from MD simulations is accurately reproduced using the
GLE when mass, memory function and pair potential are used
as extracted from MD simulations. This is a nontrivial test of
the accuracy of the approximate linear friction GLE, the
friction-kernel extraction techniques, and the GLE simulation
methods employed by us and allows us to use the GLE as a
diagnostic tool to quantitatively study how friction memory
and inertial effects influence reaction kinetics. By varying the
mass and the memory times in the GLE, which is not possible
within MD simulations, the impact of these fundamental
system properties on the reaction dynamics is quantified. It
turns out that mass, memory as well as nonharmonic potential
effects are important for the quantitative prediction of reaction
rates of NaCl and methane in water. Due to error cancellation,
Kramers’ theory, that neglects memory as well as nonharmonic
potential effects, performs better than GH theory, that neglects
nonharmonic potential effects but approximately accounts for
mass and memory effects. This in particular means that good
comparison of Kramers’ theory with experimental or simulated
reaction times does not mean that memory effects are
negligible. Our results are obtained for specific pair reactions
in water, but our conclusions presumably are valid for a much
wider class of systems because the GLE employed by us makes
no reference to system specificities except for the mass, the
memory function and the free-energy profile.
As we show in this paper, neglecting mass or memory

changes the dissociation time of NaCl roughly by a factor of 2,
an equivalent change of reaction time is obtained when shifting
the free-energy barrier by kBT ln 2 ≈ 0.7 kBT. So the effects we
are discussing are in some sense comparable to typical
experimental or theoretical uncertainties in the free-energy
barriers. Nevertheless, for the quantitative prediction of
reaction times and the thorough understanding of the

Figure 4. Effect of nonharmonic potential contributions on the NaCl
dissociation dynamics in the overdamped Markovian limit. We
compare τMFP given by Kramers’ theory eq 4 in the high-friction limit
(colored solid lines) with the integral formula eq 6 (gray solid lines)
for dissociation from the CP to the TS state (blue and thin gray lines)
and from the CP to the SSP state (yellow and thick gray lines) as a
function of barrier height U0. In the inset, the relative difference
between the two predictions is shown as blue and yellow broken lines
(dotted lines denote negative values) and compared with the
perturbation prediction (gray lines); see main text for details.
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mechanisms controlling reaction times in complex systems, it is
important to know how memory, mass and potential-shape
effects modify reaction rates.
We extract all GLE parameters from force-field MD

simulations. In the future it would be interesting to use ab
initio simulations instead80,81 and to investigate in more detail
the role of the water model81,82 for ion pair-reaction dynamics
in water.

■ METHODS
MD simulations are performed in explicit water at 300 K, using
GROMACS version 2020.6,83 the SPC/E water force field,84

force-field parameters for the NaCl ion pair as reported
previously,85 which are similar to recently optimized values,86

and Lennard-Jones parameters for the methane beads from the
GROMOS 53A6 force field.87 A weak confinement potential
along the connecting vector of the reactants is applied, Ucon(x)
= kx2/2, with k = 100 kJ mol−1 nm−2 for NaCl and k = 30 kJ
mol−1 nm−2 for methane. The cubic simulation box with side
length 4 nm is completely filled with water molecules and
periodic boundary conditions are applied. Before production
the systems are equilibrated under NPT conditions with
atmospheric pressure for 400 ps using a Berendsen barostat
with a time constant of 0.5 ps and subsequently under NVT
conditions for 1 ns. Production runs are performed for 200 ns
under NVT conditions using the velocity rescaling thermostat
with a time constant of 0.5 ps only acting on water. The
simulation time step is 2 fs and correlation functions are
extracted at full time resolution. The center-of-mass motion of
the entire system is removed at each simulation time step. The
memory kernel is extracted from correlation functions as
detailed previously.23,31 The potential, U(x) = −kBT log(p(x)),
is calculated directly from the distribution function p(x) with a
bin size of 0.0025 nm for the ion and 0.005 nm for the
methane pair.
Simulations of the GLE eq 1 using parametrized memory

kernels with a sum of n exponential and l oscillating
components, as given in eq 2, are performed by Markovian
embedding using a fourth-order Runge−Kutta scheme.51 The
integration time step is 2 fs, equivalent to the MD simulation.
When changing the mass and memory times, in particular for
α, ϵ < 1, the simulation time step is suitably adapted. Errors of
τMFP, estimated from block averages, are smaller than the
symbol size. The memoryless LE eq 3 is also simulated using a
fourth-order Runge−Kutta scheme. Further details on the
simulation techniques is given in SI section X.
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