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Abstract

Let X be a 3-dimensional affine variety over C with a faithful action of a 2-dimensional torus 7'.
Then the space of first order infinitesimal deformations T*(X) is graded by the characters of T,
and the zeroth graded component T(X)q consists of all equivariant first order (infinitesimal)
deformations.

Suppose that using the construction of such varieties from [1], one can obtain X from a
proper polyhedral divisor 2 on P! such that the tail cone of (any of) the used polyhedra
is pointed and full-dimensional, and all vertices of all polyhedra are lattice points. Then we
compute dim 71 (X)g and find a formally versal equivariant deformation of X. We also establish
a connection between our formula for dim 7! (X )y and known formulas for the dimensions of
the graded components of T of toric varieties.
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1 Introduction

All algebraic varieties in the present text are considered over the field of complex numbers.

1.1 T-varieties

As proved and explained in [1], normal affine varieties of dimension d with a faithful action of
a k-dimensional torus 7' (which are called T-varieties in the sequel) are described by so-called
proper polyhedral divisors. To define them, consider the character lattice M = X(T), the
rational character lattice Mg = M ®z Q, the dual character lattice N = Homgz(M,Z), and the
dual vector space (the dual rational character lattice) Ng = Mg.

A polyhedron in a Q-vector space is the nonempty intersection of finitely many closed affine
half-spaces. A particular case of a polyhedron is a polyhedral cone, a polyhedron is called a
polyhedral cone if it can be obtained as the intersection of finitely many closed linear half-spaces,
i. e. the boundary of all these half-spaces should contain the origin. If A is a polyhedron in a
Q-vector space V, its tail cone is defined as the set of vectors v € V such that for all a € A
one has v+ a € A. It is denoted by tail(A). Fig. 1.1 shows an example of a polyhedron and of

its tail cone.

(a) (b)

Figure 1.1: An example of (a) a polyhedron and (b) its tail cone.

All polyhedra in a given Q-vector space V with a given tail cone ¢ form a semigroup with
the operation of Minkowski addition. ¢ is the neutral element. Denote the Grothendick con-
struction for this semigroup by Pol, (V).

The next object we need to define to study T-varieties is a polyhedral divisor. Suppose that
we have a normal variety Y. A polyhedral divisor 2 is an element of the group Pol,(N) ®q
CaDivg(Y'), where CaDivg is the group of Q-Cartier divisors.

Now we can say that a T-variety is determined by the following data:

1. A (d — k)-dimensional normal (not necessarily affine) variety Y.
2. A pointed cone o in the rational dual character lattice Ng = X(T')g.

3. A proper (see definition below, in Section 2.1) polyhedral divisor 2.



1.2 Deformations and first order deformations

As we said, the definition of properness in the whole generality will be given later, but in the
case we will need it now, namely when Y = P!, it is easy to formulate an equivalent condition
for properness. Namely, the polyhedral divisor 2 on P! is proper if and only if it can be written
in the form

r
9 = Zpi ® Ap,,
i=1
where p; € P! are points, and A,, are polyhedra (they should be ”genuine” polyhedra, not
elements of the Grothendick group), and the Minkowski sum of all polyhedra A,, is strictly
contained in o.
The construction of a T-variety out of these data will be given in Section 2.1.

1.2 Deformations and first order deformations

For a general reference on deformation theory, see [2].

In general, a deformation of a variety X with a scheme Z with a marked point z € Z being
the parameter space of the deformation is a flat morphism £: Y — Z, where Y is a scheme,
together with an isomorphism ¢ between X and £7!(z). A deformation with parameter space Z
is sometimes briefly called a deformation over Z. Two deformations (£: Y — Z,1: X — £71(2))
and (¢:Y" — Z,//: X — ¢'71(z)) with the same parameter space Z and the same marked
point z are called equivalent if there exists an isomorphism ¢: Z — Z’ such that £ = ¢’q and
qle-1zye =1

A deformation (£:Y — Z,1: X — £71(2)) with a torus action T : Z is called equivariant if
¢ is T-equivariant and £ is T-invariant.

If Z is the double point, i. e. Z = Spec(Cl[e]/€?), and X is affine (X = Spec A), then the set
of the isomorphism classes of all possible deformations over Z is denoted by T'(X), and one
can define an A-module structure on it. See Section 2.2 for details.

Deformations can be pulled back from one parameter space to another using fiber product.
In particular, if we have a vector space Z, then each tangent vector at the marked point defines
an embedding of the double point into Z. We can pullback the deformation from Z to the
double point and get an element of T'(X). So we get a map from the tangent space at the
marked point to T1(X). In fact, this map is linear. It is called the Kodaira-Spencer map and
is an important characteristic of the original deformation.

If M is a lattice, and A is an M-graded algebra, then T'(X) actually becomes a graded
A-module. Moreover, if M = X(T'), then an M-grading on A is equivalent to a torus action
on Spec A, and the graded component of T'(X) of degree zero (it will be further denoted by
T'(X)o) contains exactly the equivariant deformations. (More precisely, T (X ) contains the
set of deformations that can be made equivariant by the appropriate choice of a T-action on
Z, but such a choice is unique up to an isomorphism of the deformation.)

1.3 Problem setup and main results

To formulate the exact problem we are going to study, let us fix some notation until the end of
the text.

We start with a two-dimensional torus 7" and set M = X(T), Mg = M ®z Q, N =
Homgz(M,Z), and Ng = M@ We choose a two-dimensional pointed cone ¢ C Ng. Then
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we fix a proper polyhedral divisor 2 on P!, where

9 = Zpi & Apiv

=1

p; € P! are arbitrary points, and A, are (nonempty) polyhedra with tail cone . Additionally,
we suppose that all vertices of all polyhedra A, are lattice points.! In this case all divisors
P(x) are integral, not rational. The properness condition in this case means that the Minkowski
sum of all polyhedra A, is strictly contained in o.

We are going to study the 3-dimensional variety X with an action of the 2-dimensional torus
T defined as above by P!, o, and 2. More specifically, we are going to find the dimension of
the space of equivariant first order deformations of X, and to find a formally versal equivariant
deformation space for X.

The dimension of T*(X)g is computed in Chapters 3 and 4. The answer is given by Theorem
4.32.

To formulate this result here, let us introduce some notation and terminology. First, let us
call all points p; € P! special, and call all other points of P! ordinary. A special point p; is
called removable if Ay, is a shift of o. Otherwise (i. e. if A, has at least two vertices), p;
is called an essential special point. For each polyhedron A,, denote by v, the number of its
vertices, and denote by Epo,Ep1,...,Epy, the edges of A, as they occur on the boundary of
Ap. In particular, E, o and E, v, are two rays, and E;1,...,Ep,y, 1 are segments. We require
that the rays E, are parallel for all special points p (this is possible since all polyhedra A,
have the same tail cone). Finally, if a is a vector or a segment in Ng, denote by |a| the lattice
length of a, i. e. the number of lattice points in a including exactly one of the endpoints.

Theorem 1.1. We maintain the assumptions and the notation introduced above in this section.
The dimension of TY(X)g is the sum of two summands:

1. The mazximum of 0 and

—3 + #{essential special points}.

r v_1
> max(0, -1+ Y _|Ep, ).
i=1 j=1

In Chapter 6 we find a formally versal deformation space for the equivariant deformations of
X. The construction of the total space of this deformation requires more technical details and
will be given in Section 6.1, but the parameter space is just a vector space. In particular, it is
smooth, so all equivariant first order deformations are unobstructed.

To prove that the deformation in question is formally versal, we will need to compute the
Kodaira-Spencer map of a deformation defined by perturbation of generators of a subalgebra of
the polynomial algebra. See Section 6.2 for more details. The results about the Kodaira-Spencer
map for such deformations may be of independent interest.

Some of these results were preliminarily announced in an arxiv.org preprint by the author,

[3].

!The T-varieties obtained from polyhedral divisors without this ”lattice point” condition can be obtained from
the T-varieties under consideration by taking the quotient modulo a finite group action.




2 Preliminaries

2.1 T-varieties and polyhedra

We will need an explicit construction of a T-variety out of a polyhedral divisor.

First, we need one more definition concerning polyhedral cones. If ¢ is a polyhedral cone in
a Q-vector space V, its dual cone is defined as the set of all vectors w € V* such that for all
v € V one has w(v) > 0.

Now we have to define the evaluation function eval: Pol, (V) x oV — Q as follows: eval(Aj —
Ao, f) = minyea, f(v) — mingea, f(v) for all polyhedra A, Ay with tail cone o and for all
f € V. One checks directly that this function is well-defined on Pol,(V), that it is linear in
the first argument and is piecewise-linear in the second argument. If we fix a polyhedron as
the first argument (a real polyhedron, not an element of the Grothendick construction, i. e.
Ay = o), then the resulting function is also convex. If this polyhedron is of the form o + v,
where v € V, then this function is linear, not just piecewise-linear. If A is a polyhedron,
we shortly call the function evalp: 0¥ — Q defined by evala(f) = eval(A, f) the individual
evaluation function of the polyhedron A.

We are going to construct a d-dimensional variety with an action of a k-dimensional torus 7.
Suppose that we have a (d — k)-dimensional normal (not necessarily affine) variety Y, a pointed
cone o in the rational dual character lattice Ng = %(T)(E, and a polyhedral divisor Z on Y.

For every element x € 0¥ N M, 2 defines a rational divisor Z(x) as follows. Notice that x
can be considered as a function on N. Let Z = > a,Z; ® (A; — AL), where a; € Q, Z;’s are
irreducible hypersurfaces in Y, and A;’s and A}’s are polyhedra with the tail cone 0. We put

2(x) = aieval(A; — A}, x)Z; = 3 ai(minpena, x(p) — mingear x(p))Zi.

Definition 2.1. A polyhedral divisor & is called principal, if it can be written in the form
2 =>_div(f;) ® a; + o, where f;’s are rational functions on Y and «; € N.

Definition 2.2. A polyhedral divisor Z is called proper, if

1. It can be written in the form 2 = > a;Z; ® A;, where a; € Q, efficient Cartier divisors
in Y, and A;’s are polyhedra with the tail cone ¢ and a; > 0.

2. For every y € 0¥ N M, 2(x) is semiample, and if  is in the interior of ¢V, Z(x) is big.

Now, notice that if x,x" € ¢V N M, then Z(x) + 2(x) — Z2(x + X') is an effective divi-
sor, so a product of (rational) functions from I'(P, #(2(x))) and from T'(P!, 0(2(x))) is in
L(PL,0(2(x +X'))). So we have a graded algebra

A= @ TE®.020)).

x€oVNM

One can prove that if & is proper, this algebra is finitely generated. The T-variety in question
is X = Spec A. Since A is graded, T acts on X. If & is proper, dim X = d.

If we add a principal polyhedral divisor to &, then A will not change as a graded algebra,
so X will stay the same, and the action of the torus on X will also stay the same. Notice also
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that if x,x" € 0¥ N M are proportional, then Z2(x + x') = 2(x) + 2(X’), and in general the
function x — Z(x) is piecewise-linear.

Within the construction of A we use, the elements of T'(P!, &(2(x))) may be interpreted in
two ways: they are rational functions on Y and they are global algebraic functions on X. If
feT(PLO(2(x))), we will write f for a rational function on Y and f for a global function
on X.

Proposition 2.3. (see [1, Theorem 3.1]) There exists a rational surjective map w: X — Y
such that for every degree x € oY N M, for every point x € X such that 7 is defined at x, and
for every f,g € T(PY, 0(2(x))) the following conditions are equivalent:

1. f/g is defined at w(z) as a rational function.

2. f/ﬁ is defined at x as a rational function.

In this case, (f/9)(r(x)) = (f/9)(x).

2.2 Deformations

If X = Spec A is an affine algebraic variety, we will need to understand how to define an A-
module structure on T!(X). Namely, choose an embedding X < C", then A can be written
as A = C[#1,...,%,]/I, where I is an ideal. Then I/I? is an A-module. Consider also the
following C[#1, ..., &p]-module © = Der C[Z1,...,Z,]: its elements are of the form Y ¢;0/0;,
where g; € C[Z1,...,%,]. Every such differential operator defines an A-homomorphism between
I/I? and A: if g € I, then g/I* € I/T? maps to () g:0g/0%;)/1 € A. Tt g € I?, g = 3 ¢34,
then -, . 9:0(9;9;)0%; = >, ; 9ig;097 | 0%+, ; 9i9; 09;/0%; € I, so the map is well-defined. If
a€ ClZy,...,%,),a/] € A, then g g;0a/0%; € 1,50 (> gi0(ag)/0%;)/I = (a)_ gi0g/0%;)/ I+
(9> 9i0a/0%;)/I = (a ) gi0g/0%;)/I, and the map is A-linear. So in fact we have defined a
map ¢: © — Homa(I/1%, A).

Moreover, if > ¢;0/0%; € IO, i. e. if all g; are in I, then > ¢;0g/0%; € I for all g € I, so ¢
is well-defined on © /10, which is an A-module. It is clear that ¢ is A-linear.

One can prove that T'(X) can be identified with coker ¢ so that these identifications for
all affine varieties together have good category-theoretical properties. We will not need these
properties explicitly, and we will use this identification as a definition of 7! (X). However, we
will need to understand how the identification itself works exactly, because at some point a first
order deformation will arise from a different source (actually, as a restriction of a deformation
over an affine line to a tangent vector at the origin), and we will need to understand how it is
represented by an element of coker. Here is a brief description.

Suppose that we have a first order deformation with a total space Y. It can be shown that
Y is an affine scheme. Denote B = C[Y]. Then the flat morphism &: Y — Spec Cle]/e? means
that B is a (C[e]/e?)-module, and the isomorphism ¢ determines an isomorphism ¢*: B/sB —
A = C[X]. We keep the assumption that A is generated by n generators z1,...,z,, and that
I C C[#1,...,%y,] is the ideal such that C[Zi,...,%,]/] = A and that this isomorphism maps
Z; to x; for each i. The flatness of £ implies that there exist elements z7,...,Z, € B such that
1*T; = x; and that all elements ¢ =¢-1,771,...,T, generate B. It also follows from the flatness
of £ that if g € I, in other words, if g is a polynomial in n variables such that g(z1,...,x,) =0,
then there exists a polynomial ¢’ € Cl[Zy,...,&,] such that g(x1,...,z,) = e¢'(z1,...,24).
Moreover, it can be shown that this ¢’ is unique modulo I. So, we have a well-defined map
I — C[&1,...,#,)/I = A, and it can also be shown that it is well-defined on I/I? and is

10
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A-linear. We say by definition that the isomorphism between T'(X) and coker ¢ maps the
deformation under consideration to the class of this map in coker ¢ = Homa(I/I?, A)/im ¢.
One still has to show that this is really an isomorphism, but this is a known fact. Note that a
deformation itself only defines a class of a map I/I? — A in coker ¢, but if we lift the generators
of A to B, the map I/I? — A itself will be already uniquely determined (while it depends on
the choice of the lift).

If M is a lattice, A is M-graded, and the generators &1, ..., Z, are homogeneous, then one
has an M-grading on C[Z1, ..., 4] as well. Then I becomes an M-graded ideal, and © becomes
an M-graded module with deg(0/0#;) = —deg#;. The map ¢ preserves this grading, so we
have a grading on T (X).

2.3 Schlessinger’s formula for 7'

Extending Schlessinger’s result [4, Lemma 2|, we prove the following theorem:

Theorem 2.4. Let X be an affine normal algebraic variety, and let U be a non-singular open
subset of X such that codimx (X \ U) > 2. Then T*(X) can be computed as follows. Let O
denote the tangent sheaf on X, and let x1,...,x, € C[X] be a set of generators. Consider the
following map 1: Ox — OF": it maps a (locally defined) vector field w to (dzi(w), . .., dz,(w)).

1
Then TY(X) = ker(H' (U, ©x) H @) HYU, 0%")) as C[X]-modules.

The difference from Lemma 2 in [4] itself is the following. First, we speak about a normal
affine variety X, while Lemma 2 in [4] speaks about local geometric schemes. Second, we
allow X to have any singularities as long as X is normal, while Lemma 2 in [4] says that the
singularity must be isolated. Finally, here U is an arbitrary smooth open subset of X such that
codimx (X \ U) > 2, while in Lemma 2 in [4] it must be the smooth locus of X. On the other
hand, here X is only embedded into a vector space, while in [4] it can be embedded into an
arbitrary smooth local geometric scheme Y. However, despite all these differences, the proof
of Lemma 2 in [4] can be used as a proof of Lemma 2.4 here without any significant changes.

Proof of Theorem 2.4. If .Z is a coherent sheaf on X, denote .#V = Homx (%, 0x). First,
we prove three lemmas, which extend Lemma 1 from [4]. Here we use the following notion of
sections and cohomology with support (for more details, see, for example, [5, Section II.1] and
[5, Section II1.2]). Given a sheaf .# on a variety X and a closed subset V' C X, we denote
by HY(X,.Z) (or by I'v(X,.#)) the space of all global sections s of .% that vanish outside V
(slx\v = 0). We call the space HY.(X,.7) the space of global sections of F with support on V.
The functor H‘(}(X , —) is left exact, and it has classical right derived functors, which are called
cohomology with support and denoted by Hi (X, —).

Lemma 2.5. Let X be a normal affine algebraic variety, U be an open subset such that

codimx (X \ U) > 2, and F be a free sheaf of finite rank on X. Then H?X\U)(X7 F) =
Hix\ (X, F) = 0.

Proof. Write the long exact sequence for cohomology with support:
0= Hix\p(X,-F) = H'(X, F) = H (U, F) = Hx\))(X,F) > H (X,.F) = ...

F is a free sheaf of finite rank, X is normal, and codimx (X \ U) > 2, therefore the re-

striction map H(X,.#) — I'(U,.#) is an isomorphism. Hence, H(OX\U) (X,#) = 0 and the

11
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map H(lX\U)(X, F) — HY(X,Z) is an embedding. Since X is affine, H(X,.#) = 0, so
H(lx\U) (X,7)=0. O

The following lemma is known, but for convenience of the reader we give a proof here.

Lemma 2.6. Let X be a normal affine algebraic variety, U be an open subset such that
codimx (X \U) > 2, and .Z be a coherent sheaf on X such that there exists a coherent sheaf ¢

on X such that F =%Y. Then H(OX\U)(X, F) =0.

Proof. Since ¢ is a coherent sheaf, there exists an exact sequence of coherent sheaves on X
09 9" 59 -0,

where ¢” is free. Since Homx (-, Ox) and H (OX\U) (X, ) are left exact functors, the corresponding
map
Hix\iy (X, F) = Hix\ ) (X, 9™)

is an embedding. ¢” is free and coherent, i. e. it is a free sheaf of finite rank, so ¢"V is also a

free sheaf of finite rank. By Lemma 2.5, H?X\U) (X,9"V) = 0. Hence, H?X\U) (X,7)=0. O

Remark 2.7. Strictly speaking, we will not need this fact later, but the statement of the lemma
is closely related to the notion of a reflexive sheaf. Namely, a sheaf F is called reflexive if
FVV = F. Clearly, if F is reflexive, then it satisfies the conditions of the lemma, we can take
4G = FV. One can prove that the contrary is also true, i. e. if F can be written as 4", then
F is reflexive.

Lemma 2.8. Let X be a normal affine algebraic variety, U be an open subset such that
codimyx (X \ U) > 2, and F be a coherent sheaf on X such that there exists a coherent sheaf
4 on X such that F = Homx (¥, 0x). Then the restriction map I'(X,.#) — I'(U,.%) is an
1somorphism.

Proof. Again write an exact sequence of coherent sheaves on X
09 9" 59 -0,

where 4" is free. The dualization functor is left exact, so the corresponding map .# — 4"V
is an embedding, and its cokernel (denote it by 2) is a subsheaf of ¥’V. By Lemma 2.6,
H(OX\U) (X,9"V) = 0. Since 2 is a subsheaf of ¥’V and H(OX\U) (X,-) is a left exact functor,

H (OX\U) (X,2) =0. Again, since 4" is free and coherent, 4"V is a free sheaf of finite rank. By
Lemma 2.5, H (1X\U) (X,9"V) = 0. We have the following exact sequence of cohomology:

0— H?X\U) (X, 7) — H?X\U) (X, 9" — H?X\U) (X,2) —
Hix\py(X, 7) = Hix\p) (X, 9") = ..,

and we see that H(lx\U)(X7 Z#) = 0. By Lemma 2.6, H(OX\U)(X, F) = 0. Now write the
following long exact sequence:

0= Hl\ (X, 7) = H(X,.7) = HYU,F) = Hlx\ (X, ) = ...

We see that the restriction map H(X,.%) — H°(U, %) is an isomorphism. O

12



2.3 Schlessinger’s formula for T

Now we are ready to prove Theorem 2.4. Denote A = C[X]. The generators z1,...,x, define
an embedding X < C" = SpecCliy,...,%,] and a morphism of algebras C[Z1,...,&,] — A
so that &; — x;. Denote the kernel of this algebra morphism by I. As we have previously
seen, I/I? is an A-module. Denote the corresponding sheaf on X by .#. Observe that the
A-module ©/16 introduced in the definition of T"(X) is isomorphic to the free A-module of
rank n as an A-module. The kernel of the map ¢: ©/160 — Homy(I/I%, A) consists of all
n-tuples (g1, ...,gn) of functions on X such that for all h € I one has > g;0h/0%; = 0 in A
(to evaluate this expression, we take arbitrary representatives in the cosets corresponding to
g; and to h in C[#1,...,%,] and in I, respectively, we have seen previously that its value in
A does not depend on this choice). In other words, the n-tuple (gi,...,gn) defines a tangent
vector field to X. The embedding of the tangent bundle on X into the rank n trivial bundle
on X we have just obtained coincides with the map 1 in the statement of Theorem 2.4. So, we
have the following exact sequence of A-modules:

0= T(X,0x) ") A%n s Homu(I/12,A4) — TV (X) — 0.

Since X is affine, we also have an exact sequence of sheaves (denote the sheaf generated by the
A-module T(X) by 71):

0—>@Xi>6"§§”—>fv—>;71—>0.

Denote the map between sheaves 03" and .V by ¢. It is known that (see, for example, |2,
Exercise 3.5 and Theorem 4.9]) if U’ C X is smooth, then T'(U’, 7!) = 0. So, if U’ is, in
addition, affine, we have the following exact sequence:

0= T, 0x) " rr, o ") rr vy o,

In particular, this holds for affine sets U’ forming an affine cover of U. Therefore, we have the
following exact sequence of sheaves on U:

0— ®X|U 1/’_\(]) ﬁ;‘?nhj ﬁ) f\/‘U — 0,

and we can write the long exact sequence of cohomology:

0 0( 7
0 HOU,0x) "YU gOw, 6% ") o, 2V -
1
7w, ex) U giw, ooy

Denote the map between HY(U, #Y) and H'(U,Ox) by 6. We have ker H'(¢)|y) = imd =
HY(U, #V)/ker 6 = HO(U, #V)/im H%(¢|y/) = coker H(¢|1).

Recall the exact sequence of A-modules we started with:

0= T(X,0x) " A% — Homu(I/12, A) — T'(X) — 0.

We can write A®™ as T'(X, 0%"). and Homy (I/1%, A) as T'(X, .#"). Now we can apply Lemma
2.8. Ox is dual to Qx, ﬁ;‘?” is dual to itself, and .#" is dual to .# by construction. So we can

13



2 Preliminaries

rewrite the exact sequence as follows:

0 0(4
0 - HOU,0x) "W gow, oy ) gou, #v) S THX) 0,
and we see that coker HO(¢|y) = T (X). O

Remark 2.9. If a torus T acts on X and preserves U, all generators of C[X| we have are homo-

geneous and we find an affine covering of U by sets preserved by T, then ker(H (U, ©x H—LU)
HY(U, 03%")) becomes a graded C[X]-module. The C[X]-module Tl( ) also becomes gmded (see
Section 2.2).

In this case, the argument above proves that T'(X) is isomorphic to ker(H'(U,Ox HﬁLU
HYU,0%")) as a graded C[X]-module.

2.4 Cech complexes cohomology

We need two more facts related to Cech complexes. The first proposition explains how to
compute derived direct images using Cech resolutions.

Let .7 be a quasicoherent sheaf on a separated algebraic variety U, and let {U;}]_; be an
affine covering of U. Consider the following sheaf Cech resolution of .Z: it consists of sheaves

FtonU,i>0,and
T = @ gal,...,aHp
1<a1<as<...<ai+1<q
where if V' C U is an open subset, then I'(V, %4, .. 4,.,) = T(V N Uy N...NUqg,,,F). The

differentials in the resolution are defined in the usual Cech sense: given a section

(xal, 50 )1<a1<a2< <al<q€F(V 5\2 1),

the differential maps it to

(yal,..‘,aprl)1§a1<a2<...<ai+1§q € F(‘/a yl),
where
1+1
Yai,....ait1 = (_1)](xa1,.--,6?j~--,ai+1)
7j=1

+

VAUayNWUay

10\2

Notice that if we take the global sections of al , we obtain a Cech complex of .% in the

”usual”, non-sheaf sense.
Suppose we have a map f: U — Y, where Y is also a separated algebraic variety.

Proposition 2.10. [5, Proposition II1.8.7]
R f(F) = K" (f(F°)),

where S is the ith cohomology of the complex formed by f.(F*) for i > 0, not the ith coho-
mology of a particular sheaf. O

The second fact gives an easier way to compute the first cohomology of complexes that ”look
like a Cech complex” under certain circumstances in any abelian category. Suppose that

14



2.4 Cech complexes cohomology

is an abelian category, let A be an object, let ¢ € N, and let for every 1 < i < ¢ indices a;
satisfying 1 < a; < ... < a; < q Aq,,. 4 be asubobject of A (i. e. an object together with a
morphism A,, . — A whose kernel is zero). Suppose also that if (%‘)3‘:1 is a subsequence

of (b]);ill, then Ay, .. 4, is a subobject of Ay, 5., and the embedding Aq,...a; — Apy,..0

commutes with the embeddings of these objects into A.

i+1
Now consider the following complex B*:

B' = @ Aahu-,aiﬂv 1> —1L.

1<a1<a2<...<a;+1<q

Here we allow i = —1 and say that Athe empty sequence = 0, 50 B —1 = 0 The differential d: B*~1 —
B' is defined using a sign-alternating sum, as it is usually defined in Cech complexes. Here we
have objects in an abelian category, not necessarily abelian groups or modules over a ring, so
we use universal properties of direct sums to interpret formulas with addition and subtraction
signs.

We also need the following complex B’®:

B/i = @ A/Aa17---7az‘+17 i > -1

1<a1<az<...<a;+1<q

Here we also allow i = —1, and B'~! = A. Again, the differentials are defined ”as usual” using
universal properties of direct sums.

Proposition 2.11. Fori >0, H(B®) = H'"!(B'®). This isomorphism is functorial in B and
B’ if the embeddings Aq, . a0, — A are functorial in Aq, . o, and A.

K3

Proof. Consider the following complex B”*:

B" = ay) A, > 1.

1<a1<as<...<ai+1<q

The differential is again the standard Cech differential. Clearly, we have an exact sequence of
complexes:
0— B*— B" - B"*—0.

Let us check that B”® is acyclic.

Lemma 2.12. B"* is acyclic.

Proof. First, consider the topological complex for a simplex with g vertices, i. e. the following

complex C*:
o= a Z, i>0.

1<ai<az<...<a;j+1<q

Here we do not allow i = —1, and the differential again coincides with the standard Cech
differential (although initially it is defined by topological means). It is a well-known topological
fact that H(C®*) = Z and HY(C*®) = 0 for i # 0. One easily checks directly that H°(C*®) consists
of classes of the elements of C? = Z®" that have all coordinates equal, i. e. of the elements of
the form (a,a,...,a), where a € Z.

15
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Therefore, the following complex C’® of abelian groups is acyclic:

Ol = &y Z, i>-—1.

1<a1<az<...<a;+1<q

Now let us use Mitchell’s embedding theorem. Consider the abelian subcategory in %6y in €
generated by A. This is a small category, therefore by Mitchell’s embedding theorem it is
equivalent to an abelian subcategory in the category of left modules over a (not necessarily
commutative) ring R. So, we can consider B”® as a complex of R-modules. In particular, B"®
also becomes a complex of abelian groups, and it is acyclic as a complex of R-modules iff it is
acyclic as a complex of abelian groups. And for complexes of abelian groups, we clearly have
B//. — C/. ®Z A'

Let us deduce that B”® is also acyclic. We cannot be sure that A is a flat object in the
category of abelian groups, but we can argue differently. Since C’® is acyclic and consists
of free abelian groups of finite rank, it can be considered as a projective resolution for the
abelian group 0. Then Tor;(0, A) = H~{(C" ®z A) = H~*(B"*). But Tor;(0, A) = 0, so B"* is
acyclic. O

Now let us write the long exact sequence for the exact triple
0— B*— B" - B*—0:
.— H'(B*) - H'(B"*) - H(B"*) —» H'"(B*) - H''Y(B"*) - H"Y(B"*) —
We have H'(B"*) =0 and H'T!(B"*) =0 for all i € Z, so H'(B'*) = H'T!(B®*). O

Corollary 2.13. If Aj, = A for all 1 < j < k < q, then H'(B®) = (@?:1 AJA;) /A, where A
is mapped to ;1-:1 A/A; diagonally. O

Corollary 2.14. In general, if it is not necessarily true that A;), = A for all 1 < j <k < gq,
then

HY(B*) - ker(é (A/A7) » P (A/Aj,k)) /A,

1<j<k<q

where A is mapped to ;1-:1 A/A; diagonally. O

2.5 Leray spectral sequence
We are going to use the following theorem:

Theorem 2.15. (see, for example, [6, Section 3.3, page 74] and [7, §III.7, Theorem 7]) Let
f: X — Y be a morphism of algebraic varieties, and let % be a quasicoherent sheaf on X.
Then there exists a spectral sequence called Leray spectral sequence with the second sheet

EYY = HP(Y,R1f.F),

qu to Ep+rq r+1

where the corresponding differentials map 2, that converges to

;T2
HPT(X | F). Denote the corresponding filtration on HPY4(X, F) by F*.
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2.5 Leray spectral sequence

The sheaves R1f.F can be considered as sheaves of f.Ox-modules, and HP(Y, R1f..F) can
be therefore considered as C[X]-modules. In this sense, the isomorphism

FPHerq(X’ f)/FeralJrq(X, (g;) o~ Egéq
is an isomorphism of C[X|-modules.

Here RYf, denotes the gth derived functors of the direct image functor in quasicoherent sheaf
category (or shortly, ”qth derived direct image”).

Notice that if dim Y = 1, then (since all sheaves RYf,.# are coherent) HP(Y, R1f..#) = 0 for
p>2 (and p < 0), so all dlfferenmals vanish, FY'? = B, and we have a short exact sequence

0— H Y,R"f.7) - HY(X,F) — H'(Y,R1f.F) — 0.

We will also need an explicit description of the maps in this exact sequence for ¢ = 1. By
adopting the general construction from [7, §II1.7] one can check that the exact sequence above
for ¢ = 1 looks as follows.

Choose an affine open covering {V;} of Y. Also choose an affine open covering {U; ;} of X
(here (i,j) € J, where J is a finite set of pairs of natural numbers) so that if (¢, j) € J, then
1<i<gq, and U;; C f~1(V;). Construct the sheaf Cech resolutlon of .# discussed in Section
2.4 using the covering {U; ;}. Denote this resolution by .#

Then the map HY(Y, f..7) — HY(X,.Z) works as follows: An element of H(Y, f,.%) is
represented by a tuple of sections (a;i)i<i<i<q, Where a;; € I'(V; NV, fo.F) satisfy the
cocycle conditions. By definition, I'(V; N Vi, f. %) = D(f~1(V; N Vi), F), and, since U;y C
f71(V;) we can define restrictions a; ; \U”mU/ , € NU;; N Uy jr, F) for all j and j" such that
(i,), (i, 7') € 3. These sections together with zeros for the sets U;,j N Uy jr, where i = 7', form
a class in H(X,.7).

The map H'(X,.#) — H°(Y, R' f..%) works as follows: Suppose that we have an element of
H'(X,.7) defined by sections a; ;7 € D(U; jNUy jr, foF) ((i,4), (', 5') € T and (i, ) < (i, )
for some prefixed order on J) satisfying the cocycle conditions. These sections together can
be interpreted as a global section of the sheaf .#! from Proposition 2.10 and, therefore, as
a global section s € T'(Y, f..#!). It follows from the cocycle conditions on a; i that s €
[(Y, ker(F! — #2)), so s defines a class in I'(Y, H(#*)) = H(Y, R' f,.%).

Finally, consider an even more particular situation. Denote U = N; j)e5Ui; and V = N, vi.
We keep all of the assumptions from the three previous paragraphs, but also suppose the
following:

1. X and Y are irreducible.
2. U and V are nonempty.
3. UC f~4(V).

4. All restriction maps for the sheaf .# to nonempty open subsets are injective (for example,
this is true for vector bundles of finite rank). L. e., if W C W’ C X are nonempty open
subsets, then the restriction map I'(%#, W') — I'(#, W) is injective. Then all restriction
maps for the sheaf .% to open sets containing V' are also injective.

5.V =V,NVyif 1 <i < i < q. This assumption enables us to use Corollary 2.13 to
compute cohomology groups of .7

17



2 Preliminaries

We can apply Corollary 2.13 to H(Y, f..#) and apply Corollary 2.14 to H'(X,.%). Moreover,
we can consider the sheaf .7y = (ju)«%|y. In other words, for all open subsets U’ C X set
L(U', Zy) = T(F,UNU’). Then all sheaves .Z; jy and F; j) i ;) from Proposition 2.10 are
subobjects of Fy/, and, since the functor f is left exact, each sheaf f..%; ;) and fuF(; ;) i )
is a subobject of f..%y. So, we can also apply Corollary 2.14 to the first cohomology of the
complex f,.#°*. We get the following isomorphisms:

=1

H'\(Y, f.7) = (EB (rv. f*f)/F(%,f*%‘))) / LV, f.7),

and

AT = ko @ (LF0/1-F0p) > D (LFu/f-Fuy) /f*,%].
(4,)€3 (4,5),(i",5") €3
(1.3)<(@",5")
These identifications enable us to write the maps H(Y, f..#) — H (X, %) and H'(X, F) —
HO(Y, R f.7F).

The map H(Y, f.7) — HY(X,.Z) is induced by the following map @!_, I'(V, f.F) —
@D(i jyes L'(U, F). For each i (1 <i < g), a section from the ith direct summand I'(V, f..) =
L(f~1(V),.#) is restricted to U and then mapped diagonally to ®D;.i.j)es I'(U, F). Note that
Uij NUy o C f~H(V) if i # i, therefore, the image of this map indeed belongs to the correct
subobject of B ; jyes I'(U, [+ F).

To get the map H'(X,.%) — H°(Y, R' f..7), note that each global section of ®(i,j)63 feFu
induces a global section of (D ; jye5(f+Fu/ f+F (i j)))/Fu. On the other hand, by the definition
of Zu, 'Y, D jyes f+Fv) = D(i jyes I'(U, F), and the map HYX,7) - H(Y,R f.F) is
induced by this equality.

Remark 2.16. Suppose that a torus T acts on X, the morphism f is T-invariant, and each
set U; j 1s preserved by the action of T'. Then one can introduce grading on HYY, f.7), on
HY(X,.7), and on H*(Y,R1f..7) in the obvious way.

It follows from the above descriptions of the maps between these cohomology groups that this
grading is preserved.

2.6 Stably dominant morphisms
Definition 2.17. (This is definition 10.80.1, tag 0581 in Stacks project [8]) Let A be an algebra.

A map of A-modules f: K1 — K> is called universally injective if for every A-module K3, the
map f ®idg,: K1 ® K3 — Ko ® K3 is injective.
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Remark 2.18. A universally injective map is always injective. A direct summand embedding
18 always universally injective.

Consider the following situation. Let X and Y be two affine schemes with base Z, in other
words, let £&1: X — Z and &: Y — Z be two morphisms of affine schemes. Let f: X — Y
be a relative morphism, i. e. a morphism such that & o f = &;. In other words, we have the
following commutative diagram:

x—t.y

Ny

VA

Algebraically this means that C[X] and C[Y] are C[Z]-modules, and that f*: C[Y] — C[X] is
a morphism of C[Z]-algebras.

Definition 2.19. We call f a stably dominant morphism if f* is a universally injective mor-
phism of C[Z]-modules.

Lemma 2.20. The functor of base change preserves stably dominant morphisms. In other
words, suppose that we have a morphism of schemes Z1 — Z, and f: X — Y is a stably
dominant morphism of Z-schemes. Then f Xz Z1: X Xz Z1 — Y Xz Z1 is a stably dominant
morphism of Z1-schemes.

Proof. In algebraic terms, we know that f*: C[X] — C[Y] is universally injective. Then
f* ®ciz) 1dez,): CIX] ®cjz) C[Z1] — C[Y] ®¢|z C[Z1] is a universally injective morphism of
C[Z1]-modules. Finally, C[X xz Z1] = C[X] ®c|z C[Z1], C[Y xz Z1] = C[Y] ®¢[z C[Z1], and
(f Xz Z1)" = [* @c|z) idczy)- O

Let g: Z1 — Z be a morphism of affine schemes. If X is an affine Z-scheme, g induces a
morphism X Xz Z; — X, which we will denote by gx. Algebraically, if x is a regular function
on X, then g% (z) = v ® 1z,, where 1z, is the unit of the algebra C[Z;]. This is illustrated by
the following commutative diagram

X x, 7, -Zs x

|

Z1 Z

For example, if I C C[Z] is an ideal, and Z; is the vanishing locus of I, then C[Z;] = C[Z]/I as
a C[Z]-module, g is the embedding of Z; into Z, g* is the canonical projection C[Z] — C[Z]/I,
and g% is the canonical projection C[.X] — C[X]/(IC[X]).

Lemma 2.21. Let Z be an affine scheme, let f: X — Y be a stably dominant morphism of
affine Z-schemes, and let g: Z1 — Z be a closed embedding. Then (f xz Z1)*(ClY xz Z1]) =
g% (f*(C[Y])) as a subalgebra of C[X xz Z1].
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Before we give a proof, let us provide a commutative diagram with all involved morphisms.

X xy 72— 122 v, 7
9x Zl gy
g
x— 1 Y

Proof. Since g is a closed embedding, ¢g* is surjective, and then (gy)* is also surjective. So,

(f xZZl)*((C[Y xZZl]) = (f Xzzl)*((gy)*((C[Y])) And the commutativity (f xZZl)*o(gy)* =
(gx)* o f* follows directly from the definitions of gx, gy, and f Xz Z;. O

In particular, we can use this lemma to compute fibers of the morphism Y — Z if we already
know fibers of the morphism X — Z (such a fiber is a particular case of base change applied
to Y, namely, we change the base of Y from Z to a point in Z).

2.7 Notation and terminology

First, we need some notation for lattice polyhedra. Let A be a polyhedron with tail cone o and
with all vertices in IV, where dimo = dim N = 2, and ¢ is pointed. We denote the number of
vertices of A by v(A) and we denote the vertices of A by Vi(A),..., Vy(a)(A) so that pairs of
consecutive vertices in this enumeration form the finite edges of A. We denote the finite edge
between V;(A) and V;11(A) by E;(A). We denote the infinite edge with the endpoint V1 (A)
by Eo(A) and the infinite edge with the endpoint Vya)(A) by Eya)(A).

We always choose the order on vertices of A so that Eg(A) is always parallel to the same
one of the two rays forming 0(¢) (it must not depend on A). This ray is denoted by Eq(o),
and the other ray of d(¢) is denoted by E; (o).

Recall that in the Introduction we have denoted by v,, where p € P! is a special point, the
number of vertices of A, so in terms of the notation we have introduced now, v, = v(4,). We
also denoted the edges of each A, by Ep,...,Epy,. Now we choose Eg(c) and E1(c) so that
Eo(0) is parallel to E, o (and not to E, y,) for all special points p. Then E, ; = E;(A,) for all
special points p and for 0 < j < v,,. We will also briefly write V, ; instead of V;(A,).

For each vertex V;(A) denote by .4 (V;(A), A) the subcone of ¢V consisting of all y € o
such that x(V;(A)) = mingea x(a). We call A4 (V;(A),A) the normal subcone of the vertex
Vi(A). One checks easily that this is really a subcone, that o¥V = |J A4 (V;(A),A), that the
intersection of two such cones is either a ray or the origin, and it is a ray if and only if the two
corresponding vertices form an edge E;(A). In the latter case this ray is exactly the set of all
X € ¢V whose minimum on A is attained on E;(A). We denote this ray by .4 (E;(A),A) and
call it the normal ray of the edge E;(A). Finally, we extend this notation for infinite edges of
A: we denote by A4 (Eg(A), A) (resp. A (Ey(a)(A), A)) the ray in M consisting of all x € o
whose minimum on A is attained on Eg(A) (resp. Ey(a)(A)). These two rays are in fact the
two rays forming 9(c"), and they are also called the normal rays of the corresponding edges.
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The normal subcones of all vertices and the normal rays of all (finite and infinite) edges form
a fan, which is called the normal fan of A.

The previous notation applies to polyhedra with tail cone o, let us extend it to the vertex and
edges of o¥. Namely, the boundary of ¢V consists of two infinite edges and one vertex at the
origin. Denote the vertex at the origin by V(o). If A is a polyhedron with tail cone o, then
A (Eo(A),A) is always the same edge of o (independently of A), and A (Ey(a)(A), A) is
always the other edge of 0. Denote Eg(c") = A (Eg(A),A) and Ei(0") = A (Ey(a)(A), A).
In particular, this is true for A = o, i. e. Eg(0¥) = A (Eo(0),0) and E1(c") = A (E1(0),0).
Denote the primitive lattice vectors on E;(o") by ;.

Fig. 2.1 shows an example of this notation for a polyhedron A, its tail cone ¢, and its normal

fan.
q
=
Eq (o) E;1(cY)=N(A,E3(A)) N N(AE5(A))
. . . . . . . . . o'Zo . . . .
. o . e e e e oA . g s
Vl(A) . . . . . . . . . . . . . .
Ei(A) N(AEq(A))
Voo .
. \E;(A.) 5 0 0o o d . 5 0 0 0 0 & . . ICHPRS
ClONE® | Ea) LA B, Eor DN EN AN L,

(a) (b) (c)

Figure 2.1: An example of notation for: (a) a polyhedron, (b) its tail cone, and (c¢) its normal
fan. The figure (c) also shows notation for the dual cone V.

If p is a ray in Mg, we denote the primitive lattice vector on p by b(p). If a is a vector or
a segment in N, denote by |a| the lattice length of a, i. e. the number of lattice points in a
including exactly one of the endpoints.

2.7.1 List of notation introduced further

The notation listed below will be properly introduced later, we list it now to ease reading and
navigation only, without going into details of the underlying notions.

1. The T-variety will be denoted by X.

2. We denote the number of essential special points by r’, and we will assume that the points
D1, ...,y are essential.

3. We will introduce a set of degrees containing the union of Hilbert bases of several subcones
of 0V, and we will denote the degrees in this set by A1,..., Am.

4. Since X is a T-variety, C[X] is an M-graded algebra. As usual, we will denote the degree
of a homogeneous element x € C[X]| with respect to this grading by deg(x).

5. We will choose homogeneous generators of this algebra, and denote them by

XA,y -+ s X dim T(PL,0(2(M1)))
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Xh2,15 -5 X dim D(PL,0(2(\2)))>
.

Xm,1r -+ Xy dim D(P1,0(2(Am)))

Here deg(xy,,j) = Ai. Also note that the A\;th graded component of C[X] is by construc-
tion identified with T'(P1, &p1(2();))). The generators x, 1, . . - s X, dim T(P1,6(2(A\:))) Will
span T'(PL, 0p1 (Z2(\))).

6. We denote the total number of these generators by n.
7. We will fix a smooth open subset U C X such that codimx (X \ U) > 2.

8. We will fix an affine open covering of U, which we will denote by Uy, ..., Us.
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3 Formula for the graded component of 7! of
degree 0 in terms of sheaf cohomology

3.1 Regularity locus and fiber structure of the map =

In the Introduction we have fixed a pointed full-dimensional cone o C Ng, points p1,...,pr
on P!, polyhedra A,, € Ng whose vertices are lattice points and whose tail cones are all
o. Unlike what is assumed sometimes, we do not allow @ to appear among these poly-
hedra.! These data define a polyhedral divisor 2 = >is1Ap ® p; and a graded algebra
A =@, covrm L(PL,0(2(x))). If p € P! does not coincide with any of the points p;, we
denote A, = 0. We have also supposed that the Minkowski sum of all polyhedra A, is strictly
contained in o, which means that & is proper. So, A defines a 3-dimensional variety X = Spec A
with an action of a 2-dimensional torus. We use the notation 7 for the rational map from X
to P! introduced in Proposition 2.3. It is known that all such varieties are normal.

In the sequel we will always keep in mind that very ample divisors on P! are exactly the
divisors of positive degree and principal divisors are exactly the divisors of degree zero. Recall
that we call a point p € P! ordinary if it is not one of the points p;, otherwise we call it special.
We require that the sum ) A, ® p; is finite, but we do not require that all summands are
nontrivial, i. e. we allow summands of the form ¢ ® p;, which are zeros in the polyhedral divisor
group. We call such points p; special anyway, according to the definition above. So in fact the
notions of a special point and an ordinary point depend on the choice of exact presentation
2 =) A, ®p;, and we suppose that it is also fixed. Also recall that if A, = o + a for some
a € N, (including a = 0), we call such p; a removable special point, otherwise we call p; an
essential special point. If A, = o, we will call p; a trivial special point.

Fix a coordinate ¢ on P!, i. e. fix a rational function ¢ on P! that has one pole of order 1
and one zero of order 1.

Lemma 3.1. Given two nonzero rational functions f and g on P! such that f/g has one
zero and one pole, and both of them are of order one, there exist ai,by,as,bs € C such that

(a1 f +b1g)/(azf + bag) =1t.

Proof. First, let us find a},b],a), b, € C such that (a)f + big)/(ahf + bhg) is regular at all
points where ¢ is finite and has pole of order one at ¢t = co. If f/g = 0 at t = oo, then this
zero is of order one, and a} = 0,b] = 1,a}, = 1,b,, = 0 yield the function g/f, which has pole of
degree one at co. It has no other poles since they would be other zeros of f/g, so this function
has the desired properties. Otherwise denote the value of g/f at t = oo by wj. Consider the
following function: g/f —wy = (g — w1 f)/f. Clearly, it has a zero at t = co. Observe that g/ f
has exactly one pole of order one, namely, at the point where f/g has zero of order one. Hence,
g/f + w1 also has exactly one pole of order one. The sum of minus orders of all poles and of
(plus) orders of all zeros of a rational function on P! is zero. Thus, g/f + w; has exactly one

In terms of the notation where @ is allowed among the coefficients, this means that the locus of the polyhedral
divisor will be the whole P*.
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zero, and this zero is of order one. But we already know one zero of g/ f + w1, namely, ¢t = oco.
Therefore, this zero is of order one, and f/(g —wj f) has exactly one pole, this pole is of order
one and is at t = oo.

Now we have a function (aff + bjg)/(ahf + bhg), which is regular at all points where ¢
takes finite value and has a pole of order one at ¢ = oo. Denote the value of this function
at t = 0 by wy. Consider the following function: (aff + big)/(abf + bhg) — wa = ((a} —
waah) f + (b — weby)g)/(ahf + bhg). It has exactly one pole, this pole is at ¢ = oo and of
order one, and it has a zero at ¢ = 0. If we divide this function by ¢, the resulting function
((a}y — waah) f + (b — wabh)g)/(t(abf + bhg)) has no poles on P!, so it is a constant. Therefore,
if we multiply ((a} — waab) f + (b — wabl)g)/(t(ahf + byg)) by the appropriate constant, it will
be equal to t. O

Corollary 3.2. For every diwisor D on P! of positive degree and for every non-zero rational
function f € T(PY, 0(D)) there exist g € T(PL, 0(D)) and ay,b1,a2,by € C such that (a1 f +
big)/(azf + bag) =t.

Proof. Since f € T(PL, 0(D)), div(f) + D is an effective divisor. Write div(f)+ D = > alp},
where a, € Z>o, p, € P!. Since f is a rational function on P!, degdiv(f) = 0, and > a} =
degdiv(f) + deg D = deg D > 0. There exists a point p} such that a; > 0. Choose another

point p’;, and consider the following divisor: Dy = ) ajp; — p; + pjj. This is an effective

P

divisor since a; > 0. Let y be a rational function on P! such that div(y) = —pi + p;. Then
D + div(fy) = D1 > 0. Hence, g = fy € I'(P', 0(D)), and we can apply Lemma 3.1 to f and
g since div(f/g) = div(1/y) = p; — p};. O

Corollary 3.3. Letx € X. If there exists a degree x € 0" NM such that dimT'(PY, 0(2(x))) >

2 and f € T(PY,0(2(x))) such that f(x) # 0, then 7 is defined at x.

Proof. Apply Corollary 3.2 to Z(x) and f. There exists g € T'(P, 0(2(x))) and a1, as, by, bs €
C such that (a1 f 4 b19)/(asf +b2g) =t on PL. The functions f and g cannot be proportional,
otherwise (aif + b19)/(azf + b2g) would be a constant on P!. Then f and ¢ cannot be
proportional either, and (a1 f + b1g)/(azf + b2g) is a rational function on X. The rational
function (a1 f + b1g)/(azf + bag), considered as a rational map from X to P! (we suppose that
it computes the coordinate ¢ of a point on P!), coincides with 7 by Proposition 2.3. The pairs
(a1,a2) and (b1, by) cannot be proportional, and f(z) # 0, so the functions (a1f + b1g) and
(agf—f— b2g) cannot vanish simultaneously. Therefore, the rational map from X to P! defined
by t = (a1f + b1g)/(aaf + b2g) is defined at z. This rational map coincides with 7, so we are
done. O

So we define an open subset Uy C X as follows: it consists of all points x € X such
that there exists a degree x € ¢V N M such that dimT'(P!, 6(2(x))) > 2 and there exists
feT(PL,0(2(x))) such that f(z) # 0. Corollary 3.3 shows that  is defined on Up. In fact,
7 is not defined outside Uy, but we will not need this.

Our next goal is to understand fibers of 7. First, consider an ordinary point p € P'. For
every degree Y € oV N M, the sections of I'(P', &(2(x))) do not have poles at p. For each
X € 0¥ N M, choose a basis

Epxols -+ 5 Epx,dim D(PL,0(2(x)))

of T(P,0(2(x))) such that

Ep,x,l(p) = 17 Ep,x,?(p) = .= Ep,x,dimF(Pl,f/’(Q(x)))(p) =0.
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In particular, observe that for y = 0 we have ¢(2(0)) = Op1, and the only global functions of
degree 0 are constants. The condition €, 1(p) = 1 guarantees in this case that €,9; = 1 and
€p0.1 = 1 everywhere. By Proposition 2.3, if 7(z) = p and 2 < i < dimT'(P1, #(2(x))), then
(Epii/€p1) (@) = (Epx.i/Epx,1)(P) =0, 50 €py.i(x) = 0 since €1 is a global function.

For every x, X' € 0¥ N M, a,a’ € Zso, (epy.1)*(epyr1)® is an element of T'(P', &(Z(ax +
a’x’))), so it can be written as

a a’ E
(ep7X11) (ep7X/71) = Ci,X,X'yaﬂl'ep»aX+Q’X',i’ Where Ci:X7X,aa7a/ S C'
7

This equality holds for rational functions on P!, and evaluation at p shows that Clxxsaa = 1.
The equality also holds for the corresponding global functions on X.
These computations prove the following lemma:

Lemma 3.4. For every x,x' € 0V N M, a,a’ € Z>¢ and for every x € 7 *(p),

/

(gp,x,l (z))" (gp7x’71 ()" = gp7ax+a’x’,l (7).
O

Recall that we have denoted the two rays on the boundary of oV by Eg(c") and E;(c"), and
the primitive lattice vectors on these edges were denoted by ag and «y, respectively.

Lemma 3.5. For a point x € X, z € 7 (p) N Uy, there are at most three possibilities:
1. For every x € aV N M, €p,.1(z) # 0.

2. For every x € Eo(aY) N M, €py.1(x) # 0, and €,,.1(z) = 0 for all other x € oV N M.
This is possible if and only if deg Z(ag) > 0

3. For every x € E1(cY) N M, €y,1(x) # 0, and €,,.1(z) = 0 for all other x € oY N M.
This is possible if and only if deg Z(aq) > 0.

Proof. Until the end of the proof, denote the sublattice in M generated by «g and a; by
M'. First, consider a degree x’ € M’. We know that if X" = apag + ara1, then €,/ 1(z) =
(€p,a0,1(x))* (€p,ar,1(x))*. So there can be four possibilities:

1. €pag,1(z) # 0 and €y, 1(x) # 0. Then €,,/1(x) # 0 for all ' € ¢V N M.

2. €pap,1(x) # 0, but €,4,,1(x) = 0. Then for all X' € 0¥ N M’ we have €,/ 1(z) # 0 if and
only if x’' € Eg(c").

3. €pao,1(x) =0, €pay,1(x) # 0. Similarly, €,,/1(x) # 0 if and only if X’ € Ei(¢").
4. €pag,1(x) = €pay,1(x) =0. Then €,,/1(x) =0 for all X' € 0¥ N M’ except X' = 0.

Since M’ is a sublattice of finite index in M (recall that dim M = 2), for every x € M there
is X' = apx € M, ap € N. We have €,/ 1(z) = (px,1(x))™, 50 €py,1(x) = 0 if and only if
€py'1(x) = 0. Therefore, the classification above also works for x € M:

1. €pap,1(x) #0 and €, 1(x) #0. Then €,,1(x) # 0 for all x € c¥ N M.

2. €pag,1(z) #0, but €,4,,1(x) = 0. Then for all x € 0¥ N M we have €,,,1(z) # 0 if and
only if x € Eo(aV).
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

3. €pag1(x) =0, €pa,1(x) # 0. Similarly, €, ,.1(z) # 0 if and only if x € Ei(cV).
4. €pag1(x) =€pay1(z) =0. Then €, 1(z) =0 for all x € 0¥ N M except x = 0.

Notice that case 4 is impossible in Uy, and case 2 (resp. 3) is possible if and only if there is a
degree x € Eg(cV)N M (resp. x € E1(0V)N M) such that deg Z(x) > 0. Now recall that 2(x)
becomes a linear function after a restriction to a line in M, so existence of such x is equivalent
to deg Z(ag) > 0 (resp. deg Z(aq) > 0). O

This lemma can be reformulated without mentioning bases of I'(P!, 0(2(x))) explicitly as
follows:

Proposition 3.6. For each x € w'(p) N Uy, there exists a subcone 7 C oV such that if
X€a'NM and f e T(PL,0(2(x))), then

f(z) #0 & x € 7 and ordy(f) =0.

For the cone T (which depends on x) there are at most three possibilities:

1. T=0".

2. 7 =Eq(c"). This is possible if and only if deg Z(ag) > 0.
3. 7 =Eq(c"). This is possible if and only if deg Z(a1) > 0.

Proof. First, fix a degree y € 0¥ N M. Notice that if f € T(P!, 0(2(x))), then ord,(f) = 0 if
and only if the decomposition of f into a linear combination of functions e, ; contains e, 1
with a nonzero coefficient. Now fix a point € 7—!(p) N Up. Recall that all functions €, ,.;

for i > 1 vanish on 7 !(p) N Up. We see that €, y,1(x) # 0 if and only if f(z) # 0 for all
f € T(PL,0(2(x))) such that ord,(f) = 0. We also see that, independently of the value of

epx.1(z), f(x) =0forall fe I'(PY, 0(2(x))) such that ordp(f) > 0. d

Following [9, Section 6.2], denote the set of all points x € 7~ 1(p) N Uy such that case 1 (resp.
case 2, 3) holds by orb(p, Vi(o)) (resp. by orb(p, E¢(c)), orb(p, E1(0))). In fact (see [9, Section
6.2], [1, Corollary 7.11, Theorem 10.1]), these sets are orbits of the torus, and their closures are
affine toric varieties constructed by the standard toric construction from the cone oV, but we
will not need these facts. Sometimes we can simply write orb(p, 0) instead of orb(p, Vi(0)).

Now we are going to understand the structure of a fiber 7=1(p) over a special point p = p;.
The function x ~ mingea, x(a) (which defines the coefficient for p in Z(x), denote it shortly
by Z,(x)) is piecewise linear. Recall that we have denoted the number of vertices of A, by
vy, the vertices of A, themselves by V,1,...,V,y, , and the edges of Ay by Epp,...,Epy,.
Observe that v, = 1 if and only if p is a removable special point. One checks easily that the
maximal subcones of 0¥ where Z(x) is linear are exactly the cones A (V,j,Ap) (1 < j <wvp).

This time we choose bases of T'(P, 6(2(x))) as follows: let

€p,x,15 - -+ 5 Ep,x,dim T (PL,0(2(x)))

be a basis of I'(P!, 0(2(x))) such that ord,(epy,1) = —Z,(x) and ord,(€,.i) > —Z,(x) for
i > 1. Then functions €, ;/€p,1 for i > 1 are defined at p and evaluate to O there, so if
z € w1(p), then by Proposition 2.3 (€.y,i/€px,1)(®) = 0, and €, i(x) = 0 for i > 1. In this
case we demand explicitly for x = 0 that €,01 =1 and €,,1 = 1 everywhere.
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3.1 Regularity locus and fiber structure of the map w

Now let x, X' € 0V N M, a,a’ € Zsg, then (epy.1)%(epy.1)” is an element of I'(P, 0(Z(ax +
a’x"))), so it can be written as

a a
(epx,1)"(epy1)* = § :Ci,x,x’,a,a’ep,ax+a’x’,ia where ¢; y,y/ a,a7 € C.
i

We have ordy(€px.1)%(Epr1)” = —aZp(x) — @' Dp(X'), 0rdp(Epaytary1) = —Dplax + a'x’)
and ordy(€p ayta'y'i) > —Dplax + d'x’) for i > 1. Therefore, ¢j /a0 # 0 if and only if
aZp(X) +d' Dp(X') = Dp(ax + a’x’) if and only if @ = 0 or ' = 0 or x and X’ are in the same
subcone of oV where Z,(+) is linear, i. e. x,x’ € A (V,j,A,) for some j.

These computations prove the following lemma:

Lemma 3.7. For every x,X' € o' N M, a,d € Zsy and for every x € m '(p),
Cp1 () (Epar 1 ()Y = €Ly aaCpaytary.1(T), where ¢iy \1aa depends on p and on the
choice of ep i, but not on x. ¢y a0 # 0 if and only if a =0 or a’ = 0 or there exists a
vertex 'V, of Ay such that x,x' € A (Vypj,Ap) (in other words, x and X' belong to the same
cone of the normal fan of Ap). ]

Corollary 3.8. Let x,x' € 0V N M, a,a’ €N, z € 7= 1(p). Suppose that there exist no vertex
V,.; such that x,x' € N (Vp;,Ap). Then for every f € T(PY,0(2(x))), g € T(PY, 0(2(X")))
we have f(x)g(z) = 0. O

Lemma 3.9. Letz € X be a point, x € 7~ (p)NUy. The set of degrees x such that €,1(z) # 0
can be the set of all lattice points in one of the following cones:

1. N (Vypj, Ap) for some j, 1 < j < vy,
2. N (Epj,Ap) for some j, 0 < j < vp.
3. N (Epj,Ap) for j =0 orj=v,. This is possible if and only if deg Z(x;) > 0.

Proof. Denote x; = b(E,;) for 0 < j < v,. (In particular, we have xo = ag and xv, = a1.
Consider all indices j such that e, () # 0. Since x; is in A (V) ,Ap) only for j" = j or
j' = j — 1, there can be at most two such indices j, and if there are two of them, they should
be two consecutive natural numbers.

Suppose first that €, _,i(z) # 0 and €y, i(z) # 0 for some j. The argument is similar to
the proof of Lemma 3.5. Namely, consider the sublattice in M generated by x;—1 and x;. It is
a sublattice of finite index, denote it by M’. For every X' € M’, X' = ax;—1 + a’x; we have

~ ~ ~ !
Cl:Xj—l:ijaaa/ep7X/71(x) = (ep7XJ—11Z(x))a(ep7X]7l(m))a % 07

50 €p1(x) # 0. For every x € A (Vpj,Ap) N M there exists a” € N such that a”x € M’, so
€p.a’'x,1(x) # 0. By lemma 3.7,

1

(€px,1 ()" = €1,x,0,07,0€p.a7x,1 (),

and ¢1 0,070 # 0, 80 €py,1(x) # 0. Finally, for a degree x ¢ 4 (V,;,A,) choose an arbitrary
degree ' in the interior of x € A4 (V,;,A,) N M. Then by Lemma 3.7, €, ,1(x)€p.1(x) =0,
we already know that €,/ 1(x) # 0, so €y y,1(x) = 0.

Now suppose that there exists a degree x such that €, 1(x) # 0 and x is in the interior of
a cone A (V,;,A,). Again denote the lattice generated by x;—1 and x; by M’. There exists
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

a” € N such that x' = a”"x € M’. We have

1

1 xa 06 1(T) = (€px,1(2)"

S0 €p1(z) # 0. X' is also in the interior of A4 (V) j,Ap), so there exist a,a’ € N such that
axj—1+a’x; = x'. Again we have

/

(EPqu—l,i (x))a<gp7Xj7Z (w))a = cl:Xj*l:ija’a/’é/ILX/vl (x)7

where ¢1y;_; yj.aa # 0, 80 €px;_1,i(®) # 0 and €,y i(x) # 0. Therefore, if there exists a degree
X in the interior of a cone A" (V, ;,Ap) such that €y, 1(x) # 0, then there are two indices j’
such that €y, ,i(z) # 0.

Now consider the case when there is only one j such that €, ;(z) # 0. We already know that
in this case for all degrees x from the interiors of the cones A (V,, ;,A,), we have €, 1(x) = 0.
So the only possible degrees x such that €, 1(x) # 0 are multiples of x; = b(E, ;). And for
these degrees we have

C]-?X] 70:a70gP:an 1 ('/1:) = (gp7X] N (:'U) )a7

SO €p.ay;,1(z) # 0. Such x can be in Up only if deg Z(x;) > 0. Properness guarantees this for
0 <j < vp,and for j =0 or j = v, we have to check this explicitly. O

And again this lemma can be reformulated without referring to bases of I'(PY, 0(2(x))).

Proposition 3.10. For each x € 7~ (p) N Uy, there exists there exists a subcone T C oV such
that if x € oV N M and f € T(PY,0(2(x))), then

f(@) #£0& x €1 and ordy(f) = —Dp(x).

T can be one of the following cones:
1. The normal subcone N (V, ;, Ap) of a vertex V,,; of A,.
2. The normal subcone N (Ey j, Ay) of a finite edge E,; (0 < j < vp).

3. The normal subcone N (E, ;,Ap) of an infinite edge E,, ; (j =0 or j = vy, respectively).
This is possible if and only if deg Z(ag) > 0 or deg Z(a1) > 0, respectively.

Proof. The proof is very similar to the proof of Proposition 3.6. Again, we fix a degree x €
oV N M and notice that if f € T'(P,0(Z2(x))), then ord,(f) = —%,(x) if and only if the
decomposition of f into a linear combination of functions e, ; contains e, 1 with a nonzero
coefficient. Fix a point x € 7= (p) N Up. Again for all functions €, ,.;, where i > 1, we have

épy,i(z) = 0. Therefore, epx,1(x) # 0 if and only if flz) # 0 for all f € E(Pl,ﬁ(@(x)))

such that ordy,(f) = —%,(x). And, independently of the value of €, ,1(z), f(z) = 0 for all
feT(PL,0(2(x))) such that ord,(f) > —Z,(x). O

And again, following [9, Section 6.2], we denote the set of all points x € 7—!(p) N Uy such
that case 1 (resp. case 2 or 3) holds by orb(p, V,, ;) (resp. by orb(p,E,;)). In fact (see [9,
Section 6.2], [1, Corollary 7.11, Theorem 10.1]), these sets are orbits of the torus.

It follows easily from Proposition 3.10 that for each vertex V,; (1 <j < wvp),

orb(p, V,, ;) = orb(p, E, j_1) Uorb(p, V, ;) Uorb(p, V, ;).
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Moreover, all sets orb(p, V), ;) are two-dimensional, and all sets orb(p, V. ;) (0 < j < v,,) are
one-dimensional. This is illustrated by Fig. 3.1.

orb(p,E; o)

orb(p,Ep 1)

orb(p,Ep 3)

Figure 3.1: Structure of a fiber of m over a special point p: lines show two-dimensional compo-
nents, points show one-dimensional curves inside.

3.2 Sufficient systems of open subsets of X

We are going to use Theorem 2.4, Leray spectral sequence for the map 7 and Proposition 2.10
to compute T!(X). To do this, we need an open subset U C X suitable for Theorem 2.4
(i. e. smooth and such that codimx (X \ U) > 2) and an affine covering of U. We first choose
several affine subsets of X. The amount of these sets will be denoted by q, the sets themselves
will be denoted by U; (1 < i < q). Then we will set U = [JU;. As we will see later, the
intersection of a set U; and a fiber of 7 will be either an empty set, or a two-dimensional torus
orbit, or the union of a two-dimensional and a one-dimensional torus orbit. In the last base
the one-dimensional orbit belongs to the closure of the two-dimensional orbit, and the entire
intersection is isomorphic to (C*) x C. Very roughly and informally speaking, each set U; will
correspond to a choice of several special points and of two-dimensional orbits in the fibers above
these points, one orbit above each special point.
To define a set U;, we fix the following data:

1. apair of degrees (8, 1, 8i2) € 0V NM generating M as a lattice and such that deg Z(5;.1) >
0, deg Z(Bi2) > 0, and f; 2 is in the interior of ¢V,

2. two sections hi,l (S F(Pl, ﬁ(-@(ﬁz,l)))> hi’Q (S F(Pl, ﬁ(.@(ﬁuz)))

3. Let V; C P! be an arbitrary open subset of the set of all points p € P! such that:
a) ordp(ﬁi,l) = —@p(ﬁi,l),grdp(ﬁi,Q) = —2,(Bi2) (in particular, if p is an ordinary

point, ord,(h; 1) = ordy(hi2) = 0).

b) If p is a special point and ;1 is in the interior of o¥, then (3;1 and ;2 are in the
interior of the same normal subcone A" (V), ;,A,) of the same vertex V, ;.

c¢) If p is a special point and S;1 € Eg(c"), then f; 2 is in the interior of A (V,0,4,).
d) If p is a special point and 8,1 € E1(c"), then ;2 is in the interior of N (Vv Bp)-
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

After these data are fixed, we will denote the basis of N dual to the basis 3; 1, 8;2 of M by
By, Bia- In other words, for each x € M we have x = 871 (x)Bi,1 + 87 2(X)Bi 2.
U, is defined to be the set of points z € Uy C X such that:

1. w(x) € V;,

2. hia(z) # 0,

3. if B;1 is in the interior of ¢V, then Ezg(a:) # 0.
Lemma 3.11. Ifp € V; is an ordinary point, then:

1. If Bix € Eo(0V), then 7= 1(p) N U; = orb(p, Eo(c)) U orb(p, 0).

2. If Bix € Eq(0V), then 7~ 1(p) N U; = orb(p, E1(c)) U orb(p, 0).

3. If Bi1 is a degree in the interior of oV, then m—1(p) N U; = orb(p, orb(p,0).
If p € V; is a special point, then:

1. If Bix € Eo(0Y), then 7= (p) N U; = orb(p, Epo) Uorb(p, V,,1).

2. If Bin € E1(0V), then 71 (p) NU; = orb(p, Epv,) Uorb(p, Vpv,).

3. If Bin is a degree in the interior of oV, and Bi1, Bi2 € N (Ap, V,j,), then 771 (p) NU; =
OI‘b(p, OI‘b(p, Vp,j)'

Proof. This follows directly from the definitions of the orb(p, -) sets and of Uj. O

Fig. 3.2 shows how a set U; can intersect the fibers of 7 in Uj.

Pl

Figure 3.2: An example of the intersections of a set U; with the fibers of w in Uy. Here p is the
only special point, v, = 3, deg Z(ag) > 0, deg Z(aq) > 0, and S;1 = . The gray
point in P! is outside V;. The intersections of individual fibers with U; are shown
in black, and their complements are shown in gray.

We say that sets U; defined this way form a sufficient system if
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1. for every ordinary point p € P! there exists i such that p € V;,

2. for every special point p € P! and for every normal subcone A4 (V,, j, A,) there exists an
index ¢ such that p € Vj and f;.1, Bi2 € A (Vypj, Ap),

3. for every primitive degree x € do" such that deg Z(x) > 0 and for every point p € P!
there exists an index 4 such that 3,1 = x and p € V;.

Clearly, sufficient systems exist. An example of a sufficient system is constructed in Section
4.1. Fix a sufficient system and set U = |JU;. Denote the number of sets U; in the sufficient
system we chose by q.

We are going to prove that codimx (X \ U) > 2, i. e. that dim(X \U) < 1.

Lemma 3.12. dim(X \ Up) < 1.

Proof. Let x € X \ Up. For every degree xy € oY N M such that degZ(x) > 0, for every
f e T(PYO(2(x))) we have f(x) = 0. deg Z(x) can be zero only if y € doV. If there are
functions f € T(P*, 0(Z(ap))), g € T(P', 0(Z(a1))) that do not vanish at z, then fg €
L(PY,0(Z(ap + 1)), f(x)g(z) # 0, but ag + a1 & do¥. So for at most one of the degrees
ap and «; there are functions of this degree that vanish at z. Without loss of generality
suppose that if f € T'(P!, 0(Z(ap))), then f(x) = 0. If deg Z(a1) > 0, then deg Z(x) > 0
for all multiples x of aq, so for every such x all functions of degree x vanish at x. Otherwise
dim (P, 0(2(x))) = 1 for every multiple x of ag, and if f € T'(P, 0(Z(ap))), f # 0, then
f@ generate I'(P!, 0(Z(aap))) as a vector space, so all functions of degree acg vanish at z.
Summarizing, we conclude that if x € Eq(c¥) N M, then all functions of degree x vanish at
x. Consequently, if deg Z(aq) > 0, then all functions of nonzero degree, i. e. all nonconstant
functions on X vanish at z. There exists only one such point x. Otherwise, if f forms a basis
of T(P!, 6(Z(v))), then f* forms a basis of I'(P!, 6(Z(aa1))), so values of all functions of all

degrees at = are determined by f(x). Therefore, such points x form a 1-dimensional subset. [
Now we are going to consider points from Uj.
Lemma 3.13. For every ordinary point p € P! we have 7= (p) NUy =71 (p) N U.

Proof. Clearly, 7=1(p) N Uy C 71 (p) NU. To prove the other inclusion, we use the description
of 771(p) N Uy from Proposition 3.6. Recall that if p € V; for some index 4, then ord,(h;1) =
ord,(hi2) = 0. If z € orb(p, 0), then it is sufficient to take any index i such that p € V; (it exists
by the definition of a sufficient system). Then by Proposition 3.6, E“(:L") # 0, 7%2(30) # 0, and
xz € U;. If z € orb(p, Eg(0)), then deg Z(ap) > 0, and there exists an index 7 such that ag = f; 1
and p € V;. Then f; is a function of degree «y, so Proposition 3.6 says that Ell(x) = 0, and,
since deg Z(ag) > 0, this is enough for z to be in U;. The case € orb(p,Ei(0)) can be
considered similarly. O

Now we are going to consider the fiber of 7 over a special point p € P
Lemma 3.14. Let p € P! be a special point. Then dim(7~1(p) N (Ug \ U)) < 1.

Proof. We use the description of 7—!(p) N Uy from Proposition 3.10. First, pick a vertex Vi
(1 <j <wv,) and consider a point « € orb(p, V). Since the system {U;} is sufficient, there ex-

ists ¢ such that f3; 1, Bi2 € A (Vp,j,Ap) and p € V;. By the definition of V;, ord,(hi 1) = Z,(8i1)

and ord,(hiz) = Z,(Biz2), and by the definition of orb(p, V,;), hi1(x) # 0 and hia(z) # 0.
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

Hence, z € U;. Therefore, if x € 77 1(p) N Uy, but = ¢ 7~ (p) N U, then z € orb(p,E, ;) for
some (finite or infinite) edge Ey ;.

It is sufficient to prove that for each (finite or infinite) edge E, ;, we have dim orb(p, E,, ;) < 1.
Denote x = b(A (Ey j,A,)) and choose a basis

€p,x,15 - -+ 5 Ep,x,dimT(PL,6(2(x)))

of I'(P1, 0(2(x))) as previously, i. e. so that ord,(€p.1) = —Z,(x), and ord, (€, 1) > —Zp(x)
for 1 I < dimI(PY,0(2(x))). Consider a degree X' = ax, a € N. Choose a basis of
L(PY,0(2(xX'))) as follows. Its first element is e,,/1 = (ep,1)%, so we have ord,(ep /1) =
—aZy(x) = —2(x’). All other elements of the basis, denoted by

€p,x’,27 5 Epx/ . dimT(P1,0(2(x')))>

satisfy ordy (e, 1) > —Zp(x’). We have already seen for such a basis that €, ,;(x) = 0 for all
z € 7 1(p)NUp, I > 1. So again values of all functions of all degrees at = € orb(p,E,, ;) are
determined by €, 1(x), and Wj is at most one-dimensional. O

We are going to use {U;} to compute cohomology groups, so we are going to prove that all
U; are affine. Fix an index 1.

Lemma 3.15. Let x € 0¥ N M be a degree. Let p € V;. Then, independently of the signs of
Z1(X) and BZz(X)y @p(X) < @'*71()()9;7(/31',1) + BZQ(X)-@p(ﬁiJ)-

Proof. Recall that the function Z,(-) is always linear on the cone spanned by 3;; and f; 2 if
p € V;. Hence, if 6@*,1(96) > 0 and /BZZ(X) > 0, then Z,(x) = Zp( z'*,1(X>5i,1 + /BZZ(X)/BLQ) =

F100Zp(Bin) + Bra(X)Zp(Bi2). If BF1(x) <0 or Biy(x) <0, in other words, if x is not in the
cone generated by ;1 and f3; 2, then, since Z,(-) is a convex function, Z,(x) < 81 (X)Zp(Bi1) +
Bi2 () Zp(Bi2)- O

Lemma 3.16. U; is isomorphic to V; x (C\ 0) x L, where L is isomorphic to C or C\ 0. More
ezactly, L = C if and only if B;1 € o, otherwise L = C\ 0. V; is isomorphic to an open set

in an affine line. The isomorphism is given by (m, hZ 1, Zg) (Note that despite 7 is rational
on X, it is defined everywhere on U; since U; C Uy by definition.)

Proof. We know that V; C P!, and to prove that V; is isomorphic to an open subset in an
affine line, it is sufficient to prove that V; cannot be equal to P'. Indeed, if p € Vj, then, in
particular, ordp(ﬁi,l) = Dp(Bin). ItV = Pl this would mean that div(h;1) = 2(8;1). But
deg 2(Bi1) > 0, and degdiv(h;1) = 0.

Consider the map U; — V; x (C\ 0) x L given by (71',%@1,?%72) (recall that Tzw = ( is possible
in U; if and only if 8;1 € d5V). To define its inverse, we need for every triple (p,t1,t2), where
p €V t1 € C\O, to € L, define a point z € U;. To do this, we define a homomorphism
C[X] — C. We define it on each graded component of C[X].

Let x € 0V N M be a degree. By Lemma 3.15,

* * =B 100785 2(%)
Dp(X) < Bi1(X)Dp(Bin) + Bia(X)Zp(Bi2) = — ordp(hm’l * hi,é2 * )-

Therefore, if f € T(P!, 0(2(x))), then

ordy(F) > —Zp(x) > ordy (B3 V52,

32



3.2 Sufficient systems of open subsets of X

and the rational function f/ (Effl’l(X)ﬁféQ(X)) is defined at p.

Now we define a map C[X] — C as follows: if f € I'(P!, 0(2(x))), then

f — tfm(X)tgig(X) (?/(Eﬁal(X)EfEZ(X)))(p)
Note that 85(x) < 0 is possible if and only if 8;1 ¢ oV, i. e. exactly if and only if L = C\ 0.
It is clear from the construction that this map is an algebra homomorphism, so it defines a
point € X. If we choose a set of homogeneous generators of C[X], we see that the values
of these generators at = depend algebraically on p, t1, and t2, so we have defined an algebraic
morphism ¢: V; x (C\ 0) x L — X.

Now we are going to prove that two morphisms we have defined are mutually inverse. Fix
points p € V;, t; € C\ 0, and tg € L, denote = = ¢(p, t1,t2). First, x € Uy since deg Z(B;1) > 0
and ﬁ,l(x) = ti)(h Zl/(h“hﬂ))( ) = t1 # 0. Now denote m(x) = p/. For every degree
X € 0¥ N M and for every pair of functions fi, fo € T'(P,0(2(x))) we have the following
equalities of rational functions (p” € V;, t] € C\ 0, ¢}, € L are arbitrary points):

(F1/ ) (e 1), th)) =
(tllﬂ“(x) ,812(x)(fl/(hifl,l(x)ﬁfgz(x)))(p//))/(tflﬂi1( )tzlz Fa /( Zl(x) 2632(X)))(P//)) _

(S1/ ) @)

Choose a degree y such that deg Z(x) > 0. By Corollary 3.2, there exist functions fi, fo €
(P, 0(2(x))) such that fi/fs is defined at p/, and if (f1/f2)(p) = (f1/f2)(p") for some p” €
P!, then p/ = p”. By Proposition 2.3, fi/f> is defined at z, and (f1/f2)(z) ~( 7i/f2) ). O
the other hand, it follows from the computation above that (f1/f2)(x) = (f1/f2)(¢(p, t1, tg)) =
(f1/f2)(p), so p = p/, and 7(x) = p. We have already checked that El(x) = t1, a similar
computation shows that 7112(1‘) = t9. The conditions from the definition of U; are therefore
satisfied, and = € U;.

Finally, check that the other composition of morphisms X — V; x (C\ 0) x L — X is also
the identity morphism. To do this, fix a point x € U;, a degree x € ¢V N M and a function
feT (P, 0(2(x))). We have the following equality of rational functions:

F(@) = hia ()10, o(2) %200 (F1 (R VR (),

and
)5 ﬁz (x) ) ﬂl ()
P/ VRN @) = FrEs R ) ()
since f and hi,lﬁzl(X)hi’Q i»Q(X) are functions of the same degree. O

Since each set U; is affine and X is separated, all intersections of sets U; are also affine, and
we can use them to compute Cech cohomology on U = |JU;. However, we will also need to
understand the structure of intersections of U;. Fix several indices a1, ..., ak.

Lemma 3.17. U’ = Uq, N ... N Uq, is isomorphic to V' x (C\ 0) x L', where V' is an open
subset of Vg, , and L' is zsamorphzc to C or C\ 0. The isomorphism is given by (m, hal’l, hahg)
(this is exactly the restriction of the isomorphism from Lemma 3.16 to the subset U' C Uy, ).
In this case, L' = C if and only if Bay 1 = ... = Bay1 € 0.
Here the set of ordinary points in V' is the set of ordinary points in Vg, O ...N Vg, . If
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

p € Pl is a special point, then p € V' if and only if p € Vo N ... N Va, and all degrees
Bai,1s- s Bap1s Bar,2s - - 5 Bay,2 belong to the normal subcone of the same vertex of Ap.

Proof. Consider a fiber 7=1(p) N U’, where p € V,,. It is a subset of 7~!(p) N U,,, which is
isomorphic to (C\ 0) x L by Lemma 3.16. It is sufficient to prove that for each p € V,,, in terms
of this isomorphism, 7=1(p) N U’ either is the empty set, or equals (C\ 0) x L' C (C\ 0) x L.

First, let p € Vg, be an ordinary point. If there exists an index i such that p ¢ V,,, then
77 1(p) NU' = @. Otherwise, consider a point # € 7~ 1(p) N U,,. There are two possibilities:
either Eahg(a:) # 0 (in other words, the last coordinate of x in terms of the isomorphism
U; 2 V; x (C\ 0) x L from Lemma 3.16 is nonzero), or 34,1 € 9" and Eahg(fﬂ) = 0 (in other
words, the last coordinate of z in terms of the isomorphism from Lemma 3.16 is zero). If the
first possibility takes place, then, by Proposition 3.6, = € U,, for all 7. If the second possibility
takes place, then it follows from Proposition 3.6 that x € U,, if and only if ,,1 € 9o (i. e.
we have no condition for %%2 (x), which is in fact zero since f3,, 2 is in the interior of o) and
Ba;,1 = Bay,1 (otherwise Eai’l(x) = 0). This finishes the proof for an ordinary point.

Now let p € V,, be a special point. Again, if there exists an index i such that p ¢ V,,,
then 7=1(p) N U’ = @. Moreover, by Proposition 3.10, if there exist no vertex V, ; such that
Baia € N (Vypj, Ap) for all i, then 7~ 1(p) N U’ = & (recall that we require that 34,1 is in the
interior of the normal cone of a vertex of A, unless 3,,1 € 9oV, in the definition of Vg, so 84, 1
cannot be in the normal cones of two different vertices simultaneously). And again, if p € V,,
for all ¢ and there exists a vertex V), ; such that f,,1 € A4 (Vy ;,Ap) for all ¢ (by the definition
of V,,, this implies that (4,2 is in the interior of A4 (V, ;,A,) for all i), then there are two
possibilities. Either ?Lahg(.%) # 0, (i. e. the last coordinate of x is nonzero), or B, 1 € do¥ and
lNLahg(:z:) =0, (i. e. the last coordinate of x is zero). The rest of the proof repeats the proof for
an ordinary point. Namely, if the first possibility holds, it follows from Proposition 3.10 that
x € Uy, for all 7. If the second possibility holds, then, by Proposition 3.10, z € U,, if and only
if B4;1 € do (i. e. we have no condition for E%g(x), while E%Q(x) = 0 since Sy, 2 is in the
interior of A (V) ;,Ap)) and 4,1 = Pa,,1 (this is a criterion for E%l(x) # 0, nevertheless, this
condition can only be violated if o¥ = A (V) ;,A,), i. e. p is a removable special point). [

3.3 Computation of 71(X), in terms of cohomology of sheaves on
Pl

We know that codimx (X \ U) > 2, so Theorem 2.4 can be applied. To apply it, we need a
set of generators of C[X]. We choose it as follows. For each special point p, the cone o¥ can
be split into the union of normal cones of all vertices of A,. All intersections of these cones
(for different special points) split ¢V into a fan, which we call the total normal fan of 9. (It
equals the normal fan of the Minkowski sum of all polyhedra A,.) For each cone 7 in this fan,
the function Z(-)|;: 7 — CaDiv(P!) is linear. Choose a set of degrees Ay,..., A € 0V N M
satisfying the following conditions:

1. It contains the Hilbert bases of all cones of the total normal fan of .

2. For each special point p:
a) For each (finite or infinite) edge E, j, b(A (Epj,Ap)) € {A1,..., Am}-

b) For each vertex V,, ; there exists a degree x € {\1,..., Am}NA(Vy,;,A,) such that
x and b(A (Ep j_1,4,)) form a lattice basis of M
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3.3 Computation of T'(X)g in terms of cohomology of sheaves on P!

c¢) For each vertex V, ; there exists a degree x € {\1,..., Am}NA (V) j, Ap) such that
x and b(A (Ey ;,Ap)) form a lattice basis of M.

In fact, the first condition implies all three parts of the second one, but we don’t need this fact
and we will not prove it. For each 4, 1 <7 <m let x);1,...,Xy, dimr(P1,6(2(\;))) Pe a basis of
TP O(Z(N))).

Lemma 3.18. AllX),; (for1<i<m,1<j<dimT(P!,0(2(\)))) together generate C[X].

Proof. Tt is sufficient to prove that every homogeneous element of C[X]| can be generated by
Xy j- S0, fix a degree x € ¢V N M, and let f € T(P1,0(2(x))). If x € {M,...,Am}, the
claim is clear. Otherwise, choose a cone 7 from the total normal fan so that x € 7. x is not
an element of the Hilbert basis of 7, so there exist /', x” € TN M, x' # 0, x” # 0, such that
X' + X" = x. Since Z(-): 0¥ — CaDiv(P!) becomes a linear function after being restricted to
7, 2(x) = 2(X) + 2(X").

Let r1 be the number of points p € P! that are either special or are zeros of f. Denote zeros
of f that are ordinary points by pyy1,...,pr (recall that we have r special points p1, ..., pr).
Consider the following r; integers: a; = %, (x)+ordy, (f). By the definition of I'(P!, 0(2(x))),
all these numbers are nonnegative integers. Also, a1 + ... +ar, = Zp,(X) + ... + D, (X) +

ordp, (f)+...+ordp, (f) = degZ(x)+degdiv(f) = deg Z(x). Then it is possible to split each
of these numbers into a sum a; = aj + a; of two nonnegative integers so that a} +... +a, =
deg 2(x') and af + ... + a, = deg Z(x") (recall that Z(x) = Z(x') + 2(x")). Then D, =
(0, = Dy (D1 ++ -+ (@l — T, (X))Pra a0 D = (@ — Ty (X ))p1++ -+ (0L — T, (X"
are divisors of degree 0, and Dy > —2(x), Ds > —2(x"). Therefore, there exist functions
f' e T(PL,O(2(x))) and f" € T(PL,0(2(x"))) such that div(f’ = D; and div(f” = Ds.
Now, for every point p; we have the following: ordy, (f'f") = a; — Zp,(X') + ai — Zp,(X") =
ai — Dp;(x) = ordy, (f). Hence, f'f”/f is a rational function on P! that does not have zeros or
poles, so it is a constant, and f is a multiple of f’f”.

Repeating this procedure by induction on x € 7, we can write f as a product of functions
whose degrees are in the set {A1,..., Am}. O

Now we construct a map ¢: Ox — ﬁ;‘?m required for Theorem 2.4 using these generators.
Recall that ) maps a vector field to the sequence of the derivatives of all generators xy, ; along
this vector field. Denote the total number of these generators by n. By Theorem 2.4, we have
the following isomorphism of C[X]-modules:

T'(X) = ker(H' (U, 0x) ") 511, 657,

By Lemma 3.16, {U;} form an affine covering of U, so it can be used to compute homology
groups in this formula as Cech homology. Moreover, all conditions defining U; as subsets
of X are formulated in terms of fibers of © and inequalities of the form f # 0, where f
is a homogeneous function. Since 7 is T-invariant and the inequalities of form f # 0 are
also invariant if f is homogeneous, the sets U; are T-invariant. The sheaves involved in the
formula above are the tangent bundle and the trivial bundle, so T acts on the modules of
their sections on U;. Hence, these modules are M-graded. This enables us to introduce an
M-grading on H'(U,0x) and on H'(U, ﬁ;‘?“). The map v is defined by n maps Ox — Ox,
each of them corresponds to a generator Xy,  of degree A;. It maps the graded component of
I'(U;, ©x) of degree x € M to the graded component of I'(U;, Ox) of degree x + A;. Hence,
H!(¢|y) maps different graded components of H*(U,©Ox) to different graded components of
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

HYU,09™) = HY(U, 0x)®®, and ker H(1|y/) is a graded submodule in H (U, ©x). It follows
from the proof of Theorem 2.4 that the isomorphism 7 (X) = ker H'(¢|¢) is an isomorphism
of graded C[X]-modules. We are going to study the zeroth graded component of T*(X).

Now, we apply Leray spectral sequence for the map 7: U — P! and get the following short
exact sequences of C[X]-modules (note that Lemmas 3.13 and 3.14 guarantee that 7(U) = P1):

0 — H' (P, (7|v)«(Ox|v)) = H'(U,0x) = H*(P', R (n|1)+(Ox|v)) = 0
and
0= H'(PL, (7|y)«(0%|v) = HY(U, O%™) = H (P, R (n])«(05"|v)) = 0.
The Snake lemma yields the following exact sequence:

0 - ker (1P, (rlo). (@x1u) " HPY (nl).(057100) ) > TX)

. (HO(Plﬂl(ﬂU) (Oxv)) R )y "HOPL, R (x|y). (@’é‘?n!U)O -~
coker (Hl(Pl, (7o) (O x|)) T W) gipr, (W\U)*(ﬁi'?“lu))> -

This is an isomorphism of C[X]-modules, and it is possible to introduce an M-grading on these
modules. Indeed, in fact the sheaves (7|y)«(Ox|v) and (7|y)«(O%"|r) are graded themselves,
i. e. they are direct sums of their graded components in the category of sheaves of Opi-
modules, since their sections on any open subset V' C P! are sections of the tangent bundle
and of rank n trivial bundle on a T-invariant subset 7~!(V'), and multiplication by functions
from I'(V,0p1) does not change the grading of a section. This is also true for the sheaves
RY(7|0)«(Ox|v)) and RY(w|y)«(O0F|v) if we compute them using Proposition 2.10 with {U;}
being the required affine covering of U since in this case the module of sections of any sheaf
in the complex on any open subset V' C P! is also a direct sum of modules of sections of the
tangent bundle or of the trivial bundle on a T-invariant subset of X, and the differentials in
the complex preserve this grading. So, again there is an M-grading on cohomology groups:
on H'(P!, (|v).(©x|v)), on HO(P!, R'(n|v).(Ox|v))), on H'(P, (n|y).(0%"|v)), and on
HO(PY, B (rlu),(0F]1)). And again, the map (7]v).t>: (xlo)o(Ox]v) — ((7l0)s(Ex]0))®
is defined by n maps (7|)«(Ox|v) = ((7|r)«(Ox|v)), each of them corresponds to a generator
X),,j- 1t maps the graded component of (7|r)«(©x|r) of degree x € M to graded components
of (7|)« (O™ |1r) of degree x+ ;. So, ker H((7|¢)«1) ® HY (R (7|1r)«¢) is an M-graded C[X]-
module. This grading coincides (in terms of the isomorphisms mentioned above) with gradings
on TY(X) and on ker H' (|y/).

Now we are going to obtain a formula for the graded component of 7" (X) of degree 0. Denote
it by T!(X)o. Denote also the graded component of (7]7)«©x of degree 0 by %mv the graded
component of R (7|;/)«Ox of degree 0 by 11“(;‘)’ o- The superscript ”inv” here indlcates that these
sheaves by definition are just pushforwards7o7f sheaves on X, they are defined ”invariantly” in

contrast with the sheaves we will define later using trivializations and transition matrices.

We need graded components of (7|y)«Ox and of R!(r|y)«Ox of different degrees, so for
a degree x denote by %Sf%}x the graded component of (7|).Ox of degree x, and denote by

inv

100, the graded component of RY(7|y)«Ox of degree x. The morphism H!((7|y)«t) maps
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H'(P',4)%8) to H' (P!, 4)";), where

m dimT'(PL,6(2(\)))

1nv @ @ glnv

The morphism H°(R!(7|y)«1) maps H(P?, fflé’ﬁ) to HO(Pl,glif%O), where

dimT(PL,0(2(M)))

m
inv __ inv
g17ﬁ70 - @ @ 5glvﬁv(L)\i'
=1

j=1
So, the above exact sequence for T (X) can be written in the graded form as follows:

Proposition 3.19. The following sequence is exact:

HY(((7]0)+%)l ging )
0 — ker | H'(P',4'8) — 7 HY (PLYY) | = THX)o —

O((RI(W|U)*¢)|gliné )
ker HO(PI <(glnv ) N ,©,0 (Pl gmv ) N
H (((77|U) w)|<q(1)nv)

COkGI‘( Lpt, gmv) — " HY(P, g‘“")) .

O

Our next goal is to find expressions for the sheaves Oifg’, 1i],[1(§,0’ éflg, and 11 0.0 including

only functions on P! and the combinatorics of 2. Given an index i and a point p € V;,

Proposition 3.16 provides an isomorphism between 7=1(p) N U; and (C \ 0) x L, where L is

C\ 0 or C. Call the point identified by this isomorphism with (1,1) € (C\ 0) x L the canonical

point in the fiber m=1(p) with respect to U;. In other words, the canonical point in 771 (p) with
respect to U; is the (unique) point z € m~1(p) N U; such that h;1(x) = hia(z) = 1.

3.3.1 Computation of 4"y

For each i (1 <i < q) fix an embedding Vi — C. As long as such an embedding is fixed, we
identify each point of p € V; with its coordinate tg € C. Denote the coordinates of a point
x € U; provided by the isomorphism U; = V; x (C\ 0) x L by tg € V;, t1 € C\ 0, t2 € L.

We are going to study homogeneous vector fields of degree 0 (i. e. T-invariant vector fields)
on open sets U/ C X of the form V/ x (C\ 0) x L' C U;, where V/ C V; is an open subset,
L' C LisCor (C\O0), L is defined in Lemma 3.16, and U] is embedded in U; as a subset of
Vi x (C\ 0) x L via isomorphism from Lemma 3.16.

Lemma 3.20. Let V! CV; be an open subset, L' C L be an open subset that can be equal C or
(C\0), U =V/x (C\0)x L' CU;. A homogeneous vector field of degree 0 on U] is uniquely
determined by its values at canonical points in all fibers 7=1(ty) (for to € V) with respect to
Ui. These values can be arbitrary vectors depending algebraically on ty € V.

Proof. Let w be a vector field of degree 0 on U/, and suppose that w(tg,1,1) = fo(to)d/0ty +
f1(t0)9/0t1 + fa(to)9/0ta, where f;: V/ — C are algebraic functions. Since M is the character
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lattice of T', and f3;1 and f; 2 form a basis of M, every pair (t1,t2) € (C\ 0) x (C\ 0) uniquely
and algebraically determines an element 7 € T such that §;1(7) = t1, Bi2(7) = t2. This
element acts on U], i. e. it defines an automorphism of U/, which we also denote by 7. Recall
that t; = Ei,j’Uia j = 1,2, and ﬁi,l (resp. Elg) is a function of degree f3;1 (resp. f;2), so
7(to,1,1) = (to,t1,t2) for every to € V/. By the definition of a T-invariant vector field, w is a
field of degree 0 if and only if w(7'z) = dr'w(z) for every x € U/, 7/ € T. In particular, this
holds for = = (tp,1,1), 7/ = 7, so w is uniquely determined on V/ x (C\ 0) x (C\ 0), which is
at least an open subset in U], so it is determined uniquely on U;.

We still have to check that if we start with arbitrary functions fo, f1, f2: V/ — C, the vector
field on V; x (C\ 0) x (C\ 0) constructed this way can be extended to the whole U] if and
only if fo, f1, f2 satisfy the statement of the Lemma and that the resulting vector field on U]
is T-invariant. To do this, let us first write the vector field we have constructed in terms of
fj and 0/0t;. Take a point x = (to,t1,t2) € V/ x (C\ 0) x (C\ 0), tyg = m(x). We have
w(to, t1,t2) = drw(to,1,1) = dr(fo(to)d/0to + f1(to)0/0t1 + fa(to)d/Ota) = (fo(to)d/Oty +
t1.f1(t0)0/0t1 + taf2(to)0/0t2). Clearly, functions of the form f;(to)t]'t5> with a1 > 0, ag > 0
can be extended to the whole U].

Observe that to check homogeneity, we have to check an equality of two vector fields for each
7 € T. This equality holds if it holds on an open subset of U/, in particular, it is sufficient
to check homogeneity of the resulting vector field on V; x (C\ 0) x (C\ 0). Take a point
x = (to,t1,t2) € V/ x (C\ 0) x (C\0) and an element 7/ € T. Denote by 7 € T the element of
T such that §;1(7) = t1, Bi2(7) = ta. We have w(r'z) = w(r'7(t9,1,1)) = d(7'T)w(to,1,1) =
dr'drw(tg, 1,1) = dr'w(tg, t1,t2), and the vector field is T-invariant. O

Corollary 3.21. A homogeneous vector field w of degree 0 on U] is also uniquely determined
by the following data:

1. The derivatives of E” (7 =1,2) along w at canonical points, considered as two algebraic
functions V; — C.

2. The vector field on V; obtained by applying dr to the values of w at canonical points,
Ao, 1ymw(to, 1,1).

The vector field and two functions can be arbitrary algebraic.

Proof. Write ’w(to, 1, 1) = fo(t0)6/8t0 + fl(to)a/atl + fg(to)a/atg. Then d(to,l,l)ﬂ'w(th 1, 1) =
fg(to)a/ato, dhid‘w(t(), 1, 1) = fj(to) (j = 1,2). D

Note that these data (the image of a vector at a canonical point under dm, the derivatives of
functions along w) do not depend on the choice of an embedding V; — C. Given a vector field
w of degree 0 on U/, we call the data from Corollary 3.21 the U;-description of w. Also, the
Uj-description only depends on the data we used to define the set U; (the degrees §;1 and G2
and the sections h;; and h;2), not on the whole sufficient system Uy, ..., Uq-

Observe also that the operation of taking the U;-description is compatible with replacing U
by a smaller subset U/ of the same form, or, more precisely, we can say the following:

Remark 3.22. Let U] C U] be a subset of U] of the same form, i. e. let V" C V/ be an open
subset, let L" C L' be an open subset that can be equal C or C\0, and let U = V" x (C\ 0) x L"
be embedded into C V/ x (C\ 0) x L' = U] via the embeddings V" C V! and L" C L’ above.
Let w' be the restriction of w to U/'. Then the U/ -description of w' consists of the restrictions
from V! to V! of the vector field and two functions forming the U!-description of w.
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Note that there are many possible descriptions for a given vector field on X, each one cor-
responds to one of the chosen open subsets U;. Sometimes we will need many descriptions of
a given vector field on X simultaneously. And sometimes we will simultaneously deal with
descriptions of many different vector fields. To distinguish between these situations clearly, we
will usually use ”standard” subscripts to enumerate different descriptions of the same vector
field, for example:

(gl,lagl,27v1a v 90,1, 98,2, Uiy - - - ’gq,lagq,viq)‘

Here (gi.1, gi2,vi) is the U;-description of a vector field that does not depend on i. If we have
several different vector fields and one description of each of them, we enumerate them using
indices in brackets, for example:

(91, g[a2, 0[1]; -, gliln, glil2, 0lil; - -, g[r]1, glr]2, v[r)).

Here (g[i]1, g[i]2,v[i]) can be, for example, the U;-description of a vector field w[i] on X, and
these vector fields may vary independently. These are only generic rules, they are stated
here to demonstrate what kind of notation will be used later. Every time, when we consider a
description of a vector field, we say explicitly which set U; we use, which vector field or function
on X we describe, and how we denote the description.

Later we will introduce U;-descriptions of homogeneous functions on X in a similar way, the
only difference will be that the U;-description of a homogeneous function consists of only one
function on V;, not of two functions and a vector field. When we have several U;-descriptions
of functions, we will use the same generic rules to write their indices.

Choose two indices ¢ and j (1 < 4,5 < q). The following lemma relates the U;-description
with the Uj-description of a vector field w of degree 0. We need some more notation to formulate
it. Denote by C7; the following 2 x 2-matrix:

Cio,j _ < 5@'*,1(Bj,1) g?z(ﬁj,l) ) 7

*
T1(Bi2)  Ba(B52)
Denote
Ei,l(p)ﬂ;’l(ﬂil)ﬁij(p)ﬂZQ(ﬁj’l) ( Ej,l(p) )
o hj1(p) Ria(p) it Py, o (p) P2 i)
Cij(p)=| "% | Rua@) 1952, 5 (p) 22 hj2(p) ,
| hj,2(p) EM(p)ﬁi,l(5j,2)ﬁi72(p)5i,2(5j72)
0 0 1

where p € P! is an arbitrary point, and the first and the second entry in the third column
are understood as rational covector fields on P!. In particular, if i = j, Cy; and C;; are unit
matrices. By Lemma 3.17, U; NU; is isomorphic to V/ x (C\ 0) x L', where V' is an open subset
of ViNVj, and L' is C or (C\ 0). This product is embedded into U; via the isomorphism from
Lemma 3.16.

Lemma 3.23. Let V" be an open subset of V', L" be an open subset of L', L" = C or L" = C\0,
and let U" = V" x (C\ 0) x L" be embedded into U; N U; via the map from Lemma 3.17. Let
w be a vector field on U" of degree 0, and let g; 1, gi2, vi be the U;-description of w, and gj 1,
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

gj.2, vj be the Uj-description of w. Then for every p € V"

95,1(p) gi.1(p)
gi2(p) | =Cij(p) | 9i2(p)
v;(p) vi(p)

In particular, vi(p) = vj(p).

Proof. Tt is sufficient to check this equality on an arbitrary open subset of V', so let p € V” be
an ordinary point. Let x be the canonical point in 7= (p) with respect to U;. It follows from
the definition of the canonical point that 2 € U”. Let 2’ be the canonical point in 71 (p) with
respect to U;. By Proposition 3.6, h;1(2') # 0, hia(2') # 0, so &’ € U”.

Let 7 € T be the element of T such that 8;1(7) = hi1(2'), Bi2(7) = hia(z'). Tt defines an

automorphism of U”, and we also denote this automorphism by 7. Then h;(7z) = Em(x’ ),
E@g(m) = ﬁiyz(w’), m(tx) =p=mn(2), so Tx =2'.

Since w is a vector field of degree 0, w(z') = dy7w(z). Since 7 = 77, we have dym =
dromdyT = dpd,T, and vj(p) = dymw(z’) = (dym)(deTw(z)) = dymw(z) = v;(p).

Now we are going to compute g;1(p) = dx/%jvlw(a?’). Until the end of the proof, denote
ar,1 = Bi1(Bjn)s ar2 = Bia(Bjn), azn = B71(Bj2), and ag2 = Bf5(B)2). We have

fva'l _ Eal 1%91 2_ hj7~1
7> 7,1 '%,2 hill’lh?éz’
and
~ - % /
dx’hj,l = Cll,l(dx/hi,l)hig(l‘/)alg~ ],1£$ )
hi,l(x/)al’lhi,Q(fl)al’Q
~ - R 1(2) _ o / 7Lj )
CLLthJ $’ a1 dx/hi’Q — 75 A +hi,1 T al,1hi72 T al’de' W ]
( ) ( )hi71(x’)“1’1hi,2(1:/)‘“12 ( ) ( ) h,yll’lhiyljz

Taking into account that Aﬁj,l(az’ ) =1, we get

dzlth = + + —
hi’1($/)01,1 hi’Q (:1:’)“172 th(.%'/)

= aridohin | argdohin | hia(al) k()™ d hja
7 7 z’ Jai17a1,2 |
h’i,l hi,2

We are computing dl,/ﬁmw(x’). We have dx/%i,lw(:zj’) = dx/ﬁi’ldew@). Since %i,l is a
homogeneous function of degree 3; 1, we have the following equality of maps X — C: h; 107 =
ﬂi71~(7')hi71 = hﬁl(az’)hm. SO, dtcrhi,ldxrw(a;) = hm(x’)dxhi,lw(x) = hi71(x,)gi71(p). Similarly,
dyrhigw(x’) = hi2(2')gi2(p). B B

Now we are going to deal with the last summand in the formula for d, h;1 above. Since h;

and 5?1115?122 are functions of the same degree 3;1, by Proposition 2.3 we have the following
equalities of maps from the open subset where they are defined as regular functions, not only
as rational functions, to C:

-~ - TJaii1yai? 37a1,137041,2
hij1 hij1 h; 1 hi s hi i his
‘77 ]7 Z7 Z7 7’7 7’7
Ja117a1.2 = Eal,l*al,Q om a‘nd 7 = E oTm.
hi,l hi,2 i,1 14,2 hj1 J>1
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As we already know, h; 1(z ) # 0, hlz( "y # 0. Also, ?Lﬂ(ac’) = 1 by the definition of 2/, so
these maps are defined at 2/, and we get

7. / a1,1~. /\ai,2 7
hz71(:1:)~ hia () dy ( hj1 ) w(z') =

hyji(a') Ry

Ei al’lﬁi a2 E Ez al’lﬁi a2 E
1(p)" hio(p) dy [ =291 dyrn(al) = 1(p) hio(p) dy [ =LY () =
hj(p) hii his hj(p) hii hig
hiy (p)* hia(p)™? hja
7 dl’ a1 1j*a1 2 Vg (p)
hja(p) hiy his

Finally, we get the following formula for g;1(p):

951(p) = dyhjw(a') =
,~. / ,~. / 7. Naia1p . \ai,2 7.
alyldx hl,lw(x ) + (ILQdI h@72w($ ) + h@71(IL‘ ) h1,2($ ) dx/ <~ h]J 2) w(x')

Ei,l (l‘/)al’l %i72 (:U/)CLLQ %j,l(x/) hzll,l hzlé
hia(2')gi hia(2')gi hi1(p)™ hig(p)™? hj
a1l 1(2")gin(p) L Ga2h 2(2")gi2(p) n ,1(]9)7 2(p) d, [ = 1y£a12 vi(p) =
hiq(x")on hia(x’)or.2 hj1(p) hii h;g
hi 1 (p)™ 1t hio(p)™2 hja
a1,19i1(p) + a1,29i2(p) + ——=—— dp | =a5=4 vi(p).
hji(p) g hi,ll’lhi,léz
Similarly,

Ei, P az;1 hi D az,2 E
95.2(p) = a219i1(p) + a2,29i2(p) + ! )*. 2(2) dp | =mrim | i(p)-
h_],?(p) h‘z 1 h‘

O

Now we are ready to describe the sheaf m" o only using functions on P! and the notion of
a sufficient system of U; (which uses only comblnatorics of 2 and functions on P!). We will
prove that it is isomorphic to another sheaf (denoted by % e), which will be defined using
functions and vector fields on P! satisfying certain conditions. This is similar to the approach
using transition matrices, but the sheaf we will define does not have to be locally free.

Namely, consider the following sheaf % o. Let V C P! be an open subset. The space of
sections I'(V, %,e) is the space of sequences of length 2q + 1

(91,1)91,2) --59i1,9i,2,---5,9q,1,9q,25 U),
where ¢g;; € I'(V; NV, 0p1), v € T'(V,Op1) satisfy the following condition: For every indices
i1
9i1(p) 9i,1(p)

gir2(p) | = Ciw(p) | gi2(p)
v(p) v(p)

Proposition 3.24. m" is isomorphic to 9e. For an open set V C P!, the isomorphism

41



3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

maps a vector field w defined on 7=1(V)NU to the sequence
(gl,la 91,2,---,9i,1,9i,25 - - - ,9q,1,9q,25 U)v
such that (gi.1, gi2,v) is the U;-description of w.

Proof. This is a direct consequence of Lemma 3.23, Lemma 3.16, and the definition of a push-
forward of a sheaf. O

The following three lemmas make it easier to construct sections of % e explicitly.
Lemma 3.25. All entries of C; j are reqular at ordinary points p such that p € V; N'Vj.

Proof. For constant entries the claim is clear, and non-constant entries are logarithmic deriva-
tives of functions

Ejl and Eﬂ
=B 1(B3,1) B85 2 (Bj,1) =B 1(B3,2) 787 2(Bi)
hi,ll J h,i722 J hi711 J hl-722 J

If p is an ordinary point and p € V; NV}, then, by the definition of V; and of Vj, ord, hi1 =
ordy, h;o = ordy, hj1 = ordy, hj2 = 0. Hence, both functions

R R
Y PR o (P B SR (PP N N (PP
hifl,l J» hi712,2 7y hifl’l 7 hi712,2 Js
are defined at p and do not vanish at p, so their logarithmic derivatives are regular at p. O

Lemma 3.26. Let p be a special point, and let i and j be two indices such that p € V; NV},
and B;i1 and B;1 belong to the normal vertex cones of two different vertices of A,. Then each
non-constant entry of C; ; has pole of degree exactly 1 at p.

Proof. We know that each of the degrees ;1 and j3; » belongs to the normal subcone of exactly

one vertex of A,, and this vertex is the same one for 3; 1 and for ;2. ;1 belong to the normal

subcone of a different vertex of A,, which is also unique. Since Z(-) is a convex function,

it cannot be linear on the union of these two subcones, and Z,(8;1) < B8;1(8;.1)Zp(Bin) +
2(8j1)Zp(Bi2). Therefore,

E',l * *
ordy Eﬁzl(ﬁj,lfﬁ%(ﬁj,l) = —Zp(Bj1) + Bi1(Bj1) Zp(Bin) + Bia(B)1) Zp(Bi2) > 0,
il 1,2

and, by a property of logarithmic derivative,

B 1(B4,1) 5852 (Bj,1)

R R 7
ord, | = 7 | FmEomen | | - b
. 7P4,1\P35,1)37P5 2Py,
a1 hi i his
The argument for the second non-constant entry of Cj ; is similar. O

Lemma 3.27. For the matrices C7; and Ci; defined above, one has C7) = C7,C7; and
Cir = C;xC;; for every triple of indices (i,7,k).
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Proof. The equality C7) = C’ﬁ 1C7; can be proved by a direct computation using linear algebra.
We omit this computation.

Now, to prove that C;; = C;1C; ;, it is sufficient to check that

75*’1(/8&1)76%’2(616,1)
ot U

7,1 _ d Ek 1
hi1 —B7 1 (Bk,1) ﬂ*z(ﬁk 1)
8118 )’ﬁ* (Br,2) et * =
831 (Bk,2) -85 2 (B 2 _
hi,ll _ hi,lz hi,2
g2 73:1(31@ 2) BZ 2(Bk,2)
h ’L 2
1(ﬁ],1) By g(ﬁj,l) —
hjl h’s d hja
h],l Eﬁzl(b‘j 1) BlQ(B] 1)
(o} 7,1
J:k B8] l(ﬁ],z) B2 (B52) _
hzll 112 d hj,2
—BF1(Bj,2)-BF5(Bj,2)
hjg hfzfl 3,2 hiz2,2 7,2
B ,1(/3}@ 1)-B87 ,2(5k 1) _
hJ]1 J]2 d b1
Ryt Eﬁjl(ﬁk l)hﬁj 2 (Bk,1)
7,1 J»2
+ B85 1 (B, 2) +B7 2Bk, 2) _
hJ, hi% d hi,2
hk,2 —B71(Bk,2) 5J 5 (Bk,2)
h]l ] 2

By a property of logarithmic derivatives, if f1, fo are (rational) functions,

d(fi* f5?) _ df1+ dfa
1y YA TR

Hence, the left-hand side of the equality we are proving can be written as

dhy 1 T dh; 1 e dh; o dhy 1 dhi
Pt ﬁm(ﬂk,l) @,1 ,‘72(51@,1) @,2 _ @’1 _ Qk Tin
dhi2 o dhin _ o« dh; 2 dhy o % dhi,2
hi2 ﬂ’71(6k’2) hi ﬂ’72(6k’2) hi2 hi2 hi,2

Similarly, the right-hand side can be written as

dhj 1 dhi 1 dhy 1 dhj 1
° Ry —C°. hi1 hie,1 —C° hja -
Cj’k( dhj,2 Cig dhi,o ) T dhes Bk dhie | T
hj,2 hi2 h,2 hj2
dﬁk’l dhi,1
Ek,l _ o o Eq‘,71
dhy o ijkCi,j dh; o
hi,2 hi2
By taking into account that C7, = C° 1Cij» we obtain the desired equality. O

3.3.2 Computation of 4§

Recall that we have denoted the graded component of R!(r|).©Ox of degree 0 by 4 ,. Now
we are going to compute liflé”o using Proposition 2.10. We can use {U;} as an affine covering
of U. We have to consider a complex of sheaves on U that we temporarily denote by .%,. For

an open subset U' C U, T'(U’, %) consists of sequences (wi,...,wq), where w; is a vector
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

field on U; NU’, T'(U’, #1) consists of sequences (wj j)i<i<j<q, Where w;; is a vector field on
UsnU; NU', and T'(U', %) consists of sequences (w; jk)i<icj<k<q, Where w;j is a vector
field on U; NU; N U, NU’. Denote the graded components of degree 0 of the pushforwards of
these sheaves by lifl&l, fré‘jl, 1’/8"1, respectively. Using Corollary 3.21 we get the following
description of these sheaves:

Consider the following sheaves 91 0,1, ¥4/ ¢, and 9’ . For an open subset V' C P!,

I'(V,% 0.1) consists of sequences

(9(1]1, g[U2, 1], - -, glily, gldla, o[i], - -, glal1, glal2, vla)),

where g[i]; € T(V;NV, Op1), v[i] € [(V;NV,0p1). Then ¥ g1 is isomorphic to f?é,,l’ and the
isomorphism maps a sequence of q vector fields (w[l],...,w|q]) to the sequence

(9[1]1, g[1)2,0[1], ..., glil1, glil2, v[d], . . ., gld]1, glalz, v[a]),

where g[i]1, g[i]2, v[i] form the U;-description of wli].

(v, %1’7671) consists of sequences (g[i, j]1, g[¢, 7]2, v[i, j])1<i<j<q, Where g[i, j]1, g[i, j]2 € T'(V;N
V;NV,0p1), vi,jl € T(V;NV; N V,Op1). Similarly, %1’7@’1 is isomorphic to 1’%‘:1, and the
isomorphism maps a sequence (wli, j])1<i<j<q Of vector fields on open subsets of U N7~ 1(V)
to the sequence (g[4, j]1, gi, jl2, v[i, j])1<i<j<q, Where g[i, j]1, g[4,jl2 and v[i, j] form the U;-
description of a vector field defined on U; N U; N7~ 1(V). (In fact, at this point we can choose
arbitrarily whether this is the U;-description or the Uj-description of w[i, j], and we choose that
this is the U;-description, and not the Uj-description.)

Finally, I'(V,9]'g ;) consists of sequences (g[i, j, k|1, gé, j, k]2, v[i, j, k])1<i<j<q, Where

gli, j, kl1, 9, 5, klo e D(ViNV; NV NV, Opr), i, j, k]l e T(VinV; NV, NV, Op1).
The isomorphism between ¥’ léwl and ¢/ ‘o118 constructed similarly, and here we again say (we
choose) that g[i, j, k|1, g, J, k,]g v[i, j, k] is the Uj-description of a vector field on U; NU; N UL, N
7~ 1(V), not its Uj- or Ug-description.

Let us compute the kernel ker(¥/ o ; — 4/'g ). Denote it by % o2. A kernel of a sheaf
map can be computed on each open7 subset inliépendently, and the map here comes from the
standard Cech map .#; — .%» via the pushforward and the isomorphisms 541’“(1)"1 = 1’79’1
and 4/'8Y = 9o, defined above. Summarizing these definitions (and choices between U;-
descrlptlons made there), we get the following formula for the map gf,@; — %1” 0.1, Where we
have to calculate a U;-description from a Uj-description once:

gli, j, kJ1(p) gli, 1 (p) gl7: kl1(p) gli, kJ1(p)
gli,j.kl2(p) | = | gli,jl2(p) | +Ciap) | gli.kl2(p) | — | gli, k]2(p)
vli, j, k] (p) vli, j](p) v[j, k](p) vli, k](p)

So we get the following description for ¢} g 2. The space of sections of ¢; g 2 over an open subset
V C P! is the space of sequences of length 3q(q—1)/2 of the form (g[i, j]1, g[i, j]2, v[i, j])1<i<j<qs
where g[i, jlr € T(VNV;NV;, Op1) and vi, j] € [(VNV;NV}, Op1) satisfy the following condition:
For every indices ¢ < j < k:

gli, jl1(p) glj, k1 (p) gli, k]1(p)
gli,jla(p) | +Cii(p) | 9li;kl2(p) | — | 9gli,kl2(p) | =0
vli, j](p) vj, k](p) vli, k] (p)
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inv

Finally, by Proposition 2.10, 4§  is isomorphic to 4 0,0 = coker(% 01 — %1 ,0,2), where the
map % .e,1 — % e, can be written as follows:

gli, 11 (p) gli]1(p) glili(p)
gli,jla(p) | = | glil2(p) | —Cji(p) | glil2(p)
vli, j](p) vli](p) v[j](p)

3.3.3 Computation of ¢

The sheaves éf% can be computed similarly to ng . We start with the following Lemma.
Lemma 3.28. Let V/ CV; be an open subset, L' C L be an open subset that can be equal C or
(C\0), U/ = V! x(C\0)x L' CU;. A homogeneous function of degree x € M on U] is uniquely
determined by its values at canonical points in all fibers 7=1(to) (for to € V) with respect to
U;.

1. If I’ = C\O or 52?'12()() > 0, these values can form an arbitrary function depending
algebraically on p € V.

2. If ' =C and Bia(x) <0, these values must vanish. This is only possible if x ¢ oV.

Proof. The proof is similar to the proof of Lemma 3.20. Denote the coordinates of a point
x € U; provided by the isomorphism U; 2 V; x (C\ 0) x L by tg € V;, t1 € C\ 0, ty € L. Let
f be a function of degree x on U/, and suppose that f(t9,1,1) = fo(to), where fo: V; — C is
an algebraic function. Fix a pair (t1,t2) € (C\ 0) x (C\ 0) and let 7 € T be the element of
T such that (3;1(7) = t1, Bi2(7) = t2. Denote by 7 the automorphism of U] provided by 7 as
well. By the definition of a homogeneous function of degree x, f(to,t1,t2) = f(7 - (to,1,1)) =
x(7) f(to,1,1) = x(7) fo(to), so fo determines f uniquely on V;/ x (C\ 0) x (C\ 0), which is at
least an open subset in U].

We still have to check that if we start with an arbitrary functions fo: V;/ — C, the resulting
function on V; x (C\ 0) x (C\ 0) can be extended to the whole U if and only if 5;5(x) < 0
or L' = C\ 0 (in the last case there is nothing to extend) and that the resulting function on
U/ is homogeneous of degree x. The function we have constructed can be written as follows:

Flto, b1, t2) = x(7)folto) = Bir (1)F100 8o () 200 = P Pal0 oy Recall that ¢ (resp.
t2) is a function on X of degree ;1 (resp. f;2), so this function is clearly homogeneous of
degree 571 (x)Bi1 + Bi2(X)Bi2 = x on V] x (C\ 0) x (C\ 0). If the function can be extended
to the whole U/, it remains homogeneous there since homogeneity means an equality of two
functions for each element of T, and this equality holds if it holds on an open subset.

If L' = C\ 0, there is nothing to extend. If L' = C, f can be extended to U] if and only if

Ta(x) > 0.
Finally, L' = C, then f;1 € 90", and if f,(x) < 0 in this case, then x ¢ o". O

Given a homogeneous function f of degree x € M defined on a set U/ as described in Lemma
3.28, we call the function fy: V;/ — C such that fo(p) = f(x), where x is the canonical point in
7~ 1(p) with respect to U; the U;-description of f. Again, the Us;-description of a function only
depends on the data we used to define the set U; (the degrees f3; 1 and (;2 and the sections
hi1 and h;2), not on the whole sufficient system Uy, ...,Uq. And again we can make a remark
similar to Remark 3.22:
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Remark 3.29. Let V/ C V! and L” C L' be open subset, and L” = C or L" = C\ 0. These
embeddings give rise to an embedding of U/’ = V" x (C\ 0) x L" into V] x (C\ 0) x L' = UJ.
Let f" be the restriction of x to U/'. Then the U;-description of f' is the restriction of the
U;-description of f to V.

Now we are going to relate the U;-description of a homogeneous function of degree y defined
on an open subset of U; N U; with its Uj-description. To formulate this relation, we need to
introduce some notation. Denote the following rational function of p € P':

( ) Ei,l(p) 1)
Hijx\P) = = ¥
T )
In particular, if 7 = j, then p; ;, = 1. This time it is a trivial observation that these functions
satisty conditions similar to Lemma 3.27 for matrices C7; and Cj ;:

hia(p)*i2™)
hja(p)i2)

Remark 3.30. For every three indices i, j,k one has ;g = i jxtjk,x-

By Lemma 3.17, U; N U; can be written as V' x (C\ 0) x L', where V' C V; NV} is an open
subset, and L’ equals C or (C\ 0). This product is embedded into U; via the isomorphism from
Lemma 3.16.

Lemma 3.31. Let V" be an open subset of V', L” be an open subset of L', L" = C or L = C\0,
and let U" = V" x (C\ 0) x L" be embedded into U; N U; via the map from Lemma 3.17.

Let f be a homogeneous function on V" of degree x, and let g; (resp. g;) be the U;-description
(resp. Uj-description) of f. Then for everyp € V":

gj (p) = i jx3Gi (p)-

Proof. As in the proof of Lemma 3.23, it is sufficient to prove the equality for all ordinary
points p € V. So let p € V" be an ordinary point and let = (resp. ') be the canonical point
in 771(p) with respect to U; (resp. to U;). It follows from Proposition 3.6 that h;1(z’) # 0,
E@g(ac’) # 0, hence 2’ € U".

Let 7 be the element of T such that 8 1(7) = hi1(2'), Bia(T) = hia(z'). As usual, denote
the corresponding automorphism of U” by 7 as well. Since 77,,‘71 (resp. 7112) is a homogeneous
function of degree f3; 1 (resp. Si2), 7%71(7'30) = Eiyl(x’), Ei,g(ms) = Ei72($/), so T =

Since f is a homogeneous function of degree y;,

F@') = f(rz) = x(7) f(@) = Bia ()50 B o ()20 f(2) = By (2 )P OO0 hy o ()52 £ ().

Recall that h;1(2') = hja(2') = 1. We have

f(l-’) _ ﬁi,l(Cﬂl)ﬁ;’l(X)%iQ(l'/)ﬂ;’z(X) i),
hia(z') ;»1(X)hj72(:1:’) 5 (x)

)

Since the numerator and the denominator of this fraction are homogeneous functions of degree
T100Bi1 + B2 (X)Biz = Bj1(X)Bja + B72(x)Bj2 = X, by Proposition 2.3,

o (@) = hijx (p)g;(p)-

Ria(m(2")) :,I(X)Ei72(7r($l)) <, ()
h hja(m(a'))s2
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Recall that for a degree x € M we have denoted by 4% , the graded component of (7|i)«Ox
of degree x. Lemma 3.31 enables us to formulate a description of Sng X similar to the description

of éné’ above. Namely, define a sheaf ¥ ¢, as follows: Let V C P! be an open subset. The
space of sections I'(V, % ¢ ) is the space of sequences (g1, ..., gq) of functions on V satisfying
the following conditions:

1. 9ir = Wi i’ xGi for all indices 7:, i/.
2. If B;1 € 9o and B (x) < 0, then g; = 0.

Lemma 3.32. %&g’X is isomorphic to %y ¢ . If f is a function on 7 Y (V)N U of degree x,
then the isomorphism maps it to (g1,...,9q), where g; is the U;-description of f. L]

The following lemma gives an alternative description of % s if x € o N M.

Lemma 3.33. If x € 0¥ N M, then % o = O(Z(x)). The isomorphism O(2(x)) < %0,
18 given by

o / / /
Ef}il(X)Eile (x) 5511,1(9()5531(9() Eq?il(X)Eﬁ?éz (x)

where f € T(V,0(2(x))), V C P! is an open subset.

Proof. First, let f € T(V,0(2(x))) be a function. Then it is clear that g; = f/(ﬁiil(X)E%(X))
satisfy the conditions g; = p; jygi; from Lemma 3.32 by construction. The condition 2 from the
definition of % ¢, is void since x € o¥. We have to check that g; are well-defined at points
p €V NV, If pe VNV, then by Lemma 3.15, Z,(x) < 8;1(x)Zp(Bi1) + Bio(X)Zp(Biz2)- By
the definition of V;, ord,(hi1) = —%p(Bi1), ordy(hi2) = —Py(Bi2). Since f € T(V,0(2(x))),
ordy,(f) > —Z,(x), so ord,(f) > ordp(ﬁﬁ’l(X)ﬁi?(X)), and g; is well-defined on V' N V;. There-
fore, (g1,...,9q) defines an element of % 4 ,.

Now, let (g1,...,9q) € I'(V,%,6,)- The condition g; = p;j,g; guarantees that f =
giﬁiEl(X)EféQ(X) does not depend on i as a rational function. We have to check that f €
I(V,0(2(x))). Let p € V be an ordinary point. By the definition of a sufficient system, there
exists an index ¢ such that p € V;. Then g; is well-defined as p, and EJ and E@Q are defined at
p since p is an ordinary point.

Now suppose that p € V is a special point. Let V,; be a vertex such that x €
N (Vpj,Ap) By the definition of a sufficient system, there exists an index i such that
p € Vi and Bi1,Bi2 € A (Vp;,4p). The function Z,(-) is linear on A (V,;,A,) so
Dp(x) = 5z1(X)9p(/3i,1) + BZQ(X)@P(BiQ)' Then ord,(f) = ordy(g:) + 5;1(X) ordp(hi1) +
Bra(x) ordy(hi2) > B71(x) ordp(hi1) + Bfo(x) ordp(hi2) = =851 (X)Zp(Bi1) — Bia(X)Dp(Bi2) =
—Pp(x). Therefore, f € I'(V, 0(2(x))). O

Corollary 3.34. HY(P',%, ») = 0.

Proof. Recall that
m dimT(PLE(2(\:)))
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

where \; form the Hilbert basis of ¥ N M, in particular, \; € oV N M. Therefore,

m dimT'(PL,0(2(\)))

%ﬁ—@ @ O(Z(\)).

In particular, 2();) are divisors of non-negative degree on P!, and H'(P', %, ») = 0. O

3.3.4 Computation of ¥y

We can compute glif%,o,x using Proposition 2.10 with {U;} being the required affine covering
of U. Recall that for each x € M, 1{“570»( is the graded component of R!(rw|y)«Ox of degree
X- Again denote temporarily the complex of sheaves on U we have to consider in Proposition
2.10 by #,. Let U’ be an open subset of U. Then I'(U’, %) consists of sequences (f1,..., fq),
where f; € T(U; NU', Ox), T'(U’,.%1) consists of sequences (f; j)i<i<j<q, Where f;; € T(U; N
U;NU', 0x), and T(U', #3) consists of sequences (f; jr)i<i<j<k<q, Where fi ;i € T(U; N U; N
U, NU’', Ox). Denote the graded components of degree x of the pushforwards of these sheaves
by %li%lvx, gf%’\fl,xv gf:ié’lﬂ,x? respectively. Denote also

dimD(PL,0(2(\)))

m

mv inv
-0 D
=1 j:l

m dimT(PL,0(2(\)))
/finv /inv
95 =D S, Doy, and

m
/inv __ /inv
9 =D KiARY

We get the following descriptions of these sheaves from Lemma 3.28:

Define sheaves 4 ¢ 1.y, %’7@1%, 1’:071% as follows. Fix an an open subset V C P!. Let
I'(V,%1 6.1 .y) be the space of sequences of the form (g[1],...,g[q]), where g[i] € (VNV}, Op1)
and g[i] = 0if 8;1 € do¥ and B, (x) < 0. Then gli?ﬁV’,Lx =% o1y, and the isomorphism maps
a sequence (f[1],..., f[q]) of functions of degree y defined on open subsets of 7=1(V) N U to
(g[1],...,9la]), where g[i] is the U;-description of f[i].

Let T'(V, %’7@17)() be the space of sequences (g4, j])1<i<j<q, Where g[i, j] € I'(Op1, VNV;NVj).
These functions should be zero in some cases if 8,1 = 3j1 € 90" (see Lemma 3.17). To define
these cases, note first that if 5; 1 = (1, then 87y = (7 ,. So, the condition is: If B:Q(X) < 0, then
gli,j] = 0. Again, gl/.t%l,x = 541’7@1%, and the isomorphism maps a sequence (f[i, j|)i1<i<j<q Of
functions of degree x defined on open subsets of 7=1(V) N U to the sequence (g[i, j])1<i<j<q
of functions on V' such that g[i, j] is the U;-description of f[i, j]. (Again, we could choose the
Uj-description here, as well, but we choose the U;-description.)

Finally, let T'(V, E?l”ﬁlx) be the space of sequences (g[i, j, k])1<i<j<k<q, Where gli,j,k] €
I(VNV,NnV;NVg, Op1) and, as in the previous case, g[i,j,k] = 0if 81 = 81 = Br1 € 0o
and f;5(x) < 0. Then 4" i;j’l’x =9, the isomorphism is constructed similarly, and again
we say that g[i, j, k] is the U;-description of a function defined on U; N U; N Up N7~ 1(V), not
its Uj- or Uj-description.

Denote %1, 02, = ker(%l’ﬁ,LX — %1’:@1%), where the map gl,ﬁ,Lx — %1’:@1»( comes from the
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3.3 Computation of T'(X)g in terms of cohomology of sheaves on P!

standard Cech map .#; — %, via the pushforward, then the restriction to the degree y, and
then the isomorphisms 1’%‘{1% = 1’7@1“ and 1’”;"“( ~ {:ﬁ,l,x defined above. To compute a
kernel of a map between sheaves, it is sufficient to compute the kernels of the corresponding
maps between modules on each open subset. So let V' C P! be an open subset. Taking into
account the choice of Uj-description in the definition of the isomorphisms 1,2%1»( = 1’ 61
and %{“g"lx = {:ﬁ,lyx’ we see that the corresponding map T'(V, %1',@17)() — I(V, 1’%71,}() can
be written as follows:
g[i,j, k] = g[i7j] =+ Mjﬂ',xg[j’ k] - g[L k]?

and I'(V, % ¢ 2,,) is the space of sequences of the form (g[t, j])1<i<j<q, Where g[i,j] € T(V N
ViNVj, Op1) satisfy the following conditions:

L. gli, j] + 1ix91d, k] — gli, k] = 0 for all indices i < j < k.
2. If Bi1 = Bj1 € 0¥ and Bf,(x) < 0 then g[i, j] = 0.

Now, by Proposition 2.10, fng 0. 18 isomorphic to % 50, = coker(4 g1, — %1,0.2,x), Where
the map ¥ 6.1, — 91,02, can be written as follows: g[i, j](p) = gli](p) — 1,i,x9[7] (p). After
we have defined the sheafs %) ox and % ¢ ox isomorphic to ¢;";x and ¥4,";  x (respectively)

for each degree x, we define

m dimT(PLE(2(\))) m dimT(PLE(2(\)))
.0 = @ @ .0\ and Y g0 = @ @ .60 -
i=1 J=1 i=1 j=1

We can also shortly write

m dimT(PLO(2()\)))

G01= @ @ G010

i=1 Jj=1
m dim[(PL0(2(\)))
G o1 = @ @ Ao and
i=1 Jj=1
m dim[(PY,0(2(\)))
Hoa=B D  Doan
i=1 Jj=1

Then ¢4 ¢ is the cohomology in the middle of the complex % 51 =9 ;1 = 9/ s ;-

3.3.5 Final remarks for the computation of 7" (X),

Proposition 3.19 involves (in particular) the map HO((Rl(W\U)*1b)|gli.go): HO(PL @iy ) —
HO(P!, 11%70). The isomorphisms liflé’ﬂ = 90,0 and %f?éo = 9 0,0 constructed above

enable us to consider a map H°(PY, % ¢00) — H°(P',% 40) instead. Denote it by
HO((R! (7T|U)*¢)|glin(_\; O)O, The following lemma establishes relations between U;-descriptions of

sections of ©x and their images under ¢, so it will help us to understand this map.

Lemma 3.35. Let V' be an open subset of V;, L' be an open subset of L, L' = C or L' = C\ 0,
and let U' = V' x (C\ 0) x L' be embedded into U; via the map from Lemma 3.16.
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

Let (gi1,gi2,vi) be the Uj-description of a vector field w defined on V', x € oV N M be a

degree, f € T(PY,0(2(x))). Then the Us-description of (df)w is

00000 (Bia(x)gin + Bi2(0)gi2) + dpEBZ,l(x)Eﬁf,l(X)
2,1 7,2 2,1 4,2

V;.

Proof. The proof is similar to the proof of Lemma 3.23. It is sufficient to prove the equality for
an arbitrary open subset of V’, so let p € V/ be an arbitrary point, and let = be the canonical
point in 7~1(p) with respect to U;. Denote a; = Bi1(x), a2 = B5(x), and denote by h the

Ui-description of the function (df)w. Then h(p) = (d f)w(z). We have

N
dof =d, (hzllhf2 =

Tai7as
hiihi’s

TR (g L aoh® (1 7. L
al(dxhz,l)hig( )~‘ = ) + 2hl71( )(dxhﬂ)ﬁzll(x)ﬁ%(x)

+ B (2)h3 () dy <f> .

Ta17as
hiihi’s

:rfNZ fvf.(f()l)(ald:r%i,l + a2dm%i,2) + d:r ( f ) .

hip(@)his(x hiihi’

=9

fand ﬁfiﬁf% are homogeneous functions of degree , so by Proposition 1 we have the following

equality of rational maps from X to C:

R
R Rk
Therefore, B B
d:cf: =a1 f(fag (aldxﬁi,l + GZdIEi,Q) + dp%da:ﬂ--
hi,l(p)hi,Q(p) 1,170 2
Finally, we get
h(p) = (dyfHw(z) = %(mdﬁu 1w (z) + asdyhigw(x)) + dp%dﬂw(x) =
hz’,l(P)hm(P) 7 ’ hi,lhi,Q
f(p) f
= =a—(a19:1(p) + a29i2(p)) + dp=a7=a7vi(p).
h; 11 (p) hi,22 (p) g hi,ll hi,22

O

Summarizing, we have found an explicit description for the sheaves % e, %1,0,1, 1,0,2, %,0,x:
G101, and 9 5o, and for the map 1), and all sheaves involved in Proposition 3.19 can be
obtained from these sheaves by taking a cokernel of a map we have explicitly described and
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3.3 Computation of T'(X)g in terms of cohomology of sheaves on P!

forming a direct sum.
By Corollary 3.34,

HY (((|) <)l )°
—

coker(H' (P!, % 0) H'(P', %)) =0,

HY (((7v)« )l )°
—

ker(Hl(Pl,g(),e) Hl(PlagO,ﬁ)) = Hl(PlagO,@)a

and the exact sequence from Proposition 3.19 can be written in the following form:

Theorem 3.36. Let %0, %100, and % o be the sheaves on P! introduced above, on pages
41, 45, and 49 (respectively). Then the following sequence is exact:

HO((RM (x|, ¢ )°
—

0— HY (P %) = T(X)y — H (P, % 00) H(PY, % 50).

Let us prove one more lemma about functions defined on U;. We will need it later.

Lemma 3.37. Let x € 0¥ N M be a degree, and let fi € T(P', 0(2(x))). Let fz be a rational
function on PL. The rational function f3(z) = fo(n(x)) fi(x) on X is reqular on U; if and only
if:

1. A rational function faf1 is defined at all reqular points of V;.

2. For each special point p € Vi, ordy(fafi) > —B5100Zp(Bin1) — Bia(X)ZDp(Bi2)

Proof. Let us suppose that conditions 1 and 2 are satisfied and prove that fs is regular on U;.
First, note that o
_ faf1
9= REOORPE00
is a regular function on V;. Indeed, if p € V; is an ordinary point, then ff; has no pole at
p, and the functions h;1 h;2 do not have poles or zeros at p. And if p is a special point,
then ord,(h; ;) = —Z,(Bi;) for j = 1,2. So, g is the U;-description of a regular homogeneous
function of degree x on U;, which we will denote by fj.
Let p € V; be an ordinary point. Suppose that f5 is defined at p. Then f3 is defined at each
point of 771(p) N U;. Let x¢ be the canonical point in 7=1(p) N U;. By the definition of an
Ui-description, f4(xg) = g(p). On the other hand, by Proposition 2.3,

o®) = Falr(w0)) 5 E
hi ™ (@o)hy 5"

oo (0)-

Since g is the canonical point in 7#~(p) N U;, ﬁi,l(xo) = ELQ(./EO) =1, and g(p) = f3(zo). So,
fa(zo) = f3(xo). Moreover, both f3 and f4 are homogeneous functions of degree x with respect
to the torus action, so, f3 and f coincide on the whole fiber U; N7~ (p).

All ordinary points p € V; such that fs is defined at p form a non-empty open subset of V;.
Therefore, f3 coincides with f; on an open subset of U;. But f4 is regular on U;, so f3 is regular
on U; as well.
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3 Formula for the graded component of T' of degree 0 in terms of sheaf cohomology

Now suppose that f3 is regular on U;. Again consider the following rational function g on

Pl
g = faf1
Ef}il(X)Eigz(X)
If p € V; is an ordinary point, f is defined at p, and x¢ is the canonical point in 7~1(p) N U;,
then by Proposition 2.3,

95) = Flr(w0) - (o)

hi,l (JUO)hi,iéQ

Since g is the canonical point, g(p) = fa(m(20)) f1(x0) = f3(z0). Therefore, g coincides with
the U;-description of f3 on a non-empty open subset of V;. But then g is the U;-description
of f3, and g is defined everywhere on V;. Again, recall that h;1 h;2 do not have poles or

zeros at ordinary points of V;, and if p € V; is a special point, then ordy,(h; ;) = —Z,(f; ;) for
j=1,2. O
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4 Combinatorial formula for the dimension of
the graded component of 7! of degree zero

4.1 Construction of a particular sufficient system

Without loss of generality, in this section we will assume that there are at least two special
points (we always can add trivial special points). Recall that we have a coordinate function ¢
on P!. Now we will need more coordinate functions on P! (i. e. rational functions with one
pole and one zero, both are of order 1). Namely, for each special point p € P!, we will need
a coordinate function on P! that vanishes at p. Choose such coordinate functions and denote
them by t,. We are also going to construct a sufficient system of sets U; more explicitly.

Lemma 4.1. Let p € P! be a special point and let x € ¥ N M be a degree. There exists a
rational function f € T(PY,0(2(x))) such that ord,(f) = —Dp(x), and f does not have zeros
or poles at ordinary points.

Proof. Choose a rational function f on P! that has one simple zero and one simple pole, and
that takes finite values at all special points. (For example, if ¢ = oo is an ordinary point, we
can take f = t, otherwise we can take f = 1/(t — a), where a € C and ¢ = a is an ordinary
point.) Then each function f — a, where a € C again has one simple zero and one simple pole.

Recall that we have denoted all special points by pi1,...,pr. Let p = p;. Denote a; = Zp(x).-
Since deg Z(x) > 0, there exist ay,...,aj—1,ai41,...,ar € Zsuch that a;+...+a, = 0and a; <
Dp,(x) for 1 < j <r. Consider the following function: f1 = (f — f(p1))™* ... (f — f(pr)) ™™
Since the sum of the exponents is zero, f; is defined and takes value 1 at the (ordinary) point
of P! where f = co. Clearly, f; has no zeros or poles at other ordinary points. At p, we have
ord,(f1) = —a; = —Z,(x), and at p; (j # i), we have ordy, (f1) = —a; > —Z,(x)- O

We are going to use a sufficient system Uy, ..., Uq constructed as follows. We have several
(in fact, up to two) sets U; for every pair (p,j), where p € P! is a special point, and j
corresponds to a vertex V,, ; of A, (1 < j < v, we write (p,j) instead of (p, V) ;) to simplify
notation). Each of these sets U; chosen for (p, j) corresponds to a face of A (V) ;,A,) (which
can be A/ (E, j—1,4p), A/ (Epj—1,4)), or the interior of A4 (V,, ;,Ap)). These sets together are
Ui, ...,Uq—1 Additionally, we will use one more set, which is Ugq, and which does not correspond
to any special point.

More precisely, for every special point p, for every vertex V,, ; of A, and for each of the two
rays A (Epj—1,Ap) and A (Ey ;, A,) forming 0.4 (V, ;, Ap) we choose a basis of M as follows.
First, let x € M be the lattice basis of the chosen ray. If x ¢ dc", we do not choose a basis for
this pair (p,7) and for this ray. If deg Z(x) = 0, we do not choose a basis for this pair (p, 7)
and for this ray. Otherwise, we choose a basis 3; 1, 8i 2 of M, where ;1 = x and 3, 2 is a lattice
point in the interior of A (Vy, ;, Ap).

We choose a basis of M corresponding to a pair (p,j) and to the interior of A (V) ;,A,)
only if at the previous step we finally did not choose any basis corresponding to the pair (p, )
and to one of the two rays A (Ep;j_1,4A,) and A (E,;,A,) (for example, this can happen if
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

9oV NON(V,j,Ap) =0). In this case, we choose a basis 31, 8;2 of M such that §;; and ;2
are lattice points in the interior of A4 (V, ;,Ap). We continue using the notation B;: 1 ﬁ;‘i o for
the dual bases.

Observe that we chose exactly one or two bases for each pair (p,j). We chose two bases if
and only if p is a removable special point and deg Z(agp) > 0 and deg Z(«1) > 0.

Now for every chosen basis, we choose functions h;; € T(PY,0(2(B;1))) and his €
(P, 0(2(8:2))) satisfying the conditions of Lemma 4.1 for the corresponding special point p
and the degree ;1 or f3; 2, respectively. Then we may set V; to consist of all ordinary points
and p.

We enumerate the sets U; so that the sets corresponding to p; € P! go first, then the sets
corresponding to po, etc. Among the sets corresponding to a single essential special point p, we
have exactly one set U; for each vertex of A,. We enumerate them along with the enumeration
of vertices, i. e. first we take the set corresponding to (p,1), then the set corresponding to
(p,2), etc, then the set corresponding to (p,v,). If we have two sets U; corresponding to the
same removable special point, we enumerate them arbitrarily.

These were the sets Uy, ...,Uq—1. To define the set for the sufficient system, i. e. Ugq, choose
an arbitrary basis 8q1,8q,2 of M such that Bq1,8q2 are in the interior of ¢, and choose
functions hq1 € T'(PY, 0(2(Bq1))) and hqa € T'(PL, 0(2(Bq2))) that do not have zeros or
poles at ordinary points (such functions exist by Lemma 4.1). In this case, let Vg be the set of
all ordinary points.

Note that if we remove Ug, we will still get a sufficient system. We will use whole sys-
tem Uy, ...,Uq to compute H'(P!,% ¢), and the smaller sufficient system Uy,...,Uq—1 to
compute H'(P1,4, 0¢) and H°(P', 4 50), During the computation of H°(P',% ¢¢) and
HOY(PY, 4 50), the set Uy will only be used sometimes to define Uq-descriptions sometimes.

4.2 Computation of the dimension of H'(P' ¥ o)

We start with H 1(Pl,g()@). To compute this space, we need an affine covering of P'. So, for
each special point p € P!, we denote by W), the set consisting of all ordinary points of P! and p.
These sets W), really form an affine covering since we have at least two special points. Denote
also the set of all ordinary points by W. It follows directly from the definition of % ¢ that
the restriction maps to nonempty open sets are injective. Note also that if p # p’ are special
points, then W, N W, = W. So we can use Corollary 2.13 for Cech cohomology. By Corollary
2.13,

H' (P, %e) = b (F(W, %,@)/F(Wpa%,e)> /F(W7 %.0)
p special point

For an essential special point p, denote by Go e p,q the space of triples (gq,1,9q,2,v), where
9q,1:9q,2 € T(Wp, Op1), v € I'(W,,Op1), and v(p) = 0. The last index q indicates that these
triples will be considered as Uq-descriptions of vector fields on 7=1(W,) N U.

Lemma 4.2. Let p € P! be an essential special point. Then LWy, % .e) can be identified with

Go,0.p.a-
The isomorphism here maps (gq,1,9q,2:?V) € Go,0.p.q 10 (91,1,91,2, -+ 9q,159q,2, V), where
9i,1 9q,1
gi2 | =Cqi| Yaz2
v v
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Proof. First, we have to check that the (2q + 1)-tuple obtained this way from an element of
Go,0.,p,q really defines an element of I'(W),,% o). The equalities

i1 gj1
gi2 | =Ci| 92
v v

for arbitrary indices 4,j follow from Lemma 3.27. All functions g;1 and g;2 are regular at
ordinary points by Lemma 3.25. Let ¢ be an index such that U; corresponds to the special
point p in the above construction. We have

Eﬁé;(ﬂi,l)*ﬁ;g(ﬁm) —

h h;
L — RB* . * ) q,1 q,2 i,1
gl = 5(1’1(/8171)9%1 * 5(1,2(51,1)9%2 * E@l d Eﬂé,l(ﬁi,l)ﬁﬁég(ﬁm)

q,1 q,2

.

The covector field in the last summand is a logarithmic derivative of a rational function on
P!, so it cannot have a pole of order more than 1. Since v(p) = 0, g;1 is defined at p. The
argument for g; o is similar.

Clearly, this map from the space of triples to I'(W), % o) is injective. To prove surjectivity,
we have to check that if (g1.1,91.2,.--,9q1,9q,2,v) € T'(Wp,%.e), then v(p) = 0 and gq,1 and
9q,2 have no poles at p. Let U; and U; be two open subsets corresponding to the special point
p and two normal subcones of two different vertices of A,. If v(p) # 0, then by Lemma 3.26,

*51‘*,1(57',1)55;2(53',1) _

h; 1 P2 hj 1
ord b 0 - L v =-1,
p hj,l Effﬁ(ﬂj,l)ﬁfgﬂﬁjyl)

and g;1, gi1 and g; 2 cannot be defined at p simultaneously. Therefore, v(p) = 0. Finally,

E ;1(6%1)*6;2(/3%1) —

. h. h
_ p* ) * ) i,1 1,2 q,1
9a1 = FialBar)gi + Biao(Par)giz + hig,1 N\ G | v
: i1 0,2

Again, covector field in the last summand here is a logarithmic derivative of a rational function
on P!, so it cannot have a pole of order more than 1. Since v(p) = 0, gq1 has no pole at p.
Similarly, gq,2 has no pole at p. O

Now let p be an essential special point. Recall that ¢, is a coordinate function on P! that has
a (simple) zero at p. Denote by Vg, the space of triples of Laurent polynomials of the form

(a17_1t;1 + ...+ a17_n1t;n1,a2,_1t;1 + ...+ ag,_mt_”?, (bo + b_lt;l + ...+ b_n3t5”3)8/atp).

Lemma 4.3. If p € P! is an essential special point, then Vo,0p s isomorphic to
I'(W,%.0)/T Wy, %.e). The isomorphism here is the composition of the map

(gq,l)gq,Za U) = (91,1791,27 e 7gq7179q727v) S P(W) go,@)u

where
gi1 dq,1
gi2 | =Cqil| 9a2 |-
v v

and the canonical projection I'(W, % e) = IT'(W,%.0)/IT' (Wp, % .0).
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

If (911,912 9q1:9q2: V") € D(W,%.e) is a section that belongs to the same coset in
F'(W,%.0)/T'(Wp,%.e) as the image of (9q,1,9q,2,v) € Vo,0,p under the isomorphism above,
then g&jl — gq,1 and gfLQ — gqa1 are functions regqular at p, and v' — v is a vector field that
vanishes at p.

Proof. The proof is similar to the proof of the previous lemma. Let (gq.1,9q,2,v) € Vo0,0,p-
Denote its image in I'(W,%.0) by (91,1,91,2,- -+ 9q,1,9q,2,v). The functions gq1 and gq2 and
the vector field v have no poles except p, the entries of Cq; have no poles at ordinary points
by Lemma 3.25, so g;1,¢9i2 € I'(W, Op1). Therefore, (g1,1,91,2,---,9q,1,9q,2,v) really defines
an element of I'(W, % o) since all necessary equations are satisfied by Lemma 3.27.

Now let (971,91 25+ -+ 9q19q2: V") € T(W,%,0) be a section. Let

00 ) 00 D)
Gar= Dty dap= D amty V= | ) bty 5-
P

k=—n1 k=—no k=-—n3

be the Laurent series for gq1, gq,2, and v, respectively (in the sense of complex analysis).
Denote

~1 -1 0
0

9q,1 = Z a1,ktl;, 9dq2 = Z a2,kt§7 v = Z bkt’; T
P

k=—ny k=—mn2 k=—ng

These sums are finite, so they define algebraic rational functions and an algebraic rational vector
field. Hence, gq,1 — 9:;,1: 9q,2 — 911,2’ and v — v’ are also algebraic rational. They are defined at
p in complex-analytic sense, hence they have no poles at p in algebraic sense. Note also that
(v —')(p) = 0. By Lemma 4.2, the triple (gq1 — gq159q.2 — ggq2,v — V') defines an element
of T'(Wy,%.0), 50 (gq,1,9q2,v) is equivalent to (g 1, g2, ") in D(W, % e)/T(W)y, %.e). But
(9q,1,9q,2:v) € Vo0, so the map from Vi, to I(W,% e)/T'(W,,%.e) is surjective. The
injectivity of the map Voo, — I'(W,%e) is clear, and it follows from Lemma 4.2 that the
only triple that maps to I'(W), % e) is (0,0,0). O

Let p € P! be a removable special point, and let U; be a subset of X corresponding to
p. Denote by Goepi the space of triples (gi1,gi2,v), where g;1,9:2 € I'(W,, Op1), v €
I'(Wp,Op1), but this time it is not necessarily true that v(p) = 0. The last index ¢ in the
notation Goep, indicates that these triples will be considered as U;-descriptions of vector
fields on 7~ 1(W,,) N U.

Lemma 4.4. Let p € P! be a removable special point, and let U; be a subset of X corresponding
to p. Then I'(W,,%.0) can be identified with Go e p,i-

The isomorphism here maps (g 1, gi2,v) to (91,1,91,2,-- -+ 9q,159q,2, V), where
95,1 9i,1
g2 | =Cij| 9i2
v v

Proof. The proof is similar to the proofs of two previous lemmas. All necessary linear equations
in the definition of ¢ g are satisfied by Lemma 3.27. We only have to check that if U; is another
subset of X corresponding to p, then g;1 and g;2 do not have poles at p. The only entries of
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4.2 Computation of the dimension of H*(P!,% o)

C;,; that could have poles at p are

=B71(85,1) 787 2(Bj.1)

hi i _ hijs d hja
hj1 Ei‘ii}l (ﬂj’l)ﬁféZ(Bj’l)
and
Eff}l (53‘,2)5532,2(@,2) ; hia
hja Ej?(ﬁj,z)ﬁifég(ﬂj,z)

Consider the first one of them, the second one is considered similarly. We have ord,(h;1) =

—Dp(Bin), ordy(hi2) = —Zp(Biz2), ordy(hji) = —Zp(Bj1). Since p is a removable special point
and Bj1 = B71(85,1)Bi1 + B72(8j1)Bi2, Zp(Bj1) = B1(8,1) Dp(Bint) + B9 (Bj1) Zp(Bi2), and

hi1
ord,, > =0.
=B85 1(B5,1)5872(85,1)
hi,ll ’ hi,22 ’

Therefore, the logarithmic derivative of this function does not have a zero or a pole at p, and
g;1 is well-defined at p. The argument for g, 2 is similar.

The injectivity of the map from Gy e, to I'(W), % e) is again clear since a (2q + 1)-tuple
defines the zero section only if all entries are zeros, and the surjectivity is also clear this time
since in every section from I'(Wp,%.e), gi1, 9i2, and v should be well-defined at p. O

Note that in this lemma, we use an affine open set U;, which depends on p, and in fact used
the Uj-description of a vector field, while in Lemma 4.2 we used Ug, which did not depend on
p, and used the Uqg-description. However, in the next lemma, we are going to use Uq again.

For a removable special point p, denote by Vg o, the space of triples of Laurent polynomials of
the form (a1, 1t +.. . 4a1,_n 6, ag, 1ty . ag nyt, "2, (borty 4 byt 9)D/Ot).

Lemma 4.5. If p € P! is a removable special point, the space T(W,%.o)/T(Wy,%.0) can be
identified with Voo p.

More ezactly, these three Laurent polynomials are three last entries in a (2q+1)-tuple defining
an element of I'(W,% o), which in turn defines a coset in I'(W,%.0)/I'(Wp,% o). In other
words, the isomorphism is the composition of the map

(gq,hgq,% U) = (91,1791,27 e 7gq,lagq,27v) € P(W7 g&@)v

where
gi,1 9q,1
gi2 | =Cqil| 9a2 |-
v v

and the canonical projection T'(W, % o) — T'(W,%.0)/T(Wp, % .0).

The vector field here always differs from the last entry of any element of I'(W,% o) from
the same coset in T'(W,%.0)/T(Wp, % o) by a vector field that has no pole at p. This is true
for the two functions if the vector field is zero in both representatives of the coset.

Proof. First, if (9q.1,9q.2,v) — (91,1,91.2, - -+ 9q.1, Jq.2, V), then g;1, gi2, and v have no poles
outside p, entries of C;; have no poles at ordinary points, and all necessary equations are

57



4 Combinatorial formula for the dimension of the graded component of T' of degree zero

satisfied by Lemma 3.27, so these functions and this vector field really define an element of
I'(W,%.e), and hence an element of I'(W, % o) /T (W, %.0)-

The proof of injectivity is quite easy. If (gq,1,9q2,v) — (911,912, 9q1:9q,2:V) €
LWy, %.e), then v = 0 since otherwise it has pole at p. But then we can choose an open
set U; corresponding to p and write

Jal )\ _ oo 9i1
() =em(32)

The matrix C7, has only constant entries, so if g;,1 and g; 2 are regular at p, then gq,1 and gq,2
are regular at p as well. But then gq1 = gq,2 = 0.

Now we prove surjectivity. Let (g7 1,912, -1 9q1:9q2: V") € T(W,%,e) be a section. Choose
an index ¢ such that U; corresponds to p and write complex-analytic Laurent series:

g;,1 = E a = E 0
k k k
2{’1 ll’ktp’ 272 a’l2,ktp7 v = § b;ftp 7({%
D

k=—n1 k=—no k=—n3
Set
-1 -1 -1 P
"o / k "o / k " __ ! 4k
9i1 = E ay ity Gio = E ap glp, UV = E bty TR
k=—n1 k=—no k=—n3 p
and
1 1
951 i1
! _ L /i
92 =Ci 9i2
U// ,U//

for all j (1 < j < q). Observe that g;'; — gi,, g{'s — gio and v" — ¢ are well-defined at p,
SO (gl’-f1 - gl’-71,g§:2 - g£72,v” — ') € Goep,i- The image of this element of Gy g p; under the
isomorphism from Lemma 4.4 equals (g7 1 — 1 1,972 — 9195+ -+ > 9q1 — Jeq10 Jq2 — g2, V" — V') €
F/(ij%,@), hence, by Remark 3.22, (911 — 911,912 ~ 912:-- 1 9q1 ~ 9q1:9q2 ~ Jaq2:V" —
V') €e T'(W, % o) defines the zero coset in I'(W, %.0)/I'(Wp, % o). 1t is sufficient to prove that
(9715912, 91> Ga.2- V") is in the image of the morphism Vo, — T'(W,%.e)/T'(Wp,%.0)-

Now write

[o¢] [o.¢]
"o n 4k "o " 4k
9q,1 = E aj gtp, Y9gq2 = E as ity

k=—n1 k=—no

(without loss of generality, we may suppose that n; and ny did not change, we may add more
zeros in the negative part of Laurent series) and recall that

Set
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4.2 Computation of the dimension of H' (P!, “%.0)

g1 9q,1
952 | =Caqj | a2
v v

for all j (1 <j < q). Then (gq,1,9q:2,v) € Vo,0,p- Since v = v, we have

1! 1!
gi,1 9i1 9aq,1 — Yq,1
1 _ 1
gi2 - 92 = Cq,i 9aq,2 — 9q,2 ,
v " 0

gi 92/1 _ o 9q,1 — gg1
- 1 = qu " .

9i,2 92 ’ 9a,2 — 9q,2
Hence, g;y — gi1 and gy — gi2 are regular at p, (g/; — 9i1,9i2 — gi2,v" —v) € Goepi,
and the isomorphism from Lemma 4.4 maps this triple to (97; — 911,979 — 91,2, -+, 9q1 —
gq71,gg72 — gq2,V" —v) € I'(Wp,%.e). Therefore, (93’,1791/,27‘-~agg,1=9g,277//) defines the
same coset in I'(W, % e)/T'(Wy,,%.0) as (911,912, --,9q,1,9q,2:v), Which is the image of
(9,15 9q,2,v) € Vo,0,p-

During the proof of surjectivity, we have changed the vector field from v’ to v" = v, and we
chose v” so that v/ — v” is regular at p. If we started with v" = 0, then v" = 0 as well. In this

case /! / ! /
1 / =Uiq "o .
9q,2 9a,2 Ji2 ~ 95,2
g’y —g., and g/, — g., are regular at p by construction, all entries in C7 4 are constants, so
Jq1 — Jq1 and ggo — gy o are regular at p. Recall also that gq1 — ggq and gq2 — ggqo are
regular at p by construction, so finally we see that gq1 — gg 1 and gq,2 — g 2 are regular at p if

v =0. O

Note that in this lemma, we do not claim (and this is not true in general) that if
(9115912 91> 9q2- V') is any representative of the coset in I'(W, % e)/I'(W), % ,e) defined
by three Laurent polynomials in lemma, then, for example, the difference between the first of
these Laurent polynomials and 9:1,1 is regular at p. We only claim that this is true if v/ = 0
and the third Laurent polynomial is also 0, and we also claim that independently of v/, there
always exists such a representative in the coset.

Using Lemmas 4.3 and 4.5, we identify the direct sum

@ INQI8 go,@)/F(Wpi ) %,@)
i=1
with the space

r
P Voo
i=1

of 3r-tuples of Laurent polynomials of a certain form, where the first three polynomials corre-
spond to pi, the second three polynomials correspond to ps, etc.

Lemma 4.6. Let
(9[1]1, 9[22, v[1], ..., g[r]1, g[r]2, v[r])
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

be an element of @;_; Vo,op,;- Then there exists another element

(90113, (1], ' (1], -, glr)’, glrl, olr]') € €D Voo,
i=1

such that these two elements represent the same class in

(@ (F(W%,e)/F(Wpi,%,@)D/F(W,%,@),

=1

" is a vector field reqular at p; for all i.

and vli]
Proof. All v[i]’s can be written using Laurent polynomials as follows: v[i] = (bi,,ltzjil +...+
bi—kty,")0/0tp, or v[i] = (bio + bi—1t, + ... + b; _it, F)0/0ty,, the exact form depends on
whether p; is a removable special point or an essential special point. Denote v[i]” = (bi7_1t;i1 +
oo+ bi_kt,7)0/0ty, (if p; is removable, then v[i] = v[i]”). This vector field is regular at all
points of P! except p; (including the point tp, = 00, where it has a zero of of order 3). Then
V" =v[1]" + ...+ v[r]” € I(W,Op1), and we can construct an element of I'(W, % o) similarly
to what we did in previous proofs: we set gg 1 = gy o = 0, and

q
/! "
9i1 9q,1
" _ ) 1"
iz | = Cq,i 9q,2
,U// ,U//

By Lemma 3.25, all entries in Cq; are regular at ordinary points, and

(9/1,,179/1,727 <. 79&,1? g(/;,2v U”) S F(VVa g079)-

Now, by Lemmas 4.3 and 4.5, this section defines elements of Vg, of the form
(g[i]Y, gli]5’, v[i]""), where v[i]” — v" is regular at p;. Recall that v[j]” is regular at p; if i # 7,
so v[i]" —v[i]” is regular at p; as well. Also, v[i]” —v[i] is regular at p;, so v[i]”" — v[i] is regular
at p. Finally, we set

n n

glili = glils — glilY’,  glily = glil2 — glily’, and [i]" = v[i] — v[i]

"

The sequence (g[1]7", g[1]5",v[1])", ..., g[r]{, g[r]y’, v[r]"”’) defines an element of the zero coset in
(@ (r(w,%,@/r(vvpi,%,@))) / T (W, %,0)
i=1
by construction. Therefore, (g[1]},g[1]5,v[1],...,g[r]}, g[r]},v[r]’) defines the same coset as

(911, g[1]2,v[1], ..., g[r]1, g[r]2, v[r]) in

(@ (row. %,e)/F(Wpi,%@») / T(W,%.e).

i=1
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4.2 Computation of the dimension of H*(P!,% o)

Lemma 4.7. Suppose that
(90111, g[1)2, v[1], ..., glr]1, g[r]2, v[r]) € D Vo.ou,
i=1

and

(90113, g[1], (1], -, glr)’, glrl, vlr)) € €D Voo,
i=1

define the same class in (B;_; T'(W,%.0)/T(Wy,,%.0))/T(W,%.6), and for every i, v[i] and
v[i] are regular at p;. Then there exists a globally defined vector field v € T'(P!,©p1) such that
v(pi) = v[i](p;) — v[i]'(pi) if pi is an essential special point.

And vice versa, if

(g[1]1, g[1]2,v[1], ..., g[r]1, g[r]2, v[r]) € @ V0,0,0:

is such that every v[i] is reqular at p;, and v € T(P,Op1) is a globally defined vector field, then
there exists

(90111, g[112, v (1], .-, glrl’, glr]a, o)) € D Voo
i=1

equivalent to (g[1]1, g[1]2,v[1], ..., g[r]1, g[r]2, v[r]) in

(@ (F(W %,@)/F(Wpi,%,@))> / T(W,%.6)

=1

and such that v[i|" is reqular at p; for every i. Here v[i](p;) — v[i)' (pi) = v(p;) for all i such that
p; s an essential special point.

Proof. The first statement follows easily from Lemmas 4.3 and 4.5. Namely, all triples (g[i]1 —
glil}, gli]2 — g[ily, v[i] —v[i]’) define the same section from I'(W, % o) in the sense of Lemmas 4.3
and 4.5 applied at p;. This element of I'(W, % e) can be written as (g7 1,972, - - 9q15 9q2: V)-
Let us prove that v is the desired vector field. We know that v is defined at all ordinary points.
If p; is a removable special point, then by Lemma 4.5, v[i] — v[i]' — v is regular at p;, but we
already know that v[i] — v[i]’ is regular at p;, so v is regular at p;. If p; is an essential special
point, then by Lemma 4.3, v[i] — v[i]’ — v is defined at p; and equals 0 there. Hence, v is defined
at p;, and v[i](p) — v[i]' (p) = v(p).

The proof of the second statement is similar to the proof of the previous lemma. Namely, we

start with gg 1 = ggq o = 0 and construct a section (g 1,97, --,9q1,9q2,v) € T(W, %) via
/! i
9i1 9q,1
" _ ) 1"
952 = Cq,i 9q,2
v v

This section defines elements of I'(W, % e)/T'(W),,%,0), and the isomorphisms from Lemmas
4.3 and 4.5 map them to (g[i]{’, g[i]5, v[i]"") . Both Lemmas say that v[i]” — v is defined at
pi, and, since v is defined globally, v[i]” is defined at p;. So we can set g;1" = ¢;1 + g;1"”,
gi2' = g2+ ¢;2"”, and v[i]’ = v[i] + v[i]”. If p; is an essential special point, Lemma 4.3 says
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

that v[i]"” (p;) = v(pi), so v[i]) (pi) — v[i](pi) = v(ps). m
Lemma 4.8. Let .
(9[1]1, g[12, v[1], .., glr]1, glr]2, v[r]) € D Voo,
i=1

Then this element of @;_, Vo,op, and
(0,0,v[1],...,0,0,v[r])

define the same class in

| (@ (row. %,e)/ﬂwpﬂ%,@))) / T(W.%.0).

i=1

Proof. The proof is similar to the proof of Lemma 4.6. Since all g[i]; here are Laurent polynomi-
als of the form a; j, _1t,'+. . .4a;j _nt," (we do not mean here that a; j, —, # 0, so we can use the
same n for all polynomials), they have no poles except p;, and functions g; ; = g[1]1 +...+g[r)s
and 921,2 = g[l]2 + ... + g[r]2 have no poles at ordinary points. Using these functions, we can

construct a section (g} 1,912, 9q1>9q2:0) € I'(W,%.e) as in proofs of previous lemmas,
namely
9i1 9&,1
92,2 = Cq,i 911,2 )
0

or, in other words,
/ /
9i1 o 9q,1
) — C ) q, .
( 9in > o ( 9a,2 >
Since all entries in Cg ; are constants, all functions gg,j are defined on W, and they define an
element of I'(W, % o).
A function g[i]; or g[i]» that has pole at p; only if ¢ = j. Hence, the class of
(givl’giﬂ""’9&,1’921,%0) in I'(W,%,e)/T'(W,,,%.,e) is mapped by the isomorphism from
Lemma 4.3 or 4.5 to (g[i]1, g[i]2,0). Therefore, (g[1]1,9[1]2,0,...,9[r]1, g[r]2,0) defines the

zero coset in
(EB (F<Wl%7e>/F(Wpi,%,e>)> / LW, %)

i=1

i

and (g[1]1,g[1]2,v[1],...,g[r]1, g[r]2, v[r]) and (0,0,v[1],...,0,0,v[r]) define the same coset in

(@ (F(W, %oye)/r(wpi,%,@») /P(W, “%0).

=1
O

Denote now by r’ the number of essential special points. Denote these special points by
/ /
Dl Py

Lemma 4.9. If v’ > 3, then every globally defined vector field on P! is uniquely determined
by its values at pl,...,pl.. If v’ < 3, then for every set of tangent vectors at pi,...,pL, there
exists a globally defined vector field that takes these values at these points.
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Proof. Every globally defined vector field on P! can be written as (ap + a1t + ast?)9/0t. (If
the polynomial here is of higher degree, the vector field has a pole at infinity.) A polynomial of
degree 2 is completely determined by its values at at least three points (if there are more than
three points, these values cannot be arbitrary, but a polynomial of degree two is still unique
if it exists). A polynomial of degree 2 can take arbitrary prescribed values at at most three
points. ]

Proposition 4.10. Ifr’ < 3, then Hl(Pl,%,@) =0.

If ¥ > 3, then there exists a wvector space Vo1 of dimension r' and an embedding
(P!, 0p1) < Vo1 such that H* (P, % o) = V1 /T (P!, Op1). Therefore, dim H' (P!, % o) =
r' — 3 in this case.

Proof. By applying first Lemma 4.6, and then Lemma 4.8 to an element of @;_; Voop,, we
can get another element of @;_, Vop, of the form (0,0, v[1],...,0,0,v[r]) equivalent to the
original element of @;_; Vo, in (B, T(W, % 0)/T (Wp,,%.0))/T(W,%e). Here, v[i] are
Laurent polynomials regular at p;, i. e. they don’t have non-zero coefficients at negative degrees.
But Lemmas 4.3 and 4.5 describe exact form of these polynomials, and the highest possible
degree of a non-zero term is 0 if p; is an essential special point, and —1 if it is removable. We
conclude that if p; is a removable special point, then v[i] = 0. Otherwise, v[i] is a vector field
of the form a0/0ty, (a € C), which is completely determined by its value at p;.
Therefore, we have constructed a surjective linear map from

I,/
Vle = @ ®P1,p;
=1

to HY(P!,%.). Denote this map by (1. I'(P!,©p1) can be mapped to Vo via evalu-
ation of a vector field at points p{,...,p... Denote this map by (2. Let us prove that
ker (; = ((I'(P!,Op1)). First, if v is a globally defined vector field, by the second part of
Lemma 4.7, there exists (g[1]}, g[1]5, v[1]’,..., g[r]}, g[r]5, v[r]) € D], Vo,o,p equivalent to O
in (B, T(W,%.0)/T(Wy,,%.0))/T(W,%e) and such that v[]" is defined at p; and v[i] (p;) =
v(p;) for all essential special points p;. As we have already seen, v[i]' = 0 if p; is removable.
By Lemma 4.8, (g[1]7, g[1]5,v[1], ..., g[r]}, g[r]5, v[r]") is equivalent to (0,0,v[1],...,0,0,v[r]),
so (o(T'(P,0p1)) C ker ¢;. On the other hand, if (0,0,v[1],...,0,0,v[r]) € ker ;, then by the
first part of Lemma 4.7, there exists a vector field v € T'(P!, ©p1) such that v[i](p;) = v(p;) for
all essential special points p;. This means that ker ¢; C (o(TI'(P!, ©p1)), and we finally conclude
that ker (1 = (o(T'(P1, Op1)).

Now, by Lemma 4.9, (5 is surjective if v < 3, and (s is injective if v’ > 3, and the claim
follows. O

4.3 Computation of the dimension of
ker HO(Pl, gl,@,()) — HO(Pl, gl,ﬁ,())

Now we continue with ker H(P!, % ¢ o) — H%(P', 4 50). Recall that we use the sufficient
system Uy, ...,Uq—1 to compute ¥4 g9 and ¥4 s and that ¢ g0 (resp. % ¢0) is the first
cohomology of the complex %161 — 9| o, = 9o, (tesp. G101 = 9 o1 = 9'p,). The
map between ¥ g 9 and ¥4 ¢ can also be written as the cohomology in the middle of a map
between these two complexes. Here ¢ g 1 can be written as a direct sum of sheaves, each of
them corresponds to an open subset U;, namely, its sections over an open set V C P! are the
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

U;-descriptions of homogeneous vector fields of degree 0 defined on 7=1(V) N U;. Denote this
direct summand by ¢; g1,;. The sheaves 541”@’1 and 541” 0,1 can be decomposed into direct sums
similarly, and each direct summand corresponds to two or three of the sets U;, respectively.

Denote these direct summands by % e.1;; and by ¥ 0,105k respectively. Similarly, we can

4l inv inv nv inv //1nv _ inv
define decompositions ¢} 0,1 = =D 1,0,1,i> 71,0,1 = =D9 ©,1,i5 E4 0,1 = @%,@,1,@',]',/%-

G01,9 51, and 9/ ;| can also be decomposed into sums of direct summands corresponding
to one, two, or three sets U;, respectively. The sections of each of these summands over an
open subset V C P! are sequences of length n = > dim (P, 0(2()}))), where each entry
is the Uj-description of a function of degree \; defined on the intersection of 7~!(V') and one,
two, or three of the sets U;, respectively. Denote these direct summands by ¢4 514, 91,6.1,i,5

: ) . ¢’ .
“1,01,i.5k respectively. Again, we can also decompose lmg 1= L1 Ae1 = &b 11%,1,2‘,]'7
/I1r1v @ inv
Don = 1,0,1,4,5,k"
/ / 1" 1" :

The maps ¥4 e,1 /—> %’ﬁ;;l, %1’@,1 — gl,ﬁ,l? Lol — glﬁ,l map each of these /dlrect s//um—
mands in 4 g 1, %17971, %17@71 to the corresponding direct summand in % ¢ 1, %1’0’1, %7@1,
respectively.

Our next goal is to simplify the expressions for ¢ g ¢ and ¢ 5o we have now. For this goal,

it will be more convenient to deal with the ”invariant” versions of the sheaves, i. e. with ¢'g |,

inv inv inv inv inv inv inv : :

6.1 Y1615 Do 1igk Do Do D015 a0 91051 5, Which do not involve any
Ui-descriptions explicitly. By Lemma 3.17, Uq C U; is a dense open subset for all 7. Hence, each
. @ginv inv inv : : .
of the sheaves 1615 D615 and 161,05,k Can be embedded into the following sheaf that we

oinv oinv

denote by 47 @Y : I (V, 1,@71) is the space of T-invariant vector fields on 71 (V)NUy. Similarly,
each of sheaves %li?g’l’i, li%’l’i’ I’ and glif%l,i’ ;i can be embedded into the following sheaf ﬁig,?’l:
(v, f‘;"l) is the space of sequences of length }, dim (P, 0(2();))) of functions of degree

\; defined on 771(V) N Uq. Then by Corollary 2.14 we have the following formulas for lifléo

inv

and 10.0°

—

G0 = | ker (DB /A1) » D B/ ) / 75

i=1 1<i<j<q-1

Q2

—_

inv _ Oan an Oan 11’1V omv
E2 00 = ker( (& 1,0,1 ﬁ,u) @ (& 1,0,1 ﬁ,u,;)) /%01

i 1<i<j<q-1

fle}

Il
—

And again, the map 1”150 — lingo maps each direct summand of f“é’o in this formula to

the corresponding direct summand of ling o- Note that Corollary 2.13 cannot be applied here
directly because it is not always true that fi;"l = fngl ;;- However, we can prove the
following two lemmas. Recall that by Lemma 3.16, U; is isomorphic to V; x (C\ 0) x L, where

L is isomorphic to C or C \ 0.

Lemma 4.11. Let V] C V; be an open subset. The space of T-invariant vector fields defined
on V! x (C\0) x L and on V] x (C\ 0) x (C\ 0) coincide, in other words, the restriction
homomorphism from the space of T-invariant vector fields on V/ x (C\ 0) x L to the space of
T-invariant vector fields on V; x (C\ 0) x (C\ 0) is in fact an isomorphism. This is also true
for functions of degree x instead of vector fields of degree 0, if x € oV N M.

Proof. The claim for vector fields follows directly from Corollary 3.21, namely, the description
of the space of vector fields there does not depend on whether L' = C or L' = C\ 0 (in terms
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4.3 Computation of the dimension of ker H*(P1, 4 ¢ o) — HO(Pl,%@O)

of the notation used in Corollary 3.21). For functions of degree y, Lemma 3.28 gives the same
description for L' = C and for L' = C\ 0, if y e 6V N M O

Lemma 4.12. The embeddings 11%1” — f’iélj’I and 1”‘51” — f{;"l are isomorphisms for
1 <i<j<q-—1, except for the following case: both indices i and j correspond to the same
remowvable special point p. In this case, the embeddings 11“5 1i li?é,l,i,ji 1‘“())’ 1 fflcl)/,l,i,y
f%u — 11%,1,1‘,3'7 11%,1,3‘ — llfngﬂ-J are isomorphisms.

Proof. 1f U; and Uj correspond to different special points, then V; N V; = W, and by Lemma
3.17, U;NnU; = W x (C\ 0) x L, where L is isomorphic to C or C\ 0. If U; and U; correspond
to the same essential special point p, then they must correspond to the normal subcones of
different vertices of A, so Lemma 3.17 says that U; NU; is isomorphic to W x (C\ 0) x L again.
If L=C\O0, then U;NnU;NUq =W x (C\0) x L as well, and the isomorphism here, as well as
in the equality U; NU; = W x (C\ 0) x L, is given by the isomorphism defined by Lemma 3.16
for U;, so U;NU; NUq = U; NU;j. We already know that Uy C U;, Uq C Uj, so Uq = U; NU; if
L=C\0. If L=C, thenU;NU; =W x (C\0) xCand U;NU;NUg =W x (C\0) x (C\0),
where the isomorphism in both equalities is given by the isomorphism defined by Lemma 3.16
for U;. Let V' C P! be an open subset. Now it follows from Lemma 4.11 that we always
have T(V, 4" 1 ;) = T(V,47°8Y) and T(V, 4"y | . ) = D(V, 9472 if U; and Uj correspond to
different special points or U; and U; correspond to the same essential special point p.

Suppose now that both U; and U; correspond to the same removable special point p. Let
us prove that the embeddings 111311 — 11%1” and lmg“ — fné“] are isomorphisms,
the situation for 1‘“(:)’1 ;i 1‘“(:)’11 ; and 1”%1 ;= 1“%11 ; is completely symmetric. We
have B3;1,8j1 € dc, but B;1 # Bj1, so by Lemmas 3.16 and 3.17, U; = V; x (C\ 0) x C
UinU; =V; x (C\0) x (C\ 0), and the isomorphism in the second equality is a restriction of
the isomorphism in the first equality. The claim again follows from Lemma 4.11. O

Since kernels of sheaf maps can be computed on each open subset independently, Lemma
4.12 implies that

q—1
ker | D@BYAE L)~ D (GBI 1)
=1 1<i<j<q—-1

can be computed as follows. Its sections over an open subset V' C P! are sequences of the form
(wi,...,wq-1) € ?:_11 (v, 1071371 1“15“) satisfying the following conditions: if indices 7 and
J correspond to the same removable special point p, then w; = w;. So we can do the following.
For each removable special point p, if there are two indices ¢ and j corresponding to p, choose
one of them and call it excessive. Then the kernel is isomorphic to the following sheaf:

@ ( 101éw1 mé,l,z)

1<i<q-1
i is not excessive

Similarly,
q—1
ker | @A) - D SR |2 D @RI,
i=1 1<i<j<q-1 1<i<q-1

i is not excessive
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

So we get the following formulas for 11?(:)/,0 and ling 0

inv ~ omv 1nv oinv
gl,@),o = @ ( / 9,1,1) / 1,0,1»
1<i<q—1
4 is not excessive

IIZ

glnv

@ ( OlIlV/ mg’Li) /gomv

1<i<q-1
i is not excessive

Sections of quotients of sheaves can only be computed directly on affine subsets. To compute
the space of global sections on P!, we should first compute sections for an affine covering of
P!, then global sections are tuples of local sections that coincide on the intersections of the
sets from the affine covering. We already have an affine covering of P!, namely, we have sets
Wp. Recall that W, N W,, = W for every pair of special points p # p'.

Lemma 4.13. Let V C P! be an open subset and p € P! be a special point such that VW, =
W. Let an index i correspond to p. Then T'(V, 101({)“’1) = I'(V, 11“@)’12) and T'(V, flg)"l) =

PV 905 14)-

Proof. T'(V, lmé’ 1) (resp. T'(V, 1”% 1)) is the space of T-invariant vector fields (resp. se-
quences of functions of certain degrees) defined on 7~ 1(V)NU; = 7~ 1 (V)N (W, x (C\0) x L) =
(VNW,) x (C\0)x L=W x (C\0)x L, where L=C or L =C\0. By Lemma 4.11, these
spaces are isomorphic to the spaces of (respectively) vector fields and sequences of functions
of certain degrees defined on W x (C\ 0) x (C\ 0) C U;, where the embedding is given by
the isomorphism for U; in Lemma 3.16. On the other hand, by Lemma 3.17, U; N Uq is also
isomorphic to W x (C\ 0) x (C\ 0), and the isomorphism here is also the restriction of the
isomorphism in Lemma 3.16 for U; to U; N Ugq. Therefore, in fact we have proved that the
restriction of spaces of T-invariant vector fields and of functions of the required degrees from
71 (V) N U; to U; N Uq are isomorphisms. But U; N Uq = Uq = 7~ (V) N Ug, and T(V, 478"
(resp. I'(V, flg"l)) is the space of T-invariant vector fields (resp. of sequences functions of the
required degrees) defined on 7= (V) N Ug. O

Corollary 4.14. T'(W, 11?5,0) =0, (W, 11%70) =0.

Proof. W N Wp = W for all special points p, so all direct summands of the from 1071(371 fn@V“
and 95", /9"y 1 ; in the formulas above vanish. O

This corollary enables us to omit the condition that sections of 11%,0 (or of 11%70) over

different sets W), should coincide on intersections to form a global section. Therefore,

r(PL Y. = < B (rov.E /I, mw)) / LW, 9587 |

p special 1<i<qg—-1
point 4 is not excessive

NS < ( B (rov. /I, %))) / P(W,, %75%)

p special 1<i<q-1
point 1 is not excessive

66



4.3 Computation of the dimension of ker H*(P1, 4 ¢ o) — HO(Pl,%@O)

This formulas can be simplified more. Namely, recall that every set V; equals W), or W. If p
is a special point, and V; = W or V; = Wy, where p’ # p, then V; N W, = W, and by Lemma
4.13, T'(W)p, fiéwl)/l“(Wp, 11“(})’ 1) =0 and F(Wp,E?ffg?’l)/F(Wp,gli%’l,i) = 0. So, we can write
global sections of m" 6,0 and of m" 00 a8 follows:

PP, = P ( B (rov. /I, mém)) / POV, 9280 |

p special 1<i<q—-1
point 1 is not excessive
i=Wp

RPN ( ® (rw, f%/f(%%f%))) / D(W,, 55

p special 1<i<q—-1
point 4 is not excessive
i=Wp

Now each sheaf f‘g 1; and gling) 1; occurs only once in these summations. Each direct summand
in the first direct sum in the formula for I'(P, %% ) is mapped to the corresponding direct
summand of I'(P!, 4™ ) so we have proved the following lemma:

Lemma 4.15. The kernel ker(I'(P!, 11?(3,0) — D(PL g™ ) is isomorphic to the following
direct sum:

D ker< D (rom. fgvo/r(vvp,%f%“))) / T(W, 958)

p special point 1<i<q—-1
1 1S not excessive
i—VWp

_>< B (r g/, mgm)) / U7

1<i<q—-1
i 18 not excessive
i=Wp

]

Fix a special point p. Recall that we have a coordinate function ¢, on P! with the only zero
at p. Our next goal is to compute the kernel

ker ( D (B /LW, “&J)) / L(Wy, 478%)

1<i<qg-1
i is not excessive
i:Wp

_>< e (. f%)/r(m%fﬂ%»)) / T(Wy, 75%)

1<i<qg—-1
i is not excessive
i:Wp
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

Recall first that if p is a removable special point, then there exists only one non-excessive
index ¢ corresponding to p. But then each direct sum in the formula above contains only one
summand, and (I'(W,, ﬁi(gj’l)/F(Wp, fflé',lj))/F(Wp, ﬁg:’l) = 0. So in the sequel we suppose
that p is an essential special point. Then there are no excessive indices corresponding to p.
Moreover, in this case we chose exactly one set U; for each pair (p,j), where 1 < j < v,. In
other words, these sets U; (and the summands in each of the direct sums in the formula above)
are in bijection with the vertices V), ; of A,. For each pair (p, j), denote the index i such that
U; corresponds to (p,j) by ip ;. So, now we are computing the kernel

o <€B<F(WP’ fgvl)/r(wpagfné,l,lw)))/F(ij%ol(i)wl)

Jj=1

Vp
— (@ <F(va 101;V1)/F(Wpag1mg,1,1 J)) )/F(vagflgvﬁ

Jj=1

Fix an index j, 1 < j < v,. Now we come back to using U;-descriptions, namely, We are
going to use Uj, ;-descriptions to compute

D(Wp, 9285 /T (Wp, 918 15, )

and
D(Wy, 9755) /T (W G5 15 )-

D(Wp, 915 | i j) is the space of T-invariant vector fields defined on Uj, ;, and, by Corollary 3.21,

they are determined by triples of a vector field and two functions deﬁned on W), which form
Wy, %0,1,,,)- We shortly write G10,1p5 = T(Wp, %0,14,,) T(Wp, ﬁlélj’l) is the space of
T-invariant vector fields defined on Uq = 7~ 1(W),) N Uy, and by Lemma 3.17 and by Corollary
3.21, they are determined by triples of a vector field and two functions defined on . Denote
this space of triples of a vector field and two functions defined on W by Gi’pg 1- Observe that the
space itself does not depend on p and j, but the isomorphism between Gif?éj’l and I'(W),, ﬁiélj’l)
we use depends on p and j. Denote this isomorphism by

. op,J oinv
Kopjt Grgr = D(Wp, 9080

By Remark 3.22, the embedding I'(W,, 11%71%],) — (W), fl(f)”l) after applying these isomor-
phisms becomes the restriction of vector fields and functions from W, to W.

Similarly, F(Wp,%ﬁ’l,im) is the space of sequences of functions of certain degrees from
oV N M defined on Ui, - Lemma 3.28 for i = i,; identifies this space with the space of
sequences of functions defined on W), (each function is identiﬁe_d with its Uj, ;-description),
denote this space of sequences of functions by G'1,5,1p,j. I'(W), f%"l) is the space of sequences
of functions of the same degrees, but they are defined on Uq = w_l(Wp) NUq. Again, Lemma
3.28 for ¢ = i, j identifies this space with the space of sequences of functions defined on W (again,

each function is identified with its U;,  -description, not with its Ug-description). Denote this
space of sequences of functions by Gif) g;’l, and denote this isomorphism between Gi’? (}]‘71 and
LWy, 1012"1) by k¢ p ;. And again, despite the spaces themselves do not depend on p and j,
the isomorphism is based on Uj, ;-descriptions and depends on p and j. By Remark 3.29, the

embedding (W, % 414, ) — T(W,, 90%Y)) after these identifications becomes the restriction
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4.3 Computation of the dimension of ker H*(P1, 4 ¢ o) — HO(Pl,%@O)

of functions from W, to W.
Finally, the formula in Lemma 3.35 (for different indices i, ;) defines morphisms

(W, glol(f)wl) — ['(Wy, gflgvl)

Denote the corresponding morphisms between Gipéj , and Gcl’p g 1 by ¥y ;. Denote also the map

Vp Vp

op,J op,J
P, - Pat,
i=1 j=1

formed by maps 1, ; for all j (1 < j < vp) by 9. It follows from functoriality of the isomor-
phism in Proposition 2.11 that v, induces the morphism in question between

P (W, 085 /T W 91515, / D (W 48%)

j=1

and

ep( (Wy, G585 /T (Wy 9% 15, ) / T(W,, 955%).

Lemma 4.16. Let p be a special point, j be an index, 1 < j < vp.
The composition of the restriction of ke p; to the space of triples of the form

(al,_ltljl +...+ a17_n1tin1,

-1 _
D agy_ltp + ... Fag gt

S (it A bt )00ty

and the natural projection I'(W), f’l(‘l)“”l) — T(W), ﬁiélj’l)/f‘(Wp, ffg,“m) is an isomorphism.

Proof. The proof is similar to the proof of Lemma 4.3. Namely, let g1,g2 € I'(W, Op1), v €
['(W, ©p1) Consider complex-analytic Laurent series:

00 00 9
Z al,ktlg, (l = 1, 2), v = Z bkt]; 87
p

k=—ny k=—n3

Set

—1 -1
0
E al,ktlg, (1=1,2), v = E bktlg T
P

k=—ny k=—ns

These functions and this vector field are algebraic since the sums are finite. The functions have
zero of degree at least 1 at oo, the vector field has zero of degree at least 3 at oo, so gf, g5 €
[(W, Op1) and v' € T(W, @Pl) Hence, ¢| — g1, g5 — g2 € T(W, Op1) and v' — v € T(W, Op1),
but ¢§ — g1, g5 — g2, and v' — v have no poles at p, so they define an element of G1 g 1, j Hence,
ko.p,j(91,92,v) and ke, (9], g5, v") define the same element of I'(W),, flé“’l)/f‘(Wp, fneg,l,lm)
and the composition of the restriction of kg p ;j and the natural projection under consideration
is surjective. Injectivity is also clear since if a Laurent polynomial of the considered form has
no pole at p, then it is zero. ]

Note that despite the proof is similar to the proof of Lemma 4.3, Laurent polynomials here
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

and in Lemma 4.3 have different meanings: here they from the Uj, ;-description of a vector field
on Uq = Ui, , NUg, while in Lemma 4.3 they formed the Ug- descrlptlon of a vector field on Ug.

1p,j

Denote the direct sum of maps ke p ;j, which maps @j:l Gifjé]’l to @}’il (W, lczlélfl), by
ke p. Denote by Vi, the subspace of @;i 1 G({]’Dé]’l formed by the 3v,-tuples of the form
(0,0,079[2]1,9[2]2,’0[2], e 7g[vp]lvg[vp]1vv[vp])a

where

—1
Z aj,l,kt;;: U[]]: Z b],ktk 87

sznjyl k—*?’LJ 3

Lemma 4.17. The restriction of the composition of ke and the natural projection

@1—\ Wp, omV @ (F(Wp, 01nv )/F(Wp, méf . lpj)> /F(Wp,golnv )

Jj=1

to V1,0, 15 surjective. Its kernel is one-dimensional.

Proof. To prove surjectivity, consider a 3v,-tuple (g[1]}, g[1]5, v[1], ..., g[vpli, glvpls, v[vy]) €
@;’il G17% .. For every j, 1 < j < vy, set

9;/,1 g1}y
7

gjlvl = Cipijip 1 g[l]é
N U[l],

By Lemma 3.25, these functions and vector fields are regular on W. By Lemma 3.23,
56:1),]’(9}‘1179}127”?) = H@,p,l(g[l]/h9[1]127’0[1]/)' Hence,

/‘56713(9[1]/17 9[2]/17 /U[l}v s 79[Vp}/17g[v’p]/27 U[VP]/)
and

!/

”@,p(gmll - 9/1/,17 gl1]5

- gi/,27 U[l]/ - Ulll7 . Q[Vp] gvp,l g[Vp] gvp,27 [Vp]l - Uzp)

define the same coset in
Vp
@ <F(Wp, omv )/F(Wp, 1né1 ) lp])) /F(Wp, golnv ).
j=1

Observe that g[l]} = g7, g[l]5 = g1, and v[1]' = v{. Now, by Lemma 4.16, every triple
(9li1y — 971 glils — 9o, vli) — v)) € GT%Y, can be replaced with (g[j]1, gljl2, v[j]) € GY%,,

where
-1
DI by a7y

k=—n;; k=—mn; 3

so that re p;(9l7]1 — 9} 1, 9[715 — 9] 2, 0[5 —v}) and ke p.;(gli]1, gli]2, v]j]) define the same coset
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4.3 Computation of the dimension of ker H*(P1, 4 ¢ o) — HO(Pl,%@O)

in F(WIH 1O,i(£)1:/1)/F(Wp>gL@»laip,j)' Hence,

ke p(0,0,0,9(2]1,9[2]2,v[2],.. ., g[Vpl1, g[Vpl2, v[Vp])

and
rop(9[1]1, 9[1]2, v[1]'s - . ., g[vpl1s glvpla, v[vy]')

define the same element of

Vp
P (LW, G5 /DWW 4 15,)) / LWy, 975,

=1

and
(07 07 Oag[2]17g[2]27v[2]7 o 79[Vp]1ag[vp]27'v[vp]) € vl,O,pu

therefore, the restriction of the composition to V1 g, is surjective.

Now suppose that

(0,0,0,9(2]1, 9[2]2, v[2], - . ., g[Vp]1, glvpla, v[vpl) € Viop

and
ke,p(0,0,0,9(2]1, g[2]2,v[2], ..., g[vpl1, g[Vpl2, v[vy])

defines the zero coset in
Vp
B (W 58D /LWy, G5 15, / LW, 978%0).
=1

For simplicity of notation, denote g[1]; = g¢g[l]s = 0, v[l]] = 0. Then there exist
(9l gl vlil) € Gronps and (gf1,975:v)) € Gy (1 < j < vp) such that glj} =
9lili + g5, vli] = vli] + v and

" " n 1 /" n __ "
He,p,l(gl,ugz,u"h) = ’i@,p,2(91,2=92,2a vy) = = ’Qe,p,vp(gl vpag2 V) vp)

By Lemma 3.23 this means that

91 911

7

9io | = Cipjipa gi/,g

/U‘;/ ’Ui,
In particular, UJ = o] and all functions g 1 and all vector fields UJ are determined by
(911,97 2,v7). On the other hand, the conditions gljl; = [ 11+ g7, o] = vlj] + v} for
j =1 mean that g[1]; = —g7;, v[l]' = —v{. Therefore, g, g7 5, and v{ are regular at p. By
Lemma 3.26, ord,(g;’;) > —1 for ] =1,2,1 <7 < vy Now it follows from the definition of
Viop that g[jl; = a_1 lt for some a_;;; € C, and v[j] = 0. Moreover, it follows from a

consideration of Laurent series of v, of entries of Cj ;, ,, and of g;" ; that all numbers a_; j;
are uniquely determined by the value of v{ at p, which is an element of a one-dimensional
space (the tangent space of P! at p). Therefore, the kernel of the composition of ke, and the
projection is at most one-dimensional.

Now let us prove that the kernel contains a nonzero element. Set g7 = gf 5 = 0, v{ = 0/0t,,
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

and
92'/,1 9/1,,1
99,,2 = Ciy ipa 9/1/,2
v}/ /Ui/

By Lemma 3.25, all functions gé.’ ; are regular on W. By Lemma 3.23,

1" " " " " " .
Kep,1(91,1591,2,01) = ’i@,pd(gj,hgj,%vj) for 1 <j <wp,
and
" " " "
K@J)(gl,l? 91,27 Viyeney gvp,la gvp,27 va)

defines the zero coset in

é(r(wp, G LW G 15,)) / D (W, 978).

J=1

By Lemma 3.26,
ordy(gj;) = —1for2<j<v,andl=1,2.

So we can write g]l = gljli + gljl}, where gljl; = a_14t, ! (here a_y j; € C, and for j > 2 we
also have al = 74 0) and g[j]; is regular at p (and hence on W,). By the definition of matrices
Ci = v, and we can set v[j]' = o7, v[j] = 0. Then v[j]" € T'(W,, Op1), and

ip j,dp,19 j Jo
H@,p,j(g[j]/l,g[j]lg,’l)[j]/)
defines the zero coset in
T(Wp, 478%) /T (W, 48 15 )
By construction,

9 = (gt g2, v[1], ., g[vpl1, g[Vpla, v[vp]) € Vi,

Since
a_1;;#0forall 2<j<v,andl=1,2,

we have g # 0. Since g[j]; = g, — glj]; and v[j] = v[j]' — v}, g is an element of the kernel of

oinv

the composition of kg, and the projection from @;’il (W, 179,1) to

P (D FED /LW 9 15,,)) / T(W,, 958%).

J=1

Now we are going to use the map
Op, op,J
Vpj: Gior = Gigy
we have introduced before using Lemma 3.35. Each of the functions it computes is the Uj

description of a function of a degree x on Uq (X = A1, ..., Am), and exactly dim I'(P?, ﬁ(@(xj))

of these functions are of this degree. Denote the morphism Gcl’péj 1 = I(W, Op1) computing the
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kth of the functions of degree x by v j k. Denote also by k¢, the direct sum of morphisms
Ko pj» which maps @37, G| to @77 T(W,, 475). We are computing the kernel of the
map

(F(Wp, omv )/F(Wp, mé/ L ip,j)) /F(Wp,gomv )

j=1
p

(W, 5 /T (W, 9% 15, / P(W,, 9758%)
j=1

induced by 1, so by Lemma 4.17, it is sufficient to consider the restriction of 1, to Vi p.
Then kg, maps the kernel of the composition of (kg 0 ¥p|v, o ,) and the natural projection

P, iizn) - | D (T G785 /T W 9155 15,)) / NUAZ0

j=1 j=1

to

. (@ (F(Wp’ flélvl)/r(wpagfnéll )>>/F(Wp,g1mc3v1)

j=1
— (@ (F(WI% 1O£V1)/F(Wp>gfné 1,i ])) >/F(Wp7glo%vl)
7j=1

surjectively, and the kernel of this composition contains the one-dimensional kernel
ker ke p|v, o, since 1, induces the map

Vp
@ <F<Wp7 Olnv )/F(Wp’ mC:)/,l,ip,j)> /F(Wp,golnv )

J=1

Vp
P (T, G50 /T W 9% 15, ) / U7

via kg p and Kg p. So we have to find the preimage

Viop 05" (5%, (@5 T(W, it ) + (W, 975)) )
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Remark 4.18. This is illustrated by the following commutative diagram:

(@) (P W g8 ) /T Wo it 1)) JTWatEi8Y)

canonical v
projection (@j£1< (ng{"évl)/F(Wm 1 0’ L, ))/F vaglm([;vﬂ
canonical
Tprojection
. _ v . v )
dim ker=1 @jﬁl F(va%ffgﬁ) @jil F(Wp%ﬁl;n)
Re,p ko,p
J ) Vp
vp op,J vp op,J
=1 G1,@,1 @ Gl 0,1
A
Viop

Lemma 4.19. Let

g =1(0,0,0,g[2]1,9[2]2,v[2],. .., g[Vpl1, 9[Vpl2, v[Vp]) € Vi,

Suppose that
Vp Vp
ko p(Wp(9)) € ETWp, 4% 15, ) + T (Wi, 478%) € DT (W, 475,
j=1 et

where the last summand is embedded into @;Z L T (W, ff;j’l) diagonally. Pick two vertices
Vi and V4, of A, and denote i1 = ipj,, 12 = ipj,. Also choose x € {\1,...,Am} and an
indez k (1 <k <dimT(P, 0(2(x)))).

Then it is possible to write

Vi ok (9) = Higiy x¥p.jaxk (9)

as
f[jl]x,k - Mi27i1,xf[j2]x,k7

where fjx € T(Wp, Op1) for j = j1, jo.
Proof. Since

Ko.p(Up(9) @P (Wp.%1,014,,)) + D(W, 975%),
7j=1

Yp(g) can be written as f + f’, where
f=(flile k) 1<i<vpnd €{r,dm} 1<k <dim T(P1,0(2(x))) € @GH 01>

! Opaj
F' = (Fi v e )1<i<vy €00 s Am b 1<k <dim T(PL,6(2(x))) € @Gl o1
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and, in addition,
!
(6,95 (fj.x! k1 X/ €0, Am}, 1<k <dim T (PLE(2(x))))

does not depend on j. By the definition of G161, flilxk € T'(Wp, Op1) for all j. It also
follows from Lemma 3.31 that fj/'hx,k = Miz,il,xf]/-%ka. Thus,

Vpji ok (9) = Higin xVpjaxck(9) =
(Flahk + k) = Hiniin o (Fli2lxk + Flann) = Flitlk = Hiniis x F 2]k

Corollary 4.20. If the hypothesis of Lemma 4.19 holds, then

ordy (Vp,j1 xk(9) = Higin xVp.jarxk(9)) = min(0, ordp(fig,iyx))-

Ol

Corollary 4.21. Suppose that the hypothesis of Lemma 4.19 holds. Let f € T(PY, 0(2(x))).
Denote a11 = B}, 1(X), a12 = 6], 2(X), az1 = B}, 1(x), and az2 = B, 5(x). Then

Ordp Eal’i
i1,

5 (a1,19071)1 + a12901]1 — a2,19[j2]1 — az229(j2]1)
2

f f .
+d <h“111h“1§ Vjy — Hig,iy x @ m vj, | > min(0, ordy (f4iy,i1,x))-

Proof. Observe that the function under the ord sign in the left-hand side of the inequality
is linear in f, and the right-hand side does not depend on f, so it is sufficient to prove the
inequality for all functions f forming a basis of T'(P!, &(Z(x))). For example, we can use the
functions of degree xy among the generators of C[X] we have chosen to define the map v for
Theorem 2.4. Recall that we have denoted these generators by Xy 1,...,X, dimr(P!,0(2(y))) and
that they form a basis of I'(P1, 0(2(x))). So, set f =x, k. By Lemma 3.35,

=
b\ |

Vpirok (9) = Higin xUp.jax ke (9) =

Xy k Xy k
s (a9l + a129(i1]2) + d ﬁ vy
hzl lhzl 2 hzl 1h11 2

Xy k Xy k
— Migyi1,x (M(W 19[je]1 + a1,2g[j2]2) +d (M) sz) =

a1 az,1
zglh zglh

12,2 12,2
i A 742, 1hal ,2 i A
’ - - 1 2 s . .
ﬁ(amg[hh + a1,29[j1]2) — hfl 1hj121 2 7@ 1Xha1 5 (a2,19072]1 + a1,29(j2]2)
i1,1'%1,2 11,1 '%1,2 "Y49,17%99,2
Xy k Xy k
+d (hal,lxhal,2> Ujy — ﬂi27i1,xd (ha2,1xha1,2> Vjp =
11,17%71,2 12,1 %42,2
Xx.k . . . .
=ari=arz (@1,19[71)1 + a1,29[51]2 — az19[j2]1 — a1,29[j2])2)
hipa b2

Xy k Xy, k
X o X, .
+d a1y ae Vjy = ig,ir,xd 70217012 Vjas
i1,17%1,2 i2,1"%i2,2
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

and the claim follows from Corollary 4.20. O

Now we need more information about the behavior of 01"dp(uim.2,im1 ~) depending on j1, ja, X.
Here we perform arithmetic actions on vertices of A, they are understood as arithmetic actions
inN.

Lemma 4.22. For each degree x and for any two vertices Vpj,, Vpj, (1 < j1,752 < vp) one
has Ordp(uip,jzzip,jl 7X) - X(me?l - VPJZ)'
Proof. Again denote iy = ipj1, i2 = ipja, a11 = 5] 1(x), a12 = B 2(x), az1 = B, 1(%),

and az2 = B 5(x). We chose hj, 1, hiy2, i1, and hj 2 so that ord,(hi; 1) = —Zp(Biy 1),

Ordp(hil’g) = _-@p(ﬂh,Q)a Ol”dp(hh,l) = _-@p(ﬁiz,l)a ordp(hh’g) = _-@p(ﬁig,Q)' By the definition
of fiy i1, We have

Ea2,1*a2,2
o 19,1 '%2,2 o
Ordp(ﬂimihx) - Ordp Eamﬁam -

i171 i172

a1,1Pp(Bir 1) + a122p(Biy 2) — a21Dp(Bis1) — a22Dp(Bis2)-

Since Bi;1 € A (Vp;i,Ap), the minimum minpen, 5, 1(b) is attained at Vp ;. In other
words, Zp(Bi,1) = Bir1(Vp,5). Similarly, Z,(Bi, 2) = Biy 2(Vp,j,) (since Bi 2 € A (Vp 3, Ap)),
Dp(Vijz) = Biz1(Vpja), and Zy(Biy 2) = Bin2(Vp,j) (since Biy 1, Bin 2 € A (Vp,jp, Ap)). Hence,

a11%Zp(Biy 1) + a12Zp(Biy 2) — a21Dp(Bis 1) — a22Zp(Bin2) =
(a118i110 + a1,28i,,2)(Vpjy) — (a2,1Bi1 + a2,28i,,2)(Vpjn) =
X(Vp,jl) - X(prjZ) = X(szjl - VPJQ)'

O

Lemma 4.23. Let E,,; be a finite edge of Ay, (1 < j < wvy), let x =b(AN(Epj,Ap)). Choose
X € NA(Vy i, Ap)M so that x and X' form a lattice basis of M. Then x(Vp; — Vpit1) =0
and X'(Vp,j — Vpjt1) = —[Epl.

Proof. Since x € A (Ep;,A,), the minimum mingea, x(a) is attained at both a = V) ; and
a=Vp;i1,50 X(Vpj) = X(Vp,i+1), X(Vpj—Vpir1) = 0, and x((1/[Ep;[)(Vp;—Vp,j11)) = 0.
It follows from the definition of |E, ;| that (1/|Eyp ;|)(Vp; — Vpj+1) is a primitive lattice vector.
Hence, elements of M can take arbitrary values at it. Since y and Y’ form a lattice basis of
M and x((1/[Ep;)(Vpj = Vpj+1)) = 0, we conclude that x'((1/|Ey;[)(Vp,; = Vp11)) = £1,
and X'(Vp; — Vpi11)) = £|E,j|. But the minimum mingea, X'(a) is attained at 'V, ; since
X' € N (Vi Ap), so X (Vp,j = V1) = —[Epjl. O

The following lemma is proved completely similarly to Lemma 4.23, one only has to inter-
change V,, ; and V, ;1.

Lemma 4.24. Let E, ; be a finite edge of A, (1 < j < vp), let x = b(AN(E,;,Ap)). Choose
X' € N(Epjt1,Ap)NM so that x and X' form a lattice basis of M. Then x(Vp j+1—Vpj) =0
and X' (Vp,j+1 — Vp;j)) = —|Ep|. H

Lemma 4.25. Let V,j, be a vertex of A,, let E,, ;, be a finite edge of Ap (1 < jo < vp), and
suppose that j1 < ja. Pick a degree X" € N (Vpj,Ap). Suppose that X" ¢ N (Vpist1, Ap).
(Note that the contrary is possible since we allow j1 = jo.)

Then X" (Vpjs = Vpjo+1) < —|Epjs |-
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Proof. Let x = b(A (Ep j,,Ap)). Let X' € A (Vpjy, Ap) N M be a degree such that x and x’
form a lattice basis of M. By Lemma 4.23, x(Vpj, — Vpjot1) = 0 and X' (Vpj, — Vpjot1) =
—|Ep,j,|. Since x and x’ from a basis of M, we can write x” = ax + a’x’. The line containing
N (Ep.j,, Ap) separates the normal subcones of the vertices V, ; with j < jo from the normal
subcones of the vertices V), ; with j > jo + 1. In particular, it does not separate A" (V, j,, Ap)
from A4 (V,,,Ap), and it does not separate x” from x’. Therefore, a’ > 0. If ' = 0 and
a <0, then Yy € ¢, —x € ¢”, and ¢" cannot be a pointed cone. If @’ = 0 and a > 0, then
X" € N (Epjy, Ap) C A (Vpjst1,Ap), and this contradicts our assumption. Therefore, a’ > 0.

Then

X”(Vp,jz - Vp,sz) = aX(Vp,jz - VPJ2+1) + a,X/(Vp,jz - Vp,szrl) = —a/|Ep,j2| < —|Ep,j2|-
O

The following lemma can be proved completely similarly using Lemma 4.24 instead of Lemma
4.23.

Lemma 4.26. Let V,j, be a vertex of A, let E, j, be a finite edge of Ay (1 < jo < vp), and
suppose that j1 > jo + 1. Pick a degree X" € N (Vp 1, Ap). Suppose that X" ¢ N (Vp iy, Ap).
Then X" (Vpjs+1 = Vpja) < —[Epjpl- O

Lemma 4.27. Let g = (0,0,0,9[2]1, g[2]2,v[2], ..., g[vp|1, g[vp]2,v[vp]) € Vi0p. Suppose that

/‘iﬁ,P(wp(g)) € (@;21 F(Wpagf%g,ip,j)) + F(Wp,gﬁi(?,vl) c @Vp I( pagfl;vl)
Then vj =0 for 2 < j < vy,

Proof. Fix an index j, 2 < j < v,,. For simplicity of notation, denote g[1]; = g[1]2 = 0, v[1] = 0.
Set x = b(A (Epj—1,4,)). It follows from the choice of the degrees Ai,...,Am above that
X € {\,--., Am}. Denote a1,1 = 87_; 1(X), a1,2 = B;_1 2(X), a21 = B} 1(x), and az,2 = B 5(x).

By Lemma 4.1, there exists a function f € T'(P',0(2(x))) defined at all ordinary points
such that ord,(f) = —Z,(x). x is in the interior of ¢V, so deg Z(x) > 0, while degdiv(f) = 0.
Hence, there exists a point p’ € P! such that ord, (f) > —%y(x). Choose a rational function f’
on P! that has exactly one zero of order one at p and exactly one pole of order one at p’. Then
f'f e L(PY,0(2(x))). Note also that df’ is regular at p and d,f’ # 0. Set f”" = (1+ f')f €
['(PY,0(2(x))). Then f” is also defined at all ordinary points, and ord,(f”) = —Z,(x).

Since Zp(+) is linear on A (Vpi—1,4p), Dp(x) = a1,1Zp(Bj-1,1) + a12Zp(Bj-1,2). According
to the choice of the functions h; ; and h; 5 for all indices ¢, we have —Z,(x) = a1 1 ordp(Eip’j_hl)—{—
argordpy(hy, ;_, 2). Denote iy =i, 1, iz =iy ;. We have

541,1591,2 hal 1hal )2
ord, (“’1]6“’2 = ord, 7“’}”“ 2) =o,

and it follows from Corollary 4.21 that

ord, <(a1,1g[j — 11 + a129[j — 1]2 — a2.19[7]1 — a2.29[j]2)

Eal’lﬁal’Q E”fl,lﬁ"’l,? ?
i1.1 i 2 . i1 iy 2 .
+—L—L=d <ha1 i > vlj — 1] = =225 gy 4\ d <ha2 1h022> U[ﬂ]) >

f i9,1 ""ig,2

min (0, ordy (fiz,ir x))-

x\

al,2
i1,1 11,2

=
~
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

and

ord, ((al,lg[j — 1)1 +a129[j — ]2 — az19[j]1 — az29[jl2)

[ 77 D 77
11,17 . i 7 .
+ L f// L d <ha1,1ha1,2> 'U[] - 1] L f// L ILL'527117Xd <ha2,1h‘l2,2> 'U[j]) 2

ip,1 g2 in,1 Mig,2

min(0, ordy, (s ,i1 1 ))-

By Lemma 4.23, ordp(fti,,i;,y) = 0. Hence, these two functions under the ord signs are regular
at p. Subtract the expressions under the ord signs and substitute the definition of w;, ;, . We
see that the following function is regular at p:

77a1,17701,2 — 7701,17701,2 77042,17702,2 —
hil,l hil,? d f ’U[] o 1] o hll,l hll 2 th 1 th 2 d f ’U[j]
T 7.01,177041,2 7.01,17701,2 7.02,17702,2

f hil,l hi1,2 f hzl 1 hzl 2 hzz 1 hzz,

541,15{11,2 <77 ha1 1ha1 2 haz 1h022 -7
- T2 (gl | ol = 1)+ TR S 4 s | 0l

" 7/ (l1 1 742,17
f 11,1 '%1,2 f hzl 1 hzl 2 hzg 1 hzg,

() B (2
—a1,17a1,2 -7 Ta1,17.01,2 J ]
f h“ lhzl 2 f hll,l hllz

()T ().
= Ta2,17°02,2 —7 —as,17a2,2 Jl
f Rigi iy f Rig1 iy 2

By a property of logarithmic derivative we can rewrite this as

La(L)ow-1-La( L) =-La(Z) - 1- .

Now we can rewrite d(f”/f) as d(f"/f) = d(((1+ f)f)/f) = df’. As we noted before, df’ does
not have a zero or a pole at p. We have chosen f and f” so that ord,(f) = ord,(f”), hence
f/f" does not have a zero or a pole at p either. We conclude that v[j — 1] — v[j] is regular at p.

Now recall that v[1] = 0, therefore v[j] is regular at p for every j. Finally, it follows from the
definition of Vg, that if v[j] is regular at p, then v[j] = 0. O

Now we can reformulate Corollary 4.21 as follows:

Corollary 4.28. Let g = (0,0,0,9[2]1,9[2]2,0,...,9[vpl1,9[Vpl1,0) € Vigp. Suppose that
ko p(Up(g)) € (EB;L I‘(Wp,%ﬁ’l,ipﬁj)) + (W, %ﬁ,l,ip,j)- Pick two vertices Vo, j, and V,, j, of

Ay and denote iy = iy j,, iz = ipj,. Also choose x € {\1,...,Am} and denote a11 = 7 1(x),
a1z = Bf2(x), az1 = B 1(X), az2 = Bj,5(x). Let f € T(PY,O(2(x))) be an arbitrary
function.

Then

f .
ord, <h1111h(a1 190711 + a12gli1]2 — a2,19(j2]1 — az29[j2l2) | > min(0, ordy (tiyi1,x))-
1

O]

When we deal with elements of Vi, such that all vector fields v[j] are zeros, it is more
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convenient to use Ug-descriptions instead of Uj, ;-descriptions. So denote by Vi1, the space
of 2v,-tuples of the form form

(07079[2]179[2]2a s ,g[Vp]l,g[Vp]2),

where )
D Gkl
k?:—’l’bj’l
Denote by p,: Vi1, — Vi, the map that computes Uj, ;-descriptions out of Ug-descriptions,
i e, py(0,0,9021, (2. g[vpl1. g[Vyl2) = (00,0, (21, 91215, 0. ., g[v,]i. g[Vyl5, 0), where

glilt glih
]/2 = Cq,ip,j glil2
0

() -6 (21)

Clearly, p, is injective. It also follows from Lemma 4.27 that p,(V1,1,) contains

In other words,

ViopNty,' “ﬁp <€BF<Wp> fnéllp])>+F(Wp’glolgvl)

So now we are going to find the following preimage:
o (5t (s (B () oz

Lemma 4.29. Let
g = (07079[2]179[2]27 e ,g[Vp]l,g[Vp]Q) € VLLP

be such that
Hﬁ,p(wp pp <@F Wp7g1,ﬁ,l,ip,j) > +T (Wp’glogvl)

Pick two vertices V, ;, and Vy, 5, of Ay, choose x € {A1,..., Am} N A (Vi Ap).
Then

ordp(Bg,1 (X) (gl = glja1) + Ba2()(9li]z = gli2]2)) = x(Vpji = Vij)-

Proof. Denote i1 = ipj,, ia = ipjp, b1 = Bg1(X), b2 = Bg2(x)-

Denote also a11 = 5 1(x), a12 = B o(X), az1 = B 1(X), az2 = B »(x). Since x =
b1Bq,1+b2Bq,2, We can write a1,1 = b15}, 1(Bq,1)+b206, 1(Bq,2)s a1,2 = 0155, 5(Bq,1)+b205;; 2(Bq,2)-
These equalities can be written in a matrix form:

( alvl a172 ) = ( bl )CZOI a®
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Similarly,

Denote . , 0 :
(ot ) =caa (oms ) ot (ol ) =can (300 )
Then by Lemma 3.27,
(oo )=cna(Coph ) o (o0 ) =cnal( 2t )
We can write

bi(glirh — gljelr) + b2(glile — gli2l2) =

glj1] gljali '\ _
o) ()= e () -
. gl B o gli=lt ) _
(b 02)Cla < il > (b )O”"‘< ol > -
i\ (. glialt ) _
Coon) (G ) = Con ) (551
a1190i1]1 + a129l01]s — a29lj2]) — az290525-

By Lemma 4.1, there exists f € T'(P',0(2(x))) such that ord,(f) = —Z,(x). Since
/Bil,l)Bh,Za X € JV(VpJ'l, Ap), @p() is linear on JV(VpJ‘l, Ap), and xy = a171ﬂi171 + (lLQ,Bi‘hQ, we
can write Z,(x) = a11%p(Biy 1) + a1,2%,(Bi,,2). We chose h;, 1 and h;, 2 so that ord,(h, 1) =
~Zy(Biy 1), ordy(hiy 2) = —Z,(Biy 2). Therefore,

ordp W =0
11,17%1,2

By Lemma 4.22, ordy(tis i) = X(Vpji — Vpjn). Since x € A (Vy 1, Ap), Vp i, is a point
where x attains its minimum on A,. Hence, ord,(tti,,,) < 0. The claim now follows from
Corollary 4.28. O

Now we are ready to formulate an exact description for

Vp
it (0 (ol ( (DT 000, ) ) 0 (W)
j=1

Let V12, C V1,1, be the space of 2v,-tuples of the form

(9[1]1, 9[1]2, 9[2]1, 9[2l2, - - ., 9[vpl1, 9[Vpl2)
such that

1. g[jlx is a Laurent polynomial in ¢, with no terms of nonnegative degree.

2. g[li = g[l]2 = 0.
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3. For each j such that E, ; is a finite edge (i. e. 1 < j < vy),
Ba1 (A (Epj, Ap)))(glih — gli + 1) + Bga(b(A (Ep 5, Ap)))(glil2 — 9lj + 1]2) = 0.

4. ordy(g[il — glj + 1]1) > —|E, |, ord,(g[j]2 — glj + 1]2) > —|E, ;| for all finite edges E, ;
(1<j<vp).
Remark 4.30. dim Vo, = [Epi|+ ...+ |[Epy, 1]

Proposition 4.31.

Vp
Vizg =t (0 (ol | (DT (W i%as,,) ) 4T (7 0555)
j=1
Proof. The inclusion
V172’p D pgl Hﬁm <@P <I/Vp7 1111(; Lip, ) > +T (Wp, gomv)

follows easily from Lemmas 4.29 and 4.23. Namely, let

g c pgl p— K/ﬁp <@1—\ (Wp, lné1 lp]> ) + 1B (Wp,gomv) ,

g = (9(1]1, 9[1]2, 9[2]1, 9[22, - - -, g[Vpl1, g[Vp2)-

Properties 1 and 2 in the definition of V1 5, follow from the definition of V1 ;1 ;. Fix a finite edge
E,;,1<j<vp Let x = b(JV(Ep],A )). According to our choice of the set {A1,...,Am},
X € {A,...,Am}. There also exists a degree x' € {A1,...,Am} such that x' € A(V,;, Ap)
and x and x’ form a basis of M. By Lemma 4.29,

ordy(8q,1(X)(9li]1 — gli + 1]1) + B2 () (glil2 — gli + 1]2)) = x(Vp; — Vpjt1)-

By Lemma 4.23, x(V,,; — Vpj+1) = 0, in other words,

0100l = gli + 11) + 84200 (glil2 — gli + 1]2)

is a function regular at p. On the other hand, it is a Laurent polynomial whose terms of
nonnegative degree are zeros, so

Ba100lilt — glj + 1]1) + Ba2(x) (gli]2 — glj + 1]2) = 0.

Now, using Lemmas 4.29 and 4.23 again, we see that

ordy, (B 1(X) (gl — gli + 1) + Ba 1 () (glilz — gli + 1]2)) = —|Ep1.

Since /6’;71 and ﬂ(’lz form a basis of N, and x and Y’ form a basis of M, the matrix

(Gt )
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

is nondegenerate. Therefore, ord,((g[j]1 — glj + 1]1)) > —|Eyp, ;| and ord,((g[j]2 — g7 + 1]2)) >
—|E, j|. So, the conditions 3 and 4 from the definition of V15, hold, and g € V1 2.

Now we are going to prove the other inclusion. Let

g = (9[1]1,9[1)2,9[2]1, 9[22, - - ., 9[Vp]1, 9[Vpl2) € Viop.

We have to write ¢, (pp(g)) as f + f/, where
F = (Flilk)1<i<vyxe O, Am} 1 <h<dimT(PLE(2(0)) € ED G1.6.1,p.41
j=1

gl op,J
f - (fj,x,k)1<]<vp,)(€{)\1, Am 1, 1<k<dimT'(P1,0(2(x))) € @Gl %

and, in addition,
(6,95 (F] ek )xE 1A 1 <k<dim T(PL0(2(x))))

does not depend on j. In other words, we have to find functions f[j] s regular at p and
functions f; , such that (see the definition of kg yp;) f, | 1 = Hjojixfjy .k fOr €ach j1, jo.
These conditions can be verified for different degrees x and different indices k& independently,
so fix a degree x € {A1,...,Am} and a generator x, j until the end of the proof. Denote
ay = Bég(X)v az = /8(*1,2()()'

The map ¢, uses Uj, ;-descriptions of functions and of vector fields on Ug, but it follows
from the definitions of v, of an Uj, ;-description and of an Ug-description that instead of
computing the (j, x, k)th component of ¢,(p,(g)) using v, and p,, we can first compute the
Uq-description of the derivative of x, ; along the vector field on Uq whose Ug-description is
(9l7l1,9l7l2,0), and then use piqy,,  to compute the Uj .-description of the function on Ug
whose Ug-description we obtain this way. So, consider the Uqg-descriptions of the functions on
Uq whose Uj, -descriptions are functions f[j]y » and f/  we are looking for. Denote these
U descrlptlons by by f[j]" and f}", respectively (we do not use indices y and k here, because
they are already fixed until the end of the proof, and we do not mean that these functions are
the same for different x and k). In other words, f[jlyr = pa,i, ;xfl7]" and f} . = ba,,; xf7 -
In terms of these functions, we need to meet the followmg conditions: first, ,uq,lp i Sl ]” should
be regular at p for each j, and second, pqj,; /7, and piq;, ;, xfj, should be the Uj, - and
Ui, ;,-descriptions (respectively) of the same function defined on Ug. These condltlons Can be
reformulated as follows: the inequality ordy(tiq,i, ;,xf[7]")) = 0 should hold, and all functions
f;" should be the same function f”, which should not depend on j.

Let j; be the maximal index such that x € A4 (V,;,,4,). (The convention that we take
the maximal index is nontrivial if x € A4 (Ep j,—1,4p).) Fix this index j; until the end of the
proof. Set

"= &(algbﬂ + azglji]2),

T Ty
and for each jo (1 < ja < vy) set
: X,k
flial” = W(alg[hh + asgljolr) — f.
1

Observe that f[j1]” = 0. By Lemma 3.35, f[j2]” + f is the Uqg-description of the derivative
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4.3 Computation of the dimension of ker H*(P1, 4 ¢ o) — HO(Pl,%@O)

of X, along the vector field whose Uq-description is (g[j2]1, g[j2]2,0). It is sufficient to prove
that Ordp(ﬂq,ip,jQ,xf[jQ]”) > 0. Denote by 1 = By 1(X)7 bio = B 2(X)7 ba1 = B 1(X)7 and

ip;hv iP,le iP7j27
boo = Bi*p,]-Q,Z(X)' Then we can write this function as follows:

. b 1higs Xy k . . ) )
faiy o f 2] = e —araay ((a1gljal1 + azgliale) — (a1gliil + azgli]2)) =
A b2 p 1h ;
ip,jp,1""p jp,2 DD
Xy k . . . .
oy (@1 (glie]r — glinln) + a2(glilz — glinl2)) =
hi,\ 1hi o
P,J2> .32
B —b1,1 b1
Xfo ip,h’l iP7j1’2

T phia s 7ho (a1(glje]r — glgilr) + a2(glje]2 — glji]2)) =

ip j1,1 Mp 5152 Mip gy 1" ip 4o 2

Xy k . . . .
oy gy nsyx (@1 (gli2lt — gln]n) + ax(glial2 — glirl2))-
hip,h»l ip,ji,2

Since x, 1 € (P!, 0(2(x))), ordp(Xy k) > —Zp(x). We chose hi,; 1 and hi, ; o so that

ordy(hi, ;1) = —Dp(Bi, ;, 1) and ordy(hi, ; 2) = —Zp(Bi, ;, 2). We know that

X =b1,16i, 1+ b1265, 5 2,

X»Bip,jl,la 5iml 2 € N (Vpji,Ap), and Zp(-) is linear on A (V,,;,,Ap), therefore

b1 b
ordy(h; 0 by ) = —b11%2p(Bi, ;, 1) — b12Zp(Bi, 5, 2) = —Dp(X)-

inh )1 iP,jl )
Hence,

Xy .k
Tb11 b1

> 0.

ord,,

1p,j1 )1 1p,j1 ,2

So, now we are done for jo = j;. Otherwise, we have to consider two cases: jo > j1 and
j2 < j1. Suppose first that jo > j;. Then

iy 51 iy (@1 (gl72]1 — glir]1) + a2(gli2l2 — glir)2)) =
Hiy 51 i iy o1 - - - Mg gy 1 5o x (@1(gld2]1 — gli2 — 1)) + a2(glj2]2 — glj2 — 1]2)+
o +ai(gli + 11— glinh) + a2(glin + 12 — glijr]2))-

By Lemma 4.22,

Ordp(“ip,jpip,jﬁhx e 'u’ipy]'z—l’ipvjzvx) =X(Vpji+1 = Vpji) + -+ X(Vpjo = Vpjo—1)-

Since x ¢ A (Vpj,Ap) for all j > ji, by Lemma 4.25 we have

Ordp(y’ip,jlyip,jl-&-hx s /"'Lip,jQ—laip,]QvX) > |Ep,j1| + ‘Epyj1+1| +.o.F ‘Epyj2*1|'

This sum contains at least one summand since jo > ji. By the definition of V2,

ordp(ai(gli2l — gljz — 11) + a2(glial2 — glj2 — 1]2)+
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

oo+ ar(glin + 11 — glii) + a2(gli + 12 — glji]2)) >
min(_‘EPJz*lL EE) _|Ep7j1 |) = - maX(|EP,J’1 |’ SER) |Ep,]'2*1|)'

We have
|Ep,j1‘ + ‘Epvj1+1| +...F ’Ep7j2_1| - maX(|Ep,jl‘7 RS |Ep,j2—1‘) 2 07

therefore jiqi, ;v f[j2]" is regular at p.

Now consider the case jo < j1. This time we are going to consider indices smaller than j;, and
it is possible that x € A4 (V) ;,Ap) for some j < ji, namely for j = j; —1 (and this is the only
possibility). So, we have to consider two cases: x ¢ A (Vpj,—1,4,) and x € A (Vy -1, 1p).
Suppose first that x ¢ A4 (Vp j,—1,4,). Then we can again write

i, 51 ip (@1 (gl72]1 — glit]h) + a2(gliz)2 — glir)2)) =
Hiy 51 iy 10X - - Bigi 4 1,0p o x (@1(gld2]1 = glg2 + 1]1) + a2(gliz]2 — glj2 + 1]2)+
o tan(glin — 1 — glith) + a2(glin — 12 — glj1]2))-

Since x ¢ A (Vpji—1,4p) (and x ¢ A (V,;,Ap) for all j < j1), we can apply Lemmas 4.22
and 4.26. We see that

Ordp(ﬂip,jl ip,jp—1,X * Mipyjzwtlvip,ij)
X(Vpajl_l - VP,]l) + st + X(VP’JQ - VP,]2+1) Z ’EPJl—l’ + ce + ’EPJQ"

And again, by the definition of Vi 2,

ordp(ai(gljz2l1 — glje + 1]1) + a2(gljal2 — glj2 + 1]2)+
o tai(glin — 1 — glirh) + a2(gli — 2 — gli1l2)) >
min(_‘Epyh ’7 SRR _’Ep7j1—1|) = - maX(|Ep7j2|’ SRR |Ep7j1—1|)'

Therefore,

ordp (i, g fi2") Z Epgi-al + - 4 By, | — max([Epjpl, . [Epjya]) > 0.

Finally, consider the case when jo < j; and x € A (V) j,—1,4,). Then x € S (Ep j,—1,4,),
and property 3 in the definition of V1 2, guarantees that

a1(gljr — 11 — glirlr) + a2(gljr — 12 — glj1]2) = 0.

It also follows from Lemmas 4.22 and 4.23 that

Ordp(ﬂip,jl ,ip,jlﬂ,x) = X(Vpji-1 = Vpji) = 0.

If jo = 71 — 1, then we already see that

M, ;. ip sy x (@1(g[52]1 = glin]) + a2(glial2 — g[i1]2)) = 0,

hence /‘q,ip,jg,xf[jﬂ// = 0, in particular, this function is regular at p. If js < j; — 1 we write

My ;. ip sy x (@1(g[52]1 = glin]) + a2(gliale — gli1]2)) =
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4.3 Computation of the dimension of ker H*(P1, 4 ¢ o) — HO(Pl,%@O)

iy 51 iy 10X - - - Big s 41,0p i x (@1(gld2]1 — g72 + 1]1) + a2(gliz)2 — glj2 + 1]2)+
o+ a1(glin — 11 — glji)1) + a2(gly1 — 12 — glj1l2))

as previously. This time

Ordp('“ip,jl dp,jy 15X+ Fp o +1,ip,54 x) =

ord,(

'ulp,hflvlp,h*?vx T 'ulp,ngrlvlp,jgvX) -

X(pr.]172 - me]l*l) + cee + X(szjZ - Vp7.]2+1)'
And here we can apply Lemma 4.26 since x ¢ A4 (E, ;, Ap) for all j < j; —1. We conclude that
Ordp (i, 5, gy -1+ + P gy i) = [Epgi—2l 4o+ [Ep s |

The order of the other multiplier can be rewritten as

ordp(ai(gljz — gliz + 11) + az(glizl2 — glj2 + 1]2)+
-+ ai(glin — 11 — glil) + a2(glin — L2 — glir]2)) =
ordy(a1(gliz]1 — gliz + 11) + a2(glialz — glj2 + 1l2)+
ot ai(glin — 2l — gl — 11) + a2(glin — 2|2 — gl — 1]2)) >
min(—[Epjp|, ..., —[Epj—2|) = —max(|Ep 3,1, ..., [Epj—2|).

Again we see that

ordy(ti, ;. iy 5, x(@1(g[d2]1 — glir]1) + a2(glizl2 — glirl2))) =
|Epji—2| + ..+ [Epj| —max(|Ep |, ..., [Epji—2|) >0,

and fiq;, ;, xflj2]" is regular at p. O

Now it is clear that

Vp
dim p, (¢, (5, h (DT Wi, 4% 15, ) + T (W, 4775%)))) = dim V9 =
j=1

|Ep71| +...+ |Ep,vpfl|»

and, since p, is injective,
dim(d;, ! (k5 EBF W 1% 150 )+ DWW 908%))) N V10,) = [Bpa| + .+ By, -1 -

By Lemma 4.17,

Vp
dim ker (@ (T Wy F585) /T (W, 9 15, ) / T(W,, 975%) —

j=1
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4 Combinatorial formula for the dimension of the graded component of T' of degree zero

Vp
(@ (COW,, %280 /T, 9355 15, ) ) / (W 958%) | = Bpal +..-+ [Bpw,a| — 1.

j=1
By Lemma 4.15, we have the following equality:

vp—1

dim(ker(D(P',#1,00) = T'(P", %,00))) = Z -1+ Z Ep,l
j=1

peP? essential
Finally, we get the following theorem from Theorem 3.36 and Proposition 4.10:

Theorem 4.32. We maintain the assumptions from Section 1.3. Then the dimension of the
space of equivariant first order deformations of X can be computed as follows.

vp—1
dim T% (X))o = max(0, # (essential special points) — 3) + Z -1+ Z Epjl | .
peP! essential j=1

where |Ey, ;| is the number of integer points on the edge E, ; of A,, including exactly one of its
endpoints. O

Observe that the sum Z;Z Il |E, ;| can also be understood as follows. The integer points

on the boundary of A, split this boundary into segments (containing no integer points in the
interior). Then Z;’i Il |E, ;| is the amount of these segments in the finite edges of A,. Later,
in Chapter 6, we will see how to construct some actual first order deformations, which will span

a (dim 7" (X)g)-dimensional vector space.
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5 Connections between the graded component
of degree 0 of 7'(X) and graded components
of T! of toric varieties

Given an affine toric 3-dimensional variety X, one can restrict the space the action of the 3-
dimensional torus to a 2-dimensional subtorus, and consider X as a 3-dimensional T-variety
with an action of a 2-dimensional torus. Toric varieties are parametrized by pointed cones of
the same dimension, and T-varieties are parametrized by polyhedral divisors as described in
the Introduction. These two parametrizations are related via the following toric downgrade
procedure.

Let X be an affine toric 3-dimensional variety defined by a pointed cone 7 in N@ =N ®z Q,
where N is a 3-dimensional lattice. Denote the dual lattice of N by M , and denote the 3-
dimensional torus acting on X by T. Then two-dimensional subtori of T' are parametrized by
primitive vectors x € M. Fix one of them until the end of this section, denote it by xg. We
are going to consider the action of T' = ker yg on X. To describe this action by a polyhedral
divisor, choose a line N’ C N complementary to N = ker xg. These choices are illustrated by
the following diagram:

0 N

N-X.7
“
AN
AN
D
Nl

Consider also the projection from N@ to N(’@ = N'®zQ along Ng = N ®z Q. It maps each face
of 7 surjectively onto a cone in N(’@ Then the variety Y, where the polyhedral divisor will be
constructed, is defined by the coarsest fan in N@ containing all these cones. It can be P!, C, or
C*, depending on whether the image of 7 is the whole line, a half-line, or a point, respectively.
We are interested in the case Y = P!, so suppose in the sequel that it holds. It takes place
if and only if Ng separates 7 into two nonempty two-dimensional cones, or, equivalently, if
Xo & 7.

To construct the polyhedral divisor itself, recall that the two half-lines of N(’@ correspond to
the two fixed points of a torus acting on P!, which we can denote by 0 and co. More exactly,
let 0 (resp. o0o) correspond to the half-line {xo > 0} (resp. {xo < 0}). Then the polyhedral
divisor contains nontrivial polyhedra at 0 and at oo only, and the polyhedron at 0 (resp. at
00) is the projection of 7N [xo = 1] (resp. of 7 N [xo = —1]) to Ng along Ng. As previously,
denote these polyhedra by Ag and A.,. The tail cone of both of these polyhedra is o = 7N Ng.
We only considered the cases when it was full-dimensional, and, together with the requirement
Y = P!, this means that 7 is full-dimensional. An example of this situation is shown by Fig.
5.1

The last requirement we had says that all vertices of Ay and A, have to be lattice points.
Since xo is a primitive vector, N’ N [yo = 1] and N’ N [yo = —1] are lattice points, so the
projections of the planes [yo = 1] and [xo = —1] onto N along N’ map lattice points to lattice
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5 Connections between T" (X ) and graded components of T of toric varieties

Figure 5.1: An example of toric downgrade: the three-dimensional cone 7 is shown in black, o
is green, and the polyhedra Ay and A, are shown in blue and red.

points. Hence, the last condition we should impose says that if a one-dimensional face of 7
intersects one of the planes [yo = 1] and [xo = —1], then the intersection point is a lattice
point.

Now we need some notation and terminology. Call an edge of 7 positive (resp. nonnegative,
negative, nonpositive) if yo takes positive (resp. nonnegative, negative, nonpositive) values
on this edge (except the origin). Call an edge of 7 orthogonal if x takes only zero values
in this edge. Call a facet of 7 positive (resp. negative) if y takes only positive (resp. only
negative) values on the interior of this facet. Denote the edges of 7 by E1(7), ..., Ee(r)(7) and
the facets of 7 by Fi(7),...,Fe()(7). The intersections of these edges and facets with the
affine planes xo = 1 and xyg = —1 are vertices and edges of Ay and A, respectively, for more
details see Remark 5.1. Sometimes we can write Eo(7) (resp. Eg(r)41(7), Fo(7), Fe(r)41(7))
instead of Eg(;)(7) (resp. Ei(7), Fe(7)(7), F1(7)). We enumerate edges and facets so that
OF;(1) = Ei(1) UE;;1(7). We also require that E;(7) is a positive edge, and Eg(-)(7) is a
nonpositive edge. This requirement allows one to choose one of exactly two enumerations of
edges and facets, we choose one of them arbitrarily.

It is also convenient to introduce some notation for positive and negative edges separately.
Denote the number of positive edges by e (7). Denote the positive edges themselves by
Ef(7),... ,E;_(T)(T). Here the edges are enumerated in the same order as when we enu-

merated all edges, i. e. Ef (1) = E;(7) for 1 < i < e (7). Similarly, denote the number of
negative edges by e”(7), and denote the negative edges themselves by E; (7),...,E__ ") (7).
This time we reverse the order that we used when we enumerated all edges together. In other
words, if E; (1) = E;_(7) for some i (which can equal e(7) or e(7) +1), then E; (1) = E;_;(7)
for 1 < j < e~ (7). The notation E;(7) may look a bit redundant, but it is convenient to have
uniform notation for positive and negative edges.

Now let us introduce notation for positive and negative facets. Denote the facet whose
boundary is E (1) U E;-:_l(T) (resp. E; (1) UE. (7)) by F; () (resp. F; (7)) for 1 < i <
e () —1 (resp 1 < i < e (1) —1). Again we have F; (1) = F(7) for 1 <i < e (r) — 1.
Extend this notation as follows. First, set Fi(7) = Fo(r) and F:+(T)(T) = Fer(ny(). If

E| (1) = E;_i(7), denote F (7) = F;(7) and Fom (7) = Fi_e~()(7). In other words, Fy (1)
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is the facet of 7 with the highest index such that one of the edges on its boundary is negative.
The other edge on its boundary is nonnegative, and the negative edge on the boundary of F (7)
is E{ (7). And F__ - (1) is the facet of 7 with the lowest index such that one of the edges on
its boundary is negative. The other edge on its boundary is nonnegative, and the negative edge
on the boundary of F__ ) (1) is Em (7).

An example of this notation is shown by Fig. 5.2.

Es(r)=Ef (7) F7(1)=F; (1) Ea(r)=Ej(r)
ot g
OO T INON
/QXQ, .&3
% %
HOS HOPAY N B () =Bro(r)=E{ ()
A
Fi(7)=F}(r
(=R Fo(7)=Fo(r)=F, (r)=F{ ()
E;5(7) N
F;(7)=F (1)
& O
Eo(1)=E (1) \73, &~/ Ba(n)=Eo(r)=E; (1)
\\&\' \//
@\( &
> 4®
E:(7)=E; (1) Es(1)=E; ()

Figure 5.2: An example of notation for positive and negative edges and facets. The picture
shows the section of Ng with an affine hyperplane that intersects all edges of .
The only orthogonal edge here is E5(7). The facet Fg(7) is neither negative nor
positive. Here e(1) =9, e"(7) =4, and e (1) = 4.

Remark 5.1. Here is how the notation introduced now is related with the notation for edges and
vertices of Ay, we introduced in the beginning. Namely, within the notation that we introduced
now, we have e*(1) = v(Ap), Vi(Ao) = Ef (1) N [xo = 1] for 1 < i < et (1), Ei(Ag) =
F(r)Nxo = 1] for 0 < i < e (1), e (1) = v(Ax), Vi(Ax) = E; (1) N [xo = —1] for
1<i<et(7), and E;(Ax) =F; ()N [xo = —1] for 0 <i <e'(r).

The faces of the cone 7V dual to 7 put be set into bijection with the faces of 7. Namely, each
face 7/ of T defines a face of 7V consisting of all a € 7V such that a(7") = 0. We call this face
of 7V the normal face of 7" and denote it by A4 (7/,7). Clearly, the normal faces of edges are
facets and vice versa.

A formula for the graded components of the first-order deformation space of a toric variety
was given in [10]. To formulate it, we need to quote also some notation from [10]. (We slightly
change the letters we use there to avoid confusion.) First, let 3\:, ey X;, be the Hilbert basis
of 7V. If 7/ is an edge of 7, and x € M is a degree, denote

A% = {X | Xi(b() < x(b(r'))}.
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5 Connections between T" (X ) and graded components of T of toric varieties

Now, if 7/ is a facet of 7, we set

Af/ - ﬂ Az/u
7/" is an edge of T
T"cor’
and for the origin (which is also a face of 7) we set
X _ X
M- U
7/ is an edge of T

Finally, we set

ANt = @ Spany;(AY,)
7' is a face of T
dim 7/'=1

for ¢ = 0,1,2. Here Spang; denotes the sublattice of M generated by the subset of M under
the Span~ sign. In the sequel we will also use notation SpanQ for the Q-linear subspace of

M@ M ®z Q generated by a set of elements of M or of MQ generated Consider the complex
(A0 @7 C)* — (A¥! @7 C)* — (AX? @7 C)*,

where the maps are standard Cech differentials. Denote the graded component of T1(X) of
degree x by T)% (X).

Theorem 5.2. [10, Theorem 2.1]
T (X) = H' ((AX" ®z (C)*).

Our goal for this section is to deduce Theorem 4.32 in the case of toric X from Theorem 5.2.
It is known that the Oth graded component of X considered as a T-variety is isomorphic to

DT

a€Z

where the degrees are understood with respect to the action of the three-dimensional torus. So,
in the sequel we will study the spaces T; (X), where x is a multiple of yg.

Lemma 5.3. Let x be a multiple of xo and 7" be an edge of 7. Then AY, = @ if one of the
following conditions holds:

1. x=0.

2. 7' is an orthogonal edge.

3. x = axo, where a > 0, and 7' is a negative edge.
4. X = axo, where a < 0, and 7’ is a positive edge.

Proof. Choose a Hilbert basis element A;, where 1 < i < m. Since \; € 7, we have X;(b(7')) >
0. On the other hand, x(b(7")) = 0 if case 1 or 2 from the above classification holds. If case 3
or 4 takes place, then x(b(7’)) < 0. Hence, A\j(b(7’)) > x(b(7')), and X\; ¢ AY,. O

Corollary 5.4. If x = 0, then AX! =0 and T} (X) = 0. O
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Lemma 5.5. If 7/ is a positive (resp. negative) edge of T, then xo(b(7')) equals 1 (resp. —1).

Proof. If 7/ is a positive edge, denote a = 7 N [xo = 1]. If 7 is a negative edge, denote
a =7 N[xo = —1]. Recall that one of the requirements we have imposed on 7 says that the
planes xo = 1 and o = —1 intersect edges of 7 at lattice points (otherwise the polyhedral
divisor we obtain from 7 does not consist of lattice polyhedra), so a is a lattice point, and
hence a is a multiple of b(7'). On the other hand, if a # b(7’), then xo(b(7’)) cannot be an
integer. So, a = b(7’), and xo(b(7')) = 1 (resp. xo(b(7")) = —1) if 7/ is a positive (resp.
negative) edge. O

Lemma 5.6. If 7/ is a positive (resp. negative) edge of T, and x = xo (resp. X = —Xo), then
Span@(A:f,) = Span@(JV(T’, 7)) and dim SpanQ(A?f,) = 2.

Proof. Without loss of generality, suppose that 7’ is a positive edge and y = xo (the other
case can be considered completely analogously). Then by Lemma 5.5, x(b(7')) = 1. So, if
Xi & A (7',7), then \j(b(7')) > 0, so \j(b(7’)) > 1 (this is an integer number), and \;(b(7’)) >
x(b(r")). Hence, \; ¢ AX. On the other hand, if XNi € N (7,7), then Xi(b())) = 0, and
Xi(b(7")) < x(b(r")). Hence, \; € AX,

Therefore, Af, is the intersection of the Hilbert basis of 7V N M and the normal facet of 7/ ,
which is the Hilbert basis of A4 (7', 7) N M. In particular, A, generates Spang (A (7/,7)) as a
Q-vector space. O

Lemma 5.7. If 7 is a positive (resp. negative) edge of T, and x = axo, where a > 2 (resp.
a < —2), then Spang(AY,) = Mg.

Proof. Again, without loss of generality we may suppose that 7/ is a positive edge and a > 2,
the other case is completely similar. s

First, let us prove that there exists a degree ¥’ € 7V N M such that x/(b(7')) = 1. This is
done by a standard continuity argument. Namely, consider a lattice point x” in the relative
interior of A4 (7', 7). Consider also a line x” + Qxp. This line cannot be contained in the plane
containing A (7/,7) since xo(b(7")) # 0. So, the intersection of this line and this plane is
exactly x”, and A4 (7', 7) splits the line x” + Qxp into two rays, and one of these rays passes
through the interior of 7V. Since x”(b(7")) = 0 and xo(b(7')) > 0, the ray passing through
the interior of 7V cannot be x” + Q<oxo, and it must be x” + Q>oxo. Hence, if b € N is
large enough, x” + (1/b)xo € 7V. Then bx” + xo € 7V, but bx” + xo is a lattice point, and
(bx” + x0)(b(7')) = 1, so we can take X" = bx" + xo.

Since all )\ form the Hilbert basis of VN M X can be written as a positive integer linear
combination of A;. Since A;(b(7’)) > 0, there exists \; such that Xi(b(r ') = 1.

As we have already noted previously, the set of all Xi such that A(b(7')) = 0 form the
Hilbert basis of A4 (7/,7) N M, therefore they generate Spang (A (7', 7)) as a Q-vector space.
Clearly, all these )T, are in Af,. Together they generate a 2-dimensional vector space, so if we
add one more vector, which is outside Span@(ﬂ/ (7',7)), all vectors together will generate a

bigger vector space, but then this space must be Mg since dim MQ = 3. But we already know
that there exists a \; € A%, such that Xi(b(')) = 1. By the definition of .4 (7', 7), all vectors
from SpanQ(JVA(/T’, 7)) vanish on b(7’), so this A; cannot be in Spang (.4 (7, 7)). Therefore,
Spang(AY,) = M. O

Corollary 5.8. If x = axo, a € Z, a # 0, then AX! @7 C can be written as follows:
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5 Connections between T" (X ) and graded components of T of toric varieties

1. Ifa =1, then

et ()
Al @7 C = @ Spang (A (E/ (7),7)) ®g C.
i=1
2. If a > 2, then
ef(r)
M @, C= P Mg C.
i=1

3. If a = —1, then
e (1)
At @ C = @ Spang (A (E; (1),7)) @g C.
=1
4. If a < =2, then
e (1)
Ml @7 C= P Mg ®qgC.
=1

These lemmas also enable us to describe AXV explicitly:

Corollary 5.9. If x = axo, a € Z, a # 0, then AX? ®7 C can be written as follows:

1. Ifa =1, then

et (r)

A0 @, C = Spang, U N (Ef (1),7) | ®gC.
i=1
2. If a > 2, then .
AX0 ®7 C = MQ RqQ C.
3. If a = —1, then
e (1)
A0 @, C = Spang, U N (E; (1),7) | ®qC.
i=1

4. If a < =2, then .
A0 @7 C = Mg ®¢g C.

O]

Now we have to find ker((AX! @z C)* — (AX? @z C)*)), where x is a multiple of yo. To
compute this kernel, we need some information about AX:2. First, let us make the following
observation. An element of (AX? ®z C)* can be written as a sequence (a1, ..., ae(r)), Where
a; € (SpanM(Aiﬁi(T)) ®z C)*. In particular, the image of an element of (AX! ®z C)* can be
written in this form. Consider an entry a; such that OF;(7) consists only of edges such that
SpanQ(Af,) = 0. Observe that in this case a; = 0 since in this case a; is the difference of
two elements of two vector spaces, and each of this vector spaces has dimension 0. So, it is
sufficient to consider only the facets whose boundary contains at least one edge 7/ such that
Spang(AY,) # 0. Using Corollary 5.8, we can say that if x = axo, where a > 0 (resp. a < 0),
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then it is sufficient to consider only the facets of 7 whose boundary contains at least one positive
(resp. negative) edge. These are exactly the facets we have denoted by Fy(7),...,FJ, (T)(T)

(resp. by Fg(7),...,F__ ) (1)).
Lemma 5.10. If x = axo, where a > 0, then SpanQ(AgﬂT)) =0 fori=0 andi=e" (7).

Proof. Let us consider the case ¢ = 0, the other case is completely similar. By the definition
of F{ (1), its boundary consists of Ef (1), which is a positive edge, and another edge 7/, which

is nonpositive. Hence, by Lemma 5.3, AY, = &, so Aéé(f) = AN N AET(T) = @ as well, and
X _
SpanQ(AFg(T)) = 0. O

Lemma 5.11. If x = axo, where a < 0, then Spang(A )=0fori=0andi=-e (7).

X

Fi (1)
Proof. The proof here is again completely similar to the proof of the previous lemma, we omit
the details. O

To understand the behavior of A;(‘?“(T)’ where 1 < i < e™(7) — 1, (resp. of A;_(T), where

1 <i<e (r)—1) for degrees x = axo with a > 0 (resp. a < 0), we start with the following
lemma.

Lemma 5.12. Let N be a two-dimensional lattice, and let M be its dual lattice. Let ai,as € N
and x € M be such that x(a1) = x(a2) = 1 and a1 # as. Then a1 and as generate N @z Q as
a Q-vector space.
Denote the primitive lattice point on the ray {x' € M : X'(a1) > 0,x'(a2) = 0} by x1-
Similarly, denote by xo the primitive lattice point on the ray {x' € M : x'(a1) = 0,% (az2) > 0}
Then x1(a1) = x2(az) = |ay — as|. The sets

KAaranp{X € M : ¥/ (a1) > 0,X(a2) > 0,x'(a1) < b,X'(az) < b}
for b € N behave as follows:
1. If 0 < b < |a1 — az|, then Ay ay app is the set of all X' of the form x' =bx, 0 <V < b.
2. If b> |ay — az|, then Ay 4y 4y contains x1 and xo.

Proof. Consider the Q-linear span of a; and as in N ®z Q. Since x(a1) # 0 and x(az) # 0,
this linear span can be one-dimensional only if a; is a Q-multiple of as. But in this case, since
x(a1) = x(az2) # 0, a1 and az must coincide, and this is a contradiction.

Denote k = |a; — as| and denote @’ = (1 — 1/k)a; + (1/k)ag. Then o’ € N, and a’ — a; is a

primitive lattice vector. Hence, there exists a function x” € M such that x”(a’ —a;) = 1. Since
x(a1) = x(az) = 1, we also have y(a’) = 1. Consider the following functions x/" (i = 1,2):

i
X7 = x" = x"(a;)x. We have x/'(a;) = x"(a;) — x"(a;)x(ai) = 0, so x{" is a multiple of x2 and

X5 is a multiple of x1, since x1 and y2 are primitive vectors on the corresponding rays.

We also have x1"(a2) = x{'(a1) + x{'(a2 — a1) = kx{'(a’ — a1) = k(x"(a' — a1) — X" (a1)x(a’ -
a1)) = k(1 = x"(a1)(1 — 1)) = k and x3'(a1) = x3'(az) — x3'(a2 — a1) = —kx3'(a’ — a1) =
—k(x"(d — a}) — x"(a2)x(d' — a1)) = —k(1 — x"(a1)(1 — 1)) = —k. On the other hand,
x2(a2) = x2(a1)+x2(a2—a1) = kxa(a’—a1) and xi1(a1) = x1(a2) —x1(a2—a1) = —kxi1(a’'—a1).
Hence, x1(a1) is a multiple of k = x4'(a1) and x2(as2) is a multiple of k = —x/"(a2). Recall that

X} is a multiple of x2 and x4’ is a multiple of x;. Summarizing, we conclude that y; = x4’
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5 Connections between T" (X ) and graded components of T of toric varieties

and x2 = £x/’. But then xi(a1) = £x4'(a1) = £k and x2(a2) = £x{'(a2) = +k. Since
x1(a1) > 0 and x2(a2) > 0 by the definitions of x; and x2, we have xi(a;) = x2(a2) = k.
Now fix some b € N and consider the set

Kx,al,az,b = {X, € M : X/(al) 2 O?X,(CLZ) 2 Oaxl(al) < b) X/(QQ) < b}

If b > |a; — ag|, then it is already clear that KX,GLGQ,I) contains xj and xo since yi(a;) =
lar — az|, x1(a2) = 0, x1(a2) = 0, and x2(a2) = |a1 — az|. So suppose that b < |a; — az|. In
this case it is also clear that b'x € Ay 4, 45 for 0 <V < b since x(a1) = x(a2) = 1.

Suppose that x' € Ay q,.a,5- Without loss of generality, x'(a1) > X'(az). Consider x” =
X' — X'(a2)x. We have x"(a1) = x'(a1) — x/(a2)x(a1) = x'(a1) — X'(a2) > 0 and X" (a2) =
X'(a2) — x'(a2)x(a2) = 0. So, x” is a lattice point on the (closed) ray {x"" € M : x"(a1) >
0,x"(az) = 0}. But we already know that the primitive lattice vector on this ray is xi,
so X" is a (possibly zero) integer multiple of x1. If x'(a1) > x/(a2), then x” # 0, and we
have a contradiction with xi(a1) = |a; — ag| since x/(a1) < b < |ag — az|, xX'(a2) > 0, and
X"(a1) = X'(a1) — X/(a2). If X'(a1) = x/(az2), then we see that x’ and x'(a;)x take the same
values on a; and ap. Since a; and as Q-generate N ®7 Q, we can conclude that x' = x/(a1)x
as desired. O

Lemma 5.13. Let F;(7) be facet of 7, and let Ej (1) be an edge of T on the boundary of
F;(7). Let Ej,(7) be the other edge on the boundary of F;(1). Suppose that we have a degree
X € Spang (A (Ej, (7),7)) N M such that X(b(Ej,(7))) > 0.

Then there exists a € N such that x + ab(A (Fi(7),7)) € A (Ej, (1),7).

Proof. Let Fy(7) be the facet of 7 such that 04 (E; (7),7) = A (Fi(7),7) U AN (Fi(71),7).
In other words, F;(7) and Fj(7) are the two facets whose boundary contains E; (7). Then
N (Ej, (1), 7) is determined inside Spang (4 (Ej, (7), 7)) by two inequalities corresponding to
N (Fi(7),7) and A (Fi(7),7). For an inequality corresponding to A4 (F;(7),7), we can take
the restriction to Spang(/4 (Ej, (1), 7)) of the inequality in the definition of 7¥ corresponding
to the other facet of 7" whose boundary contains .4 (F;(7), 7). This other facet is A4 (E;,(7),),
and the corresponding inequality says that if X' € A4 (E;, (7),7), then x’ takes nonnegative
values on Ej, (7), in other words, x'(b(E;,(7))) > 0.

Similarly, for an inequality corresponding to A (Fg(7),7), we can take the restriction
to Spang (4 (Ej, (1),7)) of the inequality corresponding to the facet of 7V different from
N (Ej, (1), 7) and whose boundary contains A4 (Fy(7),7). This facet is the normal facet
of the edge on the boundary of Fj(r) different from Ej (7). Denote it by E;,(7) so that
OF (1) = E;, (1) UEj,(7). Then the inequality corresponding to .4 (Ej,(7),7) in the defini-
tion of 7V says that if x' € 7V, then X’ takes nonnegative values on Ej, (7), in other words,
X' (b(Ej;(7))) > 0. Therefore, A (Ej, (1), 7) is determined inside Spang (4" (Ej, (7),7)) by the
restrictions to Spang (4 (Ej, (1), 7)) of the inequalities x'(b(Ej,(7))) > 0 and x'(b(Ej,(7))) > 0
for ' € %

Therefore, if x(b(E;;(7))) > 0, then we can take a = 0. Suppose that x(b(Ej,(7))) < 0.

We chose Fg(7) so that

N (Fi(r),7) £ N (Br(r),7),

and we also know that

'/V(Eja (7)77—) N '/V(Ejl (T)7 T) = '/V(Fk(T)v 7—)7
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SO

b(A(Fi(7),7)) & A (Ejy (1), 7).

Hence,

b(A (Fi(7),7))(b(Ej;(7))) > 0.
Then there exists a € N such that

ab (A (Fy(7), 7)) (b(Ej; (7)) > —x(b(Ej;(7)))-
In other words,
ab (A (Fi(7),7))(b(Ej; (7)) + x(b(Ej,(7))) > 0.

We have
(ab(A (Fi(7),7)) + x)(b(Ejy(7))) > 0.

We also have
(b(A (Fi(7),7)))(b(Ej (1)) = 0
since b(Ej, (7)) € Fi(7). Hence,

(ab (A (Fi(7), 7)) + x) (b(Ej, (7)) = x(b(Ej, (7)) > 0

by assumption, and

ab(N (Fi(r), 7)) + x € N (Bj, (7),7) N M.
OJ

Lemma 5.14. Let F} (1) (resp. F; (7)), where 1 <i<et(r)—1 (resp. 1 <i<e (1) —1),
be a facet of T. Then

b(AN (Ff(7),7)) +x0 € 7 (resp. b(A (F; (7),7)) —x0 € T").

Proof. Since
b(c/V(F;_(T),T)) € 1" (resp. b(A(F; (1),7)) € ™),

it takes nonnegative values on the edges of 7. Since

8F;-'r (1) = E,j_(T) U EZT"H(T) (resp. OF; (1) = E; (1) UE; (7)),

the only two edges of 7 where
b(A (Ff(7),7)) (resp. b(A (F; (1), 7)))

vanishes are E; (1) and E;:_l(v') (resp. E; (7) and E; (7)). But both of these edges are
positive (resp. negative), so if E;(7) is one of these two edges, then

Xo(b(E;(7))) =1 (resp. xo(b(E;(7))) = —1).
Hence,
(b(A (FF(7),7)) + x0) (b(E;(7))) = 1
(resp. (b(A(F; (1),7))

— Xo0)(b(E;(7))) = 1, observe the — sign in front of xo)
for Ej(1) = ET(T) or Ej(7) = E;:_l(T) resp. E;(1) =E; (1) or Ej(7) = Ei_H(T)).
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5 Connections between T" (X ) and graded components of T of toric varieties

Now suppose that E;(7) is another edge, i. e.
E;(7) ¢ OF/ (1) (vesp. E;(1) ¢ 9F; (7).

Then
b(A (F] (7),7))(b(E;(7))) > 0 (resp. b(A (F; (1), 7))(b(E;(7))) > 0),

2

and, since b(A (F (1), 7)) (resp. b(A (F; (7),7))) and b(E;(7)) are lattice points, we have

b(A (F (1), 7)) (b(E;(7))) > 1 (resp. b(A (F; (7),7))(b(E;(7))) > 1).
Now recall that if an edge of 7 intersects one of the planes [yo = 1] and [yo = —1], then the
intersection point is a lattice point. This lattice point must be the primitive lattice vector on
this edge, otherwise xg would have taken a noninteger value at the primitive lattice vector.
Therefore, if E;(7) intersects one of the planes [xo = 1] and [xo = —1], then xo(b(E;(7)))
can only equal 1 or —1. If E;(7) intersects none of these planes, then y vanishes on E;(7)
everywhere, in particular xo(b(E;(7))) = 0. Therefore, in all cases we have |xo(b(E;(7)))| < 1.
But then
(b(H (F (7),7)) + x0) (b(E; (7)) > 0

(resp. (b(A(F; (7),7)) — x0)(b(E;(7))) > 0, now the sign in front of x¢ does not matter).
Summarizing, we see that if E;(7) is an arbitrary edge of 7, then
(b(A (F(7),7)) + x0)(b(E;(7))) > 0 (vesp. (b(A (F; (7),7)) — x0)(b(E;(7))) > 0).
Therefore,
b(AN (Ff(7),7)) + x0 € 7/ (vesp. b(AN (F; (1),7)) — x0 € 7).
]

Proposition 5.15. Let F; (1) (resp. F; (7)), where 1 <i < et (r)—1 (resp. 1 <i<e (1)-1),
be a facet of . Let x = bxo (resp. x = —bxo), where b € N.

1. If b=1, then

= SpanQ(JV(F;r(T),T)) (resp. SpanQ(AX ) = Spang (A (F; (7),7)))-

Spang(A L. F; ()

2 I[P ()N [xo = 1] > 2 (resp. [F; (1)1 [xo = ~1]| > 2) and 2 < b < [F () 1 [xo = 1]
(resp. 2 <b < |F; ()N [x0 =—1]|), then

Span@(A;‘T(T)) = Spang(xo, A (F; (1), 7))

(resp. Spang(Ag_ ) = Spang(xo, A (F; (7),7)) ).

8. If o> |F (1) N [xo = 1]| (resp. b> |F; (1) N [xo = —1]|), then SpanQ(AéﬂT)) = M@.
Proof. Again, the positive and the negative cases here are completely similar. This time let us
consider the negative case.

Consider the lattices

M = M/(Mﬁ Spang (A (F; (7),7)))
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and B
N = N N Spang(F; (7)).

By the definition of A (F ( ; (17),7), a function from M vanishes on the whole N (whlch is a

saturated sublattice of N by construction) if and only if this function is contained in MnN
Spang (A4 (F; (7),7)). Therefore, M is the dual lattice of N, and the values of elements of M

at points from N are well-defined. We denote the class of a function y’ € M in M by x'.
Denote a1 = b(E; (7)), a2 = b(E;(7)). Recall that OF; (1) = E; (1) UE;, (1), so a1,az €
N. We have already seen that xo(a1) = xo(az) = —1 and that

ar =E; (1) Nxo = 1], a2 =E;,(7) N [xo = —1].

So, a1, az, and —xy satisfy the hypothesis of Lemma 5.12, and |a1 — az| = [F; (1) N [x0 = —1]|.
Consider the set K—Ta),awzb from Lemma 5.12. It follows directly from the definitions of

A= 01,05 and of AéZ(T) that the image of A;(‘;(T)

is contained in K—Tco,a Las,b- Moreover, if )T] is an element of the Hilbert basis of 7 such that

X/—)\ € A—

under the canonical projection M — M

then

—X0,01,a2,b’

Aj(a1) = x'(a1) <b=(=b)- (—1) = —bxo(a1) = x(a1),
S0 \j € AE; ) Similarly,

Ajlaz) = x'(az) <b=(=b) - (=1) = —bxo(a2) = x(a2),

X
SO )\ € AE1+1( X Hence,

Y. AX AX = AX )

Y€ e M0 T M
Consider the case b = 1. Then by Lemma 5.12, A—- = {0}, and all elements of AX o ()
are in ker(M — M) = M N Spang (4 (F; (7),7)). On the other hand, since .4 (F; (7),7) is a
face of 7V, b(A(F; (1), 7)) is an element of the Hilbert basis of 7, b(A (F; (1), 7)) = ) for

—X0,a1,a2,b

some j. As we have seen previously, this means that )\ € A; (7" Hence, SpanQ(A;,(T)) =
Spang (A (F; (1), 7)).
Now suppose that |a; — ag| > 2 and 2 < b < |a; — ag|. Then by Lemma 5.12, A—~ . ., i

contained in the line generated by —yo. Hence, AX is contained in the plane generated by

Fi (1)
A (F; (1), 7) and —xo. On the other hand, we already know that b(4"(F; (7),7)) is an element
of the Hilbert basis of 7V, and, since it represents the zero class in M and 0 € A,X0 0102, it
is also contained in A;_(T). By Lemma 5.14, X" = b(A (F; (1),7)) — x0 € 77. If X" is not
an element of the Hilbert basis of 7V, it can be decomposed into an integer positive linear
combination of elements of the Hilbert basis. Since x”(a1) = x”(a2) = 1, the elements of the

Hilbert basis present in this combination may only take values 0 or 1 at a1 and as (in arbitrary
order). But if there exists M, such that )\k(al) =1 and )\k(ag) =0, then \; € A—

this is a contradiction with Lemma 5.12. Similarly, one cannot have /\k ((11) =0and )\k(ag) =1.

“X0,a1,a2.b" and

Hence, there exist an element A, of the Hilbert basis such that Ap(ai) = Ax(az) = 1. By Lemma
5.12, a1 and as Q-generate N ®z Q. Therefore, elements of M are determined by their values
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5 Connections between T" (X ) and graded components of T of toric varieties

at a1 and ag, and Ay, = —X0 € A= 4, 4,5~ We already know that this means that Ay € Agi_ ()’

Since )\:k = —¥o, .
—X0 — )‘k € Span@(‘/V(F;(T)aT)),

and A, and N (F; (1), 7) together Q-generate the same plane as —xo and A (F; (7),7) Q-
generate, i. e. they Q-generate Spang(xo, -4 (F; (7),7)). Therefore,

Spang(AX_ ) = Spang(xo, -4 (F; (1),7)).

F; (7)
Finally, let us consider the case b > |a; — ag|. By Lemma 5.12, there exist x1, x2 € A—xo,al,az,b
such that x1(a1) > 0, x1(a2) =0, x2(a1) = 0, and x2(az2) > 0. Pick arbitrary x}, x5 € M such
that x; = x1 and x5, = x2. We have x}(a1) > 0, x}(a2) = 0, XQ(al) = 0, and x5(a2) > 0,
so, by the definitions of A4 (E; (7),7) and of A (E;,,(7),7), we have x| € A (E;, (1), 7) and
X5 € A (E; (1), 7). Therefore, we can apply Lemma 5.13 to the facet F; (7) of 7, to the edge
E; () of 7, and to the degree x} and find another degree x} such that x{ — x} is a multiple
of b(F _(7')) and x{ € A (B (7 ) 7). Similarly, by Lemma 5.13 applied to F; (1), to E; (1),
and to x5, there exists a degree x5 € A (E; (1), 7) such that x5 — x5 is a multiple of b(F; (7)).
In other words, X1 = X1 x1 and X2 = X5 = X2

Now we have degrees x7, x5 € 7" satisfying the following conditions: x/(a2) = x4(a1) = 0,
0<x{(a1) = xi(a1) <b,0< XIQ/(CLQ) = x2(az2) < b. Decompose X/ into a positive integer linear
combination of )\ The elements )\ of the Hilbert basis occurring in this decomposmon satisfy
by j(az) = 0and 0 < by j(a ) < b, and for at least one of them we have X, j(a1) > 0. Similarly,
there exists )\k satisfying )\k(al) =0and 0 < )\k(ag) < b. We can write this as

Ajlar) <b=(=b)- (—1) = —bxo(a1) = x(a1)
and N
Ajlaz) = 0 <b = (=b) - (=1) = —bxo(a2) = x(a2),
o) )\ € AX Similarly, Ay € AX

F; (1) F; (1)
element of the Hilbert basis, its class in Mis0eA—

Finally, as we saw previously, b(A4 (F; (1), 7)) is an
—X0,a1,a2,b> S

b(A(F; (1),7)) € A;(‘;(T).

Now we claim that )Tj, A, and b(A (F; (1),7)) Q-generate M@. Indeed, )Tj(al) # 0, while
b(A (F; (1),7))(a1) =0

by the definition of A" (F; (7),7). Hence, )T] and b(A(F; (7),7)) are linearly indepen-
dent and Q-generate Spang (.4 (E;,(7),7)). Similarly, A and b(A(F; (1),7)) Q-generate
Spang (4 (E; (7),7)). The linear span of these two planes can be two-dimensional only if these
two planes coincide, but A (F; (7),7) and A (E; (1), 7) are two different facets of 7", so

Spang(Aj, A, b(A (Fy (7),7))) = Ma,

and

Spang (A%, = M.

F; (T))
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Corollary 5.16. If x = xo (resp. X = —Xo), then ker((A¥! @7 C)* — (AX? @z C)*) equals
the space of sequences of the form (g1, ..., get(r)) (Tesp. (91,---,9e-(r))); where g; is a linear
function on Spang (A (Ef (1),7)) ®g C (resp on Spang (A (E; (7),7)) ®g C), and where

gi|Span@((/1/(Fzr (7),7))®C — 9i+1 ’SpanQ(t/V(F;r(T),T))(@Q(C

for 1 <i<et(r) (resp.

9ilspang (4 (F; (7)) @gC = 9t spang (4 (F; () m))@qC
for1<i<e (1))

Proof. The claim follows directly from Corollary 5.8, Lemma 5.10, Lemma 5.11, and Proposition
5.15. 0

Corollary 5.17. If x = axo (resp. X = —axo), where a € N, a > 2, then ker((AX! @z C)* —
(AX? @7 C)*) equals the space of sequences of the form (g1, ... s Get (7)) (resp. (g1 9e—(r)));

where g; are linear functions on M@ ®q C satisfying the following conditions for 1 < i < et (1)
(resp. for 1 <i<e (7)):

1. Ifb < [Ff (1) N [xo = 1]| (resp. b < |F; (7) N[xo = —1]|), then

9ilspang (xo. ¥ (FF (1) m))@oC = 9i+1lSpang (xo, 4 (FF (7)) 00C

(resp.
gi‘SpanQ(XQ,E/V(F;(T),T))@@(C = Git1 \spanQ(Xo,,/V(F; (7),7)®qC
).
2. If b > [F (1) N [xo = 1]| (resp. b> |F; (1) N [xo = —1]|), then g; = git1.
Proof. The claim follows directly from Corollary 5.8, Lemma 5.10, Lemma 5.11, and Proposition
5.15. 0

Now we construct a less invariant, but more explicit vector space isomorphic to ker((AX! @z
C)* — (AX? ®z C)*). Namely, denote by Va11 (resp. by Vai_1) the space of se-
quences of the form (g, ... ,g"3+(T)) (resp. (g, - - - 7g"a,(T))), where g, is a linear function on
Spang (A (F7 (1),7)) ®g C (resp. on Spang(A (F; (1),7)) ®g C). For a € N, a > 2, de-
note by Va1, (resp. by Va1 _,) the space of sequences of the form (g, ... ,gt’#(T)) (resp.

/

(g, ,ge,(T))), where
1. g} is a linear function on M@ ®q C.

2. If1<i<et(r) (resp. 1 <i<e (7)) and a < |E;_1(Ap)| (resp. a < |E;_1(Ax)]), then
g, is a linear function on

(Mg &g C)/(Spang(xo, A (F} ,(7),7)) €g C)

(resp. on (Mg ®q C)/(Spang(xo, 4 (Fy_,(7),7)) @g C)).
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5 Connections between T" (X ) and graded components of T of toric varieties

3. Ifl<i<e’(r) (resp. 1 <i<e (7)) and a > |E;_1(Ag)]| (resp. a > |E;—1(A)]|), then
gi=0.

Lemma 5.18. If x = xo (resp. X = —Xo), then ker((AX'®7C)* — (AX2®7C)*) is isomorphic
to Va1 (resp. to Voi,_1). After this identification, the map (A0 @7 C)* — (AL @7 C)* (in
fact, the map (A0 @7 C)* — ker((A¥! @7 C)* — (AX2®7 C)*)) becomes the following map: it
maps g € (AO®7C)* to the sequence of restrictions of g to the lines Spang (A (F (7),7))®gC
for 0 <i <et(r) (resp. Spang (AN (F; (7),7)) ®g C for 0 <i<e (7))

Proof. Again, the positive and the negative cases are completely analogous, so we consider only
one of them, for example, the case when y = —xg.

First, we should note that a function from (AX? ®z C)* is really defined on all lines
Spang (A (F; (1), 7)) ®qC (and the restriction mentioned in the statement of the Lemma really
exists) by Lemma 5.9 since each normal cone A (F; (7),7) (for 0 <i < e~ (7)) is contained in
(the boundary of) a cone A (E; (7),7) for some j, 1 < j < e (7).

The isomorphism is constructed as follows. Given a sequence

(glv v 7ge*(7')) € ker((AX’l Xz C)* - (AX’2 Xz (C)*)7

we set
I
90 = 91 |SpanQ(JV(F0_ (7),7))®qC
and
I
9, = gl|Spal’lQ(e/V(Fi_ (1),7))®qC

for 0 < i < e (7) and say that (g1,...,9e- (7)) = (90, - - ,g;_(T)). Observe that by Corollary
5.16, we also have

/
9i-1 = Gilspang (¥ (B, (7):7))®0C

for 0 < 7 < e (7). Since Spang (A (E; (7),7)) ®p C is a two-dimensional space, and
Spang (A (F;_,(7), 7)) ®g C and Spang(4 (F; (1), 7)) ®q C are its noncoinciding one-dimen-
sional subspaces, a linear function on Spang (4 (E; (1), 7)) ®g C is uniquely determined by its
restrictions to Spang (A (F; (1), 7)) ®qC and Spang (4 (E; (1), 7)) ®qC, and these restrictions
can be arbitrary linear functions. Therefore, the map we have constructed is really an isomor-
phism. The correctness of the explicit description of the map (AX’®zC)* — V2,1,—1 in the state-
ment of the lemma follows directly from the definition of the map (AX? ®z C)* — (AX! @z C)*
and of the isomorphism between ker((A*! @z C)* — (AX? @z C)*) and Va1 1. O

Lemma 5.19. If x = axo (resp. X = —axo), where a € N, a > 2, then ker((A¥! @7 C)* —
(AX2 @7 C)*) is isomorphic to Vaia (resp. to Vai,_q). After this identification, the map
(A0 @7 C)* — (At ®zC)* becomes the following map: it maps g € (AP ®zC)* = (M ®¢C)*
to (g,0,...,0).

Proof. This time let us consider the case x = axg, the other case is completely similar.
First, let us construct a map from ker((A%¥! @z C)* — (AX? @z C)*) to Va1, Given a
sequence
(91, - -+ Get(r)) € ker((AX! @7 C)* — (A¥? @7 C)*),
we set
Gh =0
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and
9i = 9i — gi-1
for 1 < < e™ (7). By Corollary 5.17,

gi|SpanQ(X0,JV(F?_1(T),T))@Q(C = gi-1 ’SpanQ(xo,JV(Fj_l(T),T))@Q(C

if a <|F/(r)N[xo=1]], and g; = gi—1 if a > [F/ (1) N [xo = 1]|. (here 1 <i < e (7). Recall
that E;(Ag) = F; (1) N [xo = 1]. So, we can say that

9§‘Span@<xm<F? (D@eC = (9 = 91 lspang (xo. 4 (FF, (7). m))@eC = O

if a < |E;j—1(Ao)|, and ¢, = ¢; — gi—1 = 0 if a > |E;_1(A¢)|. Therefore, (g4, ... ,gé+(T)) really
defines an element of V31 4, and we say that (g1, ..., get(r)) = (97, - - 79;+(r))'
The inverse map can be constructed by induction on i. Let (g7,...,9.+ (T)) € Va1,4. First,

set g1 = ¢;. Now suppose that we already have g;_1 € (]\7@ ®g C)*. If a > |E;—1(Ap)], set
gi = gi—1. Otherwise, g/ is a linear function on (M@ ®q C)/(Spang(xo, A (F;_1(7), 7)) ®q C).
It gives rise to a function on M@ ®q C, which vanishes on Spang(xo, -4 (F;_(7), 7)) ®g C and
which we also denote by g}. Set g; = gi—1 + g,. Then

(9i = 9i-1)|spang (xo, ¥ (FF, (1)) @eC = 0

Now we have a sequence (gi, ..., ge+(T)) of functions on M@ ®g C, and by Corollary 5.17,
(91, - -+ Yot () € ker((AX! @7 C)* — (AX? @z C)*). So, we have constructed a map Va1, —
ker((AX¥! @7 C)* — (AX2 @z C)*). It is clear from the construction that the two maps we have
are mutually inverse. s

By Corollary 5.9, (AX? @7 C)* = (M ®g C)*. Again, it is clear from the definition of the
map (AX? @z C)* — (AX! ®z C)* and from the construction of the isomorphism between
ker((AX! @7 C)* — (AX?2 ®z C)*) and Va1, that after this identification ker((AX! @z C)* —
(AX¥? ®7 C)*) 2 Va1, the map (AX? @z C)* — (AX! @7 C)* becomes the map

(9€ M 200)") = ((9,0,...,0) € V).
Ul

Corollary 5.20. If x = xo (resp. X = —xo) and e (1) = 1 (resp. et (r) = 1), then
dim 7! (X) = 0.

If x = xo (resp. x = —xo) and e* (1) > 2 (resp. €*(r) > 2), then dim T (X) = e* (1) — 2
(resp. dimT! (X) =e (1) —2).

Proof. We consider the case y = xg, the other case is completely similar. Note that
dim Spang (A (Ff (7),7)) ® C = 1, so dimVa11 = e"(7) + 1. Also note that it follows
from the description of SpanM(AO’X) ®z C in Corollary 5.9 and from Lemma 5.18 that the map
(AX0 @z C)* — Va1 is in fact an embedding, so dim T} (X) = dim V1,1 — dim(AX? @z C)*.
Now, since A4 (F; (7),) for different i are different edges of 7V, we have dim(AX° @z C)*

min(3,e"(7)+1). Thus, dim(AX%®zC)* = 2ife*(7) = 1 and dim(AX°®zC)* = 3ifet(r) > 2.
Finally, we have dim Vg 11 = 1+41-2 =0ife" (1) = land dim Vo171 = " (7)+1-3 = e™(7)—2
if et(7) > 2. O
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5 Connections between T" (X ) and graded components of T of toric varieties

Proposition 5.21. If x = axo (resp. x = —axo), where a € N, a > 2, then dimT"  (X) equals
the number of indices i such that 1 <i < et (1) (resp. 1 <i<e (1)) and a < |E;(Ao)| (resp.
a < |Ei(Ac)l)-

Proof. This follows directly from the definition of Vg ; , and Lemma 5.19. O

Now it is already easy to deduce Theorem 4.32 in the case when X is in fact toric from
Theorem 5.2. First, let us compute the sum

o0
> dimT!, (X
a=2

By Proposition 5.21, this sum can be decomposed into e (7) — 1 = v(Ag) — 1 sums (indexed
by i =1,...,e"(7) — 1), and each of these sums contributes 1 for 2 < a < |E;(Ap)| and 0 for
larger values of a. Therefore, the ith of these sums equals |E;(Ag)| — 1, and we have

v(Ap)—1

Zdlm —axo Z (|E1(A0)| _1)'

i=1

Observe that this sum vanishes if v(Ag) = 1 (i. e. if 0 € P! is a removable special point).
Similarly,

V(As)—1
S dinTl (0= . (Bi(Aw)— 1)
a=-2 i=1

And again, this sum vanishes if v(Ay) = 1, i. e. if oo € P! is a removable special point. Now,

by Corollary 5.20, dim T}XO(X) = 0if 0 € P! is a removable special point, and dim T}XO(X) =
v(Ap) — 2 otherwise. Similarly, dim 7. %0 (X) = 0 if co € P! is a removable special point,

dimT?!, (X) = v(As) — 2 otherwise. Hence, if 0 € P! is a removable special point, then

—X0
Z dim T’ 7aX0 =0,

and if 0 € P! is an essential special point, then

v(Ag)—1
ZdlmTlaXO v(Ag) =2+ > (|Ei(Ag)| 1)
=1
V(Ao) 1 V(A()) 1
=—14+v(A) -1+ Y (Ei(Ag)|-1)=-1+ > (JEi(A))).

=1 =1

Similarly, if co € P! is a removable special point, then

> dimT!, (X) =0,

a=-—1
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and if co € P! is an essential special point, then

v(Ax)—1

S am Tl () =14 Y (A,

a=-—1

Finally, recall that by Corollary 5.4, dim Toleﬁ(X ) =0, and we get the formula from Theorem
4.32.
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6 A formally versal T-equivariant deformation
over affine space

6.1 Construction of the deformation

In this section we construct a formally versal T-equivariant deformation of a T-variety X over
an affine space used as the parameter space. The Kodaira-Spencer map of this deformation
maps the tangent space to this parameter space surjectively onto the zeroth graded component
of T1(X). These properties of the deformation will enable us to prove that the deformation
has some good versality properties, namely so-called formal versality.

We maintain the notations and the assumptions from the Introduction. Recall that we have
a polyhedral divisor 2 = "7 | p; ® A;, where A; C Ng are polyhedra, and all their vertices
are lattice points. From now on, without loss of generality, we may and will suppose that the
point with coordinate oo on P! is a removable special point, p, = co. Recall that if we add
a principal polyhedral divisor to &, the T-variety will not change. So, after we add several
principal polyhedral divisors, each of which has two (removable) special points, p; (1 <7 <r)
and oo, to Z, we may suppose that V,,; = 0 (the origin in N) for all special points p except
0o. In other words, E, o is always a ray, which begins at the origin.

Remark 6.1. After these changes, all special points except p, will be either essential or trivial.

Lemma 6.2. If A C Ng is a polyhedron with tail cone o and such that Vi(A) = 0, then its
individual evaluation function takes only nonpositive values.

Proof. Tt is clear that if V{(A) =0, then o C A. O

Lemma 6.3. In the assumptions stated above, the individual evaluation function of Ap, takes
only nonnegative values and takes positive values on the interior of o¥. Therefore, A, C o.

Proof. If x € 0¥ N M, then deg Z(x) = >_i_; evala, (x) > 0 since Z(x) is semiample. Since
evala, (x) < 0 for 1 < i <r, evala, (x) > 0. If x, moreover, is in the interior of o" then
deg Z(x) > 0 since Z(x) is big. So, evala,_(x) > 0. O

Denote A =>"7_| A,,.

Remark 6.4. If x € 0VNM, then deg 2(x) = evalx(x) and dimI'(P!, 0(2(x))) = evalx(x)+
1.

Definition 6.5. We call a polyhedron = C Ng with tail cone o primitive if:
1. v(E) =2.
2. |[E1(B)] =1.

3. Vi(E)=0€N.
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6.1 Construction of the deformation

Figure 6.1: An example of a primitive polyhedron.

In other words, a primitive polyhedron is the Minkowski sum of ¢ and a specially chosen
primitive lattice segment. One of the endpoints of the segment should be the origin, but this
segment cannot be chosen totally arbitrarily, otherwise we could also obtain a polyhedron =
with Vo(2) =0 € N, not V1(E) =0 € N, or we could also get o itself, if the segment is inside
o. Fig. 6.1 shows an example of a primitive polyhedron.

Remark 6.6. If = C Ng is a primitive polyhedron with tail cone o, then its individual evalu-
ation function takes only nonpositive values.

Clearly, if A C Ng is a lattice polyhedron with tail cone ¢ and with V;(A) = 0, then A
can be decomposed into a Minkowski sum of several primitive polyhedra (each of them can
be taken several times). Decompose each polyhedron A,, (1 <4 < r) into a sum of primitive
polyhedra. Denote by =1,...,=gr all non-isomorphic primitive polyhedra we have. We have
Ay, = ;ni;Z; for 1 < j <r and for some numbers n; ; € Z>o. Denote k; = Zj n;,j. In other
words, k; is the total number of times when a polyhedron =; occurs in the decomposition of
some of the polyhedra A, (for some j, 1 < j < r) into a Minkowski sum of primitive polyhedra.

Remark 6.7. For each i (1 < i < R), the individual evaluation function of Z; is linear on
each of the cones in the total normal fan of 2.

Remark 6.8. A, + Y1 kZ =" A, =A.

First, let us construct an affine variety S, which will be the total space of the deformation.
It will also be a variety with an action of a torus of dimension 2, and we use the general
construction of such varieties outlined in the Introduction. Consider a vector space V with
coordinates a1,0,...,01 k;—1,02,0; 502 ky—1s---,AR,0; - - - » AR kg —1 Here we take k; coordinates
for each primitive polyhedron Z; we have. Consider also a projective line P! with coordinate
to. Set Y =V x PL. For divisors Z; (1 <i <R) we take the vanishing loci of the polynomials
tlgi + Z’,?;Ol amktlg (these are polynomials in k; + 1 variables a;,...,a; k,—1,to, not just in one
variable tg). Consider one more divisor Zy = {tp = oo}. Finally, for a polyhedral divisor we
take ® = Zo © Ap + S0 | Z; @ E.

It is not very easy to check directly that this polyhedral divisor is proper, but it is clear that
it defines a (possibly non-finitely generated) algebra A. We will find an easy description of this
algebra and then see directly that it is finitely generated.

The easiest way to describe the algebra A is to embed it into an algebra of polynomi-
als. First, choose a Z-basis {x1,x2} of M so that all points of ¢¥ N M are linear combina-
tions of x1 and o with positive coefficients. In other words, the cone generated by x; and

X2 contains o¥. Denote the dual basis of N by x} and x5. Then we will embed A into
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6 A formally versal T-equivariant deformation over affine space

Cla1,0,- 01k —15---,AR,0, - - - » OR, kg1, t0, t1, t2], where the variables ¢; and ty determine a
grading (i. e. we introduce an M-grading on this algebra, and deg(t1) = x1 and deg(t2) = xo,
while the degrees of all other variables equal zero). For each x € ¥ N M denote by P, the
following polynomial:

R k;—1
Po=TI0 + 3 auath) o=,
i=1 k=0

Lemma 6.9. Let x € 0¥ N M be a degree. Then evala, (x) + Zf;l k;evalz,(x) > 0, and the
Xth graded component of A is a free C[V]-module generated by

thid(x)t;é(x)’ thfT(X)tg‘;(X)to, o thicf(x)t;é (x)tgvalz(x)'
Proof. ®(x) is a linear combination of the divisors Z; (1 < ¢ < R) with nonpositive coefficients

(Remark 6.6) and of the divisor Zy with a nonnegative coefficient (Lemma 6.3). Therefore,
I'(0(D(x))) is a subspace in the polynomial ring in the variables

a1,0y++5A1 k1—15--+,AR,0y -+ 7aR,k‘R—1at0'

Namely, these polynomials are of degree at most evala, () with respect to to, and they are
divisible by each of the polynomials

ki—1

T ST e
k=0
. . X1 (00 x5 (x)
To get the corresponding graded component of A, we have to multiply them by ¢7'"¢52*"".
Therefore, the yth graded component is generated by

* * * x * x eval r(x)-‘,—ZZB: k; evalz, (x)
thfl(X)th(X)’ thi(l(X)t;Q(X)tO; ) ,thfl(X)t;Q(X)to Ap 1

as a C[V]-module. The claim follows from Remark 6.8. O

Recall that in Chapter 3 we chose a set of degrees {1, ..., Ar}, which contained Hilbert bases
of all cones in the total normal fan of 2.

Lemma 6.10. The algebra A is finitely generated. More precisely, the generators from Lemma
6.9 for degrees \; generate A.

Proof. Fix a degree y € 0¥ N M, and let T be a cone from the total normal fan of 2 containing
x. Then all individual evaluation functions of polyhedra =; are linear on 7, and the individual
evaluation function of A, is also linear on 7 (and even on o) since p, = oo is a removable
special point. If X', x” € TN M and x' + x” = x, then Px'P,» = P, and each element of the
basis of the yth graded component of A from Lemma 6.9 is a product of an element of the basis
of the x’th graded component and of an element of the basis of the x”th graded component.
Therefore, since {\;} contains the Hilbert basis of 7, all components of A of degrees \; generate
the yth graded component. O

So, S = Spec A is an algebraic variety, and T acts on it. We have k1 4+ ... + kr global
T-invariant functions a; ; on X, so we have a T-invariant map S — V, which we denote by
£ It follows directly from Lemma 6.9 that this morphism is flat. We can consider both
V' x Spec Clto, t1,t2] and S as varieties over the base V.
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Lemma 6.11. The morphism V x Spec C[tg, t1,t2] — S of V-varieties is stably dominant.

Proof. We will construct a graded C[V]-module K C C[V]® Cl[to, t1,t2] such that K NC[S] =0
and K @ C[S] = C[V] & Clto, t1,t2]. We are going to construct each M-graded component
of K separately. Fix a degree x € 0¥ N M. Note that if we consider P, as a polynomial
in to only, its leading coefficient will be equal 1, and its degree will be — ) k;evalz,(x) =
evala, (x) — evalgx(x). Now it follows from Lemma 6.9 that for the yth graded component
of K we can take the module generated by the following generators: t’gtTT(X)t;CE(X), where
0 <k <evalp, (x) —evalz(x) or k > evala, (x). The claim follows from Remark 2.18. O

Now we are ready to compute the fibers of £ using Lemma 2.21. For an arbitrary point

(0) (0) (0) (0)
(a1,07 s k1 OR s aRka_l) eV
we define a divisor
Do o © o

1,009 kg —1 %R, 009 OR kg —1

on a projective line as follows. Consider a projective line P! with a coordinate function ¢. For
each i (1 <i <R) denote by b;1,...,b;, the zeros of the function

k;—1
ki (0) 4k
t —}—E ai7kt
k=0

on P! with multiplicities (i. e. if we have a zero of order more than one, we write the same point
several times, for example, b; 1 and b; 2 can be the same point). Then, for each i (1 <i < R)
and for each j (1 < j < k;) we put Z; at the point b; ;. If we put several polyhedra at the same
point of P! (for example, if we had a zero of order more than one, or if the functions different
values of 7 vanish at the same point), we take the Minkowski sum of them instead. Finally, we
put A, at the point of P! with coordinate oo.

Lemma 6.12. Let

0 0 0 0
(agyg, e 7a(1,111—17 e a%{,)m e a%’)kal) eV

be an arbitrary point. The fiber of & over this point is the T-variety defined by

Do (o © 0
1,009 gy —19%R, 009 IR kg —1

a polyhedral divisor on PL.

More precisely, the construction of a T-variety out of a polyhedral divisor identifies the global
functions on the T-variety with sections of line bundles on PL. In this case, this identification
works "in the natural way”, namely, as follows. Fiz a degree x € oV N M. The restriction of a

function thTT(X)t;(;(X)tg to the fiber is identified with the rational function

.
Py th € Op1(D 0 © 0 (X))
to=t @100 oy 15 OR,00 PR kg — 1

aij=a;)

Proof. First, let us check that

Do © O
1,001 kg —1990R,00 IR kg —1
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6 A formally versal T-equivariant deformation over affine space

is a proper polyhedral divisor. Since this is a polyhedral divisor on P!, it is sufficient to check
that for each xy € 0¥ N M

deg® o © o  (x)=deg2(x),

1,009 &y —1 %R0 IR kg —1

where & is the original divisor on P! describing the variety we are going to deform. We have

R
deg® 0 0 o o (X )ZdegApr(X)+Zki deg Ei(x) =
1,00 kg 19 9R,0 IR kg —1 ‘
R
deg Ay, (x +Z Zn”degal )) =deg Ay, (x +ZdegApJ( ) = deg Z(x),
=1 j5=1 7j=1
and
£3)
<10())7 »gol)cl 1 7‘1907 vag))kR 1

is a proper polyhedral divisor.

Fix a degree x € 0¥ N M. Let us compute

L(Op1(D,0 o o (X))

07 9k —1 R0 IR kg —1

Recall that Minkowski addition of two polyhedra leads to summation of their individual evalu-
ation functions. Denote all distinct points among b; ; by b,...,b,. For each j (1 < j <) and
for each i (1 <i < R) denote by c¢;; the order of zero of the function

thi 4 Z a(o)tk

at the point b;. In other words, ¢;,; is the amount of indices j' (1 < j’ < k;) such that b; ; = b;-,.
Then the polyhedron in

D OB (0) (0)
1,009 kg —1790R, 07 OR kg —1
. /. R —_
above a point b is D icq €l
Then the global sections of
Op1(D 0 o L0 o (X))
10’ Lk 1D R,0OTRER —1

are the polynomials in ¢ of degree at most evala, (x) divisible by

l R I
H t ¢t b/ > ki evalg, ( H H t ¢ b/ ek evalz, (x) —
k=1 k=1

=1k
H (H (t — t(by ;)" )) H (tk i Z (O)tk> evalz; () _
J

=1 =1 =1

PX|t0:t and aiyj:agoj) for 1<i<R,1<j<k;’
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6.2 Kodaira-Spencer map for a deformation given by perturbation of generators

On the other hand, if x = myx1 + maxe, then, by Lemmas 2.21 and 6.11, the functions of
degree x on

_ 0 0 0 0
£ 1(ag7[)),.. aglll 1,...,a£{’)0,...,a£{’)kR_1)

are C-generated by the images of polynomials
Pt PAT T, L P AN
under the quotient map
(ClV]® Clto, t1, t2]) = (C[V] @ Clto, t1, t2]) /(1 (C[V] & C[to, t1, t2])),
where I is the ideal in C[V] generated by equations a; ; = a( ) In other words, the polynomials

evalx(x)

P AT P, L Pty A

after the substitutions a;; = a( ) ¢ generate the space of the functions of degree x on the
fiber. O

Corollary 6.13. dimS = dim V + 3. O

For each ¢ (1 < i < R), denote by a(l) ...,al(lk)i_l the coeflicients of the polynomial with
leading coefficient 1 and with roots at the points p;, where the root at p; has multiplicity n; ;.
In other words,

th 4 Z af )tk = H t—t(p;))™
7j=1
as polynomials in ¢. Fix this notation until the end of Chapter 6.

Corollary 6.14. The fiber

1, (1 1 1 1
£ 1(a§,3’ ... ,a§7,11_1, e a%?o, e a%&,)kR—l)

1s isomorphic to the original T-variety X, which we are deforming, and which was constructed

rom the polyhedral divisor &.
f h lyhedral d 9 L]

Therefore, we have constructed a deformation of X over V. Now we are going to compute
the Kodaira-Spencer map of this deformation.

6.2 Kodaira-Spencer map for a deformation given by perturbation
of generators

We are going to consider the following general situation. Suppose that we have a deformation
of a normal variety X over an affine line. Denote the total space of the deformation by S
and the function from S to C! by &. Note that by definition this means that the scheme-
theoretic fiber £71(0) is X. Suppose also that S is embedded into a vector space, where ¢

is one of the coordinates, and the other coordinates are #1,...,%,. These data canonically
define a set of generators of the algebra C[S], denote them by £, x1,...,z,. Suppose also that
we have another vector space C**1 with coordinates vo,y1,. .., yr, and a dominant morphism
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6 A formally versal T-equivariant deformation over affine space

b: CF*1 — S. Note that it already follows that S is irreducible. Suppose that b satisfies the
following two conditions:

1. £ob = yo, in other words, the coordinate £ of a point b(yo,...,yx) equals yo. This
condition implies that b~!(X) = (£ 0 b)7'(0) = {yo = 0}, moreover, the scheme-theoretic
fiber also equals {yp = 0}.

2. The restriction of b to the hyperplane yg = 0 is a dominant morphism to X. This condition
implies that X is irreducible.

3. The restriction of b to the hyperplane yg = 0 maps it birationally to X.

In algebraic terms, the existence of such a morphism b and these conditions mean the follow-
ing. Suppose that b is given by polynomials: z; = P;(yo, ..., yx). Then C[S] can be understood
as the subalgebra of Clyo,...,yr] generated by yo and Pi,...P;. For each a € C such that
blyo—a is dominant, the algebra of functions on £7(a) can be understood as the subalgebra of
Clyi, .. .,yk] generated by Pj|, —.. In particular, C[¢71(0)] = C[X] becomes the subalgebra
of Cly1, ..., yx) generated by Pj|y,—o, and then, informally speaking, when X is deformed, the
generators of the subalgebra are also deformed, and the algebra of functions on the deformed
variety is the subalgebra generated by these deformed generators.

First, let us prove in this setting the following easy corollary of Hilbert Nullstellensatz.

Lemma 6.15. Let f: S — C be a regular function such that f ob (which is a regular function
on CF*+1) can be written as yoh, where h € Clyo, ..., yx]. Then there exists fi € C[S] such that
f=¢&fitand h= fiob.

Proof. For each point 2 of X of the form x = b(0,y1, ..., yx) we have

f(x) = f0,y1,...,yx)) = 0.

The set b({yo = 0}) is open and dense in X, so f|x = 0. By Hilbert Nullstellensatz, some
power of f is divisible by &, but since X is the scheme-theoretic fiber of £ above zero, the ideal
¢C[9] is radical, and f itself is divisible by £. Let f; € C[S] be such that f = £f;. Then
yoh = fob=(£0b)(f1 0b) =yo(f10b). Therefore, h = fi ob. O

Let U C X be a smooth open sunset such that codimx (X \ U) > 2. And let U C
U be a subset such that (bly,=0)~ ' is defined on U’. Consider the following section of
Ot +n—Spec Cle,i1,...,3,] U7+ 2t each point x € U we have

0
U(.Z') = d(b|y0:o)*1(x)b <8y0> .
The first coordinate of this vector (the coefficient in front of 9/0¢) is always one.

Consider the restriction of the deformation £: S — C' to the double point at the origin
corresponding to the vector 9/9¢. Denote the total space of the deformation by S and the flat
morphism by ¢: S — Spec C[e]/e? Denote the restrictions of functions z; to S by ;.

Let I C C[Z1,...,2s] be the ideal of equations of X, i. e. C[X] = Cl#1,...,Z,]/I. Since we

have chosen lifts of generators of C[X] to C[S], we have a uniquely determined map I/1%? — C[X]
representing the deformation.

Proposition 6.16. For each function g € I, denote by g° € C[¢, &1,...,%n] the image of g
under the natural embedding C[&1, ..., d&,] < C[E, &1,...,%n] (9° actually does not depend on &

110



6.2 Kodaira-Spencer map for a deformation given by perturbation of generators

and, informally speaking, equals g as it is written). Set u(g) = dg°(v) (we apply the differential
of a function to a rational vector field and get a rational function).

1. For each g € I, u(g) is a regular function on the whole X (by definition we only know
that it is defined on U’)

2. 1 is a well-defined C[X|-linear morphism 1/I* — C[X].

3. u represents the deformation e: S — Spec C[e]/e? in TY(X).

Proof. The function u(g) is a rational function on X, so it can be written as a ratio of two
polynomials in x1,...,x,, and the second of them has no zeros inside U’. Fix these two
polynomials and consider them now as polynomials in &, z1, . .., z,. Then we will get two regular
functions on S, denote them by P and @, respectively. Then Q(z) #0ifx € U' C X C S, and
P(2)/Q(x) = ulg) (@) if z € U.

Now consider a rational function (P/Q) o b on C**1. Let (0,91,...,y%) € C¥*! be a point
such that b(0,y1,...,yx) € U'. Then

(P/Q)(b(0,y1,- .- yk)) = n(g)(b(0,y1, ..., yk)) =
A0,y 9 (V(OO0, Y1, k) =
(0,150 9" ((8/0y0b) (blyo=0) " (b(0, 91, - .., yk)))) =
d(0,1,....90)9°(0/0Y0b(0, y1, . . ., yr)) = (8/0y0)(g° 0 b).

Therefore, the functions (P/Q)ob and (9/dyo)(g° ob) coincide on b~ (U’). Then the functions
Poband (Qob)((0/0yo)(g°ob)) (both of them are regular) also coincide on b=*(U’), which is
an open subset of the hyperplane {yo = 0}, and their difference Pob— (Q 0 b)((0/0yo)(g° o b))
is a polynomial divisible by .

Consider the following regular function on C**1: g°ob—1,0/0yo(g° ob). Clearly, it vanishes
if yo = 0. Moreover,

9/0y0(g° o b — y90/Iyo(g° 0 b)) = —yo0* /Y3 (g° o b),

SO
(0/0y0(g° 0 b — y00/yo(g° © b)))|ye=0 = 0,

and g°ob—1y0d/dyo(g° ob) is a polynomial divisible by y3. Hence, (Qob)(g°ob—1y0d/dyo(g°ob))
is also divisible by y3. We also know that (P o b)yo — (Q o b)yo((0/dy0)(g° o b)) is divisible by
Y2, 50 (Qob)(g°ob) — (Pob)yy = (Qg° — P&) ob is divisible by y2. Then by Lemma 6.15 applied
twice, Qg° — P¢ is divisible by £2 in C[S].

Recall that we have lifts z; € (C[g] of the functions z; on X. So, the restriction of the
deformation £: S — C! to the double point at the origin can be represented by an element
of Homc[x}(I/IZ,C[X]). In particular, there exists a polynomial g; € C[Z1,...,&,] such that
9(T1,...,Tn) = eg1(T1L, ..., Tp) in C[S]. By the definition of C[S] this means that g(z1, . .., 2,)—
€g1(x1,...,xy) is divisible by £ in C[S]. Denote the function g;(z1,...,%,) understood as a
function on the whole S by ¢f. Then Qg° — Q£g{ is also divisible by 2. Therefore, Q€g] — P&
is divisible by ¢2 in C[S]. Since S is an irreducible variety, Qg — P is divisible by ¢. So,
(Qgy — P)|x = 0, and this by definition of the field of rational functions means that g1 = u(g)
in C(X), and u(g) is in fact a regular function on X.
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6 A formally versal T-equivariant deformation over affine space

Let us check that the map u is C[#1,...,Zy,]|-linear. The additivity of p is clear. Choose a
polynomial h € C[#1,...,d,] and denote by h° the polynomial h understood as a polynomial in
&, %1,...,%n. Then u(hg) = d(h°g°)(v) = h°dg°(v)+g¢°dh°(v), but u(hg) is a function on X, and
the second summand on X equals zero, and the first summand on X equals hdg®(v) = hu(v).

Now, since p1 is a C[#1, ..., #,)-linear map from I to C[X], it vanishes on I/I? and induces
a C[X]-linear map from I/I? to C[X]. And we have already seen before that u(g) coincides
with the image of g under the map I/I? — C[X] corresponding to the first order deformation
in TY(X). O

We keep the notation p introduced in Proposition 6.16 for further usage. Recall that the first
coordinate of any vector v(z), where x € U’ equals 1, and that ¢° does not actually depend
on {. Denote the projection of v to Ocn_gpecClzy,....z,] PY U- So, If we replace v by v in the
definition of pu(g), we will get the same function. We will call v the field of deformation speeds
of the deformation ¢: S — C!.

To formulate the next proposition, recall that U C U’.

Proposition 6.17. There exists a section v € T'(U, Nxccn) such that V'|yr coincides with
the image of the field of deformation speeds under the canonical map of sheaves Ocn|yr —
Axcenlyr. Denote the image of v' under the snake map for the exact sequence of sheaves

0— @U — @(Cn’U _>f/VX§<C"|U —0

by v € HY(U,Op). Then in the sense of Theorem 2.4, v represents the deformation e: S —
Spec Cle] /2.

Proof. Recall the sheaf .#Y on X, which was used in the proof of Theorem 2.4. Since X is
affine, each sheaf on X is determined by the C[X]-module of its global sections, and I'(X, .#") =
Homg|x (I/I?,C[X]). By Proposition 6.16, u represents an element of Homg|x (I/I?,C[X]) =
['(X,.#Y), and this element represents the deformation e: S — SpecCle]/e2. Denote the
restriction of this element of T'(X, #V) to U by ul|y.

The subset U satisfies the conditions of Theorem 2.4. Recall one more exact sequence of
sheaves we have seen in the proof of Theorem 2.4:

0— GX’U ¢_|U> ﬁ;‘?n’(] M f\/‘U — O,

The sheaves Ocn |y and ﬁ;‘?"\(] are isomorphic, and this isomorphism identifies ¥ |y and the
embedding of the tangent vector bundles. So, we have an isomorphism |y — Axccnly.
By construction, this isomorphism identifies the quotient map of vector bundles and . A
direct diagram-chase computation shows that this isomorphism identifies u|y with a section
v € T(U, #xcen|u) whose restriction to U’ coincides with .

It follows from the proof of Theorem 2.4 that the element v € ker(H'(U, ©x) — H' (U, 0%™))
representing the first order deformation is obtained from p|y via the snake map for the short
exact sequence

0 — Oxlu w—|U> ﬁ;‘?n’(] M <f\/|U — 0.

But we have identified this exact sequence with the short exact sequence

0 — Oy — Ocn|y — Axcen|ly — 0
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6.3 Kodaira-Spencer map in the particular case of a deformation of a T-variety

so that p|y is identified with v/, therefore, v is also obtained from v via the snake map for this
sequence. ]

6.3 Kodaira-Spencer map in the particular case of a deformation of
a T-variety

Let us apply the results of Section 6.2 to the deformation of the T-variety we have. Section 6.2
speaks about one-parameter deformations, and we have a deformation over a (k1 + ...+ kr)-
dimensional space V. Moreover, the variety X we want to deform is the fiber over the point
o) = (a%, . ,ag’,)ﬂfl, . ,ag?o, . ,a(ri’)kal),

not above the origin. We are going to restrict the deformation to lines (with a fixed coordinate,
which we will denote by &) passing through this point, and then restrict it further to the double
point corresponding to the tangent vector 9/9¢ at the origin of this line. So we will get a map
0,nV — T'(X), which is called Kodaira-Spencer map and which is linear. Since this map is
linear, it is sufficient to compute it for the lines parallel to the coordinate axes in V' only.

So, until the end of Section 6.3, fix two indices, j and k, 1 < j <R, 0 < k < k; — 1 and
consider the following map from an affine line C! with coordinate ¢ to V:

) (1) m ) (1)
E (ag s 0y oy 1o--s a;p+&-.-, AR+ OR kg —1)-

Now let us apply the base change — xy C! to the V-varieties V' x Spec Cltg, t1,t2] and S
and to the morphism V' x Spec Cltg, t1,t2] — S, which was stably dominant by Lemma 6.11.
We will get two new Cl-varieties, Spec C[¢, g, t1,t2] and S xy C! (denote S xy C! = ) and a
morphism Spec C[¢, tg,t1,t2] — S (denote it by b). By Lemma 2.20, this morphism is a stably
dominant morphism of Cl-varieties. Since S is a C!-variety, we have a morphism S — C!,
which we will denote in Section 6.3 by &, because it computes the coordinate on C!, which is &.
In the subsequent sections, where the indices j and k£ will not be fixed anymore, we will denote
this morphism by &; .

The fact that S = S xy C!' means that £: S — C! is the pullback of the deformation
£: S — V to the affine line. Informally speaking, we restrict the deformation to an affine line
(with a fixed coordinate function) in V. By Corollary 6.14, £1(0) = X. We are going to
reformulate Lemmas 6.9 and 6.10 and describe C[S].

For each x € 0¥ N M, denote

aj k= a(llz +£
Q= aﬁ,,?k, ifj' £Ajork’ #k

k-1 —evalgj,(x)
k. ( (1) evalgj () k1
(tojﬂj 0 ait) II (% +Z ayy ot
0<Kk'<k; 1<j'<R
K £k J'#3

These are polynomials in ¢g and &.

Lemma 6.18. For each x € oV N M, the xth graded component of C[S]| (understood as a
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6 A formally versal T-equivariant deformation over affine space

subalgebra of C[E, to,t1,t2]) is the free C[¢]-module generated by

ﬁxtid(x)tgé(x)’ ?XtTT(X)tgs (X)to, o ,?thT(X)t;@ (X)tgvalx(x)'
Proof. We are going to use Lemma 2.21. We treat C[S] as a subalgebra of C[¢, g, t1, 2], and
C[S] as a subalgebra of C[V] @ C[to,t1,t2]. Then, by Lemma 2.21, C[S] is the image of CI[S]
under the map C[V] ® Clto,t1,t2] — (C[V] ® Clto,t1,t2]) ®cpv) ClE], f = f @ I¢pg for all
f € ClV]®Cltg, t1,t2]. By a standard argument for tensor products, this map works as follows:
given a polynomial f in variables

a1,0y,---,41,k1—15---,AR,05---,ARkgr—1> tUa t17 t27
one should substitute
(1) (1) 1) (1) (1)
Q10 Oy oy 15 Qg+ ..., AR> -+ OR kg —1
instead of the variables
a1,05---,01,k;—1,---,AR,05-- - ORkgr—1>

respectively. So, the polynomials thid(X)t;(;(X)t’g become exactly PﬁxtTT(X)t;(S(X)tg, and the
claim follows from Lemma 6.9. O

For each i, 1 <7 < m, let us introduce the following notation. Set

£ pa0) P60, () s gl ()

Xi,0 = K )y X4,1 = 0y« -+ 7Xi,evalK(Ai) = Pf)\iti(l 0
Denote the total number of these generators by n.

Lemma 6.19. C[S] can be embedded into the algebra of polynomials in variables &, tg,t1,ts as
the subalgebra generated by & and all X; 7, where 1 <1 < m and 0 < i< evalK()\i).

Proof. We can use Lemma 2.21 in the same way as in the proof of the previous Lemma. Then
the claim follows from Lemma 6.10. O

In other words, S is now embedded into an (n+ 1)-dimensional vector space with coordinates
¢ and x; i, and X is the intersection of S and the hyperplane £ = 0.

Lemma 6.20. The preconditions of Section 6.2 are satisfied for b, namely:
1. The first coordinate of a point b(&,to,t1,t2) equals &.
2. The restriction of b to the hyperplane & = 0 is a dominant map to X.
3. The restriction of b to the hyperplane & = 0 maps it birationally to X.

Proof. The first claim is clear. Since b is stably dominant, the second claim follows from Lemma
2.20 (applied to the change of base from C! to the point £ = 0 in C!).

For the last claim, let us suppose that £ = 0 and express tg, t1, and ty as rational functions
on X = SNEH0).

First, let us express tg. Choose a degree x in the interior of ¢V. Since Z is an integral proper
polyhedral divisor, dim (P!, £(2(x))) > 2, so evalx(\;) > 1. Then

Pﬁxtid‘(x)t;é(x)jﬁxtfi‘(x)t;é(x)to e C[9],
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6.3 Kodaira-Spencer map in the particular case of a deformation of a T-variety

and ?X\gzot)ff(mtgg(m and E!§:0t¥T(X)t§§(X)to are nonzero functions on X since they are
nonzero polynomials in C[tg,t1,t2]. Their ratio is a rational function on X, and it equals
to.

After we have an expression for ty, take two degrees A; and \; that form a basis of M
(such degrees exist by the definition of the set {A1,...,Am}). Write A; = bsx1 + bax2 and
Air = bsx1 + bexz. Then ¢33t = (%i,0le=0)/(Py;|e=0), and Py, |¢=¢ is a nonzero function on X
since it is a nonzero element of Clto, t1, t2]. Similarly, 1250 = (Xi,0le=0)/(Px, le=0)- So we have

rational expressions for tll’?’tg“ and tll’5tl2’6, and, since \; and Ay form a basis of M, we can also
get rational expressions for t; and £ on X. O

Now we can apply the results of Subsection 6.2.

Lemma 6.21. For each i (1 < i < m) and for each 7' (1 < 7' < evalg(Ny)), the (i,i)th
coordinate of the field of deformation speeds (i. e. the coordinate in front of 0/0(X;|¢=0))
equals

— evalgj ()\z>tl§

X, |e—o-
k; ki—1 (1) g ot'1€
to" + 2 ki—o @it

o
<agp> &0

proves this. The powers of tg, t1, and t3 do not depend on ¢ in C[¢, ¢y, t1, 2], so multiplication
by these powers multiplies the derivative by the same powers. O

Proof. A direct computation of

Denote this field of deformation speeds by w. Recall that we have a rational map 7: X — P!,
which is defined on an open set of X, which we have denoted by Uy. By Lemma 6.20, tg can
be considered as a rational function on X. Also recall that we have a coordinate function ¢ on
Pl

Lemma 6.22. ty is defined on Uy \ 77 1(t = ), and, if € Uy \ 7 L(t = 00), then t(n(x)) =
to(x). If x € Uynn~1(00), then 1/tq is defined at x, and (1/t)(z) = 0.

Proof. Choose an arbitrary degree x in the interior of ¢¥. As we have already seen in the proof
of Lemma 6.20, ty can be expressed as the ratio of two regular functions of degree y on X,
namely,

PylemotyT M52

B X100 x50

Px’§=0t11 ty?

to =

By Lemma 6.12, these generators of the xth graded component of C[X] are identified with
Pyle—oto=tt € T(PY, 0(2(x))) and Py |e—o1y—t € I'(P', 0(2(x))), respectively.
Let x € Uy be a point. By Proposition 2.3,

P7X|g:0t>1<1 (X)té(z ()

is defined at x if and only if o
Pyle=0,t0=t
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6 A formally versal T-equivariant deformation over affine space

is defined at 7(z), i. e. if ¢(w(z)) # oo. So, if t(m(x)) # oo, then ¢ is defined at x, and in this
case Proposition 2.3 also says that to(z) = t(n(z)).
If t(m(x)) = oo, then the rational function

1 Pyle=oo=t
t o Pyle=oto=tt

is defined at m(z), and (1/t)(w(z)) = 0. By Proposition 2.3,

1 E!g:oti‘“")té‘;(")

T 5 X3 (x) 6 (x)
to (Px’£=0t11 t22 to

is defined at z, and (1/tp)(x) = 0. O

Lemma 6.23. If x € Uy and w(z) is not an essential special point, then w is defined at x.
If x € Uy, m(x) is an essential special point, p = pjyr, and n;; = 0 (i. e. the decomposition
of Ay into a Minkowski sum of polyhedra Z; does not contain Z;), then w is also defined at x.

Proof. Denote p = w(z). First, suppose that ¢ is defined at p (in other words, ¢(p) # co. Then
to is defined at x and to(x) = t(p). Recall that if p is a removable special point, then it must
be trivial (Remark 6.1).

(1)

We chose the numbers a, ;; SO that the function

kj—1

e 3
k'=0

only has zeros at special points. More precisely, at a special point p; this function has a zero
of order n; j, where the numbers n; j satisfy A, =", n; #Z; But if p = pj is a trivial special
point (j' # r), then n; ;; = 0 for all 7. So, if p is either a trivial special point, or an essential
special point such that n; ; still equals zero, then the function

kj—1
. 1 /
b S
k'=0
has zero of order 0, i. e. does not have a zero at all, at p.

In other words, if t(p) # oo, then

kj—1

ki oy Z ) t(p)F # 0.

But then
kji—1

. 1 /
z)ki 4 Z a;,z,to(:c)k # 0,
k'=0
and the rational function .
to

6
to +Zk, 0 ]k,to
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is defined at .
Now suppose that t is not defined at p, or, informally speaking, t(p) = co. We can write

t’g 1 1
T L ki—k ki—1 (1 o
Syl e T oSy el (1)
By Lemma 6.22, the rational function 1/t is defined at z, and (1/to)(x) = 0. Since 0 < k < kj,
the rational function

t’é
o
750 +Ek’ 0 yk’tO

is also defined (and takes value 0) at x. O

We need to construct some tangent vector fields on X (i. e. sections of ©x). Let f be a
linear function on M with values in Q. In other words, let f be a point of Ng. Recall that
X is embedded into an n-dimensional vector space C* with coordinates x; ;s|¢=o. Consider the
following section of ©¢n|x and denote it by fw}:

le=o

m K 8
:; ; NPirleogc

Lemma 6.24. In fact, w} consists of vectors tangent to X, i. e. w} e'(X,0x).

Proof. 1t is sufficient to verify the condition w} € I'(X,Ox) on an open subset of X. For such
an open subset we can use the open set where (bl¢—g) ' is defined.

So, consider the following vector field on Spec Cltg, t1,t2]: v = f(x1)t10/0t1 + f(x2)t20/0ts.
The differential of bl¢—o maps it to

m evalA()\ (M), x5 () Yo N 1,XT () x5 (A)
oP tkt"l ty? OPy etk X1\ X2 d
((hf ,\ff 0 +taf (x2) ,\1|§ 0% Y1 2 _

= oty Oto 8xz‘,k’
m evalx(\;) \ P
SO + FO)xa(A) Y. Pale=otl A3 »m = wj.
=1 k'=0 b

Now recall that we have a sufficient system {U;} of X. We have q of these sets, and each set
U;, except Ug, corresponds to a pair (p,j’), where p € P! is a special point, and 1 < j’ < Vp.
Sometimes we have two open sets U; corresponding to one such pair, this happens if and only
if p is removable special point and deg Z () > 0 and deg Z(a1) > 0. We have Uq C U; for 1 <
i < q. The union U?:_llUi was denoted by U, and U C Uy. U is smooth, and codimx (X\U) > 2.
We also have an affine covering of P!, which consists of the sets W, = W U {p} for all special
points p, where W is the set of all ordinary points.

We are going to define tangent vector fields w; (one for each set U;) defined on some open
subsets of X so that w — w; € T'(U;, O¢n|x) for each i (1 <i < q). Note that Uq C m~1(W),
so, by Lemma 6.23, w is already defined on Ug, and we can (and we will) set wq = 0.

Now suppose that an open set U; (1 < i < q) corresponds to a special point p and a
vertex V,, . Then U; C 7Y (W,). If p is a removable special point (including the point with
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6 A formally versal T-equivariant deformation over affine space

t(p) = o0), then by Lemma 6.23, w is defined on U;, and we set w; = 0. We do the same if p is
an essential special point, p = p;», but n; j» = 0.

Finally, let us consider the case when p is an essential special point, p = p;», and n; j» # 0.
This means that the convex piecewise-linear function evala, 0¥ — Q can be decomposed into
a sum of several convex piecewise-linear functions, and one of these summands is n; j» evalz;.
Addition of convex piecewise-linear functions can only split maximal subcones of linearity into
a smaller cones, and A (V) ,A,) is a maximal subcone of linearity of evala,. Therefore,
N (Vp,jr, Ap) is a subcone of one of the maximal subcones of linearity of the function evals;.
The function evalg; has two maximal subcones of linearity, they are the normal vertex cones of
the two vertices of Z;, A (V, 1, Ap) C A (Vi(E}),Z;) for some [ € {0,1}. Recall that points
of N, in particular, vertices of =;, can be considered as functions on M, and set

k
tO !

Wi = - -1 TW_vy (=)
to) + Dy alth HE)

Lemma 6.25. For each i, 1 <i < q we have w — w; € T'(U;, Ocn|x).

Proof. The only nontrivial cases we have to consider are the cases when i satisfies the following
conditions:

1. i < q, and hence U; corresponds to a pair (p,j’), where p is an essential special point,
and 1 < j <wp.

2. If P = pj//7 then nj,j" 75 O

Under these conditions, A4 (V, j/,Ap) is contained in some of the cones A (V(E;),Z;) (for
some [ € {0,1}), and

to ,
Wi = % k-1 (1) . U-Vi(E):
ty + 30, ag’lz,to J
Then
vl
o ieaz ) t’g iy (el ) e (Vi) i = 088
_ i"=0 tO +Zk’ 0 jk‘/t X z”|§ 0

This section of ©cn|x is defined on U; if and only if each function in front of 9/0(x;r i»|e=0) is

defined on U;. So, let us fix indices ¢’ (1 < i’ < m) and 7" (0 < ¢’ < evalx(Air)) until the end
of the proof and check that the function

t§

k; ki—1 (1 /

ty' + k=0 aﬁ,;;ﬁ%

is defined on U;. Denote this (a priori rational) function on U; by f.

First, if Ay € JV(V[(E]'), Ej), then evalgj(/\i/) = Ay (VZ(E]‘)), and

(— evalgj ()‘z’) + )‘i’(vl(Ej)))xi’,i” ‘520

tk

0
ks ki—1 1) /
t) + >y itk

Now suppose that A\; ¢ A4 (V(Z;),Z;). We are going to use Lemma 3.37. By Lemma 6.22,

(— evalgj ()\z’) + )\i/(Vl(Ej»)Xi/’iu ’é':(] =0.
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6.3 Kodaira-Spencer map in the particular case of a deformation of a T-variety

to =t o7 as a rational function on X, so, if we denote
+k
fa=
k; oV gk’
thi + Zk/ 0 ] k’t

then
f=(faom)(=evalz, (A) + Air(Vi(E;))) %, =0

as a rational function on X. Denote by f; the following section of Op1(Z(\y)):
fi = (—evalz; (Air) + X (Vi(E)) Py, le—o,toit’

Then, by Lemma 6.12,
(—evalz; (A\ir) + A (Vi(Ej)))Xir i |e=0 = fi,

and f = (faom)fi.

Let us verify the conditions of Lemma 3.37. By construction, f is defined at all points of P!
except ¢ = 0o, in particular, it is defined at all ordinary point. And the denominator of fo does
not have zeros at ordinary points, so fsf1 is regular at all ordinary points, i. e. at all points of
Vi except, possibly, p. Recall that

k; g—1 —evalg 511 (Agr)
_ ) 1 ,
P)\i/|£=0,t0=t H tk] + Z CL(//2 k/tk
1< <R
By choice of the coefficients aﬁ% .
ord (PA,|§ 0.to=t) Z njm jn evalz ,,,()\ ) = —evala, (Ay).
JIII—O
So, ordy(f1) > —evala, (Ay). For f, we have
1
ord,(f2) > ord, = —n, .

thi +Zk’ 0 Jllz’tk/
It suffices to prove that

—evala, (M) —njjn > =B (M) Dp(Bin) — Bio(Nir) Dp(Bi2)-

By construction of the sets U;, we have ;1,82 € JV(VPJ 1, Ap), 80 Dp(Bin) = Bi1(Vp,j) and
Dp(Biz2) = Bi2(Vp,jr). So,

—Bi1 (M) Zp(Bin) — Bia(Air) Dp(Bi2) = —Bi1(Nir)Bii(Vypjr) — Bia(Nir)Bi2(Vpjr) = = Air(Vp i),

and it suffices to prove that —evala, (M) — nj v > =Xy (Vy 51).

Since A, = Zl?,, 1 njm jnZm, for each polyhedron Zj» such that njm ;» # 0, the cone
N (Vpjr ,A ) is contamed in a maximal cone of linearity of the function evalzj,,,, which is
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6 A formally versal T-equivariant deformation over affine space

the normal vertex cone of a vertex of evals .- Denote this vertex by bj» € N. In other
words, A (V. jr, Ap) © A (bjm,Zjm). (Note that b; = V(&) according to previously chosen
notation.) If njm ju» = 0, denote by bjm an arbltrary vertex of ;. Then the points V,,

and Z?,,:l njm jnbjn define the same function on the two-dimensional cone A (V, 1, A,).
R .
Therefore, Vp,j’ = Zj”’:l nj”’,j”bj”’ in M.

Now we can write

- evalA E njm jn eval_ ,,,()\i/) and — )\ E TLJHIJNA ///)
§=1 3'"=1

Recall that evalz L, (Ai7) is the minimum among the values that the function \;s takes at the ver-
tices of i, so —evalz ,, (Ay) = —Ai(bjn). Moreover, since Ay & A (Vi(5;),E;) = A (b}, Ej),
—evalz, (Ay) > =i (b, ) These numbers are integer, so — evalz, (Ay) —1 > — Ay (b;). Therefore,

—Mn " evalgj ()\i/) — N > njyj///\i/(bj),

and

—evala, (Air) —njjm > =X (V).

Lemma 6.26. The image of the deformation £: S — C! under the Kodaira-Spencer map in
HY(U,8y) is represented by the following Cech class: on each intersection U; N\ Uy (i < i') we
have vector field w; —wy. Here 1 < i <4 < q (resp. 1 <i <i<q)if weuse Ui,...,Ug1
(resp. U, ...,Uq) as the affine covering of U.

Proof. This follows directly from Proposition 6.17 and Lemmas 6.21, 6.24, and 6.25. O

Corollary 6.27. The isomorphisms

H'(U,0y) = | ker (@( (Uq, Ov)/H° (UZ,GU)>

=1

.

— @ ( Uq’QU)/H (U mU27@U)>> /HO(UC[’QU)

1<i<i’<q

and

—

HY(U,0p) = ker( (HO(Uq,@U)/HO(Ui,(%U)>
1

Q2

.
Il

— P (HO(Uq,@U)/HO(UZ-ﬂUi/,@U)>> /HO(Uq,@U)

1<i<i’<q—1

(respectively) from Corollary 2.14 identifies the image of the deformation £: S — C' under the
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6.3 Kodaira-Spencer map in the particular case of a deformation of a T-variety

Kodaira-Spencer map with the classes of

q
(vi)1<i<q € P H' (U, O1)

i=1
and
q—1
(vi)1<i<q-1 € @ H'(Ug, Ov)
i=1
(respectively).

Proof. This follows from Lemma 6.26 and the construction of isomorphisms in the proof of
Proposition 2.11. [

Lemma 6.28. Let f be a homogeneous function of degree x € oV NM on X, and let1 <i < q.
If U; corresponds to an essential special point p = p;» and a vertex 'V j/, then

t'é
(1) g
to +Zk/ o a; it

where | € {0,1} is such that AV (V) 1, Ap) C A (Vi(E)), E)).
Otherwise, df (w;) = 0 (recall that w; = 0 in this case).

df (w;) = x(Vi(E))

Proof. Each function of degree x on X is a polynomial in variables x; ;»|¢e—o. Let us first
consider the case when f is a monomial. Then we prove the lemma by induction on the
number of variables in this monomial.

First, if f = X y|¢=0, then x = Ay, and the statement of Lemma holds by the definition of
ws.

Suppose that f = Xy iv|e=of1, where fi is another monomial of degree x — Ay, and the
statement follows from Leibniz rule.

Finally, the statement of lemma for arbitrary polynomials follows by linearity. ]

Lemma 6.29. Let 1 <1 <q.
If U; corresponds to an essential special point p = pj» and a vertex 'V j, then the U;-
description of w; equals

" ViE,)), - " )
— -Bi1(Vi(Ey)), -Bi2(Vi(E5)),0 ],
tkj + Zk/ 3 ‘glk/t tkj + Zk/ 0 j k:’t

where [ € {0,1} 4s such that A (V,j, Ap) € A (Vi(Z5),E5).
Otherwise, the U;-description of w; is (0,0,0) (recall that w; = 0 in this case).

Proof. Suppose that U; corresponds to an essential special point p = p;» and a vertex V, ;.
Let p’ € P! be an ordinary point, and let 2 be the canonical point in 7=!(p') N U;. Then the

rational function .
t

tk] + Z —0 513
is defined at p/, t is defined at z, and to(z) = t(p') (Lemma 6.22).

-Bi1(Vi(E;))
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6 A formally versal T-equivariant deformation over affine space

By definition, the values of the first two components of the U;-description of w; at p’ equal
dyhii(vi) and dghio(v;), respectively. By the previous lemma,

o1 (v:) = — to(x )k 4 =N 1 (z
dxhz,l( z) t ( ) ; JFZ]’:/'_S gg/to( ) /Bz,l(vl(—*]))hz,l( )

and .
deFia(v) = - o Bua(ViE o).

to(x )J+Zk/ 0 jk/ to(w)

But by the definition of a canonical point, hi,l(x) = h@z(ac) = 1. So, the values of the first two
components of the U;-description equal
t p/ k _
- O S (ICH)
t(p )J"‘Zk/o jk/t( P)*

and W)
tp =
- ki—1 (1) ,/Bi,2(vl(:j))a
t(p') ]+Zkl =0 Jk/t(p)
respectively.

To compute the third component of the U;-description, note that by Lemma 6.22, ¢y can be
considered as follows. Consider the affine chart ¢ # oo on P!. It is an affine line, and ¢ is a
coordinate on it. Then tq is a function on Uy N7~ !({t # oo}) that computes the coordinate ¢
of the image of a point ' € Uy N w1 ({t # oo}). In these terms, d,m(w;) = dyto(w;)(9/0t).

Let us compute d;to(w;). Choose a degree x in the interior of ¢V. As we have seen in
the proof of Lemma 6.20, there exist global functions fi; and fo of degree x on X such that
to = f1/fe. Using the previous lemma again, we can write

J ﬁ(w,) _ fa@)dafi(wi) — fr(z)dafo(wi)
T fa(z)?

tk

b X(VIED (2@ i(2) — fa(@) o)

tJ+Z —0 % pto
fa(x)?

=0.

Corollary 6.30. Let 1 <1 <q.
If U; corresponds to an essential special point p = pj» and a vertex Vy, ;, then the Uqg-
description of w; equals

” ViE)s - i Vi(E,)
5, 1))y ﬁ, 70 )
R all) v R thi + 2y al ey a2

where 1 € {0,1} is such that A (V,, 1, Ap) € A (Vi(E)),E;).
Otherwise, the Uq-description of w; is (0,0,0).

Proof. This follows directly from Lemma 3.23. O
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6.4 Surjectivity of the Kodaira-Spencer map

So, we have computed the Kodaira-Spencer map for a set of basis vectors of ©,1)V, and
therefore by linearity we can now compute it for an arbitrary vector from ©,1)V. Let us prove
the surjectivity of this map.

6.4 Surjectivity of the Kodaira-Spencer map

To prove the surjectivity, we use the results of Chapter 4. We will prove that the composition
0,0V = Ty(X) = ker(HO(P', 98 o) — HO(PH, 4"y ) is surjective and that im(©,0,V —
T4 (X)) contains im(H' (P!, %) — T} (X)).

Denote by V3 g the space of 3(q — 1)-tuples of the form

(9(1]1, g[1]2, 0[1], .., gla — 1)1, g[q — ]2, v[q — 1)),

where each g[i]; is a rational function on P!, each v[i] is a rational vector field on P!, and
each triple (g[i]1, g[i]2, v[i]) is the Us-description of a T-invariant vector field defined on Uy.
This space V3 can be identified (using the notion of an U;-description) with the zeroth graded
component of

q—1
P Uy, 6v).
=1

Hence, we have a map
q—1
Vso0 = @H (Uq, 00)/HO(U;, Ov)).
i=1

Denote the preimage under this map of

(a;( (Uq 00)/H'(U;,00)) = €D (HO(Uq,@U)/HO(UiﬂUZ-/,@U))>

=1 1<i<i’<q—1
by V31 C V3. By Corollary 2.14,

-1

H'\(U,0y) = ker( (H°(Uq, 00)/H"(U;, 00) )
1

Q2

%

— P (HO(Uq,@U)/HO(U,»ﬂUi/,GU))> /HO(Uq,@U).

1<i<i’<q—1

Therefore, we have a surjective map from V3 to the zeroth graded component of H(U, Oy),
and each element of V31 can be interpreted as an element of the zeroth graded component of
HY\(U,0yp).

Recall that if p is an essential special point and 1 < j < v, then we have denoted by i, ;
the index such that Uj, ; is the set among U; that corresponds to (p,j). Now we extend this
notation so that we could use it also for removable special points. First, if p is an essential
special point, denote Vp = v,. If p is a removable special point, denote by V; the amount of
sets U; corresponding to p (there can be one or two such sets). Recall that we enumerate the
sets U; in such an order that if we have two sets U; corresponding to the same removable special

point p, then they are consequent, i. e. they are U; and U;4+1 for some i. Then denote this ¢ by
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6 A formally versal T-equivariant deformation over affine space

ip 1, and set i, 2 =i 4 1. If we have only one set U; corresponding to a removable special point
p, denote this ¢ by i, 1. Now we can say that in general, we enumerate the sets U; so that the
sequence

1p1717'"?1P17V§,17"‘7'"7""1pr717"'?1pr7V§,r
is just

1,2,...,q— 1.

In Chapter 4, we also needed one coordinate function on P! (i. e. a function with one zero
and one pole) for each special point p. This function was denoted by ¢, and it had its single
zero at p. Now let us set t, =t — t(p) for all special points where ¢ is defined, and if ¢(p) = oo
(then p is a removable special point), then set ¢, = 1/t.

We will need one more notation. Fix a primitive polyhedron =; (1 < i < R). Let p; be a
special point. If n; ; =0, set £, ; = v;,j. Otherwise, p; is an essential special point, and for each
vertex Vo, 1 (1 < k < vp,) its normal vertex cone A (Ay,, V, ) is a subcone of one of two
cones A (Z;, Vo(Z;)) or A (Z;, V1(Ei)). Moreover, the vertices of A, whose normal vertex
cones are subcones of one of these two cones are consequent, more precisely, the values of 5’ such
that A (Ap;, Vp, k) © A (Zi, Vo(Z;)) are all integers between 1 and some ko (1 < jo < vy,),
inclusively. This ko is precisely the index such that E,, , is the edge of A, parallel to the finite
edge of Z;. Set l;;,, = ko. Then A (A, Vp. k) © A (2, Vo(E:)) if and only if 1 <k < 4.,
and A (Ap,, Vp, k) € A (Zi, V1(Z;)) if and only if 4; ), <k < vy,

Lemma 6.31. If Z; is a primitive polyhedron, p; is an essential special point, and n;; # 0,
then |Epj7[i,pj‘ =MNyj-

Proof. This follows from the definition of /; . and the fact that A, = >, n; ;=;. O

Now note that in Lemma 6.29 and in Corollary 6.30, if [ = 0, then V;(Z;) = 0, so the U;-
description and the Ug-description are both zero. So, the image of the Kodaira-Spencer map
computed in the previous section can be written as follows.

Lemma 6.32. The image of the Kodaira-Spencer map for the deformation &, in H'(U,0yp)
is represented by the following class in V3 1:

s3.2.5k = (9[1]1,9[1]2,v[1], ..., gla — 1]1, g[q — 1]2,v[q — 1]),
where:
1. v[i] =0 foralli 1<i<q-—1).

2. glip 5]y = 0if p is a special point, 1 < j' < 4;,,, and j" = 1,2.

3.
i - (V1(E)))
g[lpajl]j,/ = T E—1 (1 lﬁi rd" Vi E] s
thi + Sy el ek
if p is a special point, £;, < j' < v, and j" =1,2. =

We keep the notation s3 5 ;1 for further usage.

Denote the subspace of V31 spanned by all s39 ;1 for1 <j <Rand0 <k <k;—1by Vjs.

Now it suffices to prove that the map V3o — ker(H°(P1, 111“570) — HO(P!, {ngo)) is a
surjection, and that im(V32 — HY(U, ©p)) contains im(H* (P!, % e) — H(U, Op)).
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6.4 Surjectivity of the Kodaira-Spencer map

Let us start with V32 — ker(H°(P1, 11?(})’70) — H(P!, 1“‘(; 0))- First, we need to understand
the map V3o — HO(P!, lif‘é”o). Recall that we interpret lmé o as

q—1
an Oan an Oll’lV HIV omv
%@0* ker(@( 1,0,1 @,u) @ (gl@l 19,1,m)> /glel
i=1 1<i<j<q-1

In particular, global. sections of @?:_11 fl(f)“’l that project down to the appropriate kernel define
global sections of 4§ . Now it follows from the discussion in the end of Section 2.5 that the

map V3o — HO(P!, 4/ ) is induced by the following map V3o — TP, °8Y): Given

(9[t]1, 912, v[1], -, gla = 1]1, gla — 12, v[q = 1]) € V3.9,

let
q—1

(w1],...,v[a - 1]) € PT(P" 478

i=1
be such that each w[i] is the vector field of degree 0 on Uq with U;-description (g[i]1, g[i]2, v[i]).

We will follow the argument from Chapter 4. There we have introduced the notion of an
excessive index i, which is one of two indices corresponding to a removable special point p. We
checked that we can replace @?;11 Loa with

@ golnv

1<i<qg-1
7 is not exessive

(the morphism

omv omv
1 ,0, 1

1<i<qg-1
i is not exessive

duplicates the entries with the non-excessive indices i corresponding to the same removable
special points to get the entries with excessive indices) so that

oinv
D e
1<i<q—1
7 is not exessive

is mapped surjectively onto 1“‘5 o- Since in each element of V3 all entries with indices (both
excessive and non-excessive) corresponding to essential special points are zeros, we can just

forget entries corresponding to the excessive indices to get the map

V32 — @ L(PH978%)

1<i<qg-1
4 is not exessive

from the map V3o — @?:_11 ['(P!, f,ié“,’l) described above.
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6 A formally versal T-equivariant deformation over affine space

After that, we have split the interpretation of I'(P!, 1”‘(1)’ o) as

T P1,< @ ( Oan/ 1néz’1ﬂ)>/gomv
1<i<q—1

4 is not excessive

into r direct summands, each of them consisted of sections over W, for a special point p
(Corollary 4.14 ad discussion below). The morphism between these two interpretations was the
restriction map for sheaves from P! to Wp. More important, the kernel ker (Pt 11?570) —
r(pt f?g,o) also gets split into r direct summands, in other words, the kernel equals the sum
of its intersections with each direct summand.

Then some of the summands of the double direct sum turned out to be zero, and we got the
following interpretation of I'(P!, 4% ) (Lemma 4.15):

PPl = D ( D (T /T, “gu))) / D(Wy, %5%)

p special 1<i<qg—-1
point 1 is not excessive
i:Wp

The isomorphism between these two interpretations of I'(P?, 11“@)’ o) works as follows: given an

element g of
T P1,< @ ( OmV/ mé/lZ))/gomv ,
1<i<q-1

% is not excessive

each entry of its image in

@ < @ <F(I/Vp7 01nV )/F(Wp, m(:)] ) Z)) )/F(Wp’gomv )

p special point 1<i<q—-1
¢ is not excessive
i:Wp

with index 4 in the inner direct sum (in fact, there is only one such entry for each i, where
1 <i<q-—1,1is not excessive) is (locally on P') the ith entry the direct sum for g.

In particular, if g originates from a global section of

OII]V
@ gl ,0,1»
1<i<q—-1
4 is not excessive

then the entry of the result with index ¢ in the inner sum is the restriction of the ith entry of
g from P! to W,,. In fact, this restriction is a trivial operation since 7=1(W,) N Uy = Uq.
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6.4 Surjectivity of the Kodaira-Spencer map

Hence, the map

V372 — @ ( @ <I‘(Wp’ Oll’lV )/P(Wp7 ll’lé/ 1 1)) ) /P(Wp7g01nv )

p special point 1<i<q—-1
4 is not excessive
i:Wp

works as follows. Given

(9[t]1, 912, v[1], -, gla = 1]1, gla — 12, v[q = 1]) € V3.9,

for each i (1 <i < q—1, 7 is not excessive), the entry of the result with index ¢ in the inner
direct sum is the vector field on Uq with the Uj-description (g[i]1, g[i]2, v[d]).

After that, we proved that the summands of the outer direct sum where p is a removable
special point are in fact zero, and removed them, rewriting T'(P?, 1S o) as

&5 (@ (D W, %008 /T (Wi, 95 15, ) / L(Wy, 78%)

p essential special point j=1

Again, the kernel ker I'(P1, f‘&o) — (P, ) is also split in the direct sum of its intersec-
tions with each of the direct summands. The map from V3 again computes the (p, j)th entry
out of the ip jth entry of an element of V35 treated as an Uj, ;-description.

Recall that for each essential special point p and for each j (1 < j < v,) we have denoted
by GOp J 61 the space of triples of two regular functions and one vector field defined on W C Pl

We also have denoted by ke, ; the map (actually, it is an isomorphism) ke, j: G o1
L'(Wp, 1"’1({)1?’1) that computes a vector field defined on Uq out if its U -description. Note also

that I'(W), l‘iiélj’l) =T (P!, flé“’l) since both spaces are the spaces of T-invariant vector fields
defined on Uq = Uj, ; N Uq. The direct sum of maps re p ; for a fixed essential special point p
and for all j (1 < j <v,) was denoted by ke,

Let us also denote
op,j o — °pP
G} @ 1= @ Gig,and Gl g, = @ Gien
p essential special point

Denote the direct sum of all isomorphisms kg, for all essential special points p by by

ko: Gl o, — & @r (P, @0V

p essential special point j=1

Using this isomorphism, we can say that we have a map V3o — Gi@’l, and this map works
as follows: the (p, j)th entry of the image of an element g of V3 is the iy, jth triple (i. e. the
(3ip,; — 2)th, the (3i,; — 1)th, and the 3i, jth entries) of g.

To proceed, we will need a more convenient basis for V32. Recall that for each primitive
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6 A formally versal T-equivariant deformation over affine space

polyhedron =Z; (1 <i <R),

Lemma 6.33. Fiz a primitive polyhedron Z; (1 < i < R) and denote temporarily f = t* +
Ek, -0 llk)tk [[j=1(t = t(p;))" Consider the rational functions

th+ p El)tk,
(t —t(ps))*
for all j and k such that 1 < j <r and 1 <k < n;;.

All these functions together span the same subspace in rational functions on Pl as
1,t,... th 1

Proof. By partial fraction decomposition theorem, the functions

1
(t —t(pj))*
for all j and k such that 1 < j <rand 1 <k <n;; form a basis of all rational functions of the
form
! _ /
[T (= )™~ g R Lok

where f is a polynomial in ¢ of degree at most —1+ Z je1 iy =ki—1. After the multiplication
by tFi 4 Zk 0 a( )tk we get the claim of the lemma. O

For each j (1 < j <R) and for each pair (', k), where 1 < j' <rand 1 < k < n; j denote

853957k = (911, 9[12,0[1], .., gla — 11, gla — 1]z, v]a — 1]),
where:
1. v[i] =0 for all 7.
2. glip;»]1 = glip ;]2 = 0 if p is a special point and 1 < j"” < ¢ .

3.
1

g[i 7'//] = 7ﬁ ”7 ”’(Vl(‘—' ))
S T
if p is a special point, £;, < j” < v}, and j" = 1,2.

Lemma 6.34. V3 is spanned by all functions 8%720-73-,,]6, where 1 < j <R, 1<j <r, and
1 S k S nj,j/.

Proof. By Lemma 6.33, we may replace the numerators of functions in s3 5 ; » from 1,¢,.. ., ki to
the functions from the statement of Lemma 6.33. After doing this, we get exactly sz ; k. [

Now let us recall that for each essential special point p we had a vector space V2, and
amap pp: Vigp — Gip@ | (actually, it maps V12, to a subspace of Gi’p@ 1> which was called
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6.4 Surjectivity of the Kodaira-Spencer map

V10,p) such that the composition Vo, — G?@,l — T(P1, 11?(})’70) maps V12, surjectively onto
the graded component corresponding to p of the kernel ker(I'(P!, liflé”o) — (P!, lmgo)) (see
Proposition 4.31 and Remark 4.18).

So, denote Vi =
by p. Then the composition Vio — G?@,l - T(P!, f?&o) maps V12 surjectively onto
ker(T'(P!, 11?5,0) — (P, 1“2’70)) By the definition of the maps p,, p actually works as
follows: it computes Uj, ;-descriptions out of Ug-descriptions and adds some zeros.

D, essential special point V1,2,p» and denote the direct sum of all maps p,,

It would be sufficient to prove that the image of V32 in Gi@,l contains p(Vs32), but this is

not true in general. Instead, we will construct another vector space V3 3, whose elements will
inv

define the same classes in I'(P1, 1'6,0) (and even in H(U,0y)) as elements of V3 9, and whose
image in G‘i@’l will contain V1 o.
Namely, V33 C V3 will consist of some of the 3(q — 1)-tuples of the form
(9[1]1, 9[1)2,v[1], ... gla — 1)1, gla — 12, v[q — 1]),

where each g[i]; is a regular function on W C P1, each v[i] is a vector field on W C P. We will
take only some of these 3(q — 1)-tuples, not all of them. More precisely, V3 3 will be spanned
by the following elements s33 ; j7 5, where 1 < j <R, 1< j' <r,and 1 <k <nj;:

533,557k = (9[11,9[12,0[1], ..., glqa — 11, glq — 1]z, vlq — 1]),
where:

1. v[i] = 0 for all 7.

2. a)lfi= iy, g7, where jp., < j" < V;?j/, then

P S NN
g[l]j”’ - (t—t(pj/))kﬁl’] (Vl(‘—‘J))’

for j = 1,2.
b) Otherwise (if 4 is not of this form), g[i]; = g[i]2 = 0.

Lemma 6.35. Foreachj,j, andk (1<j<R,1<j <r,andl <k <n;j;), 3372,]-,]-% € V3o
and s33.j 'k € V33 define the same class in @g;ll(F(Uq, ov)/I(U;, 0r)).

Proof. Write
850550k = (911, 912, 0[1], ..., gla — 1)1, g[q — 12, v]q — 1]),

533,55k = (9[1]1. 9[15,v[1]', ..., gla — 1]}, gla — 1]5, v[g — 1]').

Choose an index 7 such that the ith entries of the images of 5%,2,;’,]",1@ and of s33 ;1 in
@3;11 I'(Uq, ©p) differ. First, note that i corresponds to an essential special point p, otherwise
both entries are zeros since £, = v;, for removable special points p.

So, p is an essential special point and there exists an index j” (1 < j” < wv,) such that
i =1y j». such that the (p, j”)th entries of the images of

Now the fact that the i,;sth entries of the images of 3%72’j7j,7k and of s33;, 1 in

@g:_ll ['(Uq, ©p) differ means that p # pjy, £jp < j” < vy, and the different entries have
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6 A formally versal T-equivariant deformation over affine space

the following U;-descriptions:

L 5ip7j//,2(vl (E]))a 0>

(g[ip,j”]l, g[ip,j”]27 U[ip,j”]) = <_ ( k/Bip,j//,l(Vl (Ej))v _m

t—t(pj))

and
(g[ip,j”]/lag[ip,j”]évv[ip,j”]/) = (0,0,0).

Since p # pjs, the functions g[iy, j»]1 and g[iy, j»]> are defined on W), so the vector fields with
these descriptions are defined on U;, and Sé,Z,j,j’,k € V32 and s33 ;1 € V33 define the same

class in @ (T(Uq, Ov)/T(Us, Op)). O

Corollary 6.36. V33 is contained in V31 and therefore defines a subspace of HY\(U,0p).
Moreover, images of V3o and of V33 in H (U, Oy) are the same. O

The map V33 — Gi@’l is defined in the same way as the map V3o — Gcl’7@71: Given

9= (901]1,9[2,v[1],..., gla = 1]1,gla — 12, v[q — 1]) € V33,
if p is an essential special point and 1 < j < v,,, then the (p,j)th entry of the image of g is
(glipj11, glip,s]2, vlip,;])-
Corollary 6.37. The images of V3o and of V33 in G g, define the same subspace of
T(PL 91 o). 0

We will need a slightly different set of generators for V3 3. If p; is an essential special point,
1<i<vp,,and 1 <k < |E,, |, denote
J 7%

s3305% = (9[1h, g[l]2,0(1], ..., gla = 11, gla — 12, v[q — 1),

where:

1. v[i] = 0 for all 7.

2. a) Ilfi= ipj,vj//, where [ < 7" < Vp,,, then

. 1
s = =gy s Vet = Vi)

j
for 3 =1,2.
b) Otherwise (if 7 is not of this form), g[i]1 = g[i]2 = 0.

(we do not claim a priori that sj 5, ., € V33).

Lemma 6.38. If p; is an essential special point, 1 < j < R, and 1 < k < njj, then
— o
‘Epjlvej,pj/ ‘83737j7j,’k - S3,3,Zj7pj, gk
Moreover, all 313,3,1,;",1@ (for all essential special points py, 1 <1 < Vp,, and 1 < k < \Epj,ﬂ)
are elements of V33 and generate V3 3.

Proof. The first claim follows from the following equality:

= [By,0,,,IVi(E)):

ij’ﬁzj,pj/“’l o Vp Jpjs

i1 ljp .
3" J«P]/
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6.4 Surjectivity of the Kodaira-Spencer map

This is true because Epj“gjypj/ is the edge of Apj, parallel to E;(Z;), Apj, = > i Zi
|Epj/véj,pj/‘ =n;j (Lemma 6.31), and V((E;) = 0.

To check the second claim, we need to do the following. For each essential special point p;
and for each [ (1 <[ < vpj,) we have to check that there exists a primitive polyhedron =;
(1 <j <R) such that I = ¢;, ,. But this follows from the equality A, , =37, n; #Z; and the
fact that if n; ; # 0, then Epjufj,pj, is the edge of Apj/ parallel to E;(Z;).

To finish the proof, note that for removable special points p;/, n; ; = 0 for all j, so it is not
possible to take k so that 1 < k < n;j, so there are no generators s33 ; i’ , where p; is a
removable special point. ]

Remark 6.39. For each l, j, and k (pj is an essential special point, 1 < | < Vp,;, and
1 <k < |Eyp,l), the image of Sé,3,l,j,k in G g, actually belongs to Gif)él CGleq-

The space V1 o consists of functions, which are interpreted as Uq-descriptions of vector fields.
The functions on V33 are interpreted as U;-descriptions for different values of ¢. To work with
V1,2 easier, let us construct another space V34, whose elements will be interpreted as Ug-
descriptions. So, by definition V34 consists of some of the 3(q — 1)-tuples of the form

(g[1]179[1]27v[1]7‘ .- 79[(1_ 1]179[(:1_ 1]277)[(1_ 1])7

where each g[i]; is a regular function on W C P!, each v[i] is a vector field on W C P!. More
precisely, V34 is spanned by 3(q — 1)-tuples called s34, %, where p; is an essential special
point, 1 <1 < vy, 1 <k <[Ey, | By definition,

534,05k = (9[1]1, g[1]2,v[1], ..., 9la — 1]1,9[lq — 1]2,v[q — 1]),
where:
1. v[i] =0 for all 7.

2. a) Ifi=1ip j, where | < j' < Vil then

glilyr = =t ))F e (V41 = Vi),
J

for j” =1,2.
b) Otherwise (if ¢ is not of this form), g[i]; = g[i]2 = 0.

Clearly, V34 is isomorphic to V33, and the isomorphism computes the (3¢ — 2)th, (3¢ — 1)th,
and 3ith entries of an element of V33 as the U;-description of the vector field with the Ug-
description consisting of the (3i —2)th, (3 —1)th, and 3ith entries of the corresponding element
of V3’4.

The resulting morphism V34 — G g ; works as follows. Given g € V34, the (p, j)th entry
of its image in G g ; is the Uj, ;-description of the vector field on Uq with the Uqg-description
formed by the (3ip; — 2)th, the (3i,; — 1)th, and the 3i, jth entries of g.

Recall that p: V12 — GY g | works in a similar way: the (p, j)th entry of the image is the
Ui, ;-description computed from the Uq-description formed by the (p,2j —1)th and the (p, 2j)th
entries of an element of Vi 2 and 0. So, if we construct a morphism that reorders entries of am
element of V34 in the appropriate way (and removes some zeros) and maps V34 to Vi 2, we
will factor the map Vs34 — GC1>7671 through Vi o.
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6 A formally versal T-equivariant deformation over affine space

Lemma 6.40. Let
9 = (9[l1, 9[12,v[1],. .., gla = 1]1, gla = 1]z, v[a = 1]) € V3.
Fiz a special point p and consider the following sequences, which we will denote by p;,(g) :
Pp(9) = (glipal1. glipal2. - glipv, )1, glipv, ]2)-

Then pi,(g) € V12,

Proof. Without loss of generality, g = s34, for some essential special point p;, 1 <1 < vy,
1 <k < |Ep, |- Moreover, if this is true, and p # pj;/, then p;,(g) is the zero sequence by the
definition of s34, j%. So suppose that p = p;. Then

pp(9) = (0,0,...,0,0, 41,9, 91,955 - - - 91, 9),

2l zeros 2(vp — 1) entries
where
1 1
/ /
91 = 73 Ba1(Vp 01 = V1) 95 = ————7842(Vp, 141 — Vp, 1)
1 (t—t(pj/))k qa ( pjl+ Dj ) 2 (t—t(pj/))k q ( pj,l+ Dj )

Let us check the conditions in the definition of V3, one by one. Condition 1 is satisfied by
the choice of functions ¢, in this section. Condition 2 is satisfied since [ > 1. Condition 3 is
only nontrivial for the edge E,;. For this edge, it suffices to check that

/8:;,1(b(</’/(Ep,l, Ap)))ﬁq,l(vpj,l—l—l - Vp]yl) + 53,2(b(=/V(Ep7la AP)))IBQ72(VPj7l+1 - ij,l) =0.

The expression at the left is the way of writing in coordinates of b(A (Ey 1, Ap))(Vp, 141—Vp; 1)-
And by a property of the normal cone of an edge of a polyhedron, if we shift an argument of
b(A (Ep;,Ap)) along the edge, the value will not change. So, b(A (Ep1, Ap))(Vyp, 141) =
b('/V(EP»l’ Ap))(vpj,l)ﬂ and

;,1(b(w(Ep,l7 Ap)))BqJ(ij,lH - ij,l) + 5;,2(b(JV(Ep,lv Ap)))ﬁqﬂ(vpj,lﬂ - ij,l) =0.

Finally, Condition 4 is again nontrivial only for the edge E,;, and for this edge we have
E<|Ep,. O

So, we have defined a map p;: V34 — Vi, Now, if g € V34, denote

:0/ (g) = (p;o (g) )p essential special point-

Then we have a map p': V34 — Vi 2, and it follows directly from the definitions of these maps
that the map V34 — GY o, we have is the composition of p’ and p. Now it suffices to check
that p’ is surjective. o

If p; is an essential special point, 1 <1 < vy, and 1 < k < |Epj7l|, denote the following
element of Vi 2, by s 5 x:

S2.1,5,k = (0707 cee 07 ngl>927917927 s aglagQ)v

2l zeros 2(vp — 1) entries
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6.4 Surjectivity of the Kodaira-Spencer map

where
e Ban (Vi i1 — Vi) Ba2(Vi, 01— Vi, )
== wPa1(Vpj i1 — Vpii) 92 = — 73092 Vp;i+1 — Vp,i)-
Gty o Vet = Ve ity et Vet = Ve
Corollary 6.41. If p; is an essential special point, 1 <1 < vy, and 1 < k < |E, 4|, then
Py, (83,.40,5k) = S2.0,jk, and pp(s3a15k) = 0 if p # p;. O

Lemma 6.42. Let p; be an essential special point. Then all so ;) for all possible | and k
(1<1<vy, and 1 <k <|Ep, |) span (and even form a basis of) V12,

Proof. Clearly, all these sequences sy jx are nonzero and linearly independent. The amount
of them is |Ep, 1| + ... + |Epj,vp].—1| =dim V2, (Remark 4.30). O

Corollary 6.43. p': V34 — V12 is surjective. O
Finally, we get the following proposition:
Proposition 6.44. The map V32 — ker(H°(P!, 11?&0) — HOY(P!, lmgo)) is surjective. [

Now we continue with im(Vss — HY(U,0y)). We will have to prove that it contains
im(HY(PY, %) — H'(U,0y)). Let us start with the following lemma.

Lemma 6.45. Let p be an essential special point, 1 < ji < vp, 1 < jo < v,,. Let w be the
vector field on Uq with Ui, ; -description (0,0,v), where v = 0/0t (recall that t is defined at all
essential special points).

Let (g1, g2,v) be the Us, ; -description of w. Then

1

g1 — Bip,jQ,l(Vp,jl - Vm'z)m
and 1

g2 — Bip,anz(vajl - VPJZ)W
are rational functions on P! regqular at p.
Proof. By Lemma 3.23,

ji*p,hvl(ﬁip,h’i)*ﬁ;p,jl’2(6ip’j2’i) .
o1 h’i i ,2 hi 20t
gz _ Pyt _ P,J1° d _ P7.727* v
ip,jo i Eﬁif’*jl ! (ﬁip’m ‘i)ﬁﬁip’jl YZ(BimQ .
ip,jy,l ip,j1,2

for i = 1,2. Denote _

f' . ip»jz s

T * * ’
*ﬁip,jl 1 (ﬂip’jz ’i)ﬁﬁipﬁjl 72(5%7.72 ’i)
ipJ'l’l iP7j172
then
df;
9i = ?U
1

Let us find ord,(f;). We have

ord,(f;) = ordp(hip@’i) — Bf (ﬂimz,i) ordp(hipyjpl) — B (Bip,jQ,i) ord/p(hip’jl’g).

ipj1,1 ip,j1,2
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6 A formally versal T-equivariant deformation over affine space

Since p € W, = V;,, = Vj, ., we have ordp(ﬁipyjl,i) = —.@p(ﬂip’jpi) = —evalAp(ﬁipyjl,i)

and ordy(h;, i) = —Dp(Bi, ;i) = —evala,(Bi, i) By the definition of i,; and of
ip o, Blmlﬂ € N (A, Vpy,) for i = 1,2 and Bi, i € N(Ap, Vpj,) for i = 1,2, So,

ord (hlpyjp,) Blp,jl»l( V,j.) and ord (hlp’jzﬂ) Blp,jz»l( V,j.). Now,

ordy(fi) = =B, 5,.i(Vpisa) + Bi, ;1 (Bsy 100,501 (Vi) + 85, 2(Bi 5,60 By gy 2(Vipn) =
= Biy i (Vi) + Biy 1i(Vpin) = Biy jyi (Vi = Vipija)-

Consider also functions
Fl = (= t(p)) P PV,

Its logarithmic derivative equals

df} dt

72'/ = —ﬁip,jz, ,i(VPJi - Vp,aé)m,
and

dfi’ 1

Yio— g (Ve -V )
fZ/ v Blp,]gﬂ( p,J1 p?]?)t _ t(p)

Clearly, ord,(f]) = Bi, ,,i(Vpjr — Vpj»), and ordy(fif;) = 0, so the logarithmic derivative of
fif] is regular at p. We have

dfzf/ dfy  dfj 1
f’Lf/ f + 7 =8i— ﬂip,jgvi(vpvjl - VP,J'Q)W'

O

Corollary 6.46. Let p be an essential special point, 1 < j1 < vy, 1 < jo < vp,. Let w be the
vector field on Uq with U;, ; -description (gj, 1, gj1,2,v), where v =0/0t (recall that t is defined
at all essential special points) and gj, ; are reqular at p.

Let (gj, 1, 9j»,2,v) be the Ui, ;. -description of w. Then

1
9j2,1 — Bipdé’l(vp’jl N Vp’jQ)m
and
A% A\ .
Gjs,2 — 5im2,2( p1 PJ'?)W

are rational functions on P reqular at p.

Proof. Set
g]z, =C° . 9jr,1
Tia.2 iz \ g2
and B
Gj>.1 0
! _ . .
9j2,2 - C‘pyjlrlp»jz
v v
oy " . . . ’
Then gj,: = ¢}, ; + gj, ;- Since the entries of C’i"p’h’im2 are constants, the functions g;, ; and
g5, o are regular at p. The claim follows from Lemma 6.45. [
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6.4 Surjectivity of the Kodaira-Spencer map

We need to introduce a notation. Let p be an essential special point. Let v = /9t be a
vector field on P!. Let (g1, g2,v) be the Ugq-description of the vector field on Uq with the U; -
description (0,0,v). It follows from the form of the matrix Cq;, , and properties of logarithmic
derivatives that the functions ¢g; and go have poles of order at most one at p. So, functions

(t —t(p))g: (i = 1,2) are regular at p. Denote their values at p by aszi and aﬁ%, respectively.
Then functions g; — %(922 (t—t(p))~t (i = 1,2) are regular at p. We keep this notation a;a and
az(f% until the end of the section, while p, v, g1, and go will be used in the sequel to denote other

objects.

Lemma 6.47. Let p be an essential special point, v = 0/0t, and let w be the vector field on Uq
with Uq-description (a(zf (t—t(p)~* a'?) (t —t(p))~*,v). Let (g1,g2,v) be the Uy, , -description

D, »p,2
of w. Then g1 and go are reqular at p.
Proof. Set
9a,1 0
9a2 | =Ciiq| O
v v
Then
0 dq,1
0 | =Cqip1 | Ya2
v v
and )
9 (a1t —t(p))~!
92 | =Caipy | (@Yt —t)™" |
v v
SO o
(9)=ca,, (g =100" o
= Cqi,, B )
g2 ) (apa(t — 1)~ ga
Functions (a;?i) (t —t(p))~! — gq.i are regular at p, the entries of Cq,,, are constants, so g; and
go are regular at p. O

Consider the following elements of V3 3: For each essential special point p; set

Vp; -1

83757j = : : Sl7j71‘

=1

Denote by V3 5 the subspace of V33 spanned by all s355 ;.

We are going to prove that im(Vss — HY(U,0p)) = im(HY(P',%.e) — HY(U,0r)). As
before, we will replace V35 by another vector space that will represent the same subspace of
H' (U, Oy ). Namely, for each essential special point p; denote by s3¢ ; the following element of

V3.
N 53,65 = (9[l1, g[l2, v[1];. .., gla = 1]1, g[a = 2, v[q — 1]),
where:
L If i = 1ip, , where 1 <k < Vil then (g[i]1, g[i]2,v[i]) is the U;-description of the vector
field on Uq with the Uqg-description (ag?l(t —t(pj) 71, a](j?Q(t —t(pj))~t,0/0t).
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6 A formally versal T-equivariant deformation over affine space

2. Otherwise (if 4 is not of this form), g[i]; = g[i]2 = v[i] = 0.

Lemma 6.48. For each essential special point p;, s35; and s3g; define the same class in
@1 (I'(Uq, 60)/T (Ui, Ov)).
Proof. Let
s3,55 = (9[1]1, g[1]2,v[1], ..., gla — 1)1, gla — 1]z, v[q — 1])
and
s3.6,) = (9[111, g[1)5,v[1)',. .., gla — 1]}, gla — 1]5, v[a — 1]').

It is sufficient to prove the following: for each k (1 <k < wvy,),

(glip, k11 = glip, kl1s 9lip, k1o — glip, k2, Vlip, k) — vlip, &])

is the Uip. .-description of a vector field defined on Uip' .- In other words, we have to check that
2 s
the functions g[i,; k|1 — glip, x]1 and gliy; x]5 — glip, x]2 are regular at p; (for viy, 1] — v[ip, x| =
0/0t this is clear).
First, let us find a precise expression for gli,; |1 and g[ip, r]2. By the definition of Sgsk i1
we have

1
Z/Blpj k:] pj,l+1 - ij7l) = mﬁlz’] B (ij,k - ijvl)'

g[ipj,k]j, = t—t p
J

(Note that for k = 1 we get g[ip, 1]1 = glip; k]2 = 0.)
For k = 1, the functions g[ipj’k]’1 = glip, k= g[ipj7k}’1 and g[ipj7k]’2 — glip; k2 = g[ipj7k]’2 are
regular at p by Lemma 6.47. For other values of k, we have

g[ipj,k];" - g[ipj,k’]j' = g[ipj,k]; t— t( )51;; Ksd’ ( pj,1 — ijJC)‘

These functions are regular at p by Corollary 6.46 since (glip, ]}, glip, x]5,0/0t) is the Uipj,k‘

description of a vector field on Uq with U;, ,-description (g[ip; 111, glip;,1]5,9/0t), and functions
glip, k] and g[i,, x]5 are regular at p. O

Corollary 6.49. For each essential special point p;, s3e6; € V3 1. Moreover, s35; and s3¢ ;
define the same classes in H'(U, Q). O

Denote the subspace of V3 generated by all s36; by V3. By Corollary 6.49, im(Vgs —
HY(U,0p)) is a subspace of im(Vszs — HY(U,0p)). We will prove that im(Vsg —
HY(U,60)) = im(H' (P}, %,6) — HL(U,00)).

Let us recall the results of Chapter 4 related with H'(P!,%, o). There we have introduced

vector spaces
Voi= & Op1,

p essential special point

and (for each special point p) Vo ,, which was the space of triples of Laurent polynomials in
tp of a certain form, where the first two polynomials were rational functions on P!, and the
last one was a rational vector field on P1. V(; was mapped to D, special point V0,0,p» Namely,
a sequence of tangent vectors (g,0/0tp)p essential special point; Where g, € C, was mapped to a
sequence of rational functions and vector fields on P!, where all functions are zeros, and the
vector fields on P! defined by the same formulas (plus zero vector fields for removable special
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6.4 Surjectivity of the Kodaira-Spencer map

points). B, special point V0,0,» Was further mapped to HY (P!, % o). Then we proved (Lemma
4.10) that Vo is mapped to H'(P!,% o) surjectively.

The space V(1 has the following obvious basis: for each j such that p; is an essential special
point, let s1; € Vo1 be the sequence with the p;th entry 0/0t (recall that t,, =t — t(p;) for
essential special points) and all other entries are zeros. The image of 51 ; in Vo0, is (0,0,09/0t),
and the image of s1; in Vo, with p # p; is (0,0,0).

We also checked (Lemma 4.8) that if we change the first two entries of an element of Vo,
where p is a special point, arbitrarily, then the class of this element in H'(P!,% o) will

not change. So, if p; is an essential special point, set SILj = (ag?l(t — t(pj))*l,al(j)g(t —
t(pj))~*,0/0t) € Vo,0,,- Denote the subspace of @)—1 Vo,0,p; spanned by all s} ; by Voo. By
Lemma 4.8, V2 is mapped surjectively onto H'(P!,% ¢).

The sheaf % ¢ was constructed as follows. Its sections on an open set V' C P! were sequences
of length 2q + 1, where the first 2q entries were rational functions on P! and the last entry was
a rational vector field on P!. More precisely, for each i (1 < i < q) the (2i — 1)th, the 2ith,
and the (2q + 1)th entries from the Uj-description of the same (i. e. not depending on 7) vector
field on U N7~ 1(V). For each special point p we had a morphism Vo, — T'(W,% o), which
computed all U;-descriptions of a vector field by its Ug-description. Then these morphisms were
summed up to a map

P Voor = PTW, %)
=1 j=1

r

— (B (rW.%o0) /T (W, %00)) / LW, %) = H' (PY,%.0),

j=1

where the second arrow is the canonical projection.
We also had a sheaf 6%’, which was the zeroth graded component of 7,0y. And we had an

inv

isomorphism % ¢ — 0.6 which computed vector fields out of their U;-descriptions.

Finally, we need to understand the map H! (P!, (fg ) — HY(U,©y). We have affine coverings
{Wp}p special point of P and {U;}1<i<q—1 of U. We interpret H!(P!, 6“@;) as a quotient of
D, T(W, 611(})’) and H'(U, ©p) as a subquotient of @?;11 I'(Uq,Oy). As it was explained in
Section 2.5, to describe the map H!(P!, é‘g) — HY(U,0y), we need to enumerate the sets
U; by pairs of indices so that the first index in such a pair corresponds to one of the open sets
from the affine covering of P!. For such an enumeration, we use the notation i, j. Namely,
recall that for each ¢ (1 <1i < q— 1) there exists a (removable or essential) special point p and
an index j (1 <j < VI/D) such that i =1, ;. So, denote U, ;) = Uj, ; for all special points p and
for all j (1 <j <wvy,). Then Up, ;) C 7~ Y(W,), and the conditions of Section 2.5 are satisfied.
(Note that the set that was denoted in the ”generic” situation of Section 2.5 by U is now Uy,
and the set that was denoted in the the ”generic” situation of Section 2.5 by V' is now W).
After we have introduced these notations, we can say that the map H'(P?, dr‘é’) — HY(U,0y)

is induced by the following map @;_, (W, 4'8) — Pi_, @;/Ql I'(Uq, ©v). The (p;, j)th entry
of the result is the ith entry of the preimage restricted to Uq (originally it was a vector field on
(W) 2 Uq).

Summarizing, we see that the map @;-:1 Voop, = H Y(U,©y) is induced by the following
map iy Vo,0p; — @, ['(Uqg,Ou). The iy, xth entry of the result is the vector field whose
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6 A formally versal T-equivariant deformation over affine space

Uq-description is the jth entry of the preimage. In particular, each s’m (for each essential
special point p;) is mapped to the following sequence. If i = i, ) for some k (1 < k < vy,)),

then the ith entry of the result is the vector field on Uq with the Ug-description (ag?l(t —

t(p;) L, %(5),2(75 —t(p;))~1,0/0t). Otherwise (for other values of i), the ith entry of the result
is 0. By the definition of sz ;, the image of s36; in @i, ['(Uq,Or) is the same. Therefore,

im(Vsg — HY(U,Op)) = im(Vo2 — HY(U,Oy)), and we get the following proposition.
Proposition 6.50. im(Vso — H'(U,0y)) contains im(H'(P!,%.e) — H (U, Oyp)). O
The following proposition follows from Propositions 6.44 and 6.50.

Proposition 6.51. The deformation £: S — V of X constructed in Section 6.1 has surjective
Kodaira-Spencer map. ]

Finally, let us recall the definition of a formally versal deformation. A deformation &¢': S’ —
V' of X with the basepoint a3 € V' is called formally versal in the class of T-equivariant
deformations if the following holds.

Let £”: 8" — V" be another T-equivariant deformation of X, and let a® € V" be the
basepoint of this deformation. N

Denote by V' the formal neighborhood of a® in V’. Denote by &': S’ — V' the restriction
of the deformation &’ to V.

Similarly, let V" be the formal neighborhood of a® in V", and let ?: S” — V" be the
restriction of the deformation &” to V. L
Then formal versality means that there exists a morphism f: V" — V’ such that the defor-

mation &’ is the pullback of the deformation & via this map f.

Proposition 6.52. Let X be a T-variety, let V be a vector space, and let £:' S — V be an
equivariant deformation. Suppose that the marked point of this deformation is the origin in V.
Suppose that the Kodaira-Spencer map for this deformation is surjective onto T*(X)o, which is
finite dimensional.

Then &: S = V is an equivariant formally versal deformation of X.

Idea of a proof. First, one can check that a formally versal deformation exists using [11, The-
orem 2.11]. The conditions (H;) and (Hg) are verified exactly in the same way as they are
verified for non-equivariant deformation, see Section 3.7 of [11]. One has to use graded algebras
and equivariant maps between them, but the arguments stay the same. Condition (Hs) is our
assumption that T'(X)g is finite dimensional. The parameter space (denote it by Y) of a for-
mally versal deformation we can obtain this way is the spectrum of a complete Noetherian local
algebra. By Cohen structure theorem, C[Y] is a quotient of a formal power series ring over C
in finitely many variables. Note that it is not true in general that C[Y] is a finitely generated
C-algebra (i. e. a quotient of a polynomial ring). In the proof of this proposition, choose and
denote by b1, ..., by, a set of variables such that C[Y] is a quotient of C|[by, ..., bs,]], and the
maximal ideal of C[Y] is the image of (b1, ..., bn).

T'(X)o can be identified with the tangent space of Y at the geometric point (see [11, Defini-
tion 2.7]). Denote by W the vector space with coordinates b;....,b,,. Then the tangent space
of Y at the geometric point becomes a subspace of W. After a linear change of variables we
may suppose that this tangent space is defined by the equations b,11 = ... = b, = 0. Then
bi,...,b, are coordinates on T (X ).

In the proof of this proposition, we denote the dimension of dim 7*(X)g by n.
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6.4 Surjectivity of the Kodaira-Spencer map

Also, in the proof of this proposition we can suppose without loss of generality that the
Kodaira-Spencer map is an isomorphism (otherwise we can replace V' with a complement to
the kernel of the Kodaira-Spencer map).

Let f be a morphism from the formal neighborhood of zero in V to Y such that £&: S — V
is the pullback via f of the formally versal equivariant deformation over Y. Then df is the
Kodaira-Spencer map.

Choose coordinates aq,...,a, in V. Then f can be written using m power series in the
variables a;. Denote these power series by fi,..., fm so that b; = fi(a1,...,a,). These series
do not have constant terms. The first n of them have nontrivial linear terms, the last m — n
power series do not have terms of degree less than two.

Since the Kodaira-Spencer map is an isomorphism, without loss of generality (after a suitable
linear change of coordinates in V') we may suppose that the linear term in f;, where 1 < i <n,
is exactly a;. In other words, b; = a; + (terms of degree > 2) for 1 <i < n.

Now, using iterated corrections in higher and higher degrees, we can find power se-
ries g1,...,9n in by,...,b, (the variables b,41,...,b, will not appear there) such that
9i(f1,---, fn) = a;. In other words, the map f between the formal neighborhoods of the
marked points is invertible, in other words, it is an isomorphism. Hence, £: S — V is also an
equivariant formally versal deformation. O

Remark 6.53. In fact, this proposition holds true if V is smooth, but not necessarily a vector
space. The proof is more complicated in this case.

Therefore, we get the following theorem from Theorem 4.32, Proposition 6.51, and Proposi-
tion 6.52.

Theorem 6.54. The deformation &: S — V of X constructed in Section 6.1 is formally versal
in the class of T-equivariant deformations. ]
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Summary

The dissertation studies equivariant deformations of a certain class of varieties with an action
of an algebraic torus. All varieties in the dissertation are algebraic varieties over complex
numbers.

Normal varieties with an action of a torus (they are called T-varieties) can be parametrized
by combinatorial data, namely by so-called polyhedral divisors. This parametrization was
constructed and studied by Klaus Altmann, Jurgen Hausen, Nathan Owen Ilten, Lars Petersen,
Hendrik S, Robert Vollmert, et al. We study three-dimensional varieties with an action of
a two-dimensional torus parametrized by polyhedral divisors on P! such that all polyhedra in
the divisor are lattice polyhedra, and the tail cone of all these polyhedra is full-dimensional.
Fix one such variety and denote it by X. The torus acting on X will be denoted by T'.

We study equivariant deformation of X, i. e. deformations with an action of the torus on the
total space such that the projection to the parameter space is invariant and the restriction of the
action to the special fiber coincides with the torus action on X we started with. We compute
the space of first order (infinitesimal) deformations in terms of the combinatorial description
of X as a T-variety. This space is dentoed by T'(X)g. Then we prove that all first order
infinitesimal deformations are unobstructed and find a formally versal object for equivariant
deformations.

The dissertation has the following structure. The first chapter is an introduction, it explains
basic notions of theory of T-varieties and of deformation theory. It also contains the precise
statements of the problems we are going to solve. The second chapter contains preliminary
facts from various areas of algebraic geometry and homological algebra, which we will need in
the subsequent chapters.

In Chapter 3, we find a formula for the dimension of 7% (X)o. However, this formula involves
homology groups of different sheaves on P!, and it is not easy to use this formula directly.
In Chapter 4, using the results of Chapter 3, we prove a purely combinatorial formula for the
dimension of T*(X)o.

Chapter 5 establishes a connection between the formula for dimT!(X)p and a previously
known formula for the dimensions of the graded components of the space of first order infinites-
imal deformations of toric varieties. More precisely, we consider the case when X is a toric
variety, i. e. there is a generically transitive action of a three-dimensional torus on X, and the
two-dimensional torus T is a subgroup of this three-dimensional torus.

Finally, in Chapter 6 we construct an equivariant deformation of X over a vector space such
that the Kodaira-Spencer map is surjective and prove that it is formally versal. To compute
the Kodaira-Spencer map in this case, we need to consider a more general situation when an
algebraic variety is defined as the spectrum of a subalgebra A of a free polynomial algebra
Clz1,...,2y], and a deformation of Spec A is defined by perturbations of generators of A in
Clx1,...,zn]. We impose some technical conditions on this situation, however, the results for
deformations defined this way may be of independent interest. To prove that the Kodaira-
Spencer map is surjective, we extensively use the results and the arguments from Chapter 4.
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Zusammenfassung

In der vorliegenden Dissertation studieren wir dquivariante Deformationen einer bestimmten
Klasse algebraischer Varietdten mit einer Aktion eines algebraischen Torus’. Alle Varietéten in
der Dissertation sind iiber den komplexen Zahlen.

Normale Varietdten mit einer Torusaktion (genannt T-Varietéten) kénnen mittels kom-
binatorischer Daten, so genannter polyhedrischer Divisoren, parametrisiert werden. Diese
Parametrisierung wurde erstmals von Klaus Altmann, Jurgen Hausen, Nathan Owen Ilten, Lars
Petersen, Hendrik S}, Robert Vollmert, et al. betrachtet. Wir untersuchen 3-dimensionale
Varietaten mit der Wirkung eines 2-dimensionalen Torus’. Unsere Varietdten sind durch
spezielle polyhedrische Divisoren auf P! parametrisiert: Alle polyedrischen Koeffizienten sind
Gitterpolyeder, und ihr gemeinsame Schweifkegel ist volldimensional. Wir fixieren eine solche
Varietat und bezeichen es sie mit X. Der Torus, der auf X operiert, wird mit 7" bezeichent.

Wir studieren nun dquivariante Deformationen von X, d.h. Deformationen von X mit einer
Torusaktion auf dem Totalraum, so dass die Projektion auf den Parameterraum 7T-invariant
ist, und die Einschrankung der Torusaktion auf die spezielle Faser genau mit der urspriinglich
gegebenen zusamennfallt. Wir berechnen den Raum der infinitesimalen Deformationen erster
Ordnung aus der kombinatorischen Beschreibung von X als einer T-Varietit. Diesen Raum
bezeichnen wir mit T%(X)o. Dann beweisen wir, dass alle Deformationen erster Ordnung
unobstruiert sind, und wir konstruieren eine formal verselle Aquivariante Deformation von X.

Die Dissertation hat die folgende Struktur. Die erste Kapitel ist eine Einfithrung, es erklart
die Grundbegriffe der Theorie der T-Varietdten und der Deformationstheorie. Es erhélt auch
die genaue Beschreibung der Probleme, die wir 16sen werden. Das zweite Kapitel enthélt Fakten
aus verschidenen Bereichen der algebraischen Geometrie und der homologische Algebra, die wir
in den folgenden Kaptieln brauchen werden.

In Kapitel 3 finden wir eine Formel fiir die Dimension von T*(X)g. Diese Formel beinhaltet
jedoch Homologiegruppen unterschiedlicher Garben auf P!, und es ist nicht leicht, diese Formel
direkt zu nutzen. In Kapitel 4 nutzen wir die Ergebnise vom Kaptel 3 und beweisen eine rein
kombinatorische Formel fiir die Dimension von T (X)o.

Kapitel 5 schafft eine Verbinding zwischen der Formel fiir dim 7 (X)o und einer friiher bekan-
nten Formel fiir die Dimensionen der graduierten Komponenten des Raumes der Deformationen
erster Ordnung torischer Varietdten. Genauer betrachten wir den Fall, wenn X eine torische
Varietat ist, d.h. es gibt eine generisch transitive Aktion eines 3-dimensionalen Torus’ auf X,
und der frithere 2-dimensionale Torus 7T ist eine Untergruppe darin.

Schliefllich, in Kapitel 6, konstruieren wir eine aquivariante Deformation von X iiber einem
Vektorraum, so dass die Kodaira-Spencer-Abbildung surjektiv ist, und wir beweisen, dass diese
Deformation formal versell ist. Um die Kodaira-Spencer-Abbildung in diesem Fall zu berechnen,
miissen wir eine algemeinere Situation betrachten, nédmlich wenn eine algebraische Varietit
gleich dem Spektrum einer Unteralgebra A der freie Polynomalgebra C[z1, ..., x,] ist, und wenn
die Deformation von Spec A durch Stérungen der Erzeuger von A innerhalb von Clzy, ..., z,]
gegeben ist. Diese Ergebnisse sind sicherlich von unabhéngigem Interesse iiber unsere konkrete
Anwendung hinaus. Wir benutzen sie hier, um zu zeigen, dass die Kodaira-Spencer-Abbildung
surjektiv ist.
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