
Equivariant deformations of

algebraic varieties with an action of

an algebraic torus of complexity 1

Dissertation zur Erlangung des Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik

der Freien Universität Berlin

von

Rostislav Devyatov

Berlin

January 2016



Eidesstattliche Erklärung

Ich versichere, dass ich habe diese Dissertation selbständig verfaßt, und ich habe alle ver-
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Abstract

Let X be a 3-dimensional affine variety over C with a faithful action of a 2-dimensional torus T .
Then the space of first order infinitesimal deformations T 1(X) is graded by the characters of T ,
and the zeroth graded component T 1(X)0 consists of all equivariant first order (infinitesimal)
deformations.

Suppose that using the construction of such varieties from [1], one can obtain X from a
proper polyhedral divisor D on P1 such that the tail cone of (any of) the used polyhedra
is pointed and full-dimensional, and all vertices of all polyhedra are lattice points. Then we
compute dimT 1(X)0 and find a formally versal equivariant deformation of X. We also establish
a connection between our formula for dimT 1(X)0 and known formulas for the dimensions of
the graded components of T 1 of toric varieties.
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1 Introduction

All algebraic varieties in the present text are considered over the field of complex numbers.

1.1 T-varieties

As proved and explained in [1], normal affine varieties of dimension d with a faithful action of
a k-dimensional torus T (which are called T-varieties in the sequel) are described by so-called
proper polyhedral divisors. To define them, consider the character lattice M = X(T ), the
rational character lattice MQ = M ⊗Z Q, the dual character lattice N = HomZ(M,Z), and the
dual vector space (the dual rational character lattice) NQ = M∗Q.

A polyhedron in a Q-vector space is the nonempty intersection of finitely many closed affine
half-spaces. A particular case of a polyhedron is a polyhedral cone, a polyhedron is called a
polyhedral cone if it can be obtained as the intersection of finitely many closed linear half-spaces,
i. e. the boundary of all these half-spaces should contain the origin. If ∆ is a polyhedron in a
Q-vector space V , its tail cone is defined as the set of vectors v ∈ V such that for all a ∈ ∆
one has v+ a ∈ ∆. It is denoted by tail(∆). Fig. 1.1 shows an example of a polyhedron and of
its tail cone.

(a) (b)

Figure 1.1: An example of (a) a polyhedron and (b) its tail cone.

All polyhedra in a given Q-vector space V with a given tail cone σ form a semigroup with
the operation of Minkowski addition. σ is the neutral element. Denote the Grothendick con-
struction for this semigroup by Polσ(V ).

The next object we need to define to study T -varieties is a polyhedral divisor. Suppose that
we have a normal variety Y . A polyhedral divisor D is an element of the group Polσ(N) ⊗Q
CaDivQ(Y ), where CaDivQ is the group of Q-Cartier divisors.

Now we can say that a T-variety is determined by the following data:

1. A (d− k)-dimensional normal (not necessarily affine) variety Y .

2. A pointed cone σ in the rational dual character lattice NQ = X(T )∗Q.

3. A proper (see definition below, in Section 2.1) polyhedral divisor D .
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1.2 Deformations and first order deformations

As we said, the definition of properness in the whole generality will be given later, but in the
case we will need it now, namely when Y = P1, it is easy to formulate an equivalent condition
for properness. Namely, the polyhedral divisor D on P1 is proper if and only if it can be written
in the form

D =

r∑
i=1

pi ⊗∆pi ,

where pi ∈ P1 are points, and ∆pi are polyhedra (they should be ”genuine” polyhedra, not
elements of the Grothendick group), and the Minkowski sum of all polyhedra ∆pi is strictly
contained in σ.

The construction of a T -variety out of these data will be given in Section 2.1.

1.2 Deformations and first order deformations

For a general reference on deformation theory, see [2].

In general, a deformation of a variety X with a scheme Z with a marked point z ∈ Z being
the parameter space of the deformation is a flat morphism ξ : Y → Z, where Y is a scheme,
together with an isomorphism ι between X and ξ−1(z). A deformation with parameter space Z
is sometimes briefly called a deformation over Z. Two deformations (ξ : Y → Z, ι : X → ξ−1(z))
and (ξ′ : Y ′ → Z, ι′ : X → ξ′−1(z)) with the same parameter space Z and the same marked
point z are called equivalent if there exists an isomorphism q : Z → Z ′ such that ξ = ξ′q and
q|ξ−1(z)ι = ι′.

A deformation (ξ : Y → Z, ι : X → ξ−1(z)) with a torus action T : Z is called equivariant if
ι is T -equivariant and ξ is T -invariant.

If Z is the double point, i. e. Z = Spec(C[ε]/ε2), and X is affine (X = SpecA), then the set
of the isomorphism classes of all possible deformations over Z is denoted by T 1(X), and one
can define an A-module structure on it. See Section 2.2 for details.

Deformations can be pulled back from one parameter space to another using fiber product.
In particular, if we have a vector space Z, then each tangent vector at the marked point defines
an embedding of the double point into Z. We can pullback the deformation from Z to the
double point and get an element of T 1(X). So we get a map from the tangent space at the
marked point to T 1(X). In fact, this map is linear. It is called the Kodaira-Spencer map and
is an important characteristic of the original deformation.

If M is a lattice, and A is an M -graded algebra, then T 1(X) actually becomes a graded
A-module. Moreover, if M = X(T ), then an M -grading on A is equivalent to a torus action
on SpecA, and the graded component of T 1(X) of degree zero (it will be further denoted by
T 1(X)0) contains exactly the equivariant deformations. (More precisely, T 1(X)0 contains the
set of deformations that can be made equivariant by the appropriate choice of a T -action on
Z, but such a choice is unique up to an isomorphism of the deformation.)

1.3 Problem setup and main results

To formulate the exact problem we are going to study, let us fix some notation until the end of
the text.

We start with a two-dimensional torus T and set M = X(T ), MQ = M ⊗Z Q, N =
HomZ(M,Z), and NQ = M∗Q. We choose a two-dimensional pointed cone σ ⊂ NQ. Then

7



1 Introduction

we fix a proper polyhedral divisor D on P1, where

D =
r∑
i=1

pi ⊗∆pi ,

pi ∈ P1 are arbitrary points, and ∆pi are (nonempty) polyhedra with tail cone σ. Additionally,
we suppose that all vertices of all polyhedra ∆pi are lattice points.1 In this case all divisors
D(χ) are integral, not rational. The properness condition in this case means that the Minkowski
sum of all polyhedra ∆pi is strictly contained in σ.

We are going to study the 3-dimensional variety X with an action of the 2-dimensional torus
T defined as above by P1, σ, and D . More specifically, we are going to find the dimension of
the space of equivariant first order deformations of X, and to find a formally versal equivariant
deformation space for X.

The dimension of T 1(X)0 is computed in Chapters 3 and 4. The answer is given by Theorem
4.32.

To formulate this result here, let us introduce some notation and terminology. First, let us
call all points pi ∈ P1 special, and call all other points of P1 ordinary. A special point pi is
called removable if ∆pi is a shift of σ. Otherwise (i. e. if ∆pi has at least two vertices), pi
is called an essential special point. For each polyhedron ∆p, denote by vp the number of its
vertices, and denote by Ep,0,Ep,1, . . . ,Ep,vp the edges of ∆p as they occur on the boundary of
∆p. In particular, Ep,0 and Ep,vp are two rays, and Ep,1, . . . ,Ep,vp−1 are segments. We require
that the rays Ep,0 are parallel for all special points p (this is possible since all polyhedra ∆p

have the same tail cone). Finally, if a is a vector or a segment in NQ, denote by |a| the lattice
length of a, i. e. the number of lattice points in a including exactly one of the endpoints.

Theorem 1.1. We maintain the assumptions and the notation introduced above in this section.
The dimension of T 1(X)0 is the sum of two summands:

1. The maximum of 0 and

−3 + #{essential special points}.

2.
r∑
i=1

max(0,−1 +

v−1∑
j=1

|Epi,j |).

In Chapter 6 we find a formally versal deformation space for the equivariant deformations of
X. The construction of the total space of this deformation requires more technical details and
will be given in Section 6.1, but the parameter space is just a vector space. In particular, it is
smooth, so all equivariant first order deformations are unobstructed.

To prove that the deformation in question is formally versal, we will need to compute the
Kodaira-Spencer map of a deformation defined by perturbation of generators of a subalgebra of
the polynomial algebra. See Section 6.2 for more details. The results about the Kodaira-Spencer
map for such deformations may be of independent interest.

Some of these results were preliminarily announced in an arxiv.org preprint by the author,
[3].

1The T -varieties obtained from polyhedral divisors without this ”lattice point” condition can be obtained from
the T -varieties under consideration by taking the quotient modulo a finite group action.
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2 Preliminaries

2.1 T-varieties and polyhedra

We will need an explicit construction of a T -variety out of a polyhedral divisor.
First, we need one more definition concerning polyhedral cones. If σ is a polyhedral cone in

a Q-vector space V , its dual cone is defined as the set of all vectors w ∈ V ∗ such that for all
v ∈ V one has w(v) ≥ 0.

Now we have to define the evaluation function eval : Polσ(V )×σ∨ → Q as follows: eval(∆1−
∆2, f) = minv∈∆1 f(v) − minv∈∆2 f(v) for all polyhedra ∆1,∆2 with tail cone σ and for all
f ∈ σ∨. One checks directly that this function is well-defined on Polσ(V ), that it is linear in
the first argument and is piecewise-linear in the second argument. If we fix a polyhedron as
the first argument (a real polyhedron, not an element of the Grothendick construction, i. e.
∆2 = σ), then the resulting function is also convex. If this polyhedron is of the form σ + v,
where v ∈ V , then this function is linear, not just piecewise-linear. If ∆ is a polyhedron,
we shortly call the function eval∆ : σ∨ → Q defined by eval∆(f) = eval(∆, f) the individual
evaluation function of the polyhedron ∆.

We are going to construct a d-dimensional variety with an action of a k-dimensional torus T .
Suppose that we have a (d−k)-dimensional normal (not necessarily affine) variety Y , a pointed
cone σ in the rational dual character lattice NQ = X(T )∗Q, and a polyhedral divisor D on Y .

For every element χ ∈ σ∨ ∩M , D defines a rational divisor D(χ) as follows. Notice that χ
can be considered as a function on N . Let D =

∑
aiZi ⊗ (∆i − ∆′i), where ai ∈ Q, Zi’s are

irreducible hypersurfaces in Y , and ∆i’s and ∆′i’s are polyhedra with the tail cone σ. We put
D(χ) :=

∑
ai eval(∆i −∆′i, χ)Zi =

∑
ai(minp∈∆i χ(p)−minp∈∆′i

χ(p))Zi.

Definition 2.1. A polyhedral divisor D is called principal, if it can be written in the form
D =

∑
div(fi)⊗ αi + σ, where fi’s are rational functions on Y and αi ∈ N .

Definition 2.2. A polyhedral divisor D is called proper, if

1. It can be written in the form D =
∑
aiZi ⊗∆i, where ai ∈ Q, efficient Cartier divisors

in Y , and ∆i’s are polyhedra with the tail cone σ and ai ≥ 0.

2. For every χ ∈ σ∨ ∩M , D(χ) is semiample, and if χ is in the interior of σ∨, D(χ) is big.

Now, notice that if χ, χ′ ∈ σ∨ ∩ M , then D(χ) + D(χ) − D(χ + χ′) is an effective divi-
sor, so a product of (rational) functions from Γ(P1,O(D(χ))) and from Γ(P1,O(D(χ′))) is in
Γ(P1,O(D(χ+ χ′))). So we have a graded algebra

A =
⊕

χ∈σ∨∩M
Γ(P1,O(D(χ))).

One can prove that if D is proper, this algebra is finitely generated. The T-variety in question
is X = SpecA. Since A is graded, T acts on X. If D is proper, dimX = d.

If we add a principal polyhedral divisor to D , then A will not change as a graded algebra,
so X will stay the same, and the action of the torus on X will also stay the same. Notice also
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2 Preliminaries

that if χ, χ′ ∈ σ∨ ∩M are proportional, then D(χ + χ′) = D(χ) + D(χ′), and in general the
function χ 7→ D(χ) is piecewise-linear.

Within the construction of A we use, the elements of Γ(P1,O(D(χ))) may be interpreted in
two ways: they are rational functions on Y and they are global algebraic functions on X. If
f ∈ Γ(P1,O(D(χ))), we will write f for a rational function on Y and f̃ for a global function
on X.

Proposition 2.3. (see [1, Theorem 3.1]) There exists a rational surjective map π : X → Y
such that for every degree χ ∈ σ∨ ∩M , for every point x ∈ X such that π is defined at x, and
for every f, g ∈ Γ(P1,O(D(χ))) the following conditions are equivalent:

1. f/g is defined at π(x) as a rational function.

2. f̃/g̃ is defined at x as a rational function.

In this case, (f/g)(π(x)) = (f̃/g̃)(x).

2.2 Deformations

If X = SpecA is an affine algebraic variety, we will need to understand how to define an A-
module structure on T 1(X). Namely, choose an embedding X ↪→ Cn, then A can be written
as A = C[x̌1, . . . , x̌n]/I, where I is an ideal. Then I/I2 is an A-module. Consider also the
following C[x̌1, . . . , x̌n]-module Θ = DerC[x̌1, . . . , x̌n]: its elements are of the form

∑
gi∂/∂x̌i,

where gi ∈ C[x̌1, . . . , x̌n]. Every such differential operator defines an A-homomorphism between
I/I2 and A: if g ∈ I, then g/I2 ∈ I/I2 maps to (

∑
gi∂g/∂x̌i)/I ∈ A. If g ∈ I2, g =

∑
g′jg
′′
j ,

then
∑

i,j gi∂(g′jg
′′
j )∂x̌i =

∑
i,j gig

′
j∂g
′′
j /∂x̌i+

∑
i,j gig

′′
j ∂g

′
j/∂x̌i ∈ I, so the map is well-defined. If

a ∈ C[x̌1, . . . , x̌n], a/I ∈ A, then g
∑
gi∂a/∂x̌i ∈ I, so (

∑
gi∂(ag)/∂x̌i)/I = (a

∑
gi∂g/∂x̌i)/I+

(g
∑
gi∂a/∂x̌i)/I = (a

∑
gi∂g/∂x̌i)/I, and the map is A-linear. So in fact we have defined a

map φ : Θ→ HomA(I/I2, A).
Moreover, if

∑
gi∂/∂x̌i ∈ IΘ, i. e. if all gi are in I, then

∑
gi∂g/∂x̌i ∈ I for all g ∈ I, so φ

is well-defined on Θ/IΘ, which is an A-module. It is clear that φ is A-linear.
One can prove that T 1(X) can be identified with cokerφ so that these identifications for

all affine varieties together have good category-theoretical properties. We will not need these
properties explicitly, and we will use this identification as a definition of T 1(X). However, we
will need to understand how the identification itself works exactly, because at some point a first
order deformation will arise from a different source (actually, as a restriction of a deformation
over an affine line to a tangent vector at the origin), and we will need to understand how it is
represented by an element of cokerψ. Here is a brief description.

Suppose that we have a first order deformation with a total space Y . It can be shown that
Y is an affine scheme. Denote B = C[Y ]. Then the flat morphism ξ : Y → SpecC[ε]/ε2 means
that B is a (C[ε]/ε2)-module, and the isomorphism ι determines an isomorphism ι∗ : B/εB →
A = C[X]. We keep the assumption that A is generated by n generators x1, . . . , xn, and that
I ⊂ C[x̌1, . . . , x̌n] is the ideal such that C[x̌1, . . . , x̌n]/I = A and that this isomorphism maps
x̌i to xi for each i. The flatness of ξ implies that there exist elements x̃1, . . . , x̃n ∈ B such that
ι∗x̃i = xi and that all elements ε = ε · 1, x̃1, . . . , x̃n generate B. It also follows from the flatness
of ξ that if g ∈ I, in other words, if g is a polynomial in n variables such that g(x1, . . . , xn) = 0,
then there exists a polynomial g′ ∈ C[x̌1, . . . , x̌n] such that g(x1, . . . , xn) = εg′(x1, . . . , xn).
Moreover, it can be shown that this g′ is unique modulo I. So, we have a well-defined map
I → C[x̌1, . . . , x̌n]/I = A, and it can also be shown that it is well-defined on I/I2 and is
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2.3 Schlessinger’s formula for T 1

A-linear. We say by definition that the isomorphism between T 1(X) and cokerφ maps the
deformation under consideration to the class of this map in cokerφ = HomA(I/I2, A)/ imφ.
One still has to show that this is really an isomorphism, but this is a known fact. Note that a
deformation itself only defines a class of a map I/I2 → A in cokerφ, but if we lift the generators
of A to B, the map I/I2 → A itself will be already uniquely determined (while it depends on
the choice of the lift).

If M is a lattice, A is M -graded, and the generators x̌1, . . . , x̌n are homogeneous, then one
has an M -grading on C[x̌1, . . . , x̌n] as well. Then I becomes an M -graded ideal, and Θ becomes
an M -graded module with deg(∂/∂x̌i) = −deg x̌i. The map φ preserves this grading, so we
have a grading on T 1(X).

2.3 Schlessinger’s formula for T 1

Extending Schlessinger’s result [4, Lemma 2], we prove the following theorem:

Theorem 2.4. Let X be an affine normal algebraic variety, and let U be a non-singular open
subset of X such that codimX(X \ U) ≥ 2. Then T 1(X) can be computed as follows. Let ΘX

denote the tangent sheaf on X, and let x1, . . . , xn ∈ C[X] be a set of generators. Consider the
following map ψ : ΘX → O⊕nX : it maps a (locally defined) vector field w to (dx1(w), . . . , dxn(w)).

Then T 1(X) = ker(H1(U,ΘX)
H1(ψ|U )−→ H1(U,O⊕nX )) as C[X]-modules.

The difference from Lemma 2 in [4] itself is the following. First, we speak about a normal
affine variety X, while Lemma 2 in [4] speaks about local geometric schemes. Second, we
allow X to have any singularities as long as X is normal, while Lemma 2 in [4] says that the
singularity must be isolated. Finally, here U is an arbitrary smooth open subset of X such that
codimX(X \ U) ≥ 2, while in Lemma 2 in [4] it must be the smooth locus of X. On the other
hand, here X is only embedded into a vector space, while in [4] it can be embedded into an
arbitrary smooth local geometric scheme Y . However, despite all these differences, the proof
of Lemma 2 in [4] can be used as a proof of Lemma 2.4 here without any significant changes.

Proof of Theorem 2.4. If F is a coherent sheaf on X, denote F∨ = HomX(F ,OX). First,
we prove three lemmas, which extend Lemma 1 from [4]. Here we use the following notion of
sections and cohomology with support (for more details, see, for example, [5, Section II.1] and
[5, Section III.2]). Given a sheaf F on a variety X and a closed subset V ⊂ X, we denote
by H0

V (X,F ) (or by ΓV (X,F )) the space of all global sections s of F that vanish outside V
(s|X\V = 0). We call the space H0

V (X,F ) the space of global sections of F with support on V .
The functor H0

V (X,−) is left exact, and it has classical right derived functors, which are called
cohomology with support and denoted by H i

V (X,−).

Lemma 2.5. Let X be a normal affine algebraic variety, U be an open subset such that
codimX(X \ U) ≥ 2, and F be a free sheaf of finite rank on X. Then H0

(X\U)(X,F ) =

H1
(X\U)(X,F ) = 0.

Proof. Write the long exact sequence for cohomology with support:

0→ H0
(X\U)(X,F )→ H0(X,F )→ H0(U,F )→ H1

(X\U)(X,F )→ H1(X,F )→ . . .

F is a free sheaf of finite rank, X is normal, and codimX(X \ U) ≥ 2, therefore the re-
striction map H0(X,F ) → Γ(U,F ) is an isomorphism. Hence, H0

(X\U)(X,F ) = 0 and the

11



2 Preliminaries

map H1
(X\U)(X,F ) → H1(X,F ) is an embedding. Since X is affine, H1(X,F ) = 0, so

H1
(X\U)(X,F ) = 0.

The following lemma is known, but for convenience of the reader we give a proof here.

Lemma 2.6. Let X be a normal affine algebraic variety, U be an open subset such that
codimX(X \U) ≥ 2, and F be a coherent sheaf on X such that there exists a coherent sheaf G
on X such that F = G ∨. Then H0

(X\U)(X,F ) = 0.

Proof. Since G is a coherent sheaf, there exists an exact sequence of coherent sheaves on X

0→ G ′ → G ′′ → G → 0,

where G ′′ is free. Since HomX(·,OX) and H0
(X\U)(X, ·) are left exact functors, the corresponding

map
H0

(X\U)(X,F )→ H0
(X\U)(X,G

′′∨)

is an embedding. G ′′ is free and coherent, i. e. it is a free sheaf of finite rank, so G ′′∨ is also a
free sheaf of finite rank. By Lemma 2.5, H0

(X\U)(X,G
′′∨) = 0. Hence, H0

(X\U)(X,F ) = 0.

Remark 2.7. Strictly speaking, we will not need this fact later, but the statement of the lemma
is closely related to the notion of a reflexive sheaf. Namely, a sheaf F is called reflexive if
F∨∨ = F . Clearly, if F is reflexive, then it satisfies the conditions of the lemma, we can take
G = F∨. One can prove that the contrary is also true, i. e. if F can be written as G ∨, then
F is reflexive.

Lemma 2.8. Let X be a normal affine algebraic variety, U be an open subset such that
codimX(X \ U) ≥ 2, and F be a coherent sheaf on X such that there exists a coherent sheaf
G on X such that F = HomX(G ,OX). Then the restriction map Γ(X,F ) → Γ(U,F ) is an
isomorphism.

Proof. Again write an exact sequence of coherent sheaves on X

0→ G ′ → G ′′ → G → 0,

where G ′′ is free. The dualization functor is left exact, so the corresponding map F → G ′′∨
is an embedding, and its cokernel (denote it by Q) is a subsheaf of G ′∨. By Lemma 2.6,
H0

(X\U)(X,G
′∨) = 0. Since Q is a subsheaf of G ′∨ and H0

(X\U)(X, ·) is a left exact functor,

H0
(X\U)(X,Q) = 0. Again, since G ′′ is free and coherent, G ′′∨ is a free sheaf of finite rank. By

Lemma 2.5, H1
(X\U)(X,G

′′∨) = 0. We have the following exact sequence of cohomology:

0→ H0
(X\U)(X,F )→ H0

(X\U)(X,G
′′∨)→ H0

(X\U)(X,Q)→

H1
(X\U)(X,F )→ H1

(X\U)(X,G
′′∨)→ . . . ,

and we see that H1
(X\U)(X,F ) = 0. By Lemma 2.6, H0

(X\U)(X,F ) = 0. Now write the
following long exact sequence:

0→ H0
(X\U)(X,F )→ H0(X,F )→ H0(U,F )→ H1

(X\U)(X,F )→ . . .

We see that the restriction map H0(X,F )→ H0(U,F ) is an isomorphism.
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2.3 Schlessinger’s formula for T 1

Now we are ready to prove Theorem 2.4. Denote A = C[X]. The generators x1, . . . , xn define
an embedding X ↪→ Cn = SpecC[x̌1, . . . , x̌n] and a morphism of algebras C[x̌1, . . . , x̌n] → A
so that x̌i 7→ xi. Denote the kernel of this algebra morphism by I. As we have previously
seen, I/I2 is an A-module. Denote the corresponding sheaf on X by I . Observe that the
A-module Θ/IΘ introduced in the definition of T 1(X) is isomorphic to the free A-module of
rank n as an A-module. The kernel of the map φ : Θ/IΘ → HomA(I/I2, A) consists of all
n-tuples (g1, . . . , gn) of functions on X such that for all h ∈ I one has

∑
gi∂h/∂x̌i = 0 in A

(to evaluate this expression, we take arbitrary representatives in the cosets corresponding to
gi and to h in C[x̌1, . . . , x̌n] and in I, respectively, we have seen previously that its value in
A does not depend on this choice). In other words, the n-tuple (g1, . . . , gn) defines a tangent
vector field to X. The embedding of the tangent bundle on X into the rank n trivial bundle
on X we have just obtained coincides with the map ψ in the statement of Theorem 2.4. So, we
have the following exact sequence of A-modules:

0→ Γ(X,ΘX)
Γ(ψ|U )−→ A⊕n → HomA(I/I2, A)→ T 1(X)→ 0.

Since X is affine, we also have an exact sequence of sheaves (denote the sheaf generated by the
A-module T 1(X) by T 1):

0→ ΘX
ψ−→ O⊕nX → I ∨ → T 1 → 0.

Denote the map between sheaves O⊕nX and I ∨ by φ̃. It is known that (see, for example, [2,
Exercise 3.5 and Theorem 4.9]) if U ′ ⊆ X is smooth, then Γ(U ′,T 1) = 0. So, if U ′ is, in
addition, affine, we have the following exact sequence:

0→ Γ(U ′,ΘX)
Γ(ψ|U′ )−→ Γ(U ′,O⊕nX )

Γ(φ̃|U′ )−→ Γ(U ′,I ∨)→ 0.

In particular, this holds for affine sets U ′ forming an affine cover of U . Therefore, we have the
following exact sequence of sheaves on U :

0→ ΘX |U
ψ|U−→ O⊕nX |U

φ̃|U−→ I ∨|U → 0,

and we can write the long exact sequence of cohomology:

0→ H0(U,ΘX)
H0(ψ|U )−→ H0(U,O⊕nX )

H0(φ̃|U )−→ H0(U,I ∨)→

H1(U,ΘX)
H1(ψ|U )−→ H1(U,O⊕nX )→ . . .

Denote the map between H0(U,I ∨) and H1(U,ΘX) by δ. We have kerH1(ψ|U ) = im δ =
H0(U,I ∨)/ ker δ = H0(U,I ∨)/ imH0(φ̃|U ) = cokerH0(φ̃|U ).

Recall the exact sequence of A-modules we started with:

0→ Γ(X,ΘX)
Γ(ψ)−→ A⊕n → HomA(I/I2, A)→ T 1(X)→ 0.

We can write A⊕n as Γ(X,O⊕nX ). and HomA(I/I2, A) as Γ(X,I ∨). Now we can apply Lemma
2.8. ΘX is dual to ΩX , O⊕nX is dual to itself, and I ∨ is dual to I by construction. So we can

13



2 Preliminaries

rewrite the exact sequence as follows:

0→ H0(U,ΘX)
H0(ψ|U )−→ H0(U,O⊕nX )

H0(φ̃|U )−→ H0(U,I ∨)→ T 1(X)→ 0,

and we see that cokerH0(φ̃|U ) = T 1(X).

Remark 2.9. If a torus T acts on X and preserves U , all generators of C[X] we have are homo-

geneous, and we find an affine covering of U by sets preserved by T , then ker(H1(U,ΘX)
H1(ψ|U )−→

H1(U,O⊕nX )) becomes a graded C[X]-module. The C[X]-module T 1(X) also becomes graded (see
Section 2.2).

In this case, the argument above proves that T 1(X) is isomorphic to ker(H1(U,ΘX)
H1(ψ|U )−→

H1(U,O⊕nX )) as a graded C[X]-module.

2.4 Čech complexes cohomology

We need two more facts related to Čech complexes. The first proposition explains how to
compute derived direct images using Čech resolutions.

Let F be a quasicoherent sheaf on a separated algebraic variety U , and let {Ui}qi=1 be an
affine covering of U . Consider the following sheaf Čech resolution of F : it consists of sheaves
F i on U , i ≥ 0, and

F i =
⊕

1≤a1<a2<...<ai+1≤q
Fa1,...,ai+1 ,

where if V ⊆ U is an open subset, then Γ(V,Fa1,...,ai+1) = Γ(V ∩ Ua1 ∩ . . . ∩ Uai+1 ,F ). The
differentials in the resolution are defined in the usual Čech sense: given a section

(xa1,...,ai)1≤a1<a2<...<ai≤q ∈ Γ(V,F i−1),

the differential maps it to

(ya1,...,ai+1)1≤a1<a2<...<ai+1≤q ∈ Γ(V,F i),

where

ya1,...,ai+1 =

i+1∑
j=1

(−1)j(xa1,...,âj ,...,ai+1
)
∣∣∣
V ∩Ua1∩...∩Uai+1

.

Notice that if we take the global sections of all F i, we obtain a Čech complex of F in the
”usual”, non-sheaf sense.

Suppose we have a map f : U → Y , where Y is also a separated algebraic variety.

Proposition 2.10. [5, Proposition III.8.7]

Rif∗(F ) = H i(f∗(F
•)),

where H i is the ith cohomology of the complex formed by f∗(F i) for i ≥ 0, not the ith coho-
mology of a particular sheaf.

The second fact gives an easier way to compute the first cohomology of complexes that ”look
like a Čech complex” under certain circumstances in any abelian category. Suppose that C

14



2.4 Čech complexes cohomology

is an abelian category, let A be an object, let q ∈ N, and let for every 1 ≤ i ≤ q indices ai
satisfying 1 ≤ a1 < . . . < ai ≤ q Aa1,...,ai be a subobject of A (i. e. an object together with a
morphism Aa1,...,ai → A whose kernel is zero). Suppose also that if (aj)

i
j=1 is a subsequence

of (bj)
i+1
j=1, then Aa1,...,ai is a subobject of Ab1,...,bi+1

, and the embedding Aa1,...,ai → Ab1,...,bi+1

commutes with the embeddings of these objects into A.

Now consider the following complex B•:

Bi =
⊕

1≤a1<a2<...<ai+1≤q
Aa1,...,ai+1 , i ≥ −1.

Here we allow i = −1 and say that Athe empty sequence = 0, so B−1 = 0 The differential d : Bi−1 →
Bi is defined using a sign-alternating sum, as it is usually defined in Čech complexes. Here we
have objects in an abelian category, not necessarily abelian groups or modules over a ring, so
we use universal properties of direct sums to interpret formulas with addition and subtraction
signs.

We also need the following complex B′•:

B′i =
⊕

1≤a1<a2<...<ai+1≤q
A/Aa1,...,ai+1 , i ≥ −1.

Here we also allow i = −1, and B′−1 = A. Again, the differentials are defined ”as usual” using
universal properties of direct sums.

Proposition 2.11. For i ≥ 0, H i(B•) = H i−1(B′•). This isomorphism is functorial in B and
B′ if the embeddings Aa1,...,ai → A are functorial in Aa1,...,ai and A.

Proof. Consider the following complex B′′•:

B′′i =
⊕

1≤a1<a2<...<ai+1≤q
A, i ≥ −1.

The differential is again the standard Čech differential. Clearly, we have an exact sequence of
complexes:

0→ B• → B′′• → B′• → 0.

Let us check that B′′• is acyclic.

Lemma 2.12. B′′• is acyclic.

Proof. First, consider the topological complex for a simplex with q vertices, i. e. the following
complex C•:

Ci =
⊕

1≤a1<a2<...<ai+1≤q
Z, i ≥ 0.

Here we do not allow i = −1, and the differential again coincides with the standard Čech
differential (although initially it is defined by topological means). It is a well-known topological
fact that H0(C•) = Z and H i(C•) = 0 for i 6= 0. One easily checks directly that H0(C•) consists
of classes of the elements of C0 = Z⊕n that have all coordinates equal, i. e. of the elements of
the form (a, a, . . . , a), where a ∈ Z.

15
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Therefore, the following complex C ′• of abelian groups is acyclic:

C ′i =
⊕

1≤a1<a2<...<ai+1≤q
Z, i ≥ −1.

Now let us use Mitchell’s embedding theorem. Consider the abelian subcategory in C0 in C
generated by A. This is a small category, therefore by Mitchell’s embedding theorem it is
equivalent to an abelian subcategory in the category of left modules over a (not necessarily
commutative) ring R. So, we can consider B′′• as a complex of R-modules. In particular, B′′•

also becomes a complex of abelian groups, and it is acyclic as a complex of R-modules iff it is
acyclic as a complex of abelian groups. And for complexes of abelian groups, we clearly have
B′′• = C ′• ⊗Z A.

Let us deduce that B′′• is also acyclic. We cannot be sure that A is a flat object in the
category of abelian groups, but we can argue differently. Since C ′• is acyclic and consists
of free abelian groups of finite rank, it can be considered as a projective resolution for the
abelian group 0. Then Tori(0, A) = H−i(C ′• ⊗Z A) = H−i(B′′•). But Tori(0, A) = 0, so B′′• is
acyclic.

Now let us write the long exact sequence for the exact triple

0→ B• → B′′• → B′• → 0 :

. . .→ H i(B•)→ H i(B′′•)→ H i(B′•)→ H i+1(B•)→ H i+1(B′′•)→ H i+1(B′•)→ . . .

We have H i(B′′•) = 0 and H i+1(B′′•) = 0 for all i ∈ Z, so H i(B′•) = H i+1(B•).

Corollary 2.13. If Aj,k = A for all 1 ≤ j < k ≤ q, then H1(B•) = (
⊕q

j=1A/Aj)/A, where A
is mapped to

⊕q
j=1A/Aj diagonally.

Corollary 2.14. In general, if it is not necessarily true that Aj,k = A for all 1 ≤ j < k ≤ q,
then

H1(B•) =

ker
( q⊕
j=1

(A/Aj)→
⊕

1≤j<k≤q
(A/Aj,k)

)/A,

where A is mapped to
⊕q

j=1A/Aj diagonally.

2.5 Leray spectral sequence

We are going to use the following theorem:

Theorem 2.15. (see, for example, [6, Section 3.3, page 74] and [7, §III.7, Theorem 7]) Let
f : X → Y be a morphism of algebraic varieties, and let F be a quasicoherent sheaf on X.
Then there exists a spectral sequence called Leray spectral sequence with the second sheet

Ep,q2 = Hp(Y,Rqf∗F ),

where the corresponding differentials map Ep,qr to Ep+r,q−r+1
r , r ≥ 2, that converges to

Hp+q(X,F ). Denote the corresponding filtration on Hp+q(X,F ) by F •.
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2.5 Leray spectral sequence

The sheaves Rqf∗F can be considered as sheaves of f∗OX-modules, and Hp(Y,Rqf∗F ) can
be therefore considered as C[X]-modules. In this sense, the isomorphism

F pHp+q(X,F )/F p+1Hp+q(X,F ) ∼= Ep,q∞

is an isomorphism of C[X]-modules.

Here Rqf∗ denotes the qth derived functors of the direct image functor in quasicoherent sheaf
category (or shortly, ”qth derived direct image”).

Notice that if dimY = 1, then (since all sheaves Rqf∗F are coherent) Hp(Y,Rqf∗F ) = 0 for
p ≥ 2 (and p < 0), so all differentials vanish, Ep,q2 = Ep,q∞ , and we have a short exact sequence

0→ H1(Y,Rq−1f∗F )→ Hq(X,F )→ H0(Y,Rqf∗F )→ 0.

We will also need an explicit description of the maps in this exact sequence for q = 1. By
adopting the general construction from [7, §III.7] one can check that the exact sequence above
for q = 1 looks as follows.

Choose an affine open covering {Vi} of Y . Also choose an affine open covering {Ui,j} of X
(here (i, j) ∈ I, where I is a finite set of pairs of natural numbers) so that if (i, j) ∈ I, then
1 ≤ i ≤ q, and Ui,j ⊆ f−1(Vi). Construct the sheaf Čech resolution of F discussed in Section
2.4 using the covering {Ui,j}. Denote this resolution by F •.

Then the map H1(Y, f∗F ) → H1(X,F ) works as follows: An element of H1(Y, f∗F ) is
represented by a tuple of sections (ai,i′)1≤i<i′≤q, where ai,i′ ∈ Γ(Vi ∩ Vi′ , f∗F ) satisfy the
cocycle conditions. By definition, Γ(Vi ∩ Vi′ , f∗F ) = Γ(f−1(Vi ∩ Vi′),F ), and, since Ui,i′ ⊆
f−1(Vi) we can define restrictions ai,i′ |Ui,j∩Ui′,j′ ∈ Γ(Ui,j ∩ Ui′,j′ ,F ) for all j and j′ such that
(i, j), (i′, j′) ∈ I. These sections together with zeros for the sets Ui,j ∩ Ui′,j′ , where i = i′, form
a class in H1(X,F ).

The map H1(X,F )→ H0(Y,R1f∗F ) works as follows: Suppose that we have an element of
H1(X,F ) defined by sections ai,j,i′,j′ ∈ Γ(Ui,j ∩Ui′,j′ , f∗F ) ((i, j), (i′, j′) ∈ I and (i, j) < (i′, j′)
for some prefixed order on I) satisfying the cocycle conditions. These sections together can
be interpreted as a global section of the sheaf F 1 from Proposition 2.10 and, therefore, as
a global section s ∈ Γ(Y, f∗F 1). It follows from the cocycle conditions on ai,j,i′,j′ that s ∈
Γ(Y, ker(F 1 → F 2)), so s defines a class in Γ(Y,H1(F •)) = H0(Y,R1f∗F ).

Finally, consider an even more particular situation. Denote U = ∩(i,j)∈IUi,j and V = ∩qi=1Vi.
We keep all of the assumptions from the three previous paragraphs, but also suppose the
following:

1. X and Y are irreducible.

2. U and V are nonempty.

3. U ⊆ f−1(V ).

4. All restriction maps for the sheaf F to nonempty open subsets are injective (for example,
this is true for vector bundles of finite rank). I. e., if W ⊆ W ′ ⊆ X are nonempty open
subsets, then the restriction map Γ(F ,W ′)→ Γ(F ,W ) is injective. Then all restriction
maps for the sheaf F to open sets containing V are also injective.

5. V = Vi ∩ Vi′ if 1 ≤ i < i′ ≤ q. This assumption enables us to use Corollary 2.13 to
compute cohomology groups of F .
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We can apply Corollary 2.13 toH1(Y, f∗F ) and apply Corollary 2.14 toH1(X,F ). Moreover,
we can consider the sheaf FU = (jU )∗F |U . In other words, for all open subsets U ′ ⊂ X set
Γ(U ′,FU ) = Γ(F,U ∩ U ′). Then all sheaves F(i,j) and F(i,j),(i′,j′) from Proposition 2.10 are
subobjects of FU , and, since the functor f∗ is left exact, each sheaf f∗F(i,j) and f∗F(i,j),(i′,j′)

is a subobject of f∗FU . So, we can also apply Corollary 2.14 to the first cohomology of the
complex f∗F •. We get the following isomorphisms:

H1(Y, f∗F ) =

(
q⊕
i=1

(
Γ(V, f∗F )/Γ(Vi, f∗F )

))/
Γ(V, f∗F ),

H1(X,F ) =

ker

 ⊕
(i,j)∈I

(
Γ(U,F )/Γ(Ui,j ,F )

)
→

⊕
(i,j),(i′,j′)∈I
(i,j)<(i′,j′)

(
Γ(U,F )/Γ(Ui,j ∩ Ui′,j′ ,F )

)/Γ(U,F ),

and

H 1(f∗F
•) =

ker
⊕

(i,j)∈I

(
f∗FU/f∗F(i,j)

)
→

⊕
(i,j),(i′,j′)∈I
(i,j)<(i′,j′)

(
f∗FU/f∗F(i,j)

)/ f∗FU .

These identifications enable us to write the maps H1(Y, f∗F )→ H1(X,F ) and H1(X,F )→
H0(Y,R1f∗F ).

The map H1(Y, f∗F ) → H1(X,F ) is induced by the following map
⊕q

i=1 Γ(V, f∗F ) →⊕
(i,j)∈I Γ(U,F ). For each i (1 ≤ i ≤ q), a section from the ith direct summand Γ(V, f∗F ) =

Γ(f−1(V ),F ) is restricted to U and then mapped diagonally to
⊕

j:(i,j)∈I Γ(U,F ). Note that

Ui,j ∩ Ui′,j′ ⊆ f−1(V ) if i 6= i′, therefore, the image of this map indeed belongs to the correct
subobject of

⊕
(i,j)∈I Γ(U, f∗F ).

To get the map H1(X,F )→ H0(Y,R1f∗F ), note that each global section of
⊕

(i,j)∈I f∗FU

induces a global section of (
⊕

(i,j)∈I(f∗FU/f∗F(i,j)))/FU . On the other hand, by the definition

of FU , Γ(Y,
⊕

(i,j)∈I f∗FU ) =
⊕

(i,j)∈I Γ(U,F ), and the map H1(X,F ) → H0(Y,R1f∗F ) is
induced by this equality.

Remark 2.16. Suppose that a torus T acts on X, the morphism f is T -invariant, and each
set Ui,j is preserved by the action of T . Then one can introduce grading on H1(Y, f∗F ), on
H1(X,F ), and on H0(Y,Rqf∗F ) in the obvious way.

It follows from the above descriptions of the maps between these cohomology groups that this
grading is preserved.

2.6 Stably dominant morphisms

Definition 2.17. (This is definition 10.80.1, tag 058I in Stacks project [8]) Let A be an algebra.
A map of A-modules f : K1 → K2 is called universally injective if for every A-module K3, the
map f ⊗ idK3 : K1 ⊗K3 → K2 ⊗K3 is injective.
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2.6 Stably dominant morphisms

Remark 2.18. A universally injective map is always injective. A direct summand embedding
is always universally injective.

Consider the following situation. Let X and Y be two affine schemes with base Z, in other
words, let ξ1 : X → Z and ξ2 : Y → Z be two morphisms of affine schemes. Let f : X → Y
be a relative morphism, i. e. a morphism such that ξ2 ◦ f = ξ1. In other words, we have the
following commutative diagram:

X
f //

ξ1
  

Y

ξ2
��
Z

Algebraically this means that C[X] and C[Y ] are C[Z]-modules, and that f∗ : C[Y ]→ C[X] is
a morphism of C[Z]-algebras.

Definition 2.19. We call f a stably dominant morphism if f∗ is a universally injective mor-
phism of C[Z]-modules.

Lemma 2.20. The functor of base change preserves stably dominant morphisms. In other
words, suppose that we have a morphism of schemes Z1 → Z, and f : X → Y is a stably
dominant morphism of Z-schemes. Then f ×Z Z1 : X ×Z Z1 → Y ×Z Z1 is a stably dominant
morphism of Z1-schemes.

Proof. In algebraic terms, we know that f∗ : C[X] → C[Y ] is universally injective. Then
f∗ ⊗C[Z] idC[Z1] : C[X] ⊗C[Z] C[Z1] → C[Y ] ⊗C[Z] C[Z1] is a universally injective morphism of
C[Z1]-modules. Finally, C[X ×Z Z1] = C[X]⊗C[Z] C[Z1], C[Y ×Z Z1] = C[Y ]⊗C[Z] C[Z1], and
(f ×Z Z1)∗ = f∗ ⊗C[Z] idC[Z1].

Let g : Z1 → Z be a morphism of affine schemes. If X is an affine Z-scheme, g induces a
morphism X ×Z Z1 → X, which we will denote by gX . Algebraically, if x is a regular function
on X, then g∗X(x) = x⊗ 1Z1 , where 1Z1 is the unit of the algebra C[Z1]. This is illustrated by
the following commutative diagram

X ×Z Z1
gX //

��

X

��
Z1 g

// Z

For example, if I ⊂ C[Z] is an ideal, and Z1 is the vanishing locus of I, then C[Z1] = C[Z]/I as
a C[Z]-module, g is the embedding of Z1 into Z, g∗ is the canonical projection C[Z]→ C[Z]/I,
and g∗X is the canonical projection C[X]→ C[X]/(IC[X]).

Lemma 2.21. Let Z be an affine scheme, let f : X → Y be a stably dominant morphism of
affine Z-schemes, and let g : Z1 → Z be a closed embedding. Then (f ×Z Z1)∗(C[Y ×Z Z1]) =
g∗X(f∗(C[Y ])) as a subalgebra of C[X ×Z Z1].
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Before we give a proof, let us provide a commutative diagram with all involved morphisms.

X ×Z Z1
f×ZZ1 //

$$
gX

��

Y ×Z Z1

zz
gY

��

Z1

g

��

X
f //

%%

Y

zz
Z

Proof. Since g is a closed embedding, g∗ is surjective, and then (gY )∗ is also surjective. So,
(f×ZZ1)∗(C[Y ×ZZ1]) = (f×ZZ1)∗((gY )∗(C[Y ])). And the commutativity (f×ZZ1)∗◦(gY )∗ =
(gX)∗ ◦ f∗ follows directly from the definitions of gX , gY , and f ×Z Z1.

In particular, we can use this lemma to compute fibers of the morphism Y → Z if we already
know fibers of the morphism X → Z (such a fiber is a particular case of base change applied
to Y , namely, we change the base of Y from Z to a point in Z).

2.7 Notation and terminology

First, we need some notation for lattice polyhedra. Let ∆ be a polyhedron with tail cone σ and
with all vertices in N , where dimσ = dimN = 2, and σ is pointed. We denote the number of
vertices of ∆ by v(∆) and we denote the vertices of ∆ by V1(∆), . . . ,Vv(∆)(∆) so that pairs of
consecutive vertices in this enumeration form the finite edges of ∆. We denote the finite edge
between Vj(∆) and Vj+1(∆) by Ej(∆). We denote the infinite edge with the endpoint V1(∆)
by E0(∆) and the infinite edge with the endpoint Vv(∆)(∆) by Ev(∆)(∆).

We always choose the order on vertices of ∆ so that E0(∆) is always parallel to the same
one of the two rays forming ∂(σ) (it must not depend on ∆). This ray is denoted by E0(σ),
and the other ray of ∂(σ) is denoted by E1(σ).

Recall that in the Introduction we have denoted by vp, where p ∈ P1 is a special point, the
number of vertices of ∆p, so in terms of the notation we have introduced now, vp = v(∆p). We
also denoted the edges of each ∆p by Ep,0, . . . ,Ep,vp . Now we choose E0(σ) and E1(σ) so that
E0(σ) is parallel to Ep,0 (and not to Ep,vp) for all special points p. Then Ep,j = Ej(∆p) for all
special points p and for 0 ≤ j ≤ vp. We will also briefly write Vp,j instead of Vj(∆p).

For each vertex Vi(∆) denote by N (Vi(∆),∆) the subcone of σ∨ consisting of all χ ∈ σ∨
such that χ(Vi(∆)) = mina∈∆ χ(a). We call N (Vi(∆),∆) the normal subcone of the vertex
Vi(∆). One checks easily that this is really a subcone, that σ∨ =

⋃
N (Vi(∆),∆), that the

intersection of two such cones is either a ray or the origin, and it is a ray if and only if the two
corresponding vertices form an edge Ej(∆). In the latter case this ray is exactly the set of all
χ ∈ σ∨ whose minimum on ∆ is attained on Ej(∆). We denote this ray by N (Ei(∆),∆) and
call it the normal ray of the edge Ei(∆). Finally, we extend this notation for infinite edges of
∆: we denote by N (E0(∆),∆) (resp. N (Ev(∆)(∆),∆)) the ray in M consisting of all χ ∈ σ∨
whose minimum on ∆ is attained on E0(∆) (resp. Ev(∆)(∆)). These two rays are in fact the
two rays forming ∂(σ∨), and they are also called the normal rays of the corresponding edges.
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2.7 Notation and terminology

The normal subcones of all vertices and the normal rays of all (finite and infinite) edges form
a fan, which is called the normal fan of ∆.

The previous notation applies to polyhedra with tail cone σ, let us extend it to the vertex and
edges of σ∨. Namely, the boundary of σ∨ consists of two infinite edges and one vertex at the
origin. Denote the vertex at the origin by V1(σ∨). If ∆ is a polyhedron with tail cone σ, then
N (E0(∆),∆) is always the same edge of σ∨ (independently of ∆), and N (Ev(∆)(∆),∆) is
always the other edge of σ∨. Denote E0(σ∨) = N (E0(∆),∆) and E1(σ∨) = N (Ev(∆)(∆),∆).
In particular, this is true for ∆ = σ, i. e. E0(σ∨) = N (E0(σ), σ) and E1(σ∨) = N (E1(σ), σ).
Denote the primitive lattice vectors on Ej(σ

∨) by αj .
Fig. 2.1 shows an example of this notation for a polyhedron ∆, its tail cone σ, and its normal

fan.

E0(∆)

V1(∆)

E1(∆)

V2(∆)

E2(∆)

V3(∆) E3(∆)

E0(σ)

0=V1(σ) E1(σ)
E0(σ∨)=N(∆,E0(∆))

N(∆,V1(∆))

N(∆,E1(∆))

N(∆,V2(∆))

N(∆,E2(∆))

N
(
∆
,V

3
(
∆

)
)

E1(σ∨)=N(∆,E3(∆))

(a) (b) (c)

Figure 2.1: An example of notation for: (a) a polyhedron, (b) its tail cone, and (c) its normal
fan. The figure (c) also shows notation for the dual cone σ∨.

If ρ is a ray in MQ, we denote the primitive lattice vector on ρ by b(ρ). If a is a vector or
a segment in N , denote by |a| the lattice length of a, i. e. the number of lattice points in a
including exactly one of the endpoints.

2.7.1 List of notation introduced further

The notation listed below will be properly introduced later, we list it now to ease reading and
navigation only, without going into details of the underlying notions.

1. The T-variety will be denoted by X.

2. We denote the number of essential special points by r′, and we will assume that the points
p1, . . . , pr′ are essential.

3. We will introduce a set of degrees containing the union of Hilbert bases of several subcones
of σ∨, and we will denote the degrees in this set by λ1, . . . , λm.

4. Since X is a T -variety, C[X] is an M -graded algebra. As usual, we will denote the degree
of a homogeneous element x ∈ C[X] with respect to this grading by deg(x).

5. We will choose homogeneous generators of this algebra, and denote them by

xλ1,1, . . . ,xλ1,dim Γ(P1,O(D(λ1))),
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xλ2,1, . . . ,xλ2,dim Γ(P1,O(D(λ2))),

. . . ,

xλm,1, . . . ,xλm,dim Γ(P1,O(D(λm))).

Here deg(xλi,j) = λi. Also note that the λith graded component of C[X] is by construc-
tion identified with Γ(P1,OP1(D(λi))). The generators xλi,1, . . . ,xλi,dim Γ(P1,O(D(λi))) will
span Γ(P1,OP1(D(λi))).

6. We denote the total number of these generators by n.

7. We will fix a smooth open subset U ⊆ X such that codimX(X \ U) ≥ 2.

8. We will fix an affine open covering of U , which we will denote by U1, . . . , Uq.
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3 Formula for the graded component of T 1 of
degree 0 in terms of sheaf cohomology

3.1 Regularity locus and fiber structure of the map π

In the Introduction we have fixed a pointed full-dimensional cone σ ⊂ NQ, points p1, . . . , pr

on P1, polyhedra ∆pi ⊆ NQ whose vertices are lattice points and whose tail cones are all
σ. Unlike what is assumed sometimes, we do not allow ∅ to appear among these poly-
hedra.1 These data define a polyhedral divisor D =

∑r
i=1 ∆pi ⊗ pi and a graded algebra

A =
⊕

χ∈σ∨∩M Γ(P1,O(D(χ))). If p ∈ P1 does not coincide with any of the points pi, we
denote ∆p = σ. We have also supposed that the Minkowski sum of all polyhedra ∆pi is strictly
contained in σ, which means that D is proper. So, A defines a 3-dimensional variety X = SpecA
with an action of a 2-dimensional torus. We use the notation π for the rational map from X
to P1 introduced in Proposition 2.3. It is known that all such varieties are normal.

In the sequel we will always keep in mind that very ample divisors on P1 are exactly the
divisors of positive degree and principal divisors are exactly the divisors of degree zero. Recall
that we call a point p ∈ P1 ordinary if it is not one of the points pi, otherwise we call it special.
We require that the sum

∑
∆pi ⊗ pi is finite, but we do not require that all summands are

nontrivial, i. e. we allow summands of the form σ⊗pi, which are zeros in the polyhedral divisor
group. We call such points pi special anyway, according to the definition above. So in fact the
notions of a special point and an ordinary point depend on the choice of exact presentation
D =

∑
∆pi ⊗ pi, and we suppose that it is also fixed. Also recall that if ∆pi = σ + a for some

a ∈ N , (including a = 0), we call such pi a removable special point, otherwise we call pi an
essential special point. If ∆pi = σ, we will call pi a trivial special point.

Fix a coordinate t on P1, i. e. fix a rational function t on P1 that has one pole of order 1
and one zero of order 1.

Lemma 3.1. Given two nonzero rational functions f and g on P1 such that f/g has one
zero and one pole, and both of them are of order one, there exist a1, b1, a2, b2 ∈ C such that
(a1f + b1g)/(a2f + b2g) = t.

Proof. First, let us find a′1, b
′
1, a
′
2, b
′
2 ∈ C such that (a′1f + b′1g)/(a′2f + b′2g) is regular at all

points where t is finite and has pole of order one at t = ∞. If f/g = 0 at t = ∞, then this
zero is of order one, and a′1 = 0, b′1 = 1, a′2 = 1, b′2 = 0 yield the function g/f , which has pole of
degree one at ∞. It has no other poles since they would be other zeros of f/g, so this function
has the desired properties. Otherwise denote the value of g/f at t = ∞ by w1. Consider the
following function: g/f −w1 = (g−w1f)/f . Clearly, it has a zero at t =∞. Observe that g/f
has exactly one pole of order one, namely, at the point where f/g has zero of order one. Hence,
g/f + w1 also has exactly one pole of order one. The sum of minus orders of all poles and of
(plus) orders of all zeros of a rational function on P1 is zero. Thus, g/f + w1 has exactly one

1In terms of the notation where ∅ is allowed among the coefficients, this means that the locus of the polyhedral
divisor will be the whole P1.
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3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

zero, and this zero is of order one. But we already know one zero of g/f +w1, namely, t =∞.
Therefore, this zero is of order one, and f/(g −w1f) has exactly one pole, this pole is of order
one and is at t =∞.

Now we have a function (a′1f + b′1g)/(a′2f + b′2g), which is regular at all points where t
takes finite value and has a pole of order one at t = ∞. Denote the value of this function
at t = 0 by w2. Consider the following function: (a′1f + b′1g)/(a′2f + b′2g) − w2 = ((a′1 −
w2a

′
2)f + (b′1 − w2b

′
2)g)/(a′2f + b′2g). It has exactly one pole, this pole is at t = ∞ and of

order one, and it has a zero at t = 0. If we divide this function by t, the resulting function
((a′1−w2a

′
2)f + (b′1−w2b

′
2)g)/(t(a′2f + b′2g)) has no poles on P1, so it is a constant. Therefore,

if we multiply ((a′1−w2a
′
2)f + (b′1−w2b

′
2)g)/(t(a′2f + b′2g)) by the appropriate constant, it will

be equal to t.

Corollary 3.2. For every divisor D on P1 of positive degree and for every non-zero rational
function f ∈ Γ(P1,O(D)) there exist g ∈ Γ(P1,O(D)) and a1, b1, a2, b2 ∈ C such that (a1f +
b1g)/(a2f + b2g) = t.

Proof. Since f ∈ Γ(P1,O(D)), div(f) + D is an effective divisor. Write div(f) + D =
∑
a′ip
′
i,

where a′i ∈ Z≥0, p′i ∈ P1. Since f is a rational function on P1, deg div(f) = 0, and
∑
a′i =

deg div(f) + degD = degD > 0. There exists a point p′i such that a′i > 0. Choose another
point p′j , and consider the following divisor: D1 =

∑
a′ip
′
i − p′i + p′j . This is an effective

divisor since a′i > 0. Let y be a rational function on P1 such that div(y) = −p′i + p′j . Then

D + div(fy) = D1 ≥ 0. Hence, g = fy ∈ Γ(P1,O(D)), and we can apply Lemma 3.1 to f and
g since div(f/g) = div(1/y) = p′i − p′j .

Corollary 3.3. Let x ∈ X. If there exists a degree χ ∈ σ∨∩M such that dim Γ(P1,O(D(χ))) ≥
2 and f ∈ Γ(P1,O(D(χ))) such that f̃(x) 6= 0, then π is defined at x.

Proof. Apply Corollary 3.2 to D(χ) and f . There exists g ∈ Γ(P1,O(D(χ))) and a1, a2, b1, b2 ∈
C such that (a1f + b1g)/(a2f + b2g) = t on P1. The functions f and g cannot be proportional,
otherwise (a1f + b1g)/(a2f + b2g) would be a constant on P1. Then f̃ and g̃ cannot be
proportional either, and (a1f̃ + b1g̃)/(a2f̃ + b2g̃) is a rational function on X. The rational
function (a1f̃ + b1g̃)/(a2f̃ + b2g̃), considered as a rational map from X to P1 (we suppose that
it computes the coordinate t of a point on P1), coincides with π by Proposition 2.3. The pairs
(a1, a2) and (b1, b2) cannot be proportional, and f̃(x) 6= 0, so the functions (a1f̃ + b1g̃) and
(a2f̃ + b2g̃) cannot vanish simultaneously. Therefore, the rational map from X to P 1 defined
by t = (a1f̃ + b1g̃)/(a2f̃ + b2g̃) is defined at x. This rational map coincides with π, so we are
done.

So we define an open subset U0 ⊆ X as follows: it consists of all points x ∈ X such
that there exists a degree χ ∈ σ∨ ∩M such that dim Γ(P1,O(D(χ))) ≥ 2 and there exists
f ∈ Γ(P1,O(D(χ))) such that f̃(x) 6= 0. Corollary 3.3 shows that π is defined on U0. In fact,
π is not defined outside U0, but we will not need this.

Our next goal is to understand fibers of π. First, consider an ordinary point p ∈ P1. For
every degree χ ∈ σ∨ ∩M , the sections of Γ(P1,O(D(χ))) do not have poles at p. For each
χ ∈ σ∨ ∩M , choose a basis

ep,χ,1, . . . , ep,χ,dim Γ(P1,O(D(χ)))

of Γ(P1,O(D(χ))) such that

ep,χ,1(p) = 1, ep,χ,2(p) = . . . = ep,χ,dim Γ(P1,O(D(χ)))(p) = 0.
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3.1 Regularity locus and fiber structure of the map π

In particular, observe that for χ = 0 we have O(D(0)) = OP1 , and the only global functions of
degree 0 are constants. The condition ep,0,1(p) = 1 guarantees in this case that ep,0,1 = 1 and
ẽp,0,1 = 1 everywhere. By Proposition 2.3, if π(x) = p and 2 ≤ i ≤ dim Γ(P1,O(D(χ))), then
(ẽp,χ,i/ẽp,χ,1)(x) = (ep,χ,i/ep,χ,1)(p) = 0, so ẽp,χ,i(x) = 0 since ẽp,χ,1 is a global function.

For every χ, χ′ ∈ σ∨ ∩M , a, a′ ∈ Z≥0, (ep,χ,1)a(ep,χ′,1)a
′

is an element of Γ(P1,O(D(aχ +
a′χ′))), so it can be written as

(ep,χ,1)a(ep,χ′,1)a
′

=
∑
i

ci,χ,χ′,a,a′ep,aχ+a′χ′,i, where ci,χ,χ′,a,a′ ∈ C.

This equality holds for rational functions on P1, and evaluation at p shows that c1,χ,χ′,a,a′ = 1.
The equality also holds for the corresponding global functions on X.

These computations prove the following lemma:

Lemma 3.4. For every χ, χ′ ∈ σ∨ ∩M , a, a′ ∈ Z≥0 and for every x ∈ π−1(p),

(ẽp,χ,1(x))a(ẽp,χ′,1(x))a
′

= ẽp,aχ+a′χ′,1(x).

Recall that we have denoted the two rays on the boundary of σ∨ by E0(σ∨) and E1(σ∨), and
the primitive lattice vectors on these edges were denoted by α0 and α1, respectively.

Lemma 3.5. For a point x ∈ X, x ∈ π−1(p) ∩ U0, there are at most three possibilities:

1. For every χ ∈ σ∨ ∩M , ẽp,χ,1(x) 6= 0.

2. For every χ ∈ E0(σ∨) ∩M , ẽp,χ,1(x) 6= 0, and ẽp,χ,1(x) = 0 for all other χ ∈ σ∨ ∩M .
This is possible if and only if deg D(α0) > 0

3. For every χ ∈ E1(σ∨) ∩M , ẽp,χ,1(x) 6= 0, and ẽp,χ,1(x) = 0 for all other χ ∈ σ∨ ∩M .
This is possible if and only if deg D(α1) > 0.

Proof. Until the end of the proof, denote the sublattice in M generated by α0 and α1 by
M ′. First, consider a degree χ′ ∈ M ′. We know that if χ′ = a0α0 + a1α1, then ẽp,χ′,1(x) =
(ẽp,α0,1(x))a0(ẽp,α1,1(x))a1 . So there can be four possibilities:

1. ẽp,α0,1(x) 6= 0 and ẽp,α1,1(x) 6= 0. Then ẽp,χ′,1(x) 6= 0 for all χ′ ∈ σ∨ ∩M ′.

2. ẽp,α0,1(x) 6= 0, but ẽp,α1,1(x) = 0. Then for all χ′ ∈ σ∨ ∩M ′ we have ẽp,χ′,1(x) 6= 0 if and
only if χ′ ∈ E0(σ∨).

3. ẽp,α0,1(x) = 0, ẽp,α1,1(x) 6= 0. Similarly, ẽp,χ′,1(x) 6= 0 if and only if χ′ ∈ E1(σ∨).

4. ẽp,α0,1(x) = ẽp,α1,1(x) = 0. Then ẽp,χ′,1(x) = 0 for all χ′ ∈ σ∨ ∩M ′ except χ′ = 0.

Since M ′ is a sublattice of finite index in M (recall that dimM = 2), for every χ ∈M there
is χ′ = a0χ ∈ M ′, a0 ∈ N. We have ẽp,χ′,1(x) = (ẽp,χ,1(x))a0 , so ẽp,χ,1(x) = 0 if and only if
ẽp,χ′,1(x) = 0. Therefore, the classification above also works for χ ∈M :

1. ẽp,α0,1(x) 6= 0 and ẽp,α1,1(x) 6= 0. Then ẽp,χ,1(x) 6= 0 for all χ ∈ σ∨ ∩M .

2. ẽp,α0,1(x) 6= 0, but ẽp,α1,1(x) = 0. Then for all χ ∈ σ∨ ∩M we have ẽp,χ,1(x) 6= 0 if and
only if χ ∈ E0(σ∨).
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3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

3. ẽp,α0,1(x) = 0, ẽp,α1,1(x) 6= 0. Similarly, ẽp,χ,1(x) 6= 0 if and only if χ ∈ E1(σ∨).

4. ẽp,α0,1(x) = ẽp,α1,1(x) = 0. Then ẽp,χ,1(x) = 0 for all χ ∈ σ∨ ∩M except χ = 0.

Notice that case 4 is impossible in U0, and case 2 (resp. 3) is possible if and only if there is a
degree χ ∈ E0(σ∨)∩M (resp. χ ∈ E1(σ∨)∩M) such that deg D(χ) > 0. Now recall that D(χ)
becomes a linear function after a restriction to a line in M , so existence of such χ is equivalent
to deg D(α0) > 0 (resp. deg D(α1) > 0).

This lemma can be reformulated without mentioning bases of Γ(P1,O(D(χ))) explicitly as
follows:

Proposition 3.6. For each x ∈ π−1(p) ∩ U0, there exists a subcone τ ⊆ σ∨ such that if
χ ∈ σ∨ ∩M and f ∈ Γ(P1,O(D(χ))), then

f̃(x) 6= 0⇔ χ ∈ τ and ordp(f) = 0.

For the cone τ (which depends on x) there are at most three possibilities:

1. τ = σ∨.

2. τ = E0(σ∨). This is possible if and only if deg D(α0) > 0.

3. τ = E1(σ∨). This is possible if and only if deg D(α1) > 0.

Proof. First, fix a degree χ ∈ σ∨ ∩M . Notice that if f ∈ Γ(P1,O(D(χ))), then ordp(f) = 0 if
and only if the decomposition of f into a linear combination of functions ep,χ,i contains ep,χ,1
with a nonzero coefficient. Now fix a point x ∈ π−1(p) ∩ U0. Recall that all functions ẽp,χ,i
for i > 1 vanish on π−1(p) ∩ U0. We see that ẽp,χ,1(x) 6= 0 if and only if f̃(x) 6= 0 for all
f ∈ Γ(P1,O(D(χ))) such that ordp(f) = 0. We also see that, independently of the value of

ẽp,χ,1(x), f̃(x) = 0 for all f ∈ Γ(P1,O(D(χ))) such that ordp(f) > 0.

Following [9, Section 6.2], denote the set of all points x ∈ π−1(p)∩U0 such that case 1 (resp.
case 2, 3) holds by orb(p,V1(σ)) (resp. by orb(p,E0(σ)), orb(p,E1(σ))). In fact (see [9, Section
6.2], [1, Corollary 7.11, Theorem 10.1]), these sets are orbits of the torus, and their closures are
affine toric varieties constructed by the standard toric construction from the cone σ∨, but we
will not need these facts. Sometimes we can simply write orb(p, 0) instead of orb(p,V1(σ)).

Now we are going to understand the structure of a fiber π−1(p) over a special point p = pi.
The function χ 7→ mina∈∆p χ(a) (which defines the coefficient for p in D(χ), denote it shortly
by Dp(χ)) is piecewise linear. Recall that we have denoted the number of vertices of ∆p by
vp, the vertices of ∆p themselves by Vp,1, . . . ,Vp,vp , and the edges of ∆p by Ep,0, . . . ,Ep,vp .
Observe that vp = 1 if and only if p is a removable special point. One checks easily that the
maximal subcones of σ∨ where D(χ) is linear are exactly the cones N (Vp,j ,∆p) (1 ≤ j ≤ vp).

This time we choose bases of Γ(P1,O(D(χ))) as follows: let

ep,χ,1, . . . , ep,χ,dim Γ(P1,O(D(χ)))

be a basis of Γ(P1,O(D(χ))) such that ordp(ep,χ,1) = −Dp(χ) and ordp(ep,χ,i) > −Dp(χ) for
i > 1. Then functions ep,χ,i/ep,χ,1 for i > 1 are defined at p and evaluate to 0 there, so if
x ∈ π−1(p), then by Proposition 2.3 (ẽp,χ,i/ẽp,χ,1)(x) = 0, and ẽp,χ,i(x) = 0 for i > 1. In this
case we demand explicitly for χ = 0 that ep,0,1 = 1 and ẽp,0,1 = 1 everywhere.
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Now let χ, χ′ ∈ σ∨ ∩M , a, a′ ∈ Z≥0, then (ep,χ,1)a(ep,χ′,1)a
′

is an element of Γ(P1,O(D(aχ+
a′χ′))), so it can be written as

(ep,χ,1)a(ep,χ′,1)a
′

=
∑
i

ci,χ,χ′,a,a′ep,aχ+a′χ′,i, where ci,χ,χ′,a,a′ ∈ C.

We have ordp(ep,χ,1)a(ep,χ′,1)a
′

= −aDp(χ) − a′Dp(χ
′), ordp(ep,aχ+a′χ′,1) = −Dp(aχ + a′χ′)

and ordp(ep,aχ+a′χ′,i) > −Dp(aχ + a′χ′) for i > 1. Therefore, c1,χ,χ′,a,a′ 6= 0 if and only if
aDp(χ) + a′Dp(χ

′) = Dp(aχ + a′χ′) if and only if a = 0 or a′ = 0 or χ and χ′ are in the same
subcone of σ∨ where Dp(·) is linear, i. e. χ, χ′ ∈ N (Vp,j ,∆p) for some j.

These computations prove the following lemma:

Lemma 3.7. For every χ, χ′ ∈ σ∨ ∩ M , a, a′ ∈ Z≥0 and for every x ∈ π−1(p),
(ẽp,χ,1(x))a(ẽp,χ′,1(x))a

′
= c1,χ,χ′,a,a′ ẽp,aχ+a′χ′,1(x), where c1,χ,χ′,a,a′ depends on p and on the

choice of ep,χ,i, but not on x. c1,χ,χ′,a,a′ 6= 0 if and only if a = 0 or a′ = 0 or there exists a
vertex Vp,j of ∆p such that χ, χ′ ∈ N (Vp,j ,∆p) (in other words, χ and χ′ belong to the same
cone of the normal fan of ∆p).

Corollary 3.8. Let χ, χ′ ∈ σ∨ ∩M , a, a′ ∈ N, x ∈ π−1(p). Suppose that there exist no vertex
Vp,j such that χ, χ′ ∈ N (Vp,j ,∆p). Then for every f ∈ Γ(P1,O(D(χ))), g ∈ Γ(P1,O(D(χ′)))

we have f̃(x)g̃(x) = 0.

Lemma 3.9. Let x ∈ X be a point, x ∈ π−1(p)∩U0. The set of degrees χ such that ẽp,χ,1(x) 6= 0
can be the set of all lattice points in one of the following cones:

1. N (Vp,j ,∆p) for some j, 1 ≤ j ≤ vp.

2. N (Ep,j ,∆p) for some j, 0 < j < vp.

3. N (Ep,j ,∆p) for j = 0 or j = vp. This is possible if and only if deg D(χj) > 0.

Proof. Denote χj = b(Ep,j) for 0 ≤ j ≤ vp. (In particular, we have χ0 = α0 and χvp = α1.
Consider all indices j such that ẽp,χj ,i(x) 6= 0. Since χj is in N (Vp,j′ ,∆p) only for j′ = j or
j′ = j − 1, there can be at most two such indices j, and if there are two of them, they should
be two consecutive natural numbers.

Suppose first that ẽp,χj−1,i(x) 6= 0 and ẽp,χj ,i(x) 6= 0 for some j. The argument is similar to
the proof of Lemma 3.5. Namely, consider the sublattice in M generated by χj−1 and χj . It is
a sublattice of finite index, denote it by M ′. For every χ′ ∈M ′, χ′ = aχj−1 + a′χj we have

c1,χj−1,χj ,a,a′ ẽp,χ′,1(x) = (ẽp,χj−1,i(x))a(ẽp,χj ,i(x))a
′ 6= 0,

so ẽp,χ′,1(x) 6= 0. For every χ ∈ N (Vp,j ,∆p) ∩M there exists a′′ ∈ N such that a′′χ ∈ M ′, so
ẽp,a′′χ,1(x) 6= 0. By lemma 3.7,

(ẽp,χ,1(x))a
′′

= c1,χ,0,a′′,0ẽp,a′′χ,1(x),

and c1,χ,0,a′′,0 6= 0, so ẽp,χ,1(x) 6= 0. Finally, for a degree χ /∈ N (Vp,j ,∆p) choose an arbitrary
degree χ′ in the interior of χ ∈ N (Vp,j ,∆p) ∩M . Then by Lemma 3.7, ẽp,χ,1(x)ẽp,χ′,1(x) = 0,
we already know that ẽp,χ′,1(x) 6= 0, so ẽp,χ,1(x) = 0.

Now suppose that there exists a degree χ such that ẽp,χ,1(x) 6= 0 and χ is in the interior of
a cone N (Vp,j ,∆p). Again denote the lattice generated by χj−1 and χj by M ′. There exists
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3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

a′′ ∈ N such that χ′ = a′′χ ∈M ′. We have

c1,χ,χ,a′′,0ẽp,χ′,1(x) = (ẽp,χ,1(x))a
′′
,

so ẽp,χ′,1(x) 6= 0. χ′ is also in the interior of N (Vp,j ,∆p), so there exist a, a′ ∈ N such that
aχj−1 + a′χj = χ′. Again we have

(ẽp,χj−1,i(x))a(ẽp,χj ,i(x))a
′

= c1,χj−1,χj ,a,a′ ẽp,χ′,1(x),

where c1,χj−1,χj ,a,a′ 6= 0, so ẽp,χj−1,i(x) 6= 0 and ẽp,χj ,i(x) 6= 0. Therefore, if there exists a degree
χ in the interior of a cone N (Vp,j ,∆p) such that ẽp,χ,1(x) 6= 0, then there are two indices j′

such that ẽp,χj′ ,i(x) 6= 0.

Now consider the case when there is only one j such that ẽp,χj ,i(x) 6= 0. We already know that
in this case for all degrees χ from the interiors of the cones N (Vp,j ,∆p), we have ẽp,χ,1(x) = 0.
So the only possible degrees χ such that ẽp,χ,1(x) 6= 0 are multiples of χj = b(Ep,j). And for
these degrees we have

c1,χj ,0,a,0ẽp,aχj ,1(x) = (ẽp,χj ,i(x))a,

so ẽp,aχj ,1(x) 6= 0. Such x can be in U0 only if deg D(χj) > 0. Properness guarantees this for
0 < j < vp, and for j = 0 or j = vp we have to check this explicitly.

And again this lemma can be reformulated without referring to bases of Γ(P1,O(D(χ))).

Proposition 3.10. For each x ∈ π−1(p) ∩ U0, there exists there exists a subcone τ ⊆ σ∨ such
that if χ ∈ σ∨ ∩M and f ∈ Γ(P1,O(D(χ))), then

f̃(x) 6= 0⇔ χ ∈ τ and ordp(f) = −Dp(χ).

τ can be one of the following cones:

1. The normal subcone N (Vp,j ,∆p) of a vertex Vp,j of ∆p.

2. The normal subcone N (Ep,j ,∆p) of a finite edge Ep,j (0 < j < vp).

3. The normal subcone N (Ep,j ,∆p) of an infinite edge Ep,j (j = 0 or j = vp, respectively).
This is possible if and only if deg D(α0) > 0 or deg D(α1) > 0, respectively.

Proof. The proof is very similar to the proof of Proposition 3.6. Again, we fix a degree χ ∈
σ∨ ∩ M and notice that if f ∈ Γ(P1,O(D(χ))), then ordp(f) = −Dp(χ) if and only if the
decomposition of f into a linear combination of functions ep,χ,i contains ep,χ,1 with a nonzero
coefficient. Fix a point x ∈ π−1(p) ∩ U0. Again for all functions ẽp,χ,i, where i > 1, we have

ẽp,χ,i(x) = 0. Therefore, ẽp,χ,1(x) 6= 0 if and only if f̃(x) 6= 0 for all f ∈ Γ(P1,O(D(χ)))

such that ordp(f) = −Dp(χ). And, independently of the value of ẽp,χ,1(x), f̃(x) = 0 for all
f ∈ Γ(P1,O(D(χ))) such that ordp(f) > −Dp(χ).

And again, following [9, Section 6.2], we denote the set of all points x ∈ π−1(p) ∩ U0 such
that case 1 (resp. case 2 or 3) holds by orb(p,Vp,j) (resp. by orb(p,Ep,j)). In fact (see [9,
Section 6.2], [1, Corollary 7.11, Theorem 10.1]), these sets are orbits of the torus.

It follows easily from Proposition 3.10 that for each vertex Vp,j (1 ≤ j ≤ vp),

orb(p,Vp,j) = orb(p,Ep,j−1) ∪ orb(p,Vp,j) ∪ orb(p,Vp,j).
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Moreover, all sets orb(p,Vp,j) are two-dimensional, and all sets orb(p,Vp,j) (0 ≤ j ≤ vp) are
one-dimensional. This is illustrated by Fig. 3.1.

orb(p,Ep,0)

orb
(p
,V
p
,1 )

orb(p,Ep,1)

or
b
(p
,V
p
,2
)

orb(p,Ep,2)

orb
(p
,V
p
,3 )

orb(p,Ep,3)

Figure 3.1: Structure of a fiber of π over a special point p: lines show two-dimensional compo-
nents, points show one-dimensional curves inside.

3.2 Sufficient systems of open subsets of X

We are going to use Theorem 2.4, Leray spectral sequence for the map π and Proposition 2.10
to compute T 1(X). To do this, we need an open subset U ⊆ X suitable for Theorem 2.4
(i. e. smooth and such that codimX(X \ U) ≥ 2) and an affine covering of U . We first choose
several affine subsets of X. The amount of these sets will be denoted by q, the sets themselves
will be denoted by Ui (1 ≤ i ≤ q). Then we will set U =

⋃
Ui. As we will see later, the

intersection of a set Ui and a fiber of π will be either an empty set, or a two-dimensional torus
orbit, or the union of a two-dimensional and a one-dimensional torus orbit. In the last base
the one-dimensional orbit belongs to the closure of the two-dimensional orbit, and the entire
intersection is isomorphic to (C∗)× C. Very roughly and informally speaking, each set Ui will
correspond to a choice of several special points and of two-dimensional orbits in the fibers above
these points, one orbit above each special point.

To define a set Ui, we fix the following data:

1. a pair of degrees (βi,1, βi,2) ∈ σ∨∩M generating M as a lattice and such that deg D(βi,1) >
0, deg D(βi,2) > 0, and βi,2 is in the interior of σ∨,

2. two sections hi,1 ∈ Γ(P1,O(D(βi,1))), hi,2 ∈ Γ(P1,O(D(βi,2))).

3. Let Vi ⊆ P1 be an arbitrary open subset of the set of all points p ∈ P1 such that:

a) ordp(hi,1) = −Dp(βi,1), ordp(hi,2) = −Dp(βi,2) (in particular, if p is an ordinary
point, ordp(hi,1) = ordp(hi,2) = 0).

b) If p is a special point and βi,1 is in the interior of σ∨, then βi,1 and βi,2 are in the
interior of the same normal subcone N (Vp,j ,∆p) of the same vertex Vp,j .

c) If p is a special point and βi,1 ∈ E0(σ∨), then βi,2 is in the interior of N (Vp,0,∆p).

d) If p is a special point and βi,1 ∈ E1(σ∨), then βi,2 is in the interior of N (Vp,vp ,∆p).
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3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

After these data are fixed, we will denote the basis of N dual to the basis βi,1, βi,2 of M by
β∗i,1, β

∗
i,2. In other words, for each χ ∈M we have χ = β∗i,1(χ)βi,1 + β∗i,2(χ)βi,2.

Ui is defined to be the set of points x ∈ U0 ⊆ X such that:

1. π(x) ∈ Vi,

2. h̃i,1(x) 6= 0,

3. if βi,1 is in the interior of σ∨, then h̃i,2(x) 6= 0.

Lemma 3.11. If p ∈ Vi is an ordinary point, then:

1. If βi,1 ∈ E0(σ∨), then π−1(p) ∩ Ui = orb(p,E0(σ)) ∪ orb(p, 0).

2. If βi,1 ∈ E1(σ∨), then π−1(p) ∩ Ui = orb(p,E1(σ)) ∪ orb(p, 0).

3. If βi,1 is a degree in the interior of σ∨, then π−1(p) ∩ Ui = orb(p, orb(p, 0).

If p ∈ Vi is a special point, then:

1. If βi,1 ∈ E0(σ∨), then π−1(p) ∩ Ui = orb(p,Ep,0) ∪ orb(p,Vp,1).

2. If βi,1 ∈ E1(σ∨), then π−1(p) ∩ Ui = orb(p,Ep,vp) ∪ orb(p,Vp,vp).

3. If βi,1 is a degree in the interior of σ∨, and βi,1, βi,2 ∈ N (∆p,Vp,j ,), then π−1(p)∩Ui =
orb(p, orb(p,Vp,j).

Proof. This follows directly from the definitions of the orb(p, ·) sets and of Ui.

Fig. 3.2 shows how a set Ui can intersect the fibers of π in U0.

U0 ⊆ X

P1
p

Figure 3.2: An example of the intersections of a set Ui with the fibers of π in U0. Here p is the
only special point, vp = 3, deg D(α0) > 0, deg D(α1) > 0, and βi,1 = α0. The gray
point in P1 is outside Vi. The intersections of individual fibers with Ui are shown
in black, and their complements are shown in gray.

We say that sets Ui defined this way form a sufficient system if
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3.2 Sufficient systems of open subsets of X

1. for every ordinary point p ∈ P1 there exists i such that p ∈ Vi,

2. for every special point p ∈ P1 and for every normal subcone N (Vp,j ,∆p) there exists an
index i such that p ∈ Vi and βi,1, βi,2 ∈ N (Vp,j ,∆p),

3. for every primitive degree χ ∈ ∂σ∨ such that deg D(χ) > 0 and for every point p ∈ P1

there exists an index i such that βi,1 = χ and p ∈ Vi.

Clearly, sufficient systems exist. An example of a sufficient system is constructed in Section
4.1. Fix a sufficient system and set U =

⋃
Ui. Denote the number of sets Ui in the sufficient

system we chose by q.

We are going to prove that codimX(X \ U) ≥ 2, i. e. that dim(X \ U) ≤ 1.

Lemma 3.12. dim(X \ U0) ≤ 1.

Proof. Let x ∈ X \ U0. For every degree χ ∈ σ∨ ∩ M such that deg D(χ) > 0, for every
f ∈ Γ(P1,O(D(χ))) we have f̃(x) = 0. deg D(χ) can be zero only if χ ∈ ∂σ∨. If there are
functions f ∈ Γ(P1,O(D(α0))), g ∈ Γ(P1,O(D(α1))) that do not vanish at x, then fg ∈
Γ(P1,O(D(α0 + α1))), f̃(x)g̃(x) 6= 0, but α0 + α1 /∈ ∂σ∨. So for at most one of the degrees
α0 and α1 there are functions of this degree that vanish at x. Without loss of generality
suppose that if f ∈ Γ(P1,O(D(α0))), then f̃(x) = 0. If deg D(α1) > 0, then deg D(χ) > 0
for all multiples χ of α1, so for every such χ all functions of degree χ vanish at x. Otherwise
dim Γ(P1,O(D(χ))) = 1 for every multiple χ of α0, and if f ∈ Γ(P1,O(D(α0))), f 6= 0, then
fa generate Γ(P1,O(D(aα0))) as a vector space, so all functions of degree aα0 vanish at x.
Summarizing, we conclude that if χ ∈ E0(σ∨) ∩M , then all functions of degree χ vanish at
x. Consequently, if deg D(α1) > 0, then all functions of nonzero degree, i. e. all nonconstant
functions on X vanish at x. There exists only one such point x. Otherwise, if f forms a basis
of Γ(P1,O(D(α1))), then fa forms a basis of Γ(P1,O(D(aα1))), so values of all functions of all
degrees at x are determined by f̃(x). Therefore, such points x form a 1-dimensional subset.

Now we are going to consider points from U0.

Lemma 3.13. For every ordinary point p ∈ P1 we have π−1(p) ∩ U0 = π−1(p) ∩ U .

Proof. Clearly, π−1(p)∩U0 ⊆ π−1(p)∩U . To prove the other inclusion, we use the description
of π−1(p) ∩ U0 from Proposition 3.6. Recall that if p ∈ Vi for some index i, then ordp(hi,1) =
ordp(hi,2) = 0. If x ∈ orb(p, 0), then it is sufficient to take any index i such that p ∈ Vi (it exists

by the definition of a sufficient system). Then by Proposition 3.6, h̃i,1(x) 6= 0, h̃i,2(x) 6= 0, and
x ∈ Ui. If x ∈ orb(p,E0(σ)), then deg D(α0) > 0, and there exists an index i such that α0 = βi,1
and p ∈ Vi. Then fi is a function of degree α0, so Proposition 3.6 says that h̃i,1(x) 6= 0, and,
since deg D(α0) > 0, this is enough for x to be in Ui. The case x ∈ orb(p,E1(σ)) can be
considered similarly.

Now we are going to consider the fiber of π over a special point p ∈ P1.

Lemma 3.14. Let p ∈ P1 be a special point. Then dim(π−1(p) ∩ (U0 \ U)) ≤ 1.

Proof. We use the description of π−1(p) ∩ U0 from Proposition 3.10. First, pick a vertex Vp,j

(1 ≤ j ≤ vp) and consider a point x ∈ orb(p,Vp,j). Since the system {Ui} is sufficient, there ex-
ists i such that βi,1, βi,2 ∈ N (Vp,j ,∆p) and p ∈ Vi. By the definition of Vi, ordp(hi,1) = Dp(βi,1)

and ordp(hi,2) = Dp(βi,2), and by the definition of orb(p,Vp,j), h̃i,1(x) 6= 0 and h̃i,2(x) 6= 0.

31



3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

Hence, x ∈ Ui. Therefore, if x ∈ π−1(p) ∩ U0, but x /∈ π−1(p) ∩ U , then x ∈ orb(p,Ep,j) for
some (finite or infinite) edge Ep,j .

It is sufficient to prove that for each (finite or infinite) edge Ep,j , we have dim orb(p,Ep,j) ≤ 1.
Denote χ = b(N (Ep,j ,∆p)) and choose a basis

ep,χ,1, . . . , ep,χ,dim Γ(P1,O(D(χ)))

of Γ(P1,O(D(χ))) as previously, i. e. so that ordp(ep,χ,1) = −Dp(χ), and ordp(ep,χ,l) > −Dp(χ)
for 1 < l ≤ dim Γ(P1,O(D(χ))). Consider a degree χ′ = aχ, a ∈ N. Choose a basis of
Γ(P1,O(D(χ′))) as follows. Its first element is ep,χ′,1 = (ep,χ,1)a, so we have ordp(ep,χ′,1) =
−aDp(χ) = −D(χ′). All other elements of the basis, denoted by

ep,χ′,2, . . . , ep,χ′,dim Γ(P1,O(D(χ′))),

satisfy ordp(ep,χ′,l) > −Dp(χ
′). We have already seen for such a basis that ẽp,χ′,l(x) = 0 for all

x ∈ π−1(p) ∩ U0, l > 1. So again values of all functions of all degrees at x ∈ orb(p,Ep,j) are
determined by ẽp,χ,1(x), and Wj is at most one-dimensional.

We are going to use {Ui} to compute cohomology groups, so we are going to prove that all
Ui are affine. Fix an index i.

Lemma 3.15. Let χ ∈ σ∨ ∩M be a degree. Let p ∈ Vi. Then, independently of the signs of
β∗i,1(χ) and β∗i,2(χ), Dp(χ) ≤ β∗i,1(χ)Dp(βi,1) + β∗i,2(χ)Dp(βi,2).

Proof. Recall that the function Dp(·) is always linear on the cone spanned by βi,1 and βi,2 if
p ∈ Vi. Hence, if β∗i,1(χ) ≥ 0 and β∗i,2(χ) ≥ 0, then Dp(χ) = Dp(β

∗
i,1(χ)βi,1 + β∗i,2(χ)βi,2) =

β∗i,1(χ)Dp(βi,1) + β∗i,2(χ)Dp(βi,2). If β∗i,1(χ) < 0 or β∗i,2(χ) < 0, in other words, if χ is not in the
cone generated by βi,1 and βi,2, then, since Dp(·) is a convex function, Dp(χ) ≤ β∗i,1(χ)Dp(βi,1)+
β∗i,2(χ)Dp(βi,2).

Lemma 3.16. Ui is isomorphic to Vi× (C \ 0)×L, where L is isomorphic to C or C \ 0. More
exactly, L = C if and only if βi,1 ∈ ∂σ∨, otherwise L = C \ 0. Vi is isomorphic to an open set

in an affine line. The isomorphism is given by (π, h̃i,1, h̃i,2). (Note that despite π is rational
on X, it is defined everywhere on Ui since Ui ⊆ U0 by definition.)

Proof. We know that Vi ⊆ P1, and to prove that Vi is isomorphic to an open subset in an
affine line, it is sufficient to prove that Vi cannot be equal to P1. Indeed, if p ∈ Vi, then, in
particular, ordp(hi,1) = Dp(βi,1). If Vi = P1, this would mean that div(hi,1) = D(βi,1). But
deg D(βi,1) > 0, and deg div(hi,1) = 0.

Consider the map Ui → Vi× (C \ 0)×L given by (π, h̃i,1, h̃i,2) (recall that h̃i,2 = 0 is possible
in Ui if and only if βi,1 ∈ ∂σ∨). To define its inverse, we need for every triple (p, t1, t2), where
p ∈ Vi, t1 ∈ C \ 0, t2 ∈ L, define a point x ∈ Ui. To do this, we define a homomorphism
C[X]→ C. We define it on each graded component of C[X].

Let χ ∈ σ∨ ∩M be a degree. By Lemma 3.15,

Dp(χ) ≤ β∗i,1(χ)Dp(βi,1) + β∗i,2(χ)Dp(βi,2) = − ordp(h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2 ).

Therefore, if f ∈ Γ(P1,O(D(χ))), then

ordp(f) ≥ −Dp(χ) ≥ ordp(h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2 ),
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and the rational function f/(h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2 ) is defined at p.

Now we define a map C[X]→ C as follows: if f ∈ Γ(P1,O(D(χ))), then

f 7→ t
β∗i,1(χ)

1 t
β∗i,2(χ)

2 (f/(h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2 ))(p).

Note that β∗i,2(χ) < 0 is possible if and only if βi,1 /∈ ∂σ∨, i. e. exactly if and only if L = C \ 0.
It is clear from the construction that this map is an algebra homomorphism, so it defines a
point x ∈ X. If we choose a set of homogeneous generators of C[X], we see that the values
of these generators at x depend algebraically on p, t1, and t2, so we have defined an algebraic
morphism ϕ : Vi × (C \ 0)× L→ X.

Now we are going to prove that two morphisms we have defined are mutually inverse. Fix
points p ∈ Vi, t1 ∈ C \ 0, and t2 ∈ L, denote x = ϕ(p, t1, t2). First, x ∈ U0 since deg D(βi,1) > 0

and h̃i,1(x) = t11t
0
2(hi,1/(h

1
i,1h

0
i,2))(p) = t1 6= 0. Now denote π(x) = p′. For every degree

χ ∈ σ∨ ∩M and for every pair of functions f1, f2 ∈ Γ(P1,O(D(χ))) we have the following
equalities of rational functions (p′′ ∈ Vi, t′1 ∈ C \ 0, t′2 ∈ L are arbitrary points):

(f̃1/f̃2)(ϕ(p′′, t′1, t
′
2)) =

(t
′β∗i,1(χ)

1 t
′β∗i,2(χ)

2 (f1/(h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2 ))(p′′))/(t
′β∗i,1(χ)

1 t
′β∗i,2(χ)

2 (f2/(h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2 ))(p′′)) =

(f1/f2)(p′′).

Choose a degree χ such that deg D(χ) > 0. By Corollary 3.2, there exist functions f1, f2 ∈
Γ(P1,O(D(χ))) such that f1/f2 is defined at p′, and if (f1/f2)(p′) = (f1/f2)(p′′) for some p′′ ∈
P1, then p′ = p′′. By Proposition 2.3, f̃1/f̃2 is defined at x, and (f̃1/f̃2)(x) = (f1/f2)(p′). On
the other hand, it follows from the computation above that (f̃1/f̃2)(x) = (f̃1/f̃2)(ϕ(p, t1, t2)) =
(f1/f2)(p), so p = p′, and π(x) = p. We have already checked that h̃i,1(x) = t1, a similar

computation shows that h̃i,2(x) = t2. The conditions from the definition of Ui are therefore
satisfied, and x ∈ Ui.

Finally, check that the other composition of morphisms X → Vi × (C \ 0) × L → X is also
the identity morphism. To do this, fix a point x ∈ Ui, a degree χ ∈ σ∨ ∩M and a function
f ∈ Γ(P1,O(D(χ))). We have the following equality of rational functions:

f̃(x) = h̃i,1(x)β
∗
i,1(χ)h̃i,2(x)β

∗
i,2(χ)(f̃/(h̃

β∗i,1(χ)

i,1 h̃
β∗i,2(χ)

i,2 ))(x),

and
(f̃/(h̃

β∗i,1(χ)

i,1 h̃
β∗i,2(χ)

i,2 ))(x) = (f/(h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2 ))(π(x))

since f and hi,1
β∗i,1(χ)hi,2

β∗i,2(χ) are functions of the same degree.

Since each set Ui is affine and X is separated, all intersections of sets Ui are also affine, and
we can use them to compute Čech cohomology on U =

⋃
Ui. However, we will also need to

understand the structure of intersections of Ui. Fix several indices a1, . . . , ak.

Lemma 3.17. U ′ = Ua1 ∩ . . . ∩ Uak is isomorphic to V ′ × (C \ 0) × L′, where V ′ is an open

subset of Va1, and L′ is isomorphic to C or C \ 0. The isomorphism is given by (π, h̃a1,1, h̃a1,2)
(this is exactly the restriction of the isomorphism from Lemma 3.16 to the subset U ′ ⊆ Ua1).

In this case, L′ = C if and only if βa1,1 = . . . = βak,1 ∈ ∂σ∨.

Here the set of ordinary points in V ′ is the set of ordinary points in Va1 ∩ . . . ∩ Vak . If
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3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

p ∈ P1 is a special point, then p ∈ V ′ if and only if p ∈ Va1 ∩ . . . ∩ Vak and all degrees
βa1,1, . . . , βak,1, βa1,2, . . . , βak,2 belong to the normal subcone of the same vertex of ∆p.

Proof. Consider a fiber π−1(p) ∩ U ′, where p ∈ Va1 . It is a subset of π−1(p) ∩ Ua1 , which is
isomorphic to (C\0)×L by Lemma 3.16. It is sufficient to prove that for each p ∈ Va1 , in terms
of this isomorphism, π−1(p) ∩ U ′ either is the empty set, or equals (C \ 0)× L′ ⊆ (C \ 0)× L.

First, let p ∈ Va1 be an ordinary point. If there exists an index i such that p /∈ Vai , then
π−1(p) ∩ U ′ = ∅. Otherwise, consider a point x ∈ π−1(p) ∩ Ua1 . There are two possibilities:
either h̃a1,2(x) 6= 0 (in other words, the last coordinate of x in terms of the isomorphism

Ui ∼= Vi × (C \ 0)× L from Lemma 3.16 is nonzero), or βa1,1 ∈ ∂σ∨ and h̃a1,2(x) = 0 (in other
words, the last coordinate of x in terms of the isomorphism from Lemma 3.16 is zero). If the
first possibility takes place, then, by Proposition 3.6, x ∈ Uai for all i. If the second possibility
takes place, then it follows from Proposition 3.6 that x ∈ Uai if and only if βai,1 ∈ ∂σ∨ (i. e.

we have no condition for h̃ai,2(x), which is in fact zero since βai,2 is in the interior of σ∨) and

βai,1 = βa1,1 (otherwise h̃ai,1(x) = 0). This finishes the proof for an ordinary point.
Now let p ∈ Vai be a special point. Again, if there exists an index i such that p /∈ Vai ,

then π−1(p) ∩ U ′ = ∅. Moreover, by Proposition 3.10, if there exist no vertex Vp,j such that
βai,1 ∈ N (Vp,j ,∆p) for all i, then π−1(p) ∩ U ′ = ∅ (recall that we require that βai,1 is in the
interior of the normal cone of a vertex of ∆p, unless βai,1 ∈ ∂σ∨, in the definition of Vai , so βai,1
cannot be in the normal cones of two different vertices simultaneously). And again, if p ∈ Vai
for all i and there exists a vertex Vp,j such that βai,1 ∈ N (Vp,j ,∆p) for all i (by the definition
of Vai , this implies that βai,2 is in the interior of N (Vp,j ,∆p) for all i), then there are two

possibilities. Either h̃a1,2(x) 6= 0, (i. e. the last coordinate of x is nonzero), or βa1,1 ∈ ∂σ∨ and

h̃a1,2(x) = 0, (i. e. the last coordinate of x is zero). The rest of the proof repeats the proof for
an ordinary point. Namely, if the first possibility holds, it follows from Proposition 3.10 that
x ∈ Uai for all i. If the second possibility holds, then, by Proposition 3.10, x ∈ Uai if and only

if βai,1 ∈ ∂σ∨ (i. e. we have no condition for h̃ai,2(x), while h̃ai,2(x) = 0 since βai,2 is in the

interior of N (Vp,j ,∆p)) and βai,1 = βa1,1 (this is a criterion for h̃ai,1(x) 6= 0, nevertheless, this
condition can only be violated if σ∨ = N (Vp,j ,∆p), i. e. p is a removable special point).

3.3 Computation of T 1(X)0 in terms of cohomology of sheaves on
P1

We know that codimX(X \ U) ≥ 2, so Theorem 2.4 can be applied. To apply it, we need a
set of generators of C[X]. We choose it as follows. For each special point p, the cone σ∨ can
be split into the union of normal cones of all vertices of ∆p. All intersections of these cones
(for different special points) split σ∨ into a fan, which we call the total normal fan of D . (It
equals the normal fan of the Minkowski sum of all polyhedra ∆p.) For each cone τ in this fan,
the function D(·)|(τ : τ → CaDiv(P1) is linear. Choose a set of degrees λ1, . . . , λn ∈ σ∨ ∩M
satisfying the following conditions:

1. It contains the Hilbert bases of all cones of the total normal fan of D .

2. For each special point p:

a) For each (finite or infinite) edge Ep,j , b(N (Ep,j ,∆p)) ∈ {λ1, . . . , λm}.
b) For each vertex Vp,j there exists a degree χ ∈ {λ1, . . . , λm}∩N (Vp,j ,∆p) such that

χ and b(N (Ep,j−1,∆p)) form a lattice basis of M
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c) For each vertex Vp,j there exists a degree χ ∈ {λ1, . . . , λm}∩N (Vp,j ,∆p) such that
χ and b(N (Ep,j ,∆p)) form a lattice basis of M .

In fact, the first condition implies all three parts of the second one, but we don’t need this fact
and we will not prove it. For each i, 1 ≤ i ≤ m let xλi,1, . . . ,xλi,dim Γ(P1,O(D(λi))) be a basis of
Γ(P1,O(D(λi))).

Lemma 3.18. All x̃λi,j (for 1 ≤ i ≤m, 1 ≤ j ≤ dim Γ(P1,O(D(λi)))) together generate C[X].

Proof. It is sufficient to prove that every homogeneous element of C[X] can be generated by
xλi,j . So, fix a degree χ ∈ σ∨ ∩M , and let f ∈ Γ(P1,O(D(χ))). If χ ∈ {λ1, . . . , λm}, the
claim is clear. Otherwise, choose a cone τ from the total normal fan so that χ ∈ τ . χ is not
an element of the Hilbert basis of τ , so there exist χ′, χ′′ ∈ τ ∩M , χ′ 6= 0, χ′′ 6= 0, such that
χ′ + χ′′ = χ. Since D(·) : σ∨ → CaDiv(P1) becomes a linear function after being restricted to
τ , D(χ) = D(χ′) + D(χ′′).

Let r1 be the number of points p ∈ P1 that are either special or are zeros of f . Denote zeros
of f that are ordinary points by pr+1, . . . , pr1 (recall that we have r special points p1, . . . , pr).
Consider the following r1 integers: ai = Dpi(χ)+ordpi(f). By the definition of Γ(P1,O(D(χ))),
all these numbers are nonnegative integers. Also, a1 + . . . + ar1 = Dp1(χ) + . . . + Dpr1

(χ) +

ordp1(f)+ . . .+ordpr1 (f) = deg D(χ)+deg div(f) = deg D(χ). Then it is possible to split each
of these numbers into a sum ai = a′i + a′′i of two nonnegative integers so that a′1 + . . .+ a′r1 =
deg D(χ′) and a′′1 + . . . + a′′r1 = deg D(χ′′) (recall that D(χ) = D(χ′) + D(χ′′)). Then D1 =
(a′1−Dp1(χ′))p1 + . . .+(a′r1−Dpr1

(χ′))pr1 and D2 = (a′′1−Dp1(χ′′))p1 + . . .+(a′′r1−Dpr1
(χ′′))pr1

are divisors of degree 0, and D1 ≥ −D(χ′), D2 ≥ −D(χ′′). Therefore, there exist functions
f ′ ∈ Γ(P1,O(D(χ′))) and f ′′ ∈ Γ(P1,O(D(χ′′))) such that div(f ′ = D1 and div(f ′′ = D2.
Now, for every point pi we have the following: ordpi(f

′f ′′) = a′i − Dpi(χ
′) + a′′i − Dpi(χ

′′) =
ai−Dpi(χ) = ordpi(f). Hence, f ′f ′′/f is a rational function on P1 that does not have zeros or
poles, so it is a constant, and f is a multiple of f ′f ′′.

Repeating this procedure by induction on χ ∈ τ , we can write f as a product of functions
whose degrees are in the set {λ1, . . . , λm}.

Now we construct a map ψ : ΘX → O⊕m
X required for Theorem 2.4 using these generators.

Recall that ψ maps a vector field to the sequence of the derivatives of all generators x̃λi,j along
this vector field. Denote the total number of these generators by n. By Theorem 2.4, we have
the following isomorphism of C[X]-modules:

T 1(X) = ker(H1(U,ΘX)
H1(ψ|U )−→ H1(U,O⊕n

X )).

By Lemma 3.16, {Ui} form an affine covering of U , so it can be used to compute homology
groups in this formula as Čech homology. Moreover, all conditions defining Ui as subsets
of X are formulated in terms of fibers of π and inequalities of the form f 6= 0, where f
is a homogeneous function. Since π is T -invariant and the inequalities of form f 6= 0 are
also invariant if f is homogeneous, the sets Ui are T -invariant. The sheaves involved in the
formula above are the tangent bundle and the trivial bundle, so T acts on the modules of
their sections on Ui. Hence, these modules are M -graded. This enables us to introduce an
M -grading on H1(U,ΘX) and on H1(U,O⊕n

X ). The map ψ is defined by n maps ΘX → OX ,
each of them corresponds to a generator x̃λj ,k of degree λj . It maps the graded component of
Γ(Ui,ΘX) of degree χ ∈ M to the graded component of Γ(Ui,OX) of degree χ + λj . Hence,
H1(ψ|U ) maps different graded components of H1(U,ΘX) to different graded components of

35



3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

H1(U,O⊕n
X ) = H1(U,OX)⊕n, and kerH1(ψ|U ) is a graded submodule in H1(U,ΘX). It follows

from the proof of Theorem 2.4 that the isomorphism T 1(X) = kerH1(ψ|U ) is an isomorphism
of graded C[X]-modules. We are going to study the zeroth graded component of T 1(X).

Now, we apply Leray spectral sequence for the map π : U → P1 and get the following short
exact sequences of C[X]-modules (note that Lemmas 3.13 and 3.14 guarantee that π(U) = P1):

0→ H1(P1, (π|U )∗(ΘX |U ))→ H1(U,ΘX)→ H0(P1, R1(π|U )∗(ΘX |U ))→ 0

and

0→ H1(P1, (π|U )∗(O
⊕n
X |U ))→ H1(U,O⊕n

X )→ H0(P1, R1(π|U )∗(O
⊕n
X |U ))→ 0.

The Snake lemma yields the following exact sequence:

0→ ker

(
H1(P1, (π|U )∗(ΘX |U ))

H1((π|U )∗ψ)−→ H1(P1, (π|U )∗(O
⊕n
X |U ))

)
→ T 1(X)→

ker

(
H0(P1, R1(π|U )∗(ΘX |U ))

H0(R1(π|U )∗ψ)−→ H0(P1, R1(π|U )∗(O
⊕n
X |U ))

)
→

coker

(
H1(P1, (π|U )∗(ΘX |U ))

H1((π|U )∗ψ)−→ H1(P1, (π|U )∗(O
⊕n
X |U ))

)
.

This is an isomorphism of C[X]-modules, and it is possible to introduce an M -grading on these
modules. Indeed, in fact the sheaves (π|U )∗(ΘX |U ) and (π|U )∗(O

⊕n
X |U ) are graded themselves,

i. e. they are direct sums of their graded components in the category of sheaves of OP1-
modules, since their sections on any open subset V ⊆ P1 are sections of the tangent bundle
and of rank n trivial bundle on a T -invariant subset π−1(V ), and multiplication by functions
from Γ(V,OP1) does not change the grading of a section. This is also true for the sheaves
R1(π|U )∗(ΘX |U )) and R1(π|U )∗(O

⊕n
X |U ) if we compute them using Proposition 2.10 with {Ui}

being the required affine covering of U since in this case the module of sections of any sheaf
in the complex on any open subset V ⊆ P1 is also a direct sum of modules of sections of the
tangent bundle or of the trivial bundle on a T -invariant subset of X, and the differentials in
the complex preserve this grading. So, again there is an M -grading on cohomology groups:
on H1(P1, (π|U )∗(ΘX |U )), on H0(P1, R1(π|U )∗(ΘX |U ))), on H1(P1, (π|U )∗(O

⊕n
X |U )), and on

H0(P1, R1(π|U )∗(O
⊕n
X |U )). And again, the map (π|U )∗ψ : (π|U )∗(ΘX |U ) → ((π|U )∗(OX |U ))⊕n

is defined by n maps (π|U )∗(ΘX |U )→ ((π|U )∗(OX |U )), each of them corresponds to a generator
x̃λi,j . It maps the graded component of (π|U )∗(ΘX |U ) of degree χ ∈M to graded components
of (π|U )∗(O

⊕n
X |U ) of degree χ+λi. So, kerH1((π|U )∗ψ)⊕H0(R1(π|U )∗ψ) is an M -graded C[X]-

module. This grading coincides (in terms of the isomorphisms mentioned above) with gradings
on T 1(X) and on kerH1(ψ|U ).

Now we are going to obtain a formula for the graded component of T 1(X) of degree 0. Denote
it by T 1(X)0. Denote also the graded component of (π|U )∗ΘX of degree 0 by G inv

0,Θ, the graded

component of R1(π|U )∗ΘX of degree 0 by G inv
1,Θ,0. The superscript ”inv” here indicates that these

sheaves by definition are just pushforwards of sheaves on X, they are defined ”invariantly” in
contrast with the sheaves we will define later using trivializations and transition matrices.

We need graded components of (π|U )∗OX and of R1(π|U )∗OX of different degrees, so for
a degree χ denote by G inv

0,O,χ the graded component of (π|U )∗OX of degree χ, and denote by

G inv
1,O,0,χ the graded component of R1(π|U )∗OX of degree χ. The morphism H1((π|U )∗ψ) maps
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H1(P1,G inv
0,Θ) to H1(P1,G inv

0,O ), where

G inv
0,O =

m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G inv
0,O,λi .

The morphism H0(R1(π|U )∗ψ) maps H0(P1,G inv
1,Θ,0) to H0(P1,G inv

1,O,0), where

G inv
1,O,0 =

m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G inv
1,O,0,λi .

So, the above exact sequence for T 1(X) can be written in the graded form as follows:

Proposition 3.19. The following sequence is exact:

0→ ker

(
H1(P1,G inv

0,Θ)
H1(((π|U )∗ψ)|

G inv
0,Θ

)

−→ H1(P1,G inv
0,O )

)
→ T 1(X)0 →

ker

(
H0(P1,G inv

1,Θ,0)
H0((R1(π|U )∗ψ)|

G inv
1,Θ,0

)

−→ H0(P1,G inv
1,O,0)

)
→

coker

(
H1(P1,G inv

0,Θ)
H1(((π|U )∗ψ)|

G inv
0,Θ

)

−→ H1(P1,G inv
0,O )

)
.

Our next goal is to find expressions for the sheaves G inv
0,Θ, G inv

1,Θ,0, G inv
0,O , and G inv

1,O,0 including

only functions on P1 and the combinatorics of D . Given an index i and a point p ∈ Vi,
Proposition 3.16 provides an isomorphism between π−1(p) ∩ Ui and (C \ 0) × L, where L is
C \ 0 or C. Call the point identified by this isomorphism with (1, 1) ∈ (C \ 0)×L the canonical
point in the fiber π−1(p) with respect to Ui. In other words, the canonical point in π−1(p) with
respect to Ui is the (unique) point x ∈ π−1(p) ∩ Ui such that h̃i,1(x) = h̃i,2(x) = 1.

3.3.1 Computation of G inv
0,Θ

For each i (1 ≤ i ≤ q) fix an embedding Vi ↪→ C. As long as such an embedding is fixed, we
identify each point of p ∈ Vi with its coordinate t0 ∈ C. Denote the coordinates of a point
x ∈ Ui provided by the isomorphism Ui ∼= Vi × (C \ 0)× L by t0 ∈ Vi, t1 ∈ C \ 0, t2 ∈ L.

We are going to study homogeneous vector fields of degree 0 (i. e. T -invariant vector fields)
on open sets U ′i ⊂ X of the form V ′i × (C \ 0) × L′ ⊆ Ui, where V ′i ⊆ Vi is an open subset,
L′ ⊆ L is C or (C \ 0), L is defined in Lemma 3.16, and U ′i is embedded in Ui as a subset of
Vi × (C \ 0)× L via isomorphism from Lemma 3.16.

Lemma 3.20. Let V ′i ⊆ Vi be an open subset, L′ ⊆ L be an open subset that can be equal C or
(C \ 0), U ′i = V ′i × (C \ 0)× L′ ⊆ Ui. A homogeneous vector field of degree 0 on U ′i is uniquely
determined by its values at canonical points in all fibers π−1(t0) (for t0 ∈ V ′i ) with respect to
Ui. These values can be arbitrary vectors depending algebraically on t0 ∈ V ′i .

Proof. Let w be a vector field of degree 0 on U ′i , and suppose that w(t0, 1, 1) = f0(t0)∂/∂t0 +
f1(t0)∂/∂t1 + f2(t0)∂/∂t2, where fj : V ′i → C are algebraic functions. Since M is the character
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lattice of T , and βi,1 and βi,2 form a basis of M , every pair (t1, t2) ∈ (C \ 0)× (C \ 0) uniquely
and algebraically determines an element τ ∈ T such that βi,1(τ) = t1, βi,2(τ) = t2. This
element acts on U ′i , i. e. it defines an automorphism of U ′i , which we also denote by τ . Recall

that tj = h̃i,j |Ui , j = 1, 2, and h̃i,1 (resp. h̃i,2) is a function of degree βi,1 (resp. βi,2), so
τ(t0, 1, 1) = (t0, t1, t2) for every t0 ∈ V ′i . By the definition of a T -invariant vector field, w is a
field of degree 0 if and only if w(τ ′x) = dτ ′w(x) for every x ∈ U ′i , τ ′ ∈ T . In particular, this
holds for x = (t0, 1, 1), τ ′ = τ , so w is uniquely determined on V ′i × (C \ 0)× (C \ 0), which is
at least an open subset in U ′i , so it is determined uniquely on U ′i .

We still have to check that if we start with arbitrary functions f0, f1, f2 : V ′i → C, the vector
field on V ′i × (C \ 0) × (C \ 0) constructed this way can be extended to the whole U ′i if and
only if f0, f1, f2 satisfy the statement of the Lemma and that the resulting vector field on U ′i
is T -invariant. To do this, let us first write the vector field we have constructed in terms of
fj and ∂/∂tj . Take a point x = (t0, t1, t2) ∈ V ′i × (C \ 0) × (C \ 0), t0 = π(x). We have
w(t0, t1, t2) = dτw(t0, 1, 1) = dτ(f0(t0)∂/∂t0 + f1(t0)∂/∂t1 + f2(t0)∂/∂t2) = (f0(t0)∂/∂t0 +
t1f1(t0)∂/∂t1 + t2f2(t0)∂/∂t2). Clearly, functions of the form fj(t0)ta1

1 t
a2
2 with a1 ≥ 0, a2 ≥ 0

can be extended to the whole U ′i .
Observe that to check homogeneity, we have to check an equality of two vector fields for each

τ ∈ T . This equality holds if it holds on an open subset of U ′i , in particular, it is sufficient
to check homogeneity of the resulting vector field on V ′i × (C \ 0) × (C \ 0). Take a point
x = (t0, t1, t2) ∈ V ′i × (C \ 0)× (C \ 0) and an element τ ′ ∈ T . Denote by τ ∈ T the element of
T such that βi,1(τ) = t1, βi,2(τ) = t2. We have w(τ ′x) = w(τ ′τ(t0, 1, 1)) = d(τ ′τ)w(t0, 1, 1) =
dτ ′dτw(t0, 1, 1) = dτ ′w(t0, t1, t2), and the vector field is T -invariant.

Corollary 3.21. A homogeneous vector field w of degree 0 on U ′i is also uniquely determined
by the following data:

1. The derivatives of h̃i,j (j = 1, 2) along w at canonical points, considered as two algebraic
functions Vi → C.

2. The vector field on V ′i obtained by applying dπ to the values of w at canonical points,
d(t0,1,1)πw(t0, 1, 1).

The vector field and two functions can be arbitrary algebraic.

Proof. Write w(t0, 1, 1) = f0(t0)∂/∂t0 + f1(t0)∂/∂t1 + f2(t0)∂/∂t2. Then d(t0,1,1)πw(t0, 1, 1) =

f0(t0)∂/∂t0, dh̃i,jw(t0, 1, 1) = fj(t0) (j = 1, 2).

Note that these data (the image of a vector at a canonical point under dπ, the derivatives of
functions along w) do not depend on the choice of an embedding Vi → C. Given a vector field
w of degree 0 on U ′i , we call the data from Corollary 3.21 the Ui-description of w. Also, the
Ui-description only depends on the data we used to define the set Ui (the degrees βi,1 and βi,2
and the sections hi,1 and hi,2), not on the whole sufficient system U1, . . . , Uq.

Observe also that the operation of taking the Ui-description is compatible with replacing U ′i
by a smaller subset U ′′i of the same form, or, more precisely, we can say the following:

Remark 3.22. Let U ′′i ⊂ U ′i be a subset of U ′i of the same form, i. e. let V ′′i ⊆ V ′i be an open
subset, let L′′ ⊆ L′ be an open subset that can be equal C or C\0, and let U ′′i = V ′′i ×(C\0)×L′′
be embedded into ⊆ V ′i × (C \ 0) × L′ = U ′i via the embeddings V ′′i ⊆ V ′i and L′′ ⊆ L′ above.
Let w′ be the restriction of w to U ′′i . Then the U ′′i -description of w′ consists of the restrictions
from V ′i to V ′′i of the vector field and two functions forming the U ′i-description of w.
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Note that there are many possible descriptions for a given vector field on X, each one cor-
responds to one of the chosen open subsets Ui. Sometimes we will need many descriptions of
a given vector field on X simultaneously. And sometimes we will simultaneously deal with
descriptions of many different vector fields. To distinguish between these situations clearly, we
will usually use ”standard” subscripts to enumerate different descriptions of the same vector
field, for example:

(g1,1, g1,2, v1, . . . , gi,1, gi,2, vi, . . . , gq,1, gq,2, vq).

Here (gi,1, gi,2, vi) is the Ui-description of a vector field that does not depend on i. If we have
several different vector fields and one description of each of them, we enumerate them using
indices in brackets, for example:

(g[1]1, g[1]2, v[1], . . . , g[i]1, g[i]2, v[i], . . . , g[r]1, g[r]2, v[r]).

Here (g[i]1, g[i]2, v[i]) can be, for example, the U1-description of a vector field w[i] on X, and
these vector fields may vary independently. These are only generic rules, they are stated
here to demonstrate what kind of notation will be used later. Every time, when we consider a
description of a vector field, we say explicitly which set Ui we use, which vector field or function
on X we describe, and how we denote the description.

Later we will introduce Ui-descriptions of homogeneous functions on X in a similar way, the
only difference will be that the Ui-description of a homogeneous function consists of only one
function on Vi, not of two functions and a vector field. When we have several Ui-descriptions
of functions, we will use the same generic rules to write their indices.

Choose two indices i and j (1 ≤ i, j ≤ q). The following lemma relates the Ui-description
with the Uj-description of a vector field w of degree 0. We need some more notation to formulate
it. Denote by C◦i,j the following 2× 2-matrix:

C◦i,j =

(
β∗i,1(βj,1) β∗i,2(βj,1)

β∗i,1(βj,2) β∗i,2(βj,2)

)
,

Denote

Ci,j(p) =


hi,1(p)

β∗i,1(βj,1)
hi,2(p)

β∗i,2(βj,1)

hj,1(p)
d

(
hj,1(p)

hi,1(p)
β∗
i,1

(βj,1)
hi,2(p)

β∗
i,2

(βj,1)

)
C◦i,j hi,1(p)

β∗i,1(βj,2)
hi,2(p)

β∗i,2(βj,2)

hj,2(p)
d

(
hj,2(p)

hi,1(p)
β∗
i,1

(βj,2)
hi,2(p)

β∗
i,2

(βj,2)

)
0 0 1

 ,

where p ∈ P1 is an arbitrary point, and the first and the second entry in the third column
are understood as rational covector fields on P1. In particular, if i = j, C◦i,i and Ci,i are unit
matrices. By Lemma 3.17, Ui∩Uj is isomorphic to V ′× (C\0)×L′, where V ′ is an open subset
of Vi ∩ Vj , and L′ is C or (C \ 0). This product is embedded into Ui via the isomorphism from
Lemma 3.16.

Lemma 3.23. Let V ′′ be an open subset of V ′, L′′ be an open subset of L′, L′′ = C or L′′ = C\0,
and let U ′′ = V ′′ × (C \ 0) × L′′ be embedded into Ui ∩ Uj via the map from Lemma 3.17. Let
w be a vector field on U ′′ of degree 0, and let gi,1, gi,2, vi be the Ui-description of w, and gj,1,
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gj,2, vj be the Uj-description of w. Then for every p ∈ V ′′ gj,1(p)
gj,2(p)
vj(p)

 = Ci,j(p)

 gi,1(p)
gi,2(p)
vi(p)

 .

In particular, vi(p) = vj(p).

Proof. It is sufficient to check this equality on an arbitrary open subset of V ′′, so let p ∈ V ′′ be
an ordinary point. Let x be the canonical point in π−1(p) with respect to Ui. It follows from
the definition of the canonical point that x ∈ U ′′. Let x′ be the canonical point in π−1(p) with
respect to Uj . By Proposition 3.6, h̃i,1(x′) 6= 0, h̃i,2(x′) 6= 0, so x′ ∈ U ′′.

Let τ ∈ T be the element of T such that βi,1(τ) = h̃i,1(x′), βi,2(τ) = h̃i,2(x′). It defines an

automorphism of U ′′, and we also denote this automorphism by τ . Then h̃i,1(τx) = h̃i,1(x′),

h̃i,2(τx) = h̃i,2(x′), π(τx) = p = π(x′), so τx = x′.

Since w is a vector field of degree 0, w(x′) = dxτw(x). Since π = πτ , we have dxπ =
dτxπdxτ = dx′πdxτ , and vj(p) = dx′πw(x′) = (dx′π)(dxτw(x)) = dxπw(x) = vi(p).

Now we are going to compute gj,1(p) = dx′ h̃j,1w(x′). Until the end of the proof, denote
a1,1 = β∗i,1(βj,1), a1,2 = β∗i,2(βj,1), a2,1 = β∗i,1(βj,2), and a2,2 = β∗i,2(βj,2). We have

h̃j,1 = h̃
a1,1

i,1 h̃
a1,2

i,2

h̃j,1

h̃
a1,1

i,1 h̃
a1,2

i,2

,

and

dx′ h̃j,1 = a1,1(dx′ h̃i,1)h̃i,2(x′)a1,2
h̃j,1(x′)

h̃i,1(x′)a1,1 h̃i,2(x′)a1,2
+

a1,2h̃i,1(x′)a1,1(dx′ h̃i,2)
h̃j,1(x′)

h̃i,1(x′)a1,1 h̃i,2(x′)a1,2
+ h̃i,1(x′)a1,1 h̃i,2(x′)a1,2dx′

(
h̃j,1

h̃
a1,1

i,1 h̃
a1,2

i,2

)
.

Taking into account that h̃j,1(x′) = 1, we get

dx′ h̃j,1 =
a1,1dx′ h̃i,1

h̃i,1(x′)a1,1
+
a1,2dx′ h̃i,2

h̃i,2(x′)a1,2
+
h̃i,1(x′)a1,1 h̃i,2(x′)a1,2

h̃j,1(x′)
dx′

(
h̃j,1

h̃
a1,1

i,1 h̃
a1,2

i,2

)
.

We are computing dx′ h̃i,1w(x′). We have dx′ h̃i,1w(x′) = dx′ h̃i,1dxτw(x). Since h̃i,1 is a

homogeneous function of degree βi,1, we have the following equality of maps X → C: h̃i,1 ◦ τ =

βi,1(τ)h̃i,1 = h̃i,1(x′)h̃i,1. So, dx′ h̃i,1dxτw(x) = h̃i,1(x′)dxh̃i,1w(x) = h̃i,1(x′)gi,1(p). Similarly,

dx′ h̃i,2w(x′) = h̃i,2(x′)gi,2(p).

Now we are going to deal with the last summand in the formula for dx′ h̃j,1 above. Since h̃j,1
and h̃

a1,1

i,1 h̃
a1,2

i,2 are functions of the same degree βj,1, by Proposition 2.3 we have the following
equalities of maps from the open subset where they are defined as regular functions, not only
as rational functions, to C:

h̃j,1

h̃
a1,1

i,1 h̃
a1,2

i,2

=
hj,1

h
a1,1

i,1 h
a1,2

i,2

◦ π and
h̃
a1,1

i,1 h̃
a1,2

i,2

h̃j,1
=
h
a1,1

i,1 h
a1,2

i,2

hj,1
◦ π.
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As we already know, h̃i,1(x′) 6= 0, h̃i,2(x′) 6= 0. Also, h̃j,1(x′) = 1 by the definition of x′, so
these maps are defined at x′, and we get

h̃i,1(x′)a1,1 h̃i,2(x′)a1,2

h̃j,1(x′)
dx′

(
h̃j,1

h̃
a1,1

i,1 h̃
a1,2

i,2

)
w(x′) =

hi,1(p)a1,1hi,2(p)a1,2

hj,1(p)
dp

(
hj,1

h
a1,1

i,1 h
a1,2

i,2

)
dx′πw(x′) =

hi,1(p)a1,1hi,2(p)a1,2

hj,1(p)
dp

(
hj,1

h
a1,1

i,1 h
a1,2

i,2

)
vj(p) =

hi,1(p)a1,1hi,2(p)a1,2

hj,1(p)
dp

(
hj,1

h
a1,1

i,1 h
a1,2

i,2

)
vi(p).

Finally, we get the following formula for gj,1(p):

gj,1(p) = dx′ h̃j,1w(x′) =

a1,1dx′ h̃i,1w(x′)

h̃i,1(x′)a1,1
+
a1,2dx′ h̃i,2w(x′)

h̃i,2(x′)a1,2
+
h̃i,1(x′)a1,1 h̃i,2(x′)a1,2

h̃j,1(x′)
dx′

(
h̃j,1

h̃
a1,1

i,1 h̃
a1,2

i,2

)
w(x′) =

a1,1h̃i,1(x′)gi,1(p)

h̃i,1(x′)a1,1
+
a1,2h̃i,2(x′)gi,2(p)

h̃i,2(x′)a1,2
+
hi,1(p)a1,1hi,2(p)a1,2

hj,1(p)
dp

(
hj,1

h
a1,1

i,1 h
a1,2

i,2

)
vi(p) =

a1,1gi,1(p) + a1,2gi,2(p) +
hi,1(p)a1,1hi,2(p)a1,2

hj,1(p)
dp

(
hj,1

h
a1,1

i,1 h
a1,2

i,2

)
vi(p).

Similarly,

gj,2(p) = a2,1gi,1(p) + a2,2gi,2(p) +
hi,1(p)a2,1hi,2(p)a2,2

hj,2(p)
dp

(
hj,2

h
a2,1

i,1 h
a2,2

i,2

)
vi(p).

Now we are ready to describe the sheaf G inv
0,Θ only using functions on P1 and the notion of

a sufficient system of Ui (which uses only combinatorics of D and functions on P1). We will
prove that it is isomorphic to another sheaf (denoted by G0,Θ), which will be defined using
functions and vector fields on P1 satisfying certain conditions. This is similar to the approach
using transition matrices, but the sheaf we will define does not have to be locally free.

Namely, consider the following sheaf G0,Θ. Let V ⊆ P1 be an open subset. The space of
sections Γ(V,G0,Θ) is the space of sequences of length 2q + 1

(g1,1, g1,2, . . . , gi,1, gi,2, . . . , gq,1, gq,2, v),

where gi,j ∈ Γ(Vi ∩ V,OP1), v ∈ Γ(V,ΘP1) satisfy the following condition: For every indices
i, i′:  gi′,1(p)

gi′,2(p)
v(p)

 = Ci,i′(p)

 gi,1(p)
gi,2(p)
v(p)


Proposition 3.24. G inv

0,Θ is isomorphic to G0,Θ. For an open set V ⊆ P1, the isomorphism
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maps a vector field w defined on π−1(V ) ∩ U to the sequence

(g1,1, g1,2, . . . , gi,1, gi,2, . . . , gq,1, gq,2, v),

such that (gi,1, gi,2, v) is the Ui-description of w.

Proof. This is a direct consequence of Lemma 3.23, Lemma 3.16, and the definition of a push-
forward of a sheaf.

The following three lemmas make it easier to construct sections of G0,Θ explicitly.

Lemma 3.25. All entries of Ci,j are regular at ordinary points p such that p ∈ Vi ∩ Vj.

Proof. For constant entries the claim is clear, and non-constant entries are logarithmic deriva-
tives of functions

hj,1

h
β∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2

and
hj,2

h
β∗i,1(βj,2)

i,1 h
β∗i,2(βj,1)

i,2

.

If p is an ordinary point and p ∈ Vi ∩ Vj , then, by the definition of Vi and of Vj , ordp hi,1 =
ordp hi,2 = ordp hj,1 = ordp hj,2 = 0. Hence, both functions

hj,1

h
β∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2

and
hj,2

h
β∗i,1(βj,2)

i,1 h
β∗i,2(βj,1)

i,2

are defined at p and do not vanish at p, so their logarithmic derivatives are regular at p.

Lemma 3.26. Let p be a special point, and let i and j be two indices such that p ∈ Vi ∩ Vj,
and βi,1 and βj,1 belong to the normal vertex cones of two different vertices of ∆p. Then each
non-constant entry of Ci,j has pole of degree exactly 1 at p.

Proof. We know that each of the degrees βi,1 and βi,2 belongs to the normal subcone of exactly
one vertex of ∆p, and this vertex is the same one for βi,1 and for βi,2. βj,1 belong to the normal
subcone of a different vertex of ∆p, which is also unique. Since Dp(·) is a convex function,
it cannot be linear on the union of these two subcones, and Dp(βj,1) < β∗i,1(βj,1)Dp(βi,1) +
β∗i,2(βj,1)Dp(βi,2). Therefore,

ordp

 hj,1

h
β∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2

 = −Dp(βj,1) + β∗i,1(βj,1)Dp(βi,1) + β∗i,2(βj,1)Dp(βi,2) > 0,

and, by a property of logarithmic derivative,

ordp

hβ∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2

hj,1
d

 hj,1

h
β∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2

 = −1.

The argument for the second non-constant entry of Ci,j is similar.

Lemma 3.27. For the matrices C◦i,j and Ci,j defined above, one has C◦i,k = C◦j,kC
◦
i,j and

Ci,k = Cj,kCi,j for every triple of indices (i, j, k).
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Proof. The equality C◦i,k = C◦j,kC
◦
i,j can be proved by a direct computation using linear algebra.

We omit this computation.

Now, to prove that Ci,k = Cj,kCi,j , it is sufficient to check that
h
β∗i,1(βk,1)

i,1 h
β∗i,2(βk,1)

i,2

hk,1
d

(
hk,1

h
β∗
i,1

(βk,1)

i,1 h
β∗
i,2

(βk,1)

i,2

)
h
β∗i,1(βk,2)

i,1 h
β∗i,2(βk,2)

i,2

hk,2
d

(
hk,2

h
β∗
i,1

(βk,2)

i,1 h
β∗
i,2

(βk,2)

i,2

)
 =

C◦j,k


h
β∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2

hj,1
d

(
hj,1

h
β∗
i,1

(βj,1)

i,1 h
β∗
i,2

(βj,1)

i,2

)
h
β∗i,1(βj,2)

i,1 h
β∗i,2(βj,2)

i,2

hj,2
d

(
hj,2

h
β∗
i,1

(βj,2)

i,1 h
β∗
i,2

(βj,2)

i,2

)


+


h
β∗j,1(βk,1)

j,1 h
β∗j,2(βk,1)

j,2

hk,1
d

(
hk,1

h
β∗
j,1

(βk,1)

j,1 h
β∗
j,2

(βk,1)

j,2

)
h
β∗j,1(βk,2)

j,1 h
β∗j,2(βk,2)

j,2

hk,2
d

(
hk,2

h
β∗
j,1

(βk,2)

j,1 h
β∗
j,2

(βk,2)

j,2

)
 .

By a property of logarithmic derivatives, if f1, f2 are (rational) functions,

d(fa1
1 fa2

2 )

fa1
1 fa2

2

= a1
df1

f1
+ a2

df2

f2
.

Hence, the left-hand side of the equality we are proving can be written as dhk,1
hk,1
− β∗i,1(βk,1)

dhi,1
hi,1
− β∗i,2(βk,1)

dhi,2
hi,2

dhk,2
hk,2
− β∗i,1(βk,2)

dhi,1
hi,1
− β∗i,2(βk,2)

dhi,2
hi,2

 =

 dhk,1
hk,1
dhk,2
hk,2

− C◦i,k
 dhi,1

hi,1
dhi,2
hi,2

 .

Similarly, the right-hand side can be written as

C◦j,k

( dhj,1
hj,1
dhj,2
hj,2

− C◦i,j
 dhi,1

hi,1
dhi,2
hi,2

)+

 dhk,1
hk,1
dhk,2
hk,2

− C◦j,k
 dhj,1

hj,1
dhj,2
hj,2

 =

 dhk,1
hk,1
dhk,2
hk,2

− C◦j,kC◦i,j
 dhi,1

hi,1
dhi,2
hi,2

 .

By taking into account that C◦i,k = C◦j,kC
◦
i,j , we obtain the desired equality.

3.3.2 Computation of G inv
1,Θ,0

Recall that we have denoted the graded component of R1(π|U )∗ΘX of degree 0 by G inv
1,Θ,0. Now

we are going to compute G inv
1,Θ,0 using Proposition 2.10. We can use {Ui} as an affine covering

of U . We have to consider a complex of sheaves on U that we temporarily denote by F•. For
an open subset U ′ ⊆ U , Γ(U ′,F0) consists of sequences (w1, . . . , wq), where wi is a vector
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field on Ui ∩ U ′, Γ(U ′,F1) consists of sequences (wi,j)1≤i<j≤q, where wi,j is a vector field on
Ui ∩ Uj ∩ U ′, and Γ(U ′,F2) consists of sequences (wi,j,k)1≤i<j<k≤q, where wi,j,k is a vector
field on Ui ∩ Uj ∩ Uk ∩ U ′. Denote the graded components of degree 0 of the pushforwards of
these sheaves by G inv

1,Θ,1, G ′inv
1,Θ,1, G ′′inv

1,Θ,1, respectively. Using Corollary 3.21 we get the following
description of these sheaves:

Consider the following sheaves G1,Θ,1, G ′1,Θ,1, and G ′′1,Θ,1. For an open subset V ⊆ P1,
Γ(V,G1,Θ,1) consists of sequences

(g[1]1, g[1]2, v[1], . . . , g[i]1, g[i]2, v[i], . . . , g[q]1, g[q]2, v[q]),

where g[i]j ∈ Γ(Vi ∩V,OP1), v[i] ∈ Γ(Vi ∩V,ΘP1). Then G1,Θ,1 is isomorphic to G inv
1,Θ,1, and the

isomorphism maps a sequence of q vector fields (w[1], . . . , w[q]) to the sequence

(g[1]1, g[1]2, v[1], . . . , g[i]1, g[i]2, v[i], . . . , g[q]1, g[q]2, v[q]),

where g[i]1, g[i]2, v[i] form the Ui-description of w[i].

Γ(V,G ′1,Θ,1) consists of sequences (g[i, j]1, g[i, j]2, v[i, j])1≤i<j≤q, where g[i, j]1, g[i, j]2 ∈ Γ(Vi∩
Vj ∩ V,OP1), v[i, j] ∈ Γ(Vi ∩ Vj ∩ V,ΘP1). Similarly, G ′1,Θ,1 is isomorphic to G ′inv

1,Θ,1, and the

isomorphism maps a sequence (w[i, j])1≤i<j≤q of vector fields on open subsets of U ∩ π−1(V )
to the sequence (g[i, j]1, g[i, j]2, v[i, j])1≤i<j≤q, where g[i, j]1, g[i, j]2 and v[i, j] form the Ui-
description of a vector field defined on Ui ∩ Uj ∩ π−1(V ). (In fact, at this point we can choose
arbitrarily whether this is the Ui-description or the Uj-description of w[i, j], and we choose that
this is the Ui-description, and not the Uj-description.)

Finally, Γ(V,G ′′1,Θ,1) consists of sequences (g[i, j, k]1, g[i, j, k]2, v[i, j, k])1≤i<j≤q, where

g[i, j, k]1, g[i, j, k]2 ∈ Γ(Vi ∩ Vj ∩ Vk ∩ V,OP1), v[i, j, k] ∈ Γ(Vi ∩ Vj ∩ Vk ∩ V,ΘP1).

The isomorphism between G ′′inv
1,Θ,1 and G ′′1,Θ,1 is constructed similarly, and here we again say (we

choose) that g[i, j, k]1, g[i, j, k]2, v[i, j, k] is the Ui-description of a vector field on Ui ∩Uj ∩Uk ∩
π−1(V ), not its Uj- or Uk-description.

Let us compute the kernel ker(G ′1,Θ,1 → G ′′1,Θ,1). Denote it by G1,Θ,2. A kernel of a sheaf
map can be computed on each open subset independently, and the map here comes from the
standard Čech map F1 → F2 via the pushforward and the isomorphisms G ′inv

1,Θ,1
∼= G ′1,Θ,1

and G ′′inv
1,Θ,1

∼= G ′′1,Θ,1 defined above. Summarizing these definitions (and choices between Ui-
descriptions made there), we get the following formula for the map G ′1,Θ,1 → G ′′1,Θ,1, where we
have to calculate a Ui-description from a Uj-description once: g[i, j, k]1(p)

g[i, j, k]2(p)
v[i, j, k](p)

 =

 g[i, j]1(p)
g[i, j]2(p)
v[i, j](p)

+ Cj,i(p)

 g[j, k]1(p)
g[j, k]2(p)
v[j, k](p)

−
 g[i, k]1(p)

g[i, k]2(p)
v[i, k](p)

 .

So we get the following description for G1,Θ,2. The space of sections of G1,Θ,2 over an open subset
V ⊆ P1 is the space of sequences of length 3q(q−1)/2 of the form (g[i, j]1, g[i, j]2, v[i, j])1≤i<j≤q,
where g[i, j]k ∈ Γ(V ∩Vi∩Vj ,OP1) and v[i, j] ∈ Γ(V ∩Vi∩Vj ,ΘP1) satisfy the following condition:
For every indices i < j < k: g[i, j]1(p)

g[i, j]2(p)
v[i, j](p)

+ Cj,i(p)

 g[j, k]1(p)
g[j, k]2(p)
v[j, k](p)

−
 g[i, k]1(p)

g[i, k]2(p)
v[i, k](p)

 = 0.
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Finally, by Proposition 2.10, G inv
1,Θ,0 is isomorphic to G1,Θ,0 = coker(G1,Θ,1 → G1,Θ,2), where the

map G1,Θ,1 → G1,Θ,2 can be written as follows: g[i, j]1(p)
g[i, j]2(p)
v[i, j](p)

 =

 g[i]1(p)
g[i]2(p)
v[i](p)

− Cj,i(p)
 g[j]1(p)

g[j]2(p)
v[j](p)

 .

3.3.3 Computation of G inv
0,O

The sheaves G inv
0,O,χ can be computed similarly to G inv

0,Θ. We start with the following Lemma.

Lemma 3.28. Let V ′i ⊆ Vi be an open subset, L′ ⊆ L be an open subset that can be equal C or
(C\0), U ′i = V ′i × (C\0)×L′ ⊆ Ui. A homogeneous function of degree χ ∈M on U ′i is uniquely
determined by its values at canonical points in all fibers π−1(t0) (for t0 ∈ V ′i ) with respect to
Ui.

1. If L′ = C \ 0 or β∗i,2(χ) ≥ 0, these values can form an arbitrary function depending
algebraically on p ∈ V ′i .

2. If L′ = C and β∗i,2(χ) < 0, these values must vanish. This is only possible if χ /∈ σ∨.

Proof. The proof is similar to the proof of Lemma 3.20. Denote the coordinates of a point
x ∈ Ui provided by the isomorphism Ui ∼= Vi × (C \ 0) × L by t0 ∈ Vi, t1 ∈ C \ 0, t2 ∈ L. Let
f be a function of degree χ on U ′i , and suppose that f(t0, 1, 1) = f0(t0), where f0 : Vi → C is
an algebraic function. Fix a pair (t1, t2) ∈ (C \ 0) × (C \ 0) and let τ ∈ T be the element of
T such that βi,1(τ) = t1, βi,2(τ) = t2. Denote by τ the automorphism of U ′i provided by τ as
well. By the definition of a homogeneous function of degree χ, f(t0, t1, t2) = f(τ · (t0, 1, 1)) =
χ(τ)f(t0, 1, 1) = χ(τ)f0(t0), so f0 determines f uniquely on V ′i × (C \ 0)× (C \ 0), which is at
least an open subset in U ′i .

We still have to check that if we start with an arbitrary functions f0 : V ′i → C, the resulting
function on V ′i × (C \ 0) × (C \ 0) can be extended to the whole U ′i if and only if β∗i,2(χ) < 0
or L′ = C \ 0 (in the last case there is nothing to extend) and that the resulting function on
U ′i is homogeneous of degree χ. The function we have constructed can be written as follows:

f(t0, t1, t2) = χ(τ)f0(t0) = βi,1(τ)β
∗
i,1(χ)βi,2(τ)β

∗
i,2(χ) = t

β∗i,1(χ)

1 t
β∗i,2(χ)

2 f0(t0). Recall that t1 (resp.
t2) is a function on X of degree βi,1 (resp. βi,2), so this function is clearly homogeneous of
degree β∗i,1(χ)βi,1 + β∗i,2(χ)βi,2 = χ on V ′i × (C \ 0) × (C \ 0). If the function can be extended
to the whole U ′i , it remains homogeneous there since homogeneity means an equality of two
functions for each element of T , and this equality holds if it holds on an open subset.

If L′ = C \ 0, there is nothing to extend. If L′ = C, f can be extended to U ′i if and only if
β∗i,2(χ) ≥ 0.

Finally, L′ = C, then βi,1 ∈ ∂σ∨, and if β∗i,2(χ) < 0 in this case, then χ /∈ σ∨.

Given a homogeneous function f of degree χ ∈M defined on a set U ′i as described in Lemma
3.28, we call the function f0 : V ′i → C such that f0(p) = f(x), where x is the canonical point in
π−1(p) with respect to Ui the Ui-description of f . Again, the Ui-description of a function only
depends on the data we used to define the set Ui (the degrees βi,1 and βi,2 and the sections
hi,1 and hi,2), not on the whole sufficient system U1, . . . , Uq. And again we can make a remark
similar to Remark 3.22:
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3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

Remark 3.29. Let V ′′i ⊆ V ′i and L′′ ⊆ L′ be open subset, and L′′ = C or L′′ = C \ 0. These
embeddings give rise to an embedding of U ′′i = V ′′i × (C \ 0) × L′′ into V ′i × (C \ 0) × L′ = U ′i .
Let f ′ be the restriction of χ to U ′′i . Then the Ui-description of f ′ is the restriction of the
Ui-description of f to V ′′i .

Now we are going to relate the Ui-description of a homogeneous function of degree χ defined
on an open subset of Ui ∩ Uj with its Uj-description. To formulate this relation, we need to
introduce some notation. Denote the following rational function of p ∈ P1:

µi,j,χ(p) =
hi,1(p)β

∗
i,1(χ)hi,2(p)β

∗
i,2(χ)

hj,1(p)β
∗
i,1(χ)hj,2(p)β

∗
i,2(χ)

.

In particular, if i = j, then µi,j,χ = 1. This time it is a trivial observation that these functions
satisfy conditions similar to Lemma 3.27 for matrices C◦i,j and Ci,j :

Remark 3.30. For every three indices i, j, k one has µi,k,χ = µi,j,χµj,k,χ.

By Lemma 3.17, Ui ∩ Uj can be written as V ′ × (C \ 0)× L′, where V ′ ⊆ Vi ∩ Vj is an open
subset, and L′ equals C or (C\0). This product is embedded into Ui via the isomorphism from
Lemma 3.16.

Lemma 3.31. Let V ′′ be an open subset of V ′, L′′ be an open subset of L′, L′′ = C or L′′ = C\0,
and let U ′′ = V ′′ × (C \ 0)× L′′ be embedded into Ui ∩ Uj via the map from Lemma 3.17.

Let f be a homogeneous function on V ′′ of degree χ, and let gi (resp. gj) be the Ui-description
(resp. Uj-description) of f . Then for every p ∈ V ′′:

gj(p) = µi,j,χgi(p).

Proof. As in the proof of Lemma 3.23, it is sufficient to prove the equality for all ordinary
points p ∈ V ′′. So let p ∈ V ′′ be an ordinary point and let x (resp. x′) be the canonical point
in π−1(p) with respect to Ui (resp. to Uj). It follows from Proposition 3.6 that h̃i,1(x′) 6= 0,

h̃i,2(x′) 6= 0, hence x′ ∈ U ′′.
Let τ be the element of T such that βi,1(τ) = h̃i,1(x′), βi,2(τ) = h̃i,2(x′). As usual, denote

the corresponding automorphism of U ′′ by τ as well. Since h̃i,1 (resp. h̃i,2) is a homogeneous

function of degree βi,1 (resp. βi,2), h̃i,1(τx) = h̃i,1(x′), h̃i,2(τx) = h̃i,2(x′), so τx = x′.
Since f is a homogeneous function of degree χ,

f(x′) = f(τx) = χ(τ)f(x) = βi,1(τ)β
∗
i,1(χ)βi,2(τ)β

∗
i,2(χ)f(x) = h̃i,1(x′)β

∗
i,1(χ)h̃i,2(x′)β

∗
i,2(χ)f(x).

Recall that h̃j,1(x′) = h̃j,2(x′) = 1. We have

f(x′) =
h̃i,1(x′)β

∗
i,1(χ)h̃i,2(x′)β

∗
i,2(χ)

h̃j,1(x′)β
∗
j,1(χ)h̃j,2(x′)β

∗
i,2(χ)

f(x).

Since the numerator and the denominator of this fraction are homogeneous functions of degree
β∗i,1(χ)βi,1 + β∗i,2(χ)βi,2 = β∗j,1(χ)βj,1 + β∗j,2(χ)βj,2 = χ, by Proposition 2.3,

f(x′) =
hi,1(π(x′))β

∗
i,1(χ)hi,2(π(x′))β

∗
i,2(χ)

hj,1(π(x′))β
∗
j,1(χ)hj,2(π(x′))β

∗
j,2(χ)

f(x) = µi,j,χ(p)gj(p).
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Recall that for a degree χ ∈M we have denoted by G inv
0,O,χ the graded component of (π|U )∗OX

of degree χ. Lemma 3.31 enables us to formulate a description of G inv
0,O,χ similar to the description

of G inv
0,Θ above. Namely, define a sheaf G0,O,χ as follows: Let V ⊆ P1 be an open subset. The

space of sections Γ(V,G0,O,χ) is the space of sequences (g1, . . . , gq) of functions on V satisfying
the following conditions:

1. gi′ = µi,i′,χgi for all indices i, i′.

2. If βi,1 ∈ ∂σ∨ and β∗i,2(χ) < 0, then gi = 0.

Lemma 3.32. G inv
0,O,χ is isomorphic to G0,O,χ. If f is a function on π−1(V ) ∩ U of degree χ,

then the isomorphism maps it to (g1, . . . , gq), where gi is the Ui-description of f .

The following lemma gives an alternative description of G0,O,χ if χ ∈ σ∨ ∩M .

Lemma 3.33. If χ ∈ σ∨ ∩M , then G0,O,χ
∼= O(D(χ)). The isomorphism O(D(χ)) ↔ G0,O,χ

is given by

f ↔

 f

h
β∗1,1(χ)

1,1 h
β∗1,2(χ)

1,2

, . . . ,
f

h
β∗i,1(χ)

i,1 h
β∗i,1(χ)

i,2

, . . . ,
f

h
β∗q,1(χ)

q,1 h
β∗q,2(χ)

q,2

 ,

where f ∈ Γ(V,O(D(χ))), V ⊆ P1 is an open subset.

Proof. First, let f ∈ Γ(V,O(D(χ))) be a function. Then it is clear that gi = f/(h
β∗i,1(χ)

i,1 h
β∗i,(χ)

i,2 )
satisfy the conditions gj = µi,j,χgi from Lemma 3.32 by construction. The condition 2 from the
definition of G0,O,χ is void since χ ∈ σ∨. We have to check that gi are well-defined at points
p ∈ V ∩ Vi. If p ∈ V ∩ Vi, then by Lemma 3.15, Dp(χ) ≤ β∗i,1(χ)Dp(βi,1) + β∗i,2(χ)Dp(βi,2). By

the definition of Vi, ordp(hi,1) = −Dp(βi,1), ordp(hi,2) = −Dp(βi,2). Since f ∈ Γ(V,O(D(χ))),

ordp(f) ≥ −Dp(χ), so ordp(f) ≥ ordp(h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2 ), and gi is well-defined on V ∩ Vi. There-
fore, (g1, . . . , gq) defines an element of G0,O,χ.

Now, let (g1, . . . , gq) ∈ Γ(V,G0,O,χ). The condition gj = µi,j,χgi guarantees that f =

gih
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2 does not depend on i as a rational function. We have to check that f ∈
Γ(V,O(D(χ))). Let p ∈ V be an ordinary point. By the definition of a sufficient system, there
exists an index i such that p ∈ Vi. Then gi is well-defined as p, and hi,1 and hi,2 are defined at
p since p is an ordinary point.

Now suppose that p ∈ V is a special point. Let Vp,j be a vertex such that χ ∈
N (Vp,j ,∆p) By the definition of a sufficient system, there exists an index i such that
p ∈ Vi and βi,1, βi,2 ∈ N (Vp,j ,∆p). The function Dp(·) is linear on N (Vp,j ,∆p) so
Dp(χ) = β∗i,1(χ)Dp(βi,1) + β∗i,2(χ)Dp(βi,2). Then ordp(f) = ordp(gi) + β∗i,1(χ) ordp(hi,1) +

β∗i,2(χ) ordp(hi,2) ≥ β∗i,1(χ) ordp(hi,1) + β∗i,2(χ) ordp(hi,2) = −β∗i,1(χ)Dp(βi,1)− β∗i,2(χ)Dp(βi,2) =
−Dp(χ). Therefore, f ∈ Γ(V,O(D(χ))).

Corollary 3.34. H1(P1,G0,O) = 0.

Proof. Recall that

G0,O =
m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G0,O,λi ,
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3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

where λi form the Hilbert basis of σ∨ ∩M , in particular, λi ∈ σ∨ ∩M . Therefore,

G0,O =
m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

O(D(λi)).

In particular, D(λi) are divisors of non-negative degree on P1, and H1(P1,G0,O) = 0.

3.3.4 Computation of G inv
1,O,0

We can compute G inv
1,O,0,χ using Proposition 2.10 with {Ui} being the required affine covering

of U . Recall that for each χ ∈ M , G inv
1,O,0,χ is the graded component of R1(π|U )∗OX of degree

χ. Again denote temporarily the complex of sheaves on U we have to consider in Proposition
2.10 by F•. Let U ′ be an open subset of U . Then Γ(U ′,F0) consists of sequences (f1, . . . , fq),
where fi ∈ Γ(Ui ∩ U ′,OX), Γ(U ′,F1) consists of sequences (fi,j)1≤i<j≤q, where fi,j ∈ Γ(Ui ∩
Uj ∩ U ′,OX), and Γ(U ′,F2) consists of sequences (fi,j,k)1≤i<j<k≤q, where fi,j,k ∈ Γ(Ui ∩ Uj ∩
Uk ∩U ′,OX). Denote the graded components of degree χ of the pushforwards of these sheaves
by G inv

1,O,1,χ, G ′inv
1,O,1,χ, G ′′inv

1,O,1,χ, respectively. Denote also

G inv
1,O,1 =

m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G inv
1,O,1,λi ,

G ′inv
1,O,1 =

m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G ′inv
1,O,1,λi , and

G ′′inv
1,O,1 =

m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G ′′inv
1,O,1,λi .

We get the following descriptions of these sheaves from Lemma 3.28:
Define sheaves G1,O,1,χ, G ′1,O,1,χ, G ′′1,O,1,χ as follows. Fix an an open subset V ⊆ P1. Let

Γ(V,G1,O,1,χ) be the space of sequences of the form (g[1], . . . , g[q]), where g[i] ∈ Γ(V ∩Vi,OP1)
and g[i] = 0 if βi,1 ∈ ∂σ∨ and β∗i,2(χ) < 0. Then G inv

1,O,1,χ
∼= G1,O,1,χ, and the isomorphism maps

a sequence (f [1], . . . , f [q]) of functions of degree χ defined on open subsets of π−1(V ) ∩ U to
(g[1], . . . , g[q]), where g[i] is the Ui-description of f [i].

Let Γ(V,G ′1,O,1,χ) be the space of sequences (g[i, j])1≤i<j≤q, where g[i, j] ∈ Γ(OP1 , V ∩Vi∩Vj).
These functions should be zero in some cases if βi,1 = βj,1 ∈ ∂σ∨ (see Lemma 3.17). To define
these cases, note first that if βi,1 = βj,1, then β∗i,2 = β∗j,2. So, the condition is: If β∗i,2(χ) < 0, then

g[i, j] = 0. Again, G ′inv
1,O,1,χ

∼= G ′1,O,1,χ, and the isomorphism maps a sequence (f [i, j])1≤i<j≤q of

functions of degree χ defined on open subsets of π−1(V ) ∩ U to the sequence (g[i, j])1≤i<j≤q

of functions on V such that g[i, j] is the Ui-description of f [i, j]. (Again, we could choose the
Uj-description here, as well, but we choose the Ui-description.)

Finally, let Γ(V,G ′′1,O,1,χ) be the space of sequences (g[i, j, k])1≤i<j<k≤q, where g[i, j, k] ∈
Γ(V ∩ Vi ∩ Vj ∩ Vk,OP1) and, as in the previous case, g[i, j, k] = 0 if βi,1 = βj,1 = βk,1 ∈ ∂σ∨
and β∗i,2(χ) < 0. Then G ′′inv

1,O,1,χ
∼= G ′′1,O,1,χ, the isomorphism is constructed similarly, and again

we say that g[i, j, k] is the Ui-description of a function defined on Ui ∩ Uj ∩ Uk ∩ π−1(V ), not
its Uj- or Uk-description.

Denote G1,O,2,χ = ker(G ′1,O,1,χ → G ′′1,O,1,χ), where the map G ′1,O,1,χ → G ′′1,O,1,χ comes from the
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standard Čech map F1 → F2 via the pushforward, then the restriction to the degree χ, and
then the isomorphisms G ′inv

1,O,1,χ
∼= G ′1,O,1,χ and G ′′inv

1,O,1,χ
∼= G ′′1,O,1,χ defined above. To compute a

kernel of a map between sheaves, it is sufficient to compute the kernels of the corresponding
maps between modules on each open subset. So let V ⊆ P1 be an open subset. Taking into
account the choice of Ui-description in the definition of the isomorphisms G ′inv

1,O,1,χ
∼= G ′1,O,1,χ

and G ′′inv
1,O,1,χ

∼= G ′′1,O,1,χ, we see that the corresponding map Γ(V,G ′1,O,1,χ) → Γ(V,G ′′1,O,1,χ) can
be written as follows:

g[i, j, k] = g[i, j] + µj,i,χg[j, k] − g[i, k],

and Γ(V,G1,O,2,χ) is the space of sequences of the form (g[i, j])1≤i<j≤q, where g[i, j] ∈ Γ(V ∩
Vi ∩ Vj ,OP1) satisfy the following conditions:

1. g[i, j] + µj,i,χg[j, k] − g[i, k] = 0 for all indices i < j < k.

2. If βi,1 = βj,1 ∈ ∂σ∨ and β∗i,2(χ) < 0 then g[i, j] = 0.

Now, by Proposition 2.10, G inv
1,O,0,χ is isomorphic to G1,O,0,χ = coker(G1,O,1,χ → G1,O,2,χ), where

the map G1,O,1,χ → G1,O,2,χ can be written as follows: g[i, j](p) = g[i](p) − µj,i,χg[j](p). After
we have defined the sheafs G0,Oχ and G1,O,0χ isomorphic to G inv

0,Oχ and G inv
1,O,0χ (respectively)

for each degree χ, we define

G0,O =

m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G0,O,λi and G1,O,0 =

m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G1,O,0,λi .

We can also shortly write

G1,O,1 =
m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G1,O,1,λi ,

G ′1,O,1 =
m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G ′1,O,1,λi , and

G ′′1,O,1 =
m⊕
i=1

dim Γ(P1,O(D(λi)))⊕
j=1

G ′′1,O,1,λi .

Then G1,O,0 is the cohomology in the middle of the complex G1,O,1 → G ′1,O,1 → G ′′1,O,1.

3.3.5 Final remarks for the computation of T 1(X)0

Proposition 3.19 involves (in particular) the map H0((R1(π|U )∗ψ)|G inv
1,Θ,0

) : H0(P1,G inv
1,Θ,0) →

H0(P1,G inv
1,O,0). The isomorphisms G inv

1,Θ,0
∼= G1,Θ,0 and G inv

1,O,0
∼= G1,O,0 constructed above

enable us to consider a map H0(P1,G1,Θ,0) → H0(P1,G1,O,0) instead. Denote it by
H0((R1(π|U )∗ψ)|G inv

1,Θ,0
)◦, The following lemma establishes relations between Ui-descriptions of

sections of ΘX and their images under ψ, so it will help us to understand this map.

Lemma 3.35. Let V ′ be an open subset of Vi, L
′ be an open subset of L, L′ = C or L′ = C \ 0,

and let U ′ = V ′ × (C \ 0)× L′ be embedded into Ui via the map from Lemma 3.16.
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3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

Let (gi,1, gi,2, vi) be the Ui-description of a vector field w defined on V ′, χ ∈ σ∨ ∩M be a

degree, f ∈ Γ(P1,O(D(χ))). Then the Ui-description of (df̃)w is

f

h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2

(β∗i,1(χ)gi,1 + β∗i,2(χ)gi,2) + dp
f

h
β∗i,1(χ)

i,1 h
β∗i,1(χ)

i,2

vi.

Proof. The proof is similar to the proof of Lemma 3.23. It is sufficient to prove the equality for
an arbitrary open subset of V ′, so let p ∈ V ′ be an arbitrary point, and let x be the canonical
point in π−1(p) with respect to Ui. Denote a1 = β∗i,1(χ), a2 = β∗i,2(χ), and denote by h the

Ui-description of the function (df)w. Then h(p) = (dxf̃)w(x). We have

dxf̃ = dx

(
h̃a1
i,1h̃

a2
i,2

f̃

h̃a1
i,1h̃

a2
i,2

)
=

a1(dxh̃i,1)h̃a2
i,2(x)

f̃(x)

h̃a1
i,1(x)h̃a2

i,2(x)
+ a2h̃

a1
i,1(x)(dxh̃i,2)

f̃(x)

h̃a1
i,1(x)h̃a2

i,2(x)

+ h̃a1
i,1(x)h̃a2

i,2(x)dx

(
f̃

h̃a1
i,1h̃

a2
i,2

)
.

Since h̃i,1(x) = h̃i,2(x) = 1,

dxf̃ =
f̃(x)

h̃a1
i,1(x)h̃a2

i,2(x)
(a1dxh̃i,1 + a2dxh̃i,2) + dx

(
f̃

h̃a1
i,1h̃

a2
i,2

)
.

f̃ and h̃a1
i,1h̃

a2
i,2 are homogeneous functions of degree χ, so by Proposition 1 we have the following

equality of rational maps from X to C:

f̃

h̃a1
i,1h̃

a2
i,2

=
f

h
a1

i,1h
a2

i,2

◦ π.

Therefore,

dxf̃ =
f(p)

h
a1

i,1(p)h
a2

i,2(p)
(a1dxh̃i,1 + a2dxh̃i,2) + dp

f

h
a1

i,1h
a2

i,2

dxπ.

Finally, we get

h(p) = (dxf̃)w(x) =
f(p)

h
a1

i,1(p)h
a2

i,2(p)
(a1dxh̃i,1w(x) + a2dxh̃i,2w(x)) + dp

f

h
a1

i,1h
a2

i,2

dxπw(x) =

f(p)

h
a1

i,1(p)h
a2

i,2(p)
(a1gi,1(p) + a2gi,2(p)) + dp

f

h
a1

i,1h
a2

i,2

vi(p).

Summarizing, we have found an explicit description for the sheaves G0,Θ, G1,Θ,1, G1,Θ,2, G0,O,χ,
G1,O,1,χ, and G1,O,2,χ and for the map ψ, and all sheaves involved in Proposition 3.19 can be
obtained from these sheaves by taking a cokernel of a map we have explicitly described and
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forming a direct sum.

By Corollary 3.34,

coker(H1(P1,G0,Θ)
H1(((π|U )∗ψ)|G0,Θ

)◦

−→ H1(P1,G0,O)) = 0,

ker(H1(P1,G0,Θ)
H1(((π|U )∗ψ)|G0,Θ

)◦

−→ H1(P1,G0,O)) = H1(P1,G0,Θ),

and the exact sequence from Proposition 3.19 can be written in the following form:

Theorem 3.36. Let G0,Θ, G1,Θ,0, and G1,O,0 be the sheaves on P1 introduced above, on pages
41, 45, and 49 (respectively). Then the following sequence is exact:

0→ H1(P1,G0,Θ)→ T 1(X)0 → H0(P1,G1,Θ,0)
H0((R1(π|U )∗ψ)|G1,Θ,0

)◦

−→ H0(P1,G1,O,0).

Let us prove one more lemma about functions defined on Ui. We will need it later.

Lemma 3.37. Let χ ∈ σ∨ ∩M be a degree, and let f1 ∈ Γ(P1,O(D(χ))). Let f2 be a rational
function on P1. The rational function f3(x) = f2(π(x))f̃1(x) on X is regular on Ui if and only
if:

1. A rational function f2f1 is defined at all regular points of Vi.

2. For each special point p ∈ Vi, ordp(f2f1) ≥ −β∗i,1(χ)Dp(βi,1)− β∗i,2(χ)Dp(βi,2)

Proof. Let us suppose that conditions 1 and 2 are satisfied and prove that f3 is regular on Ui.

First, note that

g =
f2f1

h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2

is a regular function on Vi. Indeed, if p ∈ Vi is an ordinary point, then f2f1 has no pole at
p, and the functions hi,1 hi,2 do not have poles or zeros at p. And if p is a special point,
then ordp(hi,j) = −Dp(βi,j) for j = 1, 2. So, g is the Ui-description of a regular homogeneous
function of degree χ on Ui, which we will denote by f4.

Let p ∈ Vi be an ordinary point. Suppose that f2 is defined at p. Then f3 is defined at each
point of π−1(p) ∩ Ui. Let x0 be the canonical point in π−1(p) ∩ Ui. By the definition of an
Ui-description, f4(x0) = g(p). On the other hand, by Proposition 2.3,

g(p) = f2(π(x0))
f̃1(x0)

h̃
β∗i,1(χ)

i,1 (x0)h̃
β∗i,2(χ)

i,2

(x0).

Since x0 is the canonical point in π−1(p) ∩ Ui, h̃i,1(x0) = h̃i,2(x0) = 1, and g(p) = f3(x0). So,
f4(x0) = f3(x0). Moreover, both f3 and f4 are homogeneous functions of degree χ with respect
to the torus action, so, f3 and f4 coincide on the whole fiber Ui ∩ π−1(p).

All ordinary points p ∈ Vi such that f2 is defined at p form a non-empty open subset of Vi.
Therefore, f3 coincides with f4 on an open subset of Ui. But f4 is regular on Ui, so f3 is regular
on Ui as well.
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3 Formula for the graded component of T 1 of degree 0 in terms of sheaf cohomology

Now suppose that f3 is regular on Ui. Again consider the following rational function g on
P1:

g =
f2f1

h
β∗i,1(χ)

i,1 h
β∗i,2(χ)

i,2

If p ∈ Vi is an ordinary point, f2 is defined at p, and x0 is the canonical point in π−1(p) ∩ Ui,
then by Proposition 2.3,

g(p) = f2(π(x0))
f̃1(x0)

h̃
β∗i,1(χ)

i,1 (x0)h̃
β∗i,2(χ)

i,2

(x0).

Since x0 is the canonical point, g(p) = f2(π(x0))f̃1(x0) = f3(x0). Therefore, g coincides with
the Ui-description of f3 on a non-empty open subset of Vi. But then g is the Ui-description
of f3, and g is defined everywhere on Vi. Again, recall that hi,1 hi,2 do not have poles or
zeros at ordinary points of Vi, and if p ∈ Vi is a special point, then ordp(hi,j) = −Dp(βi,j) for
j = 1, 2.
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4 Combinatorial formula for the dimension of
the graded component of T 1 of degree zero

4.1 Construction of a particular sufficient system

Without loss of generality, in this section we will assume that there are at least two special
points (we always can add trivial special points). Recall that we have a coordinate function t
on P1. Now we will need more coordinate functions on P1 (i. e. rational functions with one
pole and one zero, both are of order 1). Namely, for each special point p ∈ P1, we will need
a coordinate function on P1 that vanishes at p. Choose such coordinate functions and denote
them by tp. We are also going to construct a sufficient system of sets Ui more explicitly.

Lemma 4.1. Let p ∈ P1 be a special point and let χ ∈ σ∨ ∩M be a degree. There exists a
rational function f ∈ Γ(P1,O(D(χ))) such that ordp(f) = −Dp(χ), and f does not have zeros
or poles at ordinary points.

Proof. Choose a rational function f on P1 that has one simple zero and one simple pole, and
that takes finite values at all special points. (For example, if t = ∞ is an ordinary point, we
can take f = t, otherwise we can take f = 1/(t − a), where a ∈ C and t = a is an ordinary
point.) Then each function f − a, where a ∈ C again has one simple zero and one simple pole.

Recall that we have denoted all special points by p1, . . . , pr. Let p = pi. Denote ai = Dp(χ).
Since deg D(χ) ≥ 0, there exist a1, . . . , ai−1, ai+1, . . . , ar ∈ Z such that a1+. . .+ar = 0 and aj ≤
Dpj (χ) for 1 ≤ j ≤ r. Consider the following function: f1 = (f − f(p1))−a1 . . . (f − f(pr))−ar

Since the sum of the exponents is zero, f1 is defined and takes value 1 at the (ordinary) point
of P1 where f =∞. Clearly, f1 has no zeros or poles at other ordinary points. At p, we have
ordp(f1) = −ai = −Dp(χ), and at pj (j 6= i), we have ordpj (f1) = −aj ≥ −Dpj (χ).

We are going to use a sufficient system U1, . . . , Uq constructed as follows. We have several
(in fact, up to two) sets Ui for every pair (p, j), where p ∈ P1 is a special point, and j
corresponds to a vertex Vp,j of ∆p (1 ≤ j ≤ vp, we write (p, j) instead of (p,Vp,j) to simplify
notation). Each of these sets Ui chosen for (p, j) corresponds to a face of N (Vp,j ,∆p) (which
can be N (Ep,j−1,∆p), N (Ep,j−1,∆p), or the interior of N (Vp,j ,∆p)). These sets together are
U1, . . . , Uq−1 Additionally, we will use one more set, which is Uq, and which does not correspond
to any special point.

More precisely, for every special point p, for every vertex Vp,j of ∆p and for each of the two
rays N (Ep,j−1,∆p) and N (Ep,j ,∆p) forming ∂N (Vp,j ,∆p) we choose a basis of M as follows.
First, let χ ∈M be the lattice basis of the chosen ray. If χ /∈ ∂σ∨, we do not choose a basis for
this pair (p, j) and for this ray. If deg D(χ) = 0, we do not choose a basis for this pair (p, j)
and for this ray. Otherwise, we choose a basis βi,1, βi,2 of M , where βi,1 = χ and βi,2 is a lattice
point in the interior of N (Vp,j ,∆p).

We choose a basis of M corresponding to a pair (p, j) and to the interior of N (Vp,j ,∆p)
only if at the previous step we finally did not choose any basis corresponding to the pair (p, j)
and to one of the two rays N (Ep,j−1,∆p) and N (Ep,j ,∆p) (for example, this can happen if
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4 Combinatorial formula for the dimension of the graded component of T 1 of degree zero

∂σ∨ ∩ ∂N (Vp,j ,∆p) = 0). In this case, we choose a basis βi,1, βi,2 of M such that βi,1 and βi,2
are lattice points in the interior of N (Vp,j ,∆p). We continue using the notation β∗i,1, β

∗
i,2 for

the dual bases.
Observe that we chose exactly one or two bases for each pair (p, j). We chose two bases if

and only if p is a removable special point and deg D(α0) > 0 and deg D(α1) > 0.
Now for every chosen basis, we choose functions hi,1 ∈ Γ(P1,O(D(βi,1))) and hi,2 ∈

Γ(P1,O(D(βi,2))) satisfying the conditions of Lemma 4.1 for the corresponding special point p
and the degree βi,1 or βi,2, respectively. Then we may set Vi to consist of all ordinary points
and p.

We enumerate the sets Ui so that the sets corresponding to p1 ∈ P1 go first, then the sets
corresponding to p2, etc. Among the sets corresponding to a single essential special point p, we
have exactly one set Ui for each vertex of ∆p. We enumerate them along with the enumeration
of vertices, i. e. first we take the set corresponding to (p, 1), then the set corresponding to
(p, 2), etc, then the set corresponding to (p,vp). If we have two sets Ui corresponding to the
same removable special point, we enumerate them arbitrarily.

These were the sets U1, . . . , Uq−1. To define the set for the sufficient system, i. e. Uq, choose
an arbitrary basis βq,1, βq,2 of M such that βq,1, βq,2 are in the interior of σ∨, and choose
functions hq,1 ∈ Γ(P1,O(D(βq,1))) and hq,2 ∈ Γ(P1,O(D(βq,2))) that do not have zeros or
poles at ordinary points (such functions exist by Lemma 4.1). In this case, let Vq be the set of
all ordinary points.

Note that if we remove Uq, we will still get a sufficient system. We will use whole sys-
tem U1, . . . , Uq to compute H1(P1,G0,Θ), and the smaller sufficient system U1, . . . , Uq−1 to
compute H0(P1,G1,Θ,0) and H0(P1,G1,O,0), During the computation of H0(P1,G1,Θ,0) and
H0(P1,G1,O,0), the set Uq will only be used sometimes to define Uq-descriptions sometimes.

4.2 Computation of the dimension of H1(P1,G0,Θ)

We start with H1(P1,G0,Θ). To compute this space, we need an affine covering of P1. So, for
each special point p ∈ P1, we denote by Wp the set consisting of all ordinary points of P1 and p.
These sets Wp really form an affine covering since we have at least two special points. Denote
also the set of all ordinary points by W . It follows directly from the definition of G0,Θ that
the restriction maps to nonempty open sets are injective. Note also that if p 6= p′ are special
points, then Wp ∩Wp′ = W . So we can use Corollary 2.13 for Čech cohomology. By Corollary
2.13,

H1(P1,G0,Θ) =

 ⊕
p special point

(
Γ(W,G0,Θ)/Γ(Wp,G0,Θ)

)/Γ(W,G0,Θ).

For an essential special point p, denote by G0,Θ,p,q the space of triples (gq,1, gq,2, v), where
gq,1, gq,2 ∈ Γ(Wp,OP1), v ∈ Γ(Wp,ΘP1), and v(p) = 0. The last index q indicates that these
triples will be considered as Uq-descriptions of vector fields on π−1(Wp) ∩ U .

Lemma 4.2. Let p ∈ P1 be an essential special point. Then Γ(Wp,G0,Θ) can be identified with
G0,Θ,p,q.

The isomorphism here maps (gq,1, gq,2, v) ∈ G0,Θ,p,q to (g1,1, g1,2, . . . , gq,1, gq,2, v), where gi,1
gi,2
v

 = Cq,i

 gq,1

gq,2

v

 .
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4.2 Computation of the dimension of H1(P1,G0,Θ)

Proof. First, we have to check that the (2q + 1)-tuple obtained this way from an element of
G0,Θ,p,q really defines an element of Γ(Wp,G0,Θ). The equalities gi,1

gi,2
v

 = Cj,i

 gj,1
gj,2
v


for arbitrary indices i, j follow from Lemma 3.27. All functions gi,1 and gi,2 are regular at
ordinary points by Lemma 3.25. Let i be an index such that Ui corresponds to the special
point p in the above construction. We have

gi,1 = β∗q,1(βi,1)gq,1 + β∗q,2(βi,1)gq,2 +
h
β∗q,1(βi,1)

q,1 h
β∗q,2(βi,1)

q,2

hi,1
d

 hi,1

h
β∗q,1(βi,1)

q,1 h
β∗q,2(βi,1)

q,2

 v.

The covector field in the last summand is a logarithmic derivative of a rational function on
P1, so it cannot have a pole of order more than 1. Since v(p) = 0, gi,1 is defined at p. The
argument for gi,2 is similar.

Clearly, this map from the space of triples to Γ(Wp,G0,Θ) is injective. To prove surjectivity,
we have to check that if (g1,1, g1,2, . . . , gq,1, gq,2, v) ∈ Γ(Wp,G0,Θ), then v(p) = 0 and gq,1 and
gq,2 have no poles at p. Let Ui and Uj be two open subsets corresponding to the special point
p and two normal subcones of two different vertices of ∆p. If v(p) 6= 0, then by Lemma 3.26,

ordp

hβ∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2

hj,1
d

 hj,1

h
β∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2

 v

 = −1,

and gj,1, gi,1 and gi,2 cannot be defined at p simultaneously. Therefore, v(p) = 0. Finally,

gq,1 = β∗i,1(βq,1)gi,1 + β∗i,2(βq,1)gi,2 +
h
β∗i,1(βq,1)

i,1 h
β∗i,2(βq,1)

i,2

hq,1

d

 hq,1

h
β∗i,1(βq,1)

i,1 h
β∗i,2(βq,1)

i,2

 v.

Again, covector field in the last summand here is a logarithmic derivative of a rational function
on P1, so it cannot have a pole of order more than 1. Since v(p) = 0, gq,1 has no pole at p.
Similarly, gq,2 has no pole at p.

Now let p be an essential special point. Recall that tp is a coordinate function on P1 that has
a (simple) zero at p. Denote by ∇0,0,p the space of triples of Laurent polynomials of the form
(a1,−1t

−1
p + . . .+ a1,−n1t

−n1
p , a2,−1t

−1
p + . . .+ a2,−n2t

−n2
p , (b0 + b−1t

−1
p + . . .+ b−n3t

−n3
p )∂/∂tp).

Lemma 4.3. If p ∈ P1 is an essential special point, then ∇0,0,p is isomorphic to
Γ(W,G0,Θ)/Γ(Wp,G0,Θ). The isomorphism here is the composition of the map

(gq,1, gq,2, v) 7→ (g1,1, g1,2, . . . , gq,1, gq,2, v) ∈ Γ(W,G0,Θ),

where  gi,1
gi,2
v

 = Cq,i

 gq,1

gq,2

v

 ,

and the canonical projection Γ(W,G0,Θ)→ Γ(W,G0,Θ)/Γ(Wp,G0,Θ).
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4 Combinatorial formula for the dimension of the graded component of T 1 of degree zero

If (g′1,1, g
′
1,2, . . . , g

′
q,1, g

′
q,2, v

′) ∈ Γ(W,G0,Θ) is a section that belongs to the same coset in
Γ(W,G0,Θ)/Γ(Wp,G0,Θ) as the image of (gq,1, gq,2, v) ∈ ∇0,0,p under the isomorphism above,
then g′q,1 − gq,1 and g′q,2 − gq,1 are functions regular at p, and v′ − v is a vector field that
vanishes at p.

Proof. The proof is similar to the proof of the previous lemma. Let (gq,1, gq,2, v) ∈ ∇0,0,p.
Denote its image in Γ(W,G0,Θ) by (g1,1, g1,2, . . . , gq,1, gq,2, v). The functions gq,1 and gq,2 and
the vector field v have no poles except p, the entries of Cq,i have no poles at ordinary points
by Lemma 3.25, so gi,1, gi,2 ∈ Γ(W,OP1). Therefore, (g1,1, g1,2, . . . , gq,1, gq,2, v) really defines
an element of Γ(W,G0,Θ) since all necessary equations are satisfied by Lemma 3.27.

Now let (g′1,1, g
′
1,2, . . . , g

′
q,1, g

′
q,2, v

′) ∈ Γ(W,G0,Θ) be a section. Let

g′q,1 =

∞∑
k=−n1

a1,kt
k
p, g′q,2 =

∞∑
k=−n2

a2,kt
k
p, v′ =

 ∞∑
k=−n3

bkt
k
p

 ∂

∂tp

be the Laurent series for gq,1, gq,2, and v, respectively (in the sense of complex analysis).
Denote

gq,1 =
−1∑

k=−n1

a1,kt
k
p, gq,2 =

−1∑
k=−n2

a2,kt
k
p, v =

 0∑
k=−n3

bkt
k
p

 ∂

∂tp
.

These sums are finite, so they define algebraic rational functions and an algebraic rational vector
field. Hence, gq,1 − g′q,1, gq,2 − g′q,2, and v − v′ are also algebraic rational. They are defined at
p in complex-analytic sense, hence they have no poles at p in algebraic sense. Note also that
(v − v′)(p) = 0. By Lemma 4.2, the triple (gq,1 − g′q,1, gq,2 − g′q,2, v − v′) defines an element
of Γ(Wp,G0,Θ), so (gq,1, gq,2, v) is equivalent to (g′q,1, g

′
q,2, v

′) in Γ(W,G0,Θ)/Γ(Wp,G0,Θ). But
(gq,1, gq,2, v) ∈ ∇0,0,p, so the map from ∇0,0,p to Γ(W,G0,Θ)/Γ(Wp,G0,Θ) is surjective. The
injectivity of the map ∇0,0,p → Γ(W,G0,Θ) is clear, and it follows from Lemma 4.2 that the
only triple that maps to Γ(Wp,G0,Θ) is (0, 0, 0).

Let p ∈ P1 be a removable special point, and let Ui be a subset of X corresponding to
p. Denote by G0,Θ,p,i the space of triples (gi,1, gi,2, v), where gi,1, gi,2 ∈ Γ(Wp,OP1), v ∈
Γ(Wp,ΘP1), but this time it is not necessarily true that v(p) = 0. The last index i in the
notation G0,Θ,p,i indicates that these triples will be considered as Ui-descriptions of vector
fields on π−1(Wp) ∩ U .

Lemma 4.4. Let p ∈ P1 be a removable special point, and let Ui be a subset of X corresponding
to p. Then Γ(Wp,G0,Θ) can be identified with G0,Θ,p,i.

The isomorphism here maps (gi,1, gi,2, v) to (g1,1, g1,2, . . . , gq,1, gq,2, v), where gj,1
gj,2
v

 = Ci,j

 gi,1
gi,2
v

 .

Proof. The proof is similar to the proofs of two previous lemmas. All necessary linear equations
in the definition of G0,Θ are satisfied by Lemma 3.27. We only have to check that if Uj is another
subset of X corresponding to p, then gj,1 and gj,2 do not have poles at p. The only entries of
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Ci,j that could have poles at p are

h
β∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2

hj,1
d

 hj,1

h
β∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2


and

h
β∗i,1(βj,2)

i,1 h
β∗i,2(βj,2)

i,2

hj,2
d

 hj,2

h
β∗i,1(βj,2)

i,1 h
β∗i,2(βj,2)

i,2

 .

Consider the first one of them, the second one is considered similarly. We have ordp(hi,1) =
−Dp(βi,1), ordp(hi,2) = −Dp(βi,2), ordp(hj,1) = −Dp(βj,1). Since p is a removable special point
and βj,1 = β∗i,1(βj,1)βi,1 + β∗i,2(βj,1)βi,2, Dp(βj,1) = β∗i,1(βj,1)Dp(βi,1) + β∗i,2(βj,1)Dp(βi,2), and

ordp

 hj,1

h
β∗i,1(βj,1)

i,1 h
β∗i,2(βj,1)

i,2

 = 0.

Therefore, the logarithmic derivative of this function does not have a zero or a pole at p, and
gj,1 is well-defined at p. The argument for gj,2 is similar.

The injectivity of the map from G0,Θ,p,i to Γ(Wp,G0,Θ) is again clear since a (2q + 1)-tuple
defines the zero section only if all entries are zeros, and the surjectivity is also clear this time
since in every section from Γ(Wp,G0,Θ), gi,1, gi,2, and v should be well-defined at p.

Note that in this lemma, we use an affine open set Ui, which depends on p, and in fact used
the Ui-description of a vector field, while in Lemma 4.2 we used Uq, which did not depend on
p, and used the Uq-description. However, in the next lemma, we are going to use Uq again.

For a removable special point p, denote by∇0,0,p the space of triples of Laurent polynomials of
the form (a1,−1t

−1
p + . . .+a1,−n1t

−n1
p , a2,−1t

−1
p + . . .+a2,−n2t

−n2
p , (b−1t

−1
p + . . .+b−n3t

−n3
p )∂/∂tp).

Lemma 4.5. If p ∈ P1 is a removable special point, the space Γ(W,G0,Θ)/Γ(Wp,G0,Θ) can be
identified with ∇0,0,p.

More exactly, these three Laurent polynomials are three last entries in a (2q+1)-tuple defining
an element of Γ(W,G0,Θ), which in turn defines a coset in Γ(W,G0,Θ)/Γ(Wp,G0,Θ). In other
words, the isomorphism is the composition of the map

(gq,1, gq,2, v) 7→ (g1,1, g1,2, . . . , gq,1, gq,2, v) ∈ Γ(W,G0,Θ),

where  gi,1
gi,2
v

 = Cq,i

 gq,1

gq,2

v

 ,

and the canonical projection Γ(W,G0,Θ)→ Γ(W,G0,Θ)/Γ(Wp,G0,Θ).

The vector field here always differs from the last entry of any element of Γ(W,G0,Θ) from
the same coset in Γ(W,G0,Θ)/Γ(Wp,G0,Θ) by a vector field that has no pole at p. This is true
for the two functions if the vector field is zero in both representatives of the coset.

Proof. First, if (gq,1, gq,2, v) 7→ (g1,1, g1,2, . . . , gq,1, gq,2, v), then gi,1, gi,2, and v have no poles
outside p, entries of Ci,j have no poles at ordinary points, and all necessary equations are
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4 Combinatorial formula for the dimension of the graded component of T 1 of degree zero

satisfied by Lemma 3.27, so these functions and this vector field really define an element of
Γ(W,G0,Θ), and hence an element of Γ(W,G0,Θ)/Γ(Wp,G0,Θ).

The proof of injectivity is quite easy. If (gq,1, gq,2, v) 7→ (g1,1, g1,2, . . . , gq,1, gq,2, v) ∈
Γ(Wp,G0,Θ), then v = 0 since otherwise it has pole at p. But then we can choose an open
set Ui corresponding to p and write(

gq,1

gq,2

)
= C◦i,q

(
gi,1
gi,2

)
.

The matrix C◦i,q has only constant entries, so if gi,1 and gi,2 are regular at p, then gq,1 and gq,2

are regular at p as well. But then gq,1 = gq,2 = 0.

Now we prove surjectivity. Let (g′1,1, g
′
1,2, . . . , g

′
q,1, g

′
q,2, v

′) ∈ Γ(W,G0,Θ) be a section. Choose
an index i such that Ui corresponds to p and write complex-analytic Laurent series:

g′i,1 =
∞∑

k=−n1

a′1,kt
k
p, g′i,2 =

∞∑
k=−n2

a′2,kt
k
p, v′ =

 ∞∑
k=−n3

b′kt
k
p

 ∂

∂tp
.

Set

g′′i,1 =
−1∑

k=−n1

a′1,kt
k
p, g′′i,2 =

−1∑
k=−n2

a′2,kt
k
p, v′′ =

 −1∑
k=−n3

b′kt
k
p

 ∂

∂tp
,

and  g′′j,1
g′′j,2
v′′

 = Ci,j

 g′′i,1
g′′i,2
v′′


for all j (1 ≤ j ≤ q). Observe that g′′i,1 − g′i,1, g′′i,2 − g′i,2 and v′′ − v′ are well-defined at p,
so (g′′i,1 − g′i,1, g′′i,2 − g′i,2, v′′ − v′) ∈ G0,Θ,p,i. The image of this element of G0,Θ,p,i under the
isomorphism from Lemma 4.4 equals (g′′1,1− g′1,1, g′′1,2− g′1,2, . . . , g′′q,1− g′q,1, g′′q,2− g′q,2, v′′− v′) ∈
Γ(Wp,G0,Θ), hence, by Remark 3.22, (g′′1,1 − g′1,1, g

′′
1,2 − g′1,2, . . . , g

′′
q,1 − g′q,1, g

′′
q,2 − g′q,2, v

′′ −
v′) ∈ Γ(W,G0,Θ) defines the zero coset in Γ(W,G0,Θ)/Γ(Wp,G0,Θ). It is sufficient to prove that
(g′′1,1, g

′′
1,2, . . . , g

′′
q,1, g

′′
q,2, v

′′) is in the image of the morphism ∇0,0,p → Γ(W,G0,Θ)/Γ(Wp,G0,Θ).

Now write

g′′q,1 =
∞∑

k=−n1

a′′1,kt
k
p, g′′q,2 =

∞∑
k=−n2

a′′2,kt
k
p

(without loss of generality, we may suppose that n1 and n2 did not change, we may add more
zeros in the negative part of Laurent series) and recall that

v′′ =

 −1∑
k=−n3

b′kt
k
p

 ∂

∂tp
.

Set

gq,1 =
−1∑

k=−n1

a′′1,kt
k
p, gq,2 =

−1∑
k=−n2

a′′2,kt
k
p, v = v′′,
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4.2 Computation of the dimension of H1(P1,G0,Θ)

and  gj,1
gj,2
v

 = Cq,j

 gq,1

gq,2

v


for all j (1 ≤ j ≤ q). Then (gq,1, gq,2, v) ∈ ∇0,0,p. Since v = v′′, we have gi,1

gi,2
v

−
 g′′i,1

g′′i,2
v′′

 = Cq,i

 gq,1 − g′′q,1
gq,2 − g′′q,2

0

 ,

and (
gi,1
gi,2

)
−
(
g′′i,1
g′′i,2

)
= C◦q,i

(
gq,1 − g′′q,1
gq,2 − g′′q,2

)
.

Hence, g′′i,1 − gi,1 and g′′i,2 − gi,2 are regular at p, (g′′i,1 − gi,1, g
′′
i,2 − gi,2, v

′′ − v) ∈ G0,Θ,p,i,
and the isomorphism from Lemma 4.4 maps this triple to (g′′1,1 − g1,1, g

′′
1,2 − g1,2, . . . , g

′′
q,1 −

gq,1, g
′′
q,2 − gq,2, v

′′ − v) ∈ Γ(Wp,G0,Θ). Therefore, (g′′1,1, g
′′
1,2, . . . , g

′′
q,1, g

′′
q,2, v

′′) defines the
same coset in Γ(W,G0,Θ)/Γ(Wp,G0,Θ) as (g1,1, g1,2, . . . , gq,1, gq,2, v), which is the image of
(gq,1, gq,2, v) ∈ ∇0,0,p.

During the proof of surjectivity, we have changed the vector field from v′ to v′′ = v, and we
chose v′′ so that v′ − v′′ is regular at p. If we started with v′ = 0, then v′′ = 0 as well. In this
case (

g′′q,1
g′′q,2

)
−
(
g′q,1
g′q,2

)
= C◦i,q

(
g′′i,1 − g′i,1
g′′i,2 − g′i,2

)
.

g′′i,1 − g′i,1 and g′′i,2 − g′i,2 are regular at p by construction, all entries in C◦i,q are constants, so
g′′q,1 − g′q,1 and g′′q,2 − g′q,2 are regular at p. Recall also that gq,1 − g′′q,1 and gq,2 − g′′q,2 are
regular at p by construction, so finally we see that gq,1 − g′q,1 and gq,2 − g′q,2 are regular at p if
v′ = 0.

Note that in this lemma, we do not claim (and this is not true in general) that if
(g′1,1, g

′
1,2, . . . , g

′
q,1, g

′
q,2, v

′) is any representative of the coset in Γ(W,G0,Θ)/Γ(Wp,G0,Θ) defined
by three Laurent polynomials in lemma, then, for example, the difference between the first of
these Laurent polynomials and g′q,1 is regular at p. We only claim that this is true if v′ = 0
and the third Laurent polynomial is also 0, and we also claim that independently of v′, there
always exists such a representative in the coset.

Using Lemmas 4.3 and 4.5, we identify the direct sum

r⊕
i=1

Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ)

with the space
r⊕
i=1

∇0,0,pi

of 3r-tuples of Laurent polynomials of a certain form, where the first three polynomials corre-
spond to p1, the second three polynomials correspond to p2, etc.

Lemma 4.6. Let
(g[1]1, g[1]2, v[1], . . . , g[r]1, g[r]2, v[r])
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4 Combinatorial formula for the dimension of the graded component of T 1 of degree zero

be an element of
⊕r

i=1∇0,0,pi. Then there exists another element

(g[1]′1, g[1]′2, v
′[1], . . . , g[r]′1, g[r]′2, v[r]′) ∈

r⊕
i=1

∇0,0,pi

such that these two elements represent the same class in(
r⊕
i=1

(
Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ)

))/
Γ(W,G0,Θ),

and v[i]′ is a vector field regular at pi for all i.

Proof. All v[i]’s can be written using Laurent polynomials as follows: v[i] = (bi,−1t
−1
pi + . . . +

bi,−kt
−k
pi )∂/∂tpi or v[i] = (bi,0 + bi,−1t

−1
pi + . . . + bi,−kt

−k
pi )∂/∂tpi , the exact form depends on

whether pi is a removable special point or an essential special point. Denote v[i]′′ = (bi,−1t
−1
pi +

. . . + bi,−kt
−k
pi )∂/∂tpi (if pi is removable, then v[i] = v[i]′′). This vector field is regular at all

points of P1 except pi (including the point tpi = ∞, where it has a zero of of order 3). Then
v′′ = v[1]′′ + . . .+ v[r]′′ ∈ Γ(W,ΘP1), and we can construct an element of Γ(W,G0,Θ) similarly
to what we did in previous proofs: we set g′′q,1 = g′′q,2 = 0, and g′′i,1

g′′i,2
v′′

 = Cq,i

 g′′q,1
g′′q,2
v′′

 .

By Lemma 3.25, all entries in Cq,i are regular at ordinary points, and

(g′′1,1, g
′′
1,2, . . . , g

′′
q,1, g

′′
q,2, v

′′) ∈ Γ(W,G0,Θ).

Now, by Lemmas 4.3 and 4.5, this section defines elements of ∇0,0,pi of the form
(g[i]′′′1 , g[i]′′′2 , v[i]′′′), where v[i]′′′ − v′′ is regular at pi. Recall that v[j]′′ is regular at pi if i 6= j,
so v[i]′′′− v[i]′′ is regular at pi as well. Also, v[i]′′− v[i] is regular at pi, so v[i]′′′− v[i] is regular
at p. Finally, we set

g[i]′1 = g[i]1 − g[i]′′′1 , g[i]′2 = g[i]2 − g[i]′′′2 , and v[i]′ = v[i]− v[i]′′′.

The sequence (g[1]′′′1 , g[1]′′′2 , v[1]′′′, . . . , g[r]′′′1 , g[r]′′′2 , v[r]′′′) defines an element of the zero coset in(
r⊕
i=1

(
Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ)

))/
Γ(W,G0,Θ)

by construction. Therefore, (g[1]′1, g[1]′2, v[1], . . . , g[r]′1, g[r]′1, v[r]′) defines the same coset as
(g[1]1, g[1]2, v[1], . . . , g[r]1, g[r]2, v[r]) in(

r⊕
i=1

(
Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ)

))/
Γ(W,G0,Θ).
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Lemma 4.7. Suppose that

(g[1]1, g[1]2, v[1], . . . , g[r]1, g[r]2, v[r]) ∈
r⊕
i=1

∇0,0,pi

and

(g[1]′1, g[1]′2, v[1]′, . . . , g[r]′1, g[r]′2, v[r]′) ∈
r⊕
i=1

∇0,0,pi

define the same class in (
⊕r

i=1 Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ))/Γ(W,G0,Θ), and for every i, v[i] and
v[i]′ are regular at pi. Then there exists a globally defined vector field v ∈ Γ(P1,ΘP1) such that
v(pi) = v[i](pi)− v[i]′(pi) if pi is an essential special point.

And vice versa, if

(g[1]1, g[1]2, v[1], . . . , g[r]1, g[r]2, v[r]) ∈
r⊕
i=1

∇0,0,pi

is such that every v[i] is regular at pi, and v ∈ Γ(P1,ΘP1) is a globally defined vector field, then
there exists

(g[1]′1, g[1]′2, v[1]′, . . . , g[r]′1, g[r]′2, v[r]′) ∈
r⊕
i=1

∇0,0,pi

equivalent to (g[1]1, g[1]2, v[1], . . . , g[r]1, g[r]2, v[r]) in(
r⊕
i=1

(
Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ)

))/
Γ(W,G0,Θ)

and such that v[i]′ is regular at pi for every i. Here v[i](pi)− v[i]′(pi) = v(pi) for all i such that
pi is an essential special point.

Proof. The first statement follows easily from Lemmas 4.3 and 4.5. Namely, all triples (g[i]1 −
g[i]′1, g[i]2−g[i]′2, v[i]−v[i]′) define the same section from Γ(W,G0,Θ) in the sense of Lemmas 4.3
and 4.5 applied at pi. This element of Γ(W,G0,Θ) can be written as (g′′1,1, g

′′
1,2, . . . , g

′′
q,1, g

′′
q,2, v).

Let us prove that v is the desired vector field. We know that v is defined at all ordinary points.
If pi is a removable special point, then by Lemma 4.5, v[i] − v[i]′ − v is regular at pi, but we
already know that v[i] − v[i]′ is regular at pi, so v is regular at pi. If pi is an essential special
point, then by Lemma 4.3, v[i]−v[i]′−v is defined at pi and equals 0 there. Hence, v is defined
at pi, and v[i](p)− v[i]′(p) = v(p).

The proof of the second statement is similar to the proof of the previous lemma. Namely, we
start with g′′q,1 = g′′q,2 = 0 and construct a section (g′′1,1, g

′′
1,2, . . . , g

′′
q,1, g

′′
q,2, v) ∈ Γ(W,G0,Θ) via g′′i,1

g′′i,2
v

 = Cq,i

 g′′q,1
g′′q,2
v

 .

This section defines elements of Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ), and the isomorphisms from Lemmas
4.3 and 4.5 map them to (g[i]′′′1 , g[i]′′′2 , v[i]′′′) . Both Lemmas say that v[i]′′′ − v is defined at
pi, and, since v is defined globally, v[i]′′′ is defined at pi. So we can set gi1

′ = gi1 + gi1
′′′,

gi2
′ = gi2 + gi2

′′′, and v[i]′ = v[i] + v[i]′′′. If pi is an essential special point, Lemma 4.3 says
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4 Combinatorial formula for the dimension of the graded component of T 1 of degree zero

that v[i]′′′(pi) = v(pi), so v[i]′(pi)− v[i](pi) = v(pi).

Lemma 4.8. Let

(g[1]1, g[1]2, v[1], . . . , g[r]1, g[r]2, v[r]) ∈
r⊕
i=1

∇0,0,pi

Then this element of
⊕r

i=1∇0,0,pi and

(0, 0, v[1], . . . , 0, 0, v[r])

define the same class in

!

(
r⊕
i=1

(
Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ)

))/
Γ(W,G0,Θ).

Proof. The proof is similar to the proof of Lemma 4.6. Since all g[i]j here are Laurent polynomi-
als of the form ai,j,−1t

−1
pi +. . .+ai,j,−nt

−n
pi (we do not mean here that ai,j,−n 6= 0, so we can use the

same n for all polynomials), they have no poles except pi, and functions g′q,1 = g[1]1 + . . .+g[r]1
and g′q,2 = g[1]2 + . . . + g[r]2 have no poles at ordinary points. Using these functions, we can
construct a section (g′1,1, g

′
1,2, . . . , g

′
q,1, g

′
q,2, 0) ∈ Γ(W,G0,Θ) as in proofs of previous lemmas,

namely  g′i,1
g′i,2
0

 = Cq,i

 g′q,1
g′q,2
0

 ,

or, in other words, (
g′i,1
g′i,2

)
= C◦q,i

(
g′q,1
g′q,2

)
.

Since all entries in C◦q,i are constants, all functions g′i,j are defined on W , and they define an
element of Γ(W,G0,Θ).

A function g[i]1 or g[i]2 that has pole at pj only if i = j. Hence, the class of
(g′1,1, g

′
1,2, . . . , g

′
q,1, g

′
q,2, 0) in Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ) is mapped by the isomorphism from

Lemma 4.3 or 4.5 to (g[i]1, g[i]2, 0). Therefore, (g[1]1, g[1]2, 0, . . . , g[r]1, g[r]2, 0) defines the
zero coset in (

r⊕
i=1

(
Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ)

))/
Γ(W,G0,Θ),

and (g[1]1, g[1]2, v[1], . . . , g[r]1, g[r]2, v[r]) and (0, 0, v[1], . . . , 0, 0, v[r]) define the same coset in(
r⊕
i=1

(
Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ)

))/
Γ(W,G0,Θ).

Denote now by r′ the number of essential special points. Denote these special points by
p′1, . . . , p

′
r′ .

Lemma 4.9. If r′ ≥ 3, then every globally defined vector field on P1 is uniquely determined
by its values at p′1, . . . , p

′
r′. If r′ ≤ 3, then for every set of tangent vectors at p′1, . . . , p

′
r′ there

exists a globally defined vector field that takes these values at these points.
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4.3 Computation of the dimension of kerH0(P1,G1,Θ,0)→ H0(P1,G1,O,0)

Proof. Every globally defined vector field on P1 can be written as (a0 + a1t + a2t
2)∂/∂t. (If

the polynomial here is of higher degree, the vector field has a pole at infinity.) A polynomial of
degree 2 is completely determined by its values at at least three points (if there are more than
three points, these values cannot be arbitrary, but a polynomial of degree two is still unique
if it exists). A polynomial of degree 2 can take arbitrary prescribed values at at most three
points.

Proposition 4.10. If r′ ≤ 3, then H1(P1,G0,Θ) = 0.
If r′ ≥ 3, then there exists a vector space ∇0,1 of dimension r′ and an embedding

Γ(P1,ΘP1) ↪→ ∇0,1 such that H1(P1,G0,Θ) ∼= ∇0,1/Γ(P1,ΘP1). Therefore, dimH1(P1,G0,Θ) =
r′ − 3 in this case.

Proof. By applying first Lemma 4.6, and then Lemma 4.8 to an element of
⊕r

i=1∇0,0,pi , we
can get another element of

⊕r
i=1∇0,0,pi of the form (0, 0, v[1], . . . , 0, 0, v[r]) equivalent to the

original element of
⊕r

i=1∇0,0,pi in (
⊕r

i=1 Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ))/Γ(W,G0,Θ). Here, v[i] are
Laurent polynomials regular at pi, i. e. they don’t have non-zero coefficients at negative degrees.
But Lemmas 4.3 and 4.5 describe exact form of these polynomials, and the highest possible
degree of a non-zero term is 0 if pi is an essential special point, and −1 if it is removable. We
conclude that if pi is a removable special point, then v[i] = 0. Otherwise, v[i] is a vector field
of the form a∂/∂tpi (a ∈ C), which is completely determined by its value at pi.

Therefore, we have constructed a surjective linear map from

∇0,1 =

r′⊕
i=1

ΘP1,p′i

to H1(P1,G0,Θ). Denote this map by ζ1. Γ(P1,ΘP1) can be mapped to ∇0,1 via evalu-
ation of a vector field at points p′1, . . . , p

′
r′ . Denote this map by ζ2. Let us prove that

ker ζ1 = ζ2(Γ(P1,ΘP1)). First, if v is a globally defined vector field, by the second part of
Lemma 4.7, there exists (g[1]′1, g[1]′2, v[1]′, . . . , g[r]′1, g[r]′2, v[r]′) ∈

⊕r
i=1∇0,0,pi equivalent to 0

in (
⊕r

i=1 Γ(W,G0,Θ)/Γ(Wpi ,G0,Θ))/Γ(W,G0,Θ) and such that v[i]′ is defined at pi and v[i]′(pi) =
v(pi) for all essential special points pi. As we have already seen, v[i]′ = 0 if pi is removable.
By Lemma 4.8, (g[1]′1, g[1]′2, v[1], . . . , g[r]′1, g[r]′2, v[r]′) is equivalent to (0, 0, v[1]′, . . . , 0, 0, v[r]′),
so ζ2(Γ(P1,ΘP1)) ⊆ ker ζ1. On the other hand, if (0, 0, v[1], . . . , 0, 0, v[r]) ∈ ker ζ1, then by the
first part of Lemma 4.7, there exists a vector field v ∈ Γ(P1,ΘP1) such that v[i](pi) = v(pi) for
all essential special points pi. This means that ker ζ1 ⊆ ζ2(Γ(P1,ΘP1)), and we finally conclude
that ker ζ1 = ζ2(Γ(P1,ΘP1)).

Now, by Lemma 4.9, ζ2 is surjective if r′ ≤ 3, and ζ2 is injective if r′ ≥ 3, and the claim
follows.

4.3 Computation of the dimension of
kerH0(P1,G1,Θ,0)→ H0(P1,G1,O,0)

Now we continue with kerH0(P1,G1,Θ,0) → H0(P1,G1,O,0). Recall that we use the sufficient
system U1, . . . , Uq−1 to compute G1,Θ,0 and G1,O,0 and that G1,Θ,0 (resp. G1,O,0) is the first
cohomology of the complex G1,Θ,1 → G ′1,Θ,1 → G ′′1,Θ,1 (resp. G1,O,1 → G ′1,O,1 → G ′′1,O,1). The
map between G1,Θ,0 and G1,O,0 can also be written as the cohomology in the middle of a map
between these two complexes. Here G1,Θ,1 can be written as a direct sum of sheaves, each of
them corresponds to an open subset Ui, namely, its sections over an open set V ⊆ P1 are the
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4 Combinatorial formula for the dimension of the graded component of T 1 of degree zero

Ui-descriptions of homogeneous vector fields of degree 0 defined on π−1(V ) ∩ Ui. Denote this
direct summand by G1,Θ,1,i. The sheaves G ′1,Θ,1 and G ′′1,Θ,1 can be decomposed into direct sums
similarly, and each direct summand corresponds to two or three of the sets Ui, respectively.
Denote these direct summands by G1,Θ,1,i,j and by G1,Θ,1,i,j,k, respectively. Similarly, we can
define decompositions G inv

1,Θ,1 =
⊕

G inv
1,Θ,1,i, G ′inv

1,Θ,1 =
⊕

G inv
1,Θ,1,i,j , G ′′inv

1,Θ,1 =
⊕

G inv
1,Θ,1,i,j,k.

G1,O,1, G ′1,O,1, and G ′′1,O,1 can also be decomposed into sums of direct summands corresponding
to one, two, or three sets Ui, respectively. The sections of each of these summands over an
open subset V ⊆ P1 are sequences of length n =

∑
j dim Γ(P1,O(D(λj))), where each entry

is the Ui-description of a function of degree λj defined on the intersection of π−1(V ) and one,
two, or three of the sets Ui, respectively. Denote these direct summands by G1,O,1,i, G1,O,1,i,j ,
G1,O,1,i,j,k, respectively. Again, we can also decompose G inv

1,O,1 =
⊕

G inv
1,O,1,i, G ′inv

1,O,1 =
⊕

G inv
1,O,1,i,j ,

G ′′inv
1,O,1 =

⊕
G inv

1,O,1,i,j,k.

The maps G1,Θ,1 → G1,O,1, G ′1,Θ,1 → G ′1,O,1, G ′′1,Θ,1 → G ′′1,O,1 map each of these direct sum-
mands in G1,Θ,1, G ′1,Θ,1, G ′′1,Θ,1 to the corresponding direct summand in G1,O,1, G ′1,O,1, G ′′1,O,1,
respectively.

Our next goal is to simplify the expressions for G1,Θ,0 and G1,O,0 we have now. For this goal,
it will be more convenient to deal with the ”invariant” versions of the sheaves, i. e. with G inv

1,Θ,1,

G inv
1,Θ,1,i, G inv

1,Θ,1,i,j , G inv
1,Θ,1,i,j,k, G inv

1,O,1, G inv
1,O,1,i, G inv

1,O,1,i,j , and G inv
1,O,1,i,j,k, which do not involve any

Ui-descriptions explicitly. By Lemma 3.17, Uq ⊆ Ui is a dense open subset for all i. Hence, each
of the sheaves G inv

1,Θ,1,i, G inv
1,Θ,1,i,j , and G inv

1,Θ,1,i,j,k can be embedded into the following sheaf that we

denote by G ◦inv
1,Θ,1: Γ(V,G ◦inv

1,Θ,1) is the space of T -invariant vector fields on π−1(V )∩Uq. Similarly,

each of sheaves G inv
1,O,1,i, G inv

1,O,1,i,j , and G inv
1,O,1,i,j,k can be embedded into the following sheaf G ◦inv

1,O,1:

Γ(V,G ◦inv
1,O,1) is the space of sequences of length

∑
j dim Γ(P1,O(D(λj))) of functions of degree

λj defined on π−1(V ) ∩ Uq. Then by Corollary 2.14 we have the following formulas for G inv
1,Θ,0

and G inv
1,O,0:

G inv
1,Θ,0 =

ker
( q−1⊕
i=1

(G ◦inv
1,Θ,1/G

inv
1,Θ,1,i)→

⊕
1≤i<j≤q−1

(G ◦inv
1,Θ,1/G

inv
1,Θ,1,i,j)

)/G ◦inv
1,Θ,1,

G inv
1,O,0 =

ker
( q−1⊕
i=1

(G ◦inv
1,O,1/G

inv
1,O,1,i)→

⊕
1≤i<j≤q−1

(G ◦inv
1,O,1/G

inv
1,O,1,i,j)

)/G ◦inv
1,O,1.

And again, the map G inv
1,Θ,0 → G inv

1,O,0 maps each direct summand of G inv
1,Θ,0 in this formula to

the corresponding direct summand of G inv
1,O,0. Note that Corollary 2.13 cannot be applied here

directly because it is not always true that G ◦inv
1,O,1 = G inv

1,O,1,i,j . However, we can prove the
following two lemmas. Recall that by Lemma 3.16, Ui is isomorphic to Vi × (C \ 0)×L, where
L is isomorphic to C or C \ 0.

Lemma 4.11. Let V ′i ⊆ Vi be an open subset. The space of T -invariant vector fields defined
on V ′i × (C \ 0) × L and on V ′i × (C \ 0) × (C \ 0) coincide, in other words, the restriction
homomorphism from the space of T -invariant vector fields on V ′i × (C \ 0)× L to the space of
T -invariant vector fields on V ′i × (C \ 0)× (C \ 0) is in fact an isomorphism. This is also true
for functions of degree χ instead of vector fields of degree 0, if χ ∈ σ∨ ∩M .

Proof. The claim for vector fields follows directly from Corollary 3.21, namely, the description
of the space of vector fields there does not depend on whether L′ = C or L′ = C \ 0 (in terms
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of the notation used in Corollary 3.21). For functions of degree χ, Lemma 3.28 gives the same
description for L′ = C and for L′ = C \ 0, if χ ∈ σ∨ ∩M

Lemma 4.12. The embeddings G inv
1,Θ,1,i,j → G ◦inv

1,Θ,1 and G inv
1,O,1,i,j → G ◦inv

1,O,1 are isomorphisms for
1 ≤ i < j ≤ q − 1, except for the following case: both indices i and j correspond to the same
removable special point p. In this case, the embeddings G inv

1,Θ,1,i → G inv
1,Θ,1,i,j, G inv

1,Θ,1,j → G inv
1,Θ,1,i,j,

G inv
1,O,1,i → G inv

1,O,1,i,j, G inv
1,O,1,j → G inv

1,O,1,i,j are isomorphisms.

Proof. If Ui and Uj correspond to different special points, then Vi ∩ Vj = W , and by Lemma
3.17, Ui ∩Uj = W × (C \ 0)×L, where L is isomorphic to C or C \ 0. If Ui and Uj correspond
to the same essential special point p, then they must correspond to the normal subcones of
different vertices of ∆p, so Lemma 3.17 says that Ui∩Uj is isomorphic to W × (C\0)×L again.
If L = C \ 0, then Ui ∩Uj ∩Uq = W × (C \ 0)×L as well, and the isomorphism here, as well as
in the equality Ui ∩Uj = W × (C \ 0)×L, is given by the isomorphism defined by Lemma 3.16
for Ui, so Ui ∩ Uj ∩ Uq = Ui ∩ Uj . We already know that Uq ⊆ Ui, Uq ⊆ Uj , so Uq = Ui ∩ Uj if
L = C \ 0. If L = C, then Ui ∩Uj = W × (C \ 0)×C and Ui ∩Uj ∩Uq = W × (C \ 0)× (C \ 0),
where the isomorphism in both equalities is given by the isomorphism defined by Lemma 3.16
for Ui. Let V ⊆ P1 be an open subset. Now it follows from Lemma 4.11 that we always
have Γ(V,G inv

1,Θ,1,i,j) = Γ(V,G ◦inv
1,Θ,1) and Γ(V,G inv

1,O,1,i,j) = Γ(V,G ◦inv
1,O,1) if Ui and Uj correspond to

different special points or Ui and Uj correspond to the same essential special point p.

Suppose now that both Ui and Uj correspond to the same removable special point p. Let
us prove that the embeddings G inv

1,Θ,1,i → G inv
1,Θ,1,i,j and G inv

1,O,1,i → G inv
1,O,1,i,j are isomorphisms,

the situation for G inv
1,Θ,1,j → G inv

1,Θ,1,i,j and G inv
1,O,1,j → G inv

1,O,1,i,j is completely symmetric. We
have βi,1, βj,1 ∈ ∂σ∨, but βi,1 6= βj,1, so by Lemmas 3.16 and 3.17, Ui = Vi × (C \ 0) × C,
Ui ∩ Uj = Vi × (C \ 0)× (C \ 0), and the isomorphism in the second equality is a restriction of
the isomorphism in the first equality. The claim again follows from Lemma 4.11.

Since kernels of sheaf maps can be computed on each open subset independently, Lemma
4.12 implies that

ker

q−1⊕
i=1

(G ◦inv
1,Θ,1/G

inv
1,Θ,1,i)→

⊕
1≤i<j≤q−1

(G ◦inv
1,Θ,1/G

inv
1,Θ,1,i,j)


can be computed as follows. Its sections over an open subset V ⊆ P1 are sequences of the form
(w1, . . . , wq−1) ∈

⊕q−1
i=1 Γ(V,G ◦inv

1,Θ,1/G
inv
1,Θ,1,i) satisfying the following conditions: if indices i and

j correspond to the same removable special point p, then wi = wj . So we can do the following.
For each removable special point p, if there are two indices i and j corresponding to p, choose
one of them and call it excessive. Then the kernel is isomorphic to the following sheaf:⊕

1≤i≤q−1
i is not excessive

(G ◦inv
1,Θ,1/G

inv
1,Θ,1,i).

Similarly,

ker

q−1⊕
i=1

(G ◦inv
1,O,1/G

inv
1,O,1,i)→

⊕
1≤i<j≤q−1

(G ◦inv
1,O,1/G

inv
1,O,1,i,j)

 ∼= ⊕
1≤i≤q−1

i is not excessive

(G ◦inv
1,O,1/G

inv
1,O,1,i).
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So we get the following formulas for G inv
1,Θ,0 and G inv

1,O,0:

G inv
1,Θ,0

∼=

 ⊕
1≤i≤q−1

i is not excessive

(G ◦inv
1,Θ,1/G

inv
1,Θ,1,i)

/G ◦inv
1,Θ,1,

G inv
1,O,0

∼=

 ⊕
1≤i≤q−1

i is not excessive

(G ◦inv
1,O,1/G

inv
1,O,1,i)

/G ◦inv
1,O,1.

Sections of quotients of sheaves can only be computed directly on affine subsets. To compute
the space of global sections on P1, we should first compute sections for an affine covering of
P1, then global sections are tuples of local sections that coincide on the intersections of the
sets from the affine covering. We already have an affine covering of P1, namely, we have sets
Wp. Recall that Wp ∩Wp′ = W for every pair of special points p 6= p′.

Lemma 4.13. Let V ⊆ P1 be an open subset and p ∈ P1 be a special point such that V ∩Wp =
W . Let an index i correspond to p. Then Γ(V,G ◦inv

1,Θ,1) = Γ(V,G inv
1,Θ,1,i) and Γ(V,G ◦inv

1,O,1) =

Γ(V,G inv
1,O,1,i).

Proof. Γ(V,G inv
1,Θ,1,i) (resp. Γ(V,G inv

1,O,1,i)) is the space of T -invariant vector fields (resp. se-

quences of functions of certain degrees) defined on π−1(V )∩Ui = π−1(V )∩ (Wp× (C\0)×L) =
(V ∩Wp)× (C \ 0)× L = W × (C \ 0)× L, where L = C or L = C \ 0. By Lemma 4.11, these
spaces are isomorphic to the spaces of (respectively) vector fields and sequences of functions
of certain degrees defined on W × (C \ 0) × (C \ 0) ⊆ Ui, where the embedding is given by
the isomorphism for Ui in Lemma 3.16. On the other hand, by Lemma 3.17, Ui ∩ Uq is also
isomorphic to W × (C \ 0) × (C \ 0), and the isomorphism here is also the restriction of the
isomorphism in Lemma 3.16 for Ui to Ui ∩ Uq. Therefore, in fact we have proved that the
restriction of spaces of T -invariant vector fields and of functions of the required degrees from
π−1(V ) ∩ Ui to Ui ∩ Uq are isomorphisms. But Ui ∩ Uq = Uq = π−1(V ) ∩ Uq, and Γ(V,G ◦inv

1,Θ,1)

(resp. Γ(V,G ◦inv
1,O,1)) is the space of T -invariant vector fields (resp. of sequences functions of the

required degrees) defined on π−1(V ) ∩ Uq.

Corollary 4.14. Γ(W,G inv
1,Θ,0) = 0, Γ(W,G inv

1,O,0) = 0.

Proof. W ∩Wp = W for all special points p, so all direct summands of the from G ◦inv
1,Θ,1/G

inv
1,Θ,1,i

and G ◦inv
1,O,1/G

inv
1,O,1,i in the formulas above vanish.

This corollary enables us to omit the condition that sections of G inv
1,Θ,0 (or of G inv

1,O,0) over
different sets Wp should coincide on intersections to form a global section. Therefore,

Γ(P1,G inv
1,Θ,0) ∼=

⊕
p special

point

( ⊕
1≤i≤q−1

i is not excessive

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,i)

))/
Γ(Wp,G

◦inv
1,Θ,1)

 ,

Γ(P1,G inv
1,O,0) ∼=

⊕
p special

point

( ⊕
1≤i≤q−1

i is not excessive

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,i)

))/
Γ(Wp,G

◦inv
1,O,1)

 .
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This formulas can be simplified more. Namely, recall that every set Vi equals Wp or W . If p
is a special point, and Vi = W or Vi = Wp′ , where p′ 6= p, then Vi ∩Wp = W , and by Lemma
4.13, Γ(Wp,G ◦inv

1,Θ,1)/Γ(Wp,G inv
1,Θ,1,i) = 0 and Γ(Wp,G ◦inv

1,O,1)/Γ(Wp,G inv
1,O,1,i) = 0. So, we can write

global sections of G inv
1,Θ,0 and of G inv

1,O,0 as follows:

Γ(P1,G inv
1,Θ,0) ∼=

⊕
p special

point


( ⊕

1≤i≤q−1
i is not excessive

Vi=Wp

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,i)

))/
Γ(Wp,G

◦inv
1,Θ,1)

 ,

Γ(P1,G inv
1,O,0) ∼=

⊕
p special

point


( ⊕

1≤i≤q−1
i is not excessive

Vi=Wp

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,i)

))/
Γ(Wp,G

◦inv
1,O,1)

 .

Now each sheaf G inv
1,Θ,1,i and G inv

1,O,1,i occurs only once in these summations. Each direct summand

in the first direct sum in the formula for Γ(P1,G inv
1,Θ,0) is mapped to the corresponding direct

summand of Γ(P1,G inv
1,O,0), so we have proved the following lemma:

Lemma 4.15. The kernel ker(Γ(P1,G inv
1,Θ,0) → Γ(P1,G inv

1,O,0)) is isomorphic to the following
direct sum:

⊕
p special point

ker


( ⊕

1≤i≤q−1
i is not excessive

Vi=Wp

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,i)

))/
Γ(Wp,G

◦inv
1,Θ,1)

−→

( ⊕
1≤i≤q−1

i is not excessive
Vi=Wp

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,i)

))/
Γ(Wp,G

◦inv
1,O,1)

 .

Fix a special point p. Recall that we have a coordinate function tp on P1 with the only zero
at p. Our next goal is to compute the kernel

ker


( ⊕

1≤i≤q−1
i is not excessive

Vi=Wp

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,i)

))/
Γ(Wp,G

◦inv
1,Θ,1)

−→

( ⊕
1≤i≤q−1

i is not excessive
Vi=Wp

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,i)

))/
Γ(Wp,G

◦inv
1,O,1)

 .
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Recall first that if p is a removable special point, then there exists only one non-excessive
index i corresponding to p. But then each direct sum in the formula above contains only one
summand, and (Γ(Wp,G ◦inv

1,Θ,1)/Γ(Wp,G inv
1,Θ,1,i))/Γ(Wp,G ◦inv

1,Θ,1) = 0. So in the sequel we suppose
that p is an essential special point. Then there are no excessive indices corresponding to p.
Moreover, in this case we chose exactly one set Ui for each pair (p, j), where 1 ≤ j ≤ vp. In
other words, these sets Ui (and the summands in each of the direct sums in the formula above)
are in bijection with the vertices Vp,j of ∆p. For each pair (p, j), denote the index i such that
Ui corresponds to (p, j) by ip,j . So, now we are computing the kernel

ker

( vp⊕
j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
))/

Γ(Wp,G
◦inv
1,Θ,1)

−→

( vp⊕
j=1

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,ip,j )

))/
Γ(Wp,G

◦inv
1,O,1)

 .

Fix an index j, 1 ≤ j ≤ vp. Now we come back to using Ui-descriptions, namely, We are
going to use Uip,j -descriptions to compute

Γ(Wp,G
◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)

and
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,ip,j ).

Γ(Wp,G inv
1,Θ,1,ip,j

) is the space of T -invariant vector fields defined on Uip,j , and, by Corollary 3.21,
they are determined by triples of a vector field and two functions defined on Wp, which form
Γ(Wp,G1,Θ,1,ip,j ). We shortly write G1,Θ,1,p,j = Γ(Wp,G1,Θ,1,ip,j ). Γ(Wp,G ◦inv

1,Θ,1) is the space of

T -invariant vector fields defined on Uq = π−1(Wp)∩Uq, and by Lemma 3.17 and by Corollary
3.21, they are determined by triples of a vector field and two functions defined on W . Denote
this space of triples of a vector field and two functions defined on W by G◦p,j1,Θ,1. Observe that the

space itself does not depend on p and j, but the isomorphism between G◦p,j1,Θ,1 and Γ(Wp,G ◦inv
1,Θ,1)

we use depends on p and j. Denote this isomorphism by

κΘ,p,j : G◦p,j1,Θ,1 → Γ(Wp,G
◦inv
1,Θ,1).

By Remark 3.22, the embedding Γ(Wp,G inv
1,Θ,1,ip,j

)→ Γ(Wp,G ◦inv
1,Θ,1) after applying these isomor-

phisms becomes the restriction of vector fields and functions from Wp to W .

Similarly, Γ(Wp,G1,O,1,ip,j ) is the space of sequences of functions of certain degrees from
σ∨ ∩ M defined on Uip,j . Lemma 3.28 for i = ip,j identifies this space with the space of
sequences of functions defined on Wp (each function is identified with its Uip,j -description),
denote this space of sequences of functions by G1,O,1,p,j . Γ(Wp,G ◦inv

1,O,1) is the space of sequences

of functions of the same degrees, but they are defined on Uq = π−1(Wp) ∩ Uq. Again, Lemma
3.28 for i = ip,j identifies this space with the space of sequences of functions defined onW (again,
each function is identified with its Uip,j -description, not with its Uq-description). Denote this

space of sequences of functions by G◦p,j1,O,1, and denote this isomorphism between G◦p,j1,O,1 and

Γ(Wp,G ◦inv
1,O,1) by κO,p,j . And again, despite the spaces themselves do not depend on p and j,

the isomorphism is based on Uip,j -descriptions and depends on p and j. By Remark 3.29, the
embedding Γ(Wp,G1,O,1,ip,j )→ Γ(Wp,G ◦inv

1,O,1) after these identifications becomes the restriction
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of functions from Wp to W .

Finally, the formula in Lemma 3.35 (for different indices ip,j) defines morphisms

Γ(Wp,G
◦inv
1,Θ,1)→ Γ(Wp,G

◦inv
1,O,1).

Denote the corresponding morphisms between G◦p,j1,Θ,1 and G◦p,j1,O,1 by ψp,j . Denote also the map

vp⊕
j=1

G◦p,j1,Θ,1 →
vp⊕
j=1

G◦p,j1,O,1

formed by maps ψp,j for all j (1 ≤ j ≤ vp) by ψp. It follows from functoriality of the isomor-
phism in Proposition 2.11 that ψp induces the morphism in question between vp⊕

j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
)/Γ(Wp,G

◦inv
1,Θ,1)

and  vp⊕
j=1

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,ip,j )

)/Γ(Wp,G
◦inv
1,O,1).

Lemma 4.16. Let p be a special point, j be an index, 1 ≤ j ≤ vp.

The composition of the restriction of κΘ,p,j to the space of triples of the form

(a1,−1t
−1
p + . . .+ a1,−n1t

−n1
p , a2,−1t

−1
p + . . .+ a2,−n2t

−n2
p , (b−1t

−1
p + . . .+ b−n3t

−n3
p )∂/∂tp)

and the natural projection Γ(Wp,G ◦inv
1,Θ,1)→ Γ(Wp,G ◦inv

1,Θ,1)/Γ(Wp,G inv
1,Θ,1,ip,j

) is an isomorphism.

Proof. The proof is similar to the proof of Lemma 4.3. Namely, let g1, g2 ∈ Γ(W,OP1), v ∈
Γ(W,ΘP1) Consider complex-analytic Laurent series:

gl =
∞∑

k=−nl

al,kt
k
p, (l = 1, 2), v =

 ∞∑
k=−n3

bkt
k
p

 ∂

∂tp
.

Set

g′l =
−1∑

k=−nl

al,kt
k
p, (l = 1, 2), v′ =

 −1∑
k=−n3

bkt
k
p

 ∂

∂tp
.

These functions and this vector field are algebraic since the sums are finite. The functions have
zero of degree at least 1 at ∞, the vector field has zero of degree at least 3 at ∞, so g′1, g

′
2 ∈

Γ(W,OP1) and v′ ∈ Γ(W,ΘP1). Hence, g′1 − g1, g′2 − g2 ∈ Γ(W,OP1) and v′ − v ∈ Γ(W,ΘP1),
but g′1− g1, g′2− g2, and v′− v have no poles at p, so they define an element of G1,Θ,1,p,j Hence,
κΘ,p,j(g1, g2, v) and κΘ,p,j(g

′
1, g
′
2, v
′) define the same element of Γ(Wp,G ◦inv

1,Θ,1)/Γ(Wp,G inv
1,Θ,1,ip,j

),
and the composition of the restriction of κΘ,p,j and the natural projection under consideration
is surjective. Injectivity is also clear since if a Laurent polynomial of the considered form has
no pole at p, then it is zero.

Note that despite the proof is similar to the proof of Lemma 4.3, Laurent polynomials here
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and in Lemma 4.3 have different meanings: here they from the Uip,j -description of a vector field
on Uq = Uip,j ∩Uq, while in Lemma 4.3 they formed the Uq-description of a vector field on Uq.

Denote the direct sum of maps κΘ,p,j , which maps
⊕vp

j=1G
◦p,j
1,Θ,1 to

⊕vp
j=1 Γ(Wp,G ◦inv

1,Θ,1), by

κΘ,p. Denote by ∇1,0,p the subspace of
⊕vp

j=1G
◦p,j
1,Θ,1 formed by the 3vp-tuples of the form

(0, 0, 0, g[2]1, g[2]2, v[2], . . . , g[vp]1, g[vp]1, v[vp]),

where

g[j]l =
−1∑

k=−nj,l

aj,l,kt
k
p, v[j] =

 −1∑
k=−nj,3

bj,kt
k
p

 ∂

∂tp
.

Lemma 4.17. The restriction of the composition of κΘ,p and the natural projection

vp⊕
j=1

Γ(Wp,G
◦inv
1,Θ,1)→

 vp⊕
j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
)/Γ(Wp,G

◦inv
1,Θ,1)

to ∇1,0,p is surjective. Its kernel is one-dimensional.

Proof. To prove surjectivity, consider a 3vp-tuple (g[1]′1, g[1]′2, v[1]′, . . . , g[vp]
′
1, g[vp]

′
2, v[vp]) ∈⊕vp

j=1G
◦p,j
1,Θ,1. For every j, 1 ≤ j ≤ vp, set g′′j,1

g′′j,1
v′′j

 = Cip,j ,ip,1

 g[1]′1
g[1]′2
v[1]′

 .

By Lemma 3.25, these functions and vector fields are regular on W . By Lemma 3.23,
κΘ,p,j(g

′′
j,1, g

′′
j,2, v

′′
j ) = κΘ,p,1(g[1]′1, g[1]′2, v[1]′). Hence,

κΘ,p(g[1]′1, g[2]′1, v[1], . . . , g[vp]
′
1, g[vp]

′
2, v[vp]

′)

and

κΘ,p(g[1]′1 − g′′1,1, g[1]′2 − g′′1,2, v[1]′ − v′′1 , . . . , g[vp]
′
1 − g′′vp,1, g[vp]

′
2 − g′′vp,2, v[vp]

′ − v′′vp)

define the same coset in vp⊕
j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
)/Γ(Wp,G

◦inv
1,Θ,1).

Observe that g[1]′1 = g′′1,1, g[1]′2 = g′′1,2, and v[1]′ = v′′1 . Now, by Lemma 4.16, every triple

(g[j]′1 − g′′j,1, g[j]′2 − g′′j,2, v[j]′ − v′′j ) ∈ G◦p,j1,Θ,1 can be replaced with (g[j]1, g[j]2, v[j]) ∈ G◦p,j1,Θ,1,
where

g[j]l =

−1∑
k=−nj,l

aj,l,kt
k
p, v[j] =

 −1∑
k=−nj,3

bj,kt
k
p

 ∂

∂tp
,

so that κΘ,p,j(g[j]′1−g′′j,1, g[j]′2−g′′j,2, v[j]′−v′′j ) and κΘ,p,j(g[j]1, g[j]2, v[j]) define the same coset
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in Γ(Wp,G ◦inv
1,Θ,1)/Γ(Wp,G1,Θ,1,ip,j ). Hence,

κΘ,p(0, 0, 0, g[2]1, g[2]2, v[2], . . . , g[vp]1, g[vp]2, v[vp])

and
κΘ,p(g[1]′1, g[1]′2, v[1]′, . . . , g[vp]

′
1, g[vp]

′
2, v[vp]

′)

define the same element of vp⊕
j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
)/Γ(Wp,G

◦inv
1,Θ,1),

and
(0, 0, 0, g[2]1, g[2]2, v[2], . . . , g[vp]1, g[vp]2, v[vp]) ∈ ∇1,0,p,

therefore, the restriction of the composition to ∇1,0,p is surjective.

Now suppose that

(0, 0, 0, g[2]1, g[2]2, v[2], . . . , g[vp]1, g[vp]2, v[vp]) ∈ ∇1,0,p

and
κΘ,p(0, 0, 0, g[2]1, g[2]2, v[2], . . . , g[vp]1, g[vp]2, v[vp])

defines the zero coset in vp⊕
j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
)/Γ(Wp,G

◦inv
1,Θ,1).

For simplicity of notation, denote g[1]1 = g[1]2 = 0, v[1] = 0. Then there exist
(g[j]′1, g[j]′2, v[j]′) ∈ G1,Θ,1,p,j and (g′′j,1, g

′′
j,2, v

′′
j ) ∈ G◦p,j1,Θ,1 (1 ≤ j ≤ vp) such that g[j]l =

g[j]′l + g′′j,l, v[j] = v[j]′ + v′′j and

κΘ,p,1(g′′1,1, g
′′
2,1, v

′′
1) = κΘ,p,2(g′′1,2, g

′′
2,2, v

′′
2) = . . . = κΘ,p,vp(g

′′
1,vp , g

′′
2,vp , v

′′
vp).

By Lemma 3.23 this means that g′′j,1
g′′j,2
v′′j

 = Cip,j ,ip,1

 g′′1,1
g′′1,2
v′′1

 .

In particular, v′′j = v′′1 and all functions g′′j,l and all vector fields v′′j are determined by
(g′′1,1, g

′′
1,2, v

′′
1). On the other hand, the conditions g[j]l = g[j]′l + g′′j,l, v[j] = v[j] + v′′j for

j = 1 mean that g[1]′l = −g′′1,l, v[1]′ = −v′′1 . Therefore, g′′1,1, g′′1,2, and v′′1 are regular at p. By
Lemma 3.26, ordp(g

′′
l,j) ≥ −1 for l = 1, 2, 1 ≤ j ≤ vp. Now it follows from the definition of

∇1,0,p that g[j]l = a−1,j,lt
−1
p for some a−1,j,l ∈ C, and v[j] = 0. Moreover, it follows from a

consideration of Laurent series of v′′1 , of entries of Cip,j ,ip,1 , and of g′′j,l that all numbers a−1,j,l

are uniquely determined by the value of v′′1 at p, which is an element of a one-dimensional
space (the tangent space of P1 at p). Therefore, the kernel of the composition of κΘ,p and the
projection is at most one-dimensional.

Now let us prove that the kernel contains a nonzero element. Set g′′1,1 = g′′1,2 = 0, v′′1 = ∂/∂tp,
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and  g′′j,1
g′′j,2
v′′j

 = Cip,j ,ip,1

 g′′1,1
g′′1,2
v′′1

 .

By Lemma 3.25, all functions g′′j,l are regular on W . By Lemma 3.23,

κΘ,p,1(g′′1,1, g
′′
1,2, v

′′
1) = κΘ,p,j(g

′′
j,1, g

′′
j,2, v

′′
j ) for 1 ≤ j ≤ vp,

and
κΘ,p(g

′′
1,1, g

′′
1,2, v

′′
1 , . . . , g

′′
vp,1, g

′′
vp,2, v

′′
vp)

defines the zero coset in vp⊕
j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
)/Γ(Wp,G

◦inv
1,Θ,1).

By Lemma 3.26,
ordp(g

′′
j,l) = −1 for 2 ≤ j ≤ vp and l = 1, 2.

So we can write g′′j,l = g[j]l + g[j]′l, where g[j]l = a−1,j,lt
−1
p (here a−1,j,l ∈ C, and for j ≥ 2 we

also have al,−1,j 6= 0) and g[j]′l is regular at p (and hence on Wp). By the definition of matrices
Cip,j ,ip,1 , v′′j = v′′1 , and we can set v[j]′ = v′′j , v[j] = 0. Then v[j]′ ∈ Γ(Wp,ΘP1), and

κΘ,p,j(g[j]′1, g[j]′2, v[j]′)

defines the zero coset in
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

).

By construction,

g = (g[1]1, g[1]2, v[1], . . . , g[vp]1, g[vp]2, v[vp]) ∈ ∇1,0,p.

Since
a−1,j,l 6= 0 for all 2 ≤ j ≤ vp and l = 1, 2,

we have g 6= 0. Since g[j]l = g′′j,l − g[j]′l and v[j] = v[j]′ − v′′j , g is an element of the kernel of

the composition of κΘ,p and the projection from
⊕vp

j=1 Γ(Wp,G ◦inv
1,Θ,1) to vp⊕

j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
)/Γ(Wp,G

◦inv
1,Θ,1).

Now we are going to use the map

ψp,j : G◦p,j1,Θ,1 → G◦p,j1,O,1

we have introduced before using Lemma 3.35. Each of the functions it computes is the Uip,j -
description of a function of a degree χ on Uq (χ = λ1, . . . , λm), and exactly dim Γ(P1,O(D(χ)))

of these functions are of this degree. Denote the morphism G◦p,j1,Θ,1 → Γ(W,OP1) computing the
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kth of the functions of degree χ by ψp,j,χ,k. Denote also by κO,p the direct sum of morphisms

κO,p,j , which maps
⊕vp

j=1G
◦p,j
1,O,1 to

⊕vp
j=1 Γ(Wp,G ◦inv

1,O,1). We are computing the kernel of the
map vp⊕

j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
)/Γ(Wp,G

◦inv
1,Θ,1)

−→

 vp⊕
j=1

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,ip,j )

)/Γ(Wp,G
◦inv
1,O,1)

induced by ψp, so by Lemma 4.17, it is sufficient to consider the restriction of ψp to ∇1,0,p.
Then κΘ,p maps the kernel of the composition of (κO,p ◦ ψp|∇1,0,p) and the natural projection

vp⊕
j=1

(Γ(Wp,G
◦inv
1,O,1)→

 vp⊕
j=1

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,ip,j )

)/Γ(Wp,G
◦inv
1,O,1)

to

ker

( vp⊕
j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
))/

Γ(Wp,G
◦inv
1,Θ,1)

−→

( vp⊕
j=1

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,ip,j )

))/
Γ(Wp,G

◦inv
1,O,1)


surjectively, and the kernel of this composition contains the one-dimensional kernel
kerκΘ,p|∇1,0,p since ψp induces the map vp⊕

j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
)/Γ(Wp,G

◦inv
1,Θ,1)

−→

 vp⊕
j=1

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,ip,j )

)/Γ(Wp,G
◦inv
1,O,1)

via κΘ,p and κO,p. So we have to find the preimage

∇1,0,p ∩ ψ−1
p

(
κ−1

O,p

(
(
⊕vp

j=1 Γ(Wp,G inv
1,O,1,ip,j

)) + Γ(Wp,G ◦inv
1,O,1)

))
.

73
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Remark 4.18. This is illustrated by the following commutative diagram:

(⊕vp
j=1

(
Γ(Wp,G ◦inv

1,Θ,1)/Γ(Wp,G inv
1,Θ,1,ip,j

)
))/

Γ(Wp,G ◦inv
1,Θ,1)

,,(⊕vp
j=1

(
Γ(Wp,G ◦inv

1,O,1)/Γ(Wp,G inv
1,O,1,ip,j

)
))/

Γ(Wp,G ◦inv
1,O,1)

⊕vp
j=1 Γ(Wp,G ◦inv

1,Θ,1) //

canonical
projection

OOOO

⊕vp
j=1 Γ(Wp,G ◦inv

1,O,1)

canonical
projection

OOOO

⊕vp
j=1 G

◦p,j
1,Θ,1

ψp //
?�

κΘ,p

OOOO

⊕vp
j=1G

◦p,j
1,O,1

?�

κO,p

OOOO

∇1,0,p

?�

OO

dim ker=1

== ==

Lemma 4.19. Let

g = (0, 0, 0, g[2]1, g[2]2, v[2], . . . , g[vp]1, g[vp]2, v[vp]) ∈ ∇1,0,p.

Suppose that

κO,p(ψp(g)) ∈ (

vp⊕
j=1

Γ(Wp,G
inv
1,O,1,ip,j )) + Γ(Wp,G

◦inv
1,O,1) ⊆

vp⊕
j=1

Γ(Wp,G
◦inv
1,O,1),

where the last summand is embedded into
⊕vp

j=1 Γ(Wp,G ◦inv
1,O,1) diagonally. Pick two vertices

Vp,j1 and Vp,j2 of ∆p and denote i1 = ip,j1, i2 = ip,j2. Also choose χ ∈ {λ1, . . . , λm} and an
index k (1 ≤ k ≤ dim Γ(P1,O(D(χ)))).

Then it is possible to write

ψp,j1,χ,k(g)− µi2,i1,χψp,j2,χ,k(g)

as
f [j1]χ,k − µi2,i1,χf [j2]χ,k,

where fj,χ,k ∈ Γ(Wp,OP1) for j = j1, j2.

Proof. Since

κO,p(ψp(g)) ∈ (

vp⊕
j=1

Γ(Wp,G1,O,1,ip,j )) + Γ(W,G ◦inv
1,O,1),

ψp(g) can be written as f + f ′, where

f = (f [j]χ′,k′)1≤j≤vp,χ′∈{λ1,...,λm},1≤k′≤dim Γ(P1,O(D(χ))) ∈
vp⊕
j=1

G1,O,1,p,j ,

f ′ = (f ′j,χ′,k′)1≤j≤vp,χ′∈{λ1,...,λm},1≤k′≤dim Γ(P1,O(D(χ))) ∈
vp⊕
j=1

G◦p,j1,O,1,
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and, in addition,
κO,p,j((f

′
j,χ′,k′)χ′∈{λ1,...,λm},1≤k′≤dim Γ(P1,O(D(χ))))

does not depend on j. By the definition of G1,O,1,p,j , f [j]χ,k ∈ Γ(Wp,OP1) for all j. It also
follows from Lemma 3.31 that f ′j1,χ,k = µi2,i1,χf

′
j2,χ,k

. Thus,

ψp,j1,χ,k(g)− µi2,i1,χψp,j2,χ,k(g) =

(f [j1]χ,k + f ′j1,χ,k)− µi2,i1,χ(f [j2]χ,k + f ′j2,χ,k) = f [j1]χ,k − µi2,i1,χf [j2]χ,k.

Corollary 4.20. If the hypothesis of Lemma 4.19 holds, then

ordp(ψp,j1,χ,k(g)− µi2,i1,χψp,j2,χ,k(g)) ≥ min(0, ordp(µi2,i1,χ)).

Corollary 4.21. Suppose that the hypothesis of Lemma 4.19 holds. Let f ∈ Γ(P1,O(D(χ))).
Denote a1,1 = β∗i1,1(χ), a1,2 = β∗i1,2(χ), a2,1 = β∗i2,1(χ), and a2,2 = β∗i2,2(χ). Then

ordp

(
f

h
a1,1

i1,1h
a1,2

i1,2

(a1,1g[j1]1 + a1,2g[j1]1 − a2,1g[j2]1 − a2,2g[j2]1)

+d

(
f

h
a1,1

i1,1h
a1,2

i1,2

)
vj1 − µi2,i1,χd

(
f

h
a2,1

i2,1h
a2,2

i2,2

)
vj2

)
≥ min(0, ordp(µi2,i1,χ)).

Proof. Observe that the function under the ord sign in the left-hand side of the inequality
is linear in f , and the right-hand side does not depend on f , so it is sufficient to prove the
inequality for all functions f forming a basis of Γ(P1,O(D(χ))). For example, we can use the
functions of degree χ among the generators of C[X] we have chosen to define the map ψ for
Theorem 2.4. Recall that we have denoted these generators by xχ,1, . . . ,xχ,dim Γ(P1,O(D(χ))) and
that they form a basis of Γ(P1,O(D(χ))). So, set f = xχ,k. By Lemma 3.35,

ψp,j1,χ,k(g)− µi2,i1,χψp,j2,χ,k(g) =

xχ,k

h
a1,1

i1,1h
a1,2

i1,2

(a1,1g[j1]1 + a1,2g[j1]2) + d

(
xχ,k

h
a1,1

i1,1h
a1,2

i1,2

)
vj1

− µi2,i1,χ

(
xχ,k

h
a2,1

i2,1h
a1,2

i2,2

(a2,1g[j2]1 + a1,2g[j2]2) + d

(
xχ,k

h
a2,1

i2,1h
a1,2

i2,2

)
vj2

)
=

xχ,k

h
a1,1

i1,1h
a1,2

i1,2

(a1,1g[j1]1 + a1,2g[j1]2)−
h
a2,1

i2,1h
a1,2

i2,2

h
a1,1

i1,1h
a1,2

i1,2

xχ,k

h
a2,1

i2,1h
a1,2

i2,2

(a2,1g[j2]1 + a1,2g[j2]2)

+ d

(
xχ,k

h
a1,1

i1,1h
a1,2

i1,2

)
vj1 − µi2,i1,χd

(
xχ,k

h
a2,1

i2,1h
a1,2

i2,2

)
vj2 =

xχ,k

h
a1,1

i1,1h
a1,2

i1,2

(a1,1g[j1]1 + a1,2g[j1]2 − a2,1g[j2]1 − a1,2g[j2]2)

+ d

(
xχ,k

h
a1,1

i1,1h
a1,2

i1,2

)
vj1 − µi2,i1,χd

(
xχ,k

h
a2,1

i2,1h
a1,2

i2,2

)
vj2 ,
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and the claim follows from Corollary 4.20.

Now we need more information about the behavior of ordp(µip,j2 ,ip,j1 ,χ
) depending on j1, j2, χ.

Here we perform arithmetic actions on vertices of ∆p, they are understood as arithmetic actions
in N .

Lemma 4.22. For each degree χ and for any two vertices Vp,j1, Vp,j2 (1 ≤ j1, j2 ≤ vp) one
has ordp(µip,j2 ,ip,j1 ,χ

) = χ(Vp,j1 −Vp,j2).

Proof. Again denote i1 = ipj1, i2 = ipj2, a1,1 = β∗i1,1(χ), a1,2 = β∗i1,2(χ), a2,1 = β∗i2,1(χ),

and a2,2 = β∗i2,2(χ). We chose hi1,1, hi1,2, hi1,1, and hi1,2 so that ordp(hi1,1) = −Dp(βi1,1),

ordp(hi1,2) = −Dp(βi1,2), ordp(hi2,1) = −Dp(βi2,1), ordp(hi2,2) = −Dp(βi2,2). By the definition
of µi2,i1,χ, we have

ordp(µi2,i1,χ) = ordp

(
h
a2,1

i2,1h
a2,2

i2,2

h
a1,1

i1,1h
a1,2

i1,2

)
=

a1,1Dp(βi1,1) + a1,2Dp(βi1,2)− a2,1Dp(βi2,1)− a2,2Dp(βi2,2).

Since βi1,1 ∈ N (Vp,j1 ,∆p), the minimum minb∈∆pl
βi1,1(b) is attained at Vp,j1 . In other

words, Dp(βi1,1) = βi1,1(Vp,j1). Similarly, Dp(βi1,2) = βi1,2(Vp,j1) (since βi1,2 ∈ N (Vp,j1 ,∆p)),
Dp(Vp,j2) = βi2,1(Vp,j2), and Dp(βi2,2) = βi2,2(Vp,j2) (since βi2,1, βi2,2 ∈ N (Vp,j2 ,∆p)). Hence,

a1,1Dp(βi1,1) + a1,2Dp(βi1,2)− a2,1Dp(βi2,1)− a2,2Dp(βi2,2) =

(a1,1βi1,1 + a1,2βi1,2)(Vp,j1)− (a2,1βi2,1 + a2,2βi2,2)(Vp,j2) =

χ(Vp,j1)− χ(Vp,j2) = χ(Vp,j1 −Vp,j2).

Lemma 4.23. Let Ep,j be a finite edge of ∆p (1 ≤ j < vp), let χ = b(N (Ep,j ,∆p)). Choose
χ′ ∈ ∩N (Vp,j ,∆p)M so that χ and χ′ form a lattice basis of M . Then χ(Vp,j −Vp,j+1) = 0
and χ′(Vp,j −Vp,j+1) = −|Ep,j |.

Proof. Since χ ∈ N (Ep,j ,∆p), the minimum mina∈∆p χ(a) is attained at both a = Vp,j and
a = Vp,j+1, so χ(Vp,j) = χ(Vp,j+1), χ(Vp,j−Vp,j+1) = 0, and χ((1/|Ep,j |)(Vp,j−Vp,j+1)) = 0.
It follows from the definition of |Ep,j | that (1/|Ep,j |)(Vp,j−Vp,j+1) is a primitive lattice vector.
Hence, elements of M can take arbitrary values at it. Since χ and χ′ form a lattice basis of
M and χ((1/|Ep,j |)(Vp,j −Vp,j+1)) = 0, we conclude that χ′((1/|Ep,j |)(Vp,j −Vp,j+1)) = ±1,
and χ′(Vp,j − Vp,j+1)) = ±|Ep,j |. But the minimum mina∈∆p χ

′(a) is attained at Vp,j since
χ′ ∈ N (Vp,j ,∆p), so χ′(Vp,j −Vp,j+1)) = −|Ep,j |.

The following lemma is proved completely similarly to Lemma 4.23, one only has to inter-
change Vp,j and Vp,j+1.

Lemma 4.24. Let Ep,j be a finite edge of ∆p (1 ≤ j < vp), let χ = b(N (Ep,j ,∆p)). Choose
χ′ ∈ N (Ep,j+1,∆p)∩M so that χ and χ′ form a lattice basis of M . Then χ(Vp,j+1−Vp,j) = 0
and χ′(Vp,j+1 −Vp,j)) = −|Ep,j |.

Lemma 4.25. Let Vp,j1 be a vertex of ∆p, let Ep,j2 be a finite edge of ∆p (1 ≤ j2 < vp), and
suppose that j1 ≤ j2. Pick a degree χ′′ ∈ N (Vp,j1 ,∆p). Suppose that χ′′ /∈ N (Vp,j2+1,∆p).
(Note that the contrary is possible since we allow j1 = j2.)

Then χ′′(Vp,j2 −Vp,j2+1) ≤ −|Ep,j2 |.
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Proof. Let χ = b(N (Ep,j2 ,∆p)). Let χ′ ∈ N (Vp,j2 ,∆p) ∩M be a degree such that χ and χ′

form a lattice basis of M . By Lemma 4.23, χ(Vp,j2 −Vp,j2+1) = 0 and χ′(Vp,j2 −Vp,j2+1) =
−|Ep,j2 |. Since χ and χ′ from a basis of M , we can write χ′′ = aχ+ a′χ′. The line containing
N (Ep,j2 ,∆p) separates the normal subcones of the vertices Vp,j with j ≤ j2 from the normal
subcones of the vertices Vp,j with j ≥ j2 + 1. In particular, it does not separate N (Vp,j1 ,∆p)
from N (Vp,j2 ,∆p), and it does not separate χ′′ from χ′. Therefore, a′ ≥ 0. If a′ = 0 and
a < 0, then χ ∈ σ∨, −χ ∈ σ∨, and σ∨ cannot be a pointed cone. If a′ = 0 and a > 0, then
χ′′ ∈ N (Ep,j2 ,∆p) ⊂ N (Vp,j2+1,∆p), and this contradicts our assumption. Therefore, a′ > 0.
Then

χ′′(Vp,j2 −Vp,j2+1) = aχ(Vp,j2 −Vp,j2+1) + a′χ′(Vp,j2 −Vp,j2+1) = −a′|Ep,j2 | ≤ −|Ep,j2 |.

The following lemma can be proved completely similarly using Lemma 4.24 instead of Lemma
4.23.

Lemma 4.26. Let Vp,j1 be a vertex of ∆p, let Ep,j2 be a finite edge of ∆p (1 ≤ j2 < vp), and
suppose that j1 ≥ j2 + 1. Pick a degree χ′′ ∈ N (Vp,j1 ,∆p). Suppose that χ′′ /∈ N (Vp,j2 ,∆p).
Then χ′′(Vp,j2+1 −Vp,j2) ≤ −|Ep,j2 |.

Lemma 4.27. Let g = (0, 0, 0, g[2]1, g[2]2, v[2], . . . , g[vp]1, g[vp]2, v[vp]) ∈ ∇1,0,p. Suppose that
κO,p(ψp(g)) ∈ (

⊕vp
j=1 Γ(Wp,G inv

1,O,1,ip,j
)) + Γ(Wp,G ◦inv

1,O,1) ⊆
⊕vp

j=1 Γ(Wp,G ◦inv
1,O,1).

Then vj = 0 for 2 ≤ j ≤ vp.

Proof. Fix an index j, 2 ≤ j ≤ vp. For simplicity of notation, denote g[1]1 = g[1]2 = 0, v[1] = 0.
Set χ = b(N (Ep,j−1,∆p)). It follows from the choice of the degrees λ1, . . . , λm above that
χ ∈ {λ1, . . . , λm}. Denote a1,1 = β∗j−1,1(χ), a1,2 = β∗j−1,2(χ), a2,1 = β∗j,1(χ), and a2,2 = β∗j,2(χ).

By Lemma 4.1, there exists a function f ∈ Γ(P1,O(D(χ))) defined at all ordinary points
such that ordp(f) = −Dp(χ). χ is in the interior of σ∨, so deg D(χ) > 0, while deg div(f) = 0.
Hence, there exists a point p′ ∈ P1 such that ordp′(f) > −Dp′(χ). Choose a rational function f ′

on P1 that has exactly one zero of order one at p and exactly one pole of order one at p′. Then
f ′f ∈ Γ(P1,O(D(χ))). Note also that df ′ is regular at p and dpf

′ 6= 0. Set f ′′ = (1 + f ′)f ∈
Γ(P1,O(D(χ))). Then f ′′ is also defined at all ordinary points, and ordp(f ′′) = −Dp(χ).

Since Dp(·) is linear on N (Vp,j−1,∆p), Dp(χ) = a1,1Dp(βj−1,1) + a1,2Dp(βj−1,2). According
to the choice of the functions hi,1 and hi,2 for all indices i, we have−Dp(χ) = a1,1 ordp(hip,j−1,1)+

a1,2 ordp(hip,j−1,2). Denote i1 = ip,j−1, i2 = ip,j . We have

ordp

(
h
a1,1

i1,1h
a1,2

i1,2

f

)
= ordp

(
h
a1,1

i1,1h
a1,2

i1,2

f ′′

)
= 0,

and it follows from Corollary 4.21 that

ordp

(
(a1,1g[j − 1]1 + a1,2g[j − 1]2 − a2,1g[j]1 − a2,2g[j]2)

+
h
a1,1
i1,1

h
a1,2
i1,2

f
d

(
f

h
a1,1
i1,1

h
a1,2
i1,2

)
v[j − 1]−

h
a1,1
i1,1

h
a1,2
i1,2

f
µi2,i1,χd

(
f

h
a2,1
i2,1

h
a2,2
i2,2

)
v[j]

)
≥

min(0, ordp(µi2,i1,χ)).
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and

ordp

(
(a1,1g[j − 1]1 + a1,2g[j − 1]2 − a2,1g[j]1 − a2,2g[j]2)

+
h
a1,1
i1,1

h
a1,2
i1,2

f ′′
d

(
f ′′

h
a1,1
i1,1

h
a1,2
i1,2

)
v[j − 1]−

h
a1,1
i1,1

h
a1,2
i1,2

f ′′
µi2,i1,χd

(
f ′′

h
a2,1
i2,1

h
a2,2
i2,2

)
v[j]

)
≥

min(0, ordp(µi2,i1,χ)).

By Lemma 4.23, ordp(µi2,i1,χ) = 0. Hence, these two functions under the ord signs are regular
at p. Subtract the expressions under the ord signs and substitute the definition of µi2,i1,χ. We
see that the following function is regular at p:

h
a1,1

i1,1h
a1,2

i1,2

f
d

(
f

h
a1,1

i1,1h
a1,2

i1,2

)
v[j − 1]−

h
a1,1

i1,1h
a1,2

i1,2

f

h
a2,1

i2,1h
a2,2

i2,2

h
a1,1

i1,1h
a1,2

i1,2

d

(
f

h
a2,1

i2,1h
a2,2

i2,2

)
v[j]

−
h
a1,1

i1,1h
a1,2

i1,2

f ′′
d

(
f ′′

h
a1,1

i1,1h
a1,2

i1,2

)
v[j − 1] +

h
a1,1

i1,1h
a1,2

i1,2

f ′′

h
a2,1

i2,1h
a2,2

i2,2

h
a1,1

i1,1h
a1,2

i1,2

d

(
f ′′

h
a2,1

i2,1h
a2,2

i2,2

)
v[j] =(

h
a1,1

i1,1h
a1,2

i1,2

f
d

(
f

h
a1,1

i1,1h
a1,2

i1,2

)
−
h
a1,1

i1,1h
a1,2

i1,2

f ′′
d

(
f ′′

h
a1,1

i1,1h
a1,2

i1,2

))
v[j − 1]

−

(
h
a2,1

i2,1h
a2,2

i2,2

f
d

(
f

h
a2,1

i2,1h
a2,2

i2,2

)
−
h
a2,1

i2,1h
a2,2

i2,2

f ′′
d

(
f ′′

h
a2,1

i2,1h
a2,2

i2,2

))
v[j]

By a property of logarithmic derivative we can rewrite this as

f ′′

f
d

(
f

f ′′

)
v[j − 1]− f ′′

f
d

(
f

f ′′

)
v[j] = − f

f ′′
d

(
f ′′

f

)
(v[j − 1]− v[j]).

Now we can rewrite d(f ′′/f) as d(f ′′/f) = d(((1 + f ′)f)/f) = df ′. As we noted before, df ′ does
not have a zero or a pole at p. We have chosen f and f ′′ so that ordp(f) = ordp(f ′′), hence
f/f ′′ does not have a zero or a pole at p either. We conclude that v[j− 1]− v[j] is regular at p.

Now recall that v[1] = 0, therefore v[j] is regular at p for every j. Finally, it follows from the
definition of ∇1,0,p that if v[j] is regular at p, then v[j] = 0.

Now we can reformulate Corollary 4.21 as follows:

Corollary 4.28. Let g = (0, 0, 0, g[2]1, g[2]2, 0, . . . , g[vp]1, g[vp]1, 0) ∈ ∇1,0,p. Suppose that
κO,p(ψp(g)) ∈ (

⊕vp
j=1 Γ(Wp,G1,O,1,ip,j )) + Γ(W,G1,O,1,ip,j ). Pick two vertices Vp,j1 and Vp,j2 of

∆p and denote i1 = ip,j1, i2 = ip,j2. Also choose χ ∈ {λ1, . . . , λm} and denote a1,1 = β∗i1,1(χ),

a1,2 = β∗i1,2(χ), a2,1 = β∗i2,1(χ), a2,2 = β∗i2,2(χ). Let f ∈ Γ(P1,O(D(χ))) be an arbitrary
function.

Then

ordp

(
f

h
a1,1

i1,1h
a1,2

i1,2

(a1,1g[j1]1 + a1,2g[j1]2 − a2,1g[j2]1 − a2,2g[j2]2)

)
≥ min(0, ordp(µi2,i1,χ)).

When we deal with elements of ∇1,0,p such that all vector fields v[j] are zeros, it is more
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convenient to use Uq-descriptions instead of Uip,j -descriptions. So denote by ∇1,1,p the space
of 2vp-tuples of the form form

(0, 0, g[2]1, g[2]2, . . . , g[vp]1, g[vp]2),

where

g[j]l =

−1∑
k=−nj,l

aj,l,kt
k
p.

Denote by ρp : ∇1,1,p → ∇1,0,p the map that computes Uip,j -descriptions out of Uq-descriptions,
i. e. ρp(0, 0, g[2]1, g[2]2, . . . , g[vp]1, g[vp]2) = (0, 0, 0, g[2]′1, g[2]′2, 0, . . . , g[vp]

′
1, g[vp]

′
2, 0), where g[j]′1

g[j]′2
0

 = Cq,ip,j

 g[j]1
g[j]2

0

 .

In other words, (
g[j]′1
g[j]′2

)
= C◦q,ip,j

(
g[j]1
g[j]2

)
.

Clearly, ρp is injective. It also follows from Lemma 4.27 that ρp(∇1,1,p) contains

∇1,0,p ∩ ψ−1
p

κ−1
O,p

( vp⊕
j=1

Γ
(
Wp,G

inv
1,O,1,ip,j

))
+ Γ

(
Wp,G

◦inv
1,O,1

) .

So now we are going to find the following preimage:

ρ−1
p

ψ−1
p

κ−1
O,p

( vp⊕
j=1

Γ
(
Wp,G

inv
1,O,1,ip,j

))
+ Γ

(
Wp,G

◦inv
1,O,1

) .

Lemma 4.29. Let
g = (0, 0, g[2]1, g[2]2, . . . , g[vp]1, g[vp]2) ∈ ∇1,1,p

be such that

κO,p(ψp(ρp(g))) ∈
( vp⊕
j=1

Γ
(
Wp,G1,O,1,ip,j

))
+ Γ

(
Wp,G

◦inv
1,O,1

)
.

Pick two vertices Vp,j1 and Vp,j2 of ∆p, choose χ ∈ {λ1, . . . , λm} ∩N (Vp,j1 ,∆p).

Then

ordp(β
∗
q,1(χ)(g[j1]1 − g[j2]1) + β∗q,2(χ)(g[j1]2 − g[j2]2)) ≥ χ(Vp,j1 −Vp,j2).

Proof. Denote i1 = ip,j1 , i2 = ip,j2 , b1 = β∗q,1(χ), b2 = β∗q,2(χ).

Denote also a1,1 = β∗i1,1(χ), a1,2 = β∗i1,2(χ), a2,1 = β∗i1,1(χ), a2,2 = β∗i1,2(χ). Since χ =
b1βq,1+b2βq,2, we can write a1,1 = b1β

∗
i1,1

(βq,1)+b2β
∗
i1,1

(βq,2), a1,2 = b1β
∗
i1,2

(βq,1)+b2β
∗
i1,2

(βq,2).
These equalities can be written in a matrix form:(

a1,1 a1,2

)
=
(
b1 b2

)
C◦i1,q.
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Similarly, (
a2,1 a2,2

)
=
(
b1 b2

)
C◦i2,q.

Denote (
g[j1]′1
g[j1]′2

)
= C◦q,i1

(
g[j1]1
g[j1]2

)
and

(
g[j2]′1
g[j2]′2

)
= C◦q,i2

(
g[j2]1
g[j2]2

)
.

Then by Lemma 3.27,(
g[j1]1
g[j1]2

)
= C◦i1,q

(
g[j1]′1
g[j1]′2

)
and

(
g[j2]1
g[j2]2

)
= C◦i2,q

(
g[j2]′1
g[j2]′2

)
.

We can write

b1(g[j1]1 − g[j2]1) + b2(g[j1]2 − g[j2]2) =(
b1 b2

)( g[j1]1
g[j1]2

)
−
(
b1 b2

)( g[j2]1
g[j2]2

)
=

(
b1 b2

)
C◦i1,q

(
g[j1]′1
g[j1]′2

)
−
(
b1 b2

)
C◦i2,q

(
g[j2]′1
g[j2]′2

)
=

(
a1,1 a1,2

)( g[j1]′1
g[j1]′2

)
−
(
a2,1 a2,2

)( g[j2]′1
g[j2]′2

)
=

a1,1g[j1]′1 + a1,2g[j1]′2 − a2,1g[j2]′1 − a2,2g[j2]′2.

By Lemma 4.1, there exists f ∈ Γ(P1,O(D(χ))) such that ordp(f) = −Dp(χ). Since
βi1,1, βi1,2, χ ∈ N (Vp,j1 ,∆p), Dp(·) is linear on N (Vp,j1 ,∆p), and χ = a1,1βi1,1 + a1,2βi1,2, we
can write Dp(χ) = a1,1Dp(βi1,1) + a1,2Dp(βi1,2). We chose hi1,1 and hi1,2 so that ordp(hi1,1) =
−Dp(βi1,1), ordp(hi1,2) = −Dp(βi1,2). Therefore,

ordp

(
f

h
a1,1

i1,1h
a1,2

i1,2

)
= 0.

By Lemma 4.22, ordp(µi2,i1,χ) = χ(Vp,j1 −Vp,j2). Since χ ∈ N (Vp,j1 ,∆p), Vp,j1 is a point
where χ attains its minimum on ∆p. Hence, ordp(µi2,i1,χ) ≤ 0. The claim now follows from
Corollary 4.28.

Now we are ready to formulate an exact description for

ρ−1
p

ψ−1
p

κ−1
O,p

( vp⊕
j=1

Γ
(
Wp,G1,O,1,ip,j

))
+ Γ

(
Wp,G

◦inv
1,O,1

) .

Let ∇1,2,p ⊆ ∇1,1,p be the space of 2vp-tuples of the form

(g[1]1, g[1]2, g[2]1, g[2]2, . . . , g[vp]1, g[vp]2)

such that

1. g[j]k is a Laurent polynomial in tp with no terms of nonnegative degree.

2. g[1]1 = g[1]2 = 0.
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3. For each j such that Ep,j is a finite edge (i. e. 1 ≤ j < vp),

β∗q,1(b(N (Ep,j ,∆p)))(g[j]1 − g[j + 1]1) + β∗q,2(b(N (Ep,j ,∆p)))(g[j]2 − g[j + 1]2) = 0.

4. ordp(g[j]1 − g[j + 1]1) ≥ −|Ep,j |, ordp(g[j]2 − g[j + 1]2) ≥ −|Ep,j | for all finite edges Ep,j

(1 ≤ j < vp).

Remark 4.30. dim∇1,2,p = |Ep,1|+ . . .+ |Ep,vp−1|.

Proposition 4.31.

∇1,2,p = ρ−1
p

ψ−1
p

κ−1
O,p

( vp⊕
j=1

Γ
(
Wp,G

inv
1,O,1,ip,j

))
+ Γ

(
Wp,G

◦inv
1,O,1

) .

Proof. The inclusion

∇1,2,p ⊇ ρ−1
p

ψ−1
p

κ−1
O,p

( vp⊕
j=1

Γ
(
Wp,G

inv
1,O,1,ip,j

))
+ Γ

(
Wp,G

◦inv
1,O,1

)
follows easily from Lemmas 4.29 and 4.23. Namely, let

g ∈ ρ−1
p

ψ−1
p

κ−1
O,p

( vp⊕
j=1

Γ
(
Wp,G

inv
1,O,1,ip,j

))
+ Γ

(
Wp,G

◦inv
1,O,1

) ,

g = (g[1]1, g[1]2, g[2]1, g[2]2, . . . , g[vp]1, g[vp]2).

Properties 1 and 2 in the definition of ∇1,2,p follow from the definition of ∇1,1,p. Fix a finite edge
Ep,j , 1 ≤ j < vp. Let χ = b(N (Ep,j ,∆p)). According to our choice of the set {λ1, . . . , λm},
χ ∈ {λ1, . . . , λm}. There also exists a degree χ′ ∈ {λ1, . . . , λm} such that χ′ ∈ N (Vp,j ,∆p)
and χ and χ′ form a basis of M . By Lemma 4.29,

ordp(β
∗
q,1(χ)(g[j]1 − g[j + 1]1) + β∗q,2(χ)(g[j]2 − g[j + 1]2)) ≥ χ(Vp,j −Vp,j+1).

By Lemma 4.23, χ(Vp,j −Vp,j+1) = 0, in other words,

β∗q,1(χ)(g[j]1 − g[j + 1]1) + β∗q,2(χ)(g[j]2 − g[j + 1]2)

is a function regular at p. On the other hand, it is a Laurent polynomial whose terms of
nonnegative degree are zeros, so

β∗q,1(χ)(g[j]1 − g[j + 1]1) + β∗q,2(χ)(g[j]2 − g[j + 1]2) = 0.

Now, using Lemmas 4.29 and 4.23 again, we see that

ordp(β
∗
q,1(χ′)(g[j]1 − g[j + 1]1) + β∗q,1(χ′)(g[j]2 − g[j + 1]2)) ≥ −|Ep,j |.

Since β∗q,1 and β∗q,2 form a basis of N , and χ and χ′ form a basis of M , the matrix(
β∗q,1(χ) β∗q,2(χ)

β∗q,1(χ′) β∗q,2(χ′)

)
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is nondegenerate. Therefore, ordp((g[j]1 − g[j + 1]1)) ≥ −|Ep,j | and ordp((g[j]2 − g[j + 1]2)) ≥
−|Ep,j |. So, the conditions 3 and 4 from the definition of ∇1,2,p hold, and g ∈ ∇1,2,p.

Now we are going to prove the other inclusion. Let

g = (g[1]1, g[1]2, g[2]1, g[2]2, . . . , g[vp]1, g[vp]2) ∈ ∇1,2,p.

We have to write ψp(ρp(g)) as f + f ′, where

f = (f [j]χ,k)1≤j≤vp,χ∈{λ1,...,λm},1≤k≤dim Γ(P1,O(D(χ))) ∈
vp⊕
j=1

G1,O,1,p,j ,

f ′ = (f ′j,χ,k)1≤j≤vp,χ∈{λ1,...,λm},1≤k≤dim Γ(P1,O(D(χ))) ∈
vp⊕
j=1

G◦p,j1,O,1,

and, in addition,
κO,p,j((f

′
j,χ,k)χ∈{λ1,...,λm},1≤k≤dim Γ(P1,O(D(χ))))

does not depend on j. In other words, we have to find functions f [j]χ,k regular at p and
functions f ′j,χ,k such that (see the definition of κO,p,j) f

′
j1,χ,k

= µj2,j1,χf
′
j2,χ,k

for each j1, j2.
These conditions can be verified for different degrees χ and different indices k independently,
so fix a degree χ ∈ {λ1, . . . , λm} and a generator xχ,k until the end of the proof. Denote
a1 = β∗q,1(χ), a2 = β∗q,2(χ).

The map ψp uses Uip,j -descriptions of functions and of vector fields on Uq, but it follows
from the definitions of ψp, of an Uip,j -description and of an Uq-description that instead of
computing the (j, χ, k)th component of ψp(ρp(g)) using ψp and ρp, we can first compute the
Uq-description of the derivative of xχ,k along the vector field on Uq whose Uq-description is
(g[j]1, g[j]2, 0), and then use µq,ip,j ,χ to compute the Uip,j -description of the function on Uq

whose Uq-description we obtain this way. So, consider the Uq-descriptions of the functions on
Uq whose Uip,j -descriptions are functions f [j]χ,k and f ′j,χ,k we are looking for. Denote these
Uq-descriptions by by f [j]′′ and f ′′′j , respectively (we do not use indices χ and k here, because
they are already fixed until the end of the proof, and we do not mean that these functions are
the same for different χ and k). In other words, f [j]χ,k = µq,ip,j ,χf [j]′′ and f ′j,χ,k = µq,ip,j1 ,χ

f ′′′j1 .
In terms of these functions, we need to meet the following conditions: first, µq,ip,j ,χf [j]′′ should
be regular at p for each j, and second, µq,ip,j1 ,χ

f ′′′j1 and µq,ip,j2 ,χ
f ′′′j2 should be the Uip,j1

- and
Uip,j2

-descriptions (respectively) of the same function defined on Uq. These conditions can be
reformulated as follows: the inequality ordp(µq,ip,j ,χf [j]′′)) ≥ 0 should hold, and all functions
f ′′′j should be the same function f ′′′, which should not depend on j.

Let j1 be the maximal index such that χ ∈ N (Vp,j1 ,∆p). (The convention that we take
the maximal index is nontrivial if χ ∈ N (Ep,j1−1,∆p).) Fix this index j1 until the end of the
proof. Set

f ′′′ =
xχ,k

h
a1

q,1h
a2

q,2

(a1g[j1]1 + a2g[j1]2),

and for each j2 (1 ≤ j2 ≤ vp) set

f [j2]′′ =
xχ,k

h
a1

q,1h
a2

q,2

(a1g[j2]1 + a2g[j2]1)− f ′′′.

Observe that f [j1]′′ = 0. By Lemma 3.35, f [j2]′′ + f ′′′ is the Uq-description of the derivative
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of x̃χ,k along the vector field whose Uq-description is (g[j2]1, g[j2]2, 0). It is sufficient to prove
that ordp(µq,ip,j2 ,χ

f [j2]′′) ≥ 0. Denote b1,1 = β∗ip,j1 ,1
(χ), b1,2 = β∗ip,j1 ,2

(χ), b2,1 = β∗ip,j2 ,1
(χ), and

b2,2 = β∗ip,j2 ,2
(χ). Then we can write this function as follows:

µq,ip,j2 ,χ
f [j2]′′ =

h
a1

q,1h
a2

q,2

h
b2,1
ip,j2 ,1

h
b2,2
ip,j2 ,2

xχ,k

h
a1

q,1h
a2

q,2

((a1g[j2]1 + a2g[j2]2)− (a1g[j1]1 + a2g[j1]2)) =

xχ,k

h
b2,1
ip,j2 ,1

h
b2,2
ip,j2 ,2

(a1(g[j2]1 − g[j1]1) + a2(g[j2]2 − g[j1]2)) =

xχ,k

h
b1,1
ip,j1 ,1

h
b1,2
ip,j1 ,2

h
b1,1
ip,j1 ,1

h
b1,2
ip,j1 ,2

h
b2,1
ip,j2 ,1

h
b2,2
ip,j2 ,2

(a1(g[j2]1 − g[j1]1) + a2(g[j2]2 − g[j1]2)) =

xχ,k

h
b1,1
ip,j1 ,1

h
b1,2
ip,j1 ,2

µip,j1 ,ip,j2 ,χ
(a1(g[j2]1 − g[j1]1) + a2(g[j2]2 − g[j1]2)).

Since xχ,k ∈ Γ(P1,O(D(χ))), ordp(xχ,k) ≥ −Dp(χ). We chose hip,j1 ,1
and hip,j1 ,2

so that

ordp(hip,j1 ,1
) = −Dp(βip,j1 ,1

) and ordp(hip,j1 ,2
) = −Dp(βip,j1 ,2

). We know that

χ = b1,1βip,j1 ,1
+ b1,2βip,j1 ,2

,

χ, βip,j1 ,1
, βip,j1 ,2

∈ N (Vp,j1 ,∆p), and Dp(·) is linear on N (Vp,j1 ,∆p), therefore

ordp(h
b1,1
ip,j1 ,1

h
b1,2
ip,j1 ,2

) = −b1,1Dp(βip,j1 ,1
)− b1,2Dp(βip,j1 ,2

) = −Dp(χ).

Hence,

ordp

 xχ,k

h
b1,1
ip,j1 ,1

h
b1,2
ip,j1 ,2

 ≥ 0.

So, now we are done for j2 = j1. Otherwise, we have to consider two cases: j2 > j1 and
j2 < j1. Suppose first that j2 > j1. Then

µip,j1 ,ip,j2 ,χ
(a1(g[j2]1 − g[j1]1) + a2(g[j2]2 − g[j1]2)) =

µip,j1 ,ip,j1+1,χ . . . µip,j2−1,ip,j2 ,χ
(a1(g[j2]1 − g[j2 − 1]1) + a2(g[j2]2 − g[j2 − 1]2)+

. . .+ a1(g[j1 + 1]1 − g[j1]1) + a2(g[j1 + 1]2 − g[j1]2)).

By Lemma 4.22,

ordp(µip,j1 ,ip,j1+1,χ . . . µip,j2−1,ip,j2 ,χ
) = χ(Vp,j1+1 −Vp,j1) + . . .+ χ(Vp,j2 −Vp,j2−1).

Since χ /∈ N (Vp,j ,∆p) for all j > j1, by Lemma 4.25 we have

ordp(µip,j1 ,ip,j1+1,χ . . . µip,j2−1,ip,j2 ,χ
) ≥ |Ep,j1 |+ |Ep,j1+1|+ . . .+ |Ep,j2−1|.

This sum contains at least one summand since j2 > j1. By the definition of ∇1,2,p,

ordp(a1(g[j2]1 − g[j2 − 1]1) + a2(g[j2]2 − g[j2 − 1]2)+
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. . .+ a1(g[j1 + 1]1 − g[j1]1) + a2(g[j1 + 1]2 − g[j1]2)) ≥
min(−|Ep,j2−1|, . . . ,−|Ep,j1 |) = −max(|Ep,j1 |, . . . , |Ep,j2−1|).

We have
|Ep,j1 |+ |Ep,j1+1|+ . . .+ |Ep,j2−1| −max(|Ep,j1 |, . . . , |Ep,j2−1|) ≥ 0,

therefore µq,ip,j2 ,χ
f [j2]′′ is regular at p.

Now consider the case j2 < j1. This time we are going to consider indices smaller than j1, and
it is possible that χ ∈ N (Vp,j ,∆p) for some j < j1, namely for j = j1− 1 (and this is the only
possibility). So, we have to consider two cases: χ /∈ N (Vp,j1−1,∆p) and χ ∈ N (Vp,j1−1,∆p).
Suppose first that χ /∈ N (Vp,j1−1,∆p). Then we can again write

µip,j1 ,ip,j2 ,χ
(a1(g[j2]1 − g[j1]1) + a2(g[j2]2 − g[j1]2)) =

µip,j1 ,ip,j1−1,χ . . . µip,j2+1,ip,j2 ,χ
(a1(g[j2]1 − g[j2 + 1]1) + a2(g[j2]2 − g[j2 + 1]2)+

. . .+ a1(g[j1 − 1]1 − g[j1]1) + a2(g[j1 − 1]2 − g[j1]2)).

Since χ /∈ N (Vp,j1−1,∆p) (and χ /∈ N (Vp,j ,∆p) for all j < j1), we can apply Lemmas 4.22
and 4.26. We see that

ordp(µip,j1 ,ip,j1−1,χ . . . µip,j2+1,ip,j2 ,χ
) =

χ(Vp,j1−1 −Vp,j1) + . . .+ χ(Vp,j2 −Vp,j2+1) ≥ |Ep,j1−1|+ . . .+ |Ep,j2 |.

And again, by the definition of ∇1,2,p,

ordp(a1(g[j2]1 − g[j2 + 1]1) + a2(g[j2]2 − g[j2 + 1]2)+

. . .+ a1(g[j1 − 1]1 − g[j1]1) + a2(g[j1 − 1]2 − g[j1]2)) ≥
min(−|Ep,j2 |, . . . ,−|Ep,j1−1|) = −max(|Ep,j2 |, . . . , |Ep,j1−1|).

Therefore,

ordp(µq,ip,j2 ,χ
f [j2]′′) ≥ |Ep,j1−1|+ . . .+ |Ep,j2 | −max(|Ep,j2 |, . . . , |Ep,j1−1|) ≥ 0.

Finally, consider the case when j2 < j1 and χ ∈ N (Vp,j1−1,∆p). Then χ ∈ N (Ep,j1−1,∆p),
and property 3 in the definition of ∇1,2,p guarantees that

a1(g[j1 − 1]1 − g[j1]1) + a2(g[j1 − 1]2 − g[j1]2) = 0.

It also follows from Lemmas 4.22 and 4.23 that

ordp(µip,j1 ,ip,j1−1,χ) = χ(Vp,j1−1 −Vp,j1) = 0.

If j2 = j1 − 1, then we already see that

µip,j1 ,ip,j2 ,χ
(a1(g[j2]1 − g[j1]1) + a2(g[j2]2 − g[j1]2)) = 0,

hence µq,ip,j2 ,χ
f [j2]′′ = 0, in particular, this function is regular at p. If j2 < j1 − 1 we write

µip,j1 ,ip,j2 ,χ
(a1(g[j2]1 − g[j1]1) + a2(g[j2]2 − g[j1]2)) =
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µip,j1 ,ip,j1−1,χ . . . µip,j2+1,ip,j2 ,χ
(a1(g[j2]1 − g[j2 + 1]1) + a2(g[j2]2 − g[j2 + 1]2)+

. . .+ a1(g[j1 − 1]1 − g[j1]1) + a2(g[j1 − 1]2 − g[j1]2))

as previously. This time

ordp(µip,j1 ,ip,j1−1,χ . . . µip,j2+1,ip,j2 ,χ
) =

ordp(µip,j1−1,ip,j1−2,χ . . . µip,j2+1,ip,j2 ,χ
) =

χ(Vp,j1−2 −Vp,j1−1) + . . .+ χ(Vp,j2 −Vp,j2+1).

And here we can apply Lemma 4.26 since χ /∈ N (Ep,j ,∆p) for all j < j1−1. We conclude that

ordp(µip,j1 ,ip,j1−1,χ . . . µip,j2+1,ip,j2 ,χ
) ≥ |Ep,j1−2|+ . . .+ |Ep,j2 |.

The order of the other multiplier can be rewritten as

ordp(a1(g[j2]1 − g[j2 + 1]1) + a2(g[j2]2 − g[j2 + 1]2)+

. . .+ a1(g[j1 − 1]1 − g[j1]1) + a2(g[j1 − 1]2 − g[j1]2)) =

ordp(a1(g[j2]1 − g[j2 + 1]1) + a2(g[j2]2 − g[j2 + 1]2)+

. . .+ a1(g[j1 − 2]1 − g[j1 − 1]1) + a2(g[j1 − 2]2 − g[j1 − 1]2)) ≥
min(−|Ep,j2 |, . . . ,−|Ep,j1−2|) = −max(|Ep,j2 |, . . . , |Ep,j1−2|).

Again we see that

ordp(µip,j1 ,ip,j2 ,χ
(a1(g[j2]1 − g[j1]1) + a2(g[j2]2 − g[j1]2))) ≥

|Ep,j1−2|+ . . .+ |Ep,j2 | −max(|Ep,j2 |, . . . , |Ep,j1−2|) ≥ 0,

and µq,ip,j2 ,χ
f [j2]′′ is regular at p.

Now it is clear that

dim ρ−1
p (ψ−1

p (κ−1
O,p((

vp⊕
j=1

Γ(Wp,G
inv
1,O,1,ip,j )) + Γ(Wp,G

◦inv
1,O,1)))) = dim∇1,2,p =

|Ep,1|+ . . .+ |Ep,vp−1|,

and, since ρp is injective,

dim(ψ−1
p (κ−1

O,p((

vp⊕
j=1

Γ(Wp,G
inv
1,O,1,ip,j )) + Γ(Wp,G

◦inv
1,O,1))) ∩∇1,0,p) = |Ep,1|+ . . .+ |Ep,vp−1|.

By Lemma 4.17,

dim ker

( vp⊕
j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
))/

Γ(Wp,G
◦inv
1,Θ,1) −→
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( vp⊕
j=1

(
Γ(Wp,G

◦inv
1,O,1)/Γ(Wp,G

inv
1,O,1,ip,j )

))/
Γ(Wp,G

◦inv
1,O,1)

 = |Ep,1|+ . . .+ |Ep,vp−1| − 1.

By Lemma 4.15, we have the following equality:

dim(ker(Γ(P1,G1,Θ,0)→ Γ(P1,G1,O,0))) =
∑

p∈P1 essential

−1 +

vp−1∑
j=1

|Ep,j |

 .

Finally, we get the following theorem from Theorem 3.36 and Proposition 4.10:

Theorem 4.32. We maintain the assumptions from Section 1.3. Then the dimension of the
space of equivariant first order deformations of X can be computed as follows.

dimT 1(X)0 = max(0,#(essential special points)− 3) +
∑

p∈P1 essential

−1 +

vp−1∑
j=1

|Ep,j |

 ,

where |Ep,j | is the number of integer points on the edge Ep,j of ∆p, including exactly one of its
endpoints.

Observe that the sum
∑vp−1

j=1 |Ep,j | can also be understood as follows. The integer points
on the boundary of ∆p split this boundary into segments (containing no integer points in the

interior). Then
∑vp−1

j=1 |Ep,j | is the amount of these segments in the finite edges of ∆p. Later,
in Chapter 6, we will see how to construct some actual first order deformations, which will span
a (dimT 1(X)0)-dimensional vector space.
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5 Connections between the graded component
of degree 0 of T 1(X) and graded components
of T 1 of toric varieties

Given an affine toric 3-dimensional variety X, one can restrict the space the action of the 3-
dimensional torus to a 2-dimensional subtorus, and consider X as a 3-dimensional T -variety
with an action of a 2-dimensional torus. Toric varieties are parametrized by pointed cones of
the same dimension, and T -varieties are parametrized by polyhedral divisors as described in
the Introduction. These two parametrizations are related via the following toric downgrade
procedure.

Let X be an affine toric 3-dimensional variety defined by a pointed cone τ in ÑQ = Ñ ⊗Z Q,

where Ñ is a 3-dimensional lattice. Denote the dual lattice of Ñ by M̃ , and denote the 3-
dimensional torus acting on X by T̃ . Then two-dimensional subtori of T̃ are parametrized by
primitive vectors χ ∈ M̃ . Fix one of them until the end of this section, denote it by χ0. We
are going to consider the action of T = kerχ0 on X. To describe this action by a polyhedral
divisor, choose a line N ′ ⊂ Ñ complementary to N = kerχ0. These choices are illustrated by
the following diagram:

0 // N // Ñ
χ0 // Z // 0

N ′
/ O

``

Consider also the projection from ÑQ to N ′Q = N ′⊗ZQ along NQ = N ⊗ZQ. It maps each face
of τ surjectively onto a cone in N ′Q Then the variety Y , where the polyhedral divisor will be

constructed, is defined by the coarsest fan in N ′Q containing all these cones. It can be P1, C, or
C∗, depending on whether the image of τ is the whole line, a half-line, or a point, respectively.
We are interested in the case Y = P1, so suppose in the sequel that it holds. It takes place
if and only if NQ separates τ into two nonempty two-dimensional cones, or, equivalently, if
χ0 /∈ τ∨.

To construct the polyhedral divisor itself, recall that the two half-lines of N ′Q correspond to

the two fixed points of a torus acting on P1, which we can denote by 0 and ∞. More exactly,
let 0 (resp. ∞) correspond to the half-line {χ0 > 0} (resp. {χ0 < 0}). Then the polyhedral
divisor contains nontrivial polyhedra at 0 and at ∞ only, and the polyhedron at 0 (resp. at
∞) is the projection of τ ∩ [χ0 = 1] (resp. of τ ∩ [χ0 = −1]) to NQ along N ′Q. As previously,
denote these polyhedra by ∆0 and ∆∞. The tail cone of both of these polyhedra is σ = τ ∩NQ.
We only considered the cases when it was full-dimensional, and, together with the requirement
Y = P1, this means that τ is full-dimensional. An example of this situation is shown by Fig.
5.1

The last requirement we had says that all vertices of ∆0 and ∆∞ have to be lattice points.
Since χ0 is a primitive vector, N ′ ∩ [χ0 = 1] and N ′ ∩ [χ0 = −1] are lattice points, so the
projections of the planes [χ0 = 1] and [χ0 = −1] onto N along N ′ map lattice points to lattice
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Figure 5.1: An example of toric downgrade: the three-dimensional cone τ is shown in black, σ
is green, and the polyhedra ∆0 and ∆∞ are shown in blue and red.

points. Hence, the last condition we should impose says that if a one-dimensional face of τ
intersects one of the planes [χ0 = 1] and [χ0 = −1], then the intersection point is a lattice
point.

Now we need some notation and terminology. Call an edge of τ positive (resp. nonnegative,
negative, nonpositive) if χ0 takes positive (resp. nonnegative, negative, nonpositive) values
on this edge (except the origin). Call an edge of τ orthogonal if χ takes only zero values
in this edge. Call a facet of τ positive (resp. negative) if χ takes only positive (resp. only
negative) values on the interior of this facet. Denote the edges of τ by E1(τ), . . . ,Ee(τ)(τ) and
the facets of τ by F1(τ), . . . ,Fe(τ)(τ). The intersections of these edges and facets with the
affine planes χ0 = 1 and χ0 = −1 are vertices and edges of ∆0 and ∆∞, respectively, for more
details see Remark 5.1. Sometimes we can write E0(τ) (resp. Ee(τ)+1(τ), F0(τ), Fe(τ)+1(τ))
instead of Ee(τ)(τ) (resp. E1(τ), Fe(τ)(τ), F1(τ)). We enumerate edges and facets so that
∂Fi(τ) = Ei(τ) ∪ Ei+1(τ). We also require that E1(τ) is a positive edge, and Ee(τ)(τ) is a
nonpositive edge. This requirement allows one to choose one of exactly two enumerations of
edges and facets, we choose one of them arbitrarily.

It is also convenient to introduce some notation for positive and negative edges separately.
Denote the number of positive edges by e+(τ). Denote the positive edges themselves by
E+

1 (τ), . . . ,E+
e+(τ)

(τ). Here the edges are enumerated in the same order as when we enu-

merated all edges, i. e. E+
i (τ) = Ei(τ) for 1 ≤ i ≤ e+(τ). Similarly, denote the number of

negative edges by e−(τ), and denote the negative edges themselves by E−1 (τ), . . . ,E−
e−(τ)

(τ).

This time we reverse the order that we used when we enumerated all edges together. In other
words, if E−1 (τ) = Ei−1(τ) for some i (which can equal e(τ) or e(τ)+1), then E−j (τ) = Ei−j(τ)

for 1 ≤ j ≤ e−(τ). The notation E+
i (τ) may look a bit redundant, but it is convenient to have

uniform notation for positive and negative edges.

Now let us introduce notation for positive and negative facets. Denote the facet whose
boundary is E+

i (τ) ∪ E+
i+1(τ) (resp. E−i (τ) ∪ E−i+1(τ)) by F+

i (τ) (resp. F−i (τ)) for 1 ≤ i ≤
e+(τ) − 1 (resp 1 ≤ i ≤ e−(τ) − 1). Again we have F+

i (τ) = Fi(τ) for 1 ≤ i ≤ e+(τ) − 1.
Extend this notation as follows. First, set F+

0 (τ) = F0(τ) and F+
e+(τ)

(τ) = Fe+(τ)(τ). If

E−1 (τ) = Ei−1(τ), denote F−0 (τ) = Fi(τ) and F−
e−(τ)

(τ) = Fi−e−(τ)(τ). In other words, F−0 (τ)
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is the facet of τ with the highest index such that one of the edges on its boundary is negative.
The other edge on its boundary is nonnegative, and the negative edge on the boundary of F−0 (τ)
is E−1 (τ). And F−

e−(τ)
(τ) is the facet of τ with the lowest index such that one of the edges on

its boundary is negative. The other edge on its boundary is nonnegative, and the negative edge
on the boundary of F−

e−(τ)
(τ) is E−

e−(τ)
(τ).

An example of this notation is shown by Fig. 5.2.

N

E1(τ)=E10(τ)=E+
1 (τ)

E2(τ)=E+
2 (τ)E3(τ)=E+

3 (τ)

E4(τ)=E+
4 (τ)

E5(τ)

E6(τ)=E−4 (τ)

E7(τ)=E−3 (τ) E8(τ)=E−2 (τ)

E9(τ)=E0(τ)=E−1 (τ)

F
1 (τ)=

F
10 (τ)=

F +
1 (τ)

F2(τ)=F+
2 (τ)

F3
(τ
)=
F
+
3
(τ
)

F4(τ)=F+
4 (τ)

F5(τ)=F−4 (τ)

F
6 (τ)=

F −
3 (τ)

F7(τ)=F−2 (τ)

F8
(τ
)=
F
−
1
(τ
)

F9(τ)=F0(τ)=F−0 (τ)=F+
0 (τ)

Figure 5.2: An example of notation for positive and negative edges and facets. The picture
shows the section of ÑQ with an affine hyperplane that intersects all edges of τ .
The only orthogonal edge here is E5(τ). The facet F9(τ) is neither negative nor
positive. Here e(τ) = 9, e+(τ) = 4, and e−(τ) = 4.

Remark 5.1. Here is how the notation introduced now is related with the notation for edges and
vertices of ∆p we introduced in the beginning. Namely, within the notation that we introduced
now, we have e+(τ) = v(∆0), Vi(∆0) = E+

i (τ) ∩ [χ0 = 1] for 1 ≤ i ≤ e+(τ), Ei(∆0) =
F+
i (τ) ∩ [χ0 = 1] for 0 ≤ i ≤ e+(τ), e−(τ) = v(∆∞), Vi(∆∞) = E−i (τ) ∩ [χ0 = −1] for

1 ≤ i ≤ e+(τ), and Ei(∆∞) = F−i (τ) ∩ [χ0 = −1] for 0 ≤ i ≤ e+(τ).

The faces of the cone τ∨ dual to τ put be set into bijection with the faces of τ . Namely, each
face τ ′ of τ defines a face of τ∨ consisting of all a ∈ τ∨ such that a(τ ′) = 0. We call this face
of τ∨ the normal face of τ ′ and denote it by N (τ ′, τ). Clearly, the normal faces of edges are
facets and vice versa.

A formula for the graded components of the first-order deformation space of a toric variety
was given in [10]. To formulate it, we need to quote also some notation from [10]. (We slightly

change the letters we use there to avoid confusion.) First, let λ̃1, . . . , λ̃m̃ be the Hilbert basis

of τ∨. If τ ′ is an edge of τ , and χ ∈ M̃ is a degree, denote

Λχτ ′ = {λ̃i | λ̃i(b(τ ′)) < χ(b(τ ′))}.

89



5 Connections between T 1(X)0 and graded components of T 1 of toric varieties

Now, if τ ′ is a facet of τ , we set

Λχτ ′ =
⋂

τ ′′ is an edge of τ
τ ′′⊂∂τ ′

Λχτ ′′ ,

and for the origin (which is also a face of τ) we set

Λχ0 =
⋃

τ ′ is an edge of τ

Λχτ ′ .

Finally, we set

Λχ,i =
⊕

τ ′ is a face of τ
dim τ ′=i

Span
M̃

(Λχτ ′)

for i = 0, 1, 2. Here Span
M̃

denotes the sublattice of M̃ generated by the subset of M̃ under
the Span

M̃
sign. In the sequel we will also use notation SpanQ for the Q-linear subspace of

M̃Q = M̃ ⊗ZQ generated by a set of elements of M̃ or of M̃Q. generated Consider the complex

(Λχ,0 ⊗Z C)∗ → (Λχ,1 ⊗Z C)∗ → (Λχ,2 ⊗Z C)∗,

where the maps are standard Čech differentials. Denote the graded component of T 1(X) of
degree χ by T 1

χ(X).

Theorem 5.2. [10, Theorem 2.1]

T 1
−χ(X) ∼= H1

(
(Λχ,• ⊗Z C)∗

)
.

Our goal for this section is to deduce Theorem 4.32 in the case of toric X from Theorem 5.2.
It is known that the 0th graded component of X considered as a T -variety is isomorphic to⊕

a∈Z
T 1
aχ0

(X),

where the degrees are understood with respect to the action of the three-dimensional torus. So,
in the sequel we will study the spaces T 1

χ(X), where χ is a multiple of χ0.

Lemma 5.3. Let χ be a multiple of χ0 and τ ′ be an edge of τ . Then Λχτ ′ = ∅ if one of the
following conditions holds:

1. χ = 0.

2. τ ′ is an orthogonal edge.

3. χ = aχ0, where a > 0, and τ ′ is a negative edge.

4. χ = aχ0, where a < 0, and τ ′ is a positive edge.

Proof. Choose a Hilbert basis element λ̃i, where 1 ≤ i ≤ m̃. Since λ̃i ∈ τ∨, we have λ̃i(b(τ ′)) ≥
0. On the other hand, χ(b(τ ′)) = 0 if case 1 or 2 from the above classification holds. If case 3
or 4 takes place, then χ(b(τ ′)) < 0. Hence, λ̃i(b(τ ′)) ≥ χ(b(τ ′)), and λ̃i /∈ Λχτ ′ .

Corollary 5.4. If χ = 0, then Λχ,1 = 0 and T 1
0 (X) = 0.
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Lemma 5.5. If τ ′ is a positive (resp. negative) edge of τ , then χ0(b(τ ′)) equals 1 (resp. −1).

Proof. If τ ′ is a positive edge, denote a = τ ′ ∩ [χ0 = 1]. If τ ′ is a negative edge, denote
a = τ ′ ∩ [χ0 = −1]. Recall that one of the requirements we have imposed on τ says that the
planes χ0 = 1 and χ0 = −1 intersect edges of τ at lattice points (otherwise the polyhedral
divisor we obtain from τ does not consist of lattice polyhedra), so a is a lattice point, and
hence a is a multiple of b(τ ′). On the other hand, if a 6= b(τ ′), then χ0(b(τ ′)) cannot be an
integer. So, a = b(τ ′), and χ0(b(τ ′)) = 1 (resp. χ0(b(τ ′)) = −1) if τ ′ is a positive (resp.
negative) edge.

Lemma 5.6. If τ ′ is a positive (resp. negative) edge of τ , and χ = χ0 (resp. χ = −χ0), then
SpanQ(Λχτ ′) = SpanQ(N (τ ′, τ)) and dim SpanQ(Λχτ ′) = 2.

Proof. Without loss of generality, suppose that τ ′ is a positive edge and χ = χ0 (the other
case can be considered completely analogously). Then by Lemma 5.5, χ(b(τ ′)) = 1. So, if
λ̃i /∈ N (τ ′, τ), then λ̃i(b(τ ′)) > 0, so λ̃i(b(τ ′)) ≥ 1 (this is an integer number), and λ̃i(b(τ ′)) ≥
χ(b(τ ′)). Hence, λ̃i /∈ Λχτ ′ . On the other hand, if λ̃i ∈ N (τ ′, τ), then λ̃i(b(τ ′)) = 0, and

λ̃i(b(τ ′)) < χ(b(τ ′)). Hence, λ̃i ∈ Λχτ ′ .

Therefore, Λχτ ′ is the intersection of the Hilbert basis of τ∨ ∩ M̃ and the normal facet of τ ′,

which is the Hilbert basis of N (τ ′, τ) ∩ M̃ . In particular, Λχτ ′ generates SpanQ(N (τ ′, τ)) as a
Q-vector space.

Lemma 5.7. If τ ′ is a positive (resp. negative) edge of τ , and χ = aχ0, where a ≥ 2 (resp.

a ≤ −2), then SpanQ(Λχτ ′) = M̃Q.

Proof. Again, without loss of generality we may suppose that τ ′ is a positive edge and a ≥ 2,
the other case is completely similar.

First, let us prove that there exists a degree χ′ ∈ τ∨ ∩ M̃ such that χ′(b(τ ′)) = 1. This is
done by a standard continuity argument. Namely, consider a lattice point χ′′ in the relative
interior of N (τ ′, τ). Consider also a line χ′′+Qχ0. This line cannot be contained in the plane
containing N (τ ′, τ) since χ0(b(τ ′)) 6= 0. So, the intersection of this line and this plane is
exactly χ′′, and N (τ ′, τ) splits the line χ′′ + Qχ0 into two rays, and one of these rays passes
through the interior of τ∨. Since χ′′(b(τ ′)) = 0 and χ0(b(τ ′)) > 0, the ray passing through
the interior of τ∨ cannot be χ′′ + Q≤0χ0, and it must be χ′′ + Q≥0χ0. Hence, if b ∈ N is
large enough, χ′′ + (1/b)χ0 ∈ τ∨. Then bχ′′ + χ0 ∈ τ∨, but bχ′′ + χ0 is a lattice point, and
(bχ′′ + χ0)(b(τ ′)) = 1, so we can take χ′ = bχ′′ + χ0.

Since all λ̃i form the Hilbert basis of τ∨ ∩ M̃ , χ′ can be written as a positive integer linear
combination of λ̃i. Since λ̃i(b(τ ′)) ≥ 0, there exists λ̃i such that λ̃i(b(τ ′)) = 1.

As we have already noted previously, the set of all λ̃i such that λ̃i(b(τ ′)) = 0 form the

Hilbert basis of N (τ ′, τ) ∩ M̃ , therefore they generate SpanQ(N (τ ′, τ)) as a Q-vector space.

Clearly, all these λ̃i are in Λχτ ′ . Together they generate a 2-dimensional vector space, so if we
add one more vector, which is outside SpanQ(N (τ ′, τ)), all vectors together will generate a

bigger vector space, but then this space must be M̃Q since dim M̃Q = 3. But we already know

that there exists a λ̃i ∈ Λχτ ′ such that λ̃i(b(τ ′)) = 1. By the definition of N (τ ′, τ), all vectors

from SpanQ(N (τ ′, τ)) vanish on b(τ ′), so this λ̃i cannot be in SpanQ(N (τ ′, τ)). Therefore,

SpanQ(Λχτ ′) = M̃Q.

Corollary 5.8. If χ = aχ0, a ∈ Z, a 6= 0, then Λχ,1 ⊗Z C can be written as follows:
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5 Connections between T 1(X)0 and graded components of T 1 of toric varieties

1. If a = 1, then

Λχ,1 ⊗Z C =

e+(τ)⊕
i=1

SpanQ(N (E+
i (τ), τ))⊗Q C.

2. If a ≥ 2, then

Λχ,1 ⊗Z C =

e+(τ)⊕
i=1

M̃Q ⊗Q C.

3. If a = −1, then

Λχ,1 ⊗Z C =

e−(τ)⊕
i=1

SpanQ(N (E−i (τ), τ))⊗Q C.

4. If a ≤ −2, then

Λχ,1 ⊗Z C =

e−(τ)⊕
i=1

M̃Q ⊗Q C.

These lemmas also enable us to describe Λχ,0 explicitly:

Corollary 5.9. If χ = aχ0, a ∈ Z, a 6= 0, then Λχ,0 ⊗Z C can be written as follows:

1. If a = 1, then

Λχ,0 ⊗Z C = SpanQ

e+(τ)⋃
i=1

N (E+
i (τ), τ)

⊗Q C.

2. If a ≥ 2, then
Λχ,0 ⊗Z C = M̃Q ⊗Q C.

3. If a = −1, then

Λχ,0 ⊗Z C = SpanQ

e−(τ)⋃
i=1

N (E−i (τ), τ)

⊗Q C.

4. If a ≤ −2, then
Λχ,0 ⊗Z C = M̃Q ⊗Q C.

Now we have to find ker((Λχ,1 ⊗Z C)∗ → (Λχ,2 ⊗Z C)∗)), where χ is a multiple of χ0. To
compute this kernel, we need some information about Λχ,2. First, let us make the following
observation. An element of (Λχ,2 ⊗Z C)∗ can be written as a sequence (a1, . . . , ae(τ)), where
ai ∈ (Span

M̃
(ΛχFi(τ)) ⊗Z C)∗. In particular, the image of an element of (Λχ,1 ⊗Z C)∗ can be

written in this form. Consider an entry ai such that ∂Fi(τ) consists only of edges such that
SpanQ(Λχτ ′) = 0. Observe that in this case ai = 0 since in this case ai is the difference of
two elements of two vector spaces, and each of this vector spaces has dimension 0. So, it is
sufficient to consider only the facets whose boundary contains at least one edge τ ′ such that
SpanQ(Λχτ ′) 6= 0. Using Corollary 5.8, we can say that if χ = aχ0, where a > 0 (resp. a < 0),
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then it is sufficient to consider only the facets of τ whose boundary contains at least one positive
(resp. negative) edge. These are exactly the facets we have denoted by F+

0 (τ), . . . ,F+
e+(τ)

(τ)

(resp. by F−0 (τ), . . . ,F−
e−(τ)

(τ)).

Lemma 5.10. If χ = aχ0, where a > 0, then SpanQ(Λχ
F+
i (τ)

) = 0 for i = 0 and i = e+(τ).

Proof. Let us consider the case i = 0, the other case is completely similar. By the definition
of F+

0 (τ), its boundary consists of E+
1 (τ), which is a positive edge, and another edge τ ′, which

is nonpositive. Hence, by Lemma 5.3, Λχτ ′ = ∅, so Λχ
F+

0 (τ)
= Λχτ ′ ∩ Λχ

E+
1 (τ)

= ∅ as well, and

SpanQ(Λχ
F+

0 (τ)
) = 0.

Lemma 5.11. If χ = aχ0, where a < 0, then SpanQ(Λχ
F−i (τ)

) = 0 for i = 0 and i = e−(τ).

Proof. The proof here is again completely similar to the proof of the previous lemma, we omit
the details.

To understand the behavior of Λχ
F+
i (τ)

, where 1 ≤ i ≤ e+(τ) − 1, (resp. of Λχ
F−i (τ)

, where

1 ≤ i ≤ e−(τ) − 1) for degrees χ = aχ0 with a > 0 (resp. a < 0), we start with the following
lemma.

Lemma 5.12. Let N be a two-dimensional lattice, and let M be its dual lattice. Let a1, a2 ∈ N
and χ ∈ M be such that χ(a1) = χ(a2) = 1 and a1 6= a2. Then a1 and a2 generate N ⊗Z Q as
a Q-vector space.

Denote the primitive lattice point on the ray {χ′ ∈ M : χ′(a1) > 0, χ′(a2) = 0} by χ1.
Similarly, denote by χ2 the primitive lattice point on the ray {χ′ ∈M : χ′(a1) = 0, χ′(a2) > 0}

Then χ1(a1) = χ2(a2) = |a1 − a2|. The sets

Λχ,a1,a2,b{χ′ ∈M : χ′(a1) ≥ 0, χ′(a2) ≥ 0, χ′(a1) < b, χ′(a2) < b}

for b ∈ N behave as follows:

1. If 0 < b ≤ |a1 − a2|, then Λχ,a1,a2,b is the set of all χ′ of the form χ′ = b′χ, 0 ≤ b′ < b.

2. If b > |a1 − a2|, then Λχ,a1,a2,b contains χ1 and χ2.

Proof. Consider the Q-linear span of a1 and a2 in N ⊗Z Q. Since χ(a1) 6= 0 and χ(a2) 6= 0,
this linear span can be one-dimensional only if a1 is a Q-multiple of a2. But in this case, since
χ(a1) = χ(a2) 6= 0, a1 and a2 must coincide, and this is a contradiction.

Denote k = |a1 − a2| and denote a′ = (1− 1/k)a1 + (1/k)a2. Then a′ ∈ N , and a′ − a1 is a
primitive lattice vector. Hence, there exists a function χ′′ ∈M such that χ′′(a′−a1) = 1. Since
χ(a1) = χ(a2) = 1, we also have χ(a′) = 1. Consider the following functions χ′′′i (i = 1, 2):
χ′′′i = χ′′ − χ′′(ai)χ. We have χ′′′i (ai) = χ′′(ai)− χ′′(ai)χ(ai) = 0, so χ′′′1 is a multiple of χ2 and
χ′′′2 is a multiple of χ1, since χ1 and χ2 are primitive vectors on the corresponding rays.

We also have χ′′′1 (a2) = χ′′′1 (a1) +χ′′′1 (a2− a1) = kχ′′′1 (a′− a1) = k(χ′′(a′− a1)−χ′′(a1)χ(a′−
a1)) = k(1 − χ′′(a1)(1 − 1)) = k and χ′′′2 (a1) = χ′′′2 (a2) − χ′′′2 (a2 − a1) = −kχ′′′2 (a′ − a1) =
−k(χ′′(a′ − a′1) − χ′′(a2)χ(a′ − a1)) = −k(1 − χ′′(a1)(1 − 1)) = −k. On the other hand,
χ2(a2) = χ2(a1)+χ2(a2−a1) = kχ2(a′−a1) and χ1(a1) = χ1(a2)−χ1(a2−a1) = −kχ1(a′−a1).
Hence, χ1(a1) is a multiple of k = χ′′′2 (a1) and χ2(a2) is a multiple of k = −χ′′′1 (a2). Recall that
χ′′′1 is a multiple of χ2 and χ′′′2 is a multiple of χ1. Summarizing, we conclude that χ1 = ±χ′′′2
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5 Connections between T 1(X)0 and graded components of T 1 of toric varieties

and χ2 = ±χ′′′1 . But then χ1(a1) = ±χ′′′2 (a1) = ±k and χ2(a2) = ±χ′′′1 (a2) = ±k. Since
χ1(a1) > 0 and χ2(a2) > 0 by the definitions of χ1 and χ2, we have χ1(a1) = χ2(a2) = k.

Now fix some b ∈ N and consider the set

Λχ,a1,a2,b = {χ′ ∈M : χ′(a1) ≥ 0, χ′(a2) ≥ 0, χ′(a1) < b, χ′(a2) < b}.

If b > |a1 − a2|, then it is already clear that Λχ,a1,a2,b contains χ1 and χ2 since χ1(a1) =
|a1 − a2|, χ1(a2) = 0, χ1(a2) = 0, and χ2(a2) = |a1 − a2|. So suppose that b ≤ |a1 − a2|. In
this case it is also clear that b′χ ∈ Λχ,a1,a2,b for 0 ≤ b′ < b since χ(a1) = χ(a2) = 1.

Suppose that χ′ ∈ Λχ,a1,a2,b. Without loss of generality, χ′(a1) ≥ χ′(a2). Consider χ′′ =
χ′ − χ′(a2)χ. We have χ′′(a1) = χ′(a1) − χ′(a2)χ(a1) = χ′(a1) − χ′(a2) ≥ 0 and χ′′(a2) =
χ′(a2) − χ′(a2)χ(a2) = 0. So, χ′′ is a lattice point on the (closed) ray {χ′′′ ∈ M : χ′′′(a1) ≥
0, χ′′′(a2) = 0}. But we already know that the primitive lattice vector on this ray is χ1,
so χ′′ is a (possibly zero) integer multiple of χ1. If χ′(a1) > χ′(a2), then χ′′ 6= 0, and we
have a contradiction with χ1(a1) = |a1 − a2| since χ′(a1) < b ≤ |a1 − a2|, χ′(a2) ≥ 0, and
χ′′(a1) = χ′(a1) − χ′(a2). If χ′(a1) = χ′(a2), then we see that χ′ and χ′(a1)χ take the same
values on a1 and a2. Since a1 and a2 Q-generate N ⊗Z Q, we can conclude that χ′ = χ′(a1)χ
as desired.

Lemma 5.13. Let Fi(τ) be facet of τ , and let Ej1(τ) be an edge of τ on the boundary of
Fi(τ). Let Ej2(τ) be the other edge on the boundary of Fi(τ). Suppose that we have a degree

χ ∈ SpanQ(N (Ej1(τ), τ)) ∩ M̃ such that χ(b(Ej2(τ))) > 0.

Then there exists a ∈ N such that χ+ ab(N (Fi(τ), τ)) ∈ N (Ej1(τ), τ).

Proof. Let Fk(τ) be the facet of τ such that ∂N (Ej1(τ), τ) = N (Fi(τ), τ) ∪ N (Fk(τ), τ).
In other words, Fi(τ) and Fk(τ) are the two facets whose boundary contains Ej1(τ). Then
N (Ej1(τ), τ) is determined inside SpanQ(N (Ej1(τ), τ)) by two inequalities corresponding to
N (Fi(τ), τ) and N (Fk(τ), τ). For an inequality corresponding to N (Fi(τ), τ), we can take
the restriction to SpanQ(N (Ej1(τ), τ)) of the inequality in the definition of τ∨ corresponding
to the other facet of τ ′ whose boundary contains N (Fi(τ), τ). This other facet is N (Ej2(τ),),
and the corresponding inequality says that if χ′ ∈ N (Ej1(τ), τ), then χ′ takes nonnegative
values on Ej2(τ), in other words, χ′(b(Ej2(τ))) ≥ 0.

Similarly, for an inequality corresponding to N (Fk(τ), τ), we can take the restriction
to SpanQ(N (Ej1(τ), τ)) of the inequality corresponding to the facet of τ∨ different from
N (Ej1(τ), τ) and whose boundary contains N (Fk(τ), τ). This facet is the normal facet
of the edge on the boundary of Fk(τ) different from Ej1(τ). Denote it by Ej3(τ) so that
∂Fk(τ) = Ej1(τ) ∪ Ej3(τ). Then the inequality corresponding to N (Ej3(τ), τ) in the defini-
tion of τ∨ says that if χ′ ∈ τ∨, then χ′ takes nonnegative values on Ej3(τ), in other words,
χ′(b(Ej3(τ))) ≥ 0. Therefore, N (Ej1(τ), τ) is determined inside SpanQ(N (Ej1(τ), τ)) by the
restrictions to SpanQ(N (Ej1(τ), τ)) of the inequalities χ′(b(Ej2(τ))) ≥ 0 and χ′(b(Ej3(τ))) ≥ 0

for χ′ ∈ M̃Q.

Therefore, if χ(b(Ej3(τ))) ≥ 0, then we can take a = 0. Suppose that χ(b(Ej3(τ))) < 0.

We chose Fk(τ) so that
N (Fi(τ), τ) 6= N (Fk(τ), τ),

and we also know that

N (Ej3(τ), τ) ∩N (Ej1(τ), τ) = N (Fk(τ), τ),
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so
b(N (Fi(τ), τ)) /∈ N (Ej3(τ), τ).

Hence,
b(N (Fi(τ), τ))(b(Ej3(τ))) > 0.

Then there exists a ∈ N such that

ab(N (Fi(τ), τ))(b(Ej3(τ))) > −χ(b(Ej3(τ))).

In other words,
ab(N (Fi(τ), τ))(b(Ej3(τ))) + χ(b(Ej3(τ))) > 0.

We have
(ab(N (Fi(τ), τ)) + χ)(b(Ej3(τ))) > 0.

We also have
(b(N (Fi(τ), τ)))(b(Ej2(τ))) = 0

since b(Ej2(τ)) ∈ Fi(τ). Hence,

(ab(N (Fi(τ), τ)) + χ)(b(Ej2(τ))) = χ(b(Ej2(τ))) > 0

by assumption, and
ab(N (Fi(τ), τ)) + χ ∈ N (Ej1(τ), τ) ∩ M̃.

Lemma 5.14. Let F+
i (τ) (resp. F−i (τ)), where 1 ≤ i ≤ e+(τ) − 1 (resp. 1 ≤ i ≤ e−(τ) − 1),

be a facet of τ . Then

b(N (F+
i (τ), τ)) + χ0 ∈ τ∨ (resp. b(N (F−i (τ), τ))− χ0 ∈ τ∨).

Proof. Since
b(N (F+

i (τ), τ)) ∈ τ∨ (resp. b(N (F−i (τ), τ)) ∈ τ∨),

it takes nonnegative values on the edges of τ . Since

∂F+
i (τ) = E+

i (τ) ∪E+
i+1(τ) (resp. ∂F−i (τ) = E−i (τ) ∪E−i+1(τ)),

the only two edges of τ where

b(N (F+
i (τ), τ)) (resp. b(N (F−i (τ), τ)))

vanishes are E+
i (τ) and E+

i+1(τ) (resp. E−i (τ) and E−i+1(τ)). But both of these edges are
positive (resp. negative), so if Ej(τ) is one of these two edges, then

χ0(b(Ej(τ))) = 1 (resp. χ0(b(Ej(τ))) = −1).

Hence,
(b(N (F+

i (τ), τ)) + χ0)(b(Ej(τ))) = 1

(resp. (b(N (F−i (τ), τ))− χ0)(b(Ej(τ))) = 1, observe the − sign in front of χ0)

for Ej(τ) = E+
i (τ) or Ej(τ) = E+

i+1(τ) (resp. Ej(τ) = E−i (τ) or Ej(τ) = E−i+1(τ)).
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5 Connections between T 1(X)0 and graded components of T 1 of toric varieties

Now suppose that Ej(τ) is another edge, i. e.

Ej(τ) /∈ ∂F+
i (τ) (resp. Ej(τ) /∈ ∂F−i (τ)).

Then
b(N (F+

i (τ), τ))(b(Ej(τ))) > 0 (resp. b(N (F−i (τ), τ))(b(Ej(τ))) > 0),

and, since b(N (F+
i (τ), τ)) (resp. b(N (F−i (τ), τ))) and b(Ej(τ)) are lattice points, we have

b(N (F+
i (τ), τ))(b(Ej(τ))) ≥ 1 (resp. b(N (F−i (τ), τ))(b(Ej(τ))) ≥ 1).

Now recall that if an edge of τ intersects one of the planes [χ0 = 1] and [χ0 = −1], then the
intersection point is a lattice point. This lattice point must be the primitive lattice vector on
this edge, otherwise χ0 would have taken a noninteger value at the primitive lattice vector.
Therefore, if Ej(τ) intersects one of the planes [χ0 = 1] and [χ0 = −1], then χ0(b(Ej(τ)))
can only equal 1 or −1. If Ej(τ) intersects none of these planes, then χ0 vanishes on Ej(τ)
everywhere, in particular χ0(b(Ej(τ))) = 0. Therefore, in all cases we have |χ0(b(Ej(τ)))| ≤ 1.
But then

(b(N (F+
i (τ), τ)) + χ0)(b(Ej(τ))) ≥ 0

(resp. (b(N (F−i (τ), τ))− χ0)(b(Ej(τ))) ≥ 0, now the sign in front of χ0 does not matter).

Summarizing, we see that if Ej(τ) is an arbitrary edge of τ , then

(b(N (F+
i (τ), τ)) + χ0)(b(Ej(τ))) ≥ 0 (resp. (b(N (F−i (τ), τ))− χ0)(b(Ej(τ))) ≥ 0).

Therefore,
b(N (F+

i (τ), τ)) + χ0 ∈ τ∨ (resp. b(N (F−i (τ), τ))− χ0 ∈ τ∨).

Proposition 5.15. Let F+
i (τ) (resp. F−i (τ)), where 1 ≤ i ≤ e+(τ)−1 (resp. 1 ≤ i ≤ e−(τ)−1),

be a facet of τ . Let χ = bχ0 (resp. χ = −bχ0), where b ∈ N.

1. If b = 1, then

SpanQ(Λχ
F+
i (τ)

) = SpanQ(N (F+
i (τ), τ)) (resp. SpanQ(Λχ

F−i (τ)
) = SpanQ(N (F−i (τ), τ))).

2. If |F+
i (τ) ∩ [χ0 = 1]| ≥ 2 (resp. |F−i (τ) ∩ [χ0 = −1]| ≥ 2) and 2 ≤ b ≤ |F+

i (τ) ∩ [χ0 = 1]|
(resp. 2 ≤ b ≤ |F−i (τ) ∩ [χ0 = −1]|), then

SpanQ(Λχ
F+
i (τ)

) = SpanQ(χ0,N (F+
i (τ), τ))

(resp. SpanQ(Λχ
F−i (τ)

) = SpanQ(χ0,N (F−i (τ), τ))).

3. If b > |F+
i (τ) ∩ [χ0 = 1]| (resp. b > |F−i (τ) ∩ [χ0 = −1]|), then SpanQ(Λχ

F+
i (τ)

) = M̃Q.

Proof. Again, the positive and the negative cases here are completely similar. This time let us
consider the negative case.

Consider the lattices
M = M̃/(M̃ ∩ SpanQ(N (F−i (τ), τ)))
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and
N = Ñ ∩ SpanQ(F−i (τ)).

By the definition of N (F−i (τ), τ), a function from M̃ vanishes on the whole N (which is a

saturated sublattice of Ñ by construction) if and only if this function is contained in M̃ ∩
SpanQ(N (F−i (τ), τ)). Therefore, M is the dual lattice of N , and the values of elements of M

at points from N are well-defined. We denote the class of a function χ′ ∈ M̃ in M by χ′.

Denote a1 = b(E−i (τ)), a2 = b(E−i+1(τ)). Recall that ∂F−i (τ) = E−i (τ)∪E−i+1(τ), so a1, a2 ∈
N . We have already seen that χ0(a1) = χ0(a2) = −1 and that

a1 = E−i (τ) ∩ [χ0 = −1], a2 = E−i+1(τ) ∩ [χ0 = −1].

So, a1, a2, and −χ0 satisfy the hypothesis of Lemma 5.12, and |a1 − a2| = |F−i (τ) ∩ [χ0 = −1]|.
Consider the set Λ−χ0,a1,a2,b from Lemma 5.12. It follows directly from the definitions of

Λ−χ0,a1,a2,b and of Λχ
F−i (τ)

that the image of Λχ
F−i (τ)

under the canonical projection M̃ → M

is contained in Λ−χ0,a1,a2,b. Moreover, if λ̃j is an element of the Hilbert basis of τ∨ such that

χ′ = λ̃j ∈ Λ−χ0,a1,a2,b, then

λ̃j(a1) = χ′(a1) < b = (−b) · (−1) = −bχ0(a1) = χ(a1),

so λ̃j ∈ Λχ
E−i (τ)

. Similarly,

λ̃j(a2) = χ′(a2) < b = (−b) · (−1) = −bχ0(a2) = χ(a2),

so λ̃j ∈ Λχ
E−i+1(τ)

. Hence,

λ̃j ∈ Λχ
E−i (τ)

∩ Λχ
E−i+1(τ)

= Λχ
F−i (τ)

.

Consider the case b = 1. Then by Lemma 5.12, Λ−χ0,a1,a2,b = {0}, and all elements of Λχ
F−i (τ)

are in ker(M̃ → M) = M̃ ∩ SpanQ(N (F−i (τ), τ)). On the other hand, since N (F−i (τ), τ) is a

face of τ∨, b(N (F−i (τ), τ)) is an element of the Hilbert basis of τ∨, b(N (F−i (τ), τ)) = λ̃j for

some j. As we have seen previously, this means that λ̃j ∈ Λχ
F−i (τ)

. Hence, SpanQ(Λχ
F−i (τ)

) =

SpanQ(N (F−i (τ), τ)).

Now suppose that |a1 − a2| ≥ 2 and 2 ≤ b ≤ |a1 − a2|. Then by Lemma 5.12, Λ−χ0,a1,a2,b is
contained in the line generated by −χ0. Hence, Λχ

F−i (τ)
is contained in the plane generated by

N (F−i (τ), τ) and −χ0. On the other hand, we already know that b(N (F−i (τ), τ)) is an element
of the Hilbert basis of τ∨, and, since it represents the zero class in M and 0 ∈ Λ−χ0,a1,a2,b, it

is also contained in Λχ
F−i (τ)

. By Lemma 5.14, χ′′ = b(N (F−i (τ), τ)) − χ0 ∈ τ∨. If χ′′ is not

an element of the Hilbert basis of τ∨, it can be decomposed into an integer positive linear
combination of elements of the Hilbert basis. Since χ′′(a1) = χ′′(a2) = 1, the elements of the
Hilbert basis present in this combination may only take values 0 or 1 at a1 and a2 (in arbitrary

order). But if there exists λ̃k such that λ̃k(a1) = 1 and λ̃k(a2) = 0, then λ̃k ∈ Λ−χ0,a1,a2,b, and

this is a contradiction with Lemma 5.12. Similarly, one cannot have λ̃k(a1) = 0 and λ̃k(a2) = 1.

Hence, there exist an element λ̃k of the Hilbert basis such that λ̃k(a1) = λ̃k(a2) = 1. By Lemma
5.12, a1 and a2 Q-generate N ⊗Z Q. Therefore, elements of M are determined by their values
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at a1 and a2, and λ̃k = −χ0 ∈ Λ−χ0,a1,a2,b. We already know that this means that λ̃k ∈ Λχ
F−i (τ)

.

Since λ̃k = −χ0,
−χ0 − λ̃k ∈ SpanQ(N (F−i (τ), τ)),

and λ̃k and N (F−i (τ), τ) together Q-generate the same plane as −χ0 and N (F−i (τ), τ) Q-
generate, i. e. they Q-generate SpanQ(χ0,N (F−i (τ), τ)). Therefore,

SpanQ(Λχ
F−i (τ)

) = SpanQ(χ0,N (F−i (τ), τ)).

Finally, let us consider the case b > |a1 − a2|. By Lemma 5.12, there exist χ1, χ2 ∈ Λ−χ0,a1,a2,b

such that χ1(a1) > 0, χ1(a2) = 0, χ2(a1) = 0, and χ2(a2) > 0. Pick arbitrary χ′1, χ
′
2 ∈ M̃ such

that χ′1 = χ1 and χ′2 = χ2. We have χ′1(a1) > 0, χ′1(a2) = 0, χ′2(a1) = 0, and χ′2(a2) > 0,
so, by the definitions of N (E−i (τ), τ) and of N (E−i+1(τ), τ), we have χ′1 ∈ N (E−i+1(τ), τ) and
χ′2 ∈ N (E−i (τ), τ). Therefore, we can apply Lemma 5.13 to the facet F−i (τ) of τ , to the edge
E−i+1(τ) of τ , and to the degree χ′1 and find another degree χ′′1 such that χ′′1 − χ′1 is a multiple
of b(F−i (τ)) and χ′′1 ∈ N (E−i+1(τ), τ). Similarly, by Lemma 5.13 applied to F−i (τ), to E−i (τ),
and to χ′2, there exists a degree χ′′2 ∈ N (E−i (τ), τ) such that χ′′2−χ′2 is a multiple of b(F−i (τ)).

In other words, χ′′1 = χ′1 = χ1 and χ′′2 = χ′2 = χ2.

Now we have degrees χ′′1, χ
′′
2 ∈ τ∨ satisfying the following conditions: χ′′1(a2) = χ′′2(a1) = 0,

0 < χ′′1(a1) = χ1(a1) < b, 0 < χ′′2(a2) = χ2(a2) < b. Decompose χ′′1 into a positive integer linear

combination of λ̃j . The elements λ̃j of the Hilbert basis occurring in this decomposition satisfy

λ̃j(a2) = 0 and 0 ≤ λ̃j(a1) < b, and for at least one of them we have λ̃j(a1) > 0. Similarly,

there exists λ̃k satisfying λ̃k(a1) = 0 and 0 < λ̃k(a2) < b. We can write this as

λ̃j(a1) < b = (−b) · (−1) = −bχ0(a1) = χ(a1)

and
λ̃j(a2) = 0 < b = (−b) · (−1) = −bχ0(a2) = χ(a2),

so λ̃j ∈ Λχ
F−i (τ)

. Similarly, λ̃k ∈ Λχ
F−i (τ)

. Finally, as we saw previously, b(N (F−i (τ), τ)) is an

element of the Hilbert basis, its class in M is 0 ∈ Λ−χ0,a1,a2,b, so

b(N (F−i (τ), τ)) ∈ Λχ
F−i (τ)

.

Now we claim that λ̃j , λ̃k, and b(N (F−i (τ), τ)) Q-generate M̃Q. Indeed, λ̃j(a1) 6= 0, while

b(N (F−i (τ), τ))(a1) = 0

by the definition of N (F−i (τ), τ). Hence, λ̃j and b(N (F−i (τ), τ)) are linearly indepen-

dent and Q-generate SpanQ(N (E−i+1(τ), τ)). Similarly, λ̃k and b(N (F−i (τ), τ)) Q-generate
SpanQ(N (E−i (τ), τ)). The linear span of these two planes can be two-dimensional only if these
two planes coincide, but N (F−i (τ), τ) and N (E−i+1(τ), τ) are two different facets of τ∨, so

SpanQ(λ̃j , λ̃k,b(N (F−i (τ), τ))) = M̃Q,

and
SpanQ(Λχ

F−i (τ)
) = M̃Q.
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Corollary 5.16. If χ = χ0 (resp. χ = −χ0), then ker((Λχ,1 ⊗Z C)∗ → (Λχ,2 ⊗Z C)∗) equals
the space of sequences of the form (g1, . . . , ge+(τ)) (resp. (g1, . . . , ge−(τ))), where gi is a linear

function on SpanQ(N (E+
i (τ), τ))⊗Q C (resp on SpanQ(N (E−i (τ), τ))⊗Q C), and where

gi|SpanQ(N (F+
i (τ),τ))⊗QC = gi+1|SpanQ(N (F+

i (τ),τ))⊗QC

for 1 ≤ i < e+(τ) (resp.

gi|SpanQ(N (F−i (τ),τ))⊗QC = gi+1|SpanQ(N (F−i (τ),τ))⊗QC

for 1 ≤ i < e−(τ)).

Proof. The claim follows directly from Corollary 5.8, Lemma 5.10, Lemma 5.11, and Proposition
5.15.

Corollary 5.17. If χ = aχ0 (resp. χ = −aχ0), where a ∈ N, a ≥ 2, then ker((Λχ,1 ⊗Z C)∗ →
(Λχ,2 ⊗Z C)∗) equals the space of sequences of the form (g1, . . . , ge+(τ)) (resp. (g1, . . . , ge−(τ))),

where gi are linear functions on M̃Q⊗Q C satisfying the following conditions for 1 ≤ i < e+(τ)
(resp. for 1 ≤ i < e−(τ)):

1. If b ≤ |F+
i (τ) ∩ [χ0 = 1]| (resp. b ≤ |F−i (τ) ∩ [χ0 = −1]|), then

gi|SpanQ(χ0,N (F+
i (τ),τ))⊗QC = gi+1|SpanQ(χ0,N (F+

i (τ),τ))⊗QC

(resp.
gi|SpanQ(χ0,N (F−i (τ),τ))⊗QC = gi+1|SpanQ(χ0,N (F−i (τ),τ))⊗QC

).

2. If b > |F+
i (τ) ∩ [χ0 = 1]| (resp. b > |F−i (τ) ∩ [χ0 = −1]|), then gi = gi+1.

Proof. The claim follows directly from Corollary 5.8, Lemma 5.10, Lemma 5.11, and Proposition
5.15.

Now we construct a less invariant, but more explicit vector space isomorphic to ker((Λχ,1⊗Z
C)∗ → (Λχ,2 ⊗Z C)∗). Namely, denote by ∇2,1,1 (resp. by ∇2,1,−1) the space of se-
quences of the form (g′0, . . . , g

′
e+(τ)) (resp. (g′0, . . . , g

′
e−(τ))), where g′i is a linear function on

SpanQ(N (F+
i (τ), τ)) ⊗Q C (resp. on SpanQ(N (F−i (τ), τ)) ⊗Q C). For a ∈ N, a ≥ 2, de-

note by ∇2,1,a (resp. by ∇2,1,−a) the space of sequences of the form (g′1, . . . , g
′
e+(τ)) (resp.

(g′1, . . . , g
′
e−(τ))), where

1. g′1 is a linear function on M̃Q ⊗Q C.

2. If 1 < i ≤ e+(τ) (resp. 1 < i ≤ e−(τ)) and a ≤ |Ei−1(∆0)| (resp. a ≤ |Ei−1(∆∞)|), then
g′i is a linear function on

(M̃Q ⊗Q C)/(SpanQ(χ0,N (F+
i−1(τ), τ))⊗Q C)

(resp. on (M̃Q ⊗Q C)/(SpanQ(χ0,N (F−i−1(τ), τ))⊗Q C)).
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3. If 1 < i ≤ e+(τ) (resp. 1 < i ≤ e−(τ)) and a > |Ei−1(∆0)| (resp. a > |Ei−1(∆∞)|), then
g′i = 0.

Lemma 5.18. If χ = χ0 (resp. χ = −χ0), then ker((Λχ,1⊗ZC)∗ → (Λχ,2⊗ZC)∗) is isomorphic
to ∇2,1,1 (resp. to ∇2,1,−1). After this identification, the map (Λχ,0 ⊗Z C)∗ → (Λχ,1 ⊗Z C)∗ (in
fact, the map (Λχ,0⊗Z C)∗ → ker((Λχ,1⊗Z C)∗ → (Λχ,2⊗Z C)∗)) becomes the following map: it
maps g ∈ (Λχ,0⊗ZC)∗ to the sequence of restrictions of g to the lines SpanQ(N (F+

i (τ), τ))⊗QC
for 0 ≤ i ≤ e+(τ) (resp. SpanQ(N (F−i (τ), τ))⊗Q C for 0 ≤ i ≤ e−(τ)).

Proof. Again, the positive and the negative cases are completely analogous, so we consider only
one of them, for example, the case when χ = −χ0.

First, we should note that a function from (Λχ,0 ⊗Z C)∗ is really defined on all lines
SpanQ(N (F−i (τ), τ))⊗QC (and the restriction mentioned in the statement of the Lemma really
exists) by Lemma 5.9 since each normal cone N (F−i (τ), τ) (for 0 ≤ i ≤ e−(τ)) is contained in
(the boundary of) a cone N (E−j (τ), τ) for some j, 1 ≤ j ≤ e−(τ).

The isomorphism is constructed as follows. Given a sequence

(g1, . . . , ge−(τ)) ∈ ker((Λχ,1 ⊗Z C)∗ → (Λχ,2 ⊗Z C)∗),

we set
g′0 = g1|SpanQ(N (F−0 (τ),τ))⊗QC

and
g′i = gi|SpanQ(N (F−i (τ),τ))⊗QC

for 0 < i ≤ e−(τ) and say that (g1, . . . , ge−(τ)) 7→ (g′0, . . . , g
′
e−(τ)). Observe that by Corollary

5.16, we also have
g′i−1 = gi|SpanQ(N (F−i−1(τ),τ))⊗QC

for 0 < i ≤ e−(τ). Since SpanQ(N (E−i (τ), τ)) ⊗Q C is a two-dimensional space, and
SpanQ(N (F−i−1(τ), τ))⊗Q C and SpanQ(N (F−i (τ), τ))⊗Q C are its noncoinciding one-dimen-
sional subspaces, a linear function on SpanQ(N (E−i (τ), τ))⊗QC is uniquely determined by its
restrictions to SpanQ(N (F−i (τ), τ))⊗QC and SpanQ(N (E−i (τ), τ))⊗QC, and these restrictions
can be arbitrary linear functions. Therefore, the map we have constructed is really an isomor-
phism. The correctness of the explicit description of the map (Λχ,0⊗ZC)∗ → ∇2,1,−1 in the state-
ment of the lemma follows directly from the definition of the map (Λχ,0⊗ZC)∗ → (Λχ,1⊗ZC)∗

and of the isomorphism between ker((Λχ,1 ⊗Z C)∗ → (Λχ,2 ⊗Z C)∗) and ∇2,1,−1.

Lemma 5.19. If χ = aχ0 (resp. χ = −aχ0), where a ∈ N, a ≥ 2, then ker((Λχ,1 ⊗Z C)∗ →
(Λχ,2 ⊗Z C)∗) is isomorphic to ∇2,1,a (resp. to ∇2,1,−a). After this identification, the map

(Λχ,0⊗ZC)∗ → (Λχ,1⊗ZC)∗ becomes the following map: it maps g ∈ (Λχ,0⊗ZC)∗ = (M̃⊗QC)∗

to (g, 0, . . . , 0).

Proof. This time let us consider the case χ = aχ0, the other case is completely similar.

First, let us construct a map from ker((Λχ,1 ⊗Z C)∗ → (Λχ,2 ⊗Z C)∗) to ∇2,1,a. Given a
sequence

(g1, . . . , ge+(τ)) ∈ ker((Λχ,1 ⊗Z C)∗ → (Λχ,2 ⊗Z C)∗),

we set
g′1 = g1

100



and
g′i = gi − gi−1

for 1 < i ≤ e+(τ). By Corollary 5.17,

gi|SpanQ(χ0,N (F+
i−1(τ),τ))⊗QC = gi−1|SpanQ(χ0,N (F+

i−1(τ),τ))⊗QC

if a ≤ |F+
i (τ) ∩ [χ0 = 1]|, and gi = gi−1 if a > |F+

i (τ) ∩ [χ0 = 1]|. (here 1 < i ≤ e+(τ). Recall
that Ei(∆0) = F+

i (τ) ∩ [χ0 = 1]. So, we can say that

g′i|SpanQ(χ0,N (F+
i−1(τ),τ))⊗QC = (gi − gi−1)|SpanQ(χ0,N (F+

i−1(τ),τ))⊗QC = 0

if a ≤ |Ei−1(∆0)|, and g′i = gi − gi−1 = 0 if a > |Ei−1(∆0)|. Therefore, (g′1, . . . , g
′
e+(τ)) really

defines an element of ∇2,1,a, and we say that (g1, . . . , ge+(τ)) 7→ (g′1, . . . , g
′
e+(τ)).

The inverse map can be constructed by induction on i. Let (g′1, . . . , g
′
e+(τ)) ∈ ∇2,1,a. First,

set g1 = g′1. Now suppose that we already have gi−1 ∈ (M̃Q ⊗Q C)∗. If a > |Ei−1(∆0)|, set

gi = gi−1. Otherwise, g′i is a linear function on (M̃Q ⊗Q C)/(SpanQ(χ0,N (F−i−1(τ), τ))⊗Q C).

It gives rise to a function on M̃Q⊗Q C, which vanishes on SpanQ(χ0,N (F−i−1(τ), τ))⊗Q C and
which we also denote by g′i. Set gi = gi−1 + g′i. Then

(gi − gi−1)|SpanQ(χ0,N (F+
i−1(τ),τ))⊗QC = 0.

Now we have a sequence (g1, . . . , ge+(τ)) of functions on M̃Q ⊗Q C, and by Corollary 5.17,
(g1, . . . , ge+(τ)) ∈ ker((Λχ,1 ⊗Z C)∗ → (Λχ,2 ⊗Z C)∗). So, we have constructed a map ∇2,1,a →
ker((Λχ,1⊗Z C)∗ → (Λχ,2⊗Z C)∗). It is clear from the construction that the two maps we have
are mutually inverse.

By Corollary 5.9, (Λχ,0 ⊗Z C)∗ = (M̃ ⊗Q C)∗. Again, it is clear from the definition of the
map (Λχ,0 ⊗Z C)∗ → (Λχ,1 ⊗Z C)∗ and from the construction of the isomorphism between
ker((Λχ,1 ⊗Z C)∗ → (Λχ,2 ⊗Z C)∗) and ∇2,1,a that after this identification ker((Λχ,1 ⊗Z C)∗ →
(Λχ,2 ⊗Z C)∗) ∼= ∇2,1,a the map (Λχ,0 ⊗Z C)∗ → (Λχ,1 ⊗Z C)∗ becomes the map(

g ∈ (M̃ ⊗Q C)∗
)
7→
(

(g, 0, . . . , 0) ∈ ∇2,1,a

)
.

Corollary 5.20. If χ = χ0 (resp. χ = −χ0) and e+(τ) = 1 (resp. e+(τ) = 1), then
dimT 1

−χ(X) = 0.

If χ = χ0 (resp. χ = −χ0) and e+(τ) ≥ 2 (resp. e+(τ) ≥ 2), then dimT 1
−χ(X) = e+(τ)− 2

(resp. dimT 1
−χ(X) = e−(τ)− 2).

Proof. We consider the case χ = χ0, the other case is completely similar. Note that
dim SpanQ(N (F+

i (τ), τ)) ⊗Q C = 1, so dim∇2,1,1 = e+(τ) + 1. Also note that it follows
from the description of Span

M̃
(Λ0,χ)⊗ZC in Corollary 5.9 and from Lemma 5.18 that the map

(Λχ,0 ⊗Z C)∗ → ∇2,1,1 is in fact an embedding, so dimT 1
χ(X) = dim∇2,1,1 − dim(Λχ,0 ⊗Z C)∗.

Now, since N (F+
i (τ),) for different i are different edges of τ∨, we have dim(Λχ,0 ⊗Z C)∗ =

min(3, e+(τ)+1). Thus, dim(Λχ,0⊗ZC)∗ = 2 if e+(τ) = 1 and dim(Λχ,0⊗ZC)∗ = 3 if e+(τ) ≥ 2.
Finally, we have dim∇2,1,1 = 1+1−2 = 0 if e+(τ) = 1 and dim∇2,1,1 = e+(τ)+1−3 = e+(τ)−2
if e+(τ) ≥ 2.
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Proposition 5.21. If χ = aχ0 (resp. χ = −aχ0), where a ∈ N, a ≥ 2, then dimT 1
−χ(X) equals

the number of indices i such that 1 ≤ i < e+(τ) (resp. 1 ≤ i < e−(τ)) and a ≤ |Ei(∆0)| (resp.
a ≤ |Ei(∆∞)|).

Proof. This follows directly from the definition of ∇2,1,a and Lemma 5.19.

Now it is already easy to deduce Theorem 4.32 in the case when X is in fact toric from
Theorem 5.2. First, let us compute the sum

∞∑
a=2

dimT 1
−aχ0

(X).

By Proposition 5.21, this sum can be decomposed into e+(τ) − 1 = v(∆0) − 1 sums (indexed
by i = 1, . . . , e+(τ) − 1), and each of these sums contributes 1 for 2 ≤ a ≤ |Ei(∆0)| and 0 for
larger values of a. Therefore, the ith of these sums equals |Ei(∆0)| − 1, and we have

∞∑
a=2

dimT 1
−aχ0

(X) =

v(∆0)−1∑
i=1

(|Ei(∆0)| − 1).

Observe that this sum vanishes if v(∆0) = 1 (i. e. if 0 ∈ P1 is a removable special point).
Similarly,

−∞∑
a=−2

dimT 1
−aχ0

(X) =

v(∆∞)−1∑
i=1

(|Ei(∆∞)| − 1).

And again, this sum vanishes if v(∆∞) = 1, i. e. if ∞ ∈ P1 is a removable special point. Now,
by Corollary 5.20, dimT 1

−χ0
(X) = 0 if 0 ∈ P1 is a removable special point, and dimT 1

−χ0
(X) =

v(∆0) − 2 otherwise. Similarly, dimT 1
χ0

(X) = 0 if ∞ ∈ P1 is a removable special point,
dimT 1

−χ0
(X) = v(∆∞)− 2 otherwise. Hence, if 0 ∈ P1 is a removable special point, then

∞∑
a=1

dimT 1
−aχ0

(X) = 0,

and if 0 ∈ P1 is an essential special point, then

∞∑
a=1

dimT 1
−aχ0

(X) = v(∆0)− 2 +

v(∆0)−1∑
i=1

(|Ei(∆0)| − 1)

= −1 + v(∆0)− 1 +

v(∆0)−1∑
i=1

(|Ei(∆0)| − 1) = −1 +

v(∆0)−1∑
i=1

(|Ei(∆0)|).

Similarly, if ∞ ∈ P1 is a removable special point, then

−∞∑
a=−1

dimT 1
−aχ0

(X) = 0,
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and if ∞ ∈ P1 is an essential special point, then

−∞∑
a=−1

dimT 1
−aχ0

(X) = −1 +

v(∆∞)−1∑
i=1

(|Ei(∆∞)|).

Finally, recall that by Corollary 5.4, dimT 1
0∈M̃

(X) = 0, and we get the formula from Theorem
4.32.
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6 A formally versal T -equivariant deformation
over affine space

6.1 Construction of the deformation

In this section we construct a formally versal T -equivariant deformation of a T -variety X over
an affine space used as the parameter space. The Kodaira-Spencer map of this deformation
maps the tangent space to this parameter space surjectively onto the zeroth graded component
of T 1(X). These properties of the deformation will enable us to prove that the deformation
has some good versality properties, namely so-called formal versality.

We maintain the notations and the assumptions from the Introduction. Recall that we have
a polyhedral divisor D =

∑r
i=1 pi ⊗ ∆i, where ∆i ⊂ NQ are polyhedra, and all their vertices

are lattice points. From now on, without loss of generality, we may and will suppose that the
point with coordinate ∞ on P1 is a removable special point, pr = ∞. Recall that if we add
a principal polyhedral divisor to D , the T -variety will not change. So, after we add several
principal polyhedral divisors, each of which has two (removable) special points, pi (1 ≤ i < r)
and ∞, to D , we may suppose that Vp,1 = 0 (the origin in N) for all special points p except
∞. In other words, Ep,0 is always a ray, which begins at the origin.

Remark 6.1. After these changes, all special points except pr will be either essential or trivial.

Lemma 6.2. If ∆ ⊂ NQ is a polyhedron with tail cone σ and such that V1(∆) = 0, then its
individual evaluation function takes only nonpositive values.

Proof. It is clear that if V1(∆) = 0, then σ ⊆ ∆.

Lemma 6.3. In the assumptions stated above, the individual evaluation function of ∆pr takes
only nonnegative values and takes positive values on the interior of σ∨. Therefore, ∆pr ⊂ σ.

Proof. If χ ∈ σ∨ ∩M , then deg D(χ) =
∑r

i=1 eval∆pi
(χ) ≥ 0 since D(χ) is semiample. Since

eval∆pi
(χ) ≤ 0 for 1 ≤ i < r, eval∆pr

(χ) ≥ 0. If χ, moreover, is in the interior of σ∨ then
deg D(χ) > 0 since D(χ) is big. So, eval∆pr

(χ) > 0.

Denote ∆ =
∑r

i=1 ∆pi .

Remark 6.4. If χ ∈ σ∨∩M , then deg D(χ) = eval∆(χ) and dim Γ(P1,O(D(χ))) = eval∆(χ)+
1.

Definition 6.5. We call a polyhedron Ξ ⊂ NQ with tail cone σ primitive if:

1. v(Ξ) = 2.

2. |E1(Ξ)| = 1.

3. V1(Ξ) = 0 ∈ N .
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6.1 Construction of the deformation

Figure 6.1: An example of a primitive polyhedron.

In other words, a primitive polyhedron is the Minkowski sum of σ and a specially chosen
primitive lattice segment. One of the endpoints of the segment should be the origin, but this
segment cannot be chosen totally arbitrarily, otherwise we could also obtain a polyhedron Ξ
with V2(Ξ) = 0 ∈ N , not V1(Ξ) = 0 ∈ N , or we could also get σ itself, if the segment is inside
σ. Fig. 6.1 shows an example of a primitive polyhedron.

Remark 6.6. If Ξ ⊂ NQ is a primitive polyhedron with tail cone σ, then its individual evalu-
ation function takes only nonpositive values.

Clearly, if ∆ ⊂ NQ is a lattice polyhedron with tail cone σ and with V1(∆) = 0, then ∆
can be decomposed into a Minkowski sum of several primitive polyhedra (each of them can
be taken several times). Decompose each polyhedron ∆pi (1 ≤ i < r) into a sum of primitive
polyhedra. Denote by Ξ1, . . . ,ΞR all non-isomorphic primitive polyhedra we have. We have
∆pj =

∑
i ni,jΞi for 1 ≤ j < r and for some numbers ni,j ∈ Z≥0. Denote ki =

∑
j ni,j . In other

words, ki is the total number of times when a polyhedron Ξi occurs in the decomposition of
some of the polyhedra ∆pj (for some j, 1 ≤ j < r) into a Minkowski sum of primitive polyhedra.

Remark 6.7. For each i (1 ≤ i ≤ R), the individual evaluation function of Ξi is linear on
each of the cones in the total normal fan of D .

Remark 6.8. ∆pr +
∑R

i=1 kiΞi =
∑r

i=1 ∆pi = ∆.

First, let us construct an affine variety S, which will be the total space of the deformation.
It will also be a variety with an action of a torus of dimension 2, and we use the general
construction of such varieties outlined in the Introduction. Consider a vector space V with
coordinates a1,0, . . . , a1,k1−1, a2,0, . . . , a2,k2−1, . . . , aR,0, . . . , aR,kR−1 Here we take ki coordinates
for each primitive polyhedron Ξi we have. Consider also a projective line P1 with coordinate
t0. Set Y = V ×P1. For divisors Zi (1 ≤ i ≤ R) we take the vanishing loci of the polynomials
tki0 +

∑ki−1
k=0 ai,kt

k
0 (these are polynomials in ki + 1 variables ai,0, . . . , ai,ki−1, t0, not just in one

variable t0). Consider one more divisor Z0 = {t0 = ∞}. Finally, for a polyhedral divisor we
take D = Z0 ⊗∆r +

∑R
i=1 Zi ⊗ Ξi.

It is not very easy to check directly that this polyhedral divisor is proper, but it is clear that
it defines a (possibly non-finitely generated) algebra A. We will find an easy description of this
algebra and then see directly that it is finitely generated.

The easiest way to describe the algebra A is to embed it into an algebra of polynomi-
als. First, choose a Z-basis {χ1, χ2} of M so that all points of σ∨ ∩M are linear combina-
tions of χ1 and χ2 with positive coefficients. In other words, the cone generated by χ1 and
χ2 contains σ∨. Denote the dual basis of N by χ∗1 and χ∗2. Then we will embed A into
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6 A formally versal T -equivariant deformation over affine space

C[a1,0, . . . , a1,k1−1, . . . , aR,0, . . . , aR,kR−1, t0, t1, t2], where the variables t1 and t2 determine a
grading (i. e. we introduce an M -grading on this algebra, and deg(t1) = χ1 and deg(t2) = χ2,
while the degrees of all other variables equal zero). For each χ ∈ σ∨ ∩M denote by Pχ the
following polynomial:

Pχ =
R∏
i=1

(tki0 +

ki−1∑
k=0

ai,kt
k
0)− evalΞi (χ).

Lemma 6.9. Let χ ∈ σ∨ ∩M be a degree. Then eval∆pr
(χ) +

∑R
i=1 ki evalΞi(χ) ≥ 0, and the

χth graded component of A is a free C[V ]-module generated by

Pχt
χ∗1(χ)
1 t

χ∗2(χ)
2 , Pχt

χ∗1(χ)
1 t

χ∗2(χ)
2 t0, . . . , Pχt

χ∗1(χ)
1 t

χ∗2(χ)
2 t

eval∆(χ)
0 .

Proof. D(χ) is a linear combination of the divisors Zi (1 ≤ i ≤ R) with nonpositive coefficients
(Remark 6.6) and of the divisor Z0 with a nonnegative coefficient (Lemma 6.3). Therefore,
Γ(O(D(χ))) is a subspace in the polynomial ring in the variables

a1,0, . . . , a1,k1−1, . . . , aR,0, . . . , aR,kR−1, t0.

Namely, these polynomials are of degree at most eval∆pr
(χ) with respect to t0, and they are

divisible by each of the polynomials

(tki0 +

ki−1∑
k=0

ai,kt
k
0)− evalΞi (χ).

To get the corresponding graded component of A, we have to multiply them by t
χ∗1(χ)
1 t

χ∗2(χ)
2 .

Therefore, the χth graded component is generated by

Pχt
χ∗1(χ)
1 t

χ∗2(χ)
2 , Pχt

χ∗1(χ)
1 t

χ∗2(χ)
2 t0, . . . , Pχt

χ∗1(χ)
1 t

χ∗2(χ)
2 t

eval∆pr (χ)+
∑R
i=1 ki evalΞi (χ)

0

as a C[V ]-module. The claim follows from Remark 6.8.

Recall that in Chapter 3 we chose a set of degrees {λ1, . . . , λr}, which contained Hilbert bases
of all cones in the total normal fan of D .

Lemma 6.10. The algebra A is finitely generated. More precisely, the generators from Lemma
6.9 for degrees λi generate A.

Proof. Fix a degree χ ∈ σ∨ ∩M , and let τ be a cone from the total normal fan of D containing
χ. Then all individual evaluation functions of polyhedra Ξi are linear on τ , and the individual
evaluation function of ∆pr is also linear on τ (and even on σ∨) since pr = ∞ is a removable
special point. If χ′, χ′′ ∈ τ ∩M and χ′ + χ′′ = χ, then Pχ′Pχ′′ = Pχ, and each element of the
basis of the χth graded component of A from Lemma 6.9 is a product of an element of the basis
of the χ′th graded component and of an element of the basis of the χ′′th graded component.
Therefore, since {λi} contains the Hilbert basis of τ , all components of A of degrees λi generate
the χth graded component.

So, S = SpecA is an algebraic variety, and T acts on it. We have k1 + . . . + kR global
T -invariant functions ai,j on X, so we have a T -invariant map S → V , which we denote by
ξ. It follows directly from Lemma 6.9 that this morphism is flat. We can consider both
V × SpecC[t0, t1, t2] and S as varieties over the base V .
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6.1 Construction of the deformation

Lemma 6.11. The morphism V × SpecC[t0, t1, t2]→ S of V -varieties is stably dominant.

Proof. We will construct a graded C[V ]-module K ⊂ C[V ]⊗C[t0, t1, t2] such that K ∩C[S] = 0
and K ⊕ C[S] = C[V ] ⊗ C[t0, t1, t2]. We are going to construct each M -graded component
of K separately. Fix a degree χ ∈ σ∨ ∩ M . Note that if we consider Pχ as a polynomial
in t0 only, its leading coefficient will be equal 1, and its degree will be −

∑
ki evalΞi(χ) =

eval∆pr
(χ) − eval∆(χ). Now it follows from Lemma 6.9 that for the χth graded component

of K we can take the module generated by the following generators: tk0t
χ∗1(χ)
1 t

χ∗2(χ)
2 , where

0 ≤ k < eval∆pr
(χ)− eval∆(χ) or k > eval∆pr

(χ). The claim follows from Remark 2.18.

Now we are ready to compute the fibers of ξ using Lemma 2.21. For an arbitrary point

(a
(0)
1,0, . . . , a

(0)
1,k1−1, . . . , a

(0)
R,0, . . . , a

(0)
R,kR−1) ∈ V

we define a divisor
D
a

(0)
1,0,...,a

(0)
1,k1−1,...,a

(0)
R,0,...,a

(0)
R,kR−1

on a projective line as follows. Consider a projective line P1 with a coordinate function t. For
each i (1 ≤ i ≤ R) denote by bi,1, . . . , bi,ki the zeros of the function

tki +

ki−1∑
k=0

a
(0)
i,k t

k

on P1 with multiplicities (i. e. if we have a zero of order more than one, we write the same point
several times, for example, bi,1 and bi,2 can be the same point). Then, for each i (1 ≤ i ≤ R)
and for each j (1 ≤ j ≤ ki) we put Ξi at the point bi,j . If we put several polyhedra at the same
point of P1 (for example, if we had a zero of order more than one, or if the functions different
values of i vanish at the same point), we take the Minkowski sum of them instead. Finally, we
put ∆pr at the point of P1 with coordinate ∞.

Lemma 6.12. Let
(a

(0)
1,0, . . . , a

(0)
1,k1−1, . . . , a

(0)
R,0, . . . , a

(0)
R,kR−1) ∈ V

be an arbitrary point. The fiber of ξ over this point is the T-variety defined by

D
a

(0)
1,0,...,a

(0)
1,k1−1,...,a

(0)
R,0,...,a

(0)
R,kR−1

,

a polyhedral divisor on P1.
More precisely, the construction of a T-variety out of a polyhedral divisor identifies the global

functions on the T-variety with sections of line bundles on P1. In this case, this identification
works ”in the natural way”, namely, as follows. Fix a degree χ ∈ σ∨ ∩M . The restriction of a

function Pχt
χ∗1(χ)
1 t

χ∗2(χ)
2 tk0 to the fiber is identified with the rational function

Pχ

∣∣∣∣∣ t0=t

ai,j=a
(0)
i,j

tk ∈ OP1(D
a

(0)
1,0,...,a

(0)
1,k1−1,...,a

(0)
R,0,...,a

(0)
R,kR−1

(χ)).

Proof. First, let us check that

D
a

(0)
1,0,...,a

(0)
1,k1−1,...,a

(0)
R,0,...,a

(0)
R,kR−1
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6 A formally versal T -equivariant deformation over affine space

is a proper polyhedral divisor. Since this is a polyhedral divisor on P1, it is sufficient to check
that for each χ ∈ σ∨ ∩M

degD
a

(0)
1,0,...,a

(0)
1,k1−1,...,a

(0)
R,0,...,a

(0)
R,kR−1

(χ) = deg D(χ),

where D is the original divisor on P1 describing the variety we are going to deform. We have

degD
a

(0)
1,0,...,a

(0)
1,k1−1,...,a

(0)
R,0,...,a

(0)
R,kR−1

(χ) = deg ∆pr(χ) +
R∑
i=1

ki deg Ξi(χ) =

deg ∆pr(χ) +

R∑
i=1

(

r−1∑
j=1

ni,j deg Ξi(χ)) = deg ∆pr(χ) +

r−1∑
j=1

deg ∆pj (χ) = deg D(χ),

and
D
a

(0)
1,0,...,a

(0)
1,k1−1,...,a

(0)
R,0,...,a

(0)
R,kR−1

is a proper polyhedral divisor.

Fix a degree χ ∈ σ∨ ∩M . Let us compute

Γ(OP1(D
a

(0)
1,0,...,a

(0)
1,k1−1,...,a

(0)
R,0,...,a

(0)
R,kR−1

(χ))).

Recall that Minkowski addition of two polyhedra leads to summation of their individual evalu-
ation functions. Denote all distinct points among bi,j by b′1, . . . , b

′
l. For each j (1 ≤ j ≤ l) and

for each i (1 ≤ i ≤ R) denote by cj,i the order of zero of the function

tki +

ki−1∑
k=0

a
(0)
i,k t

k

at the point b′j . In other words, cj,i is the amount of indices j′ (1 ≤ j′ ≤ ki) such that bi,j = b′j′ .
Then the polyhedron in

D
a

(0)
1,0,...,a

(0)
1,k1−1,...,a

(0)
R,0,...,a

(0)
R,kR−1

above a point b′j is
∑R

i=1 cj,iΞi.

Then the global sections of

OP1(D
a

(0)
1,0,...,a

(0)
1,k1−1,...,a

(0)
R,0,...,a

(0)
R,kR−1

(χ))

are the polynomials in t of degree at most eval∆pr
(χ) divisible by

l∏
k=1

(t− t(b′k))
∑
i ck,i evalΞi (χ) =

R∏
i=1

l∏
k=1

(t− t(b′k))ck,i evalΞi (χ) =

R∏
i=1

( ki∏
j=1

(t− t(bi,j))evalΞi (χ)

)
=

R∏
i=1

(
tki +

ki−1∑
k=0

a
(0)
i,k t

k

)evalΞi (χ)

=

Pχ|t0=t and ai,j=a
(0)
i,j for 1≤i≤R,1≤j≤ki

.
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6.2 Kodaira-Spencer map for a deformation given by perturbation of generators

On the other hand, if χ = m1χ1 + m2χ2, then, by Lemmas 2.21 and 6.11, the functions of
degree χ on

ξ−1(a
(0)
1,0, . . . , a

(0)
1,k1−1, . . . , a

(0)
R,0, . . . , a

(0)
R,kR−1)

are C-generated by the images of polynomials

Pχt
m1
1 tm2

2 , Pχt
m1
1 tm2

2 t0, . . . , Pχt
m1
1 tm2

2 t
eval∆(χ)
0

under the quotient map

(C[V ]⊗ C[t0, t1, t2])→ (C[V ]⊗ C[t0, t1, t2])/(I(C[V ]⊗ C[t0, t1, t2])),

where I is the ideal in C[V ] generated by equations ai,j = a
(0)
i,j . In other words, the polynomials

Pχt
m1
1 tm2

2 , Pχt
m1
1 tm2

2 t0, . . . , Pχt
m1
1 tm2

2 t
eval∆(χ)
0

after the substitutions ai,j = a
(0)
i,j C-generate the space of the functions of degree χ on the

fiber.

Corollary 6.13. dim S = dimV + 3.

For each i (1 ≤ i ≤ R), denote by a
(1)
i,0 , . . . , a

(1)
i,ki−1 the coefficients of the polynomial with

leading coefficient 1 and with roots at the points pj , where the root at pj has multiplicity ni,j .
In other words,

tki +

ki−1∑
k=0

a
(1)
i,k t

k =
r∏
j=1

(t− t(pj))ni,j

as polynomials in t. Fix this notation until the end of Chapter 6.

Corollary 6.14. The fiber

ξ−1(a
(1)
1,0, . . . , a

(1)
1,k1−1, . . . , a

(1)
R,0, . . . , a

(1)
R,kR−1)

is isomorphic to the original T -variety X, which we are deforming, and which was constructed
from the polyhedral divisor D .

Therefore, we have constructed a deformation of X over V . Now we are going to compute
the Kodaira-Spencer map of this deformation.

6.2 Kodaira-Spencer map for a deformation given by perturbation
of generators

We are going to consider the following general situation. Suppose that we have a deformation
of a normal variety X over an affine line. Denote the total space of the deformation by S
and the function from S to C1 by ξ. Note that by definition this means that the scheme-
theoretic fiber ξ−1(0) is X. Suppose also that S is embedded into a vector space, where ξ
is one of the coordinates, and the other coordinates are x̌1, . . . , x̌n. These data canonically
define a set of generators of the algebra C[S], denote them by ξ, x1, . . . , xn. Suppose also that
we have another vector space Ck+1 with coordinates y0, y1, . . . , yk, and a dominant morphism
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6 A formally versal T -equivariant deformation over affine space

b : Ck+1 → S. Note that it already follows that S is irreducible. Suppose that b satisfies the
following two conditions:

1. ξ ◦ b = y0, in other words, the coordinate ξ of a point b(y0, . . . , yk) equals y0. This
condition implies that b−1(X) = (ξ ◦ b)−1(0) = {y0 = 0}, moreover, the scheme-theoretic
fiber also equals {y0 = 0}.

2. The restriction of b to the hyperplane y0 = 0 is a dominant morphism to X. This condition
implies that X is irreducible.

3. The restriction of b to the hyperplane y0 = 0 maps it birationally to X.

In algebraic terms, the existence of such a morphism b and these conditions mean the follow-
ing. Suppose that b is given by polynomials: xi = Pi(y0, . . . , yk). Then C[S] can be understood
as the subalgebra of C[y0, . . . , yk] generated by y0 and P1, . . . Pk. For each a ∈ C such that
b|y0=a is dominant, the algebra of functions on ξ−1(a) can be understood as the subalgebra of
C[y1, . . . , yk] generated by Pi|y0=a. In particular, C[ξ−1(0)] = C[X] becomes the subalgebra
of C[y1, . . . , yk] generated by Pi|y0=0, and then, informally speaking, when X is deformed, the
generators of the subalgebra are also deformed, and the algebra of functions on the deformed
variety is the subalgebra generated by these deformed generators.

First, let us prove in this setting the following easy corollary of Hilbert Nullstellensatz.

Lemma 6.15. Let f : S → C be a regular function such that f ◦ b (which is a regular function
on Ck+1) can be written as y0h, where h ∈ C[y0, . . . , yk]. Then there exists f1 ∈ C[S] such that
f = ξf1 and h = f1 ◦ b.

Proof. For each point x of X of the form x = b(0, y1, . . . , yk) we have

f(x) = f(b(0, y1, . . . , yk)) = 0.

The set b({y0 = 0}) is open and dense in X, so f |X = 0. By Hilbert Nullstellensatz, some
power of f is divisible by ξ, but since X is the scheme-theoretic fiber of ξ above zero, the ideal
ξC[S] is radical, and f itself is divisible by ξ. Let f1 ∈ C[S] be such that f = ξf1. Then
y0h = f ◦ b = (ξ ◦ b)(f1 ◦ b) = y0(f1 ◦ b). Therefore, h = f1 ◦ b.

Let U ⊆ X be a smooth open sunset such that codimX(X \ U) ≥ 2. And let U ′ ⊆
U be a subset such that (b|y0=0)−1 is defined on U ′. Consider the following section of
ΘC1+n=SpecC[ξ,x̌1,...,x̌n]|U ′ : at each point x ∈ U ′ we have

v(x) = d(b|y0=0)−1(x)b

(
∂

∂y0

)
.

The first coordinate of this vector (the coefficient in front of ∂/∂ξ) is always one.
Consider the restriction of the deformation ξ : S → C1 to the double point at the origin

corresponding to the vector ∂/∂ξ. Denote the total space of the deformation by S̃ and the flat
morphism by ε : S̃ → SpecC[ε]/ε2 Denote the restrictions of functions xi to S̃ by x̃i.

Let I ⊂ C[x̌1, . . . , x̌n] be the ideal of equations of X, i. e. C[X] = C[x̌1, . . . , x̌n]/I. Since we
have chosen lifts of generators of C[X] to C[S̃], we have a uniquely determined map I/I2 → C[X]
representing the deformation.

Proposition 6.16. For each function g ∈ I, denote by g◦ ∈ C[ξ, x̌1, . . . , x̌n] the image of g
under the natural embedding C[x̌1, . . . , x̌n] ↪→ C[ξ, x̌1, . . . , x̌n] (g◦ actually does not depend on ξ
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6.2 Kodaira-Spencer map for a deformation given by perturbation of generators

and, informally speaking, equals g as it is written). Set µ(g) = dg◦(v) (we apply the differential
of a function to a rational vector field and get a rational function).

1. For each g ∈ I, µ(g) is a regular function on the whole X (by definition we only know
that it is defined on U ′)

2. µ is a well-defined C[X]-linear morphism I/I2 → C[X].

3. µ represents the deformation ε : S̃ → SpecC[ε]/ε2 in T 1(X).

Proof. The function µ(g) is a rational function on X, so it can be written as a ratio of two
polynomials in x1, . . . , xn, and the second of them has no zeros inside U ′. Fix these two
polynomials and consider them now as polynomials in ξ, x1, . . . , xn. Then we will get two regular
functions on S, denote them by P and Q, respectively. Then Q(x) 6= 0 if x ∈ U ′ ⊆ X ⊂ S, and
P (x)/Q(x) = µ(g)(x) if x ∈ U ′.

Now consider a rational function (P/Q) ◦ b on Ck+1. Let (0, y1, . . . , yk) ∈ Ck+1 be a point
such that b(0, y1, . . . , yk) ∈ U ′. Then

(P/Q)(b(0, y1, . . . , yk)) = µ(g)(b(0, y1, . . . , yk)) =

db(0,y1,...,yk)g
◦(v(b(0, y1, . . . , yk))) =

db(0,y1,...,yk)g
◦((∂/∂y0b)((b|y0=0)−1(b(0, y1, . . . , yk)))) =

db(0,y1,...,yk)g
◦(∂/∂y0b(0, y1, . . . , yk)) = (∂/∂y0)(g◦ ◦ b).

Therefore, the functions (P/Q) ◦ b and (∂/∂y0)(g◦ ◦ b) coincide on b−1(U ′). Then the functions
P ◦ b and (Q ◦ b)((∂/∂y0)(g◦ ◦ b)) (both of them are regular) also coincide on b−1(U ′), which is
an open subset of the hyperplane {y0 = 0}, and their difference P ◦ b− (Q ◦ b)((∂/∂y0)(g◦ ◦ b))
is a polynomial divisible by y0.

Consider the following regular function on Ck+1: g◦ ◦ b− y0∂/∂y0(g◦ ◦ b). Clearly, it vanishes
if y0 = 0. Moreover,

∂/∂y0(g◦ ◦ b− y0∂/∂y0(g◦ ◦ b)) = −y0∂
2/∂y2

0(g◦ ◦ b),

so
(∂/∂y0(g◦ ◦ b− y0∂/∂y0(g◦ ◦ b)))|y0=0 = 0,

and g◦◦b−y0∂/∂y0(g◦◦b) is a polynomial divisible by y2
0. Hence, (Q◦b)(g◦◦b−y0∂/∂y0(g◦◦b))

is also divisible by y2
0. We also know that (P ◦ b)y0 − (Q ◦ b)y0((∂/∂y0)(g◦ ◦ b)) is divisible by

y2
0, so (Q◦b)(g◦ ◦b)− (P ◦b)y0 = (Qg◦−Pξ)◦b is divisible by y2

0. Then by Lemma 6.15 applied
twice, Qg◦ − Pξ is divisible by ξ2 in C[S].

Recall that we have lifts x̃i ∈ C[S̃] of the functions xi on X. So, the restriction of the
deformation ξ : S → C1 to the double point at the origin can be represented by an element
of HomC[X](I/I

2,C[X]). In particular, there exists a polynomial g1 ∈ C[x̌1, . . . , x̌n] such that

g(x̃1, . . . , x̃n) = εg1(x̃1, . . . , x̃n) in C[S̃]. By the definition of C[S̃] this means that g(x1, . . . , xn)−
ξg1(x1, . . . , xn) is divisible by ξ in C[S]. Denote the function g1(x1, . . . , xn) understood as a
function on the whole S by g◦1. Then Qg◦ −Qξg◦1 is also divisible by ξ2. Therefore, Qξg◦1 −Pξ
is divisible by ξ2 in C[S]. Since S is an irreducible variety, Qg◦1 − P is divisible by ξ. So,
(Qg◦1 − P )|X = 0, and this by definition of the field of rational functions means that g1 = µ(g)
in C(X), and µ(g) is in fact a regular function on X.
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6 A formally versal T -equivariant deformation over affine space

Let us check that the map µ is C[x̌1, . . . , x̌n]-linear. The additivity of µ is clear. Choose a
polynomial h ∈ C[x̌1, . . . , x̌n] and denote by h◦ the polynomial h understood as a polynomial in
ξ, x̌1, . . . , x̌n. Then µ(hg) = d(h◦g◦)(v) = h◦dg◦(v)+g◦dh◦(v), but µ(hg) is a function onX, and
the second summand on X equals zero, and the first summand on X equals hdg◦(v) = hµ(v).

Now, since µ is a C[x̌1, . . . , x̌n]-linear map from I to C[X], it vanishes on I/I2 and induces
a C[X]-linear map from I/I2 to C[X]. And we have already seen before that µ(g) coincides
with the image of g under the map I/I2 → C[X] corresponding to the first order deformation
in T 1(X).

We keep the notation µ introduced in Proposition 6.16 for further usage. Recall that the first
coordinate of any vector v(x), where x ∈ U ′, equals 1, and that g◦ does not actually depend
on ξ. Denote the projection of v to ΘCn=SpecC[x̌1,...,x̌n] by v. So, If we replace v by v in the
definition of µ(g), we will get the same function. We will call v the field of deformation speeds
of the deformation ξ : S → C1.

To formulate the next proposition, recall that U ⊆ U ′.

Proposition 6.17. There exists a section v′ ∈ Γ(U,NX⊆Cn) such that v′|U ′ coincides with
the image of the field of deformation speeds under the canonical map of sheaves ΘCn |U ′ →
NX⊆Cn |U ′. Denote the image of v′ under the snake map for the exact sequence of sheaves

0→ ΘU → ΘCn |U → NX⊆Cn |U → 0

by ν ∈ H1(U,ΘU ). Then in the sense of Theorem 2.4, ν represents the deformation ε : S̃ →
SpecC[ε]/ε2.

Proof. Recall the sheaf I ∨ on X, which was used in the proof of Theorem 2.4. Since X is
affine, each sheaf on X is determined by the C[X]-module of its global sections, and Γ(X,I ∨) =
HomC[X](I/I

2,C[X]). By Proposition 6.16, µ represents an element of HomC[X](I/I
2,C[X]) =

Γ(X,I ∨), and this element represents the deformation ε : S̃ → SpecC[ε]/ε2. Denote the
restriction of this element of Γ(X,I ∨) to U by µ|U .

The subset U satisfies the conditions of Theorem 2.4. Recall one more exact sequence of
sheaves we have seen in the proof of Theorem 2.4:

0→ ΘX |U
ψ|U−→ O⊕nX |U

φ̃|U−→ I ∨|U → 0,

The sheaves ΘCn |U and O⊕nX |U are isomorphic, and this isomorphism identifies ψ|U and the
embedding of the tangent vector bundles. So, we have an isomorphism I ∨|U → NX⊆Cn |U .
By construction, this isomorphism identifies the quotient map of vector bundles and ψ. A
direct diagram-chase computation shows that this isomorphism identifies µ|U with a section
v′ ∈ Γ(U,NX⊆Cn |U ) whose restriction to U ′ coincides with v.

It follows from the proof of Theorem 2.4 that the element ν ∈ ker(H1(U,ΘX)→ H1(U,O⊕nX ))
representing the first order deformation is obtained from µ|U via the snake map for the short
exact sequence

0→ ΘX |U
ψ|U−→ O⊕nX |U

φ̃|U−→ I ∨|U → 0.

But we have identified this exact sequence with the short exact sequence

0→ ΘU → ΘCn |U → NX⊆Cn |U → 0
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so that µ|U is identified with v′, therefore, ν is also obtained from v′ via the snake map for this
sequence.

6.3 Kodaira-Spencer map in the particular case of a deformation of
a T-variety

Let us apply the results of Section 6.2 to the deformation of the T-variety we have. Section 6.2
speaks about one-parameter deformations, and we have a deformation over a (k1 + . . . + kR)-
dimensional space V . Moreover, the variety X we want to deform is the fiber over the point

a(1) = (a
(1)
1,0, . . . , a

(1)
1,k1−1, . . . , a

(1)
R,0, . . . , a

(1)
R,kR−1),

not above the origin. We are going to restrict the deformation to lines (with a fixed coordinate,
which we will denote by ξ) passing through this point, and then restrict it further to the double
point corresponding to the tangent vector ∂/∂ξ at the origin of this line. So we will get a map
Θa(1)V → T 1(X), which is called Kodaira-Spencer map and which is linear. Since this map is
linear, it is sufficient to compute it for the lines parallel to the coordinate axes in V only.

So, until the end of Section 6.3, fix two indices, j and k, 1 ≤ j ≤ R, 0 ≤ k ≤ kj − 1 and
consider the following map from an affine line C1 with coordinate ξ to V :

ξ 7→ (a
(1)
1,0, . . . , a

(1)
1,k1−1, . . . , a

(1)
j,k + ξ . . . , a

(1)
R,0, . . . , a

(1)
R,kR−1).

Now let us apply the base change − ×V C1 to the V -varieties V × SpecC[t0, t1, t2] and S
and to the morphism V × SpecC[t0, t1, t2] → S, which was stably dominant by Lemma 6.11.
We will get two new C1-varieties, SpecC[ξ, t0, t1, t2] and S×V C1 (denote S×V C1 = S) and a
morphism SpecC[ξ, t0, t1, t2]→ S (denote it by b). By Lemma 2.20, this morphism is a stably
dominant morphism of C1-varieties. Since S is a C1-variety, we have a morphism S → C1,
which we will denote in Section 6.3 by ξ, because it computes the coordinate on C1, which is ξ.
In the subsequent sections, where the indices j and k will not be fixed anymore, we will denote
this morphism by ξj,k.

The fact that S = S ×V C1 means that ξ : S → C1 is the pullback of the deformation
ξ : S → V to the affine line. Informally speaking, we restrict the deformation to an affine line
(with a fixed coordinate function) in V . By Corollary 6.14, ξ−1(0) = X. We are going to
reformulate Lemmas 6.9 and 6.10 and describe C[S].

For each χ ∈ σ∨ ∩M , denote

Pχ = Pχ

∣∣∣∣∣ aj,k=a
(1)
j,k+ξ

aj′,k′=a
(1)

j′,k′ if j′ 6= j or k′ 6= k

=

(
t
kj
0 + (a

(1)
j,k + ξ)tk0 +

∑
0≤k′<kj
k′ 6=k

a
(1)
j,k′t

k′
0

)− evalΞj (χ) ∏
1≤j′≤R
j′ 6=j

tkj′0 +

kj′−1∑
k′=0

a
(1)
j′,k′t

k′
0

− evalΞj′
(χ)

.

These are polynomials in t0 and ξ.

Lemma 6.18. For each χ ∈ σ∨ ∩ M , the χth graded component of C[S] (understood as a
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6 A formally versal T -equivariant deformation over affine space

subalgebra of C[ξ, t0, t1, t2]) is the free C[ξ]-module generated by

Pχt
χ∗1(χ)
1 t

χ∗2(χ)
2 , Pχt

χ∗1(χ)
1 t

χ∗2(χ)
2 t0, . . . , Pχt

χ∗1(χ)
1 t

χ∗2(χ)
2 t

eval∆(χ)
0 .

Proof. We are going to use Lemma 2.21. We treat C[S] as a subalgebra of C[ξ, t0, t1, t2], and
C[S] as a subalgebra of C[V ] ⊗ C[t0, t1, t2]. Then, by Lemma 2.21, C[S] is the image of C[S]
under the map C[V ] ⊗ C[t0, t1, t2] → (C[V ] ⊗ C[t0, t1, t2]) ⊗C[V ] C[ξ], f 7→ f ⊗ 1C[ξ] for all
f ∈ C[V ]⊗C[t0, t1, t2]. By a standard argument for tensor products, this map works as follows:
given a polynomial f in variables

a1,0, . . . , a1,k1−1, . . . , aR,0, . . . , aR,kR−1, t0, t1, t2,

one should substitute

a
(1)
1,0, . . . , a

(1)
1,k1−1, . . . , a

(1)
j,k + ξ . . . , a

(1)
R,0, . . . , a

(1)
R,kR−1

instead of the variables
a1,0, . . . , a1,k1−1, . . . , aR,0, . . . , aR,kR−1,

respectively. So, the polynomials Pχt
χ∗1(χ)
1 t

χ∗2(χ)
2 tk0 become exactly Pχt

χ∗1(χ)
1 t

χ∗2(χ)
2 tk0, and the

claim follows from Lemma 6.9.

For each i, 1 ≤ i ≤m, let us introduce the following notation. Set

xi,0 = Pλit
χ∗1(λi)
1 t

χ∗2(λi)
2 ,xi,1 = Pλit

χ∗1(λi)
1 t

χ∗2(λi)
2 t0, . . . ,xi,eval∆(λi) = Pλit

χ∗1(λi)
1 t

χ∗2(λi)
2 t

eval∆(λi)
0 .

Denote the total number of these generators by n.

Lemma 6.19. C[S] can be embedded into the algebra of polynomials in variables ξ, t0, t1, t2 as
the subalgebra generated by ξ and all xi,i′, where 1 ≤ i ≤m and 0 ≤ i′ ≤ eval∆(λi).

Proof. We can use Lemma 2.21 in the same way as in the proof of the previous Lemma. Then
the claim follows from Lemma 6.10.

In other words, S is now embedded into an (n+1)-dimensional vector space with coordinates
ξ and xi,i′ , and X is the intersection of S and the hyperplane ξ = 0.

Lemma 6.20. The preconditions of Section 6.2 are satisfied for b, namely:

1. The first coordinate of a point b(ξ, t0, t1, t2) equals ξ.

2. The restriction of b to the hyperplane ξ = 0 is a dominant map to X.

3. The restriction of b to the hyperplane ξ = 0 maps it birationally to X.

Proof. The first claim is clear. Since b is stably dominant, the second claim follows from Lemma
2.20 (applied to the change of base from C1 to the point ξ = 0 in C1).

For the last claim, let us suppose that ξ = 0 and express t0, t1, and t2 as rational functions
on X = S ∩ ξ−1(0).

First, let us express t0. Choose a degree χ in the interior of σ∨. Since D is an integral proper
polyhedral divisor, dim Γ(P1,O(D(χ))) ≥ 2, so eval∆(λi) ≥ 1. Then

Pχt
χ∗1(χ)
1 t

χ∗2(χ)
2 , Pχt

χ∗1(χ)
1 t

χ∗2(χ)
2 t0 ∈ C[S],
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and Pχ|ξ=0t
χ∗1(χ)
1 t

χ∗2(χ)
2 and Pχ|ξ=0t

χ∗1(χ)
1 t

χ∗2(χ)
2 t0 are nonzero functions on X since they are

nonzero polynomials in C[t0, t1, t2]. Their ratio is a rational function on X, and it equals
t0.

After we have an expression for t0, take two degrees λi and λi′ that form a basis of M
(such degrees exist by the definition of the set {λ1, . . . , λm}). Write λi = b3χ1 + b4χ2 and
λi′ = b5χ1 + b6χ2. Then tb31 t

b4
2 = (xi,0|ξ=0)/(Pλi |ξ=0), and Pλi |ξ=0 is a nonzero function on X

since it is a nonzero element of C[t0, t1, t2]. Similarly, tb51 t
b6
2 = (xi′,0|ξ=0)/(Pλi′ |ξ=0). So we have

rational expressions for tb31 t
b4
2 and tb51 t

b6
2 , and, since λi and λi′ form a basis of M , we can also

get rational expressions for t1 and t2 on X.

Now we can apply the results of Subsection 6.2.

Lemma 6.21. For each i (1 ≤ i ≤ m) and for each i′ (1 ≤ i′ ≤ eval∆(λi)), the (i, i′)th
coordinate of the field of deformation speeds (i. e. the coordinate in front of ∂/∂(xi,i′ |ξ=0))
equals

− evalΞj (λi)t
k
0

t
kj
0 +

∑kj−1
k′=0 a

(1)
j,k′t

k′
0

xi,i′ |ξ=0.

Proof. A direct computation of (
∂

∂ξ
Pλi

)
|ξ=0

proves this. The powers of t0, t1, and t2 do not depend on ξ in C[ξ, t0, t1, t2], so multiplication
by these powers multiplies the derivative by the same powers.

Denote this field of deformation speeds by w. Recall that we have a rational map π : X → P1,
which is defined on an open set of X, which we have denoted by U0. By Lemma 6.20, t0 can
be considered as a rational function on X. Also recall that we have a coordinate function t on
P1.

Lemma 6.22. t0 is defined on U0 \ π−1(t =∞), and, if x ∈ U0 \ π−1(t =∞), then t(π(x)) =
t0(x). If x ∈ U0 ∩ π−1(∞), then 1/t0 is defined at x, and (1/t0)(x) = 0.

Proof. Choose an arbitrary degree χ in the interior of σ∨. As we have already seen in the proof
of Lemma 6.20, t0 can be expressed as the ratio of two regular functions of degree χ on X,
namely,

t0 =
Pχ|ξ=0t

χ∗1(χ)
1 t

χ∗2(χ)
2 t0

Pχ|ξ=0t
χ∗1(χ)
1 t

χ∗2(χ)
2

.

By Lemma 6.12, these generators of the χth graded component of C[X] are identified with
Pχ|ξ=0,t0=tt ∈ Γ(P1,O(D(χ))) and Pχ|ξ=0,t0=t ∈ Γ(P1,O(D(χ))), respectively.

Let x ∈ U0 be a point. By Proposition 2.3,

t0 =
Pχ|ξ=0t

χ∗1(χ)
1 t

χ∗2(χ)
2 t0

Pχ|ξ=0t
χ∗1(χ)
1 t

χ∗2(χ)
2

is defined at x if and only if

t =
Pχ|ξ=0,t0=tt

Pχ|ξ=0,t0=t
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6 A formally versal T -equivariant deformation over affine space

is defined at π(x), i. e. if t(π(x)) 6=∞. So, if t(π(x)) 6=∞, then t0 is defined at x, and in this
case Proposition 2.3 also says that t0(x) = t(π(x)).

If t(π(x)) =∞, then the rational function

1

t
=

Pχ|ξ=0,t0=t

Pχ|ξ=0,t0=tt

is defined at π(x), and (1/t)(π(x)) = 0. By Proposition 2.3,

1

t0
=

Pχ|ξ=0t
χ∗1(χ)
1 t

χ∗2(χ)
2

(Pχ|ξ=0t
χ∗1(χ)
1 t

χ∗2(χ)
2 t0

is defined at x, and (1/t0)(x) = 0.

Lemma 6.23. If x ∈ U0 and π(x) is not an essential special point, then w is defined at x.

If x ∈ U0, π(x) is an essential special point, p = pj′, and nj,j′ = 0 (i. e. the decomposition
of ∆p into a Minkowski sum of polyhedra Ξi does not contain Ξj), then w is also defined at x.

Proof. Denote p = π(x). First, suppose that t is defined at p (in other words, t(p) 6=∞. Then
t0 is defined at x and t0(x) = t(p). Recall that if p is a removable special point, then it must
be trivial (Remark 6.1).

We chose the numbers a
(1)
i,i′ so that the function

tkj +

kj−1∑
k′=0

a
(1)
j,k′t

k′

only has zeros at special points. More precisely, at a special point pj′ this function has a zero
of order nj,j′ , where the numbers ni,j′ satisfy ∆p =

∑
i ni,j′Ξi But if p = pj′ is a trivial special

point (j′ 6= r), then ni,j′ = 0 for all i. So, if p is either a trivial special point, or an essential
special point such that nj,j′ still equals zero, then the function

tkj +

kj−1∑
k′=0

a
(1)
j,k′t

k′

has zero of order 0, i. e. does not have a zero at all, at p.

In other words, if t(p) 6=∞, then

t(p)kj +

kj−1∑
k′=0

a
(1)
j,k′t(p)

k′ 6= 0.

But then

t0(x)kj +

kj−1∑
k′=0

a
(1)
j,k′t0(x)k

′ 6= 0,

and the rational function
tk0

t
kj
0 +

∑kj−1
k′=0 a

(1)
j,k′t

k′
0
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is defined at x.
Now suppose that t is not defined at p, or, informally speaking, t(p) =∞. We can write

tk0

t
kj
0 +

∑kj−1
k′=0 a

(1)
j,k′t

k′
0

=
1

t
kj−k
0

1

1 +
∑kj−1

k′=0 a
(1)
j,k′(1/t0)kj−k

′

By Lemma 6.22, the rational function 1/t0 is defined at x, and (1/t0)(x) = 0. Since 0 ≤ k < kj ,
the rational function

tk0

t
kj
0 +

∑kj−1
k′=0 a

(1)
j,k′t

k′
0

is also defined (and takes value 0) at x.

We need to construct some tangent vector fields on X (i. e. sections of ΘX). Let f be a
linear function on M with values in Q. In other words, let f be a point of NQ. Recall that
X is embedded into an n-dimensional vector space Cn with coordinates xi,i′ |ξ=0. Consider the
following section of ΘCn |X and denote it by w′f :

w′f =

m∑
i=1

eval∆(λi)∑
i′=0

f(λi)xi,i′ |ξ=0
∂

∂xi,i′ |ξ=0
.

Lemma 6.24. In fact, w′f consists of vectors tangent to X, i. e. w′f ∈ Γ(X,ΘX).

Proof. It is sufficient to verify the condition w′f ∈ Γ(X,ΘX) on an open subset of X. For such

an open subset we can use the open set where (b|ξ=0)−1 is defined.
So, consider the following vector field on SpecC[t0, t1, t2]: v = f(χ1)t1∂/∂t1 + f(χ2)t2∂/∂t2.

The differential of b|ξ=0 maps it to

m∑
i=1

eval∆(λi)∑
k′=0

((
t1f(χ1)

∂Pλi |ξ=0t
k′
0 t

χ∗1(λi)
1 t

χ∗2(λi)
2

∂t1
+ t2f(χ2)

∂Pλi |ξ=0t
k′
0 t

χ∗1(λi)
1 t

χ∗2(λi)
2

∂t2

)
∂

∂xi,k′

)
=

m∑
i=1

(f(χ1)χ∗1(λi) + f(χ2)χ∗2(λi))

eval∆(λi)∑
k′=0

Pλi |ξ=0t
k′
0 t

χ∗1(λi)
1 t

χ∗2(λi)
2

∂

∂xi,k′

 = w′f .

Now recall that we have a sufficient system {Ui} of X. We have q of these sets, and each set
Ui, except Uq, corresponds to a pair (p, j′), where p ∈ P1 is a special point, and 1 ≤ j′ ≤ vp.
Sometimes we have two open sets Ui corresponding to one such pair, this happens if and only
if p is removable special point and deg D(α0) > 0 and deg D(α1) > 0. We have Uq ⊆ Ui for 1 ≤
i < q. The union ∪q−1

i=1 Ui was denoted by U , and U ⊆ U0. U is smooth, and codimX(X\U) ≥ 2.
We also have an affine covering of P1, which consists of the sets Wp = W ∪ {p} for all special
points p, where W is the set of all ordinary points.

We are going to define tangent vector fields wi (one for each set Ui) defined on some open
subsets of X so that w − wi ∈ Γ(Ui,ΘCn |X) for each i (1 ≤ i ≤ q). Note that Uq ⊆ π−1(W ),
so, by Lemma 6.23, w is already defined on Uq, and we can (and we will) set wq = 0.

Now suppose that an open set Ui (1 ≤ i < q) corresponds to a special point p and a
vertex Vp,j′ . Then Ui ⊆ π−1(Wp). If p is a removable special point (including the point with
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t(p) =∞), then by Lemma 6.23, w is defined on Ui, and we set wi = 0. We do the same if p is
an essential special point, p = pj′′ , but nj,j′′ = 0.

Finally, let us consider the case when p is an essential special point, p = pj′′ , and nj,j′′ 6= 0.
This means that the convex piecewise-linear function eval∆p : σ∨ → Q can be decomposed into
a sum of several convex piecewise-linear functions, and one of these summands is nj,j′′ evalΞj .
Addition of convex piecewise-linear functions can only split maximal subcones of linearity into
a smaller cones, and N (Vp,j′ ,∆p) is a maximal subcone of linearity of eval∆p . Therefore,
N (Vp,j′ ,∆p) is a subcone of one of the maximal subcones of linearity of the function evalΞj .
The function evalΞj has two maximal subcones of linearity, they are the normal vertex cones of
the two vertices of Ξj , N (Vp,j′ ,∆p) ⊆ N (Vl(Ξj),Ξj) for some l ∈ {0, 1}. Recall that points
of N , in particular, vertices of Ξj , can be considered as functions on M , and set

wi =
tk0

t
kj
0 +

∑kj−1
k′=0 a

(1)
j,k′t

k′
0

w′−Vl(Ξj)
.

Lemma 6.25. For each i, 1 ≤ i ≤ q we have w − wi ∈ Γ(Ui,ΘCn |X).

Proof. The only nontrivial cases we have to consider are the cases when i satisfies the following
conditions:

1. i < q, and hence Ui corresponds to a pair (p, j′), where p is an essential special point,
and 1 ≤ j′ ≤ vp.

2. If p = pj′′ , then nj,j′′ 6= 0.

Under these conditions, N (Vp,j′ ,∆p) is contained in some of the cones N (Vl(Ξj),Ξj) (for
some l ∈ {0, 1}), and

wi =
tk0

t
kj
0 +

∑kj−1
k′=0 a

(1)
j,k′t

k′
0

w′−Vl(Ξj)
.

Then

w − wi =
m∑
i′=1

eval∆(λi′ )∑
i′′=0

tk0

t
kj
0 +

∑kj−1
k′=0 a

(1)
j,k′t

k′
0

(− evalΞj (λi′) + λi′(Vl(Ξj)))xi′,i′′ |ξ=0
∂

∂xi′,i′′ |ξ=0
.

This section of ΘCn |X is defined on Ui if and only if each function in front of ∂/∂(xi′,i′′ |ξ=0) is
defined on Ui. So, let us fix indices i′ (1 ≤ i′ ≤ m) and i′′ (0 ≤ i′ ≤ eval∆(λi′)) until the end
of the proof and check that the function

tk0

t
kj
0 +

∑kj−1
k′=0 a

(1)
j,k′t

k′
0

(− evalΞj (λi′) + λi′(Vl(Ξj)))xi′,i′′ |ξ=0

is defined on Ui. Denote this (a priori rational) function on Ui by f .

First, if λi′ ∈ N (Vl(Ξj),Ξj), then evalΞj (λi′) = λi′(Vl(Ξj)), and

tk0

t
kj
0 +

∑kj−1
k′=0 a

(1)
j,k′t

k′
0

(− evalΞj (λi′) + λi′(Vl(Ξj)))xi′,i′′ |ξ=0 = 0.

Now suppose that λi′ /∈ N (Vl(Ξj),Ξj). We are going to use Lemma 3.37. By Lemma 6.22,
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t0 = t ◦ π as a rational function on X, so, if we denote

f2 =
tk

tkj +
∑kj−1

k′=0 a
(1)
j,k′t

k′
,

then
f = (f2 ◦ π)(− evalΞj (λi′) + λi′(Vl(Ξj)))xi′,i′′ |ξ=0

as a rational function on X. Denote by f1 the following section of OP1(D(λi′)):

f1 = (− evalΞj (λi′) + λi′(Vl(Ξj)))Pλi′ |ξ=0,t0=tt
i′′

Then, by Lemma 6.12,

(− evalΞj (λi′) + λi′(Vl(Ξj)))xi′,i′′ |ξ=0 = f̃1,

and f = (f2 ◦ π)f̃1.

Let us verify the conditions of Lemma 3.37. By construction, f1 is defined at all points of P1

except t =∞, in particular, it is defined at all ordinary point. And the denominator of f2 does
not have zeros at ordinary points, so f2f1 is regular at all ordinary points, i. e. at all points of
Vi except, possibly, p. Recall that

Pλi′ |ξ=0,t0=t

∏
1≤j′′′≤R

tkj′ +

kj′−1∑
k′=0

a
(1)
j′′′,k′t

k′

− evalΞj′′′
(λi′ )

.

By choice of the coefficients a
(1)
j′′′,k′ ,

ordp(Pλi′ |ξ=0,t0=t) = −
R∑

j′′′=0

nj′′′,j′′ evalΞj′′′ (λi′) = − eval∆p(λi′).

So, ordp(f1) ≥ − eval∆p(λi′). For f2, we have

ordp(f2) ≥ ordp

 1

tkj +
∑kj−1

k′=0 a
(1)
j,k′t

k′

 = −nj,j′′ .

It suffices to prove that

− eval∆p(λi′)− nj,j′′ ≥ −β∗i,1(λi′)Dp(βi,1)− β∗i,2(λi′)Dp(βi,2).

By construction of the sets Ui, we have βi,1, βi,2 ∈ N (Vp,j′ ,∆p), so Dp(βi,1) = βi,1(Vp,j′) and
Dp(βi,2) = βi,2(Vp,j′). So,

−β∗i,1(λi′)Dp(βi,1)− β∗i,2(λi′)Dp(βi,2) = −β∗i,1(λi′)βi,1(Vp,j′)− β∗i,2(λi′)βi,2(Vp,j′) = −λi′(Vp,j′),

and it suffices to prove that − eval∆p(λi′)− nj,j′′ ≥ −λi′(Vp,j′).

Since ∆p =
∑R

j′′′=1 nj′′′,j′′Ξj′′′ , for each polyhedron Ξj′′′ such that nj′′′,j′′ 6= 0, the cone
N (Vp,j′ ,∆p) is contained in a maximal cone of linearity of the function evalΞj′′′ , which is
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6 A formally versal T -equivariant deformation over affine space

the normal vertex cone of a vertex of evalΞj′′′ . Denote this vertex by bj′′′ ∈ N . In other
words, N (Vp,j′ ,∆p) ⊆ N (bj′′′ ,Ξj′′′). (Note that bj = Vl(Ξj) according to previously chosen
notation.) If nj′′′,j′′ = 0, denote by bj′′′ an arbitrary vertex of Ξj′′′ . Then the points Vp,j′

and
∑R

j′′′=1 nj′′′,j′′bj′′′ define the same function on the two-dimensional cone N (Vp,j′ ,∆p).

Therefore, Vp,j′ =
∑R

j′′′=1 nj′′′,j′′bj′′′ in M .

Now we can write

− eval∆p(λi′) = −
R∑

j′′′=1

nj′′′,j′′ evalΞj′′′ (λi′) and − λi′(Vp,j′) = −
R∑

j′′′=1

nj′′′,j′′λi′(bj′′′).

Recall that evalΞj′′′ (λi′) is the minimum among the values that the function λi′ takes at the ver-
tices of Ξj′′′ , so − evalΞj′′′ (λi′) ≥ −λi′(bj′′′). Moreover, since λi′ /∈ N (Vl(Ξj),Ξj) = N (bj ,Ξj),
− evalΞj (λi′) > −λi′(bj). These numbers are integer, so − evalΞj (λi′)−1 ≥ −λi′(bj). Therefore,

−nj,j′′ evalΞj (λi′)− nj,j′′ ≥ nj,j′′λi′(bj),

and
− eval∆p(λi′)− nj,j′′ ≥ −λi′(Vp,j′).

Lemma 6.26. The image of the deformation ξ : S → C1 under the Kodaira-Spencer map in
H1(U,ΘU ) is represented by the following Čech class: on each intersection Ui ∩ Ui′ (i < i′) we
have vector field wi − wi′. Here 1 ≤ i < i′ < q (resp. 1 ≤ i < i ≤ q) if we use U1, . . . , Uq−1

(resp. U1, . . . , Uq) as the affine covering of U .

Proof. This follows directly from Proposition 6.17 and Lemmas 6.21, 6.24, and 6.25.

Corollary 6.27. The isomorphisms

H1(U,ΘU ) =

ker

(
q⊕
i=1

(
H0(Uq,ΘU )/H0(Ui,ΘU )

)

−→
⊕

1≤i<i′≤q

(
H0(Uq,ΘU )/H0(Ui ∩ Ui′ ,ΘU )

))/H0(Uq,ΘU )

and

H1(U,ΘU ) =

ker

(
q−1⊕
i=1

(
H0(Uq,ΘU )/H0(Ui,ΘU )

)

−→
⊕

1≤i<i′≤q−1

(
H0(Uq,ΘU )/H0(Ui ∩ Ui′ ,ΘU )

))/H0(Uq,ΘU )

(respectively) from Corollary 2.14 identifies the image of the deformation ξ : S → C1 under the
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6.3 Kodaira-Spencer map in the particular case of a deformation of a T-variety

Kodaira-Spencer map with the classes of

(vi)1≤i≤q ∈
q⊕
i=1

H1(Uq,ΘU )

and

(vi)1≤i≤q−1 ∈
q−1⊕
i=1

H1(Uq,ΘU )

(respectively).

Proof. This follows from Lemma 6.26 and the construction of isomorphisms in the proof of
Proposition 2.11.

Lemma 6.28. Let f be a homogeneous function of degree χ ∈ σ∨∩M on X, and let 1 ≤ i ≤ q.
If Ui corresponds to an essential special point p = pj′′ and a vertex Vp,j′, then

df(wi) = − tk0

t
kj
0 +

∑kj−1
k′=0 a

(1)
j,k′t

k′
0

χ(Vl(Ξj))f,

where l ∈ {0, 1} is such that N (Vp,j′ ,∆p) ⊆ N (Vl(Ξj),Ξj).
Otherwise, df(wi) = 0 (recall that wi = 0 in this case).

Proof. Each function of degree χ on X is a polynomial in variables xi′,i′′ |ξ=0. Let us first
consider the case when f is a monomial. Then we prove the lemma by induction on the
number of variables in this monomial.

First, if f = xi′,i′′ |ξ=0, then χ = λi′ , and the statement of Lemma holds by the definition of
wi.

Suppose that f = xi′,i′′ |ξ=0f1, where f1 is another monomial of degree χ − λi′ , and the
statement follows from Leibniz rule.

Finally, the statement of lemma for arbitrary polynomials follows by linearity.

Lemma 6.29. Let 1 ≤ i ≤ q.
If Ui corresponds to an essential special point p = pj′′ and a vertex Vp,j′, then the Ui-

description of wi equals− tk

tkj +
∑kj−1

k′=0 a
(1)
j,k′t

k′
βi,1(Vl(Ξj)),−

tk

tkj +
∑kj−1

k′=0 a
(1)
j,k′t

k′
βi,2(Vl(Ξj)), 0

 ,

where l ∈ {0, 1} is such that N (Vp,j′ ,∆p) ⊆ N (Vl(Ξj),Ξj).
Otherwise, the Ui-description of wi is (0, 0, 0) (recall that wi = 0 in this case).

Proof. Suppose that Ui corresponds to an essential special point p = pj′′ and a vertex Vp,j′ .
Let p′ ∈ P1 be an ordinary point, and let x be the canonical point in π−1(p′)∩Ui. Then the

rational function

− tk

tkj +
∑kj−1

k′=0 a
(1)
j,k′t

k′
βi,1(Vl(Ξj))

is defined at p′, t0 is defined at x, and t0(x) = t(p′) (Lemma 6.22).
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6 A formally versal T -equivariant deformation over affine space

By definition, the values of the first two components of the Ui-description of wi at p′ equal
dxh̃i,1(vi) and dxh̃i,2(vi), respectively. By the previous lemma,

dxh̃i,1(vi) = − t0(x)k

t0(x)kj +
∑kj−1

k′=0 a
(1)
j,k′t0(x)k′

βi,1(Vl(Ξj))h̃i,1(x)

and

dxh̃i,2(vi) = − t0(x)k

t0(x)kj +
∑kj−1

k′=0 a
(1)
j,k′t0(x)k′

βi,2(Vl(Ξj))h̃i,2(x).

But by the definition of a canonical point, h̃i,1(x) = h̃i,2(x) = 1. So, the values of the first two
components of the Ui-description equal

− t(p′)k

t(p′)kj +
∑kj−1

k′=0 a
(1)
j,k′t(p

′)k′
βi,1(Vl(Ξj))

and

− t(p′)k

t(p′)kj +
∑kj−1

k′=0 a
(1)
j,k′t(p

′)k′
βi,2(Vl(Ξj)),

respectively.

To compute the third component of the Ui-description, note that by Lemma 6.22, t0 can be
considered as follows. Consider the affine chart t 6= ∞ on P1. It is an affine line, and t is a
coordinate on it. Then t0 is a function on U0 ∩ π−1({t 6= ∞}) that computes the coordinate t
of the image of a point x′ ∈ U0 ∩ π−1({t 6=∞}). In these terms, dxπ(wi) = dxt0(wi)(∂/∂t).

Let us compute dxt0(wi). Choose a degree χ in the interior of σ∨. As we have seen in
the proof of Lemma 6.20, there exist global functions f1 and f2 of degree χ on X such that
t0 = f1/f2. Using the previous lemma again, we can write

dx
f1

f2
(wi) =

f2(x)dxf1(wi)− f1(x)dxf2(wi)

f2(x)2
=

− tk0

t
kj
0 +

∑kj−1

k′=0
a

(1)

j,k′ t
k′
0

χ(Vl(Ξj))(f2(x)f1(x)− f1(x)f2(x))

f2(x)2
= 0.

Corollary 6.30. Let 1 ≤ i ≤ q.

If Ui corresponds to an essential special point p = pj′′ and a vertex Vp,j′, then the Uq-
description of wi equals− tk

tkj +
∑kj−1

k′=0 a
(1)
j,k′t

k′
βq,1(Vl(Ξj)),−

tk

tkj +
∑kj−1

k′=0 a
(1)
j,k′t

k′
βq,2(Vl(Ξj)), 0

 ,

where l ∈ {0, 1} is such that N (Vp,j′ ,∆p) ⊆ N (Vl(Ξj),Ξj).

Otherwise, the Uq-description of wi is (0, 0, 0).

Proof. This follows directly from Lemma 3.23.
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So, we have computed the Kodaira-Spencer map for a set of basis vectors of Θa(1)V , and
therefore by linearity we can now compute it for an arbitrary vector from Θa(1)V . Let us prove
the surjectivity of this map.

6.4 Surjectivity of the Kodaira-Spencer map

To prove the surjectivity, we use the results of Chapter 4. We will prove that the composition
Θa(1)V → T 1

0 (X) → ker(H0(P1,G inv
1,Θ,0) → H0(P1,G inv

1,O,0)) is surjective and that im(Θa(1)V →
T 1

0 (X)) contains im(H1(P1,G0,Θ)→ T 1
0 (X)).

Denote by ∇3,0 the space of 3(q− 1)-tuples of the form

(g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]),

where each g[i]j is a rational function on P1, each v[i] is a rational vector field on P1, and
each triple (g[i]1, g[i]2, v[i]) is the Ui-description of a T -invariant vector field defined on Uq.
This space ∇3,0 can be identified (using the notion of an Ui-description) with the zeroth graded
component of

q−1⊕
i=1

H0(Uq,ΘU ).

Hence, we have a map

∇3,0 →
q−1⊕
i=1

(H0(Uq,ΘU )/H0(Ui,ΘU )).

Denote the preimage under this map of

ker

(
q−1⊕
i=1

(
H0(Uq,ΘU )/H0(Ui,ΘU )

)
→

⊕
1≤i<i′≤q−1

(
H0(Uq,ΘU )/H0(Ui ∩ Ui′ ,ΘU )

))

by ∇3,1 ⊆ ∇3,0. By Corollary 2.14,

H1(U,ΘU ) =

ker

(
q−1⊕
i=1

(
H0(Uq,ΘU )/H0(Ui,ΘU )

)

−→
⊕

1≤i<i′≤q−1

(
H0(Uq,ΘU )/H0(Ui ∩ Ui′ ,ΘU )

))/H0(Uq,ΘU ).

Therefore, we have a surjective map from ∇3,1 to the zeroth graded component of H1(U,ΘU ),
and each element of ∇3,1 can be interpreted as an element of the zeroth graded component of
H1(U,ΘU ).

Recall that if p is an essential special point and 1 ≤ j ≤ vp, then we have denoted by ip,j
the index such that Uip,j is the set among Ui that corresponds to (p, j). Now we extend this
notation so that we could use it also for removable special points. First, if p is an essential
special point, denote v′p = vp. If p is a removable special point, denote by v′p the amount of
sets Ui corresponding to p (there can be one or two such sets). Recall that we enumerate the
sets Ui in such an order that if we have two sets Ui corresponding to the same removable special
point p, then they are consequent, i. e. they are Ui and Ui+1 for some i. Then denote this i by
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6 A formally versal T -equivariant deformation over affine space

ip,1, and set ip,2 = i+ 1. If we have only one set Ui corresponding to a removable special point
p, denote this i by ip,1. Now we can say that in general, we enumerate the sets Ui so that the
sequence

ip1,1, . . . , ip1,v′p1
, . . . , . . . , . . . , ipr,1, . . . , ipr,v′pr

is just
1, 2, . . . ,q− 1.

In Chapter 4, we also needed one coordinate function on P1 (i. e. a function with one zero
and one pole) for each special point p. This function was denoted by tp and it had its single
zero at p. Now let us set tp = t− t(p) for all special points where t is defined, and if t(p) =∞
(then p is a removable special point), then set tp = 1/t.

We will need one more notation. Fix a primitive polyhedron Ξi (1 ≤ i ≤ R). Let pj be a
special point. If ni,j = 0, set `pj ,i = v′pj . Otherwise, pj is an essential special point, and for each
vertex Vpj ,k (1 ≤ k ≤ vpj ) its normal vertex cone N (∆pj ,Vpj ,k) is a subcone of one of two
cones N (Ξi,V0(Ξi)) or N (Ξi,V1(Ξi)). Moreover, the vertices of ∆pj whose normal vertex
cones are subcones of one of these two cones are consequent, more precisely, the values of j′ such
that N (∆pj ,Vpj ,k) ⊆ N (Ξi,V0(Ξi)) are all integers between 1 and some k0 (1 ≤ j0 < vpj ),
inclusively. This k0 is precisely the index such that Epj ,k0 is the edge of ∆pj parallel to the finite
edge of Ξi. Set `i,pj = k0. Then N (∆pj ,Vpj ,k) ⊆ N (Ξi,V0(Ξi)) if and only if 1 ≤ k ≤ `i,pj ,
and N (∆pj ,Vpj ,k) ⊆ N (Ξi,V1(Ξi)) if and only if `i,pj < k ≤ vpj .

Lemma 6.31. If Ξi is a primitive polyhedron, pj is an essential special point, and ni,j 6= 0,
then |Epj ,`i,pj

| = ni,j.

Proof. This follows from the definition of `i,pj and the fact that ∆pj =
∑

i ni,jΞi.

Now note that in Lemma 6.29 and in Corollary 6.30, if l = 0, then Vl(Ξj) = 0, so the Ui-
description and the Uq-description are both zero. So, the image of the Kodaira-Spencer map
computed in the previous section can be written as follows.

Lemma 6.32. The image of the Kodaira-Spencer map for the deformation ξj,k in H1(U,ΘU )
is represented by the following class in ∇3,1:

s3,2,j,k = (g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]),

where:

1. v[i] = 0 for all i (1 ≤ i ≤ q− 1).

2. g[ip,j′ ]j′′ = 0 if p is a special point, 1 ≤ j′ ≤ `j,p, and j′′ = 1, 2.

3.

g[ip,j′ ]j′′ = − tk

tkj +
∑kj−1

k′=0 a
(1)
j,k′t

k′
βip,j′ ,j

′′(V1(Ξj)),

if p is a special point, `j,p < j′ ≤ v′p, and j′′ = 1, 2.

We keep the notation s3,2,j,k for further usage.
Denote the subspace of ∇3,1 spanned by all s3,2,j,k for 1 ≤ j ≤ R and 0 ≤ k ≤ kj−1 by ∇3,2.
Now it suffices to prove that the map ∇3,2 → ker(H0(P1,G inv

1,Θ,0) → H0(P1,G inv
1,O,0)) is a

surjection, and that im(∇3,2 → H1(U,ΘU )) contains im(H1(P1,G0,Θ)→ H1(U,ΘU )).
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Let us start with ∇3,2 → ker(H0(P1,G inv
1,Θ,0)→ H0(P1,G inv

1,O,0)). First, we need to understand

the map ∇3,2 → H0(P1,G inv
1,Θ,0). Recall that we interpret G inv

1,Θ,0 as

G inv
1,Θ,0 =

ker

(
q−1⊕
i=1

(G ◦inv
1,Θ,1/G

inv
1,Θ,1,i)→

⊕
1≤i<j≤q−1

(G ◦inv
1,Θ,1/G

inv
1,Θ,1,i,j)

)/G ◦inv
1,Θ,1.

In particular, global sections of
⊕q−1

i=1 G ◦inv
1,Θ,1 that project down to the appropriate kernel define

global sections of G inv
1,Θ,0. Now it follows from the discussion in the end of Section 2.5 that the

map ∇3,2 → H0(P1,G inv
1,Θ,0) is induced by the following map ∇3,2 →

⊕q−1
i=1 Γ(P1,G ◦inv

1,Θ,1): Given

(g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]) ∈ ∇3,2,

let

(w[1], . . . , v[q− 1]) ∈
q−1⊕
i=1

Γ(P1,G ◦inv
1,Θ,1)

be such that each w[i] is the vector field of degree 0 on Uq with Ui-description (g[i]1, g[i]2, v[i]).

We will follow the argument from Chapter 4. There we have introduced the notion of an
excessive index i, which is one of two indices corresponding to a removable special point p. We
checked that we can replace

⊕q−1
i=1 G ◦inv

1,Θ,1 with⊕
1≤i≤q−1

i is not exessive

G ◦inv
1,Θ,1

(the morphism ⊕
1≤i≤q−1

i is not exessive

G ◦inv
1,Θ,1 →

q−1⊕
i=1

G ◦inv
1,Θ,1

duplicates the entries with the non-excessive indices i corresponding to the same removable
special points to get the entries with excessive indices) so that⊕

1≤i≤q−1
i is not exessive

G ◦inv
1,Θ,1

is mapped surjectively onto G inv
1,Θ,0. Since in each element of ∇3,2 all entries with indices (both

excessive and non-excessive) corresponding to essential special points are zeros, we can just
forget entries corresponding to the excessive indices to get the map

∇3,2 →
⊕

1≤i≤q−1
i is not exessive

Γ(P1,G ◦inv
1,Θ,1)

from the map ∇3,2 →
⊕q−1

i=1 Γ(P1,G ◦inv
1,Θ,1) described above.
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6 A formally versal T -equivariant deformation over affine space

After that, we have split the interpretation of Γ(P1,G inv
1,Θ,0) as

Γ

P1,

( ⊕
1≤i≤q−1

i is not excessive

(G ◦inv
1,Θ,1/G

inv
1,Θ,1,i)

)/
G ◦inv

1,Θ,1


into r direct summands, each of them consisted of sections over Wp for a special point p
(Corollary 4.14 ad discussion below). The morphism between these two interpretations was the
restriction map for sheaves from P1 to Wp. More important, the kernel ker Γ(P1,G inv

1,Θ,0) →
Γ(P1,G inv

1,O,0) also gets split into r direct summands, in other words, the kernel equals the sum
of its intersections with each direct summand.

Then some of the summands of the double direct sum turned out to be zero, and we got the
following interpretation of Γ(P1,G inv

1,Θ,0) (Lemma 4.15):

Γ(P1,G inv
1,Θ,0) ∼=

⊕
p special

point


( ⊕

1≤i≤q−1
i is not excessive

Vi=Wp

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,i)

))/
Γ(Wp,G

◦inv
1,Θ,1)

 .

The isomorphism between these two interpretations of Γ(P1,G inv
1,Θ,0) works as follows: given an

element g of

Γ

P1,

( ⊕
1≤i≤q−1

i is not excessive

(G ◦inv
1,Θ,1/G

inv
1,Θ,1,i)

)/
G ◦inv

1,Θ,1

 ,

each entry of its image in

⊕
p special point


( ⊕

1≤i≤q−1
i is not excessive

Vi=Wp

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,i)

))/
Γ(Wp,G

◦inv
1,Θ,1)

 .

with index i in the inner direct sum (in fact, there is only one such entry for each i, where
1 ≤ i ≤ q− 1, i is not excessive) is (locally on P1) the ith entry the direct sum for g.

In particular, if g originates from a global section of⊕
1≤i≤q−1

i is not excessive

G ◦inv
1,Θ,1,

then the entry of the result with index i in the inner sum is the restriction of the ith entry of
g from P1 to Wp. In fact, this restriction is a trivial operation since π−1(Wp) ∩ Uq = Uq.
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6.4 Surjectivity of the Kodaira-Spencer map

Hence, the map

∇3,2 →
⊕

p special point


( ⊕

1≤i≤q−1
i is not excessive

Vi=Wp

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,i)

))/
Γ(Wp,G

◦inv
1,Θ,1)

 .

works as follows. Given

(g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]) ∈ ∇3,2,

for each i (1 ≤ i ≤ q − 1, i is not excessive), the entry of the result with index i in the inner
direct sum is the vector field on Uq with the Ui-description (g[i]1, g[i]2, v[i]).

After that, we proved that the summands of the outer direct sum where p is a removable
special point are in fact zero, and removed them, rewriting Γ(P1,G inv

1,Θ,0) as

⊕
p essential special point

( vp⊕
j=1

(
Γ(Wp,G

◦inv
1,Θ,1)/Γ(Wp,G

inv
1,Θ,1,ip,j

)
))/

Γ(Wp,G
◦inv
1,Θ,1)

 .

Again, the kernel ker Γ(P1,G inv
1,Θ,0)→ Γ(P1,G inv

1,O,0) is also split in the direct sum of its intersec-
tions with each of the direct summands. The map from ∇3,2 again computes the (p, j)th entry
out of the ip,jth entry of an element of ∇3,2 treated as an Uip,j -description.

Recall that for each essential special point p and for each j (1 ≤ j ≤ vp) we have denoted

by G◦p,j1,Θ,1 the space of triples of two regular functions and one vector field defined on W ⊂ P1.

We also have denoted by κΘ,p,j the map (actually, it is an isomorphism) κΘ,p,j : G◦p,j1,Θ,1 →
Γ(Wp,G ◦inv

1,Θ,1) that computes a vector field defined on Uq out if its Uip,j -description. Note also

that Γ(Wp,G ◦inv
1,Θ,1) = Γ(P1,G ◦inv

1,Θ,1) since both spaces are the spaces of T -invariant vector fields
defined on Uq = Uip,j ∩ Uq. The direct sum of maps κΘ,p,j for a fixed essential special point p
and for all j (1 ≤ j ≤ vp) was denoted by κΘ,p

Let us also denote

G◦p1,Θ,1 =

vp⊕
j=1

G◦p,j1,Θ,1 and G◦1,Θ,1 =
⊕

p essential special point

G◦p1,Θ,1.

Denote the direct sum of all isomorphisms κΘ,p for all essential special points p by by

κΘ : G◦1,Θ,1 →
⊕

p essential special point

vp⊕
j=1

Γ(P1,G ◦inv
1,Θ,1).

Using this isomorphism, we can say that we have a map ∇3,2 → G◦1,Θ,1, and this map works
as follows: the (p, j)th entry of the image of an element g of ∇3,2 is the ip,jth triple (i. e. the
(3ip,j − 2)th, the (3ip,j − 1)th, and the 3ip,jth entries) of g.

To proceed, we will need a more convenient basis for ∇3,2. Recall that for each primitive
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6 A formally versal T -equivariant deformation over affine space

polyhedron Ξi (1 ≤ i ≤ R),

tki +

ki−1∑
k=0

a
(1)
i,k t

k =
r∏
j=1

(t− t(pj))ni,j .

Lemma 6.33. Fix a primitive polyhedron Ξi (1 ≤ i ≤ R) and denote temporarily f = tki +∑ki−1
k′=0 a

(1)
i,k t

k =
∏r
j=1(t− t(pj))ni,j Consider the rational functions

tki +
∑ki−1

k=0 a
(1)
i,k′t

k′

(t− t(pj))k

for all j and k such that 1 ≤ j ≤ r and 1 ≤ k ≤ ni,j.
All these functions together span the same subspace in rational functions on P1 as

1, t, . . . , tki−1.

Proof. By partial fraction decomposition theorem, the functions

1

(t− t(pj))k

for all j and k such that 1 ≤ j ≤ r and 1 ≤ k ≤ ni,j form a basis of all rational functions of the
form

f∏r
j=1(t− t(pj))ni,j

=
f

tki +
∑ki−1

k=0 a
(1)
i,k t

k
,

where f is a polynomial in t of degree at most −1+
∑R

j=1 ni,j = ki−1. After the multiplication

by tki +
∑ki−1

k=0 a
(1)
i,k t

k, we get the claim of the lemma.

For each j (1 ≤ j ≤ R) and for each pair (j′, k), where 1 ≤ j′ ≤ r and 1 ≤ k ≤ nj,j′ denote

s′3,2,j,j′,k = (g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]),

where:

1. v[i] = 0 for all i.

2. g[ip,j′′ ]1 = g[ip,j′′ ]2 = 0 if p is a special point and 1 ≤ j′′ ≤ `j,p.

3.

g[ip,j′′ ]j′′′ = − 1

(t− t(pj′))k
βip,j′′ ,j

′′′(V1(Ξj)),

if p is a special point, `j,p < j′′ ≤ v′p, and j′′′ = 1, 2.

Lemma 6.34. ∇3,2 is spanned by all functions s′3,2,j,j′,k, where 1 ≤ j ≤ R, 1 ≤ j′ ≤ r, and
1 ≤ k ≤ nj,j′.

Proof. By Lemma 6.33, we may replace the numerators of functions in s3,2,j,k from 1, t, . . . , tkj to
the functions from the statement of Lemma 6.33. After doing this, we get exactly s3,2,j,j′,k.

Now let us recall that for each essential special point p we had a vector space ∇1,2,p and
a map ρp : ∇1,2,p → G◦p1,Θ,1 (actually, it maps ∇1,2,p to a subspace of G◦p1,Θ,1, which was called
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6.4 Surjectivity of the Kodaira-Spencer map

∇1,0,p) such that the composition ∇1,2,p → G◦p1,Θ,1 → Γ(P1,G inv
1,Θ,0) maps ∇1,2,p surjectively onto

the graded component corresponding to p of the kernel ker(Γ(P1,G inv
1,Θ,0)→ Γ(P1,G inv

1,O,0)) (see
Proposition 4.31 and Remark 4.18).

So, denote ∇1,2 =
⊕

p essential special point∇1,2,p, and denote the direct sum of all maps ρp
by ρ. Then the composition ∇1,2 → G◦1,Θ,1 → Γ(P1,G inv

1,Θ,0) maps ∇1,2 surjectively onto

ker(Γ(P1,G inv
1,Θ,0) → Γ(P1,G inv

1,O,0)). By the definition of the maps ρp, ρ actually works as
follows: it computes Uip,j -descriptions out of Uq-descriptions and adds some zeros.

It would be sufficient to prove that the image of ∇3,2 in G◦1,Θ,1 contains ρ(∇3,2), but this is
not true in general. Instead, we will construct another vector space ∇3,3, whose elements will
define the same classes in Γ(P1,G inv

1,Θ,0) (and even in H1(U,ΘU )) as elements of ∇3,2, and whose
image in G◦1,Θ,1 will contain ∇1,2.

Namely, ∇3,3 ⊆ ∇3,0 will consist of some of the 3(q− 1)-tuples of the form

(g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]),

where each g[i]j is a regular function on W ⊂ P1, each v[i] is a vector field on W ⊂ P1. We will
take only some of these 3(q− 1)-tuples, not all of them. More precisely, ∇3,3 will be spanned
by the following elements s3,3,j,j′,k, where 1 ≤ j ≤ R, 1 ≤ j′ ≤ r, and 1 ≤ k ≤ nj,j′ :

s3,3,j,j′,k = (g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]),

where:

1. v[i] = 0 for all i.

2. a) If i = ipj′ ,j′′ , where `j,pj′ < j′′ ≤ v′pj′ , then

g[i]j′′′ = − 1

(t− t(pj′))k
βi,j′′′(V1(Ξj)),

for j′′′ = 1, 2.

b) Otherwise (if i is not of this form), g[i]1 = g[i]2 = 0.

Lemma 6.35. For each j, j′, and k (1 ≤ j ≤ R, 1 ≤ j′ ≤ r, and 1 ≤ k ≤ nj,j′), s′3,2,j,j′,k ∈ ∇3,2

and s3,3,j,j′,k ∈ ∇3,3 define the same class in
⊕q−1

i=1 (Γ(Uq,ΘU )/Γ(Ui,ΘU )).

Proof. Write

s′3,2,j,j′,k = (g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]),

s3,3,j,j′,k = (g[1]′1, g[1]′2, v[1]′, . . . , g[q− 1]′1, g[q− 1]′2, v[q− 1]′).

Choose an index i such that the ith entries of the images of s′3,2,j,j′,k and of s3,3,j,j′,k in⊕q−1
i=1 Γ(Uq,ΘU ) differ. First, note that i corresponds to an essential special point p, otherwise

both entries are zeros since `j,p = v′p for removable special points p.

So, p is an essential special point and there exists an index j′′ (1 ≤ j′′ ≤ vp) such that
i = ip,j′′ . such that the (p, j′′)th entries of the images of

Now the fact that the ip,j′′th entries of the images of s′3,2,j,j′,k and of s3,3,j,j′,k in⊕q−1
i=1 Γ(Uq,ΘU ) differ means that p 6= pj′ , `j,p < j′′ ≤ v′p, and the different entries have
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6 A formally versal T -equivariant deformation over affine space

the following Ui-descriptions:

(g[ip,j′′ ]1, g[ip,j′′ ]2, v[ip,j′′ ]) =

(
− 1

(t− t(pj′))k
βip,j′′ ,1(V1(Ξj)),−

1

(t− t(pj′))k
βip,j′′ ,2(V1(Ξj)), 0

)
and

(g[ip,j′′ ]
′
1, g[ip,j′′ ]

′
2, v[ip,j′′ ]

′) = (0, 0, 0).

Since p 6= pj′ , the functions g[ip,j′′ ]1 and g[ip,j′′ ]2 are defined on Wp, so the vector fields with
these descriptions are defined on Ui, and s′3,2,j,j′,k ∈ ∇3,2 and s3,3,j,j′,k ∈ ∇3,3 define the same

class in
⊕q−1

i=1 (Γ(Uq,ΘU )/Γ(Ui,ΘU )).

Corollary 6.36. ∇3,3 is contained in ∇3,1 and therefore defines a subspace of H1(U,ΘU ).
Moreover, images of ∇3,2 and of ∇3,3 in H1(U,ΘU ) are the same.

The map ∇3,3 → G◦1,Θ,1 is defined in the same way as the map ∇3,2 → G◦1,Θ,1: Given

g = (g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]) ∈ ∇3,3,

if p is an essential special point and 1 ≤ j ≤ vp, then the (p, j)th entry of the image of g is
(g[ip,j ]1, g[ip,j ]2, v[ip,j ]).

Corollary 6.37. The images of ∇3,2 and of ∇3,3 in G◦1,Θ,1 define the same subspace of

Γ(P1,G inv
1,Θ,0).

We will need a slightly different set of generators for ∇3,3. If pj′ is an essential special point,
1 ≤ l < vpj′ , and 1 ≤ k ≤ |Epj′ ,l|, denote

s′3,3,l,j′,k = (g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]),

where:

1. v[i] = 0 for all i.

2. a) If i = ipj′ ,j′′ , where l < j′′ ≤ vpj′ , then

g[i]j′′′ = − 1

(t− t(pj′))k
βi,j′′′(Vpj′ ,l+1 −Vpj′ ,l),

for j′′′ = 1, 2.

b) Otherwise (if i is not of this form), g[i]1 = g[i]2 = 0.

(we do not claim a priori that s′3,3,l,j′,k ∈ ∇3,3).

Lemma 6.38. If pj′ is an essential special point, 1 ≤ j ≤ R, and 1 ≤ k ≤ nj,j′, then
|Epj′ ,`j,pj′

|s3,3,j,j′,k = s′3,3,`j,pj′ ,j
′,k.

Moreover, all s′3,3,l,j′,k (for all essential special points pj′, 1 ≤ l < vpj′ , and 1 ≤ k ≤ |Epj′ ,l|)
are elements of ∇3,3 and generate ∇3,3.

Proof. The first claim follows from the following equality:

Vpj′ ,`j,pj′
+1 −Vpj′ ,`j,pj′

= |Epj′ ,`j,pj′
|V1(Ξj).
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6.4 Surjectivity of the Kodaira-Spencer map

This is true because Epj′ ,`j,pj′
is the edge of ∆pj′ parallel to E1(Ξj), ∆pj′ =

∑
i ni,j′Ξi,

|Epj′ ,`j,pj′
| = nj,j′ (Lemma 6.31), and V0(Ξj) = 0.

To check the second claim, we need to do the following. For each essential special point pj′

and for each l (1 ≤ l < vpj′ ) we have to check that there exists a primitive polyhedron Ξj
(1 ≤ j ≤ R) such that l = `j,pj′ . But this follows from the equality ∆pj′ =

∑
j nj,j′Ξj and the

fact that if nj,j′ 6= 0, then Epj′ ,`j,pj′
is the edge of ∆pj′ parallel to E1(Ξj).

To finish the proof, note that for removable special points pj′ , nj,j′ = 0 for all j, so it is not
possible to take k so that 1 ≤ k ≤ nj,j′ , so there are no generators s3,3,j,j′,k, where pj′ is a
removable special point.

Remark 6.39. For each l, j, and k (pj is an essential special point, 1 ≤ l < vpj , and

1 ≤ k ≤ |Epj ,l|), the image of s′3,3,l,j,k in G◦1,Θ,1 actually belongs to G
◦pj
1,Θ,1 ⊆ G◦1,Θ,1.

The space ∇1,2 consists of functions, which are interpreted as Uq-descriptions of vector fields.
The functions on ∇3,3 are interpreted as Ui-descriptions for different values of i. To work with
∇1,2 easier, let us construct another space ∇3,4, whose elements will be interpreted as Uq-
descriptions. So, by definition ∇3,4 consists of some of the 3(q− 1)-tuples of the form

(g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]),

where each g[i]j is a regular function on W ⊂ P1, each v[i] is a vector field on W ⊂ P1. More
precisely, ∇3,4 is spanned by 3(q − 1)-tuples called s3,4,l,j,k, where pj is an essential special
point, 1 ≤ l ≤ vpj , 1 ≤ k ≤ |Epj ,l|. By definition,

s3,4,l,j,k = (g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]),

where:

1. v[i] = 0 for all i.

2. a) If i = ipj ,j′ , where l < j′ ≤ vp′j , then

g[i]j′′ = − 1

(t− t(pj′))k
βq,j′′(Vpj ,l+1 −Vpj ,l),

for j′′ = 1, 2.

b) Otherwise (if i is not of this form), g[i]1 = g[i]2 = 0.

Clearly, ∇3,4 is isomorphic to ∇3,3, and the isomorphism computes the (3i − 2)th, (3i − 1)th,
and 3ith entries of an element of ∇3,3 as the Ui-description of the vector field with the Uq-
description consisting of the (3i−2)th, (3i−1)th, and 3ith entries of the corresponding element
of ∇3,4.

The resulting morphism ∇3,4 → G◦1,Θ,1 works as follows. Given g ∈ ∇3,4, the (p, j)th entry
of its image in G◦1,Θ,1 is the Uip,j -description of the vector field on Uq with the Uq-description
formed by the (3ip,j − 2)th, the (3ip,j − 1)th, and the 3ip,jth entries of g.

Recall that ρ : ∇1,2 → G◦1,Θ,1 works in a similar way: the (p, j)th entry of the image is the
Uip,j -description computed from the Uq-description formed by the (p, 2j−1)th and the (p, 2j)th
entries of an element of ∇1,2 and 0. So, if we construct a morphism that reorders entries of am
element of ∇3,4 in the appropriate way (and removes some zeros) and maps ∇3,4 to ∇1,2, we
will factor the map ∇3,4 → G◦1,Θ,1 through ∇1,2.
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6 A formally versal T -equivariant deformation over affine space

Lemma 6.40. Let

g = (g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]) ∈ ∇3,4.

Fix a special point p and consider the following sequences, which we will denote by ρ′p(g):

ρ′p(g) = (g[ip,1]1, g[ip,1]2, . . . , g[ip,vp ]1, g[ip,vp ]2).

Then ρ′p(g) ∈ ∇1,2,p.

Proof. Without loss of generality, g = s3,4,l,j,k for some essential special point pj , 1 ≤ l ≤ vpj ,
1 ≤ k ≤ |Epj ,l|. Moreover, if this is true, and p 6= pj′ , then ρ′p(g) is the zero sequence by the
definition of s3,4,l,j,k. So suppose that p = pj′ . Then

ρ′p(g) = (0, 0, . . . , 0, 0︸ ︷︷ ︸
2l zeros

, g′1, g
′
2, g
′
1, g
′
2, . . . , g

′
1, g
′
2︸ ︷︷ ︸

2(vp − l) entries

),

where

g′1 = − 1

(t− t(pj′))k
βq,1(Vpj ,l+1 −Vpj ,l), g

′
2 = − 1

(t− t(pj′))k
βq,2(Vpj ,l+1 −Vpj ,l).

Let us check the conditions in the definition of ∇1,2,p one by one. Condition 1 is satisfied by
the choice of functions tp in this section. Condition 2 is satisfied since l ≥ 1. Condition 3 is
only nontrivial for the edge Ep,l. For this edge, it suffices to check that

β∗q,1(b(N (Ep,l,∆p)))βq,1(Vpj ,l+1 −Vpj ,l) + β∗q,2(b(N (Ep,l,∆p)))βq,2(Vpj ,l+1 −Vpj ,l) = 0.

The expression at the left is the way of writing in coordinates of b(N (Ep,l,∆p))(Vpj ,l+1−Vpj ,l).
And by a property of the normal cone of an edge of a polyhedron, if we shift an argument of
b(N (Ep,l,∆p)) along the edge, the value will not change. So, b(N (Ep,l,∆p))(Vpj ,l+1) =
b(N (Ep,l,∆p))(Vpj ,l), and

β∗q,1(b(N (Ep,l,∆p)))βq,1(Vpj ,l+1 −Vpj ,l) + β∗q,2(b(N (Ep,l,∆p)))βq,2(Vpj ,l+1 −Vpj ,l) = 0.

Finally, Condition 4 is again nontrivial only for the edge Ep,l, and for this edge we have
k ≤ |Ep,l|.

So, we have defined a map ρ′p : ∇3,4 → ∇1,2,p. Now, if g ∈ ∇3,4, denote

ρ′(g) = (ρ′p(g))p essential special point.

Then we have a map ρ′ : ∇3,4 → ∇1,2, and it follows directly from the definitions of these maps
that the map ∇3,4 → G◦1,Θ,1 we have is the composition of ρ′ and ρ. Now it suffices to check
that ρ′ is surjective.

If pj is an essential special point, 1 ≤ l < vpj , and 1 ≤ k ≤ |Epj ,l|, denote the following
element of ∇1,2,pj by s2,l,j,k:

s2,l,j,k = (0, 0, . . . , 0, 0︸ ︷︷ ︸
2l zeros

, g1, g2, g1, g2, . . . , g1, g2︸ ︷︷ ︸
2(vp − l) entries

),
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6.4 Surjectivity of the Kodaira-Spencer map

where

g1 = − 1

(t− t(pj))k
βq,1(Vpj ,l+1 −Vpj ,l), g2 = − 1

(t− t(pj))k
βq,2(Vpj ,l+1 −Vpj ,l).

Corollary 6.41. If pj is an essential special point, 1 ≤ l < vpj , and 1 ≤ k ≤ |Epj ,l|, then
ρ′pj (s3,4,l,j,k) = s2,l,j,k, and ρ′p(s3,4,l,j,k) = 0 if p 6= pj.

Lemma 6.42. Let pj be an essential special point. Then all s2,l,j,k for all possible l and k
(1 ≤ l < vpj , and 1 ≤ k ≤ |Epj ,l|) span (and even form a basis of) ∇1,2,pj .

Proof. Clearly, all these sequences s2,l,j,k are nonzero and linearly independent. The amount
of them is |Epj ,1|+ . . .+ |Epj ,vpj−1| = dim∇1,2,pj (Remark 4.30).

Corollary 6.43. ρ′ : ∇3,4 → ∇1,2 is surjective.

Finally, we get the following proposition:

Proposition 6.44. The map ∇3,2 → ker(H0(P1,G inv
1,Θ,0)→ H0(P1,G inv

1,O,0)) is surjective.

Now we continue with im(∇3,2 → H1(U,ΘU )). We will have to prove that it contains
im(H1(P1,G0,Θ)→ H1(U,ΘU )). Let us start with the following lemma.

Lemma 6.45. Let p be an essential special point, 1 ≤ j1 ≤ vp, 1 ≤ j2 ≤ vp. Let w be the
vector field on Uq with Uip,j1

-description (0, 0, v), where v = ∂/∂t (recall that t is defined at all
essential special points).

Let (g1, g2, v) be the Uip,j2
-description of w. Then

g1 − βip,j2 ,1
(Vp,j1 −Vp,j2)

1

t− t(p)

and

g2 − βip,j2 ,2
(Vp,j1 −Vp,j2)

1

t− t(p)

are rational functions on P1 regular at p.

Proof. By Lemma 3.23,

gi =
h
β∗ip,j1 ,1

(βip,j2
,i)

ip,j1 ,1
h
β∗ip,j1 ,2

(βip,j2
,i)

ip,j1 ,2

hip,j2 ,i

d

 hip,j2 ,i

h
β∗ip,j1 ,1

(βip,j2
,i)

ip,j1 ,1
h
β∗ip,j1 ,2

(βip,j2
,i)

ip,j1 ,2

 v

for i = 1, 2. Denote

fi =
hip,j2 ,i

h
β∗ip,j1 ,1

(βip,j2
,i)

ip,j1 ,1
h
β∗ip,j1 ,2

(βip,j2
,i)

ip,j1 ,2

,

then

gi =
dfi
fi
v.

Let us find ordp(fi). We have

ordp(fi) = ordp(hip,j2 ,i
)− β∗ip,j1 ,1(βip,j2 ,i

) ordp(hip,j1 ,1
)− β∗ip,j1 ,2(βip,j2 ,i

) ordp(hip,j1 ,2
).
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Since p ∈ Wp = Vip,j1
= Vip,j2

, we have ordp(hip,j1 ,i
) = −Dp(βip,j1 ,i

) = − eval∆p(βip,j1 ,i
)

and ordp(hip,j2 ,i
) = −Dp(βip,j2 ,i

) = − eval∆p(βip,j2 ,i
). By the definition of ip,j1 and of

ip,j2 , βip,j1 ,i
∈ N (∆p,Vp,j1) for i = 1, 2 and βip,j1 ,i

∈ N (∆p,Vp,j2) for i = 1, 2. So,

ordp(hip,j1 ,i
) = −βip,j1 ,i

(Vp,j1) and ordp(hip,j2 ,i
) = −βip,j2 ,i

(Vp,j2). Now,

ordp(fi) = −βip,j2 ,i
(Vp,j2) + β∗ip,j1 ,1

(βip,j2 ,i
)βip,j1 ,1

(Vp,j1) + β∗ip,j1 ,2
(βip,j2 ,i

)βip,j1 ,2
(Vp,j1) =

− βip,j2 ,i
(Vp,j2) + βip,j2 ,i

(Vp,j1) = βip,j2 ,i
(Vp,j1 −Vp,j2).

Consider also functions
f ′i = (t− t(p))−βip,j2

,i(Vp,j1
−Vp,j2

)
.

Its logarithmic derivative equals

df ′i
f ′i

= −βip,j2 ,i
(Vp,j1 −Vp,j2)

dt

t− t(p)
,

and
df ′i
f ′i
v = −βip,j2 ,i

(Vp,j1 −Vp,j2)
1

t− t(p)
.

Clearly, ordp(f
′
i) = βip,j2 ,i

(Vp,j1 −Vp,j2), and ordp(fif
′
i) = 0, so the logarithmic derivative of

fif
′
i is regular at p. We have

dfif
′
i

fif ′i
v =

dfi
fi

+
df ′i
f ′i

= gi − βip,j2 ,i
(Vp,j1 −Vp,j2)

1

t− t(p)
.

Corollary 6.46. Let p be an essential special point, 1 ≤ j1 ≤ vp, 1 ≤ j2 ≤ vp. Let w be the
vector field on Uq with Uip,j1

-description (gj1,1, gj1,2, v), where v = ∂/∂t (recall that t is defined
at all essential special points) and gj1,i are regular at p.

Let (gj2,1, gj2,2, v) be the Uip,j2
-description of w. Then

gj2,1 − βip,j2 ,1
(Vp,j1 −Vp,j2)

1

t− t(p)

and

gj2,2 − βip,j2 ,2
(Vp,j1 −Vp,j2)

1

t− t(p)

are rational functions on P1 regular at p.

Proof. Set (
g′j2,1
g′j2,2

)
= C◦ip,j1 ,ip,j2

(
gj1,1
gj1,2

)
and  g′′j2,1

g′′j2,2
v

 = Cip,j1 ,ip,j2

 0
0
v

 .

Then gj2,i = g′j2,i + g′′j2,i. Since the entries of C◦ip,j1 ,ip,j2
are constants, the functions g′j2,1 and

g′j2,2 are regular at p. The claim follows from Lemma 6.45.
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6.4 Surjectivity of the Kodaira-Spencer map

We need to introduce a notation. Let p be an essential special point. Let v = ∂/∂t be a
vector field on P1. Let (g1, g2, v) be the Uq-description of the vector field on Uq with the Uip,1-
description (0, 0, v). It follows from the form of the matrix Cq,ip,1 and properties of logarithmic
derivatives that the functions g1 and g2 have poles of order at most one at p. So, functions

(t − t(p))gi (i = 1, 2) are regular at p. Denote their values at p by a
(2)
p,1 and a

(2)
p,2, respectively.

Then functions gi − a(2)
p,i (t− t(p))−1 (i = 1, 2) are regular at p. We keep this notation a

(2)
p,1 and

a
(2)
p,2 until the end of the section, while p, v, g1, and g2 will be used in the sequel to denote other

objects.

Lemma 6.47. Let p be an essential special point, v = ∂/∂t, and let w be the vector field on Uq

with Uq-description (a
(2)
p,1(t− t(p))−1, a

(2)
p,2(t− t(p))−1, v). Let (g1, g2, v) be the Uip,1-description

of w. Then g1 and g2 are regular at p.

Proof. Set  gq,1

gq,2

v

 = Cip,1,q

 0
0
v

 .

Then  0
0
v

 = Cq,ip,1

 gq,1

gq,2

v


and  g1

g2

v

 = Cq,ip,1

 (a
(2)
p,1(t− t(p))−1

(a
(2)
p,2(t− t(p))−1

v

 ,

so (
g1

g2

)
= C◦q,ip,1

(
(a

(2)
p,1(t− t(p))−1 − gq,1

(a
(2)
p,2(t− t(p))−1 − gq,2

)
.

Functions (a
(2)
p,i (t− t(p))−1 − gq,i are regular at p, the entries of C◦q,ip,1 are constants, so g1 and

g2 are regular at p.

Consider the following elements of ∇3,3: For each essential special point pj set

s3,5,j =

vpj−1∑
l=1

sl,j,1.

Denote by ∇3,5 the subspace of ∇3,3 spanned by all s3,5,j .
We are going to prove that im(∇3,5 → H1(U,ΘU )) = im(H1(P1,G0,Θ) → H1(U,ΘU )). As

before, we will replace ∇3,5 by another vector space that will represent the same subspace of
H1(U,ΘU ). Namely, for each essential special point pj denote by s3,6,j the following element of
∇3,0.

s3,6,j = (g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1]),

where:

1. If i = ipj ,k, where 1 ≤ k ≤ vp′j , then (g[i]1, g[i]2, v[i]) is the Ui-description of the vector

field on Uq with the Uq-description (a
(2)
pj ,1

(t− t(pj))−1, a
(2)
pj ,2

(t− t(pj))−1, ∂/∂t).

135



6 A formally versal T -equivariant deformation over affine space

2. Otherwise (if i is not of this form), g[i]1 = g[i]2 = v[i] = 0.

Lemma 6.48. For each essential special point pj, s3,5,j and s3,6,j define the same class in⊕q−1
i=1 (Γ(Uq,ΘU )/Γ(Ui,ΘU )).

Proof. Let
s3,5,j = (g[1]1, g[1]2, v[1], . . . , g[q− 1]1, g[q− 1]2, v[q− 1])

and
s3,6,j = (g[1]′1, g[1]′2, v[1]′, . . . , g[q− 1]′1, g[q− 1]′2, v[q− 1]′).

It is sufficient to prove the following: for each k (1 ≤ k ≤ vpj ),

(g[ipj ,k]
′
1 − g[ipj ,k]1, g[ipj ,k]

′
2 − g[ipj ,k]2, v[ipj ,k]

′ − v[ipj ,k])

is the Uipj,k
-description of a vector field defined on Uipj,k

. In other words, we have to check that

the functions g[ipj ,k]
′
1− g[ipj ,k]1 and g[ipj ,k]

′
2− g[ipj ,k]2 are regular at pj (for v[ipj ,k]

′− v[ipj ,k] =
∂/∂t this is clear).

First, let us find a precise expression for g[ipj ,k]1 and g[ipj ,k]2. By the definition of s′3,3,k,j,1,
we have

g[ipj ,k]j′ = − 1

t− t(pj)

k−1∑
l=1

βipj,k,j
′(Vpj ,l+1 −Vpj ,l) = − 1

t− t(pj)
βipj,k,j

′(Vpj ,k −Vpj ,1).

(Note that for k = 1 we get g[ipj ,1]1 = g[ipj ,k]2 = 0.)
For k = 1, the functions g[ipj ,k]

′
1 − g[ipj ,k]1 = g[ipj ,k]

′
1 and g[ipj ,k]

′
2 − g[ipj ,k]2 = g[ipj ,k]

′
2 are

regular at p by Lemma 6.47. For other values of k, we have

g[ipj ,k]
′
j′ − g[ipj ,k]j′ = g[ipj ,k]

′
j′ −

1

t− t(pj)
βipj,k,j

′(Vpj ,1 −Vpj ,k).

These functions are regular at p by Corollary 6.46 since (g[ipj ,k]
′
1, g[ipj ,k]

′
2, ∂/∂t) is the Uipj,k

-

description of a vector field on Uq with Uip1,1
-description (g[ipj ,1]′1, g[ipj ,1]′2, ∂/∂t), and functions

g[ipj ,k]
′
1 and g[ipj ,k]

′
2 are regular at p.

Corollary 6.49. For each essential special point pj, s3,6,j ∈ ∇3,1. Moreover, s3,5,j and s3,6,j

define the same classes in H1(U,ΘU ).

Denote the subspace of ∇3,1 generated by all s3,6,j by ∇3,6. By Corollary 6.49, im(∇3,6 →
H1(U,ΘU )) is a subspace of im(∇3,2 → H1(U,ΘU )). We will prove that im(∇3,6 →
H1(U,ΘU )) = im(H1(P1,G0,Θ)→ H1(U,ΘU )).

Let us recall the results of Chapter 4 related with H1(P1,G0,Θ). There we have introduced
vector spaces

∇0,1 =
⊕

p essential special point

ΘP1,p

and (for each special point p) ∇0,0,p, which was the space of triples of Laurent polynomials in
tp of a certain form, where the first two polynomials were rational functions on P1, and the
last one was a rational vector field on P1. ∇0,1 was mapped to

⊕
p special point∇0,0,p, namely,

a sequence of tangent vectors (gp∂/∂tp)p essential special point, where gp ∈ C, was mapped to a
sequence of rational functions and vector fields on P1, where all functions are zeros, and the
vector fields on P1 defined by the same formulas (plus zero vector fields for removable special
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points).
⊕

p special point∇0,0,p was further mapped to H1(P1,G0,Θ). Then we proved (Lemma

4.10) that ∇0,1 is mapped to H1(P1,G0,Θ) surjectively.

The space ∇0,1 has the following obvious basis: for each j such that pj is an essential special
point, let s1,j ∈ ∇0,1 be the sequence with the pjth entry ∂/∂t (recall that tpj = t − t(pj) for
essential special points) and all other entries are zeros. The image of s1,j in∇0,0,pj is (0, 0, ∂/∂t),
and the image of s1,j in ∇0,0,p with p 6= pj is (0, 0, 0).

We also checked (Lemma 4.8) that if we change the first two entries of an element of ∇0,0,p,
where p is a special point, arbitrarily, then the class of this element in H1(P1,G0,Θ) will

not change. So, if pj is an essential special point, set s′1,j = (a
(2)
pj ,1

(t − t(pj))
−1, a

(2)
pj ,2

(t −
t(pj))

−1, ∂/∂t) ∈ ∇0,0,pj . Denote the subspace of
⊕r

j=1∇0,0,pj spanned by all s′1,j by ∇0,2. By

Lemma 4.8, ∇0,2 is mapped surjectively onto H1(P1,G0,Θ).

The sheaf G0,Θ was constructed as follows. Its sections on an open set V ⊆ P1 were sequences
of length 2q+ 1, where the first 2q entries were rational functions on P1 and the last entry was
a rational vector field on P1. More precisely, for each i (1 ≤ i ≤ q) the (2i − 1)th, the 2ith,
and the (2q + 1)th entries from the Ui-description of the same (i. e. not depending on i) vector
field on U ∩ π−1(V ). For each special point p we had a morphism ∇0,0,p → Γ(W,G0,Θ), which
computed all Ui-descriptions of a vector field by its Uq-description. Then these morphisms were
summed up to a map

r⊕
j=1

∇0,0,p →
r⊕
j=1

Γ(W,G0,Θ)

−→

 r⊕
j=1

(
Γ(W,G0,Θ)/Γ(Wpj ,G0,Θ)

)/Γ(W,G0,Θ) = H1(P1,G0,Θ),

where the second arrow is the canonical projection.

We also had a sheaf G inv
0,Θ, which was the zeroth graded component of π∗ΘU . And we had an

isomorphism G0,Θ → G inv
0,Θ, which computed vector fields out of their Ui-descriptions.

Finally, we need to understand the map H1(P1,G inv
0,Θ)→ H1(U,ΘU ). We have affine coverings

{Wp}p special point of P1 and {Ui}1≤i≤q−1 of U . We interpret H1(P1,G inv
0,Θ) as a quotient of⊕r

j=1 Γ(W,G inv
0,Θ) and H1(U,ΘU ) as a subquotient of

⊕q−1
i=1 Γ(Uq,ΘU ). As it was explained in

Section 2.5, to describe the map H1(P1,G inv
0,Θ) → H1(U,ΘU ), we need to enumerate the sets

Ui by pairs of indices so that the first index in such a pair corresponds to one of the open sets
from the affine covering of P1. For such an enumeration, we use the notation ip,j . Namely,
recall that for each i (1 ≤ i ≤ q− 1) there exists a (removable or essential) special point p and
an index j (1 ≤ j ≤ v′p) such that i = ip,j . So, denote U(p,j) = Uip,j for all special points p and
for all j (1 ≤ j ≤ v′p). Then U(p,j) ⊆ π−1(Wp), and the conditions of Section 2.5 are satisfied.
(Note that the set that was denoted in the ”generic” situation of Section 2.5 by U is now Uq,
and the set that was denoted in the the ”generic” situation of Section 2.5 by V is now W ).
After we have introduced these notations, we can say that the map H1(P1,G inv

0,Θ)→ H1(U,ΘU )

is induced by the following map
⊕r

i=1 Γ(W,G inv
0,Θ)→

⊕r
i=1

⊕v′pi
j=1 Γ(Uq,ΘU ). The (pi, j)th entry

of the result is the ith entry of the preimage restricted to Uq (originally it was a vector field on
π−1(W ) ⊇ Uq).

Summarizing, we see that the map
⊕r

j=1∇0,0,pj → H1(U,ΘU ) is induced by the following

map
⊕r

j=1∇0,0,pj →
⊕q

i=1 Γ(Uq,ΘU ). The ipj ,kth entry of the result is the vector field whose

137



6 A formally versal T -equivariant deformation over affine space

Uq-description is the jth entry of the preimage. In particular, each s′1,j (for each essential
special point pj) is mapped to the following sequence. If i = ipj ,k for some k (1 ≤ k ≤ vpj ),

then the ith entry of the result is the vector field on Uq with the Uq-description (a
(2)
pj ,1

(t −
t(pj))

−1, a
(2)
pj ,2

(t − t(pj))−1, ∂/∂t). Otherwise (for other values of i), the ith entry of the result

is 0. By the definition of s3,6,j , the image of s3,6,j in
⊕q

i=1 Γ(Uq,ΘU ) is the same. Therefore,
im(∇3,6 → H1(U,ΘU )) = im(∇0,2 → H1(U,ΘU )), and we get the following proposition.

Proposition 6.50. im(∇3,2 → H1(U,ΘU )) contains im(H1(P1,G0,Θ)→ H1(U,ΘU )).

The following proposition follows from Propositions 6.44 and 6.50.

Proposition 6.51. The deformation ξ : S→ V of X constructed in Section 6.1 has surjective
Kodaira-Spencer map.

Finally, let us recall the definition of a formally versal deformation. A deformation ξ′ : S′ →
V ′ of X with the basepoint a(3) ∈ V ′ is called formally versal in the class of T -equivariant
deformations if the following holds.

Let ξ′′ : S′′ → V ′′ be another T -equivariant deformation of X, and let a(4) ∈ V ′′ be the
basepoint of this deformation.

Denote by Ṽ ′ the formal neighborhood of a(3) in V ′. Denote by ξ̃′ : S̃′ → Ṽ ′ the restriction
of the deformation ξ′ to Ṽ ′.

Similarly, let Ṽ ′′ be the formal neighborhood of a(4) in V ′′, and let ξ̃′′ : S̃′′ → Ṽ ′′ be the
restriction of the deformation ξ′′ to Ṽ ′′.

Then formal versality means that there exists a morphism f : Ṽ ′′ → Ṽ ′ such that the defor-

mation ξ̃′′ is the pullback of the deformation ξ̃′ via this map f .

Proposition 6.52. Let X be a T -variety, let V be a vector space, and let ξ : S → V be an
equivariant deformation. Suppose that the marked point of this deformation is the origin in V .
Suppose that the Kodaira-Spencer map for this deformation is surjective onto T 1(X)0, which is
finite dimensional.

Then ξ : S→ V is an equivariant formally versal deformation of X.

Idea of a proof. First, one can check that a formally versal deformation exists using [11, The-
orem 2.11]. The conditions (H1) and (H2) are verified exactly in the same way as they are
verified for non-equivariant deformation, see Section 3.7 of [11]. One has to use graded algebras
and equivariant maps between them, but the arguments stay the same. Condition (H3) is our
assumption that T 1(X)0 is finite dimensional. The parameter space (denote it by Y ) of a for-
mally versal deformation we can obtain this way is the spectrum of a complete Noetherian local
algebra. By Cohen structure theorem, C[Y ] is a quotient of a formal power series ring over C
in finitely many variables. Note that it is not true in general that C[Y ] is a finitely generated
C-algebra (i. e. a quotient of a polynomial ring). In the proof of this proposition, choose and
denote by b1, . . . , bm a set of variables such that C[Y ] is a quotient of C[[b1, . . . , bm]], and the
maximal ideal of C[Y ] is the image of (b1, . . . , bm).
T 1(X)0 can be identified with the tangent space of Y at the geometric point (see [11, Defini-

tion 2.7]). Denote by W the vector space with coordinates b1. . . . , bm. Then the tangent space
of Y at the geometric point becomes a subspace of W . After a linear change of variables we
may suppose that this tangent space is defined by the equations bn+1 = . . . = bm = 0. Then
b1, . . . , bn are coordinates on T 1(X)0.

In the proof of this proposition, we denote the dimension of dimT 1(X)0 by n.
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6.4 Surjectivity of the Kodaira-Spencer map

Also, in the proof of this proposition we can suppose without loss of generality that the
Kodaira-Spencer map is an isomorphism (otherwise we can replace V with a complement to
the kernel of the Kodaira-Spencer map).

Let f be a morphism from the formal neighborhood of zero in V to Y such that ξ : S → V
is the pullback via f of the formally versal equivariant deformation over Y . Then df is the
Kodaira-Spencer map.

Choose coordinates a1, . . . , an in V . Then f can be written using m power series in the
variables ai. Denote these power series by f1, . . . , fm so that bi = fi(a1, . . . , an). These series
do not have constant terms. The first n of them have nontrivial linear terms, the last m − n
power series do not have terms of degree less than two.

Since the Kodaira-Spencer map is an isomorphism, without loss of generality (after a suitable
linear change of coordinates in V ) we may suppose that the linear term in fi, where 1 ≤ i ≤ n,
is exactly ai. In other words, bi = ai + (terms of degree ≥ 2) for 1 ≤ i ≤ n.

Now, using iterated corrections in higher and higher degrees, we can find power se-
ries g1, . . . , gn in b1, . . . , bn (the variables bn+1, . . . , bm will not appear there) such that
gi(f1, . . . , fn) = ai. In other words, the map f between the formal neighborhoods of the
marked points is invertible, in other words, it is an isomorphism. Hence, ξ : S → V is also an
equivariant formally versal deformation.

Remark 6.53. In fact, this proposition holds true if V is smooth, but not necessarily a vector
space. The proof is more complicated in this case.

Therefore, we get the following theorem from Theorem 4.32, Proposition 6.51, and Proposi-
tion 6.52.

Theorem 6.54. The deformation ξ : S→ V of X constructed in Section 6.1 is formally versal
in the class of T -equivariant deformations.
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Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012,
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Summary

The dissertation studies equivariant deformations of a certain class of varieties with an action
of an algebraic torus. All varieties in the dissertation are algebraic varieties over complex
numbers.

Normal varieties with an action of a torus (they are called T-varieties) can be parametrized
by combinatorial data, namely by so-called polyhedral divisors. This parametrization was
constructed and studied by Klaus Altmann, Jurgen Hausen, Nathan Owen Ilten, Lars Petersen,
Hendrik Süß, Robert Vollmert, et al. We study three-dimensional varieties with an action of
a two-dimensional torus parametrized by polyhedral divisors on P1 such that all polyhedra in
the divisor are lattice polyhedra, and the tail cone of all these polyhedra is full-dimensional.
Fix one such variety and denote it by X. The torus acting on X will be denoted by T .

We study equivariant deformation of X, i. e. deformations with an action of the torus on the
total space such that the projection to the parameter space is invariant and the restriction of the
action to the special fiber coincides with the torus action on X we started with. We compute
the space of first order (infinitesimal) deformations in terms of the combinatorial description
of X as a T-variety. This space is dentoed by T 1(X)0. Then we prove that all first order
infinitesimal deformations are unobstructed and find a formally versal object for equivariant
deformations.

The dissertation has the following structure. The first chapter is an introduction, it explains
basic notions of theory of T-varieties and of deformation theory. It also contains the precise
statements of the problems we are going to solve. The second chapter contains preliminary
facts from various areas of algebraic geometry and homological algebra, which we will need in
the subsequent chapters.

In Chapter 3, we find a formula for the dimension of T 1(X)0. However, this formula involves
homology groups of different sheaves on P1, and it is not easy to use this formula directly.
In Chapter 4, using the results of Chapter 3, we prove a purely combinatorial formula for the
dimension of T 1(X)0.

Chapter 5 establishes a connection between the formula for dimT 1(X)0 and a previously
known formula for the dimensions of the graded components of the space of first order infinites-
imal deformations of toric varieties. More precisely, we consider the case when X is a toric
variety, i. e. there is a generically transitive action of a three-dimensional torus on X, and the
two-dimensional torus T is a subgroup of this three-dimensional torus.

Finally, in Chapter 6 we construct an equivariant deformation of X over a vector space such
that the Kodaira-Spencer map is surjective and prove that it is formally versal. To compute
the Kodaira-Spencer map in this case, we need to consider a more general situation when an
algebraic variety is defined as the spectrum of a subalgebra A of a free polynomial algebra
C[x1, . . . , xn], and a deformation of SpecA is defined by perturbations of generators of A in
C[x1, . . . , xn]. We impose some technical conditions on this situation, however, the results for
deformations defined this way may be of independent interest. To prove that the Kodaira-
Spencer map is surjective, we extensively use the results and the arguments from Chapter 4.
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Zusammenfassung

In der vorliegenden Dissertation studieren wir äquivariante Deformationen einer bestimmten
Klasse algebraischer Varietäten mit einer Aktion eines algebraischen Torus’. Alle Varietäten in
der Dissertation sind über den komplexen Zahlen.

Normale Varietäten mit einer Torusaktion (genannt T-Varietäten) können mittels kom-
binatorischer Daten, so genannter polyhedrischer Divisoren, parametrisiert werden. Diese
Parametrisierung wurde erstmals von Klaus Altmann, Jurgen Hausen, Nathan Owen Ilten, Lars
Petersen, Hendrik Süß, Robert Vollmert, et al. betrachtet. Wir untersuchen 3-dimensionale
Varietäten mit der Wirkung eines 2-dimensionalen Torus’. Unsere Varietäten sind durch
spezielle polyhedrische Divisoren auf P1 parametrisiert: Alle polyedrischen Koeffizienten sind
Gitterpolyeder, und ihr gemeinsame Schweifkegel ist volldimensional. Wir fixieren eine solche
Varietät und bezeichen es sie mit X. Der Torus, der auf X operiert, wird mit T bezeichent.

Wir studieren nun äquivariante Deformationen von X, d.h. Deformationen von X mit einer
Torusaktion auf dem Totalraum, so dass die Projektion auf den Parameterraum T -invariant
ist, und die Einschränkung der Torusaktion auf die spezielle Faser genau mit der ursprünglich
gegebenen zusamennfällt. Wir berechnen den Raum der infinitesimalen Deformationen erster
Ordnung aus der kombinatorischen Beschreibung von X als einer T-Varietät. Diesen Raum
bezeichnen wir mit T 1(X)0. Dann beweisen wir, dass alle Deformationen erster Ordnung
unobstruiert sind, und wir konstruieren eine formal verselle äquivariante Deformation von X.

Die Dissertation hat die folgende Struktur. Die erste Kapitel ist eine Einführung, es erklärt
die Grundbegriffe der Theorie der T-Varietäten und der Deformationstheorie. Es erhält auch
die genaue Beschreibung der Probleme, die wir lösen werden. Das zweite Kapitel enthält Fakten
aus verschidenen Bereichen der algebraischen Geometrie und der homologische Algebra, die wir
in den folgenden Kaptieln brauchen werden.

In Kapitel 3 finden wir eine Formel für die Dimension von T 1(X)0. Diese Formel beinhaltet
jedoch Homologiegruppen unterschiedlicher Garben auf P1, und es ist nicht leicht, diese Formel
direkt zu nutzen. In Kapitel 4 nutzen wir die Ergebnise vom Kaptel 3 und beweisen eine rein
kombinatorische Formel für die Dimension von T 1(X)0.

Kapitel 5 schafft eine Verbinding zwischen der Formel für dimT 1(X)0 und einer früher bekan-
nten Formel für die Dimensionen der graduierten Komponenten des Raumes der Deformationen
erster Ordnung torischer Varietäten. Genauer betrachten wir den Fall, wenn X eine torische
Varietät ist, d.h. es gibt eine generisch transitive Aktion eines 3-dimensionalen Torus’ auf X,
und der frühere 2-dimensionale Torus T ist eine Untergruppe darin.

Schließlich, in Kapitel 6, konstruieren wir eine äquivariante Deformation von X über einem
Vektorraum, so dass die Kodaira-Spencer-Abbildung surjektiv ist, und wir beweisen, dass diese
Deformation formal versell ist. Um die Kodaira-Spencer-Abbildung in diesem Fall zu berechnen,
müssen wir eine algemeinere Situation betrachten, nämlich wenn eine algebraische Varietät
gleich dem Spektrum einer Unteralgebra A der freie Polynomalgebra C[x1, . . . , xn] ist, und wenn
die Deformation von SpecA durch Störungen der Erzeuger von A innerhalb von C[x1, . . . , xn]
gegeben ist. Diese Ergebnisse sind sicherlich von unabhängigem Interesse über unsere konkrete
Anwendung hinaus. Wir benutzen sie hier, um zu zeigen, dass die Kodaira-Spencer-Abbildung
surjektiv ist.
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