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Engineering long-range interactions in experimental platforms has been achieved with great suc-
cess in a large variety of quantum systems in recent years. Inspired by this progress, we propose a
generalization of the classical Hamiltonian mean-field model to fermionic particles. We study the
phase diagram and thermodynamic properties of the model in the canonical ensemble for ferromag-
netic interactions as a function of temperature and hopping. At zero temperature, small charge
fluctuations drive the many-body system through a first order quantum phase transition from an
ordered to a disordered phase. At higher temperatures, the fluctuation-induced phase transition
remains first order initially and switches to second order only at a tricritical point. Our results offer
an intriguing example of tricriticality in a quantum system with long-range couplings, which bears
direct experimental relevance. The analysis is performed by exact diagonalization and mean-field
theory.

I. INTRODUCTION

Systems with long-range interactions have been the
subject of considerable interest in both the classical [1]
and the quantum domain [2]. Besides their thermody-
namic features, long-range interactions of quantum bits
represents a highly desirable design goal for a univer-
sal quantum computer, in order to operate any non-local
gate of the network and speed up quantum error correc-
tion [3]. A paradigmatic model that has served as a test-
ing bed for different physical phenomena that appear due
to long-range interactions is the Hamiltonian mean-field
model (HMF) [4]. The classical model is exactly solvable
in both the canonical and microcanonical ensemble and
shows a second order mean-field phase transition when
varying the temperature or the energy [5]. An interest-
ing and open question is what would be a quantum model
that plays a similar role to highlight the main features
of quantum long-range interactions. Attempts have been
made to include semiclassical effects within the original
HMF setting. Chavanis [6] studied the zero temperature
limit of a Fermi-like distribution, finding that the homo-
geneous state gains stability with respect to the classical
one through a first order phase transition in the quan-
tum constant h. The homogeneous state has been found
to be stable also for bosons using a more detailed anal-
ysis based on a self-consistent Schroedinger equation [7].
Plestid and collaborators have investigated the effects of
quantum fluctuations superposed onto the classical be-
havior of the HMF model for bosons in a series of papers.
In a first paper [8] they studied quantum interference ef-
fects in the violent relaxation phenomenon that appears
in the repulsive HMF model by using a Gross-Pitaevskii
equation; in a second paper [9] the localized solutions of
the Gross-Pitaevskii equation were analyzed in full detail;
while in a third paper [10] they studied the O(2) symme-
try of the model and the associated quantum Goldstone

modes.
On the experimental side quantum long-range interac-
tions can be realized in several forms [2]. Some of these
experimental settings can be described by models that
are closely related to the HMF model, e.g., cold atoms in
optical cavities [11–13]. For the classical HMF it was the-
orized [14, 15] that the model is in experimental reach in
a transversely pumped cavity, with atoms ordering into
a one-dimensional lattice. Their movement around the
equilibrium position is essentially semiclassical, described
by an effective Fokker-Planck equation [16, 17], and the
strong couplings of the atoms to the cavity photons pro-
vides effective long-range interactions among them [18].
Despite the inherent quantum nature of the long-range
interactions, the momentum distribution of the atoms is
essentially a classical Maxwell–Boltzmann distribution.
Due to the experimental successes for realizing long-range
couplings in optical cavities, and the concrete theory of
the classical HMF in these systems, we believe that cold
atomic systems constitute a promising pathway to realize
also a full quantum version of the HMF model. Hereby,
it is necessary to find a quantum equivalent of the clas-
sical atomic motion, and take the exchange statistics of
the particles into consideration.
A second promising experimental architecture, directly
related to our proposal, constitutes the recent realization
of long-range couplings (> 1 mm) between spin qubits
fabricated from silicon quantum dots [19, 20]. As for the
cold atom experiments, the interactions among qubits
is mediated via strong coupling to photons from a mi-
crowave resonator via the rules of circuit quantum elec-
trodynamics [21]. Achieving long-range qubit couplings
in the experiment [20] relied on the large spin-photon
coupling rate, exceeding the cavity decay rate and the
spin decoherence rate. Although long-range coupling has
been so far achieved only between a single pair of sili-
con spin qubits (compared to many in cold atomic gases
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FIG. 1. Phase diagram of the long-range fermionic Hamiltonian mean-field model at half-filling. (a) Exact diagonalization
with 2N = 16 fermions. For small hoppings and small temperatures T , the system is ferromagnetically (FM) ordered, for
large t and/or T paramagnetically (PM) ordered. A quantum critical point (QCP) is present at zero temperature (horizontal
axis) while a classical critical point (CCP) is located on the vertical axis at zero hopping. First order and second order phase
boundaries, as indicated by solid and dashed lines respectively, meet at a tricritical point (TCP), marked by a purple star. (b)
The phase diagram obtained in mean-field theory shows the order parameter M = m/2 + O(1/N) (see Eq. (17)), and is in
qualitative agreement with the the finite N exact diagonalization results. The critical points in mean-field theory are: QCP at
tc = πJ/32 ≈ 0.098J , CCP at Tc = J/8, TCP at (t∗, T ∗) ≈ (0.089, 0.067)J .

experiments), the fermionic nature of the particles is a
priori given which is essential for our model.
Due to these recent experimental results we would like to
propose a fully quantum HMF model for fermionic par-
ticles. The model we propose represents a strongly inter-
acting many-body system of spin- 12 fermions, where all-
to-all XY -couplings and charge fluctuations, represented
by a conventional hopping term, compete for the ground
state. The system is closely related to the class of t-J-
Hamiltonians [22, 23] with all-to-all couplings [24], with
the striking difference that we explicitly permit double
occupancy at half-filling to allow for charge fluctuations.
We study the model both numerically, by exact diago-
nalization (ED), using a mean-field approximation and
analytical calculations in specific parameter limits. We
are able to derive the phase diagram in the plane of the
hopping and temperature parameters, showing the pres-
ence of a line of quantum phase transitions that are both
second and first order and are separated by a tricritical
point.
The paper is organized as follows: In Sec. II we introduce
the model and draw the connection to the classical HMF
model. In Sec. III we investigate the phase diagram in
detail by means of exact diagonalization supported by
mean-field theory. Sec. IV provides a systematic discus-
sion of our mean-field theory treatment. In Sec. V we
study the thermodynamic properties of the model. Sec-
tion VI contains a finite size analysis of the numerical
data for the tricritical point. We conclude in Sec. VII.

II. QUANTUM FORMULATION OF THE
HAMILTONIAN MEAN-FIELD MODEL FOR

FERMIONS

1. Quantum many-body model

We consider a many-body Hamiltonian with long-
range interactions of the form

H = Ht +HJ

=− t
N∑
j=1

∑
σ=↑,↓

(
c†j+1,σcj,σ + H.c.

)

− J

4N

N∑
i<j

∑
α,β,γ,δ=↑,↓

[
σxαβσ

x
γδ + σyαβσ

y
γδ

]
c†i,αci,βc

†
j,γcj,δ.

(1)

The operators c†j,σ (cj,σ) create (annihilate) particles at
site j with spin σ =↑, ↓. By imposing anticommutation

relations {c†i,σ, cj,σ′} = δi,jδσ,σ′ and {ci,σ, cj,σ′} = 0, the
particles obey fermionic statistics, and periodic bound-
ary conditions are implied. The first term in (1) de-
scribes nearest-neighbor hopping, and the second term
introduces an all-to-all spin-flip interaction. This can
be more clearly seen by explicitly inserting the Pauli-
matrices σa (a = x, y) in the interaction

HJ = − J

2N

∑
i<j

(
c†i↑ci↓c

†
j↓cj↑ + c†i↓ci↑c

†
j↑cj↓

)
. (2)

We focus on ferromagnetic (FM) couplings for which a
second order phase transition exists in the classical model
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FIG. 2. (a) Many-body spectrum at half-filling as a function of hopping for 2N = 10 fermions. The system undergoes a first
order quantum phase transition at tc from a ferromagnetic (FM, red) ground state to a paramagnetic ground state (blue, PM).
(b) The magnetization for fixed T displays a clear first order phase transition at zero temperature. (c) Quantum critical point
for different system sizes. For the largest system size 2N = 16 we obtain tc/J = 0.104.

[4]. The 1/N -factor in the interaction term secures ex-
tensivity of the energy. For the most part of the pa-
per, we restrict ourselves to half-filling ν = 1, i.e. N
particles on 2N fermionic sites. Note that in contrast
to the well-studied t-J-model [22, 23], we explicitly per-
mit doubly occupied sites. For zero hopping the model
becomes equivalent to the Lipkin-Meshkov-Glick (LMG)
model [25] at zero field, apart from additional degen-
eracies due to the fermionic nature of the particles, see
App. B.

2. From classical to quantum HMF

Let us outline the connection of the classical Hamilto-
nian mean-field model [4]

H =

N∑
i=1

p2i
2
− J

2N

N∑
i,j=1

[1− cos(θi − θj)] , (3)

with its quantum version. In Eq. (3) a network of pen-
dula with individual canonical variables −π ≤ θi ≤ π
and pi = θ̇i interacts in a fully connected way. The anal-
ogy to (1) becomes apparent by rewriting the classical
potential via two dimensional unit-vectors

mi = (cos θi, sin θi) . (4)

Using the trigonometric identity cos(θi − θj) =
cos(θi) cos(θj) + sin(θi) sin(θj) yields a long-range XY

spin interaction V = −(J/2N)
∑N
i,j=1 mi · mj . We

then identify classical magnetic moments with quan-
tum spin operators in second quantization mi,a →
1
2

∑
α,β=↑,↓ c

†
iασ

a
αβciβ . The kinetic part in (3) is dis-

cretized as a nearest neighbor hopping of fermions in (1).
At this point, we introduce the magnetization (density)

in the X-Y-plane analogously to Ref. [26]

m2 =
1

(NS)2
〈
S2
x + S2

y

〉
, (5)

where Sa = 1
2

∑
i σ

a
i is the total spin projection in direc-

tion a = x, y, z and the prefactor S = 1
2 normalizes such

that m2 ≤ 1 in the thermodynamic limit. The magne-
tization serves as the order parameter. For states with
uniform particle density, interaction energy and magne-
tization are directly linked via 4 〈HJ〉 = J

(
1−Nm2/2

)
.

This carries also over to non-uniform densities, see App.
B. The variance of the magnetization gives the suscep-
tibility χ and we measure charge fluctuations with the
operator

δn =

√
1

N

∑
j

〈(∆nj)2〉 , (6)

where ∆nj = nj − ν and nj =
∑
σ c
†
j,σcj,σ. Its expecta-

tion value gives the local variance in the particle number
σ2
n = 〈(δn)2〉 at a given filling ν.

3. Minimal example with N = 2

We exemplify the physics of Eq. (1) for a small system
with N = 2 sites, where some characteristics of the
infinite lattice model already become visible. First, we
illustrate the quantum nature of the Hamiltonian (1)
explicitly. Let two neighbouring sites be occupied with

opposite spin-projections |φ〉 = |↑〉 |↓〉 = c†1,↑c
†
2,↓ |0〉,

and let us denote doubly occupied sites with

|#〉j ≡ c†j,↑c
†
j,↓|0〉. It is easy to convince oneself that

for the specific state that the action of hopping and in-
teraction depends on their relative order, explicitly
HtHJ |φ〉 = −tJ/(2N)[|0〉|#〉 + |#〉|0〉] and
HJHt|φ〉 = 0, such that [Ht, HJ ] 6= 0. Sec-
ond, we demonstrate that the hopping term re-
duces magnetic order by simultaneously introducing
charge fluctuations. For t � J , the ground state
|FM〉 = 1√

2

[
|↑〉 |↓〉 + |↓〉 |↑〉

]
has total spin S = 1 and

signals ferromagnetic order with magnetization density
m2 = 2 at zero temperature. For J � t, the ground state
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(d)
T ∗ − 2ε

T ∗ − ε

T ∗

T ∗ + ε

T ∗ + 2ε

FIG. 3. Fillings of the quasi-particle bands in mean-field theory. (a) For t� tc and T � Tc = 0 only the lower is band occupied.
(b) Situation for T < T ∗ in proximity to the phase boundary on the ordered side. The gap has almost closed, but there is a
remnant occupation difference (first order phase transition). (c) Situation for T > T ∗. The gap closes as fast as the occupation
equilibrates (second order phase transition). (d) Quasiparticles populations N+ and N−, as calculated in MF theory. The total
population is N = N + a+N− = 500 and the black dashed line identifies the transition point when N+ = N− = N/2.

|PM〉 = 1
2

[
|↑〉 |↓〉 − |↓〉 |↑〉 + |#〉 |0〉 + |0〉 |#〉

]
has S = 0

and is paramagnetically ordered, with lower magnetiza-
tion m2 = 1

2 . The finite value of of the magnetization
for the paramagnetic state reflects the Pauli principle.
In constrast, charge fluctuations are more pronounced
in the paramagnetic state (σn = 1

4 ) than in the
ferromagnetic state (σn = 0).

III. PHASE DIAGRAM

In this section we study the phase diagram of the quan-
tum HMF, inferred from the magnetization, as a function
of temperature and hopping. The coupling J = 1 serves
as the unit of energy.

Fig. 1 (a) shows the magnetization density as defined
in Eq. 5 in the T -t plane, obtained by ED for 2N = 16
fermions. [27]. For t = 0 and T = 0, the magnetization is
largest and the ground state is ferromagnetically ordered.
Increasing the hopping at zero temperature (bottom hor-
izontal), the magnetization stays constant at first, and
drops sharply at a critical point (t, T ) = (tc, 0), signaling
a first order quantum phase transition (QPT), see Fig. 2
(c). Increasing the temperature at zero hopping (left
vertical) reduces the magnetization continuously, and re-
veals a classical second order phase transition at a critical
value (t, T ) = (0, Tc) which defines the classical critical
point (CCP). The phase boundary emerging from the
Tc bends to lower values of the hopping and is found to
be second order. Importantly, we find that the phase
boundary emerging from tc at non-zero temperature is
first order, and meets in a tricritical point (TCP) at fi-
nite hopping and temperature (t, T ) = (t∗, T ∗).

We give some insight into the nature of the QPT which
occurs due to an abrupt change in the groundstate, defin-
ing the quantum critical point (QCP) at t = tc [28, 29].
In our system the energy of the ferromagnetically ordered
state |FM〉 matches the energy of a paramagnetically or-
dered state |PM〉, see Fig. 2. Let us analyze the state

|FM〉 in more detail: For t = 0, the Hamiltonian H = HJ

conserves the total spin S, the spin-projection Sz and the
local variance in particles σn. This gives credit to the fact
that the Hamiltonian has block-diagonal sectors in Fock
space with equal number of doubly occupied sites. For
even N , the ground state

|FM〉 =
1√
N

(| ↑↓↑ · · · > +”all transpositions”) (7)

is unique and maximizes the total spin S = N
2 , while

minimizing the spin projection Sz = 0 and is uniform
σn = 0. Its energy is

EFM = −JN
8
. (8)

and the magnetization is m2
FM = 1 + 2

N (T = 0 and
t = 0). A finite finite gap δE = J/(2N) [26] separates it
to excited states. Hopping introduces then charge fluc-
tuations by breaking the conservation of local variance
in particles, i.e. σn is no longer a good quantum num-
ber. However, because Ht is spin-rotation symmetric and
|FM〉 is the only state with S = N/2 and Sz = 0, it is
completely unaffected by the action of Ht . This is ob-
served in the many-body spectrum shown in Fig. 2 (a).

On the contrary, the paramagnetic state |PM〉 with to-
tal spin zero is most conveniently treated for J � t where
it is safely the ground state, see Fig. 2. In this limit, the

eigenstates of H ≈ Ht =
∑
k,σ ε(k)c†kσckσ are approxi-

mately plain waves with dispersion is ε(k) = −2t cos(k).
The paramagnetic state can be constructed by filling up
states with momenta −π2 ≤ k ≤ π

2 , and we get by inte-
gration in the thermodynamic limit

EPM ' −
4Nt

π
. (9)

This result holds up to second order in the coupling

O
(
J2

tN2

)
and in the thermodynamic limit, for details see
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FIG. 4. Finite size scaling of the magnetization at the phase boundary (critical hopping value tb). (a) The slope of the
magnetization (susceptibility, inset) grows with N at the phase boundary for fixed and small T � T ∗, signaling a first order
phase transition. For larger temperatures the slope saturates (b) with N or even decreases (c).

Sec. IV. By equating the ground state energies, we get
an estimate for the critical hopping

tc
J
' π

32
≈ 0.0982. (10)

This is reproduced by the mean-field approximation in
Sec. IV and agrees well with the numerical result for
2N = 16 fermions with a value tc/J = 0.104. In Fig. 2
we see a decreasing trend to slightly smaller tc for larger
system sizes in the numerics. We stress that the quan-
tum phase transition is present for every system size.
Next, we discuss the first order phase transition for finite
T < T ∗ and the TCP. These features of the phase dia-
gram constitute the key findings of this paper, and are
best understood within a Hartree mean-field (MF) decou-
pling of the interaction term. Here, we present only the
main aspects of the MF analysis, for details see Sec. IV.
The MF Hamiltonian reads in momentum space and in
the thermodynamic limit

HMF =
∑
k

∑
σσ′

c†kσhσσ′(k)ckσ′ +
JNM2

2
, (11)

hσσ′(k) = ε(k)δσσ′ −
JM

2

(
σxσσ′ cos(ϕ)− σyσσ′ sin(ϕ)

)
.

We have defined the uniform order parameter M =

δij 〈c†i,↑cj,↓〉 e−iϕ with real amplitude M and phase ϕ.
The phase ϕ can take any value because the direction
of the magnetization can be chosen arbitrarily in the
XY -plane. In fact, fixing ϕ breaks the continuous spin-
rotation symmetry, as expected for ferromagnetic order.
Eq. (11) is diagonalised by quasiparticles with spin point-
ing in the direction of the order parameter and dispersion
ε±(k) = ε(k) ± JM

2 . The two bands are separated by a
gap which depends on the order parameter. The self-
consistency equation for M is given by the difference in
band occupation

M =
ν− − ν+

2
, (12)

with ν± = 1
N 〈
∑
k c
†
k±ck±〉. The band occupation as a

function of hopping is shown in Fig. 3 for designated
values of T . At T = 0, the lower (upper) band is com-
pletely filled (empty) for any t < tc = π

32 . For t = tc, the
gap closes and the occupations equalize abruptly, signal-
ing a first order phase transition in agreement with the
results from ED. At finite but small T < T ∗, the lower
band is continuously depleted for t < tc and fills up the
upper band. At the critical point, however, there remains
a residual difference in occupation such that the drop in
the order parameter is still discontinuous. Hence, the
phase transition stays first order. The behavior changes
at the tricritical point

(t∗, T ∗) ≈ (0.089, 0.067)J, (13)

which is determined from the free energy, see Sec. IV.
The difference in occupation vanishes when the phase
boundary is reached such that the nature of the phase
transition becomes second order. Notice that the first
order transition appears in a very fine-tuned region of
hopping values t ∈ [t∗, tc].
Signatures of a change in the order of the phase transi-
tion are also present in the numerical data and are iden-
tified by a finite-size scaling. Fig. 4 shows that for small
T < T ∗ the magnetization becomes step-like as a func-
tion of N at the phase boundary. Therefore, the suscep-
tibility diverges at tc, in agreement with the mean-field
theory prediction of a first order phase transition. For
T < T ∗ ≈ 0.04J the slope of the maximum slope of the
magnetization at the phase phase boundary saturates,
implying a second order phase transition. For a more
detailed analysis of the numerical data, including an ex-
trapolation to the N → ∞ limit, we refer the reader to
Sec. VI.
Finally, we briefly discuss the vertical temperature axis
of the phase diagram at t = 0 where a classical second or-
der phase transition occurs at the critical point Tc (CCP).
This phase transition is also present in the classical HMF
model and is attributed to the long-range nature of the
interaction: it is well-known that the short-range XY
model has no phase transition for dimensions D < 2 [30].
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−0.4 −0.2 0.0 0.2 0.4
M

−0.18

−0.16

−0.14

−0.12

−0.10

E
M

F
/N

(a)

t/J = π/32− 2ε

t/J = π/32− ε
t/J = π/32

t/J = π/32 + ε

t/J = π/32 + 2ε

0.000 0.025 0.050 0.075 0.100 0.125 0.150
t/J

0.0

0.2

0.4

M

(b)

T = 0

T = T ∗ − 2ε

T = T ∗ − ε
T = T ∗

T = T ∗ + ε

T = T ∗ + 2ε

t/J = π/32

FIG. 5. (a) Mean-field energy density EMF/N as a function of the order parameter M for different hopping values in the
proximity (ε = 0.01) of the QCP. (b) Mean-field order parameter M as a function of the hopping amplitude t/J , for different
values of the temperature. The black dashed line indicates the QCP.

The transition temperature can be exactly calculated in
mean-field theory

Tc
J

=
1

8
. (14)

Our numerical data (ED) Tc/J = 0.112 ± 0.001 agrees
for 2N = 16 sites with the MF result within 10%. This
assures us that we are well in the thermodynamic limit.
For t = 0 we have also obtained the spectrum by sym-
metry considerations and constructed the degeneracies
combinatorically, see App. B. This gives us access to the
partition function up to 2N = 40 fermions and serves as
another crosscheck to the numerics.

IV. MEAN-FIELD THEORY

In this section we study the mean-field solution of the
model. In particular, we consider the interaction term of
the quantum many-body Hamiltonian (2). In the mean-
field decoupling scheme we use a Hartree approximation
to replace the quartic terms in the interaction according
to

c†i,↑ci,↓c
†
j,↓cj,↑ ' c

†
i,↑ci,↓〈c

†
j,↓cj,↑〉+ c†j,↓cj,↑〈c

†
i,↑cj,↓〉

− 〈c†i,↑ci,↓〉〈c
†
j,↓cj,↑〉, (15a)

c†i,↓ci,↑c
†
j,↑cj,↓ ' c

†
i,↓ci,↑〈c

†
j,↑cj,↓〉+ c†j,↑cj,↓〈c

†
i,↓ci,↑〉

− 〈c†i,↓ci,↑〉〈c
†
j,↑cj,↓〉. (15b)

Fock terms 〈c†i,σcj,σ〉 are not taken into account, be-
cause they provide only finite size corrections, as shown
in App. C. We introduce the order parameterM defined
as

M = 〈c†j,↑cj,↓〉e−iϕ = 〈c†j,↓cj,↑〉eiϕ. (16)

M is site independent, because the Hamiltonian is
translationally invariant. This is related to the magneti-

zation, introduced in Eq. 5, through

m2 = 4M2(N − 1)/N + 2/N, (17)

which in the thermodynamic limit gives M' m/2. The
mean-field version of the Hamiltonian in Eq. (11) is ob-
tained by passing to Fourier space. This Hamiltonian
is quadratic and then it can be easily diagonalized by
introducing the fermionic quasiparticle operators

ck,± =
ck,↑e

iϕ ± ck,↓e−iϕ√
2

. (18)

These are nothing but the fermionic creation and anni-
hilation operators for particles with momentum k, whose
spin state is an eigenstate of the σxy(ϕ) = cos(ϕ)σx −
sin(ϕ)σy operator, i.e., c†k,±|0〉 = |k, sxy(ϕ) = ±〉. Lead-
ing to the diagonal form of the Hamiltonian

HMF =
∑
k,±

ε±(k,M)c†k,±ck,± +
M2J

2
(N − 1), (19)

where the quasiparticle spectrum, as previously stated,
is made by two cosine bands separated by M

ε±(k,M) = −2t cos(k)∓MJ
N − 1

2N
. (20)

1. Zero temperature mean-field theory

At zero temperature we are interested in the ground
state of the system, and we can variationally minimize
EMF = 〈ψMF|HMF|ψMF〉. The condition ∂EMF/∂M = 0
provides a self-consistent expression for the order param-
eter

M =
1

2N

∑
k

(nk,+ − nk,−) =
ν+ − ν−

2
, (21)
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FIG. 6. Mean-field free energy F in the proximity of the critical point for different values of temperatures and hoppings. (a)
For T < T ∗, F has three minima which become degenerate at the critical point, signaling a first order phase transition. (b)
At T = T ∗ F displays a flat minimum at the critical point, since both the second and fourth derivative become zero. The
transition becomes second order. (c) For T > T ∗ F passes from a double well shape for to a single well for different hoppings.
The transition is second order. (d) Signs of the coefficient F4 are indicated by different shadings. F2 (F4) vanishes on the red
(blue) line. Their intersection marks the TCP.

where nk,± = 〈c†k,±ck,±〉, and ν± = 1
N

∑
k nk,± is the

density of (±) quasiparticles. Figure 5 (a) shows the
mean-field energy density EMF/N as a function of the
order parameter for different values of t/J around the
critical point. We notice that at t/J = (t/J)c the mini-
mum of EMF suddenly jumps fromM = ±1/2 toM = 0,
thus signaling a first order quantum phase transition. For
N � 1 we can perform a continuum limit in k which
allows us to exactly compute EMF in the two opposite
situations

EMF(M = 0) = −4Nt

∫ π
2

−π2

dk

2π
cos(k) = −4Nt

π
, (22)

EMF

(
M =

1

2

)
= −4Nt

∫ π

−π

dk

2π
cos(k)− JN

8
= −JN

8
.

(23)

The critical point is identified by the condition EMF(0) =
EMF(1/2) leading to (t/J)c = π/32, as shown in Fig. 5
(b), where the zero temperature order parameter cor-
responds to the dark red line. The order parameter
M = argmin[EMF(M)] displays a discontinuous jump at
this value, corresponding to a first order quantum critical
point. We notice that the mean-field results are in good
agreement with the numerical analysis presented in the
previous section for a finite system.

2. Finite temperature mean-field theory

We generalize the mean-field approach to finite tem-
perature. In fact, the knowledge of the diagonal Hamil-
tonian in Eq. (19) allows us to compute the canonical
partition function at inverse temperature β

Z = e−
β
2 JM

2(N−1)
∏
k,±

(
1 + e−βε±(k,M)

)
. (24)

From the partition function the free energy is obtained
as

F =
JM2

2
(N − 1)− 1

β

∑
k,±

ln
(

1 + e−βε±(k,M)
)
. (25)

In order to study the finite temperature phase diagram
it is useful to consider an expansion of the free energy to
fourth order in the order parameter

F = F0 + F2M2 + F4M4 +O(M6), (26)

with coefficients

F0 = − 2

β

∑
k

ln(1 + e−βεk(t)), (27)

F2 =
J(N − 1)

2

[
1− βJ

8

(N − 1)

N2

∑
k

1

cosh2(βεk(t)/2)

]
,

(28)

F4 ∝
1

N

∑
k

cosh(βεk(t))− 2

cosh4(βεk(t))
. (29)

Here, we have introduced the shorthand notation εk(t) =
−2t cos(k). Notice that the free energy contains only even
powers of m due to time-reversal symmetry. The second
order transition is then identified by the conditions F2 =
0, F4 > 0. In fact, shown in Fig. 6(c), for F4 > 0
the free energy has the double well shape typical to of
second order phase transitions. This conditions provide
an implicit equation for the phase boundary

βJ

8

∫ π

−π

dk

2π

1

cosh2(βεk(t)/2)
= 1. (30)

In the limit t → 0 the integral becomes one and we find
(T/J)c,t=0 = 1/8, which is in good agreement with the
critical temperature as obtained from the exact solution
of the model at zero hopping. Then the phase transition
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FIG. 7. Internal energy density U/N , specific heat C/N and entropy density S/N as a function of T at fixed t, obtained by
ED with 2N = 16 fermions (top row) and by mean-field theory (bottom row). The values t = 0.104J (ED) and t = 0.097J
(MF) correspond to the QCP. Lines for t = 0.092J (triangles) show a first order phase transition, highlighted by the green solid
arrow. Lines for t = 0.002J, 0.07J (squared, bullets) show a second order phase transition, highlighted by green dashed arrows.

becomes first order when F4 < 0; in fact in this case, in
order to preserve the stability, we need to include also
the sixth order in the free energy expansion (26). Con-
sequently, as shown in Fig. 6 (a), the free energy at the
critical point has three minima which become degenerate
at the critical point signaling a first order phase transi-
tion.
Figure 6(d) shows the points in the t-T plane where
F2 = 0 (red line) and F4 = 0 (blue line). The inter-
section between these two lines determines a tricritical
point (T ∗, t∗) at which the phase transition passes from
second to first order. Within mean-field theory its loca-
tion is found to be at

(t∗, T ∗) ≈ (0.089, 0.067)J. (31)

This result further corroborates the simple argument and
numerical finite size results, see Sec. VI. Minimizing F
with respect to the magnetizationM, we obtain the same
self consistent equation for the order parameter as in the
zero temperature case (21), with the ground state expec-
tation values replaced by thermal averages subject to a
Fermi-Dirac distributions

nthk,± =
1

1 + eβε±(k,M)
. (32)

Fig. 5 (b) shows the order parameter as a function of
t/J and for different values of the temperature around
the tricritical point T = T ∗. For T < T ∗, M displays a
discontinuous jump at the transition point, which is then

of first order. As the temperature increases the discon-
tinuity becomes smaller reaching zero at the tricritical
temperature T = T ∗. Then for T < T ∗ the order param-
eter becomes a continuous function of t/J , thus under-
going a second order phase transition.
Finally the complete mean-field phase diagram, obtained
by numerically minimizing the free energy (25) with re-
spect to the magnetization, is shown in Fig. 1 (b). Very
good agreement is found with the exact numerical phase
diagram Fig. 1 (a).

V. THERMODYNAMICS

We investigate the internal energy, specific heat and
the entropy

U = 〈H〉, C =
∂U

∂T
, S = ln(Z) +

U

T
(33)

of the fermionic quantum HMF in the canonical ensem-
ble. The thermodynamic quantities permit further inves-
tigation of the critical points and phase boundaries, as
well as a comparison between numerics and MF theory.
Fig. 8 displays surfaces of the thermodynamic quantities
in the T -t plane, obtained by ED and MF theory. Both
approaches are in seemingly good agreement, especially
in the ordered phase and for low temperatures. The QCP
is visible in all plots in terms of a cusp (U), jump (C) and
a non-zero value of S. tc is somewhat larger in the nu-
merics than in MF theory. The CCP is most pronounced
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FIG. 8. Surface plots for the internal energy density U/N , heat capacity C/N and entropy density S/N for ED (a)-(c) and
MF theory (d)-(f). Phase boundaries are obtained from the magnetization and are colored in black (ED) and white (MF).
First order phase boundaries (solid lines) and second order phase boundaries (dashed lines) meet at the TCP, as indicated by
a purple star.

in the vicinity of the maximum in C; here, the numerics
has a lower value of Tc than in MF theory. Signatures of
the TCP are already visible in MF theory for the heat ca-
pacity (Fig. 8 (e)) indicated by the maximum that builds
of from the top right corner of the PM phase. For the
numerics, the TCP remains hidden in Fig. 8; later we
will extract more information from the surface plots by
taking generalized derivatives in parameter space.
We proceed to a more detailed and quantitative treat-
ment in Fig. 7 which shows U/N , S/N and C/N for
fixed, representative values of the hopping as a function
of T . The temperature dependence of the thermody-
namic quantities differs strongly depending on whether
the system has few charge fluctuations (t ≈ 0), moderate
charge fluctuations (t < t∗ < tc) or large charge fluctua-
tions (tc < t).

1. Few charge fluctuations t ≈ 0

In the ordered phase and with few charge fluc-
tuations (t ≈ 0), U remains nearly constant in the
low-temperature regime T / 0.05J ; also C is very flat
and S grows slowly. This reflects that the manifold of
high-energy states is gapped out due to the dominance
of interactions over hopping in the full quantum HMF;
in MF theory the lower band contributes with constantly
low density of states at half-filling to U and agrees
well with the numerical result. For T > 0.05J , U
increases then significantly, indicated by the maximum
of the heat capacity: this occurs due the onset of the
highly degenerate high-energy states in the many-body

spectrum for T ∼M, see Fig. 2 (a).
In MF theory this is due to increase of the density
of states away from the middle of the band. The
second order phase transition is, however, only clearly
visible in MF theory and appears as a cusp in C, as
indicated by a dashed green arrow. In the numerics,
the CCP is observed after performing a finite size
scaling, see Fig. 9, and approaches the MF value. Notice
that the entropy is a convex function in the ordered
phase for 0.05J < T < Tc and concave for T > Tc, and
approaches the limit S → 2N ln(2) at high temperatures.

2. Moderate charge fluctuations t∗ < t < tc

For moderate charge fluctuations we observe sig-
nificant ramifactions of the described behavior. This
happens due to the hopping-induced splitting of the
high-energy states, which supports the formation of a
quasi-continuum in the many-body spectrum, separated
to the gapped ground state, see Fig. 2. After T surpasses
the hopping-reduced gap, U rises approximately linear
in temperature. S increases drastically and acquiring a
concave shape for much lower temperatures. For hopping
strengths t∗ < t < tc, U exihibits then a discontinuous
jump in MF theory, marked by a solid green arrow,
which signals a first order transition; this is in stark
contrast to the discontinuity in C for t < t∗ signaling
a second order transition; there is a latent heat in the
system to be compensated before going through the
phase transition for t∗ < t < tc. Due to the finite-size
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FIG. 9. Heat capacity for different system sizes at zero
hopping, obtained by counting degeneracies as explained in
App. B. The critical temperature Tc is obtained by calculat-
ing min{∂TC} and is in agreement with the the mean-field
value Tc/J = 1/8.

effects this is not clearly visible in the ED data of Fig. 7
without further analysis, see Sec. VI.
The QCP (tc = 0.104J for 2N = 16 fermions) appears
directly in the internal energy, which is reduced in the
disordered phase at zero temperature, since EPM < EFM.
In the vincinity of the QCP, i.e. (t, T ) = (tc ± ε, ε), the
system may be regarded as an effective two-level system
with partition function Z(β) ≈ e−βEFM [1+eβ(EFM−EPM)].
Hence, the heat capacity displays an enhanced value at
t ≈ tc as observed in the data, see also inset of Fig. 7.
The entropy has a non-zero value S = ln(2) at the
QCP a clear signature for a two-level system. Both
features are absent in the plots of the MF data due to
the thermodynamic limit.

VI. FINITE SIZE ANALYSIS OF THE
TRICRITICAL POINT

We analyze the ED data in more detail, and provide
solid evidence for the existence of the tricritical point and
a first order line in the phase diagram. It is not easy to
visually identify a tricritical point in the magnetization
for the system sizes available (up to 2N = 16 fermions),
compare Fig. 1. Therefore, a more involved finite size
analysis is needed. In particular, we will look at different
cuts along the t-axis in the phase diagram Fig. 1 (a).
In the thermodynamic limit, a first order transition is
identified by a discontinuous jump in m2, while a second
order transition is identified by a cusp in m2. For any
finite N and at non-zero temperature, m2 is a continuous
function, and the transition happens within a finite win-

dow of hopping values. In the following we make use of
the different behavior of the window size in the thermody-
namic limit to determine the order of the phase transition
by extrapolation from our finite size data. Concretely,
the window size goes to zero as N →∞ for a first order
transition, while it remains finite for a second order tran-
sition. We define the size of this window ∆t = (ta−tb)/J
by taking the difference at designated hopping values tb
and ta before and after the transition at which the cur-
vature of the order parameter m2 becomes extremal, i.e.
we determine ∂2tm

2(t) |ta,b= 0.

Fig. 10 (a) shows ∂tm
2 as a function of the window

∆t for qualitatively different temperatures T < T ∗ and
T > T ∗. It is clearly visible that this quantity decreases
drastically with increasing system sizes in the first case
(T < T ∗), while it stays nearly constant in the second
case (T > T ∗). This indicates a qualitative difference
between the two scenarios where the former corresponds
to a first order and the latter to a second order phase
transition.

In Fig. 10 (b) a finite size extrapolation of the tran-
sition window size is shown. Here, we fit the finite size
values in 1/N linearly and extract the projected window
size as 1/N → 0. Due to errors from the small available
system sizes, we include the covariance of the fitting pro-
cedure as gray shaded areas. Despite of uncertainties, it
is clearly visible that for 1/N → 0 the transition window
goes to zero within the errorbars for low temperatures,
while it approaches a finite value for large temperature.
This trend occurs still within the phase boundaries of the
ordered phase.

Figure 10 (c) shows the 1/N → 0 extrapolation for the
size of the transition window with respect to tempera-
ture. Here it becomes apparent that for small temper-
atures T < 0.04J the extrapolation is essentially zero,
indicating a first order phase transition; for larger tem-
peratures a transition to a second order one is observed.
The temperature value at which this qualitative change
is observed can be identified with the tricritical point at
which the mean field calculation shows a transition from
a first to second order line.

The extrapolation procedure suggests a numerical
value close to T ∗ED = 0.04J . The discrepancy with the
mean field result T ∗MF = 0.067J can be explained by the
lack of large system sizes for the fitting procedure, as
well as effects due to quantum fluctuations not included
in the mean-field treatment.

VII. CONCLUSION

In this paper, we have proposed a quantum mechanical
generalization of the fully connected Hamiltonian mean-
field model [4]. The classical motion of N fully coupled
rotators is realized in the quantum case by an all-to-all
X-Y interaction among spin- 12 fermions, that hop on a
one-dimensional ring. For definiteness, we have restricted
our analysis to ferromagnetic coupling and half-filling. In
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(a) (b) (c)

FIG. 10. Finite size analysis of the transition window for the ED data. (a) Cut along the axis of hopping of the second partial
derivative of the magnetization for different temperature values. System sizes increase from 2N = 8 (red) to 2N = 16 (blue).
The left vertical axis corresponds to data at T = 0.09J , the right to T = 0.2J . The origin of both data sets is set to the point
of maximum curvature ta. (b) Size of transition window ∆t = (ta − tb)/J (as defined in Sec. VI) for different system sizes N
and temperatures T = 0 (bottom) to T = 0.9 (top) in steps of ∆T = 0.1. The dashed black lines are linear fits extrapolating
the finite size data to smaller 1/N . The shaded areas correspond to the square roots of the covariance of the fits and give an
estimate of the errors of the fitting procedure. (c) 1/N → 0 extrapolation for the temperatures shown in (b).

this scenario, the hopping on the lattice can be viewed
as charge fluctuations of the ordered ground state, which
compete with the ferromagnetic X-Y -type order, and
drive the system into the disordered phase. The main
finding of the paper is the tricritical point at non-zero
temperature and hopping, separating a first from a sec-
ond order phase transition.
The phase diagram of the model is studied as a func-
tion of temperature and hopping with exact diagonaliza-
tion complemented by mean-field theory. We find a first
order quantum critical point at zero temperature and
non-zero critical hopping, and a second order classical
critical point at zero hopping and non-zero critical tem-
perature. At the quantum critical point the ground state
changes abruptly from a state with maximum total spin
(ferromagnet) to a state with minimum total spin (para-
magnet). We have shown how the level crossing can be
understood from basic symmetry arguments. MF theory
and numerics agree on the determination of the quantum
critical point.
The phase boundary, which extends to finite tempera-
ture from the quantum critical point, remains first or-
der and becomes second order only at a tricritical point.
In the MF analysis, the effective model involves parti-
cles with spin uniformly aligned in the direction of the
magnetization, resulting in two lower-energy bands sep-
arated by an order-induced gap. The energetically lower
(upper) band is completely filled (empty) at zero hop-
ping; varying the hopping gradually tunes the filling of
the bands. At the gap closing the residual occupation
difference, defining the magnetization, can take either a
finite or a zero value. This determines consequently the
order of the phase transition.
The resulting tricritical point T ∗ is clearly seen in mean-
field theory, with analytic expressions of the free energy
F as a function of magnetization (26) at hand, with F
following textbook Landau theory. In the vicinity of the
tricritical point, F is a fourth order polynomial in the

magnetization with double-well shape for T > T ∗, as ex-
pected from a second order transition, and a sixth-order
polynomial with three minima for T < T ∗, as expected
from a first order transition. We also observe clear signa-
tures of the change in the order of the phase transition in
the numerics by finite-size analysis. A detailed study of
thermodynamic observables has been further performed
and displays salient features, such as jumps and cusps at
the critical points.
This work sets the ground for future investigations of
tricriticality in the quantum regime in the presence of
long-range interactions. Further, the study of the dy-
namics of the quantum HMF model represents a testbed
of critical phenomena for experiments on an envisaged
long-range quantum computer. In particular, it would
be of great interest to inspect the dynamics of the entan-
glement entropy and its potential anomalous resilience
far from equilibrium.
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Appendix A: Spectrum for zero hopping case and

We review some spectral results at zero hopping [26].
Taking states with homogeneous particles density into
account (i.e. one spin per site), the quantum HMF re-
duces to the fully connected XY-model, also known as the
Lipkin-Meshkov-Glick (LMG) model at zero field [25].
Using the spin projection Si,a = σai /2 (~ = 1), we can
write the interaction as HJ = −(J/2N)[S2

x + S2
y −Kx −

Ky], where Sa =
∑
i Si,a is the total spin projection

in direction a and Ka =
∑
i S

2
i,a the squared euclidean

norm. For spin- 12 particles, the norm gives a constant

shift Ka = N
4 since for any Pauli-matrix (σai )2 = 1. We

can proceed by expressing the Hamiltonian in terms of
the total spin S and its projection Sz

H̃J = − J

2N

(
S2 − S2

z

)
+
J

4
. (A1)

The spectrum reads

ẼJ = − J

2N

(
S(S + 1)− S2

z

)
+
J

4
. (A2)

The magnetization is equal to the interaction energy up
to a scaling and a constant via

ẼJ =
J

4

(
1− Nm2

2

)
(A3)

In the ferromagnetic (FM) case J < 0, the ground state
is obtained by maximizing the total spin S = N/2 while
simultaneously minimizing the spin projection, placing
an equal number of spin up and down. In a Fock basis
the ground state reads (N is a normalization)

|FM〉 =
1√
N

(| ↑↓↑ · · · > +”all transpositions”) , (A4)

with eigenvalue EFM = −JN/8 for even N . At zero tem-
perature, this implies a unit magnetization for J > 0.
In the antiferromagnetic (AFM) case J > 0, the ground
state is obtained by minimizing the total spin while maxi-
mizing the total projection. Since Sz = −S,−S+1, . . . , S
this is achieved for total spin zero and thus Sz = 0 (N
even) and total spin S = 1/2 and Sz = ±1/2 for (N
odd). The magnetization vanishes for antiferromagnetic
coupling for N →∞.
Expression (A1) can be generalized to fermions, when we
take into account the possibility of doubly occupied sites.
Due to the conservation of local variance in the particle
number at t = 0, the Hamiltonian separates into blocks
with equal number of doubly occupied sites. Let us de-
note the number of doubly occupied sites by N#. The
spectrum at t = 0 is given then given by

EJ = − J

2N

(
S(S + 1)− S2

z

)
+
J

4

N −N#

N
. (A5)

Appendix B: Thermodynamics for zero hopping

We give some details of the calculation of the ther-
modynamic quantities at zero hopping in the canoni-
cal ensemble. The main difficulty is to determine the
degeneracies g which enter the partition function (with
β = (kBT )−1)

Z =
∑
N#

∑
s

g(N#, s)
∑
sz

e−βE(N#,s,sz). (B1)

The partition function is summed over the spin-
projections Sz = −S, ...,+S, total spins S and the sectors
with different number of doubly occupied sites. There are
three sources of degeneracies in the spectrum:

i) Eigenvalues with different s, sz, N# can be equal.
ii) A chain of spin- 12 fermions combines to degenerate

total spins s. Iteration of the the rules of angular mo-
mentum addition leads to direct product decomposition
[31]

n⊗
k=1

1

2
=

bn/2c⊕
k=0

(
n+ 1− 2k

n+ 1

(
n+ 1
k

))
(n + 1− 2k).

(B2)

iii) Double occupancy is another source of degeneracy.
To see this, consider the Fock states at half-filling with
N# doubly occupied sites, N# = N0 empty sites with N↑
fermions with spin up and N↓ with spin down. There are(

N
N#, N0, N↑, N↓

)
=

N !

(N#!)2N↑!N↓!
(B3)

states with this property. This degeneracy also enters
into g. Fig. 9 was produced by setting up an efficient
algorithm which counts the degeneracies as described.

Appendix C: Fock term contribution

We give details of the the mean-field approximation in-
troduced in section IV. Particularly, we demonstrate that
it is sufficient to consider the Hartree term whereas the
constribution of the Fock term produces a 1/N correc-
tion. For the Fock term we consider a different contrac-
tion of the fermionic operators in the interaction Hamil-
tonian

c†i,↑ci,↓c
†
j,↓cj,↑ ' −c

†
i,↑cj,↑〈c

†
j,↓ci,↓〉 − c

†
j,↓ci,↓〈c

†
i,↑cj,↑〉

+ 〈c†i,↑cj,↑〉〈c
†
j,↓ci,↓〉, (C1)

c†i,↓ci,↑c
†
j,↑cj,↓ ' −c

†
i,↓cj,↓〈c

†
j,↑ci,↑〉 − c

†
j,↑ci,↑〈c

†
i,↓cj,↓〉

+ 〈c†i,↓cj,↓〉〈c
†
j,↑ci,↑〉. (C2)

Accordingly we can introduce an additional set of order
parameters defined as

∆r = 〈c†j,↑cj+r,↑〉 = 〈c†j,↓cj+r,↓〉, (C3)
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Here, we made use of spin-rotation symmetry of the orig-
inal Hamiltonian, which tells us that ∆r is spin indepen-
dent. Then, the mean-field Hamiltonian can be written
as

HHF = Ht +HHartree
XY +HFock

XY , (C4)

where HMF = Ht + HHartree
XY is the mean-field Hamilto-

nian studied in the main text and the Fock contribution
is given by

HFock
XY =

J

2N

∑
i<j,σ=↑,↓

(
c†iσcj,σ + H.c.

)
∆|i−j|

− J

2

(N−1)/2∑
r=1

∆2
r (C5)

We go to momentum space and introduce the (±) quasi-
particles (18)

HHF =
∑
k,±

ε̃±(k,M,∆k)c†k,±ck,± +
M2J

2
(N − 1)

− J

2N

∑
k

∆2
k, (C6)

The quasiparticle bands are now given by

ε̃±(k,M,∆k) = −2t cos(k)∓MJ
N − 1

2N
+
J∆k

N
, (C7)

Notice, that we have introduced the Fourier transform
of the Fock order parameter ∆k =

∑
r e

ikr∆r. At zero
temperature the order parameters M and ∆k are self-
consistently determined minimizing the ground state en-
ergy, i.e., imposing the conditions ∂EHF/∂M = 0 and
∂EHF/∂∆k = 0. The first condition gives Eq. (21) for
M, while the second condition tells us that

∆k = nk,+ + nk,− = nk. (C8)

Inserting this result back into the diagonal form of the
Hartree-Fock Hamiltonian we obtain

HHF = HMF +
J

2N

∑
k

n2k, (C9)

where HMF corresponds to the mean-field Hamiltonian
in Eq. (19). We notice that, the Fock contribution is
a finite size correction to the mean-field energy, which
can be safely neglected in the thermodynamic limit. In
fact the k-mode occupation number can take only the
values nk = 0, 1, 2 and then we always have n2k ∼ O(1).

It follows that J
2N

∑
k n

2
k ∼ O(1). On the other hand

HHF and HMF, being extensive quantities, scale as O(N).
Accordingly, in the large N limit, we have

HHF

N
=
HMF

N
+O(N−1). (C10)

At finite N the correction due to the Fock contribution
adds an energetic penalty to doubly occupied modes with
nk = 2 and favors the XY magnetic order. In fact, as
shown in the main text, the paramagnetic state has the
lowest N/2 modes doubly occupied by a (+) type fermion
and a (−) type fermion, the paramagnetic Hartree-Fock
energy is then

EHF(M = 0) ' −4Nt

π
+ J. (C11)

On the contrary, in the ferromagnetic state all the N
states are occupied by only one particle, accordingly the
ferromagnetic Hartree-Fock energy is

EHF(M = 1/2) ' −JN
8

+
J

2
. (C12)

It follows that the correction of order N−1 due to the
Fock contribution lowers down the value of the critical
hopping at finite N .
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