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Abstract
The projective norm graphs are central objects to extremal combinatorics. They 
appear in a variety of contexts, most importantly they provide tight constructions for 
the Turán number of complete bipartite graphs K

t,s with s > (t − 1)! . In this note we 
deepen their understanding further by determining their automorphism group.
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1 Introduction

Turán-type problems play a central role in extremal combinatorics. In the classic set-
ting, given a graph H and integer n ∈ ℕ , one is interested in determining the Turán 
number of H, denoted by ex (n,H) , which is the maximum number of edges a simple 
graph on n vertices may have without containing a subgraph isomorphic to H. In a 
series of results by Mantel [29], Turán [46], Erdős and Stone [18], and Erdős and 
Simonovits [17] the asymptotics of the function ex (n,H) was obtained, whenever H 
is not bipartite. Unfortunately, when H is bipartite these results merely imply that 
ex (n,H) is of lower than quadratic order. A general classification of the order of 
magnitude of bipartite Turán numbers is widely open, even in the simplest-looking 
cases of even cycles and complete bipartite graphs. Kővári, T. Sós and Turán [24], 
using an elementary double counting argument, proved the general upper bound 
ex (n,Kt,s) = O

(
n
2−

1

t

)
 and in general it is commonly conjectured that this is actually 

the right order of magnitude.
For a matching lower bound, one needs to exhibit a Kt,s-free graph that is dense 

enough. The first such constructions were found for K2,2-free graphs (attributed to 
Esther Klein by Erdős [16]) and later for K3,3-free graphs (Brown [14]). In [21] Kol-
lár, Rónyai and Szabó constructed norm graphs, which are provably Kt,t!+1-free and 
their density matches the order of magnitude of the Kővári-Sós-Turán upper bound. 
Later, Alon, Rónyai and Szabó [4] modified this construction to obtain projec-
tive norm graphs, the principal object of this note, and verified the conjecture for 
s > (t − 1)!.

For a prime power q = pk and integer t ≥ 2 let N ∶ �qt−1 → �q denote the �q-norm 
on �qt−1 , i.e. for A ∈ �qt−1 we have N(A) = A ⋅ Aq

⋅ Aq2
⋯Aqt−2 ∈ �q . The projective 

norm graph NG(q, t) has vertex set �qt−1 × �
∗
q
 and two vertices (A, a) and (B, b) are 

adjacent if and only if N(A + B) = ab . For details on finite fields and the norm func-
tion the interested reader may consult e.g. [27].

In [6], using a general algebro-geometric lemma from [21], it was shown that 
(q, t) is Kt,(t−1)!+1-free. A simple counting shows that NG(q, t) also has the desired 
density, and so it verifies the Kővári-Sós-Turán conjecture for s > (t − 1)!.

2  The automorphism group

Since their first appearance, (projective) norm graphs were studied extensively [1, 
9, 10, 20, 23, 34, 39]. Their various properties were utilized in many other areas, 
both within and outside combinatorics. These include, among others, (hypergraph) 
Ramsey theory [4, 22, 25, 31–33, 49, 50], (hypergraph) Turán theory [1, 2, 36, 37, 
39, 40], other problems in extremal combinatorics, [6, 11, 28, 41, 44, 45], number 
theory [35, 43, 47, 48], geometry [19, 38] and computer science [3, 7, 8, 15].

In this note we investigate the symmetries of projective norm graphs. We believe 
that a full understanding will prove to be helpful in further applications of these 
important combinatorial structures.
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The automorphism group of projective norm graphs  

As usual, it is not difficult to stumble upon all the automorphisms, the main 
point is rather to show that there are no more. For odd q there are two, for even q 
there are three families of automorphisms which describe all symmetries. For one, 
Frobenius automorphisms of �qt−1 , applied to both coordinates of the vertices, define 
k(t − 1) graph automorphisms. Then, multiplication of the first coordinate with any 
nonzero square C2 ∈ �qt−1 and of the second coordinate with (plus or minus) of the 
norm N(C) provides qt−1 − 1 further graph autopmorphisms. Finally, for even q, the 
qt−1 translations of the first coordinate by some A ∈ �qt−1 also define graph automor-
phisms. Any combination of these types of automorphisms give a different automor-
phism of NG(q, t).

Lemma 1 For any odd prime power q = pk and integer t ≥ 2 , the maps of the form

are automorphisms of NG(q, t) for any choice of C ∈ �
∗

qt−1
 and 0 ≤ i < k(t − 1).

For any q = 2k and integer t ≥ 2 , the maps of the form

are automorphisms of NG(q, t) for any choice of C ∈ �
∗

qt−1
 , A ∈ �qt−1 and 

0 ≤ i < k(t − 1).

Moreover, we will also show that all automorphisms can be represented this way. 
In the next statement Zn denotes the cyclic group of order n.

Theorem 1 For q > 2 and t ≥ 2 the maps described in Lemma 1 include all auto-
morphisms and the automorphism group has the following structural description:

where Eqt−1 = (Z2)
k(t−1) is the additive group of �qt−1

Remark Note that if q = 2 then NG(2, t) is a complete graph on 2t−1 vertices, and so 
Aut (NG(2, t)) is the whole symmetric group of order 2t−1.

Whenever N(2X) = x2 , the vertex (X, x) has a loop edge. In this paper we choose 
to deal with the version of projective norm graphs where these (few) loop edges 
are not deleted forcefully, just to obtain a simple graph. This avoids some incon-
veniencies and one can check that the deletion of the loop edges does not affect the 
symmetries.

(X, x) ↦
(
C2

⋅ Xpi ,±N(C) ⋅ xp
i
)

(X, x) ↦
(
C2

⋅ Xpi + A,N(C) ⋅ xp
i
)

Aut (NG(q, t)) ≃

⎧
⎪⎨⎪⎩

Zqt−1−1 ⋊ Zk(t−1) if q and t − 1 are both odd,�
Z2 × Zqt−1−1

2

�
⋊ Zk(t−1) if q is odd and t − 1 is even,

�
Eqt−1 ⋊ Zqt−1−1

�
⋊ Zk(t−1) if q is even,
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3  Preliminaries

3.1  Common neighbourhood of pairs of vertices

For a set U of vertices in a graph G we denote their common neighbourhood by 
N(U).

Proposition 1 Given two different vertices (X1, x1), (X2, x2) ∈ V(NG(q, t)) , we have

Proof By definition, a vertex (A, a) is a common neighbour of (X1, x1) and (X2, x2) 
if both N(X1 + A) = x1a and N(X2 + A) = x2a hold. Dividing one equation by the 
other one we obtain

If X1 = X2 , this necessarily implies x1 = x2 , which contradicts the assumption that 
the vertices (X1, x1) and (X2, x2) are different.

From now on assume X1 ≠ X2 . Then, for any solution A of Equation 1 we have a 
unique common neighbour (A, a) with a =

N(X1+A)

x1
=

N(X2+A)

x2
 . It is well known that 

the map A ↦
X1+A

X2+A
 maps �qt−1 ⧵ {−X2} bijectively to �qt−1 ⧵ {1} . This, together with 

the fact 
||||N

−1

(
x1

x2

)|||| =
qt−1−1

q−1
= m and N(1) = 1 implies that we have m common 

neighbours when x1 ≠ x2 , and m − 1 common neighbours if x1 = x2 .   ◻

4  The proof

Proof of Lemma 1 First note that the map X ↦ Xpi is an automorphism of �qt−1 for 
every i ∈ ℕ , in particular it is bijective and commutes with the field operations and 
the norm function. Therefore, for any C ∈ �

∗

qt−1
 and i ∈ ℕ we have

�N��
(X1, x1), (X2, x2)

��� =
⎧
⎪⎨⎪⎩

qt−1−1

q−1
if X1 ≠ X2 and x1 ≠ x2,

qt−1−1

q−1
− 1 if X1 ≠ X2 and x1 = x2,

0 if X1 = X2.

(1)
N(X1 + A)

N(X2 + A)
= N

(
X1 + A

X2 + A

)
=

x1

x2
.

(X, x) ∼ (Y , y) ⇔ N(X + Y) = xy ⇔ N(X + Y)p
i

= (xy)p
i

⇔ N
(
Xpi + Ypi

)
= xp

i

yp
i

⇔ N
(
C2

)
N
(
Xpi + Ypi

)
=
(
N(C)

)2
xp

i

yp
i

⇔ N
(
C2Xpi + C2Ypi

)
=

(
±N(C)xp

i
)(

±N(C)yp
i
)

⇔

(
C2Xpi ,±N(C)xp

i
)
∼

(
C2Ypi ,±N(C)yp

i
)
.
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Hence all maps presented are indeed automorphisms of NG(q, t) . Furthermore, 
when q is even then 2A = 0 for every A ∈ �qt−1 , and hence, by continuing the previ-
ous series of equivalences, we have

completing the argument for even q as well.   ◻

Proof of Theorem  1 We start by observing that any � ∈ Aut (NG(q, t)) must act 
independently on the two coordinates. 

Lemma 2 Let q = pk be a prime power, t ≥ 2 an integer and � ∈ Aut (NG(q, t)) . 
Then there are permutations � ∶ �qt−1 → �qt−1 and � ∶ �

∗
q
→ �

∗
q
 such that

and � (−X) = −� (X) for all X ∈ �qt−1.

Proof We say that a set S ⊆ V(NG(q, t)) of vertices is poor if for any two different 
vertices u, v ∈ S we have |N({u, v})| < qt−1−1

q−1
 . By Proposition  1 

|N({(X, x), (Y , y)})| < qt−1−1

q−1
 if and only if either X = Y  or x = y . Hence a set of ver-

tices is poor if and only if either all the first or all the second coordinates are equal. 
In particular maximal poor sets are one of two types: either Sx = {(A, x) | A ∈ �qt−1} 
for some x ∈ �

∗
q
 , or SX = {(X, a) | a ∈ �

∗
q
} for some X ∈ �qt−1 . The sizes of such sets 

are qt−1 and q − 1 , respectively.
The automorphism � must map a maximal poor set to a maximal poor set. 

Because of the size difference between the two types of maximal poor sets, and 
since � is a bijection, � must permute the maximal poor sets of each type within 
themselves. That is, there exist permutations � ∶ �

∗
q
→ �

∗
q
 for which we have 

�(Sx) = S�(x) and � ∶ �qt−1 → �qt−1 for which we have �(SX) = S� (X).
Since (X, x) ∈ SX ∩ Sx , we have

Consequently �((X, x)) = (� (X),�(x)) , as desired.
For the last statement note that the maximal poor sets SX and SY have no edge 

between them if and only if Y = −X . (Otherwise N(X + Y)∕x = y ∈ �
∗
q
 for every 

x ∈ �
∗
q
 .) Consequently �(SX) = S� (X) and �(S−X) = S� (−X) should also have no edge 

in between them, which implies � (−X) = −� (X) , as desired.   ◻

For what follows, fix � ∈ Aut (NG(q, t)) together with the permutations 
� ∶ �qt−1 → �qt−1 and � ∶ �

∗
q
→ �

∗
q
 guaranteed by Lemma 2.

First we suppose that t > 2 . To obtain further properties of �  and � in this 
case we will need a result of Lenstra [26]. For a field extension L ⊇ K a bijection 
f ∶ L → L is called a K-semilinear L-automorphism, if f (x + y) = f (x) + f (y) for 

(X, x) ∼ (Y , y) ⇔

(
C2Xpi + A,N(C)xp

i
)
∼

(
C2Ypi + A,N(C)yp

i
)

�
(
(X, x)

)
=
(
� (X),�(x)

)

�((X, x)) ∈ �(SX) ∩�(Sx) = S� (X) ∩ S�(x) = {(� (X),�(x))}.
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every x, y ∈ L (that is, f is an automorphism of the additive group of L), and there 
is an h ∈ Aut (K) such that f (x ⋅ y) = h(x) ⋅ f (y) for every x ∈ K, y ∈ L . If K = L , 
the notion of semilinearity simplifies significantly.

Lemma 3 Let L be a field. Then f is an L-semilinear L-automorphism if and only if 
there is an h ∈ Aut (L) and element C ∈ L∗ such that f (x) = C ⋅ h(x) for every x ∈ L

.

Proof By definition, if f is an L-semilinear L-automorphism then there is some 
h ∈ Aut (L) such that f (x ⋅ 1) = h(x) ⋅ f (1) for every x ∈ L , proving that f is of the 
desired form with C = f (1) . Conversely, if f is of the given form then, since h is 
an L-automorphism, it is also an automorphism of the additive group of L, and 
f (x ⋅ y) = C ⋅ h(x ⋅ y) = C ⋅ h(x) ⋅ h(y) = h(x) ⋅ f (y) = f (x) ⋅ h(y) .   ◻

Theorem 2 (Lenstra ( [26, Theorem 2])) Let F be a finite field, E a non-trivial abe-
lian group, g ∶ F∗

→ E a surjective group homomorphism and K = ⟨ker(g)⟩ ⊂ F 
the subfield of F generated by the kernel of g. Then for a permutation � ∶ F → F of 
F there exists a permutation � ∶ E → E of E such that

if and only if there exists a K-semilinear F-automorphism f ∶ F → F and element 
b ∈ F , such that

We will apply this theorem with F = �qt−1 ,E = �
∗
q
 , g(x) = N(x) and hence K 

being the subfield of �qt−1 generated by N−1(1) . We claim that K = �qt−1 . Indeed, 
any proper subfield of �qt−1 = �pk(t−1) has size at most p

k(t−1)

2  . On the other hand, for 
t > 2 , we have

so N−1(1) would not fit into any proper subfield of �qt−1 . Consequently we have 
K = �qt−1.

Recall the permutations � ∶ �qt−1 → �qt−1 and � ∶ �
∗
q
→ �

∗
q
 guaranteed 

by Lemma  2. We observe that choosing � = �  in Theorem  2, the function 
� ∶ �

∗
q
→ �

∗
q
 , defined by �(x) = �(x)�(1) , is a permutation of � ∗

q
 , which sat-

isfies the condition of the theorem. Indeed, given any X ≠ Y ∈ �qt−1 , the vertex 
(X,N(X − Y)) is adjacent to (−Y , 1) , and hence the vertices

and

g
(
�(x) − �(y)

)
= �

(
g(x − y)

)
∀x ≠ y ∈ F

�(x) = f (x) + b ∀x ∈ F.

|||N
−1(1)

||| =
qt−1 − 1

q − 1
=

t−2∑
i=0

qi > qt−2 = pk(t−2) ≥ p
k(t−1)

2 ,

�
((

X,N(X − Y)
))

=

(
� (X),�

(
N(X − Y)

))
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must also be adjacent. Therefore we have

By Theorem 2 there exist an �qt−1-semilinear �qt−1-automorphism f ∶ �qt−1 → �qt−1 and 
element A ∈ �qt−1 such that ∀X ∈ �qt−1

By Lemma 3 we have f (X) = C�
⋅ h(X) for some C� ∈ �

∗

qt−1
 and h ∈ Aut (�qt−1) . Any 

automorphism of �qt−1 has the form h(X) = Xpi for some 0 ≤ i < k(t − 1) , and hence 
we have � (X) = C�Xpi + A . However, as � (−1) = −� (1) , we must have 
−C� + A = −(C� + A) , implying 2A = 0 . For q odd this is possible only if A = 0 , 
while for even q this does not represent a restriction.

In order to show that C′ is a square, we evaluate Equation (2) for Y = 0 to get

Substituting an X ∈ N−1(1) we also obtain �(1)2 = N(C�) . N(C�) is a square 
if and only if C′ is a square, hence there exists C ∈ �qt−1 such that C� = C2 and 
�(1) = ±N(C).

With these choices of parameters for every (X, x) ∈ �qt−1 × �
∗
q
 we have

if q is odd and

if q is even, as desired.
Now let us move on to the case t = 2 . Then t − 1 = 1 and we simply have 

N(X) = X for every X ∈ �q , meaning that two vertices (X, x), (Y , y) ∈ �q × �
∗
q
 are 

adjacent if and only if X + Y = xy.
Let us define the normalized maps �̃ ∶ �q → �q , �̃ ∶ �

∗
q
→ �

∗
q
 , and �̃ ∶ V → V  

by

for (X, x) ∈ �q × �
∗
q
 . The map �̃ is an automorphism of NG(q, 2) , since � is an auto-

morphism and 2� (0) = 0 . Furthermore �̃
(
(0, 1)

)
=
(
�̃ (0), �̃(1)

)
= (0, 1).

As, for every X ∈ �
∗
q
 , the vertices (X, X) and (0,  1) are adjacent, so must be 

their images under �̃ , implying �̃ (X) = �̃ (X) + �̃ (0) = �̃(X)�̃(1) = �̃(X) for 
every X ∈ �

∗
q
.

�
(
(−Y , 1)

)
=
(
� (−Y),�(1)

)
=
(
− � (Y),�(1)

)

(2)g(�(X) − �(Y)) = N
(
� (X) − � (Y)

)
= �

(
(N(X − Y)

)
�(1) = �(g(X − Y)).

� (X) = f (X) + A.

N
(
C�Xpi − C�0p

i
)
= �

(
N(X − 0)

)
�(1) ⇒ �(N(X)) = N

(
C�
)
�(1)−1N(X)p

i

.

�
(
(X, x)

)
=

(
C2Xpi ,±N(C)xp

i
)

�
(
(X, x)

)
=

(
C2Xpi + A,N(C)xp

i
)

�̃((X, x)) ∶=
(
�̃ (X), �̃(x)

)
∶=

(
1

�(1)2
(� (X) − � (0)),

1

�(1)
�(x)

)
,
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Next we show that �̃  , is a field automorphism of �q , which implies that for 
some 0 ≤ i < k , we have �̃ (X) = �̃(X) = Xpi for every X ∈ �q , and consequently

This is exactly the required form with C = �(1) and A = � (0) , since N(�(1)) = �(1) 
and A = � (0) = 0 when q is odd.

To check the additivity of �̃  , consider first X, Y ∈ �q , X ≠ −Y  . The verti-
ces (X,X + Y) and (Y,  1) are adjacent, and hence so are their �̃-images, imply-
ing �̃ (X) + �̃ (Y) = �̃(X + Y)�̃(1) . By the above this is equal to �̃ (X + Y) . For 
X = −Y  additivity also holds since � (−X) = −� (X) for every X ∈ �q.

To check the multiplicativity of �̃  , first let X and Y be arbitrary elements of 
�
∗
q
 . Considering the �̃-images of the adjacent vertices (XY, X) and (0, Y), by the 

above we obtain �̃ (XY) = �̃ (XY) + �̃ (0) = �̃(X)�̃(Y) = �̃ (X)�̃ (Y) . When Y = 0 
we have �̃ (X ⋅ 0) = �̃ (0) = 0 = �̃ (X) ⋅ 0 = �̃ (X)�̃ (0) for every X ∈ �q.

Now we turn our attention to the group structure of Aut (NG(q, t)) . This part of 
the argument is fairly standard, we include it for the convenience of readers less 
experienced in calculations with groups. We define the following subgroups of 
Aut (NG(q, t)) , they correspond to the types of maps described before Lemma 1.

In addition, for q odd we also consider the subgroup

and for q even the subgroup

Now take some � ∈ Aut (NG(q, t)) . When q is odd then, according to the first part 
of the theorem there exists C ∈ �

∗

qt−1
 , 0 ≤ i < k(t − 1) and � ∈ {−1,+1} such that 

�
(
(X, x)

)
=
(
C2Xpi , �N(C)xp

i) and hence � = ��◦�C◦�i (for the composition of 
some maps � and � we fix the notation �◦� and their order of action is understood as 
(�◦�)(x) = �(�(x)) ). Similarly, when q is even, then there exists C ∈ �

∗

qt−1
 , 

0 ≤ i < k(t − 1) and A ∈ �qt−1 such that �
(
(X, x)

)
=
(
C2Xpi + A,N(C)xp

i) and hence 
� = �A◦�C◦�i . This shows that these subgroups generate Aut (NG(q, t)) , i.e.

�
(
(X, x)

)
=
(
� (X),�(x)

)
=

(
�(1)2Xpi + � (0),�(1)xp

i
)
.

Aut F =

{
𝜋i ∶ (X, x) ↦ (Xpi , xp

i

) ∣ 0 ≤ i < k(t − 1)

}
≃ Zk(t−1),

Aut M =

{
𝜎C ∶ (X, x) ↦ (C2X,N(C)x) ∣ C ∈ �

∗

qt−1

}

≃

{
Zqt−1−1 if q is even or both q and t − 1 are odd

Zqt−1−1

2

if q is odd and t − 1 is even.

Aut S =
{
�� ∶ (X, x) ↦ (X, �x) ∣ � ∈ {−1,+1}

}
≃ Z2,

Aut L =
{
�A ∶ (X, x) ↦ (X + A, x) ∣ A ∈ �qt−1

}
≃
(
Z2
)k(t−1)

.
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Before proving the particular group structure we prove a simple lemma that will be 
used several times in what follows.

Lemma 4 Let G be a group and N,  H subgroups such that Nh ⊆ N for every 
h ∈ H . Then N ⋅ H is a subgroup of G and N ⊲ N ⋅ H . If N ∩ H =

{
1G

}
 , then 

N ⋅ H = N ⋊ H.

Proof The conditions Nh ⊆ N imply that N is a normal subgroup in the group ⟨N,H⟩ 
generated by N and H, and hence ⟨N,H⟩ = N ⋅ H . Moreover, the intersection condi-
tion implies that N ⋅ H = N ⋊ H (see the definition on page 167 of [42]).   ◻

Now suppose first that q is odd, and consider the term Aut S◦Aut M . If t − 1 is 
also odd, then �−1 = �−1 , hence Aut S ⊆ Aut M and so Aut S◦Aut M = Aut M . 
If t − 1 is even, then Aut S ∩ Aut M = {id} , elements from the two parts 
clearly commute and Aut S◦Aut M is also a subgroup of Aut (NG(q, t)) , hence 
Aut S◦Aut M = Aut S × Aut M.

To add Aut F we apply Lemma 4 with G = Aut (NG(q, t)) , N = Aut S◦Aut M and 
H = Aut F . For this we first need to check that (��◦�C)

�i ∈ Aut S◦Aut M for every 
� ∈ {−1,+1} , C ∈ �

∗

qt−1
 and 0 ≤ i < k(t − 1):

where �� = �p
k(t−1)−i and C� = Cpk(t−1)−i . We clearly also have 

( Aut S◦Aut M) ∩ Aut F = {id} , so Lemma 4 implies that Aut S◦Aut M is a normal 
subgroup of Aut S◦Aut M◦Aut F = Aut (NG(q, t)) and

Now suppose q is even and consider first Aut L◦Aut M . We again apply Lemma 4, 
now with G = Aut (NG(q, t)) , N = Aut L and H = Aut M . First we check that 
�
�C
A

∈ Aut L for every A ∈ �qt−1 and C ∈ �
∗

qt−1
:

We clearly also have Aut L ∩ Aut M = {id} , so by Lemma 4 Aut L◦Aut M is a sub-
group of Aut (NG(q, t)) , Aut L is normal subgroup of it and we have

Aut (NG(q, t)) =

{
Aut S◦Aut M◦Aut F if q is odd,

Aut L◦Aut M◦Aut F if q is even.

(��◦�C)
�i = �−1

i
◦(��◦�C)◦�i = �k(t−1)−i◦��◦�C◦�i = ���◦�C� ∈ Aut S◦Aut M ,

Aut (NG(q, t)) = Aut S◦Aut M◦Aut F = (Aut S◦Aut M)⋊ Aut F

=

⎧
⎪⎨⎪⎩

Aut M ⋊ Aut F = Zqt−1−1 ⋊ Zk(t−1) if t − 1 is odd

�
Aut S × Aut M

�
⋊ Aut F =

�
Z2 × Zqt−1−1

2

�
⋊ Zk(t−1) if t − 1 is even.

�
�C
A

= �−1

C
◦�A◦�C = �C−1◦�A◦�C = �(C−1)2A ∈ Aut L.
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To describe the full group Aut (NG(q, t)) , we apply Lemma  4 one last time, now 
with G = Aut (NG(q, t)) , N = Aut L◦Aut M = Aut L ⋊ Aut M and H = Aut F . We 
start by checking that (�A◦�C)

�i ∈ Aut L◦Aut M for every A ∈ �qt−1 , C ∈ �
∗

qt−1
 and 

0 ≤ i < k(t − 1):

where A� = Apk(t−1)−i and C� = Cpk(t−1)−i . We clearly also have 
( Aut L◦Aut M) ∩ Aut F = {id} , so using Lemma 4 we infer that Aut L◦Aut M is a 
normal subgroup of Aut L◦Aut M◦Aut F = Aut (NG(q, t)) and

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. Alon, N., Krivelevich, M., Sudakov, B.: MaxCut in H-Free graphs. Comb. Probab. Comput. 14, 
629–647 (2005)

 2. Alon, N., Krivelevich, M., Sudakov, B.: Turán numbers of bipartite graphs and related Ramsey-type 
questions. Comb. Probab. Comput. 12, 477–494 (2003)

 3. Alon, N., Moran, S., Yehudayoff, A.: Sign Rank, VC dimension and spectral gaps, In: Feldman, 
V., Rakhlin, A., Shamir, O. (eds.) Proceedings of COLT’16, Proceedings of Machine Learning 
Research, vol. 49, pp. 47–80. (2016). (Also: Mathematicheskii Sbornik, 208:4–41, 2017.)

 4. Alon, N., Rödl, V.: Sharp bounds for some multicolor Ramsey numbers. Combinatorica 25(2), 125–
141 (2005)

 5. Alon, N., Shikhelman, C.: Many T-copies in H-free graphs. J. Comb. Theory Ser. B 121, 146–172 
(2016)

 6. Alon, N., Rónyai, L., Szabó, T.: Norm-graphs: variations and applications. J. Comb. Theory Ser. B 
76, 280–290 (1999)

 7. Babai, L., Gál, A., Kollár, J., Rónyai, L., Szabó, T., Widgerson, A.: Extremal bipartite graphs and 
superpolynomial lower bounds for monotone span programs, In: Miller, G.L. (eds.), Proceedings of 
STOC’96, ACM, pp. 603–61 (1996)

 8. Babai, L., Gál, A., Widgerson, A.: Superpolynomial lower bounds for monotone span programs. 
Combinatorica 19(3), 301–319 (1999)

Aut L◦Aut M = Aut L ⋊ Aut M .

(�A◦�C)
�i = �−1

i
◦�A◦�C◦�i = �k(t−1)−i◦�A◦�C◦�i = �A�◦�C� ∈ Aut L◦Aut M ,

Aut (NG(q, t)) = Aut L◦Aut M◦Aut F = (Aut L◦Aut M)⋊ Aut F

=
(
Aut L ⋊ Aut M

)
⋊ Aut F =

(
(Z2)

k(t−1)
⋊ Zqt−1−1

)
⋊ Zk(t−1).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


885

1 3

The automorphism group of projective norm graphs  

 9. Ball, S., Pepe, V.: Asymptotic Improvements to the Lower Bound of Certain Bipartite Turán Num-
bers. Comb. Probab. Comput. 21, 323–329 (2012)

 10. Ball, S., Pepe, V.: Forbidden subgraphs in the norm graph. Discret. Math. 339(4), 1206–1211 (2016)
 11. Balogh, J., Samotij, W.: The number of K

s,t-free graphs. J. Lond. Math. Soc. 83(2), 368–388 (2011)
 12. Bayer, T., Mészáros, T., Rónyai, L., Szabó, T.: Exploring projective norm graphs, (2019) arXiv: 

1908. 05190
 13. Bayer, T., Mészáros, T., Rónyai, L., Szabó, T.: Exploring projective norm graphs (extended 

abstract). Acta Math. Univ. Comen. 88(3), 437–441 (2019)
 14. Brown, W.G.: On graphs that do not contain a Thomsen graph. Can. Math. Bull. 9, 281–285 (1966)
 15. Dvir, Z., Kollár, J., Lovett, S.: Variety evasive sets. Comput. Complex. 23(4), 509–529 (2014)
 16. Erdős, P.: On sequences of integers no one of which divides the product of two others and related 

problems, Mitt. Forsch. Institut. Mat. und Mech. Tomsk 2, 74–82 (1938)
 17. Erdős, P., Simonovits, M.: A limit theorem in graph theory. Stud. Sci. Math. Hung. 1, 215–235 

(1966)
 18. Erdős, P., Stone, A.H.: On the structure of linear graphs. Bull. Am. Math. Soc. 52, 1087–1091 

(1946)
 19. Fox, J., Pach, J., Sheffer, A., Suk, A., Zahl, J.: A semi-algebraic version of Zarankiewicz’s problem. 

J. Eur. Math. Soc. 19(6), 1785–1810 (2017)
 20. Grosu, C.: A note on projective norm graphs. Int. J. Number Theory 14(1), 55–62 (2018)
 21. Kollár, J., Rónyai, L., Szabó, T.: Norm-graphs and bipartite Turán numbers. Combinatorica 16, 

399–406 (1996)
 22. Kostochka, A., Pudlák, P., Rödl, V.: Some constructive bounds on Ramsey numbers. J. Comb. The-

ory Ser. B 100, 439–445 (2010)
 23. Kostochka, A., Mubayi, D., Verstraëte, J.: Turán problems and shadows III: expansions of graphs. 

SIAM J. Discret. Math. 29(2), 868–876 (2015)
 24. Kővári, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz, Colloquium Mathematicae 3(1), 

55–57 (1954)
 25. Lazebnik, F., Mubayi, D.: New lower bounds for Ramsey numbers of graphs and hypergraphs. Adv. 

Appl. Math. 28(3), 544–559 (2002)
 26. Lenstra, H.W.: Automorphisms of finite fields. J. Number Theory 34(1), 33–40 (1990)
 27. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications, Cambridge University 

Press (1986)
 28. Ma, J.: On edges not in monochromatic copies of a fixed bipartite graph. J. Comb. Theory Ser. B 

123, 240–248 (2017)
 29. Mantel, W.: Problem 28. Winkundige Opgaven 10, 60–61 (1907)
 30. Mészáros, T., Rónyai, L., Szabó, T.: Singer difference sets and the projective norm graph, (2019) 

arXiv: 1908. 05591
 31. Monte Carmelo, E.L., Sanches, J.: Multicolored set multipartite Ramsey numbers. Discret. Math. 

339, 2775–2784 (2016)
 32. Mubayi, D.: Some exact results and new asymptotics for hypergraph Turán numbers. Comb. Probab. 

Comput. 11(3), 299–309 (2002)
 33. Mubayi, D.: Coloring with three-colored subgraphs. J. Graph Theory 42(3), 193–198 (2003)
 34. Mubayi, D., Williford, J.: On the independence number of the Erdős-Rényi and projective norm 

graphs and a related hypergraph. J. Graph Theory 56(2), 113–127 (2007)
 35. Nica, B.: Unimodular graphs and Eisenstein sums. J. Algebraic Comb. 45(2), 423–454 (2017)
 36. Nikiforov, V.: A contribution to the Zarankiewicz problem. Linear Algebra Appl. 432, 1405–1411 

(2010)
 37. Nikiforov, V.: Some new results in extremal graph theory. In: Chapman, R. (eds.) Surveys in Combi-

natorics 2011, pp. 141–182. LMS Lecture Note Series 392, Cambridge University Press (2011)
 38. Pach, J., Spencer, J., Tóth, G.: New bounds on crossing numbers. Discret. Comput. Geom. 24(4), 

623–644 (2000)
 39. Palmer, C., Tait, M., Timmons, C., Zs, A.: Wagner, Turán numbers for Berge-hypergraphs and 

related extremal problems. Discret. Math. 342(6), 1553–1563 (2019)
 40. Peng, X., Timmons, C.: Infinite Turán Problems for Bipartite Graphs. SIAM J. Discret. Math. 28(2), 

702–710 (2014)
 41. Perarnau, G., Reed, B.: Existence of spanning F-free subgraphs with large minimum degree. Comb. 

Probab. Comput. 26(3), 448–467 (2017)

http://arxiv.org/abs/1908.05190
http://arxiv.org/abs/1908.05190
http://arxiv.org/abs/1908.05591


886 T. Bayer et al.

1 3

 42. Rotman, J. J.: An introduction to the theory of groups (4th ed.), Graduate Texts in Mathematics 148, 
Springer-Verlag (1995)

 43. Rué, J., Serra, O., Vena, L.: Counting configuration-free sets in groups. Eur. J. Comb. 66, 28–307 
(2017)

 44. Sudakov, B., Verstraëte, J.: Cycle lengths in sparse graphs. Combinatorica 28(3), 357–372 (2008)
 45. Sudakov, B., Vondrák, J.: A randomized embedding algorithm for trees. Combinatorica 30(4), 445–

470 (2010)
 46. Turán, P.: On an extremal problem in graph theory. Matematikai és Fizikai Lapok 48, 436–452 

(1941)
 47. Verstraëte, J.: Product representations of polynomials. Eur. J. Comb. 27, 1350–1361 (2006)
 48. Vinh, L.A.: The sovability of norm, bilinear and quadratic equations over finite fields via spectra of 

graphs. Forum Math. 26(1), 141–175 (2014)
 49. Wang, Y., Li, Y.: Bounds for Bipartite Rainbow Ramsey Numbers. Graphs Comb. 33(4), 1065–1079 

(2017)
 50. Wang, X., Lin, Q.: Multicolor bipartite Ramsey numbers of K

t,s and large K
n,n . Discret. Appl. Math. 

213, 238–242 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	The automorphism group of projective norm graphs
	Abstract
	1 Introduction
	2 The automorphism group
	3 Preliminaries
	3.1 Common neighbourhood of pairs of vertices

	4 The proof
	References




