
Document type: Preprint

Title: 

 

 

 

Promotion of superconductivity in magic-angle graphene 

multilayers 

 

Author(s): 

 

 

YIRAN ZHANG, YIRAN ZHANG, CYPRIAN LEWANDOWSKI, ALEX THOMSON, 

YANG PENG, YOUNGJOON CHOI, HYUNJIN KIM, KENJI WATANABE, TAKASHI 

TANIGUCHI, JASON ALICEA,  FELIX VON OPPEN, GIL REFAEL, AND STEVAN 

NADJ-PERGE

Citation: 

  

 

 

  

 

  

 

"YIRAN ZHANG u.a., 2022, Science 377 (6614), pp. 1538-1543 ; https://www.science.org/

doi/10.1126/science.abn8585" 

Archiviert unter http://dx.doi.org/10.17169/refubium-37582

Terms of Use: 

  

  

Copyright applies. A non-exclusive, non-transferable and limited 

right to use is granted. This document is intended solely for 

personal, non-commercial use. 



Ascendance of Superconductivity in Magic-Angle
Graphene Multilayers
Yiran Zhang1,2,3∗, Robert Polski1,2∗, Cyprian Lewandowski2,3, Alex Thomson2,3,4, Yang Peng5,
Youngjoon Choi1,2,3, Hyunjin Kim1,2,3, Kenji Watanabe6, Takashi Taniguchi6, Jason Alicea2,3, Fe-
lix von Oppen7, Gil Refael2,3, and Stevan Nadj-Perge1,2†

1T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 East Cali-
fornia Boulevard, Pasadena, California 91125, USA
2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, Cal-
ifornia 91125, USA
3Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
4Department of Physics, University of California, Davis, California 95616, USA
5Department of Physics and Astronomy, California State University, Northridge, California 91330,
USA
6National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305 0044, Japan
7Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin,
14195 Berlin, Germany
*These authors contributed equally to this work
†Correspondence: s.nadj-perge@caltech.edu

Graphene moiré superlattices have emerged as a platform hosting an abundance of corre-
lated insulating, topological, and superconducting phases. While the origins of strong cor-
relations and non-trivial topology are shown to be directly linked to flat moiré bands1–7,
the nature and mechanism of superconductivity remain enigmatic. In particular, only al-
ternating twisted stacking geometries8 of bilayer and trilayer graphene are found to ex-
hibit robust superconductivity manifesting as zero resistance and Fraunhofer interference
patterns9–11. Here we demonstrate that magic-angle twisted tri-, quadri-, and pentalayers
placed on monolayer tungsten diselenide exhibit flavour polarization and superconductivity.
We also observe insulating states in the trilayer and quadrilayer arising at finite electric dis-
placement fields, despite the presence of dispersive bands introduced by additional graphene
layers. Moreover, the three multilayer geometries allow us to identify universal features in
the family of graphene moiré structures arising from the intricate relations between super-
conducting states, symmetry-breaking transitions, and van Hove singularities. Remarkably,
as the number of layers increases, superconductivity emerges over a dramatically enhanced
filling-factor range. In particular, in twisted pentalayers, superconductivity extends well be-
yond the filling of four electrons per moiré unit cell, demonstrating the non-trivial role of
the additional bands. Our results highlight the importance of the interplay between flat and
dispersive bands in extending superconducting regions in graphene moiré superlattices and
open new frontiers for developing graphene-based superconductors.

While a rich phase diagram of quantum electronic phases has been realized in many graphene
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superlattice structures, robust superconductivity is so far exclusive to twisted bilayer graphene
(TBG)1, 9 and twisted trilayer graphene (TTG)10, 11. Striking differences between TBG and TTG
(e.g., Pauli limit violation12 and Bose-Einstein condensate type superconductivity10, 11 observed
in TTG) may serve as clues to the origin of their phenomenology; nevertheless, our ability to
identify the truly universal features of these systems is ultimately limited by the relative dearth of
robust superconducting moiré materials, suggesting that further progress lies not only in a better
understanding of TBG and TTG, but also in the discovery of new superconducting systems.

We investigate twisted graphene multilayers where each successive layer is twisted by an angle±θ
relative to the previous one in an alternating sequence (Fig. 1a). For an even number n of layers,
the spectrum at zero displacement field D is expected to separate into n/2 independent TBG-like
bands, each characterized by a different effective twist angle. When the number of layers n is
odd, in addition to (n − 1)/2 TBG-like bands, one monolayer-graphene-like (MLG-like) band
(essentially a Dirac cone) is expected8 (see left column of Fig. 1b for examples when n is 3, 4
and 5). The system may be conveniently modified through the application of a displacement field
D, which controllably hybridizes the different bands (Fig. 1b right column). Experimentally, we
explore properties of alternating twisted trilayer, quadrilayer, and pentalayer graphene (TTG, TQG,
TPG) structures with θ = 1.52° (device D1, trilayer), θ = 1.80° (D2, quadrilayer), and θ = 1.82°
(D3, pentalayer), respectively (see Methods and Supplementary Information (SI), section 1 for
fabrication and twist-angle characterization). These twist angles all lie close to the theoretically
predicted “magic” values needed to obtain one set of flat TBG-like bands (θmagic

TTG =
√

2θmagic
TBG ≈

1.53°, θmagic
TQG = (

√
5 + 1)θmagic

TBG /2 ≈ 1.75°, and θmagic
TPG =

√
3θmagic

TBG ≈ 1.87° assuming an effective
TBG twist angle θmagic

TBG = 1.08°; see SI, section 4a)8. We find that TTG, TQG, and TPG all
exhibit hallmark signatures of strong correlations (Fig. 1c-e), including robust superconductivity
and flavour symmetry breaking as revealed by pronounced resistance peaks around certain integer
filling factors ν (number of electrons per moiré site; see SI, section 1 for assignment of ν).

In addition to the symmetry-breaking transitions previously reported in TTG10, 11, 13, our TTG struc-
ture (coupled to a coupled to tungsten diselenide (WSe2) monolayer14) exhibits a previously un-
observed correlated insulating state near ν = +2 at finite D (inset in Fig. 1c; see also SI Fig. 4
for more complete D and ν dependence). This insulating state cannot arise at the non-interacting
band theory level (Fig. 1b right column; also see SI, sections 3 and 4 for more data and further dis-
cussion) and is instead attributed to the interplay between an interaction-driven cascade transition
and hybridization induced by the D field (e.g., as captured by Ref. 15, 16). We have also detected
an insulating state developing at finite D fields in TQG near charge neutrality (Fig. 1d inset and
Fig. 1g). However, in contrast to TTG, the TQG insulating state can be explained through the D-
induced hybridization only. Importantly, the detection of insulating gaps in TTG and TQG implies
a low level of disorder in our samples (see also SI Fig. 1).

The superconducting regions in all three structures extend over significantly larger filling factor
ranges in comparison to TBG where superconductivity is typically observed within 2 < |ν| < 3.
Moreover, as the layer number is increased, superconductivity on both electron and hole sides
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persists to progressively higher fillings, reaching ν ≈ +5 on the electron side for TPG (Fig. 1c-
e). Along with a zero longitudinal resistance Rxx observed in the characteristic ν vs. T dome
(Fig. 1h-j), we also measure well-resolved Fraunhofer-like patterns exhibiting large critical cur-
rents (∼ 400 nA), substantiating the robustness of phase coherence (see SI Fig. 3). Moreover,
high critical perpendicular magnetic fields Bc (typically ∼ 0.8 T) indicate that the corresponding
Ginzburg–Landau coherence lengths ξGL (approximately 10 − 30 nm) are significantly smaller
than those observed in TBG and deviate from the weak-coupling prediction, ξGL ≈ ~vF/π∆ with
∆ ≈ 1.76kBTc—suggesting a strong-coupling origin of superconductivity10, 11 (see SI, section 2).
When combined with other recent experiments12, 17, 18, these observations affirm the unconventional
nature of superconductivity within the entire class of graphene moiré systems. Further, the mea-
surements on three to five layers indicate that the addition of layers promotes superconductivity
over a broader filling window despite the coexisting dispersive bands as well as the ostensibly
increased vulnerability to disorder—both from the additional twist angles as well as from the sen-
sitivity to the relative displacement between layers.

In addition to the pronounced ν-dependence, the observed superconducting pockets are highly
tunable with electric displacement field D (Fig. 2). A comparison of the three structures reveals,
however, that TQG and TPG are more tunable than TTG. This is apparent both in the D-dependent
evolution of the filling range where superconductivity is measured (Fig. 2a-c) as well as in the crit-
ical temperature Tc (Fig. 2d-f). Notably, superconductivity in TQG and TPG is fully quenched for
all fillings atD/ε0 = 0.75 V nm−1 andD/ε0 = 0.6 V nm−1, respectively. In the case of TTG, how-
ever, superconductivity is present up to the maximum accessible electric field D/ε0 = 1 V nm−1.
Nevertheless, Rxx versus D and temperature measurements do show that superconductivity is sup-
pressed at optimal doping in all three heterostructures; further, they reveal that Tc forms a D sym-
metric dome maximized at small finite D fields (Fig. 2d-f, for electron-side data showing similar
behaviour see SI Fig. 5). We also note that TTG, TQG, and TPG all exhibit a similar variation
of Tc when viewed as a function of the potential difference U between the top and bottom layers
(SI Fig. 5d,e; see also SI, section 3 for the energy conversion from D to U ). This layer-number
invariance is consistent with non-interacting continuum-model calculations tracking the evolution
of the inverse of the flat-band bandwidth with U (Fig. 2g bottom). The dependence of Tc on D in
all devices qualitatively matches the predictions of Ref. 19 for TTG with one marked exception:
the observed vanishing of superconductivity and the decay of Tc appears to be linear inD (Fig. 2e,f
and SI Fig. 5), in line with predictions for multilayer graphene with rhombohedral stacking20 and
in contrast to the exponential ‘tail’ typically expected from the weak-coupling theory (and seen in
the model of Ref. 19).

Comparing the location of the superconducting regions with the evolution of the Hall density as a
function of D and ν in TTG, TQG, and TPG provides further insight into the intricate relationship
between the superconducting phase and the correlation-modified Fermi surface (Fig. 3). As in
previous TBG and TTG measurements, we observe symmetry-breaking electronic transitions (a
‘cascade’ of transitions) that are signalled by sudden drops in the Hall density magnitude (a ‘reset’)
without a change in sign. These resets (see dashed lines in Fig. 3a-d) indicate a rearrangement
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of spin/valley sub-bands and typically occur near integer fillings of the flat bands3, 5. At low D
fields, superconducting pockets onset around the |ν| = 2 resets (purple dashed line), and the filling
extent of superconductivity varies depending on the presence or absence of a |ν| = 3 flavour
symmetry-breaking transition (grey dashed line). For electron- and hole-doped TTG as well as for
electron-doped TQG (Fig. 3a,b,d), a flavour symmetry-breaking transition appears at |ν| = 3 and
superconductivity accordingly terminates. By contrast, when signatures of the |ν| = 3 reset are
completely absent (for example in hole-doped TQG, Fig. 3c, or in TPG), superconductivity extends
much further. Combined, these observations suggest that superconductivity is favoured when only
two out of the four flavours are significantly populated (|ν| = 2 cascade) and suppressed beyond
|ν| = 3 resets. This behaviour can be understood within the simplest iteration of the cascade
scenario: resets at |ν| = 3 produce spin- and valley-polarized bands21–23 and naturally disfavour
Cooper pairing of time-reversed partners.

At highD fields, signatures of the cascade vanish and instead van Hove singularities (vHs) become
more prominent, reflecting qualitative changes in the band structure (see yellow lines in Fig. 3a-d
and SI Fig. 6 that track the vHs). Consistent with previous TTG measurements10, 11, the vHs in
our TTG sample (as well as in TPG, see Fig. 3e,f) crudely bound the superconducting regions. By
contrast, the vHs in TQG cross well into the superconducting pockets—in fact, for electron doping,
Tc reaches its maximum exactly at the position of the vHs (Fig. 3d, orange dot and SI Fig. 7d-f).
The interplay between the vHs and superconductivity is thus not a universal property of graphene
moiré systems but rather depends on the layer number and possibly the precise twist angle.

Pentalayer measurements provide additional signatures that point towards a close relation between
superconducting phase boundaries and flavour symmetry-breaking cascades (Fig. 3e,f). In contrast
to TTG, in TPG we can access D fields that are large enough to stifle superconductivity—which
occurs simultaneously with the onset of the vHs and the apparent suppression of the cascade tran-
sitions (see red and light blue lines in Fig. 3f that mark the superconducting boundaries and the
cascade transitions, respectively). For example, at low D fields (|D|/ε0 < 0.6 V nm−1) around
ν = +2, the Hall density resets close to zero, in line with a nearly complete flavour symmetry-
breaking polarization. However, at higher D fields (|D|/ε0 > 0.6 V nm−1), the Hall density is
dominated by a vHs around ν = +2, while the cascade signatures are diminished. Superconduc-
tivity accordingly also vanishes. For hole doping, the disappearance of superconductivity similarly
coincides with the weakening of the cascade. This on/off correspondence between the two phe-
nomena suggests that they either share a common origin, such as a large DOS, or that the cascade
serves as a prerequisite for robust superconductivity in graphene moiré superlattices.

As mentioned above, for low D fields in TPG, the superconducting pockets are extraordinarily
large, spanning −4 . ν < −2 for hole doping and +2 . ν . +5 for electron doping (Fig. 1e,
Fig. 2c, and Fig. 4). In particular, the electron-side range corresponds roughly to a density window
of 6 × 1012 cm−2, which is the largest filling range so far reported in a graphene-based supercon-
ductor. The observed superconductivity exhibits similar values of Tc and Bc as the trilayer and
quadrilayer samples and is likewise accompanied by a Fraunhofer pattern (Fig. 4c inset), confirm-
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ing its robust nature. We emphasize that the unprecedented persistence of superconductivity across
a large filling factor range in TPG (and also TQG in comparison to TTG or TBG) cannot be ex-
plained in a minimal framework of alternating twisted graphene multilayers8, 24 without invoking
the non-trivial role of the additional bands.

Explanations for the enlarged superconducting intervals can generically be organized into three
scenarios depending on the filling of the flat TBG-like bands νflat, relative to the total filling νmax

at which superconductivity terminates (νmax = +5 for electron-doped TPG and |νmax| = 4 for
TQG and hole-doped TPG). In scenario (i), νmax corresponds to νflat ≈ +3, the flat-band filling at
which superconductivity is typically suppressed in TBG, whereas in scenario (ii), νmax coincides
with νflat ≈ +4, precluding any simple analogy with TBG. Finally, scenario (iii) assumes full
filling of the flat bands before superconductivity is suppressed at νmax. This scenario includes the
possibility that the distinction between the different TBG- and MLG-like bands breaks down even
at D = 0 due to hybridization (for a more complete description of the three scenarios, see SI,
section 5).

From the perspective of the non-interacting band structure, scenarios (i) and (ii) are completely
implausible. In particular, although the presence of the dispersive bands implies that δν = |ν| −
|νflat| > 0, this effect is much smaller than needed for these two scenarios. However, δν may
nevertheless be significantly enhanced by Coulomb interactions. First, the Hartree correction ac-
counts for the system’s desire for a spatially uniform charge distribution. Since the flat bands are
highly localized on the AA sites, the Hartree correction, so far primarily studied in TBG, manifests
mainly as a band deformation and flattening25–29—shifting the density of states to spread out the
charge. When dispersive bands, whose wavefunctions are more uniformly distributed within the
unit cell, are also present as in TTG, TQG, and TPG, charge may be redistributed by shifting the
energy of these bands relative to the flat bands18, 30. More generally, the Coulomb interaction can
facilitate symmetry breaking, as reflected in the flat-band cascade resets and gap openings (which
in TBG yields correlated insulators1). In this context, gap formation pushes the flat bands up in
energy, allowing additional charge to accumulate in the dispersive bands, thus further increasing
δν. Finally, multilayer structures beyond TBG can additionally have non-uniform layer-to-layer
charge distribution or next-layer coupling which may further deform the bands, leading to self-
generated shifts between the flat and the other bands as well as introducing coupling between them
(see SI, sections 4d and 4e).

A toy model for TPG incorporating these mechanisms (see SI, section 4e) suggests a minimal
flat-band occupation νflat & +3.8 at ν ≈ +5, diminishing the plausibility of scenario (i) for
electron-doped TPG which has νmax ≈ +5. The relevance of this scenario is further undermined
by the observation of vHs at ν ≈ +6 (SI Fig. 10d): under the reasonable assumption that the non-
interacting band structure remains valid for the dispersive TBG-like bands (apart from a Hartree
shift), scenario (i) would instead place the observed vHs near ν ≈ +5. Taken together, these
arguments effectively rule out scenario (i). Note, however, that the presented line of reasoning is
not straightforward for the other superconducting pockets (see SI, section 5).
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Both scenarios (ii) and (iii) are indicative of the non-trivial role of additional bands in stabilizing
superconductivity. Assuming well-defined flat and dispersive bands, in scenario (iii) the former
bands are completely filled, and superconductivity is supported fully by the latter non-flat bands.
This assertion is at odds with the large dispersion of the remaining TBG- and MLG-like bands.
However, while the exact mechanism underlying scenario (iii) is difficult to pin down, it is not
without experimental support. For instance, a natural interpretation of the Hall density minimum
around ν ≈ +4 for |D| . 0.4 V nm−1 is that it marks the complete filling of the flat bands,
νflat ≈ +4 (Fig. 4e and SI Fig. 9; see also SI, section 5 for more discussion).

One possible realization of scenario (iii) consistent with the experimental observations is that the
division of the electronic states into simple TBG- and MLG-like bands fails completely—obviating
our very definition of νflat and potentially allowing flavour polarization, and accompanying super-
conductivity, to persist well beyond ν = +4. While such hybridization is expected for finite D
fields, mixing between flat, dispersive TBG- and MLG-like bands for |ν| < |νmax| may occur
even at D = 0. For example, hybridization could result from mirror symmetry breaking due to
interactions or proximity to WSe2. Importantly, in TQG and TPG even terms that preserve mirror
symmetry, such as layer-to-layer charge inhomogeneity or distant-layer coupling, allow for band
hybridization (see SI, sections 4d and 4e). This feature distinguishes TPG and TQG structures
from TTG and may therefore play a role in explaining extensive superconducting regions. Finally,
we mention that other effects, such as strain31, or a different stacking order, may yield multiple sets
of flat bands32 (see SI, section 4b) even at the non-interacting level, in which case multiple bands
can host superconductivity independently. Importantly, however, invoking this explanation would
place TQG and TPG well outside a simple TBG paradigm, as coexisting but independent sets of
flat TBG-like bands are expected to produce more cascade resets than observed experimentally,
and therefore are unlikely.

Our measurements demonstrate the increasing predominance of superconductivity in twisted gra-
phene multilayer structures as the number of layers is increased from three to five and highlight
the close relationship between the flavour symmetry-breaking transitions and superconductivity.
Moreover, our findings suggest a scenario in which the symmetry-broken ν = ±2 state strongly
favours the formation of the superconducting state while the cascade corresponding to ν = ±3
suppresses it. Interestingly, this scenario is consistent not only with previous TBG observations
but also in part with the recently investigated ABC trilayers33 and Bernal bilayers34 where super-
conductivity is observed near symmetry-breaking transitions. This universality appears to suggest
a possibility that superconductivity in graphene-based superconductors originates from a common
underlying symmetry-broken state. In this context, our discovery of superconductivity in TQG
and TPG together with recent work on untwisted bi- and trilayers dramatically expands the scope
of graphene-based superconductors. This expansion holds promise for resolving important ques-
tions related to the nature of the pairing mechanism in these systems and provides guidance for
developing novel graphene-based superconductors and their applications.
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Methods

Device fabrication: All devices were fabricated using a ‘cut and stack’ method, in which graphe-
ne flakes were separated into pieces using a sharp tip (made out Platinum-Iridium); this ap-
proach prevents unwanted twisting and strain during tearing while allowing more control over
the flake size and shape. After cutting, stacking procedure was as follows: first, a thin hBN flake
(10 − 30 nm) is picked up using a propylene carbonate (PC) film previously placed on a poly-
dimethylsiloxane (PDMS) stamp. Then the hBN flake is used to pick up an exfoliated monolayer
of WSe2 (commercial source, HQ graphene) before approaching the graphene. After picking up
the first piece of the graphene flake, the following layers are twisted by an angle ±θ relative to the
previous one in an alternating sequence. Transfer stage rotation θ overshoots the target angle by
0.1−0.2° to construct the measured angles. Care was taken to approach and pick up each stacking
step slowly. In the last step, a thicker hBN (30 − 70 nm) is picked up, and the whole stack is
dropped on a predefined local gold back gate at 150°C while the PC is released at 170°C. The PC
is then cleaned off with N-Methyl-2-Pyrrolidinone (NMP). The final geometry is defined by dry
etching with a CHF3/O2 plasma and deposition of ohmic edge contacts (Ti/Au, 5 nm/100 nm) and
top gate.

Measurements: All measurements were performed in a dilution refrigerator (Oxford Triton) with
a base temperature of∼ 25 mK, using standard low-frequency lock-in amplifier techniques. Unless
otherwise specified, measurements are taken at the base temperature. Frequencies of the lock-in
amplifiers (Stanford Research, models 830 and 865a) were kept in the range of 7− 20 Hz in order
to measure the device’s DC properties and the AC excitation was kept< 5 nA (most measurements
were taken at 0.5 − 1 nA to preserve the linearity of the system and avoid disturbing the fragile
states at low temperatures). Each of the DC fridge lines pass through cold filters, including 4 Pi
filters that filter out a range from∼ 80 MHz to > 10 GHz, as well as a two-pole RC low-pass filter.
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Figure 1 | Superconductivity and correlated insulators in alternating twisted graphene mul-
tilayers. a, Schematics of the alternating twisted graphene multilayers where each successive
layer is twisted by an angle ±θ relative to the previous one in an alternating sequence. b, Band
structure of twisted trilayer, quadrilayer, and pentalayer graphene (from top to bottom) for angles
close to theoretical magic angle at zero D field (left) and D/ε0 ≈ 0.4 V nm−1 (right) for valley
K (see SI, section 4). c–e, Line cuts of Rxx versus filling factor ν for a range of temperatures
(shown are traces taken first at 25 mK, then every 0.25 K from 0.25 K to 2 K, followed by every
1 K from 3 K to 7 K), from top to bottom measured at D/ε0 = 0.22 V nm−1 (c), −0.15 V nm−1

(d), and 0 V nm−1 (e), respectively. Activation gap fit of ν = +2 TTG correlated insulator for
D/ε0 = 0.26 V nm−1 is shown in inset of c. The inset of d shows insulators in TQG at charge neu-
trality and larger electric fields. f, Rxx versus temperature and ν for the trilayer focusing around
ν = +2 at D/ε0 = 0.26 V nm−1. g, Rxx versus temperature and D field for the quadrilayer
focusing near charge neutrality. h–j, Rxx versus temperature and ν for hole doping, showing su-
perconducting domes around ν = −2 in the same systems and for the same D fields as in c–e.
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Figure 2 | TTG, TQG and TPG phase diagrams and electric field-tunable superconductivity.
a–c, Rxx versus filling factor ν and displacement field D for twisted trilayer (a), quadrilayer (b),
and pentalayer (c) graphene, respectively. All data are taken at 25 mK, and the dark blue regions
signal superconductivity. For electron-doped TTG and TQG, superconducting regions extend to-
wards ν = +1 at intermediate D field. d–f, Rxx versus temperature and D (or equivalent potential
difference U between layers, see SI, section 3 for conversion fromD to U ) for the filling factors in-
dicated by arrows in a–c. Critical temperature Tc is indicated by a dashed line that delineates 10%
of the normal state resistance (see also SI, section 2). Tc is maximized at finite D fields. Overall,
superconductivity is suppressed more easily with D as the layer number is increased for both hole
(d–f) and electron (SI Fig. 5) doping. g, Theoretical calculations of the inverse of the flat-band
bandwidth for twisted trilayer, quadrilayer, and pentalayer graphene as a function of D/ε0 (top)
and potential difference U (bottom). For a fixed D, the bandwidth of the flat bands is larger for
systems with more layers, but when expressed as a function of U , the flat-band broadening follows
a similar trend across the different structures. See SI, section 4a.
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Figure 3 | Interplay between superconductivity, flavour symmetry-breaking transitions and
van Hove singularities in TTG, TQG and TPG. a,b, D field and ν dependence of Rxx (top)
and Hall density (bottom, measured at B = 0.9 T) for TTG. Purple and grey dashed lines mark
the filling factors where flavour symmetry-breaking transitions associated with |ν| = 2 and |ν| =
3 happen, respectively. The yellow line in a delineates the evolution of the vHs. c,d, D field
and ν dependence of Rxx (top) and Hall density (bottom, measured at B = 1.5 T) for TQG.
Superconducting Tc reaches its maximum (orange dot in d) exactly at the position of the vHs.
When present, flavour symmetry-breaking transitions around |ν| ≈ 3 coincide with the termination
of superconductivity (a, b, d). By contrast, superconductivity extends much further in the absence
of a |ν| ≈ 3 reset (c). e, D field and ν dependence of Hall density for TPG measured at B =
1.5 T. f, Schematic of Hall density (e) and Rxx (Fig. 2c) features for the pentalayer, including the
superconducting boundary (red), vHs/‘gap’ (dark blue), cascade (light blue), and |νflat| = 4 Hall
density reset (light purple). Sketches of the DOS around ν = +2 for different D fields are shown
on the right. The middle figure illustrates the flavour symmetry polarization observed in regions
that support superconductivity. Flavour symmetry is preserved at higher D fields, as shown in the
top and bottom images.
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Figure 4 | Extended superconducting pockets in TPG. a, Rxx versus ν and temperature at zero
D field for twisted pentalayer graphene. b, Rxx versus temperature and ν on the electron side at
D/ε0 = 0.17, 0.32, and 0.44 V nm−1. The evolution of the superconducting domes and resistance
peaks near ν = +2 and ν = +4 withD is shown. c,d,D field and ν dependence ofRxx (c) and Hall
density (d, measured at B = 1.5 T), showing the region around the electron-side superconducting
pocket. The grey line in c marks the vHs originating from the dispersive TBG-like bands (see also
SI Fig. 10). The inset plots the Fraunhofer-like interference at ν = +4.6, D/ε0 = 0.12 V nm−1

(marked by a red dot in the main panel), confirming the robustness of the superconductivity above
ν = +4. e, Line cuts of Rxx (top) and Hall density (bottom, measured at T = 1.5 K, B =
0.5 T) versus ν for a range of D fields (traces are shown for every 0.05 V nm−1 for both Rxx

and Hall density). Both the presence of Hall density resets around ν = +4 and the development of
superconductivity extending from ν = +2 to +5 are shown to persist for a wide range ofD fields. f,
Schematic of scenario (ii) with a Hartree correction for superconductivity at ν ≈ +5. The Hartree
correction shifts the dispersive TBG- and MLG-like bands down in energy, which causes the flat
TBG-like bands to fill more slowly with doping, thus allowing them to host superconductivity at
ν > +4.
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Supplementary Information:
Ascendance of Superconductivity in Magic-Angle Graphene Multilayers
Yiran Zhang, Robert Polski, Cyprian Lewandowski, Alex Thomson, Yang Peng, Youngjoon Choi,
Hyunjin Kim, Kenji Watanabe, Takashi Taniguch, Jason Alicea, Felix von Oppen, Gil Refael, and
Stevan Nadj-Perge

1 Device Uniformity and Twist Angle Assignment

Device homogeneity and effect of WSe2: All devices investigated here show a high degree of
twist angle homogeneity as characterized by four-point measurements between different pairs of
contacts. SI Fig. 1 shows Rxx versus carrier density with fixed top-gate voltage (Vtg = 0 V),
revealing that almost every pair of contacts shows superconductivity. More importantly, supercon-
ducting pockets from different pairs significantly overlap in the filling range, and resistance peaks
at |ν| = 4 appear at the same density. Moreover, all findings related to the extent of the supercon-
ducting phase and the occurrence of the symmetry-breaking transitions in the ν–D phase diagram
are highly reproducible. This also includes the observation of a gapped correlated insulator at
ν = +2 in TTG, which has not been reported previously. In this context, we note that any sig-
nificant twist-angle disorder would create conducting percolation pathways that quickly suppress
insulating behaviour.

We attribute the low level of disorder to the use of monolayer WSe2 during device stacking, pre-
sumably originating from the increased lateral friction between WSe2 and graphene (compared to
the friction at the hBN-graphene interface). We note that this additional layer does not change the
magic-angle condition6, 14, and the induced spin-orbit interaction (SOI) energy scale is ∼ 1 meV
in twisted bilayers14. Therefore, SOI is likely too small to significantly affect the overall band
structure and directly impact the cascade physics. Finally, we note that, in general, SOI is expected
to manifest differently when the sign of D field is reversed, a feature that has not been observed in
the experiment.

Twist angle assignment in multilayers: Twist angles were determined from high B field data and
corresponding Landau-fan diagrams in a similar way as in TBG. From the slope of the Landau fan
at charge neutrality (which is directly proportional to the gate-sample capacitance) and the voltage
difference between charge-neutrality point (CNP) and |ν| = 4 filling, the corresponding |ν| = 4
electron density is obtained. We used two separate criteria for the assignment of |ν| = 4. First, at
high D fields, resistive features (peaks) emerge (Fig. 2a-c). We interpret these peaks presumably
as the opening of the hybridization gaps and corresponding full filling (|ν| = 4) of the ‘gapped’
bands. Second, at high B fields, quantum Hall insulating states develop around |ν| = 4, which
typically cover a broader filling range where Hall conductance is quantized in accordance with the
expectations from the dispersive bands (SI Fig. 2, also see discussion below). Electron density of
|ν| = 4 directly determines the twist angle in the low-angle approximation θ2 ≈

√
3a2n|ν|=4/8,

where a = 0.246 nm is the graphene lattice constant. We note that signatures of the dispersive
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bands are also observed in Landau-fan diagrams (SI Fig. 2). For example, emerging Landau levels
from the dispersive bands are typically observed through oscillations at low magnetic field. Since
at low energies, the dispersive bands (Fig. 1b left) can be effectively treated as decoupled MLG-
like bands when considering the Landau level spectrum35, and the corresponding Hall conductance
around |ν| = 4 will be quantized in a way that depends on the number of layers (see SI Fig. 2g-m
for Hall conductance line cuts).

2 Determining Tc and Hall density

Tc and the coherence length: Tc is determined by the following procedures. First, the high
temperature Rxx data is fitted using a linear function R(T ) = AT + B. Then, Tc is defined by
the value where Rxx(T ) is a certain fraction (typically 10% as in Fig. 2) of R(T ). Ginzburg-
Landau coherence lengths ξGL are obtained from the B dependence of Tc, by fitting the Ginzburg-
Landau relation Tc/Tc0 = 1 − (2πξ2

GL/Φ0)B⊥, where Φ0 = h/(2e) is the superconducting flux
quantum and Tc0 is the critical temperature at zero magnetic field. We get ξGL from the Tc vs.
B linear fit, where the intercept at the B axis is equal to Φ0/(2πξ

2
GL). Following Ref. 10, we

use Tc defined by 40% of the normal state resistance to evaluate the coherence length data in SI
Fig. 3e (corresponding error bars are evaluated by using Tc defined by 30% and 50% of the normal
state resistance). As mentioned in the main text, ξGL (Bc) is much smaller (higher) in the twisted
graphene multilayers compared to TBG. One possibility for the reduction of ξGL is the relative
decrease of the characteristic moiré wavelength (see SI Fig. 3f).

Hall density analysis: Hall density shown in Fig. 3 is obtained by converting the anti-symmetric
part of the Rxy data, i.e., by subtracting data measured at positive and negative magnetic fields.
We used either |B| = 0.9 T or 1.5 T in order to fully suppress superconductivity. Previously, it
was found that in TTG10, at high D fields superconductivity is bounded by regions corresponding
to vHs, i.e., when Hall density changes sign. We approximately find a similar trend in our TTG
and TPG structures, although vHs occasionally intrude superconducting pockets slightly. We note
that the exact positions of vHs depend on the precise magnetic field used in the measurements (for
example, see SI Fig. 9a and c); however, this effect is relatively small relative to the observed intru-
sions. More importantly, TQG behaviour is qualitatively different, as we find that positions of vHs
and boundaries of superconducting pockets are independent. We also note that resets associated
with the flavour polarization do not move in the B fields (B ≈ 1T) used to extract Hall density
evolution. The occasional shift of these resets from integer ν values, may be attributed to either
effects of interactions (i.e. Hartree correction, see section 4e) or the details of cascade physics3 at
finite temperatures36, 37.
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3 Insulating Behaviour in TTG and TQG

ν = +2 correlated insulators in TTG: In our TTG device, we observed a previously unidentified
ν = +2 correlated insulator state (Fig. 1f and Fig. 1c inset). This state is highly sensitive to D
field with maximum activation gap reaching ∆+2 = 0.27 meV (see SI Fig. 4 for detailed D and ν
dependence). Also, both in-plane and out-of-planeB field suppress the insulating behaviour. These
experimental observations are highly indicative of a gap that originates from strong interactions in
TTG. Since it is pinned to ν = +2, it likely shares the same underlying origin as the TBG gap
found at half filling1. We note, however, that formation of the fully gapped states in TTG requires
a mechanism that additionally gaps out the MLG-like band, which may explain the presence of the
gap only at finiteD fields. Moreover, suppression of the gap with magnetic field is at odds with the
C2 breaking scenario2, 38 and is more in line with incommensurate Kekulé spiral39 or intervalley-
coherent15, 16, 40, 41 orders in the flat bands. Finally, we can in part rule out that the gap originates
from induced SOI. For example, terms corresponding to Rashba SOI change sign upon D-field
inversion, yet experimentally we find similar gap values for both positive and negative D fields.
However, it is still possible that SOI promotes instabilities that favour the formation for certain
ν = +2 insulating states in TTG. Future work will address the nature of this state in more detail.

Charge-neutrality gaps in TQG and conversion between U and D: SI Fig. 4f and g shows
the charge-neutrality gap of TQG as a function of D field or potential difference U (between the
top and the bottom graphene layer). From the continuum model, a gap in TQG is expected when
finite D field is applied. However, the details of the gap evolution depend on the precise twist
angle. When the twist angle is below the magic-angle value, a charge-neutrality gap opens as
soon as a finite D field is applied. On the other hand, when the twist angle is above the magic-
angle value, a gap opens only at much higher D fields. The gap opening at D/ε0 ≈ 1.1 V nm−1

in our TQG structure is consistent with the device being slightly above the magic angle. Note
that the charge-neutrality gap is a good reference for matching the experimental D field with the
potential difference U used in calculations since the interaction-driven Hartree correction vanishes
at CNP. For a direct comparison, we enforce a more realistic flat-band bandwidth of ∼ 20 meV in
the continuum model by slightly tuning away from the magic angle, and get a U -dependent gap
size (SI Fig. 4g). A good match between the experimental and the calculated gap is found when
converting D into U with an empirical factor: U = 0.1 × (n − 1) × 0.33 nm × eD, where e is
the electron charge and n − 1 is the number of graphene interfaces. This conversion is used for
the other parts of the paper, for example, Tc versus U in SI Fig. 5. We note, however, that relative
comparison (i.e. scaling) between TTG, TQG, and TPG (in the context of Tc) does not rely on the
precise D to U conversion.

4 Theoretical Calculations

In this section, we describe the non-interacting continuum model for multilayers and how sym-
metry considerations and various interaction terms affect the band structure of TTG, TQG, and
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TPG.

a. Continuum model: Band structure calculations are performed using a straightforward gen-
eralization of the TBG continuum model42, 43 extended to multilayer graphene systems8, 44–46. As
discussed above, we consider graphene multilayer systems with nlayer = 3, 4, and 5 layers (n in
the main text) in which the graphene sheets are twisted by alternating angles. In particular, we can
envision grouping the layers into even and odd sets and then rigidly twisting these two groups by
the twist angle θ; equivalently, each layer ` = 1, . . . , nlayer is twisted by an angle θ` = (−1)`θ/2.
For the moment, we focus on the case where the layers are all AA stack (i.e. stacked directly on
top of one another) prior to twisting (see below, section 4b).

It is appropriate to approximate the dispersion of the underlying graphene monolayers with the
two Dirac cones about the valleys at K and K ′. Note that because of the twist, the Dirac cones are
located at slightly different momenta depending on whether the layer ` is even or odd, and we have
denoted the Dirac cones’ momenta here asK` andK ′`. We thus define the spinors ψ`,K(′) in terms
of the microscopic graphene operators via f`(r) = eiK`·rψ`,K(r) + eiK

′
`·rψ`,K′(r). Equivalently,

in momentum space we can write ψ`,K(′)(k) = f`(k + K
(′)
` ) provided k is sufficiently close to

K
(′)
` . In our definition of ψ` (and f`) both an A/B sublattice index and a spin index have been

suppressed. Importantly, the small twist angle only mediates a very small momentum exchange
between the neighbouring layers so that states originating proximate to one valley do not mix with
those originating proximate to the other. We thus focus for the moment on valley K and suppress
the valley subscript until mentioned otherwise, ψ`,K → ψ`.

The band structure model can be separated into a sum of two parts: Hcont = HD +Htun. The first
term, HD is the intralayer Dirac term:

HD =

nlayer∑
`=1

∫
d2r ψ†`(r)hD,`(r)ψ`(r), hD,`(r) = v0e

iθ`σ
z

i
(
∂xσ

x + ∂yσ
y
)
, (1)

Here, v0 ∼ 106 m/s is the Fermi velocity of the Dirac cones and σx,y,z are Pauli matrices acting on
the A/B sublattice indices of the spinors ψ`. In our simulations, we assume that the Fermi velocity
of the graphene monolayers does not differ layer to layer. Note that this assumption, specifically
does not take into account effects such as graphene velocity renormalization that can occur in the
top layer due to tunnelling between the graphene monolayer and the WSe2 substrate, as we do not
expect these effects to be large enough to have appreciable impact on the resulting band structure.

We assume that tunnelling only occurs between adjacent layers and that it takes the form

Htun =

nlayer−1∑
`=1

∫
d2r ψ†`(r)T`,`+1(r)ψ`+1(r) + h.c. (2)
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where

T`,`+1(r) =
∑
j=1,2,3

e−(−1)`iqj ·rtj,

qj =
4π

3LM
R

(
2π

3
(j − 1)

)(
0
−1

)
,

tj = w′ + w
(
e−2π(j−1)i/3σ+ + e−2π(j−1)i/3σ−

)
. (3)

Here, R(φ) = e−iφσ
y is a 2 × 2 rotation matrix acting on vector indices, LM = a/[2 sin(θ/2)] is

the moiré lattice constant, and σ± = (σx± iσy)/2 act on the sublattice indices. The parameters w′

and w set the interlayer tunnelling strength; we discuss their values below. It will be convenient to
define the dimensionless ratios

η =
w′

w
, α =

w

v0kθ
, (4)

where kθ = 4π/(3LM) = 2 sin(θ/2) · 4π/(3a). The total Hamiltonian may be written in matrix
form as

HTnlayerG = HD +Htun =

nlayer∑
`,`′=1

∫
d2r ψ†`(r) [hcont(r)]`,`′ ψ`′(r)

hTnlayerG(r) =


hD,1(r) T1,2(r) 0 . . .

T †1,2(r) hD,2(r) T2,3(r) . . .

0 T †2,3(r) hD,3(r) . . .
...

...
... . . .

 (5)

As currently written, the diagonal Dirac terms, hD,`(r), as well as the off-diagonal tunnelling terms,
T`,`′(r), depend only on whether ` is even or odd. We can thus simplify the above expression by
writing the Dirac terms as hD,2`−1(r) = hD,1(r), hD,2`(r) = hD,2(r) and the tunnelling terms as
T2`−1,2`(r) = T (r), T2`,2`+1(r) = T †(r).

It has been shown8 that a block diagonal form exists for Hamiltonians of the form Eq. (5). We
provide the specific transformations used for three, four, and five layers below.

Twisted bilayer graphene Since the spectrum of the twisted multilayers breaks into independent
sets of TBG- and MLG-like bands, we first briefly review the Hamiltonian of TBG. Thus, we start
with

hα,η,θ(r) ≡ hTBG(r) =

(
hD,1(r) T (r)
T †(r) hD,2(r)

)
. (6)

Provided that inversion and time reversal symmetries are preserved, the Dirac cones described
by hD,`(r) at K` are preserved even when the interlayer tunnelling is added. Nevertheless, this
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tunnelling term breaks the (effective) continuous translation symmetry of hD,`. Consequently,
the set of conserved momenta are confined to reduced moiré Brillouin zone (BZ). Like the original
monolayer graphene BZ, the moiré BZ forms a hexagon with the Dirac cones located at the corners.
Here, we defineK1 = κ andK2 = κ′ (for the other valley,K ′1 = κ′,K ′2 = κ).

For small twist angles, the intralayer Dirac terms are nearly identical, hD,`(r) ≈ hD(r) = v0(i∂xσ
x+

i∂yσ
y)—namely, the rotation in Eq. (1) may be neglected to first order. In this case, the spectrum

depends solely on the ratios η = w′/w and α = w/(~v0kθ), where kθ = 4π/(3LM) is the distance
separating κ and κ′. Further, as shown in Ref. 43, the spectrum close to Dirac points at κ and κ′

can be approximated using a simple perturbative scheme. In particular, in momentum space one
finds

hfl(k + κ(′)) ≈ vα,η(kxσ
x + kyσy), vα,η =

1− 3α2

1 + 3α2(1 + η2)
v0. (7)

The magic angle is defined43 by the condition vα,η = 0, which we see here should occur for
α ≈ 1/

√
3.

Twisted trilayer graphene

The Hamiltonian for the three layer system is

hTTG(r) =

hD,1(r) T (r) 0
T †(r) hD,2(r) T †(r)

0 T (r) hD,1(r)

 . (8)

It maybe be transformed into a block diagonal form as

h̃TTG(r) = V †TTGhTTG(r)VTTG =

(
h√2α,η,θ(r)

hD,1(r)

)
,

VTTG =
1√
2

1 0 1

0
√

2 0
1 0 −1

 . (9)

First, we note that the TTG spectrum separated into independent sets of bands—a TBG-like set
described by the two-layer Hamiltonian h√2α,η,θ (an 8 × 8 object when sublattice and spin are
included) and an MLG-like Dirac cone described by hD,1. Using the reasoning above, we expect a
set of flat TBG-like bands to occur when

√
2α = 1/

√
3. Equivalently, we can assign an effective

TBG twist angle describing these bands, θeff
TBG = θ/

√
2 where θ is the physical twist angle of the

system. If θeff
TBG is expected to yield flat bands in TBG, then we would similarly expect

√
2θeff

TBG to
yield a set of flat bands in TTG.
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Twisted quadrilayer graphene For four layers, we start with

hTQG(r) =


hD,1(r) T (r) 0 0
T †(r) hD,2(r) T †(r) 0

0 T (r) hD,1(r) T (r)
0 0 T †(r) hD,2(r)

 . (10)

With the appropriate change of basis, we obtain

h̃TQG(r) = V †TQGhTQG(r)VTQG =

(
hϕα,η,θ(r)

hϕ−1α,η,θ(r)

)
,

VTQG =
1√

1 + ϕ2


1 0 −ϕ 0
0 ϕ 0 −1
ϕ 0 1 0
0 1 0 ϕ

 , (11)

where ϕ = (1 +
√

5)/2 is the golden ratio. In this case, we therefore expect the TQG spectrum to
possess two sets of TBG-like bands characterized by effective TBG twist angles θ/ϕ and θ/ϕ−1.

Twisted pentalayer graphene The final system considered is the twisted pentalayer graphene. In
the original layer basis, the Hamiltonian is

hTPG(r) =


hD,1(r) T (r) 0 0 0
T †(r) hD,2(r) T †(r) 0 0

0 T (r) hD,1(r) T (r) 0
0 0 T †(r) hD,2(r) T †(r)
0 0 0 T (r) hD,1(r)

 . (12)

Once more, independent, co-existing TBG- and MLG-like subsystems are revealed with the ap-
propriate change of basis:

h̃TPG(r) = V †TPGhTPG(r)VTPG =

h√3α,η,θ(r)
hD,1(r)

hα,η,θ(r)



VTPG =
1√
6


1 0

√
2

√
3 0

0
√

3 0 0
√

3

2 0 −
√

2 0 0

0
√

3 0 0 −
√

3

1 0
√

2 −
√

3 0

 . (13)

There are now two independent TBG-like bands characterized by effective twist angles θ/
√

3 and
θ in addition to a MLG-like Dirac cone.

Model Parameters As indicated in Eq. (7), the magic-angle value is essentially determined by
the velocity of monolayer graphene v0 and the interlayer tunnelling amplitude w. We fix v0 for
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all considered configurations. The magnitude of the interlayer tunnelling amplitude is typically
estimated to be around ∼ 100 meV. In case of TQG, a gap is expected to open at charge neutrality
when finite D field is applied. However, it onsets for any |D| > 0 when the physical angle θ is
less than ϕθmagic

TBG , where θmagic
TBG is the magic angle for TBG (as determined by v0 and w). When θ

is larger than ϕθmagic
TBG , a gap still opens, but only above certain finite D fields. As SI Fig. 4 and SI

Fig. 7j show, the latter scenario is observed in the TQG, device D2 (twist angle 1.8°), leading us
to select w = 108 meV near the value used in Ref. 43. In particular, in the left panel of SI Fig. 7j,
the Rxx is plotted as a function of D field, displaying non-monotonic behaviour—a resistance dip
around D/ε0 ∼ 0.5 V nm−1 followed by a steep increase at higher D, signalling the development
of an insulating gap. Analogous trends are repeated on the right of SI Fig. 7j, which shows an
increase in ν = 0 DOS (corresponding to the resistance dip) followed by a decrease to zero DOS.

Similar reasoning can be applied to the TTG and TPG samples, although it is slightly more nebu-
lous since a non-interacting gap is not expected to open in TTG and TPG for any D value at the
CNP. Instead, when θ >

√
2θmagic

TBG for TTG and θ >
√

3θmagic
TBG for TPG, the system should become

metallic with increasing D, whereas in the converse situation, the D field should immediately gap
out all states except for a dispersive MLG-like Dirac cone. Following this line of reasoning, the
results of SI Fig. 7 suggest that the twist angle in TTG is below the magic angle, whereas the one
in the TPG sample is above the magic angle. Accordingly, we select w = 110 meV for TTG and
w = 102 meV for TPG modeling. Notably, the resistance behaviour and theoretical DOS shown
in SI Fig. 7k for TPG are very similar to the results in SI Fig. 7j with the primary distinction be-
ing that the high-displacement field state does not display the activated transport of an insulator.
Similarly, although not obvious from the DOS plot itself, the band structure of TPG at large D is
semimetallic (as opposed to insulating).

The value of the interlayer AA hopping w′ is expected to be less than the interlayer AB hopping,
as a result of lattice relaxation (see next section). We chose w′ = 60 meV for all three multi-
layers considered, which is in agreement with the estimates of Ref. 24 and similar to values used
previously for TBG/WSe2 structures14.

We note that, while consistent with experiment in the fashion outlined about, other factors could
be also at play, modifying the behaviour at CNP in ways not captured by our analysis. Ultimately,
however, the choices made here are not expected to greatly influence any of the results in this
section.

b. Relative stacking: An important distinction between TBG and graphene moiré heterostructures
containing additional layers is the band structure dependence of the relative layer displacement.
Not only must the graphene sheets be stacked with alternating angles, as discussed in the main
text and in the previous section, but moreover, the emergence of independent TBG- and Dirac-like
bands only occurs when all odd (even) layers are AA stacked, i.e., stacked directly on top of one
another. As stated above, we envision grouping the layers into odd and even sets, each stacked
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rigidly atop one another. The two sets are then twisted relative to one another by the twist angle
θ. We have assumed that this stacking was realized in the previous presentation and now argue for
the feasibility of this assumption.

In TTG, it has been numerically shown that this situation is energetically preferable: the system
naturally relaxes into the odd/even aligned stacking configuration44. This result is further experi-
mentally verified in transport10 and local probe18 measurements. A simple heuristic supports these
results and permits a generalization to additional layers. Starting from a bilayer system, the moiré
superlattice is manifest on the microscopic lattice scale as the periodic variation of the relative
interlayer stacking: one has AA regions at the moiré hexagon centres, while AB and BA stack-
ing regions represent the moiré hexagon vertices. The AA regions have a relatively high energy
compared to the Bernal-like region and the lattice accordingly responds by relaxing to minimize
their area. We now consider adding a third layer with the same relative twist angle as the first
layer, but for the moment arbitrarily displaced from that layer. A moiré superlattice is of course
also generated between the new layer and the second layer, and the system once again seeks to
minimize (maximize) the area of the AA (AB/BA) regions. Crucially, if the first and third layers
are misaligned, the AA regions between the first and second layers are misaligned from the AA
regions between the second and third layers, frustrating the ability of the lattice to relax. Only
when the first and third layers are aligned will the AA region occur at the same locations and only
then can the system optimize its energy through relaxation. These arguments clearly generalize to
quadrilayer and pentalayer systems—we need only consider the moiré pattern generated by each
adjacent pair of graphene sheets to conclude that relaxation is optimized by an odd/even aligned
configuration. (A complementary explanation is that TTG is necessarily an intermediate step in
the construction of the TQG and TPG devices, and thus the odd alignment is already baked into a
subset of the layers.)

c. Mirror symmetry: In the systems with an odd number of layers, an onsite mirror symmetry is
present, which acts as

ψ(r)→ U
(nlayer)
mirror ψ(r), nlayer odd, (14)

where [
U

(nlayer)
mirror

]
`,`′

= δ`,nlayer−`′+1. (15)

Here, `, `′ label the system’s layers. Effectively, this operator simply flips the layers around,
for instance, interchanging layers 1 and 3 in TTG, while keeping the middle layer fixed. In
terms of the matrices, this invariance manifests simply as the relation [hTTG(r), U

(3)
mirror] = 0

and [hTPG(r), U
(5)
mirror] = 0. As we see below, the preservation of this symmetry is inextricably

tied to the block diagonal form of the TTG continuum model presented in Eq. (9). In particular,
rotating U

(3)
mirror to the subsystem basis defined by VTTG returns Ũ (3)

mirror = V T
TTGU

(3)
mirrorVTTG =

25



diag(1, 1,−1). The TBG-like subsystem corresponds precisely to the even parity sector (i.e., has
eigenvalue +1 under the action the mirror symmetry) whereas the dispersive MLG-like subsystem
belongs to the odd parity sector (i.e., has eigenvalue −1 under the action the mirror symmetry).
The TBG- and MLG-like bands thus cannot hybridize without breaking this symmetry.

We can similarly rotate the TPG operator, U (5)
mirror to the subsystem basis Ũ (5)

mirror = V T
TPGU

(5)
mirrorVTPG,

yielding Ũ (5)
mirror = diag(1, 1, 1,−1,−1). Comparing against Eq. (13), we observe that both the

TBG-like subsystem with effective twist angle θ/
√

3 and the MLG-like subsystem belong to the
even parity sector, whereas the subsystem with effective twist angle θ belongs to the odd parity
sector. The mirror symmetry therefore only protects the latter subsystem—which is notably not at
the magic angle in the experiment. In other words, in TPG with mirror symmetry, flat TBG-like
band and MLG-like band can hybridize (while the dispersive TBG-like band is protected).

A mirror-like symmetry also exists for even-layered systems like TBG and TQG, but it does not act
in an onsite fashion and is therefore not useful for the analysis that follows. For TQG, hybridization
between subsystems is therefore not prohibited by symmetry.

d. Band mixing: In obtaining the independent TBG- and MLG-like bands (subsystems) listed
above, a number of assumptions were made and one may be concerned about the relative robustness
of these results. For TTG, at least, this question may be dismissed so long as mirror symmetry
is present; above, we showed that this mirror symmetry protects the block diagonal subsystem
form obtained for TTG. Similarly, mirror symmetry disallows mixing in TPG between certain (but
not all) subsystems. However, the mirror symmetry is explicitly broken by the application of a
displacement field as well as by the WSe2 substrate used in the experiment. Below, we show
that these modifications induce mixing between all subsystems. We additionally consider other
mirror-preserving effects that may result in subsystem mixing in TQG and TPG.

Besides the displacement field, we find that the subsystem-mixing energy scales discussed below
are relatively small compared to the input parameters of the continuum model, i.e., compared to
an interlayer tunnelling of w and w′. More importantly, they are also smaller than the observed
bandwidth of TBG, which spectroscopic measurements indicate is ∼ 40 meV for samples close to
the magic angle4, 47–49. The subleading magnitude of the effects we explore below thus bolsters our
use of the alternating-angle continuum model, at least as a starting point. We note that the relatively
small subsystem hybridization discussed here could be significantly magnified by interactions.

Effect of displacement field In the main text, we allude to the fact that a finite displacement field
mixes the TBG- and MLG-like subsystems obtained in the previous sections. This effect is in-
cluded in the Hamiltonian through the addition of
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Hdisp =

nlayer∑
`,`′=1

∫
d2r ψ†`(r)

[
h

(nlayer)

disp

]
`,`′
ψ†`′(r),

[
h

(nlayer)

disp

]
`,`′

= Uδ`,`′

(
1

2
− `− 1

nlayer − 1

)
. (16)

Specifically, we have h(3)
disp = (U/2)diag(1, 0,−1), h(4)

disp = Udiag(1/2, 1/6,−1/6,−1/2), and
h

(5)
disp = Udiag(1/2, 1/4, 0,−1/4,−1/2). Here, the scale U is defined as outlined in section 3.

Focusing first on the odd-layered systems, TTG and TPG, we observe that this perturbation explic-
itly breaks the mirror symmetry introduced in the previous section. In particular, h(3)

disp and h(5)
disp

anticommute with U (3)
mirror and U (5)

mirror respectively: {h(3)
disp, U

(3)
mirror} = 0 and {h(5)

disp, U
(5)
mirror} = 0.

The displacement field therefore allows subsystems within different parity sectors to hybridize.
The effect of this addition is apparent when h(nlayer)

disp is tranformed to the subsystem basis of Eqs. (9)
and (13):

h̃
(3)
disp = V †TTGh

(3)
dispVTTG =

U

2

0 0 1
0 0 0
1 0 0

} Parity-even sector

} Parity-odd sector

h̃
(5)
disp = V †TPGh

(5)
dispVTPG =

U

4
√

3


0 0 0 2 0

0 0 0 0
√

3

0 0 0 2
√

2 0

2 0 2
√

2 0 0

0
√

3 0 0 0


 Parity-even sector}

Parity-odd sector

(17)

We thus explicitly see the way in which the displacement field induces mixing between subsystems.

Subsystem mixing is also a natural consequence of the displacement field in TQG. The Hamilto-
nian in Eq. (16) takes the form h

(4)
disp = Udiag(1/4, 1/6,−1/6, 1/4), which becomes

h̃
(4)
disp =

U

30ϕ
(1 + ϕ2)


ϕ−3 0 −4 0

0 −ϕ−3 0 −4
−4 0 ϕ3 0
0 −4 0 −ϕ3


}

Subsystem with θeff
TBG = ϕθ}

Subsystem with θeff
TBG = ϕ−1θ

(18)

in the subsystem basis.
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Proximity-induced spin-orbit coupling One of the exterior layers of the samples considered here
is placed adjacent to WSe2. This type of construction was first shown to induce spin-orbit coupling
in twisted bilayer graphene in Ref. 14. The presence of WSe2 breaks not only the spin symmetry,
but also the mirror symmetry in systems considered here and possibly induces subsystem mixing.
The magnitude of the induced spin-orbit scale has been measured to be approximately 1− 5 meV
in TBG, smaller than the other scales of the theory (e.g., the band width). In effect, in rotating to
the subsystem basis, the spin-orbit terms are “spread” across an increasing number of layers by the
unitary transformations VTTG, VTQG, VTPG.

Mirror-symmetric, nonuniform charge distribution: The chemical potentials of the different lay-
ers may also differ in a way that is symmetric under onsite mirror actions U (4/5)

mirror of Eq. (15). In
particular, we may have h(4)

µ-var = diag(δµ1, δµ2, δµ2, δµ1), which takes the subsystem-basis form

h̃(4)
µ-var =

δµ√
5


−1 0 −2 0
0 −1 0 2
−2 0 1 0
0 2 0 1

 , (19)

where δµ = δµ1 = −δµ2. Similarly, for TPG, a term like h(5)
µ-var = diag(δµ1, δµ2, δµ3, δµ2, δµ1)

also preserves the mirror operatorU (5)
mirror but can be shown to induce inter-subsystem mixing within

the even parity sector. As we demonstrate in section 4e, such a term is naturally generated by the
Coulomb interaction. We specify to TPG in that section, but the reasoning is analogous for TQG
(and for TTG, although this term will not induce mixing between sectors because of the mirror
symmetry).

Although generically present, the Coulomb interaction-generated terms of this form are relatively
small compared to the other terms present. The calculations presented below estimate that values
of |δµ`| < 5−10 meV for TPG are generated as one dopes away from charge neutrality. We expect
the results for TQG to follow the same trend.

Next-nearest layer tunnelling Our Hamiltonian so far only includes tunnelling between neigh-
bouring layers. Generically, however, hopping between next-nearest neighbouring layers occurs as
well. For TQG, we could therefore consider hopping between layers 1 (2) and 4 (3):

h
(4)
nnl =


0 0 Tnnl 0
0 0 0 Tnnl

T †nnl 0 0 0

0 T †nnl 0 0

 . (20)
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Assuming for simplicity that Tnnl. = T †nnl, in the subsystem basis, this term takes the form

h̃
(4)
nnl =

1√
5


2Tnnl 0 −Tnnl 0

0 2Tnnl 0 Tnnl

−Tnnl 0 −2Tnnl

0 Tnnl 0 −2Tnnl

 . (21)

Note that because we assume next-nearest layers are stacked AA relative to one another, to first
order, no spatial dependence is expected in Tnnl. The subsystems are similarly mixid with the five-
layer analogue h(5)

nnl. Reference 44 computed the values of Tnnl expected in TTG (where it will not
induce subsystem mixing) and found that a typical scale |Tnnl,ij| ∼ 5 − 10 meV, which translates
to |Tnnl,ij|/

√
5 ∼ 3− 5 meV (i and j are sublattice indices).

Lattice relaxation As mentioned in section 4b, the moiré lattice relaxes in order to minimize AA
regions and maximize AB/BA regions. As mentioned, this relaxation effect ultimately depresses
the value of w′ (interlayer AA tunnelling) relative to w (interlayer AB/BA tunnelling) as a result of
out-of-plane corrugation. For interior layers, which neighbour more than a single sheet, the effects
of relaxation are naturally stronger than for exterior layers. Consequently, the value of η = w′/w
appropriate for tunnelling to and from interior layers is reduced. Our assumption below Eq. (5)
that T`,`+1(r) depended only on whether ` was even or odd is no longer valid. Unsurprisingly, this
effect once again mixes the subsystems in TQG and TPG. Reference 24 estimated the magnitude of
this effect and determined that it should be in the range 5− 10 meV for the twist angles considered
here.

e. The role of interactions in TPG: The presence of flat-band subsystem in the low-energy the-
ory of the multilayer graphene structures necessitates the consideration of interaction-driven band
structure corrections. In the following, we focus specifically on the case of TPG as its phase dia-
gram demonstrates the strongest deviation from the minimal paradigm that a multilayer structure
maybe thought of as a TBG-like Hamiltonian with spectating additional bands. Rather, as we
argue, the dispersive TBG- and MLG-like subsystems play a crucial role in extending the filling
range of the superconducting pocket in accordance with scenario (ii) and (iii). Here, we con-
sider three types of interaction corrections: (a) an in-plane Hartree correction; (b) a two-parameter
effective model mimicking generic Hartree-Fock modifications of band structure; (c) an out-of-
plane Hartree correction allowing for inhomogeneous charge distribution between the layers. We
demonstrate that these effects generically lead to two consequences for the electronic spectrum:
promoting charge redistribution to the non-flat bands and also leading to possible symmetry break-
ing between the non-flat and flat bands.

Hartree correction We begin with an in-plane Hartree effect. As demonstrated experimentally in
previous work on TBG29 and TTG18, filling-dependent interaction effects, specifically Hartree and
Fock corrections, drastically alter the electronic dispersion. Here we incorporate only a Hartree
mechanism25–28 in the analysis, arguing that its key effect, a relative shift of flat bands up in energy
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with respect to the non-flat bands, is the simplest mechanism through which the size of the super-
conducting pocket in TPG is extended. We then supplement this discussion with a phenomenolog-
ical Hartree-Fock-like theory. Before proceeding, we stress that the main purpose of the analysis
in this section is to demonstrate that scenario (i) wherein flat bands are filled only to νflat ≈ +3
at ν ≈ +5 is highly unlikely, thus highlighting the non-trivial role played by the dispersive TBG-
and MLG-like bands.

The foundations of the Hartree calculation in TPG described below are identical to the analysis
in Refs. 29 and 18. We reproduce them here for the convenience of the reader. We introduce the
Coulomb interaction into the system through

HC =
1

2

∫
d2r d2r′ δρ(r)V (r − r′)δρ(r′). (22)

In section 4a, we introduced creation and annihilation operators, ψ†(r) and ψ(r), that correspond
to the non-interacting eigenstates given by the Hamiltonian of Eq. (5). Here and in what follows,
we suppress the layer, valley, sublattice and spin subscripts. In Eq. (22), V (r) = e2/(ε|r|) is
the Coulomb potential and δρ(r) = ψ†(r)ψ(r) − ρCN(r), where ρCN(r) = 〈ψ†(r)ψ(r)〉CN is
the expectation value of the density at the charge-neutrality point. The use of δρ(r) instead of
ρ(r) in the interaction is motivated by the expectation that the input parameters of the model
HTnlayerG = Hcont already include the effect of interactions at the charge-neutrality point. The
dielectric constant ε in the definition of V (r) is used as a fitting parameter; see discussion below
for details.

We study the effect of the interacting continuum model of magic-angle TPG through a self-
consistent Hartree mean-field calculation. Instead of solving the many-body problem, we obtain
the quadratic Hamiltonian that best approximates the full model when only the symmetric contri-
butions of HC are included, i.e., the Fock term is neglected. Thus instead of Hcont +HC , we study
the Hamiltonian

H
(ν)
MF = Hcont +H

(ν)
H −

1

2
〈H(ν)

H 〉ν , (23)

where H(ν)
H is the Hartree term at filling ν,

H
(ν)
H =

∫
k,k′,q

V (q)〈ψ†(k′ + q)ψ(k′)〉νψ†(k)ψ(k − q), (24)

and the last term in Eq. (23) simply ensures there is no double counting when one calculates the
total energy. In the above equation, V (q) = 2πe2/(ε|q|) is the Fourier transform of the Coulomb
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interaction V (r) in Eq. (22), and the expectation value 〈Ô〉ν = 〈Ô〉occ−〈Ô〉CN only includes states
that are filled up to ν relative to charge neutrality, as defined by diagonalizing the Hamiltonian
H

(ν)
MF.

Typically, for a “jellium”-like model, the expectation value in Eq. (24) vanishes save for q = 0,
which is subsequently cancelled by the background charge—allowing one to set V (q = 0) = 0
and completely ignore the Hartree interaction. However, because the moiré pattern breaks contin-
uous translation symmetry, momentum is only conserved modulo a reciprocal lattice vector. We
therefore obtain

H
(ν)
H =

′∑
G

V (G)

∫
k′
〈ψ†(k′ +G)ψ(k′)〉ν

∫
k

ψ†(k)ψ(k −G), (25)

where the prime above the summation over the moiré reciprocal lattice vectors indicates thatG = 0

is excluded. The self-consistent procedure begins by assuming some initial value ofH(ν)
H and diag-

onalizing the corresponding mean-field Hamiltonian H(ν)
MF to obtain the Bloch wavefunctions and

energy eigenvalues. These quantities are then used to re-compute the expectation values that de-
fine H(ν)

H and thus H(ν)
MF subject to the cascade treatment described above. This process is repeated

until one obtains the quadratic Hamiltonian H(ν)
MF that yields the correlation functions 〈·〉ν used in

its definition.

Due to the accumulation of electronic density at the AA sites of the stacking sequence, the Hartree
potential is dominated by the first ‘star’ of moiré reciprocal lattice vectors25, 50, which in our con-
ventions corresponds toGn = R

(
2π(n−1)/6

)
4π√
3LM

(1, 0)T for n = 1, . . . , 6, withR(φ) a rotation
matrix. The restriction to theGn’s paired with the 2π/6 rotation symmetry of the continuum model
greatly simplifies the calculation of the Hartree term. Notably, V (G)

∫
k′
〈ψ†(k′+G)ψ(k′)〉ν must

be the same for allGn, and, instead of Eq. (25), we use

H
(ν)
H = V

(ν)
H

6∑
n=1

∫
k

ψ†(k)ψ(k −Gn), V
(ν)

H =
1

6

6∑
n=1

V (Gn)

∫
k′
〈ψ†(k′ +G)ψ(k′)〉ν . (26)

The self-consistent procedure in this case is identical to that described in the previous paragraph,
but due to the reduced number of reciprocal lattice vectors that are included in the summation, the
calculation is computationally easier. Convergence is typically reached within ∼ 6 iterations.

We now proceed to discuss the precise effect of the Hartree correction. Since the Hartree cor-
rection couples bare graphene states at momenta k and k +G, its effect is most pronounced for
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subsystems of the Hamiltonian whose eigenstates require multiple bare graphene states originating
from multiple moiré BZs, e.g. k + G states with G extending beyond the second BZ. As such,
Hartree affects the flat-band subsystem most severely since its eigenstates deviate the most from
the bare graphene states, while the MLG-like subsystem is affected the least. As a result, this
correction gives rise to an energy offset that shifts the flat bands upwards in energy with respect
to the rest of the energy spectrum (technically the dispersive TBG-like subsystem is also shifted
slightly with respect to the MLG-like subsystem). This effect has been seen both theoretically and
experimentally in TTG18, 30. Thus we expect it to be present in TPG, as is confirmed through our
simulations; see SI Fig. 11a,b. Physically, this effect arises simply because the charge distribution
from the non-flat subsystems is more homogeneous in the unit cell and, therefore, it contributes
less to the potential of Eq. (24).

We now discuss what happens when one starts from charge neutrality and electron dopes the sys-
tem. Due to the shift of the flat band upwards in energy relative to the non-flat bands, more charge
can enter the non-flat bands upon doping (increasing ν) than a naı̈ve non-interacting model pre-
dicts. As a result, the filling range of the flat TBG-like band superconducting pocket may be
extended since the filling of the flat bands νflat can continue to lie in the range amenable to super-
conductivity, whilst the total filling ν increases by adding charge to the non-flat bands. This is the
central idea behind the scenarios (i) and (ii) discussed in section 5.

In the simulations for flat-band filling νflat > +2, we consider two ways to fill the otherwise 4-fold
degenerate bands: an uncascaded model where all 4-fold degenerate bands are filled equally, and a
simple cascade model where two of the flat-band flavours (say spin ↑ for K, K ′) are shifted down
in energy such that the highest energy of the shifted bands falls on the Dirac point of the unshifted
flat bands, c.f. SI Fig. 11c. In the absence of Hartree-induced band inversion (as in fact we will
consider in the following section), the shifted bands (↑ bands) are fully filled at νflat = +2 and
the unshifted bands (↓) and the dispersive bands contain the remaining ν − 2 charge. With the
Hartree-induced gamma point inversion, the two sets of the flat bands (shifted - ↑, unshifted - ↓)
become partially filled near νflat = +2. The shifted (↑) band is mostly filled and the unshifted (↓)
is mostly empty. This simple approach qualitatively reproduces the effect of a cascade at |νflat| ≈ 2
under the assumption that the specific nature of the cascade state (i.e. spin or valley polarized) is
irrelevant for the consideration of the total filling. We caution, however, that a cascade transition
is an effect originating from an interplay between Hartree and Fock corrections (see Ref. 29 for
further discussion), and that Fock corrections, which we neglected so far, can give rise to many
effects.

The most crucial ones, including bandwidth broadening 50–53 and gap opening in the flat-band
subsystem4, 15, 16, 40, 41, 51, 54, 55, may actually affect the charge distribution across the different sub-
systems. These effects are neglected in the current analysis—an approximation we will justify in
the following section.
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The cascade, as shown in SI Fig. 11g, allows charge to enter the unfilled flat bands more easily
compared to the uncascaded ground state. This behaviour is expected since a cascade minimizes
the contribution of the Hartree term by redistributing charge away from parts of the flat bands which
overlap more strongly with the Hartree potential—in particular, for the parameters considered here
and within the relevant range of filling factors, the cascade is the ground state solution. Note,
however, that while including only the Hartree correction is sufficient to initiate cascade, Fock
must be included in order for it to persist over the experimentally observed range (see Ref. 29 for
further discussion on the interplay of Hartree and Fock corrections and the onset of cascade).

To quantitatively estimate the fillings of the different subsystems, it is necessary to parametrize
the strength of the Coulomb interaction, e.g., the dielectric constant ε that enters into Eq. (24).
Although, in principle, the dielectric constant is fixed primarily by the substrate and any interaction
corrections can be accounted for via a self-consistent treatment, in practice25, 29, 50, 52, it can be
treated as a fitting parameter. If a bare value of the interaction is used, then the resulting interaction
corrections are too large and lead to unobserved predictions18, 29. We use the cascade near νflat ≈
+2 to constrain ε. We identify νflat = +2 with the experimental onset of the cascade transition,
which occurs near ν ≈ +2.15; see Fig. 4e. By choosing ε so that νflat reaches +2 at the same point
the total filling ν reaches +2.15 (see SI Fig. 11e), we find ε ≈ 11.15. We emphasize that although
this is an approximate fitting relying on the particular model of a cascade, the Hartree-induced
flat-band energy shift is a robust and important effect (SI Fig. 11f). Using the value of ε ≈ 11.15,
we find that at ν ≈ +5, the flat bands are filled to approximate νflat ≈ +3.8 (see SI Fig. 11g),
further demonstrating the implausibility of scenario (i).

We note that due to the hybridization of different bands under a finite displacement field, the assign-
ment of flat TBG-, dispersive TBG- and MLG-like subsystem becomes, to some degree, arbitrary
as bands start to hybridize. For the purpose of qualitative discussion, however, we can evaluate
the spectral overlap of each finite-field eigenstate with the zero-field basis and assign a label of
“flat/dispersive TBG-like/MLG-like” based on the largest overlap. Within this convention, we find
that the displacement field enables easier charge accumulation in the “flat” subsystem as opposed
to the “non-flat” subsystems, thus suppressing the total filling range over which superconductivity
can reach (see SI Fig. 11h).

Constraining Hartree and Fock Preferential filling of the dispersive TBG- and MLG-like sub-
systems is also enabled by other interaction effects, for example, gap opening due to the Fock
correction. This term, as mentioned previously, also plays a key part in the symmetry-breaking
cascade as well as band broadening. While a careful microscopic analysis of Hartree and Fock
effects in multilayer devices is necessary, here we introduce a simple phenomenological model
intended to capture the qualitative effects of Hartree and Fock corrections on the filling of the non-
flat subsystems. We hope that the simple parametrization of this model can be used as a benchmark
for its validity against a more rigorous analysis.
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To mimic the effects of Hartree and Fock, we add two additional ingredients to the non-interacting
model of Eq. (13): a constant energy shift of the flat-band subsystem ∆H and an intralayer sublat-
tice potential ∆Fσ

z

h̃TPG(r) =


∆H12×2 + ∆Fσ

z + hD,1(r)
√

3T (r)√
3T †(r) ∆H12×2 + ∆Fσ

z + hD,2(r)
hD,1(r)

hD,1(r) T (r)
T †(r) hD,2(r)

 .

(27)

A schematic of the effect of the two added terms on the band structure is shown in SI Fig. 11d. We
further mimic a cascade by shifting two copies of the flat-band subsystem below the Dirac points
of the band structure and closing the ‘Fock’ gap in the cascaded bands.

We present the result of this analysis in SI Fig. 11i, where the filling factor of the flat-band subsys-
tem versus ∆H and ∆F is plotted for a fixed total filling ν = +5 (corresponding to the edge of the
superconducting dome in TPG). We find that in order for scenario (i) to apply, i.e. νflat ≈ +3 at
ν = +5 in TPG, the corresponding parameters are unrealistic. Especially, a ∆F ≈ 20 meV would
yield an insulating gap of 40 meV, which far exceeds a typical correlated insulating gap of few
meV experimentally observed in the context of TBG 4, 47–49. Notably, for a ∆F below ∼ 5 meV,
there is negligible effect of the Fock gap on the flat-band filling redistribution, consistent with our
earlier Hartree-only approximation.

Interlayer screening effects In the above analysis of Hartree-induced band shifting and defor-
mations, we only focused on the effect of the in-plane Hartree potential, assuming a homoge-
neous charge distribution across the layers. It is known, however, that in multilayer (untwisted)
graphene, interlayer screening due to inhomogeneous charge distribution over different layers can
be important56, 57. To check the importance of this effect, we follow the self-consistent treatment in
Ref. 57 and determine the screening-induced potentials on each layer. Particularly, in the language
of the Hamiltonian in Eq. (5), we show that even at zero external displacement field, the induced
potentials are not uniform on all layers and can lead to hybridization between the flat TBG-like
and the MLG-like subsystems as presented above in section 4d.

We model the graphene layers as parallel plates with zero thickness and respective electron charge
densities eni. The local displacement field between the ith and (i + 1)th layer is then given by
Fi,i+1 = e(

∑i
j=1 nj −

∑N
j=i+1 nj)/(2ε), where N is the total number of layers, and we take

ε = 11.15, the same as the in-plane dielectric constant determined above. Here, we use the
in-plane dielectric constant value because electron densities are delocalized over multiple lay-
ers and cannot be simply treated as some classical charge on a particular layer. Thus, the ef-
fective dielectric constant should be much larger than the vacuum’s value. The above local dis-
placement field produces the local potential difference between the ith and the (i + 1)th layer
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Vi+1 − Vi = −edFi,i+1 = −e2d/(
√

3εL2
M)× (

∑i
j=1 νj −

∑N
j=i+1 νj), where νj is the filling frac-

tion projected to the jth layer, d is the interlayer distance, and LM is the moiré lattice constant.

The role of this mechanism is shown in SI Fig. 12. We find that the self-consistently generated
potential differences shift the flat bands upwards in energy. Similar to the in-plane Hartree cor-
rection, it enables further charge filling of the dispersive TBG-like bands, which is in line with
scenario (ii) for the extended TPG superconducting pocket. We stress that unlike the in-plane
Hartree correction, the out-of-plane Hartree term leads to the hybridization of the different sub-
systems. This hybridization, in addition to other effects described in the previous section, may
facilitate symmetry breaking or a breakdown of an approximate assignment of flat and dispersive
TBG-like bands (see the discussion above concerning band mixing, section 4d), in line with the
condition for scenario (iii).

5 Possible Origins of the Extended Superconducting Pocket in TPG

Here we present several scenarios that can result in the superconductivity of TPG extending to
ν ≈ +5, and discuss these scenarios in the context of experimental observations. We note that in
the discussion below, ν denotes the total number of electrons per moiré site, and νflat denotes the
number of electrons per moiré site added to the flat TBG-like bands.

Scenario (i): flat TBG-like bands are filled to νflat = +3 at ν = +5 For TBG and TTG, the
strongest superconducting pockets normally start from |ν| = 2 and end around |ν| = 3. Therefore,
a conventional scenario would suggest that TPG could behave in a similar way, i.e., flat TBG-like
bands are filled to νflat = +3 when superconductivity is diminished at ν = +5. This scenario
implies that the additional two electrons per moiré site are distributed in the dispersive TBG- and
MLG-like bands due to the interaction effects discussed in section 4e, with a large portion of the
charge carriers being hosted by the dispersive TBG-like bands. Since vHs of the dispersive TBG-
like bands are normally found around half filling, the corresponding Hall density signatures are
expected to occur at the same filling, i.e., ν = +5 in this scenario. However, in the experiment
we observe vHs signatures originating from the dispersive TBG-like bands near ν ≈ +6 instead
(see SI Fig. 10). This line of reasoning allows us to completely rule out scenario (i), therefore, we
conclude that superconductivity exceeds flat-band filling νflat = +3 for electron-doped TPG.

Scenario (ii): flat TBG-like bands are filled close to νflat = +4 at ν = +5 As a result of
interactions, a fraction of electrons are preferentially distributed in the dispersive TBG- and MLG-
like bands. It is therefore possible that for total filling of ν ≈ +5, the flat TBG-like bands are filled
close to νflat ≈ +4, with the extra one electron per moiré site being distributed in the other bands.
We explored this possibility in more detail in section 4e, which shows the filling correspondence
between νflat and ν for various interaction terms and dielectric constants (see SI Fig. 11). In this
scenario, the modeling suggests that the filling of the flat bands is nearly four (νflat > +3.8), which
is well outside typical TBG behaviour.
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Scenario (iii): flat TBG-like bands are fully filled to νflat = +4 before ν = +5 or hybridiza-
tion of different bands obscures the distinction between them The last scenario suggests either
that the flat TBG-like bands are fully filled before the suppression of superconductivity, in which
case superconductivity would exist in the more dispersive bands, or that the distinction between
the different TBG- and MLG-like bands breaks down due to hybridization (i.e. mixing), even
at D = 0. As discussed in previous sections, such mixing between flat, dispersive TBG- and
MLG-like bands can happen when mirror symmetry is broken. Moreover, layer-to-layer charge
inhomogeneity (see SI Fig. 12 and section 4e) or distant-layer coupling (see section 4d) allow for
band hybridization even in the presence of mirror symmetry.

Experimental signatures in electron-doped TPG Experimentally, starting from low D fields,
we observe a drop in Hall density at ν ≈ +4 which surprisingly does not affect superconductivity
in any abrupt way (superconductivity continuously evolves and is present until ν ≈ +5). As the
D field is increased, this Hall density drop is gradually replaced by a transition where Hall density
changes sign (SI Fig. 9). The high D-field transition can be interpreted as a ‘gap’ feature emerging
in the band structure similar to TTG10. Further measurements of Rxx show that the corresponding
ν ≈ +4 feature does not shift with temperature (Fig. 4a) and is significantly broadened at high B
fields, resembling the feature associated with the flat-band gap in TTG (SI Fig. 2a and e). These
observations indicate that the ν = +4 feature is naturally explained as either marking the end of
the flat bands or resulting from band details due to hybridization, which is in line with the scenario
(iii). In this context, the alternative possibility that ν = +4 corresponds to a flavor-polarization
reset at νflat = +3 is highly unlikely. Finally, we note that this line of argument cannot fully rule
out scenario (ii) due to the potential presence of small dispersive pockets in the flat bands that may
remain unfilled near ν = +4.
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SI Figure 1 | Sample uniformity and reproducibility of the results. a–c, Leftmost optical
images are D1–D3 mentioned in the main text. The scale bar in each panel corresponds to 5 µm.
Rxx versus density and displacement field (n–D) plots shown in the middle are obtained from
electrodes marked with the corresponding colored lines. The electrodes marked with purple lines
were used for measuring Rxx in the main text. Rightmost plots are Rxx versus carrier density with
top-gate voltage fixed at Vtg = 0 V. All three devices have a high degree of homogeneity in twist
angle with the same superconducting filling range and |ν| = 4 carrier density for multiple contacts.
The behaviour of superconductivity and other symmetry-breaking features is highly reproducible
for different contacts.
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SI Figure 2 | Fan diagrams at zero D field and the Hall conductance quantization around
|ν| = 4. a–f, Rxx measured as a function of B field and ν from trilayer to pentalayer (a, c, e).
The main sequences of the fan diagrams are labelled at the bottom of Rxx (b, d, f). Landau levels
from the dispersive bands are visible as Rxx oscillations at low B fields in the fan diagrams. g–m,
Rxy measured as a function of B field and ν from trilayer to pentalayer (g, i, k). Below these
plots, we show Hall conductance around |ν| = 4 (h, j, l, m). The layer number n determines
the resulting quantization. Since the dispersive bands of n-layer twisted graphene consist of n −
2 Dirac-like cones (at low energies), the |ν| = 4 quantization is therefore expected to follow
monolayer graphene sequence (±2, ±6, ±10,..., ×e2/h) multiplied by n − 2. The plateaus in
TTG and TQG clearly show this trend, while in TPG only the first plateau is observed. These
observations however confirm the number of layers in each sample.
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SI Figure 3 | Fraunhofer patterns, Ic, Bc and coherence lengths of TTG, TQG and TPG.
Column a shows Rxx versus ν and D phase diagrams, and the green dots indicate the positions
where the corresponding Fraunhofer interference patterns (b) are measured for D1–D3. Column
c shows the critical current Ic versus ν at the optimal D fields for D1–D3. Column d shows
Rxx versus ν and B around ν = −2 for D1–D3, highlighting the high critical magnetic fields in
these systems. Superconductivity in the twisted graphene multilayers has a higher Bc (∼ 0.8 T
or higher) than in TBG. e, Ginzburg–Landau coherence lengths ξGL versus ν for all three devices
around |ν| = 2, superimposed on the Rxx versus T and ν plots. f, ξGL and moiré wavelength LM

versus twist angle of different layers, suggesting a possible relation between the two length scales.
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SI Figure 4 | Insulating behaviour in TTG and TQG. a, Line cuts of Rxx versus ν for a range
of temperatures at D/ε0 = 0.26 V nm−1 on the electron side for TTG. b, Rxx versus D and
temperature at ν = +1.96 in TTG. c, Line cuts at different D fields from b. Out-of-plane (d)
and in-plane (e) B field dependence of Rxx versus ν at D/ε0 = 0.26 V nm−1 in TTG. The ν =
+2 correlated insulator is suppressed by both in-plane and out-of-plane B field. f, Experimental
charge-neutrality gap of TQG as a function of D field, and g, the continuum-model gap as a
function of potential difference U . Inset, single-particle band structure of TQG (slightly above the
magic angle) at U = 0 meV and 150 meV, respectively. We see a good match between experiment
and theory when convertingD into U with an empirical factor: U = 0.1×(n−1)×0.33 nm×eD,
where n− 1 is the number of graphene interfaces.
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SI Figure 5 | Evolution of superconducting critical temperature Tc with D field around opti-
mal doping. a–c, Rxx as a function of T and D field for D1–D3 at filling factor ν = +2.2, +2.4,
and +3.2, respectively. Superconducting Tc is indicated by a dashed line that delineates 10% of the
normal state resistance (see section 2 for details). d,e, Tc/Tmaxc versus potential energy difference
U for TTG, TQG, and TPG around hole-side (d) and electron-side (e) optimal doping, respectively.
U is converted from D using U = 0.1× (n− 1)× 0.33 nm× eD, where e is the electron charge
and n− 1 is the number of graphene interfaces.
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SI Figure 6 | Hall density ν–D maps and the positions of vHs/‘gap’ features. a–f, Hall density
(a–c) and Rxx (d–f) as a function of ν and D for TTG, TQG, and TPG. Hall density maps are
measured at B = 0.9 T, 1.5 T, and 1.5 T, respectively. Yellow lines in d–f track the evolution
of vHs/‘gap’ features where Hall density changes sign. g–i, Examples of Hall density near the
cascade transition reset (g), the vHs (h), and the ‘gap’ (i) following the definitions in Ref. 10.
Filling ranges for the line cuts are marked by the corresponding colored dashed lines in a and c.
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SI Figure 7 | Rxx as a function of ν and D at different temperatures. a–i, Rxx as a function of
ν and D measured at different temperatures for TTG (a–c), TQG (d–f), and TPG (g–i). Grey lines
track the evolution of the vHs/‘gap’ features. j, The plot on the left shows line cut of Rxx versus D
at charge neutrality for TQG. The plot on the right shows corresponding density of states (DOS)
at charge-neutrality point (CNP) calculated using non-interacting continuum model. In the regions
where DOS is high, resistance is expected to be low and vice versa. k, Equivalent plots as in j for
TPG.
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SI Figure 8 | Evolution of superconducting ν–T domes with displacement field D in TPG. a,
Rxx as a function of ν and D in TPG. b–g, Rxx versus ν and temperature at different D fields, and
D fields are marked with colored bars in a.

44



SI Figure 9 | Hall density and Rxx as a function of ν and D measured at different B fields in
TPG. a, Hall density versus D and ν at B = 0.5 T. b, Line cuts from a. Panels below zoom in
on the evolution of Hall density resets near |ν| = 4. c,d, Hall density versus D and ν measured
at B = 1.5 T (c) and 3 T (d), with respective line cuts shown in f and g. e, Rxx versus D and ν
measured at T = 1.5 K, B = 0.5 T (line cuts are shown in h). From all the above line cuts, Hall
density resets and Rxx resistive features consistently exist around ν = +4.
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SI Figure 10 | Plots in a broader filling factor range and vHs of dispersive TBG-like bands in
TPG and TQG. a,b, Rxx andRxy as a function of ν andB field measured at zero D field for TPG.
The sign change in Rxy around ν = +6 (marked by arrows in a and b) indicates vHs. c,d, Rxx

(c) and Hall density (d) as a function of D and ν with gray dashed lines indicating ν linecuts (at
D = 0) where plots in a and b are taken. e, Band structure of TPG calculated using non-interacting
model. Arrow indicates the position where vHs from dispersive TBG-like bands is expected. f,
Hall density as a function of ν and D for TQG. As in TPG, Hall density changes sign near ν = +6
indicating the vHs from dispersive TBG-like bands in TQG.
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SI Figure 11 | The role of interactions in TPG. a-d, Depiction of different approximation
schemes used to understand the role of interactions in TPG. Note that the Hartree correction shifts
the flat band (purple) up in energy. Cascaded bands in c and d are shown in green. d corresponds
to a simple toy model of Hartree and Fock effects characterized by a Hartree shift (∆H) and a Fock
gap (∆F ) (see section 4e). e,f, Partial filling of each subsystem versus dielectric constant ε for a
fixed flat-band filling νflat = +2 (e) and a fixed total filling ν = +5 (f), respectively. g, Partial
filling of each subsystem versus total filling ν for a fixed dielectric constant ε = 11.15. Here,
solid (dashed) lines correspond to a cascaded (uncascaded) solution with the cascade solution en-
abling higher filling of the flat-band subsystem as discussed in the text. h, Similar to g but the
solid (dashed) lines correspond to a solution at potential difference U = 0 meV (U = 34 meV). i,
Filling of the flat-band subsystem as a function of ∆H and ∆F at a fixed total filling ν = +5 (see
section 4e).
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SI Figure 12 | The role of interlayer inhomogeneous charge distribution in TPG. a–d, Band
structure of TPG at different filling factors with an interlayer inhomogeneous charge distribution.
Note that as filling is increased, the flat band is slightly shifted and also hybridizes with the MLG-
like band. e, Partial filling of different subsystems as a function of total filling ν with the effect of
interlayer inhomogeneous charge distribution. Note a small charge redistribution between +2 .
ν . +5. Here, flat TBG-like and MLG-like subsystems are plotted together to demonstrate the
emergent hybridization.
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