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Zusammenfassung

In dieser Arbeit wird hauptsächlich eine neue probabilistische seismische Tomographiemethode mit

gestreuten Wellen vorgestellt, um die Streuung und Absorption abzubilden, die die kleinskaligen

Strukturen der Erde beschreiben, genannt Adjoint Envelope Tomography (AET).

Die kleinräumige elastische Struktur des Untergrunds auf Längenskalen unterhalb der

Auflösungsgrenzen der Wellenform kann in der Theorie der Zufallsmedien durch statistische

Eigenschaften wie den intrinsischen Qualitätsfaktor Q−1 oder die Fluktuationsstärke ε beschrieben

werden, die die Stärke der Heterogenität charakterisiert. Hochfrequent gestreute seismische Wellen

werden häufig zur Charakterisierung kleinräumiger Heterogenität, intrinsischer Dämpfung oder

zeitlicher Veränderungen der Wellengeschwindigkeit mit einer Vielzahl von Ansätzen verwendet. Es

fehlt jedoch ein strenger Rahmen für die iterative Inversion gestreuter Wellen zur Abbildung von

Heterogenität und hochfrequenter Dämpfung, vergleichbar mit der Full-waveform inversion (FWI). In

dieser Arbeit wird ein mathematischer Rahmen für eine iterative Inversion unter Verwendung von

Vorwärts- und adjungierten Simulationen der Strahlungstransportgleichungen vorgestellt, in voller

Analogie zur FWI, die auf der Wellengleichung basiert.

Das Vorwärts- und das adjungierte Problem werden durch die Modellierung von

2-D-Mehrfachstreuung in einem zufälligen elastischen Medium mit räumlich variabler Heterogenität und

Dämpfung unter Verwendung der Strahlungstransportgleichungen gelöst, die mit der

Monte-Carlo-Methode gelöst werden. Die Aufzeichnung der spezifischen Energiedichte des Wellenfelds,

die die vollständige Information über die Energiedichte an einem bestimmten Ort, zu einer bestimmten

Zeit und in einer bestimmten Ausbreitungsrichtung enthält, ermöglicht die Berechnung von

Sensitivitätskernen nach strengen theoretischen Ableitungen. Die praktische Berechnung der Kerne

erfordert die Lösung der adjungierten Strahlungstransportgleichungen. In dieser Arbeit werden

Sensitivitätskerne untersucht, die die Beziehungen zwischen den Änderungen des Modells in der P- und

S-Wellengeschwindigkeit, der P- und S-Wellendämpfung und der Stärke der Fluktuation einerseits und

der Seismogrammhüllkurve, den Laufzeitänderungen und der Wellenformdekorrelation als

Beobachtungsgrößen andererseits beschreiben. Diese Sensitivitätskerne spiegeln die Auswirkungen der

räumlichen Variationen der Eigenschaften des Mediums auf das Wellenfeld wider und stellen den ersten

Schritt in der Entwicklung dieses tomographischen Inversionsansatzes für die Verteilung kleinräumiger

Heterogenität auf der Grundlage gestreuter Wellen dar. Dann werden die Misfit-Kerne für die

quadratische Differenz zwischen den vollständigen beobachteten und modellierten Hüllkurven abgeleitet,

die iterativ mit der L-BFGS-Methode minimiert werden.

Zunächst wird AET numerisch in der akustischen Näherung getestet und zeigt, dass es möglich ist,

die räumliche Verteilung der kleinräumigen Heterogenität und Dämpfung in iterativen Inversionen

abzubilden. Die Analyse zeigt, dass die relative Bedeutung von Streu- und Dämpfungsanomalien bei

der Bewertung der Modellauflösung berücksichtigt werden muss. Die Inversionen bestätigen, dass die

frühe Coda für die Abbildung der Verteilung der Heterogenität wichtig ist, während spätere

Coda-Wellen empfindlicher auf die intrinsische Dämpfung reagieren, und diese Abhängigkeit kann

genutzt werden, um den Kompromiss zwischen beiden Materialeigenschaften zu bewältigen. Zweitens

wird die Anwendung von AET in einem Laborexperiment umgesetzt. Unter Verwendung von
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Ultraschalldaten von eingebetteten Sensoren in einer meterlangen Betonprobe wird die Verteilung von

Absorption und Heterogenität in einem späteren bzw. früheren Coda-Zeitfenster abgebildet, was den

Schlussfolgerungen aus den numerischen Tests entspricht. Die Ergebnisse lokalisieren erfolgreich einen

Bereich des Salzbetons mit erhöhter Streuung und konzentrischen Anomalien der intrinsischen

Dämpfung. Die Auflösungsprüfung zeigt, dass die gefundenen Anomalien die innere Struktur des

Probekörpers angemessen wiedergeben. Sowohl die numerischen als auch die experimentellen Ergebnisse

zeigen die Wirksamkeit von AET. Schließlich wird ein erster Versuch unternommen, AET für die

Untersuchung des sphärisch symmetrischen 1D-Streumodells der Erde einzusetzen. Die Vorarbeiten zur

globalen Stapelung der Pdiff -Koda sind abgeschlossen. Die globale Erdbebenstreuung wird durch die

Monte-Carlo-Methode mit einem vorgeschlagenen Streumodell simuliert, das bis zu einem gewissen

Grad mit der Beobachtung von Pdiff coda übereinstimmt, die in Zukunft mit der AET-Methode

verbessert werden soll. Eine Analyse über den Ursprung von Pdiff coda wird durch die Simulation mit

verschiedenen Streuschichten von der Lithosphäre bis zum CMB diskutiert und die verfügbare

Streufläche für Pdiff coda und ihre Dauer werden unter der Annahme von Einzelstreuung demonstriert.



Summary

This thesis presents a new probabilistic seismic tomography method with scattered waves to image the

scattering and absorption that describe the small-scale structures of the Earth. I call it Adjoint Envelope

Tomography (AET).

The small-scale elastic structure of the subsurface at length scales below the resolution limits of

waveform-based imaging methods can be described by random medium theory using statistical

properties like correlation length of the fluctuations a or their amplitude ε that characterizes the

strength of the heterogeneity. Additionally, the quality factor Q or its inverse Q−1 is used to describe

the intrinsic attenuation. High-frequency scattered seismic waves are frequently used to characterize

small-scale heterogeneity, intrinsic attenuation or temporal changes of wave velocity with a variety of

approaches. However, a rigorous framework for the iterative inversion of scatted waves to image the

spatial variability of heterogeneity and high-frequency attenuation comparable to full-waveform

inversion (FWI) is missing. A mathematical framework for an iterative inversion using forward and

adjoint simulations of the radiative transfer equations is presented in this thesis, in full analogy to FWI

which is based on the wave equation.

The forward and adjoint problems are solved by modelling non-isotropic scattering in a random elastic

medium with spatially variable heterogeneity and attenuation. The radiative transfer equations are solved

with the Monte Carlo method. Recording of the specific energy density of the wavefield that contains the

complete information about the energy density at a given position, time and propagation direction allows

for calculating sensitivity kernels according to rigorous theoretical derivations. The practical calculation

of the kernels involves the solution of the adjoint radiative transport equations. This thesis investigates

sensitivity kernels that describe the relationships between changes of the model in P- and S-wave velocity,

P- and S-wave attenuation and the strength of fluctuation on the one hand and seismogram envelope,

traveltime changes and waveform decorrelation as observables on the other hand. These sensitivity

kernels reflect the effect of the spatial variations of medium properties on the wavefield and constitute

the first step in the development of the tomographic inversion approach for the distribution of small-

scale heterogeneity based on scattered waves. To connect data misfits observed at multiple stations and

extended lapse time windows to required model changes, misfit kernels are derived from the sensitivity

kernels. The squared difference between observed and modelled envelopes is used as misfit function

which is iteratively minimized with the Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm

(L-BFGS).

In a first step AET is tested numerically in the acoustic approximation and shows that it is possible

to image the spatial distribution of small-scale heterogeneity and attenuation in iterative inversions. The

analysis shows that the relative importance of scattering and attenuation anomalies needs to be considered

when the model resolution is assessed. The inversions confirm that the early coda is important for imaging

the distribution of heterogeneity while later coda waves are more sensitive to intrinsic attenuation and this

dependency can be used to cope with the trade-off that exists between both material properties. Building

on the conclusions from the numerical test, AET is applied to a laboratory experiment in a second step.

Using ultrasound data from embedded sensors in a meter-sized concrete specimen, the distribution of

absorption and heterogeneity is respectively imaged using a later and earlier coda time window. The
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results successfully locate an area of salt concrete with increased scattering and concentric anomalies

of intrinsic attenuation. The resolution test shows that the recovered anomalies constitute reasonable

representations of the internal structure of the specimen. Both numerical and experimental results show

the effectiveness of AET. Lastly, an initial attempt to investigate the 1D spherically symmetric scattering

model of the Earth is conducted. The preliminary work about global stacking of Pdiff coda is finished.

The global scattering of seismic waves from large deep earthquakes is simulated with the Monte Carlo

method with a published heterogeneity model that matches the observations of Pdiff coda to some degree.

This model is waiting for improvement with AET in the future. An analysis about the origin of Pdiff

coda is discussed using the simulation with different scattering layers from lithosphere to Core-Mantle

Boundary (CMB) and the available scattering area for Pdiff coda and its duration are demonstrated

under the assumption of single-scattering showing that the Pdiff coda at high frequency originates from

whole-mantle scattering.
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Chapter 1

Introduction

1.1 Motivation

Seismic waves are an important tool to probe the interior of the Earth, geotechnical targets and man-

made structures. The interaction of seismic waves with the propagation medium is a complex process that

occurs on a range of length scales characterized by elastic and inelastic contributions. Interpretations of

seismic observations therefore use simplifying assumptions about the dominant effects. A simplification

commonly used in seismic imaging is based on the assumption of weak interaction, that is to say, one

assumes that a particular wave is perturbed only at one specific location on its way from source to

receiver. Single-scattering imaging techniques are based on this assumption (Nishigami, 1991, 1997, 2000).

Apart from the interaction with this perturbation, the propagation path is assumed to be predictable

based on knowledge of the background medium (Pacheco & Snieder, 2006). Furthermore, heterogeneities

in the medium have to be rare or weak enough such that reflections from different structures can be

disentangled. Imaging methods have evolved in exactly that parameter range of wave propagation where

the requirements for this approximation are fulfilled. This allows to deterministically image the large-scale

structure with resolution limits determined by wavelength and ray coverage.

Outside this niche of the weak interaction, the wavefield can be dominated by multiple scattering

such that the signal recorded at any time consists of a complex superposition of waves from different

directions, therefore carrying information about different location in the medium at the same time. In

this regime, the waveform is made up of continuous oscillations which cannot be associated with any

particular contrast in the medium. Yet the ensemble of scattered waves that forms the coda of high-

frequency seismograms carries information about the statistical properties of the heterogeneity in the

propagation medium (Sato et al., 2012).

The properties of the scattered wavefield allow obtaining information about the medium that is

complementary to conventional seismic investigations. In particular, one can (A) characterize statistically

the structure of the propagation medium at small spatial scales (in seismology typically in the range

102 − 104m) where traditional methods fail, (B) monitor very weak changes of the elastic properties in

the medium due to the long propagation time of the waves leading to a high sensitivity and (C) monitor

localized changes anywhere in the medium due to the extended sampling of the medium by scattered

waves. This thesis focuses on the target (A).

Conventional wavefield-based imaging methods are intrinsically limited by wavelength. Imaging small

spatial scales requires a high frequency that leads to very high cost of computation. However, the

application of the adjoint method with the wave equations, e.g. the full-waveform inversion (FWI), has

successfully imaged many large-scale structure of the Earth (Tarantola, 1984; Tromp et al., 2005; Fichtner

et al., 2006; Fichtner, 2010). It has become a mature tool in seismology (Tape et al., 2009; Fichtner et al.,

2010; Zhu et al., 2012; Tao et al., 2018). The natural idea originating from this success is the introduction

of the adjoint method to the radiative transfer equations for the inversion of statistical properties that

11
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describe the small-scale structure of the Earth.

Different from FWI with the wave equations, radiative transfer equations are used to model the

propagation of scattered seismic energy in a medium that contains random fluctuations of elastic

properties. To implement the adjoint method in this context, the sensitivity kernels that describe the

expected changes of coda wavefield observables in response to localized changes of medium properties

are required, to allow for iterative tomographic imaging of the spatial distribution of heterogeneity and

intrinsic attenuation. To calculate these sensitivity kernels, directional information about the energy

propagation and extension of the radiative transfer modeling are necessary to model the energy

propagation in a medium with spatially variable heterogeneity and attenuation. Those tasks constitute

the first step of this work. Based on these sensitivity kernels, the misfit kernels that describe the

gradients of difference between the full envelopes of synthetic scattered seismic energy and real

observation are available to be derived with the adjoint method. The second step is the implementation

of this methodology to image the small-scale structures of material, and the application to numerical

and experimental data. The effectiveness of the method can be verified from the numerical and

experimental tests, which gives the confidence to investigate the final target - the small-scale structure

of the Earth.

The small-scale structure of the Earth can extend from the crust and mantle to the inner core. The

heterogeneity in the shallower Earth has more influence on the seismic scattering. The tomography for

the crust shows strong lateral variations of scattering and intrinsic attenuation (Sens-Schönfelder et al.,

2009; Calvet et al., 2013; Mayor et al., 2016), especially in volcanoes (De Siena et al., 2016). The deep

Earth scattering is more challenging and is primarily observed in the PKP precursors. The heterogeneity

existing near the Core-Mantle Boundary (CMB) that causes the single-scattering energy to arrive earlier

than PKP at the surface in the distance range 110◦ < ∆ < 145◦ explains the observation of the precursor

of PKP (Cleary & Haddon, 1972; Haddon & Cleary, 1974). The PKP precursor was further used to

investigate scattering through the whole mantle. The proposed scattering structures of the whole Earth

are still some simple 1D spherically symmetric models that only assume two or four layers from the

lithosphere to CMB (Earle & Shearer, 2001; Shearer & Earle, 2004; Bentham et al., 2017). Such models

are used for interpreting the observation of scattering energy in the high-frequency seismogram of P

coda, Pdiff coda or PP precursor. At high frequency, the coda after Pdiff at long distances originates

from seismic scattering energy since the time is too early for other phases and the diffracted Pdiff phase

itself does not propagate effectively. The Pdiff coda thus offers a suitable observation to investigate the

scattering of the whole mantle and the crust.

1.2 Thesis Contributions

In this thesis I approach the development of Adjoint Envelope Tomography (AET) in three tasks step

by step: (1) proposing a methodology for adjoint tomography of the small-scale structure, (2) verifying

this method numerically and experimentally, and (3) promoting this method to the Earth. This work led

to four manuscripts during my doctoral study stage (at the time of submission two published, one under

review, and one in preparation).

• Paper I. Tuo Zhang, Christoph Sens-Schönfelder, Ludovic Margerin, Sensitivity kernels for static

and dynamic tomography of scattering and absorbing media with elastic waves: a probabilistic

approach, Geophysical Journal International, Volume 225, Issue 3, June 2021, Pages 1824–1853,

https://doi.org/10.1093/gji/ggab048

• Paper II. Tuo Zhang, Christoph Sens-Schönfelder, Adjoint envelope tomography for scattering and

absorption using radiative transfer theory, Geophysical Journal International, Volume 229, Issue 1,

https://doi.org/10.1093/gji/ggab048
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April 2022, Pages 566–588, https://doi.org/10.1093/gji/ggab457

• Paper III. Tuo Zhang, Christoph Sens-Schönfelder, Niklas Epple, Ernst Niederleithinger,

Imaging of small-scale heterogeneity and absorption using Adjoint Envelope Tomography: results

from laboratory experiments, under review, Journal of Geophysical Research - Solid Earth,

https://doi.org/10.1002/essoar.10511632.1

• Paper IV. Tuo Zhang, Christoph Sens-Schönfelder, Marcelo Bianchi, Klaus Bataille, Pdiff coda in

the core shadow at high frequencies.

This thesis is structured in the following way.

Chapter 2 gives a review of scattering theory based on Sato et al. (2012); Sens-Schönfelder et al.

(2009) and the extension of the methodology to a medium with spatially variable heterogeneity and

attenuation with radiative transfer equations in 2D.

Chapter 3 numerically solves the radiative transfer equations using the Monte Carlo method. This

chapter shows the simulation results in the spatially variable heterogeneity and attenuation media and

the recording of the specific energy density of the wavefield. The reciprocity theory of Green’s function

in 2D elastic radiative transfer theory is derived and numerically verified.

Chapter 4 investigates the sensitivity kernels that describe the relationships between changes of

the model in P- and S-wave velocity, P- and S-wave attenuation and the strength of fluctuation on the

one hand and seismogram envelope, traveltime changes and waveform decorrelation as observables on

the other hand. Recording of the specific energy density of the wavefield that contains the complete

information about the energy density at a given position, time and propagation direction allows us to

calculate sensitivity kernels according to rigorous theoretical derivations. These sensitivity kernels reflect

the effect of the spatial variations of medium properties on the wavefield and constitute the first step

in the development of a tomographic inversion approach for the distribution of small-scale heterogeneity

based on scattered waves.

Most parts of Chapter 2, the whole Chapter 3, 4 and Appendix A correspond to Paper I. I

completed the main work under the supervision of the coauthor Christoph Sens-Schönfelder.

Appendix A and parts of Chapter 3.3 that correspond to Appendix A and C in Paper I are

contributed by the other coauthor Ludovic Margerin who also contributed to discussions of the results

and improvements of the manuscript.

Chapter 5 presents the mathematical framework for an iterative full envelope inversion using

forward and adjoint simulations of the radiative transfer equations, called Adjoint Envelope

Tomography (AET), in full analogy to Full-Waveform Inversion (FWI) . Sensitivity kernels are derived

for the squared difference between the full observed and modelled envelopes which is iteratively

minimized with the L-BFGS method. This chapter describes an application of this algorithm in some

numerical tests in the acoustic approximation and discusses that the relative importance of scattering

and attenuation anomalies needs to be considered when the model resolution is assessed. The inversions

confirm that the early coda is important for imaging the distribution of heterogeneity while later coda

waves are more sensitive to intrinsic attenuation and this dependency can be used to cope with the

trade-off that exists between both material properties. This chapter corresponds to Paper II that is

finished under the supervision of the coauthor Christoph Sens-Schönfelder.

Chapter 6 presents the application of AET to experimental data. Using ultrasound data from

embedded sensors in a meter-sized concrete specimen, the distributions of absorption expressed by the

intrinsic quality factor Q−1 and the fluctuation strength ε that characterizes the strength of the

heterogeneity are both imaged. The late and earlier coda time windows are used to invert for

absorption and the distribution of heterogeneity, respectively. The results successfully locate an area of

https://doi.org/10.1093/gji/ggab457
https://doi.org/10.1002/essoar.10511632.1
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salt concrete with increased scattering and concentric anomalies of intrinsic attenuation. The resolution

test shows that the recovered anomalies can constitute reasonable representations of internal structure

of the specimen. This chapter corresponds to Paper III. I completed the data processing, inversion

and results analysis under the supervision of the coauthor Christoph Sens-Schönfelder, while the

experiment is conducted by the two coauthors Niklas Epple and Ernst Niederleithinger who also

contributed to discussions of the results and improvements of the manuscript.

Chapter 7 presents the global stacking of several earthquakes with huge magnitude in the frequency

range 1 ∼ 2 Hz in which Pdiff coda can be observed at very long distances in these events. The observation

of main early phases reaching the core shadow beyond 102◦ is known as coming from the core of the Earth

like the PKP wave that surpasses the PP arrival. Besides this, the Pdiff wave that diffracts along the

Core-Mantle Boundary (CMB) can also propagate into the core shadow, but its amplitude decreases

with increasing frequency due to the vanishing effect of diffraction at high frequencies. More detailed

studies show that PKP is not really the first wave that arrives in the shadow zone. Scattering of PKP

at the CMB or the lower mantle creates the precursor to PKP arriving a few seconds before actual

PKP . However, an even faster way for seismic energy to propagate to more than 150◦ distance without

interacting with the core or its boundary to the mantle is shown in this chapter. Scattering of P wave in

the lower- and mid-mantle allows waves to arrive more than 100 s prior to the PKP precursor. Since this

energy tails the arrival time of the Pdiff phase, we still refer to it as the Pdiff coda although its origin is not

the scattering of Pdiff . The Monte Carlo method is used to simulate the global earthquake scattering in a

1D spherically symmetric heterogeneity model which matches the observation of Pdiff coda. An analysis

about the origin of Pdiff coda is discussed using the simulation with different scattering layers from

lithosphere to CMB. Under the assumption of single-scattering, the available scattering volume for Pdiff

coda and its duration are demonstrated. This chapter corresponds to the draft of Paper IV. I completed

the main work under the supervision of the coauthor Christoph Sens-Schönfelder, the code of downloading

the data is implemented in a python package from the coauthor Marcelo Bianchi who also contributed

together with Klaus Bataille to discussions of the results and improvements of the manuscript.



Chapter 2

Seismic Scattering

2.1 Introduction

Seismic scattering has early been recognized as the origin of coda waves that are observed in the

seismograms following ballistic wave arrivals. Aki (1969) first identified the coda as the signature of

backscattered waves from distributed scatterers. Aki & Chouet (1975) then proposed two classical

models to describe the amplitude of the scattered wave field, the single backscattering model and the

diffusion model, which represent approximations for the weak and strong scattering processes,

respectively. On the one hand, the single scattering model considers scattering to happen only once

between the source and the receiver. The diffusion model on the other hand requires scattering to occur

often enough for the wave to lose information about its initial direction of propagation and polarization,

such that it is usually applicable to seismogram modeling at long lapse-time only. Therefore, the

multiple-scattering model that considers the continuum from single scattering to many scattering events

is more suitable to describe the realistic scattering processes. Wu (1985) first employed the multiple

scattering model for isotropic scattering and strong forward scattering. Isotropic scattering indicates

that the distribution of scattering angles is uniform and does not show any preferred direction. This is a

special case, and in fact non-isotropic scattering widely exists. Gusev & Abubakirov (1987), Abubakirov

& Gusev (1990) and Hoshiba (1995) found evidence of non-isotropic scattering in the data. However, all

the above mentioned investigations worked under the assumption of acoustic scattering which does not

consider the energy conversion between P- and S-waves and the polarization of the S-waves.

Since Weaver (1990) and Ryzhik et al. (1996) derived the radiative transfer equations for elastic waves,

Margerin et al. (2000) gave a detailed description of the multiple scattering of elastic waves. Gaebler

et al. (2015) applied it in elastic media to model the translational and rotational motion seismogram

envelopes.

A further challenge for the simulation of wave scattering arises when the scattering properties of the

medium are spatially variable. Hoshiba (1994) used the Monte-Carlo simulation method to synthesize

the energy density of the coda in depth-dependent scattering structure under the assumption of isotropic

scattering. These efforts were continued by Margerin et al. (1998) who introduced a discontinuity in

both scattering and velocity properties in multiple scattering simulations. Wegler (2004) used a model

containing a scattering layer over a half space to take the depth dependency of scattering into account.

Using an analytic solution of the diffusion equation in a simple model with spatially variable diffusivity,

Friedrich & Wegler (2005) could improve the modeling of the spatio-temporal coda decay at Merapi

volcano showing that scattering is concentrated within the edifice. A block of increased scattering strength

embedded in a less heterogeneous crust above a transparent mantle was modeled with the Monte-Carlo

method by Sens-Schönfelder et al. (2009) to explain Lg-wave blockage. De Siena et al. (2013) combined the

modeling of multiple scattering with boundary conditions obtained from diffusion in a circular structure

of highly heterogeneous material to explain spatially variable coda decay at Campi Flegrei.
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Among various methods for the description of seismic scattering, radiative transfer theory is a flexible

tool that can be adapted to different approximations of the scattering process. Many pioneering works

employed this method to describe the wave scattering (Wu, 1985; Hoshiba, 1991; Zeng, 1991). A detailed

introduction to radiative transfer theory was given by Margerin (2005). Further work used it to simulate

the energy transfer for more complicated problems (Wegler et al., 2006; Przybilla et al., 2006; Sens-

Schönfelder & Wegler, 2006). To numerically solve the radiative transfer equations, the Monte-Carlo

method has been proposed by Hoshiba (1991); Gusev & Abubakirov (1987) and has since then been

widely used to simulate the envelopes of waves (Gusev & Abubakirov, 1996; Margerin et al., 2000;

Yoshimoto, 2000; Mancinelli & Shearer, 2016; Sanborn et al., 2017).

2.2 Random Media

Heterogeneity is widely observed in Earth materials. To describe these small-scale fluctuations of elastic

properties in media, the concept of random media can be used (Sato et al., 2012). The wave velocity

of heterogeneous media can be expressed as the mean velocity V0 plus the perturbation δV (x) which

depends on the location x:

V (x) = V0 + δV (x) = V0[1 + ξ(x)] (2.1)

where ξ(x) = δV (x)/V0 is the fractional fluctuation of the velocity. When ξ(x) is a random variable the

medium is described as a random medium with 〈V (x)〉 = V0 and 〈ξ(x)〉 = 0, where the sign 〈〉 indicates

the spatial average. If this randomness is statistically uniform, i.e. does not depend on locations, the

autocorrelation function (ACF) of ξ(x) only depends on the distance x between two locations y and y+x

as:

R(r) = R(x) = 〈ξ(y)ξ(y + x)〉 (2.2)

where r = |x| when the randomness is isotropic.

The strength of fractional fluctuation ε and correlation length a can be defined as ε2 = R(0) and

R(a) = ε2/e. The ACF is related to the power spectral density function (PSDF) with the Fourier

transform:

P (m) = R̃(x) =

∫∫∫ ∞
−∞

R(x)e−imxdx (2.3)

There are several ACF and PSDF tpyes to mathematically describe the random media in 3D:

• Gaussian

R(r) = ε2e−r
2/a2

P (m) = ε2
√
π3a3e−m

2a2/4
(2.4)

• Exponential

R(r) = ε2e−r/a

P (m) =
8πε2a3

(1 + a2m2)2

(2.5)
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• von Kármán

R(r) =
ε221−κ

Γ(κ)

( r
a

)κ
Kκ

( r
a

)
P (r) =

8π3/2Γ(κ+ 3/2)ε2a3

Γ(κ)(1 + a2m2)κ+3/2

(2.6)

where Γ(κ) is gamma function and Kκ is the modified Bessel function of the second kind of order

κ = 0 ∼ 1.

Sato et al. (2012) also give the realization of random media with different PSDF:

ξ(x) =
1

(2π)3

∫∫∫ ∞
−∞

√
P (m)eiφ(m)eimxdm (2.7)

where φ(m) is a random phase between 0 and 2π.

Figure 2.1 shows the cross sections of the fractional fluctuation ξ(x) of the velocity in the 3D random

media with different PSDF types, where a = 5 km and ε = 0.05. All types have a similar perturbation of

the velocity since ε is the same, while the Gaussian random medium looks smoother and the von Kármán

medium is also determined by a further parameter κ that determines the short wavelength fluctuations.

Note that the Exponential type is actually a special von Kármán medium with κ= 0.5.

In this thesis, I use random media with PSDF of exponential type (von Kármán κ = 0.5). Figure 2.2

shows the the cross sections of the fractional fluctuation ξ(x) of the velocity in the 3D random media

of exponential type. Figure 2.2(a) and (c) have the same correlation length a = 1 km which look very

similar but the color scale in Figure 2.2(c) is about 10 times of Figure 2.2(a) since the ε is exactly 10

times larger. The same can be observed in Figure 2.2(b) and (d) that have the same correlation length a

= 5 km. With the same fluctuation strength ε (Figure 2.2(a,b) or (c,d)), the perturbation of the velocity

has almost the same amplitude, but the scale of the heterogeneity is determined by correlation length a.

2.3 Elastic Radiative Transfer Equations

The transport of energy through a random medium is described by the theory of radiative transfer

(Apresyan & Kravtsov, 1996; Wu, 1985; Hoshiba, 1991). The fundamental quantity of radiative transfer

is the specific energy density E (r,n, t) which describes the energy flux density at location r, time t in

directions n. Following the work of Sens-Schönfelder et al. (2009), the coupled radiative transfer equations

for P- and S-waves in 2-D is we rewritten as:(
∂

∂t
+ nα0 · ∇

)
EP (r,n, t) =−

(
α0g

P�P
0 + α0g

P�S
0 +

ω

QP

)
EP (r,n, t)

+

∫
2π

α0g
P�P (n,n′)EP (r,n′, t) dn′

+

∫
2π

β0g
S�P (n,n′)ES (r,n′, t) dn′

(2.8)

(
∂

∂t
+ nβ0 · ∇

)
ES (r,n, t) =−

(
β0g

S�S
0 + β0g

S�P
0 +

ω

QS

)
ES (r,n, t)

+

∫
2π

β0g
S�S (n,n′)ES (r,n′, t) dn′

+

∫
2π

α0g
P�S (n,n′)EP (r,n′, t) dn′

(2.9)
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Fig. 2.1: The cross sections of the fractional fluctuation ξ(x) of the velocity in the 3D random media (a = 5
km and ε = 0.05) with different PSDF types: (a)Gaussian, (b)von Kármán κ = 1.0, (c)Exponential, and (d)von
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where α0 and β0 are the mean velocities of P-waves and S-waves, respectively. The subscript P or S

indicate the energy type of the energy density. gV�W
0 denotes the total scattering coefficient which is the

total probability of scattering a wave of type V to type W per unit length of propagation path. QP and

QS are the intrinsic quality factors of P- and S-waves, respectively and ω is the angular frequency. The

scattering coefficient gV�W (n,n′) defines the probability of a wave of type V incident in direction n′ to be

scattered into the outgoing direction n as type W . For isotropic random media gV�W (n,n′) = gV�W (θ)

where θ is the scattering angle between n and n′. The expressions of the 2D scattering coefficients are

derived in Appendix A. They differ from the coefficients given by Przybilla et al. (2006) in some powers

of the cp/cs velocity ratio γ and a factor of 2π in the definition of the total scattering coefficients. The

total scattering coefficient is defined as:

gV�W
0 =

∫
2π

gV�W (θ) dθ . (2.10)

which is the integral overall scattering angles and the reciprocal of the mean free path which determines

the total probability of scattering. More discussion is found in Appendix D5 of Sens-Schönfelder et al.

(2009).

In this thesis, I focus on 2D infinite in-plane elastodynamics in which the S-wave is polarized in the

plane of propagation (SV-wave). In this setting, SH-waves are polarized normal to the plane of

propagation and are not coupled to P or SV-waves. They can thus be treated in the acoustic

approximation.

2.4 Spatially Variable Heterogeneity and Attenuation

Sens-Schönfelder et al. (2009) describe an algorithm to simulate multiple non-isotropic scattering of elastic

waves at randomly distributed heterogeneities. However, they do not consider spatially variable scattering

and intrinsic attenuation properties. With elastic radiative transfer equations and Monte-Carlo method,

we simulate a 2-D multiple non-isotropic scattering process in spatially heterogeneous media to model

the complete waveform envelope with the specific energy density. The specific energy density contains

the information about the angular dependence which has not been considered before.

The radiative transfer equations are normally used in spatially homogeneous random media in which

the power spectrum of the fluctuation is independent of location. In accord with Takeuchi (2016), a more

general situation is considered here , in which the standard deviation of the fluctuations ε is a function of

location (ε(r)), while all other parameters of the fluctuations remain constant. For a given wavenumber

|m|, the local power spectral density function (PSDF) of random media is rewritten as

Φ
(
|m|, ε2(r)

)
=
ε2(r)

ε2
0

Φ
(
|m|, ε2

0

)
(2.11)

where ε0 is a background value that is homogeneous in space. Φ
(
|m|, ε2

0

)
is the PSDF of the background

fluctuation ε0. Note that perturbing variance of the fluctuations only affects proportionally the magnitude

of the scattering coefficient gV�W (θ) but not its angular distribution. In consequence the total scattering

coefficients are now functions of the position gV�W
0 (ε2(r)).

Spatial variations of intrinsic attenuation may be incorporated similarly by replacing QV with QV (r).
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The right-hand side in eq. (2.8) and eq. (2.9) may accordingly be rewritten as:

−
(
α0g

P�P
0 (ε2(r)) + α0g

P�S
0 (ε2(r)) +

ω

QP (r)

)
EP (r,n, t)

+

∫
2π

α0g
P�P (θ, ε2(r)

)
EP (r,n′, t) dn′

+

∫
2π

β0g
S�P (θ, ε2(r)

)
ES (r,n′, t) dn′

(2.12)

and

−
(
β0g

S�S
0 (ε2(r)) + β0g

S�P
0 (ε2(r)) +

ω

QS(r)

)
ES (r,n, t)

+

∫
2π

β0g
S�S (θ, ε2(r)

)
ES (r,n′, t) dn′

+

∫
2π

α0g
P�S (θ, ε2(r)

)
EP (r,n′, t) dn′ .

(2.13)

To solve the radiative transfer equations in the presence of spatially variable medium properties we

implemented a Monte-Carlo algorithm that is detailed in Chapter 3.

2.5 Acoustic Case

We use the acoustic radiative transfer equation in 2D which is written as:(
∂

∂t
+ nα0 · ∇

)
E (r,n, t) =−

(
α0g0(ε2(r)) +

ω

Q(r)

)
E (r,n, t)

+

∫
2π

α0g
(
n,n′, ε2(r)

)
E (r,n′, t) dn′ .

(2.14)

The acoustic scattering coefficient is given by Wegler et al. (2006):

g
(
θ, ε2(r)

)
= k3

0Φ

(
2k0 sin

θ

2
, ε2(r)

)
(2.15)

where k0 is the wavenumber and θ is the scattering angle between the directions n and n′. α0 indicates

the mean background velocity. Φ is the local power spectral density function (PSDF) of the parameter

fluctuations in the random medium which is of exponential type in this paper:

Φ(k, ε2(r)) =
2πa2ε2(r)

(1 + a2k2)3/2
, (2.16)

with the wave vector k. This algorithm allows us to simulate the acoustic wave propagating in the spatially

variable model m = (ε2(r), Q−1(r)) that can consists of the two parts mε = ε2(r) and mQ = Q−1(r)

describing the scattering and attenuation properties, respectively.





Chapter 3

Monte-Carlo Simulation

For numerically solving the radiative transfer equations we use the Monte-Carlo method. The idea of the

Monte-Carlo method is based on the concept of wave packets or seismic phonons that carry information

about the wave energy but neglect phase information. The propagation of these phonons is governed

by ray theory during unperturbed propagation and by the scattering coefficients upon the occurrence

of scattering events. Large numbers of particles are propagated through the model to obtain a smooth

representation of the energy distribution. The wave energy is represented by the number density of

particles N (r,n, t), their propagation mode and their weight, which decays during propagation due to

intrinsic attenuation.

The left-hand side of eq. (2.8) is the material derivative of the specific energy density around the

propagation direction n. For clarity, we recall that the material derivative is the rate of change of a

physical quantity followed on its path. With the Monte-Carlo method, it is modeled by the change of

the number of particles tracked during a time interval dt along their propagation path of length ∆l such

that:

∆l = dl = vdt . (3.1)

Defining ∆NP (r,n, t) = NP (r + n∆lP ,n, t+ dt)−NP (r,n, t), we rewrite the radiative transfer equation

for a P-phonon:

∆NP (r,n, t) =−∆lP

(
gP�P

0

(
ε2(r)

)
+ gP�S

0

(
ε2(r)

)
+

ω

α0QP (r)

)
NP (r,n, t)

+ ∆lP

∫
2π

gP�P (θ, ε2(r)
)
NP (r,n′, t)

+ ∆lS

∫
2π

gS�P (θ, ε2(r)
)
NS (r,n′, t) .

(3.2)

The analogous expression for S-phonons is obtained by interchanging the indices P and S. Eq. (3.2)

expresses the change of particle numbers as they propagate during a time dt through the medium.

The first term on the right hand describes the number of particles lost by the scattering and intrinsic

attenuation per unit distance. The second and third terms describe the increase of particle numbers by

scattering from all other directions into direction n of P-wave and S-wave, respectively.

The strategy of the MC simulation is to calculate NV (r,n, t) not sequentially in time for the whole

spatial domain as done in time domain wavefield simulations, but rather propagate the seismic phonons

one by one through the domain and accumulate their contribution to NV (r,n, t). Propagating many

phonons with stochastically distributed scattering events leads to an increasingly better estimation of

NV (r,n, t).

Figure 3.1 shows a flowchart of the Monte-Carlo algorithm. In the beginning, a particle is initialized

and launched at the source with either P or S mode and a take-off direction. We use an isotropic source

23
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Fig. 3.1: Flowchart of Monte-Carlo simulation.

meaning that the initial direction is drawn from a uniform distribution. The propagation mode follows

a Bernouilli probability law with the parameter: fraction of P (or equivalently S) energy released at the

source. The particle is then moved in this direction at the speed corresponding to its mode for one time

increment. At the new position, NV (r,n, t) is updated with the weight of the present phonon and the

local total scattering coefficient is evaluated. This coefficient determines whether scattering occurs or

not. This is achieved by simulating a Bernouilli random variable with parameter gV dl, where V is the

propagation mode, dl the path length travelled by the particle during dt and gV =
∑
W gV�W .

If no scattering occurs and the total simulation time is not reached yet, the particle continues to

move with the previous propagation direction. If scattering occurs, the scattering coefficients are used

to determine which type of scattering occurs, i.e., if the mode of the particle is converted or remains

unchanged. This is done again by simulating a Bernouilli random variable with the parameter: conversion

rate from mode V to mode W .

The scattering coefficient of the selected scattering type determines the probability distribution for

selecting the scattering angle and consequently the new propagation direction of the particle. The

selection of the angle uses a trial and reject method to generate angles with the required probability

distributions (Sens-Schönfelder et al., 2009). This cycle will be repeated for all particles. Since we

recorded the position in each time step for all particles, we obtain the number of particles N (r,n, t)



3.1. Modelling with Spatially Variable Heterogeneity and Attenuation 25

105 106 107 108 109

Number of particles

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
P-wave source
S-wave source

Fig. 3.2: Coefficient of variation changed with different number of particles.

moving in direction n at the position r at any time t. Actually we also record the propagation direction

through the simulation to obtain N (r,n, t).

As a stochastic method the Monte-Carlo simulations converge to a stable solution but exhibit

fluctuations. These fluctuations determine the accuracy of the energy density estimates and we cannot

hope to resolve structure in the medium when its effect on the envelopes is smaller than the fluctuations

from the Monte-Carlo solution. However, the fluctuations of the solution are controlled by the number

of particles used in the simulation. We provide a test for the amplitude of the fluctuations as a function

of the number of particles in Figure 3.2. It shows the coefficient of variation, i.e. the ratio of standard

deviation and mean value obtained for 24 identical simulations in the uniformly heterogeneous model.

Figure 3.2 shows that the coefficient of variation decreases with increasing number of particles. 108

particles are used in the simulations of this paper for which the coefficient of variation is about 5%.

3.1 Modelling with Spatially Variable Heterogeneity and

Attenuation

We build a model with 2-D space and time on a 400 × 400 × 100 grid. The size of each grid cell is

0.1 km × 0.1 km × 0.1 s. The two illustrations in Figure 3.3 show three sets of simulations: (1) baseline

simulation with uniform ε = 0.05 and no intrinsic attenuation, (2) scattering anomaly for fluctuation

strength ε = 0.09 and (3) attenuation anomaly for intrinsic quality factor Q−1
P = 0.17, Q−1

S = 0.1. The

values of Q−1
P and Q−1

S assumed here imply much stronger attenuation than typically found in the

lithosphere. The background velocity of all models is α0 = 6 km/s, β0 = 3.46 km/s. The density is

ρ = 2.7 g cm−3and the correlation length is a = 0.3 km. Random fluctuations of velocity and density in

this study are always of exponential type. With a length scale of 10 km the anomalous region is

significantly larger than the length scale of the random fluctuations a, ensuring a meaningful statistical

description of the fluctuations. As discussed by Cormier & Sanborn (2019) the determination of a is

subject to a trade-off with ε. The angular frequency in this study is 30 rad/s so the frequency is 4.78

Hz adapted to observations of high frequency wave scattering in the crust. Resulting wavelengths of

P-wave and S-wave are 1.257 km and 0.726 km. In the Monte-Carlo Method, 100 million particles are
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Fig. 3.3: Illustrations of the model setup. (a) Homogeneous model with background ε = 0.05 and Q−1
p =

Q−1
s = 0 (simulation 1) and (b) Anomalous model with ε = 0.09 (simulation 2) or intrinsic quality factors

Q−1
p = 0.17, Q−1

s = 0.1 inside the anomaly (simulation 3). The background velocity of all models is Vp = 6 km/s,
Vs = 3.46 km/s. The background density is ρ = 2.7 g cm−3. The correlation length is a = 0.3 km in all
simulations. The red star indicates the source and three white triangles indicate receivers that are located before,
within and behind the anomaly as seen from the source.

used to simulate the energy transport in these 2-D models.

3.1.1 Scattering Anomaly Simulation

Results of the simulation in the homogeneously scattering medium and scattering anomaly medium are

shown for pure P-wave and pure S-wave source with isotropic radiation pattern in Figures 3.4 and 3.5,

respectively. Firstly, we analyze the results with P source. Figures 3.4a and 3.4b show the snapshots of

the P and S energy density at lapse time of 2 s and 5 s in the homogeneous medium and the scattering

anomaly medium with P source, respectively. There is obviously a reduction of the ballistic energy (P

energy) and an increase of the scattered energy (S energy) where there is a stronger scattering area.

An apparent ballistic S-wave can be seen emanating from the source in Figure 3.4a(S energy). It also

shows the S-coda of the ballistic P-wave front. Strong S-wave generation inside the scattering anomaly

is also apparent in Figure 3.4b(S energy). In particular there is a secondary S-wave generated at the

time when the P-wave hits the anomaly. Furthermore, there is an obvious Mach cone emanating from

the edges of the anomaly. Because the velocity of P-waves is larger than that of the S-wave the speed

of the source of scattered S-waves is faster than their propagation. To examine in greater details the

energy conversion in the scattering process, we subtract the results of the simulation in the homogeneous

model from the results of the simulation in the scattering anomaly model. The difference is shown in

Figure 3.4c. Before the P-wave hits the anomaly area, there should be no difference. Since the initial

directions of all particles are random, small fluctuations are observed but can be ignored. With increasing

lapse time, the energy conversion is more and more obvious. In addition, the envelopes at three receivers

for the homogeneous model(dotted) and the anomalous model(solid) are compared in Figure 3.6a. Since

receiver A (corresponding to the red curves) is located closer to the source than the anomaly area, the

ballistic waves show no difference between the two models but with the lapse time increasing, the energy

is higher in the anomaly model due to back-scattering. Receiver B (shown by blue curves) is in the

centre of the anomaly. There is obviously more S energy when the wave arrives. We can see strong

differences in S energy between the two models also at receiver C (shown by green curves). The S energy
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in the scattering anomaly peaks in between the arrival times of the ballistic P and apparently ballistic S

arrivals, confirming that the origin of this extra pulse of S energy is located in the anomaly.

In Figure 3.5 we show the results of the simulation in the case of an S-wave source. There are many

similar phenomena that can be seen in the snapshots of simulated energy densities as compared to the

case of a P source. However, no Mach cone can be seen in Figure 3.5b(P energy) because the velocity of

S-wave is less than that of P-wave. Besides, there exist some cells where the direct S-wave has not arrived

but that already contain P energy. This can be explained by the fact that a fraction of P-wave energy

has been converted from the S-wave source and forms a precursor to the ballistic S wave. We can also

see that there is stronger scattering when the direct S-wave arrives at the anomaly area in Figure 3.5c.

The energy envelopes for a pure S source are shown in Figure 3.6b. Notice that for the S energy at the

receiver B (shown by blue curves) there is some energy arriving before the direct S wave (at a lapse-time

of about three seconds). This illustrates the S-to-P energy conversions that form precursors to the direct

S wave. It can also be observed in Figure 3.6b(P energy).

3.1.2 Intrinsic Attenuation Anomaly Simulation

Energy lost through the propagation is normally due to scattering and intrinsic attenuation. In

Section 3.1.1 we discussed the scattering simulation results in a scattering anomaly model without

intrinsic attenuation. We are also able to simulate the wave scattering in a specific area with intrinsic

attenuation. In order to show the attenuation more obviously, we select an anomaly with a high value

of intrinsic inverse quality factors for both P-wave Q−1
P and S-wave Q−1

S and background RMS

fluctuations ε = 0.05 as in the background medium. The location of the anomaly is the same as

Figure 3.3b. Since Q−1
P = 0.17, Q−1

S = 0.1, the intrinsic attenuation is so strong in our model that a gap

in the energy field develops as the ballistic waves propagate through the strongly absorbing anomaly

(see Figure 3.7). Furthermore, both P-wave energy and S-wave energy are rapidly absorbed as time

increases. The exceptionally low Q-values in the anomalous region are for illustration purposes.

3.1.3 Irregular Anomaly Simulation

In Section 3.1.1 and Section 3.1.2, the shape of the anomaly is a square as shown in Figure 3.3b. The

grids we employ offer the possibility to models with various spatial distributions of heterogeneity. Here

we build a scattering anomaly model with irregular shapes as shown in Figure 3.8. Note that there is

no intrinsic absorption in this model and the background RMS fluctuations ε is 0.05. The light blue

and dark blue areas indicate, respectively, regions with ε of 0.02 and 0.09. The source is located in the

center with x = 20 km, y = 20 km. The simulation results with P source and S source are shown in

Figure 3.9 and Figure 3.10. Compared with the uniform model the regions with perturbed fluctuation

strength leave a clear imprint on the energy field, mostly by increased/decreased conversion of ballistic

energy into scattered energy by larger/smaller fluctuation strength.

3.2 Modelling the Specific Energy Density

With radiative transfer theory, the wave energy propagation is encapsulated in the specific energy density

EY X (r,n, t) where Y X indicate the mode of excitation (X) and recording (Y ). The benefit of this

description, is that we have access to the complete information about the energy distribution at any

position r including its time dependence and propagation directions n. Figure 3.11 shows the specific

energy density of a simulation in a uniform medium at lapse times t = 2 s and t = 4 s in the propagation

direction az(n) = 45◦ and az(n) = 90◦. az defines the azimuth of the propagation direction measured

clockwise from north. In the following we omit the az(·) notation for brevity as it is clear from the
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(b) medium with scattering anomaly
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Fig. 3.4: Snapshots (2s − 5s) of the simulated energy field in (a) the uniform medium and (b) the scattering
anomaly medium. (c) differences between (a) and (b). The source emits pure P-wave energy. Both the P energy
and the S energy are recorded.
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(b) medium with scattering anomaly
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Fig. 3.5: Snapshots (2s − 5s) of the simulated energy field in (a) the uniform medium and (b) the scattering
anomaly medium. (c) differences between (a) and (b). The source emits pure S-wave energy. Both the P energy
and the S energy are recorded. Note that the maximum of plot scale for the S-wave energy in the differences is
20% of the real maximum.
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(a) The source emits pure P-wave energy.
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(b) The source emits pure S-wave energy.

Fig. 3.6: Envelopes at three receivers for the uniform medium (dotted) and the scattering anomaly medium
(solid). The red, blue and green curves indicate the energy that arrives at the receiver A, B and C respectively.
Both the P energy and the S energy are recorded.



30 CHAPTER 3. MONTE-CARLO SIMULATION

0 20 400

10

20

30

40

x(
km

), 
No

rth

2.0s

P energy

0 20 400

10

20

30

40 S energy

0 20 400

10

20

30

40

x(
km

), 
No

rth

3.0s

0 20 400

10

20

30

40

0 20 400

10

20

30

40

x(
km

), 
No

rth

4.0s

0 20 400

10

20

30

40

0 20 40
y(km), East

0

10

20

30

40

x(
km

), 
No

rth

5.0s

0 20 40
y(km), East

0

10

20

30

40

0.0 0.5 1.0 1.5
1e15

0 2 4 6
1e12

(a) P source

0 20 400

10

20

30

40

x(
km

), 
No

rth

2.0s

P energy

0 20 400

10

20

30

40 S energy

0 20 400

10

20

30

40

x(
km

), 
No

rth

3.0s

0 20 400

10

20

30

40

0 20 400

10

20

30

40

x(
km

), 
No

rth

4.0s

0 20 400

10

20

30

40

0 20 40
y(km), East

0

10

20

30

40

x(
km

), 
No

rth
5.0s

0 20 40
y(km), East

0

10

20

30

40

0.0 0.8 1.6 2.4
1e12

0.0 1.5 3.0 4.5
1e15
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Fig. 3.7: Snapshots (2s−5s) of the simulated energy field in the model with the anomaly in intrinsic attenuation.
The intrinsic quality factors Q−1

p and Q−1
s are 0.17 and 0.1, respectively. The source is (a) P-wave and (b) S-wave.

Both the P energy and the S energy are recorded.
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Fig. 3.8: Illustrations of the source (red star) in the irregular scattering anomaly model. The background value
of ε is 0.05. The light blue and the dark blue colors indicate areas with ε = 0.02 and 0.09, respectively.
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(b) medium with scattering anomaly
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Fig. 3.9: Snapshots (1s− 4s) of the simulated energy field in (a) the uniform medium and (b) the medium with
the irregular scattering anomaly and (c) the differences between (a) and (b). The source emits P-wave energy.
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(b) medium with scattering anomaly
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Fig. 3.10: Snapshots (1s−4s) of the simulated energy field in (a) the uniform medium and (b) the medium with
the irregular scattering anomaly and (c) the differences between (a) and (b). The source emits S-wave energy.
Note that the maximum of plot scale for the S-wave energy in the differences is 20% of the real maximum.
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context when the azimuth of the direction n is referred to. The parameters of the medium are the same

as discussed before. The RMS fluctuation is ε = 0.05 and there is no intrinsic attenuation. Here we

employ a slightly coarser grid to reduce the numerical fluctuations inherent to Monte-Carlo simulations.

We model in 2-D space and time on a 100 × 100 × 100 grid and the size of each grid cell is 0.5 km ×
0.5 km × 0.1 s. The propagation direction is recorded in 72 non-overlapping angular bins of width 5◦.

Focusing on the plot of EY X (r, 90◦, 4s), it illustrates how the energy propagating in direction n = 90◦

at lapse-time t = 4 s is distributed in space. Most energy is located to the east of the source which exactly

reflects the scattering patterns, as detailed in Section 3.4. Because the direct wave is strong, it is difficult

to observe the scattered wave energy. To enhance its visibility, we deliberately saturated the color scale

in Figure 3.11.

Instead of investigating the spatial distribution of energy propagating in a specific direction it is

interesting to illustrate the directional distribution of the energy propagation at a specific location.

Figure 3.12 shows polar plots of the energy density as a function of propagation directions n at a receiver

located to the east of the source at r : x = 25 km, y = 35 km. The top row of Figure 3.12 illustrates

an early lapse time (t = 3.4 s) during the arrival of the ballistic P-energy which obviously propagates in

the forward direction (EPP ). Interestingly EPS is also peaked in the forward direction as the conversion

must have happened close to the source for the energy to arrive at this early lapse time. For the same

reason the scattering that generated ESP must have happened close to the observation point, creating

a specific energy density that resembles the scattering coefficient gP�S . ESS is poorly sampled as it

requires both, scattering close to the sources and close to the receiver which occurs seldom. At lapse

time t = 5.5 s shown in the second row of Figure 3.12 the ballistic S-wave arrives, resulting in a forward

peaked ESS . Caused by the dominance of the focused conversion at the source ESP is also peaked in

the forward direction at this lapse time. EPS resembles a biased version of the conversion scattering

coefficient as scattering may have occurred not only close to the receiver but along an ellipse-like single

scattering line around the source. At later lapse time when both ballistic waves have passed the receiver

(t = 7 s, bottom row of Figure 3.12), the specific energy densities show complicated patterns which are

far from being isotropic. This anisotropy of the energy flux density that persists for late lapse times

documents the importance of considering the specific energy density for the calculation of probabilistic

wavefield sensitivities.

Since the specific energy density contains the information about the amplitude of the energy flux

for any combination of position, time and propagation direction, recording the specific energy density

requires a large amount of memory and storage. In the simulations shown here, P- and S-wave are both

recorded with double precision resulting in a memory usage of 576 MB. This is easy to handle for now

but when the approach is extended to the 3-D case, the space has three dimensions and the propagation

direction has two degrees of freedom which means that the memory requirements inflate. On the other

hand, the Monte-Carlo method needs more particles for a sufficient description of the energy density field

in 3 dimensions which translates into more CPU hours. Here we launched 100 millions particles and

simulate for 15 s propagation time with 0.01 s time-step. This setup required about half an hour for each

simulation on 64 cores.

3.3 Reciprocity Theorem

We have shown how the radiative transfer equations in the 2D elastic random media can be solved by

directly simulating the scattering process. This solves the forward problem of the inversion process which

requires to estimate the energy field everywhere in space as it is created by a source at r0. The inverse

problem requires to calculate the specific energy density at the receiver location r excited by a source at

r′, where r′ can be anywhere in space. Direct simulations are infeasible as they would require a separate
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Fig. 3.11: Snapshots (2s, 4s) of the specific energy density EYX (r,n, t) for propagation directions n = 45◦ and
n = 90◦ in a uniform medium with background ε = 0.05. The red point indicates the source. Note that the
maximum of the color scale is clipped to avoid the high values of the ballistic energy.

simulation for a source at every point in space. In waveform tomography this problem is solved using

the adjoint equation which effectively allows to interchange source and receiver (Tromp et al., 2005;

Fichtner et al., 2006) thereby solving the problem for all points in space with a single simulation in which

the adjoint source is placed at the location of the receiver. Here we introduce reciprocity relations of

the radiative transfer equation that serve the same purpose for the tomographic inversion of envelope

observations. Following Margerin (2017), adjoint transport equations are introduced by:(
∂

∂t
+ nα0 · ∇

)
E†P (r,n, t) =−

(
α0g

P�P
0 (ε2(r)) + α0g

†P�S
0 (ε2(r)) +

ω

QP

)
E†P (r,n, t)

+

∫
2π

α0g
P�P (θ, ε2(r)

)
E†P (r,n′, t) dn′

+

∫
2π

β0g
†S�P (θ, ε2(r)

)
E†S (r,n′, t) dn′

(3.3)

(
∂

∂t
+ nβ0 · ∇

)
E†S (r,n, t) =−

(
β0g

S�S
0 (ε2(r)) + β0g

†S�P
0 (ε2(r)) +

ω

QS

)
E†S (r,n, t)

+

∫
2π

β0g
S�S (θ, ε2(r)

)
E†S (r,n′, t) dn′

+

∫
2π

α0g
†P�S (θ, ε2(r)

)
E†P (r,n′, t) dn′

(3.4)

Different from the wave equations in FWI, radiative transfer equations describe the scattering process

depending on scattering coefficients. The probability of scattering per time is given by the mean free

time 1/(cV g
V�W
0 (ε2(r))). Each scattering event happening in the forward and adjoint wavefield must

have the same probability leading to cV g
V�W = cW g

†W�V . Consequently we have:

g†P�S (θ, ε2(r)
)

=
β0

α0
gS�P (θ, ε2(r)

)
(3.5)
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Fig. 3.12: Polar plots of the energy density at receiver r: x = 25 km, y = 35 km (white triangle) as a function
of propagation directions n in a uniform medium (background ε = 0.05). The red point denotes the source. The
time increases from top to bottom. The corresponding snapshots of the spatial energy distribution are shown to
illustrate the wave propagation. Combination of emitted (X) and recorded (Y ) wave type is indicated above as
EX,Y above each panel.
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g†S�P (θ, ε2(r)
)

=
α0

β0
gP�S (θ, ε2(r)

)
(3.6)

We note that our definition of the adjoint transport equation does not follow the one adopted in

mathematical treatments. It is indeed well known that the formal adjoints of the operators ∂/∂t and

n · ∇ are −∂/∂t and −n · ∇ . However, whereas the relation (3.5) is physically essential, the sign

differences for the partial derivative operators is not. It only entails notational changes in the symmetry

relations between forward and adjoint intensities to be derived below. Using the representation theorem

given in Margerin (2017), we gain the following reciprocity theorem:

E†XY (r1, t,−n1; r2,−n2) = EY X (r2, t,n2; r1,n1) (3.7)

For an omnidirectional receiver at r which integrates the specific energy density over directions we rewrite

the reciprocity relation as:

E†XY (r′, t,−n′; r) =
1

Sd
EY X (r, t; r′,n′) (3.8)

The normalization 1/Sd results from the different sources and receivers on the left and right hand side.

Sd is the area of the unit sphere in space dimension d. In 2-D case, Sd = 2π.

Upon noticing that E†P , β
2
0E
†
S solve the forward transport equations with source terms sP , β

2
0sS/α

2

provided that they solve the adjoint equation with source terms sP , sS , we deduce:

EXY (r1, t,−n1; r2,−n2) = constXY · EY X (r2, t,n2; r1,n1) (3.9)

where we have introduced:

constXY =

{
1 X = Y

(α0/β0)
2

X = S, Y = P
(3.10)

To verify the reciprocity relations numerically, we used the anomaly model shown in Figure 3.13.

The background value of the fluctuation is ε = 0.05 and the other simulation parameters are the same

as discussed above for the uniform model. However, there are two anomalous areas, one of which has

stronger fluctuations (blue square, ε = 0.09) and the other area has weaker fluctuations (light blue square,

ε = 0.02). The simulation of the forward energy field EY X (r0, t; r
′,n′) is generated from a unit source

with mode X at r′ with initial direction n′. Since the bin width we used for recording the directional

dependence of the energy density is 5◦, we use the same angular range for the initial direction. The

simulation of the adjoint wavefield E†XY (r′, t,n′; r0) is generated from an isotropic unit source at the

receiver location r0 with mode Y employing eqs. 3.3 and 3.4.

For the comparison of the different simulations in Figure 3.14, we select r′ within the strongly

scattering anomaly region (c.f. Figure 3.13). Energy densities are shown for the North and South

directions in Figure 3.14(a) and (b), respectively. For reference the panels in Figure 3.14 include the

curves of constXY ·EY X (r2, t,n2; r1,n1) and the modes X and Y are given in the legend of each panel.

The agreement between the three curves in each panel confirms the reciprocity relations 3.7 and 3.9.

Differences between the curves can be attributed to the stochastic nature of the simulations and vanish

for more accurate simulations with larger numbers of particles.
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Fig. 3.13: Illustrations of the scattering anomaly model. The background of ε is 0.05. The light blue and the
dark blue colors indicate areas with ε of 0.02 and 0.09, respectively. Source r0: x = 25 km, y = 15 km, receiver
r: x = 25 km, y = 35 km and one position r′: x = 35 km, y = 25 km

3.4 Scattering Patterns

The angular probability distributions of scattering directions i.e. the scattering patterns are defined

by scattering coefficients eq. (A.20). To verify the implementation in the scattering in simulation and

to illustrate the functioning of the Monte-Carlo simulations, we design a special model for numerically

comparing the implemented scattering coefficients with the theoretical expressions. In this model the

background is homogeneous (ε = 0) but there is a point-like heterogeneous region with ε = 0.05 in the

center of the model. Scattering can only occur in this region. Other parameters are as discussed in

section 3.2. All particles from the source have the same initial direction towards the scatterer. Counting

the particles scattered into different directions from the scatterer, we can compute the numerical scattering

coefficients by normalization for the total number of particles. Note that the direct wave has the same

direction as the forward scattered wave. We therefore remove the particles representing the direct waves

without scattering. The result is shown for the different types of scattering in Figure 3.15 verifying that

our implementation is in good agreement with the theoretical values.

3.5 Equipartition Ratio in Scattering Simulations

Energy equipartitioning is the intrinsic property of scattered wavefields that the ratio of S-wave to P-wave

energy approaches constant value at large lapse time. Equipartition is thus a useful check for simulations

of wave scattering. In 2-D elastic case the P/S energy ratio obeys:

RPS =
ES
EP

=
gP�S

0 α0

gS�P
0 β0

= γ2
0 . (3.11)

The values of the total scattering coefficients in our simulations are gP�P
0 = 4.953× 10−3 km−1, gP�S

0 =

1.256× 10−3 km−1, gS�P
0 = 7.24× 10−4 km−1 and gS�S

0 = 1.3418× 10−2 km−1. Figure 3.16 shows the

temporal evolution of the P to S energy ratio in the region for long lapse time simulations with a P and
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Fig. 3.14: The comparisons between forward wavefield EYX (r, t; r′,n′) /Sd, (blue curves) and adjoint wavefield
E†XY (r′, t,−n′; r) (orange curves) in the anomaly model. EXY (r′, t,−n′; r) (green curves) is also compared for
reference. The direction is respectively (a)n′ = 0◦ and (b)n′ = 180◦.
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Fig. 3.15: The polar plot of scattering patterns for the mode conversions P � P , P � S, S � P , S � S (from top
to bottom). The left column shows the numerical results generated from the Monte-Carlo scattering simulation.
The middle column shows the theoretical values, and the right column shows the distribution of scattered energy
at time t = 5s which was used to evaluate the angular distribution. The red star and the white point in the right
column indicate the source and the scatterer, respectively.
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Fig. 3.16: Development of the ratio of S to P energy as a function of time. The black and gray lines are
respectively the total energy of P-wave and S-wave. The scale of energy is on the left. The blue dashed line
indicates the theoretical value of γ2

0 and the red line shows the ratio of gray to black lines. The scale for the
energy ratios is on the right.

a S-wave source. In both cases the ratio approaches the blue dashed line which indicates the theoretical

prediction of γ2
0 . This verifies the correct energy equipartition of our scattering simulation.





Chapter 4

Sensitivity Kernels

4.1 Introduction

Sensitivity kernels of the coda provide the connection between a localized spatial perturbation of some

propagation properties in the medium (e.g., wave-speed, attenuation, scattering strength) and the changes

of a certain waveform property that we observe in the coda wave. This means the sensitivity kernels solve

the forward problem of predicting the effect of a medium change on the observable and are thus a tool

to localize the perturbations in the Earth based on seismogram changes.

Pacheco & Snieder (2005) first discussed the traveltime changes in a scattered wave field due to

localized changes of the velocity under the assumption of scattering in the diffusion regime. The kernel

they proposed directly expresses the relationship between the mean traveltime change of the wavefield

and the perturbation in the slowness. For weakly scattering media they use the single-scattering

approximation (Pacheco & Snieder, 2006). Larose et al. (2010) locate the region of new scattering based

on the decorrelation between diffuse scattered waveforms recorded before and after a change was

experimentally introduced. Rossetto et al. (2011) derive the spatial sensitivity of the decorrelation

observable in the diffusion regime. Planès et al. (2014) argue that the diffusion regime is not applicable

to a perturbation close to the source or near the stations and carefully compare the similarities and

differences in kernels obtained using the multiple scattering and the diffusion approximations. Most

discussions above are based on the assumption of point-like perturbations.

A separate problem is the depth localization of a change in the presence of body and surface waves.

Obermann et al. (2013b) introduced an empirical depth sensitivity kernel of coda waves to perturbations

within a thin layer using numerical wavefield simulations in a heterogeneous medium. According to

Obermann et al. (2013b) the depth sensitivity of coda waves at the surface is a combination of the bulk

wave sensitivity and the surface wave sensitivity with temporally varying contributions. These empirical

kernels can be used to discriminate between shallow and deep velocity variations. This approach was

later extended to the depth sensitivity calculations in the 3-D case (Obermann et al., 2016).

Mayor et al. (2014) derive theoretical expressions for scattering and absorption kernels which describe

the direct relationship between the distribution of scattering and absorption properties in space on the

one hand and the observed intensity on the other hand. Without assumptions about the propagation

regime Margerin et al. (2016) proposed two concepts of passive and active medium perturbations to derive

the traveltime and decorrelation sensitivity kernels, which provides a complete mathematical formulation

for the spatial sensitivities. These expressions equal the derivation of Planès et al. (2014) in the diffusion

regime but extend beyond it. Zhang et al. (2016) use laboratory experiments in a concrete specimen to

verify that the decorrelation kernels have high sensitivity to changes in the material. Snieder et al. (2019)

gave the expressions for traveltime sensitivity kernels of elastic waves which consider perturbations of P-

waves and S-waves velocities. Also considering the elastic case we use the formulation of Margerin et al.

(2016) to derive new expressions for traveltime, decorrelation, scattering and attenuation sensitivity

41
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kernels in this paper. We develop a Monte-Carlo approach to calculate the specific energy density

distribution, which is central in the theoretical formulation. Our approach is very general and is able to

incorporate important ingredients such as non-isotropic scattering of elastic waves and spatially variable

scattering and attenuation properties. This is a prerequisite for an iterative tomographic inversion for

material properties and property changes of geological or geotechnical structures with scattered seismic

waves.

Previous work on estimating medium properties from coda waves often either assumed spatially

homogeneous properties (Fehler et al., 1992; Lacombe et al., 2003; Sens-Schönfelder & Wegler, 2006) or

made very simple assumptions about the spatial sensitivity. Imaging of the total attenuation is often

based on the coda-normalization method with straight-path ray theory (Del Pezzo et al., 2006). This

method is widely applied in attenuation tomography of volcanoes (De Siena et al., 2009, 2014a,b;

Prudencio et al., 2015b). More recently the method was improved by integrating sensitivity kernels

based on assumptions of diffusion or multiple scattering into the inversion (De Siena et al., 2017;

Del Pezzo et al., 2018). Using radiative transfer with the approximation of isotropic acoustic wave

scattering, Obermann et al. (2013a) calculated the decorrelation sensitivity kernel to image changes in

the structure of a volcano. This algorithm was also applied to locate the velocity variations after an

earthquake or the eruption of a volcano in other studies (Obermann et al., 2014; Budi-Santoso &

Lesage, 2016). Takeuchi (2016) developed a differential Monte-Carlo method that allows to directly

calculate the sensitivity kernel in a Monte-Carlo simulation. This approach requires only a single

simulation instead of two to obtain the derivative of the envelope with respect to a certain perturbation

of the medium. Ogiso (2019) used this approach to map scattering and attenuation in Japan and

Sens-Schönfelder et al. (2021) used it to study the effect of scattering at the core mantle boundary.

The assumption of an initially uniform distribution of heterogeneity is common to most studies that

investigated the spatial variability of heterogeneity and attenuation properties with scattered coda waves.

Therefore, previous studies are restricted to a first order mapping of deviations from uniform heterogeneity

(De Siena et al., 2014a,b; Prudencio et al., 2015a; Zieger et al., 2016; Gabrielli et al., 2020; Sketsiou et al.,

2020). An iterative tomography of this nonlinear problem is therefore impossible so far and requires

developments such as those presented here.

A tomographic inversion tries to obtain the model of the target medium which best describes observed

data. The model is encapsulated in a model vector m that may for example contain the elastic parameters

of the medium at the nodes of a spatial grid. Observations are contained in a data vector dobs consisting,

for example, of traveltime measurements or waveform data. Data and model vectors are connected by the

forward operator F(m) = dsyn where dsyn is a synthetic data vector. How well the model m describes the

target medium is evaluated by an objective function χ(F(m),dobs) which compares the synthetic data

predicted from the model to the observed data. Usually χ is designed such that it assumes a minimum

for the best possible model.

Finding a model that improves the description of the data requires knowledge of the gradient of the

objective function with respect to the model parameters - the Fréchet derivative ∇mχ. We can write the

Fréchet derivative as (Fichtner, 2010):

∇mχ(F(m),d) = ∇Fχ(F(m),d)∇mF(m) . (4.1)

∇Fχ is the gradient of the objective function with respect to the forward operator, ∇mF is the gradient of

the forward operator with respect to the model parameters. The particular difficulty in this formulation is

the presence of the forward operator on the right-hand side which renders an explicit calculation of ∇mχ
almost impossible for all possible variations of the model (δm) because in a finite difference approach each

model parameter would require at least one forward simulation. In this section we discuss an alternative
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way to derive ∇mχ for the transport equations with different objective functions χ and different models

m using Bayes’ theorem.

Irrespective of the strategy to derive ∇mχ it has the same structure as the model space which is a

regular spatial grid of the investigated domain, here. For small perturbations of the model parameters the

variations of the forward operator can be assumed linear which leads to the following integral formulation

for the change of the objective function in response to a model perturbation δm

∇mχ · δm =

∫
V

K(r)δm(r)dV (r) (4.2)

where K(r) is the sensitivity kernel.

The sensitivity kernels encapsulate the information about the spatial sensitivity of the objective

function to local changes of model parameters. This information is used to decide where the model needs

to be changed to achieve a certain change in the modeled data and improve the model fit. The model m

describes certain material properties which usually are the velocities of P- and S-waves and attenuation

for classical seismic tomography. Lamé parameters and quality factors might similarly be used. In our

case the medium has additional properties that describe the small scale heterogeneity which is responsible

for the scattering. Here we assume that changes of the scattering properties occur in the form of changes

in ε2 only, which we use together with α and β, QP and QS as model parameters.

Observations or observables on the other hand are functions of the observed seismic data. In fact

sensitivity kernels relate changes of the model to changes of the data. Here we have to differentiate

between two possible applications. The first application is the tomographic question of determining the

spatial distribution of material properties. In this case the kernels describe the change in the simulated

data resulting from a change in the model. The second application is the monitoring of changes in the

medium. This application gained significance with the development of continuous subsurface monitoring

using ambient seismic noise. In this case the observable is derived from the seismic observations before

and after a change in the medium occurred and the result is the change in medium properties rather than

their absolute values.

So observations either describe the changes between two seismic traces observed before and after a

change occurred in the medium (monitoring) or the misfit between simulated and measured data

(tomography). For scattered waves, commonly used types of observables are the seismic energy

difference δE (difference between the envelopes of the seismic traces), the travel time change δtt and the

decorrelation of two traces dc. The travel time change can be measured from the seismograms with the

time-windowed cross-correlation method (Poupinet et al., 1984; Snieder, 2006). The decorrelation is

defined as one minus the normalized correlation coefficient of two seismograms recorded before and

after a change occurred in the medium (Larose et al., 2010; Planès et al., 2014). Only the energy

difference δE can be used for tomography since measurements of travel time changes and decorrelation

involve phase information that cannot be obtained with the forward simulation used here. These

observables would require wavefield simulations if one aims at absolute parameters of the medium.

For elastic waves the observations can be made with the two different wave modes. Hence, it is natural

to first decompose the sensitivity into elementary contributions depending on the emission mode X at the

source and the detection mode Y at the receiver. Such a decomposition offers insight into the physical

interpretation of the sensitivity. In a second step the elementary kernels will be recombined linearly to

take into account the partitioning of the energy emitted at the source and detected at the receiver. This

will yield expressions that are directly applicable to observations in seismology or acoustics. Some typical

examples will be given later in the paper.

The elementary sensitivity kernels are of the form ψKφ
Y X(r, t). Here ψ stands for the model parameter

(α, β, QP , QS , ε). φ indicates the observable (E, tt, dc). Y and X indicate the mode of excitation
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(X) and recording (Y ). The notation with the receiving mode as first and the excitation mode as second

subscript is chosen in accordance with the order of the arguments which lists the conditional arguments of

the source in the last position. Not all combinations of φ and ψ are physically meaningful as there should

be a significant influence of the medium parameter on the observable. In the following we discuss the

most useful combinations in which the observable has a first order dependence on the model parameter.

The notation of sensitivity kernels we used here is determined by the type of observation and the type

of perturbation. The decorrelation and energy change are actually functions of changes in ε2, but for

the sake of simplicity we use ε in the notation. Similarly, the change of intrinsic attenuation involves the

factor 1/Q but for simplicity of notation we use Q. The notations α and β in the traveltime sensitivity

kernels also indicate δα/α0 and δβ/β0, respectively.

4.2 Traveltime Sensitivity Kernels

We first look at the travel time sensitivity kernels αKtt
Y X , βKtt

Y X that describe the travel time change

due to a perturbation of the P- or S-wave velocities, respectively. In the case of vectorial waves, the

observable may be defined more precisely as the travel time perturbation averaged over each cartesian

component of the field.

We utilize Bayes’ theorem to derive the traveltime sensitivity kernels for the elastic case. It is the

same probability-based method as used by Margerin et al. (2016) in which they define two events A

and B. A denotes the event that: a seismic phonon is detected at time t′ in the volume dV (r′) with a

propagation direction n′. In the elastic case, we use a subscript AV to indicate that the seismic phonon

has mode V in the event A. Similarly, BY denotes the event: a seismic phonon of mode Y reaches r at

time t in any direction.

We denote the energy density detected at the receiver position r from the source position r0 at the

time t by EY X (r, t; r0). It corresponds to event BY . Y and X indicate the mode of excitation (X)

and recording (Y ). For any position r′ at any time t′ the probability density function relevant to event

AV is (up to a normalization factor) given by the specific energy density EV X (r′, t′,n′; r0). Hence, the

probability that a phonon which we observe at location r in mode Y has visited dV (r′) in P-mode after

being launched in mode X from location r0 is given by:

P (AP | BY ) =
P (BY | AP )P (AP )

P (BY )

=
EY P (r, t− t′; r′,n′)EPX (r′, t′,n′; r0) dV (r′)

EY X (r, t; r0)

(4.3)

EY P (r, t− t′; r′,n′) is the energy density recorded at the receiver at r from a source radiating in direction

n′ at location r′. It correspond to the probability that the phonon at r′ continues to propagate in direction

n′ and reaches the receiver in the remaining time t − t′ in mode Y . The probability that the phonon

visited dV (r′) in S-mode is given by:

P (AS | BY ) =
P (BY | AS)P (AS)

P (BY )

=
EY S (r, t− t′; r′,n′)ESX (r′, t′,n′; r0) dV (r′)

EY X (r, t; r0)

(4.4)

Thanks to these probability distributions we may compute, at a given lapse-time t in the signal, the

typical time spent in the volume dV (r′) by either P-mode or S-mode seismic phonons propagating in
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direction n′:

αTY X(dV (r′),n′, t; r, r0) = dV (r′)

∫ t

0

EY P (r, t− t′; r′,n′)EPX(r′, t′,n′; r0)

EY X(r, t; r0)
dt′ (4.5)

βTY X(dV (r′),n′, t; r, r0) = dV (r′)

∫ t

0

EY S(r, t− t′; r′,n′)ESX(r′, t′,n′; r0)

EY X(r, t; r0)
dt′ (4.6)

To obtain the time spent in dV (r′) irrespective of propagation direction, eq. (4.5) and eq. (4.6) have to

be integrated over directions n′. The travel time change that a wave accumulates during its propagation

in dV (r′) is −δc/c(r′) · T (dV (r′)) with δc/c the fractional change of the wave velocity. We assume that

perturbations are small and travel time changes from different locations can be superimposed. Now we

can obtain the travel time shift for spatially distributed changes of P- and S-wave velocities:

δtY X(t) = −
∫
V d

[
δα

α
(r′)

∫
Sd

αTY X(dV (r′),n′, t; r, r0)dn′+

δβ

β
(r′)

∫
Sd

βTY X(dV (r′),n′, t; r, r0)dn′]dV (r′)

= −
∫
V d

[
δα

α
(r′)αKtt

Y X(r′,n′, t; r, r0)+

δβ

β
(r′)βKtt

Y X(r′,n′, t; r, r0)]dV (r′)

(4.7)

which defines the sensitivity kernels αKtt
Y X and βKtt

Y X . In Eq. (4.7) Sd denotes the unit sphere in space

dimension d and V d is the full space. Measurements of the travel time shifts can be performed on any

seismogram component and may be averaged.

The calculation of the sensitivity kernels on the basis of eq. (4.5) and eq. (4.6) is impractical as it

involves the energy density E(r; r′) that originates from a source at r′ which can be anywhere in the

domain. To avoid the necessity of simulating sources throughout the medium we use the reciprocity

relation of transport theory discussed in Section 3.3. It allows to replace the large number of simulation

to obtain the signals recorded from sources everywhere in the medium at one particular receiver by a

single simulation with a source at the original receiver and a large number of receivers everywhere in the

medium. Using the adjoint energy density E†(r′; r) introduced in eq. (3.8) to replace E(r; r′) we obtain

the following expressions for the elastic travel time sensitivity kernels:

αKtt
Y X (r′, t; r, r0) = Sd

∫
Sd

∫ t

0

E†PY (r′, t− t′,−n′; r)EPX (r′, t′,n′; r0) dt′dn′

EY X (r, t; r0)
(4.8)

βKtt
Y X (r′, t; r, r0) = Sd

∫
Sd

∫ t

0

E†SY (r′, t− t′,−n′; r)ESX (r′, t′,n′; r0) dt′dn′

EY X (r, t; r0)
(4.9)

Both kernels describe waves that are launched in mode X and recorded in mode Y .

To illustrate the kernel calculation, we employ the specific energy density results of the modeling

in the statistically homogeneous model. The traveltime sensitivity kernels are shown in Figure 4.1 and

Figure 4.2 for P- and S-wave source, respectively. Although the kernels are obviously affected by the

positions of the source and the receiver and the lapse time, they are also sensitive to the scattering

process. αKtt
PP describes the effect of a local perturbation of P-wave velocity on the P-wave recording

from a P-wave source. The result is symmetric since the source and the receiver have the same type

which means that we can interchange the locations. βKtt
PP has the same reason for its symmetry but the

effect of S-wave velocity leads to its value is much weaker than αKtt
PP . Because it must at least convert

twice before arriving at the receiver. αKtt
SP and βKtt

SP highlight the role of P-wave and S-wave velocity

perturbations, respectively, observed with an S-wave recording from a P-excitation. Since the source
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excites the P-waves, the simplest case is that there is only one energy conversion. But for αKtt
SP the

conversion happens after passing through dV (r′) while for βKtt
SP it occurs before. This is why the higher

sensitivity is closer to the source for αKtt
SP but for βKtt

SP it is closer to the receiver, resulting in a strong

asymmetry. Figure 4.2 shows the traveltime sensitivity kernels for an S-wave source. It reveals the same

type of asymmetry as discussed above for a P-wave source. The apparent asymmetry of βKtt
SS at 5 s

lapse time is due to poor sampling prior to the arrival of ballistic S-energy. The excited S-energy has to

be converted to P in order to reach the receiver prior to the ballistic S-phase, but it has to be converted

back to S-energy before being recording which makes these events very unlikely. The comparably high

amplitude of αKtt
SS is due to the normalization by a very small total energy density.

4.3 Decorrelation Sensitivity Kernels

We now turn to the decorrelation sensitivity kernels εKdc
Y X that describe the decorrelation between two

wavefield measurements as defined by Planès et al. (2014) due to a change of the mechanical properties

of the medium. We assume that the change in the mechanical properties can be described as a change in

the fractional variation ε of the fluctuations of the medium. This means that the change only influences

the amplitude of the power spectrum. The angular pattern of the scattering coefficient is not affected by

the change.

The definition and expression of the decorrelation coefficient given by Margerin et al. (2016) in the

case of scalar waves may be extended to the vectorial case as follows:

dc(t) = 1− 〈ui(t)ũi(t)〉√
〈ui(t)ui(t)〉〈ũi(t)ũi(t)〉

≈ 〈(ui(t)− ũi(t))(ui(t)− ũi(t))〉
2〈ui(t)ui(t)〉

,

(4.10)

where ui(t) and ũi(t) refer to the i-th component of the wavefield before and after the perturbation,

respectively. In Eq.(4.10) we have assumed that the difference between ui(t) and ũi(t) is small and

uncorrelated with ui(t). Note that the Einstein summation convention is employed in Eq.(4.10). In

the second equality, we recognize (up to a constant pre-factor equal to the product ρω2 of local mass

density and squared circular frequency) the extra energy density emitted by the scattering perturbation.

Similarly, the denominator 〈u2(t)〉 is up to the same pre-factor the total energy density of the wavefield.

The extra energy scattered by the local change in ε observed in the lapse time interval (t′, t′ + dt′) is

given by

δEWX(r′, t′,n; r0) =
∑

V=P,S

∫
Sd

dt′ cV
∣∣gV�W (n,n′; ε̃2(r′))− gV�W (n,n′; ε2(r′))

∣∣EV X(r′, t′,n′; r0)dn′

(4.11)

The summation over wave mode V takes care of the fact that both the P and S phonons that are incident

on the volume element at r′ contribute to the decorrelation. cV is the velocity of the wave mode V and

cP ≡ α0, cS ≡ β0. n′ and n denote the incoming and outgoing direction, respectively. ε̃ is the fractional
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Fig. 4.1: Traveltime sensitivity kernels in uniform model: αKtt
PP (the 1st column), βKtt

PP (the 2nd column),
αKtt

SP (the 3rd column) and βKtt
SP (the 4th column) at different lapse times with P-wave source. Note the 2nd

column has a different color scale and all scales are nonlinear. Source r0: x = 25 km, y = 15 km and receiver r:
x = 25 km, y = 35 km.
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Fig. 4.2: Traveltime sensitivity kernels in uniform model: αKtt
PS (the 1st column), βKtt

PS (the 2nd column), αKtt
SS

(the 3rd column) and βKtt
SS (the 4th column) at different lapse times with S-wave source. Note the 3rd column

in each row has the different color scale and all scales are nonlinear.
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fluctuation after the perturbation. Since the scattering coefficient is proportional to ε2, we obtain

δEWX(r′, t′,n; r0) =
∑

V=P,S

∫
Sd

dt′ cV

∣∣δε2(r′)
∣∣

ε2(r′)
gV�W (n,n′; ε2(r′))EV X(r′, t′,n′; r0)dn′

=
∑

V=P,S

∫
Sd

dt′ cV

∣∣δε2(r′)
∣∣

ε2(r′)

ε2(r′)

ε2
0

gV�W
0 (ε2

0)fV�W (n,n′)EV X(r′, t′,n′; r0)dn′

(4.12)

Here the definition of δε(r′)2 is the perturbation of local scattering strength which is defined as δε2 (r′) =

ε̃2(r′) − ε2(r′). ε2(r′)/ε2
0 is the ratio between the local value and the homogeneous background which

describes the structure of the model. gV�W
0 (ε2

0) is the total scattering coefficient of the background which

determines the probability of scattering. The superscript V � W in gV�W
0 (ε2

0) indicate the wave mode

conversion from mode V to W . Here we define

fV�W (n,n′) =
gV�W (n,n′; ε2

0)

gV�W
0 (ε2

0)
(4.13)

where fV�W (n,n′) is the normalized differential scattering cross-section (Sato et al., 2012). In another

words fV�W (n,n′) is the probability density for an incoming V phonon propagating in direction n′ to

be mode converted to a W phonon propagating in direction n.

Propagating this extra energy that acts as a secondary source at r′ further to the receiver at r and

integrating over time t′ at which the phonons visit the perturbed volume yields

δEY (r, t; r′; r0) =
∑

W=P,S

∫
Sd

∫ t

0

EYW (r, t− t′; r′,n)δEWX(r′, t′,n; r0)dt′dn (4.14)

The quantity δEY (r, t; r′; r0) depends on the location of the perturbation and has to be integrated over

space V d to obtain the total change of energy.

Inserting eq. (4.14) in the numerator of eq. (4.10) yields for the decorrelation of the two wavefields

recorded before and after the perturbation of the mechanical properties

dcY X(t) =
δEY (r, t; r′; r0)

2EY X(r, t; r0)

=
1

2ε2
0

∫
V d

∣∣δε2(r′)
∣∣ εKdc

Y X(r′, t; r, r0)dV (r′)

(4.15)

where:

εKdc
Y X(r′, t; r, r0) =Sd

∑
W

∑
V

∫
Sd

∫
Sd

∫ t

0

cV g
V�W
0 (ε2

0)

×
E†WY (r′, t− t′,−n; r)fV�W (n,n′)EV X(r′, t′,n′; r0)

EY X(r, t; r0)
dt′dn′dn

(4.16)

Here we have used again the reciprocity relation eq. (3.8) and the summation over modes W and V

corresponds to the four different modes of scattering that connect incident P- and S-waves each to

outgoing P- and S-waves.

The illustration of decorrelation sensitivity kernels in a statistically homogeneous model are shown

in Figure 4.3. The single scattering ellipse with the highest sensitivity in εKdc
PP is clearly marked since

the strongest influence on P-wave recordings from a P-wave source comes from single-scattering. This

interpretation also holds for the ellipse in εKdc
SS of S- into S-wave single-scattering. The regions of higher
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Fig. 4.3: Decorrelation sensitivity kernels in uniform model: εKdc
PP (the 1st column), εKdc

SP (the 2nd column),
εKdc

PS (the 3rd column) and εKdc
SS (the 4th column) at different lapse times. Note all scales are nonlinear.

sensitivity in εKdc
SP and εKdc

PS have the same explanation but due to the change of modes which propagate

with different velocities they are not elliptical. It is also easy to understand that εKdc
SP is symmetrical to

εKdc
PS due to the interchange of the source and the receiver.

4.4 Energy Sensitivity Kernels for Changes in Scattering and

Intrinsic Attenuation

In this section we derive sensitivity kernels for energy observations, i.e. the spatio temporal distribution of

coda wave energy. Since this observable is influenced by variations of attenuation as well as in scattering

strength we will calculate the kernels QKE
YX and εKE

YX .

A perturbation of scattering properties in a local volume dV (r′) has two effects on the propagation

of energy (Margerin et al., 2016). Temporarily ignoring the intrinsic attenuation and assuming a local

increase in scattering strength eq. (2.12) and eq. (2.13) reveal that one effect is the loss of energy due

to the stronger scattering of EY X (r′, t′,n; r0) into directions other than n′, and the other effect is the

increase of energy by scattering from other direction n′ into direction n. The second effect has been

discussed in eq. (4.12) when we derived the decorrelation sensitivity kernels. In the following we denote

the energy increase due to scattering described in eq. (4.12) by 2δEWX(r′, t′,n; r0). The first mentioned

effect of a local increase in scattering strength -the decrease of ballistic energy across the volume element-

dV (r′) is given by:

1δEWX(r′, t′,n; r0) = −
∑

V=P,S

dt′ cW
δε2(r′)

ε2(r′)

ε2(r′)

ε2
0

gW�V
0 (ε2

0)EWX(r′, t′,n; r0) (4.17)

Considering both effects, we add eq. (4.12) and eq. (4.17) to obtain the secondary source at r′. This

energy further propagates to the receiver at r. We obtain the seismic energy change at r due to a local



50 CHAPTER 4. SENSITIVITY KERNELS

0 20 40
0

10

20

30

40

x(
km

), 
No

rth

t=5.0s

KE
PP

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

1e 3

0 20 40
0

10

20

30

40

KE
SP

0.0

1.0

2.0

3.0

4.0
1e 3

0 20 40
0

10

20

30

40

x(
km

), 
No

rth

t=7.0s

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.01e 3

0 20 40
0

10

20

30

40

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.01e 3

0 20 40
y(km), East

0

10

20

30

40

x(
km

), 
No

rth

t=9.0s

0.0
0.2
0.5
0.8
1.0
1.2
1.5
1.8

1e 3

0 20 40
y(km), East

0

10

20

30

40

0.0
0.2
0.5
0.8
1.0
1.2
1.5
1.8

1e 3

0 20 40
0

10

20

30

40

KE
PS

0.0

1.0

2.0

3.0

4.0
1e 3

0 20 40
0

10

20

30

40

KE
SS

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

1e 3

0 20 40
0

10

20

30

40

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.01e 3

0 20 40
0

10

20

30

40

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.01e 3

0 20 40
y(km), East

0

10

20

30

40

0.0
0.2
0.5
0.8
1.0
1.2
1.5
1.8

1e 3

0 20 40
y(km), East

0

10

20

30

40

0.0
0.2
0.5
0.8
1.0
1.2
1.5
1.8

1e 3

Fig. 4.4: Scattering sensitivity kernels in uniform model: εKE
PP (the 1st column), εKE

SP (the 2nd column), εKE
PS

(the 3rd column) and εKE
SS (the 4th column) at different lapse times. The color of white indicates the value of 0,

the red is positive and the blue is negative.

weak perturbation of scattering properties:

δEY X(r, t; r′; r0) =
∑

W=P,S

∫
Sd

∫ t

0

EYW (r, t− t′; r′,n)[1δEWX(r′, t′,n; r0) + 2δEWX(r′, t′,n; r0)]dt′dn .

(4.18)

This expression is a combination of the traveltime and decorrelation sensitivity kernels given by eq. (4.8),

eq. (4.9) and eq. (4.16). By substituting them into eq. (4.18), the perturbation of energy in the coda may

be expressed as:

δEY X
EY X

(r, t; r0) =
1

ε2
0

∫
V d

δε2(r′) εKE
YX(r′, t; r, r0)dV (r′) (4.19)

where the scattering sensitivity kernels may in turn be expressed in terms of the travel time and

decorrelation kernels as follows:

εKE
YX(r′, t; r, r0) = εKdc

Y X(r′, t; r, r0)− [α0(gP�P
0 (ε2

0) + gP�S
0 (ε2

0)) αKtt
Y X (r′, t; r, r0)

+ β0(gS�P
0 (ε2

0) + gS�S
0 (ε2

0)) βKtt
Y X (r′, t; r, r0)]

(4.20)

Figure 4.4 shows the sensitivity kernels calculated from eq. (4.20). Positive (resp. negative) values

of the kernel are shown in red (resp. blue). Similar to the decorrelation sensitivity kernels, the positive

sensitivity is dominated by single-scattering where an increase of scattering strength causes more scattered

energy to be recorded at the receiver. Negative sensitivity indicates that increased scattering strength

decreases the recorded energy due to multiple scattering that spreads out energy in space.

We now consider the effect of changes in intrinsic attenuation on the recorded energy. According

to eq. (2.12) and eq. (2.13), a local change of intrinsic attenuation affects the weight of the phonons

propagating through the perturbation, independent of the direction. From this consideration, we deduce



4.5. Combination of Sensitivity Kernels 51

the change of energy due to a perturbation of attenuation in the volume dV (r′):

δEWX(r′, t′,n; r0) = −
∑

W=P,S

dt′ωδQ−1
W (r′)EWX(r′, t′,n; r0) (4.21)

where δQ−1
W (r′) = Q̃−1

W (r′) − Q−1
W (r′) and Q̃−1

W (r′) denotes the local intrinsic quality factors after the

perturbation. So the perturbation of energy density at r caused by a local perturbation of intrinsic

attenuation δQ−1
P (r′) and δQ−1

S (r′) is:

δEY X
EY X

(r, t; r0) = −ω
∫
V d

[δQ−1
P (r′) QPKE

YX(r′, t; r, r0) + δQ−1
S (r′) QSKE

YX(r′, t; r, r0)]dV (r′) (4.22)

As could be anticipated, the attenuation sensitivity kernels are identical to the traveltime sensitivity

kernels:

QPKE
YX (r′, t; r, r0) = αKtt

Y X (r′, t; r, r0) (4.23)

QSKE
YX (r′, t; r, r0) = βKtt

Y X (r′, t; r, r0) (4.24)

4.5 Combination of Sensitivity Kernels

We derived different sensitivity kernels for the same perturbation depending on the different modes of

excitation (X) and recording (Y ). These expressions are derived theoretically but might not be practical

in applications since P- and S -energy density are usually jointly excited and recorded. We will first

consider the combination of kernels in a simple scenario where an idealized source emits a single type of

energy but the P and S waves cannot be separated at the receiver. In a second step the results will be

generalized to arbitrary source and detection.

The energy density detected at receiver is a mixture of P and S modes and is given by ERX (r, t; r0) =

EPX (r, t; r0) + ESX (r, t; r0), where X denotes a single emission mode (P or S) and R is the recorded

energy density. After proper normalization, the energy densities EPX and ESX can be interpreted as the

probability of detection of a P or S mode at the receiver. Hence the key quantity for the combination of

kernels is the ratio of the two types of energies RSP = ESX/EPX which depends in general on the lapse-

time in the coda. The sensitivity of the measurement that combines the different detection modes can

now be obtained as a weighted sum of the P and S wave sensitivities with relative weights that depend on

the ratio RSP . For this ratio one can either assume a reasonable value or it can be obtained directly from

the simulations used to calculate the sensitivity kernels. For example the traveltime sensitivity kernel for

a measurement that mixes P and S modes can be written as:

αKtt
RX = WP

αKtt
PX +WS

αKtt
SX (4.25)

and

βKtt
RX = WP

βKtt
PX +WS

βKtt
SX , (4.26)

where WP = 1/(1 + RSP ) and WS = RSP /(1 + RSP ). For large lapse times we can assume wave

propagation in the diffusion regime. In this case gP�S
0 = γ0g

S�P
0 where γ0 = α0/β0. Since the energy

ratio of S- to P-waves obeys RSP = (gP�S
0 α0)/(gS�P

0 β0) (Sato et al., 2012, pp. 241), RSP = γ2
0 .

So eq. (4.25) and eq. (4.26) have the same meaning as the expression of the velocity change weighted

average of changes in the P- and S-wave velocities by Snieder (2006). The other sensitivity kernels can
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be combined in the same way:

εKdc
RX = WP

εKdc
PX +WS

εKdc
SX (4.27)

εKE
RX = WP

εKE
PX +WS

εKE
SX . (4.28)

The sensitivity kernels we derived before are very general which means that we can combine some of them

for different specific situations, for instance, if we can assume that the perturbations of P- and S-wave

velocities are the same, i.e.:

δα (r)

α0
=
δβ (r)

β0
. (4.29)

This allows us to simplify the inversion problem.

In the case of a general source which emits simultaneously P- and S- waves in proportions SP , SS

(with SP + SS = 1), we further generalize the decomposition of the kernels into elementary components.

The procedure is best explained with the aid of an example. For the general travel time sensitivity kernel

we write:

vKtt =
∑

Y=P,S

∑
X=P,S

∑
v=α,β

WY X
vKtt

Y X , (4.30)

where the time-dependent weight of each mode Y X is given by

WY X =
SXEY X∑

X=P,S

∑
Y=P,S

SXEY X
. (4.31)

Using these weights a single sensitivity kernel can be obtained that appears similar to the kernel in the

acoustic case for one wave mode and one velocity. However, the weights are lapse time dependent which

changes the relative contribution of the different elastic kernels over time.

For further work like inversion, our new sensitivity kernels provide options to include information

about the wave mode which can be obtained from array observations or other measurements of wavefield

gradients for example with rotation sensors (Gaebler et al., 2015).

4.6 Computation of Sensitivity Kernels in Scattering Anomaly

Model

Previous works have obtained sensitivity kernels with different assumptions about the scattering process

(Pacheco & Snieder, 2006; Larose et al., 2010; Obermann et al., 2013b; Planès et al., 2014). However,

most previous studies assumed that the scattering and attenuation properties are spatially

homogeneous. Locations within stronger heterogeneity tend to concentrate seismic energy and thereby

alter the sensitivity of the wavefield to perturbations in that region. Our approach is based on the

energy density obtained from the radiative transfer simulations and allows us to take into account this

change of the sensitivity by calculating the sensitivity kernels in media with spatial variations of the

attenuation and scattering properties. To demonstrate this influence we calculate sensitivity kernels in a

model with an anomaly in the scattering properties shown in Figure 3.13.

Figure 4.5 and Figure 4.6 show the resulting traveltime sensitivity kernels. Compared with Figure 4.1

and Figure 4.2, βKtt
PP and αKtt

SS show significant differences in the areas of anomalous scattering. Please

note that figures 4.5 and 4.6 show the kernels also at 13 s when the ballistic S-wave has passed through



4.7. Discussion 53

the anomalous regions. To intuitively understand these differences, we take βKtt
PP as an example in

which the modes of excitation (X) and recording (Y ) are both P-wave used to observe changes in S-wave

velocity β. As discussed in section 4.2, the simplest case to create this sensitivity requires two conversion

scattering events to happen, one before and the other after passing through dV (r′). The probability of

such an event must be higher in the anomaly area with stronger scattering which leads to more sensitivity

to changes in S-wave velocity. It is different from αKtt
PP since there is no conversion needed. αKtt

SP and
βKtt

SP require a single scattering event only and are thus only weakly affected by local changes of the

scattering properties. The same explanation applies to the kernels representing the traveltime sensitivity

of measurements employing an S-wave source as shown in figure 4.6.

Decorrelation and energy sensitivity kernels for changes in fluctuation strength in this model with

the spatially varying scattering are shown in Figure 4.7 and Figure 4.8, respectively. Compared with

Figure 4.3 and Figure 4.4 showing the kernels in the statistically homogeneous model, the differences of

all decorrelation and energy sensitivity kernels are minor. But since εKE
YX considers not only extra energy

gained from more scattering with fW�V (n,n′)EV X(r′, t′,n′; r0) which εKdc
Y X only considered but also

the loss of energy due to the stronger scattering on EY X (r′,n, t′; r0), the scattering sensitivity kernels

are more affected by scattering perturbation. Notice that at t = 5 s εKdc
SS and εKE

SS in the anomaly

model looks stronger than in the homogeneous model since the direct S-wave has not arrived and the

denominator of expressions has more influence on kernels.

4.7 Discussion

The scattering sensitivity kernels express the relation between a local change in the medium and an

observation made on the wavefield. They describe how strongly an observation responds to a change at a

particular location. We derive a number of kernels that relate different types of changes in the medium to

different types of observations leading to a multitude of possible combinations. However, the equation of

radiative transfer does only allow for two distinct mechanism to perturb the wavefield. The wave can be

perturbed (A) during ballistic propagation and (B) while being scattered. Both mechanisms have their

own spatial sensitivities, but all sensitivity kernels can be related to these two fundamental forms.

Mechanism A, i.e. the perturbation of wavefield attributes during unperturbed propagation is

described by the passive kernel (Margerin et al., 2016). The travel time kernel vKtt
X,Y and the

attenuation kernel QKE
X,Y share the spatial shape of the passive kernel which describes the time that

the waves have spent in a certain volume. The active kernel (Margerin et al., 2016) describes changes

introduced by the mechanism B in which the attributes are unchanged but the wave propagation is

perturbed. The decorrelation εKdc
X,Y has the shape of the active kernel. The energy kernels for changes

in the scattering properties (εKE
X,Y ) involve both, the active and the passive kernels. While the passive

kernel describes the loss/gain of ballistic energy due to an increase/decrease of energy by scattering

from the current (n) into new propagation directions (n′), the active kernel describes the

increase/decrease of energy due to increased/decreased scattering from all other propagation directions

(n′) into the current direction (n). Consequently εKE
X,Y = Kactive −Kpassive.

The sensitivity kernels that we compute here are very detailed in terms of the wave mode that is excited

and recorded. Since this degree of detail can hardly be used in any practical application, we give the recipe

for combining the kernels to describe realistic situations. However, the kernels are derived independently

of the incident direction as K(r′, t). Since all computations are based on the specific energy density which

contains all information about propagation direction of the wavefield, we could easily derive expressions

for kernels of the form K(r′, n, t) that describe the spatial sensitivity of a measurement performed on

the specific energy density in a particular direction n. Such information can be used to investigate the

scattered field with seismic arrays and beamforming as it is typically used to study scattering in the deep
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Fig. 4.5: Traveltime sensitivity kernels in medium with scattering anomaly: αKtt
PP (the 1st column), βKtt

PP (the
2nd column), αKtt

SP (the 3rd column) and βKtt
SP (the 4th column) at different lapse times with P-wave source.

Note the 3rd column has a different color scale and all scales are nonlinear.
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Fig. 4.6: Traveltime sensitivity kernels in medium with scattering anomaly: αKtt
PS (the 1st column), βKtt

PS (the
2nd column), αKtt

SS (the 3rd column) and βKtt
SS (the 4th column) at different lapse times with S-wave source.

Note the 3rd column in each row has the different color scale and all scales are nonlinear.
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Fig. 4.7: Decorrelation sensitivity kernels in medium with scattering anomaly: εKdc
PP (the 1st column), εKdc

SP

(the 2nd column), εKdc
PS (the 3rd column) and εKdc

SS (the 4th column) at different lapse times. Note all scales are
nonlinear.
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Fig. 4.8: Scattering sensitivity kernels in medium with scattering anomaly: εKE
PP (the 1st column), εKE

SP (the
2nd column), εKE

PS (the 3rd column) and εKE
SS (the 4th column) at different lapse times. The color of white

indicates the value of 0, the red is positive and the blue is negative.
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Earth (Lay & Garnero, 2011).

Compared with the previous studies (Mayor et al., 2014; Margerin et al., 2016) in the acoustic case,

the elastic sensitivity kernels shown in Figures 4.1 through 4.4 constitute a major extension. The energy

conversion and anisotropic scattering considered in this study result in an energy distribution that is

very different from the previous work in the acoustic approximation. However, for example αKtt
PP ,

εKdc
PP and εKE

PP show similar features as the acoustic case (Mayor et al., 2014), demonstrating that the

acoustic approximation is reasonable. On the other hand the importance of treating anisotropic scattering

was demonstrated by Margerin et al. (2016). Moreover, the acoustic approximation ignores conversion

scattering which is especially important at short lapse times and results in asymmetric kernels. Together

with the presence of two different wave speeds this causes four separate single-scattering ellipses which

have strongly focused sensitivities in the active kernels. Considering only one of these ellipses in the

acoustic approximation necessarily affects the tomographic inversion. To what extent a tomography is

affected needs to be tested in a separate investigation, for which our work provides the means.

Implications of our results for previous studies that used sensitivity kernels derived from diffusion,

multiple scattering or even based on empirical considerations are numerous (Sketsiou et al., 2020;

Del Pezzo & Ibáñez, 2020). However in simplistic inversion approaches like imaging with space

weighting functions or least square inversions of model misfit, the dependence of the results on the

precise nature of the kernels is usually rather weak and we expects that the use of the elastic kernels

would not have a major impact. But the method developed in the present paper allows for an iterative

tomography in which the kernels are successively adapted to the improving model. In such an inverse

problem the sensitivities need to be calculated with an accuracy that is comparable to the solution of

the forward problem.

The elastic scattering process is complex and controlled by many parameters. In the present paper, we

only consider changes of scattering strength in the form of the strength of the fluctuations. The correlation

distance a and the wavenumber m directly affect the angular distribution of scattering angles. Since

the PSDF is φ (m) = 2πε2a2
(
1 + a2m2

)−3/2
, it tends to a constant when am � 1 and the scattering is

isotropic. When the scattering becomes isotropic, the traveltime sensitivity kernels we proposed approach

the expression of Snieder et al. (2019). The PSDF here is the Fourier transform of an exponential ACF.

Other possibilities are the Gaussian or von Kármán ACFs. The choice of the ACF influences the scattering

process but our approach for the calculation of the sensitivity kernels is unaffected and can be applied

with different ACFs.

The simulation is done in an infinite 2-D model and we do not consider the structure of the

background velocity and density model either. Reflection and transmission will happen due to the

impedance differences in a more complicated background structure. This is not to be confused with the

stochastic scattering process used in section 3.1.1 and 4.6. Large-scale structure in the background

velocity model can be included in the Monte-Carlo model as in Sanborn (2017); Sens-Schönfelder et al.

(2009); Takeuchi (2016); Sens-Schönfelder et al. (2021).

Sensitivity kernels derived in this chapter have physical units. Table 4.1 therefore gives the units of

the quantities involved in the calculation of the sensitivity kernels. The energy density is considered as

the probability density of energy carrying particles. According to this table, we can confirm the units of
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Table 4.1: The unit of different parameters.

EY X(r, t; r0) EY X (r′, t′,n′; r0) cW gV�W
0 fV�W (n,n′) Sd dt dn dV (r′)

m−2 m−2 · rad−1 m · s−1 m−1 rad−1 rad s rad m2

the traveltime and decorrelation sensitivity kernels:

[
vKtt

Y X

]
=rad× m−2 · rad−1 ×m−2 · rad−1 × s× rad

m−2

=s ·m−2

[
εKdc

Y X

]
=rad× m · s−1 ×m−1 ×m−2 · rad−1 × rad−1 ×m−2 · rad−1

m−2
× s× rad× rad

=m−2

(4.32)

where [·] denotes Unit of ·. The unit of attenuation sensitivity kernel is the same as that of the traveltime

which together with the additional factor ω in equation 4.22 leads to the proper unit of relative energy

density change. The units of the scattering sensitivity kernels are same as those of the decorrelation

kernel.

4.8 Conclusions

With elastic radiative transfer theory, we simulate the propagation of seismic energy in the presence of

wave scattering. The Monte-Carlo method is used to numerically solve the radiative transfer equations.

Here we assume that the random velocity and density fluctuations of the medium have an exponential ACF

and the scattering is anisotropic. In order to simulate energy transport in the presence of spatially variable

fluctuation strength and intrinsic attenuation we separate the effects of fluctuation strength and ACF

on the scattering coefficients and allow for location dependent fluctuation strength and quality factors.

Two models are shown with spatially variable scattering and intrinsic attenuation to be compared with

the statistically homogeneous model. The effects of stronger scattering and attenuation can be clearly

observed in the two anomaly models.

As a further development we present the simulation of the specific energy density of the wavefield.

The specific energy density EY X (r,n, t) describes the angularly resolved energy density at position r at

time t with the propagation direction n. In the elastic case the mode of excitation X and recording Y

can either be P- or S-wave. This quantity provides complete information about the energy transfer in an

elastic medium with spatially variable randomness and intrinsic attenuation.

The complete information about the energy propagation allows for the computation of sensitivity

kernels of scattered elastic waves including ballistic and scattered waves. For the efficient computation of

the kernels we employ the reciprocity relation of an adjoint transport equation. We investigate sensitivity

kernels in the form ψKφ
Y X , where ψ denotes the medium perturbation, φ denotes observable and Y,X

denote the excited wave mode X and recorded wave mode Y . Both, the observable and medium property

need to be specified to identify the kernels. αKtt
Y X and βKtt

Y X are traveltime-velocity sensitivity kernels to

describe the effect of P- and S-wave velocity perturbation in space on the traveltime perturbations of the

seismogram. The derivation of these kernels is based on Bayes’ theorem with a probabilistic interpretation

of specific energy density and the reciprocity relation in transport theory. It leads to an expression that

involves the convolution of the forward propagating field that is excited at the source and the adjoint

propagating specific energy density that is excited at the receiver. By considering all combinations of

the modes at source, receiver and perturbed location, the elastic sensitivity kernels turn out to be more

complicated than the ones in the acoustic case proposed by Margerin et al. (2016). We show the eight
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possible types of traveltime sensitivity kernels that result from the propagation of the two elastic wave

modes.

Changes in the strength of random velocity and density fluctuations ε can be observed as changes

of the trace envelopes and decorrelation of the waveforms leading to the energy-scattering kernel εKE
YX

and the decorrelation-scattering kernel εKdc
Y X . It is interesting to note that the energy-scattering kernel

εKE
YX has positive and negative polarity whereas the decorrelation-scattering kernel εKdc

Y X is strictly

positive since any change in the scattering coefficient ε (independent of its sign) will lead to an increase

in decorrelation. Based on the observation of the decorrelation alone, it is thus not possible to discern

an increase and a decrease of heterogeneity.

The functional form of the energy-attenuation kernels QKE
YX is the same as that of the velocity kernels.

We also obtain eight different kernels for the combinations of the quality factors for P- and S-waves and

the modes of excitation and recording. If the actual sources in an experiment emit both, P- and S-waves

simultaneously or/and the receiver does not separate between P- and S-waves the different kernels can

be superimposed with the suitable weighting which can be obtained from the simulation of the specific

energy density.

We demonstrate the effect of spatial variations in scattering strength by comparing sensitivity kernels

in a statistically homogeneous model with kernels calculated in a model that contains anomalies of the

scattering properties. Obvious differences between kernels in the homogeneous and anomaly models exist

in αKtt
SS and βKtt

PP which are strongly affected by the scattering process because of the required mode

conversion.

Localization of property changes still remains the challenge in the crust and in volcanic structures.

However, inversion of the spatial perturbation of properties can be considered as an intuitive solution.

Our work provides the technical basis for a probabilistic approach to tomography using the scattered

elastic wavefield.



Chapter 5

Adjoint Envelope Tomography

5.1 Introduction

Tomography as the method of inferring the spatial distribution of medium parameters from measurements

of some physical observable has been successfully applied in different fields, like medicine, civil engineering

and geophysics. In particular, seismic tomography uses seismograms to explore the structure of the

Earth’s interior (Dziewonski & Anderson, 1981). The different types of observations that can be made in

seismic records offer various approaches to invert for physical properties of the Earth, leading to different

classes of tomography. Since the traveltime of seismic waves is the most intuitive observation in seismic

data, traveltime tomography was early developed to image the velocity or slowness structure (Aki & Lee,

1976; Thurber, 1983; Zhao et al., 1992; Li & Van Der Hilst, 2010). However, the obvious limitation of the

traveltime tomography is that only the information of first arriving waves is used (Rawlinson et al., 2003)

and information from later reflected or refracted wave arrivals is neglected. Exploiting all information

contained in a seismogram including shape and amplitude of all arriving waves is the goal of full-waveform

inversion (FWI) also referred to as adjoint tomography (Tarantola, 1984; Tromp et al., 2005; Fichtner

et al., 2006; Fichtner, 2010). The inversion problem in FWI is solved iteratively by calculating the Fréchet

derivative of the misfit function with respect to the model parameters that shows how the current model

can be improved. The term adjoint tomography indicates that the interaction of the forward field with

the adjoint field that satisfies the adjoint equation with the adjoint source derived from the misfit between

the observed and the synthetic data is used to calculate the model gradient (Fichtner, 2010). With several

decades of development, FWI has become a mature tool to reveal the velocity and attenuation structure

of the medium (Tape et al., 2009; Fichtner et al., 2010; Zhu et al., 2012; Tao et al., 2018). Although FWI

was successfully applied in global and regional imaging on multiple scales, its resolution is inherently

limited by the wavelength of the observed wavefield. Structure on a length scale below this resolution

limit cannot be resolved and causes misfit between modeled and observed wavefields that cannot be

explained (Mancinelli et al., 2016). Therefore minor phases in the seismograms besides the main body

wave or surface wave arrivals are often excluded from FWI (Liu & Gu, 2012).

The lithosphere and Earth’s mantle, however, contain multi-scale heterogeneity ranging from the

large-scale that can be interrogated deterministically to smallest scales far below the wavelength of seismic

waves (Kennett et al., 2017). Well-log data provides the most direct evidence of this small-scale velocity

heterogeneity (Holliger, 1996). Improving the resolution limits of FWI to image smaller scales faces the

following limitations (A) computation costs for wavefield modelling increase drastically with frequency

and (B) higher resolution requires an increase of the station and event density (Chauris, 2021).

For many applications, knowledge of the precise deterministic structure of the small-scale

heterogeneity might not be required. Disregarding the geometric arrangement, the small-scale structure

can be characterized by its statistical properties. In random medium theory it is assumed that

heterogeneity can be regarded as a realization of a random process described by the amplitude of

59



60 CHAPTER 5. ADJOINT ENVELOPE TOMOGRAPHY

fluctuations and a spatial correlation structure (Batchelor, 1953; Sato, 1982). Different from the

velocities and density used to describe the elastic properties in deterministic structure, the random

medium heterogeneity is characterized by the strength ε and the spatial autocorrelation function of the

fluctuations. Different correlation functions have been used in the literature but all contain a

characteristic length scale called correlation length a. The statistical parameters ε and a of the small

scale heterogeneity provide a description of the material that is complementary to the classical

characterization of Earth materials based on macroscopic velocity (Sato et al., 2012).

The secondary phases resulting from the interaction of the wavefield with the small-scale heterogeneity

form a continuous wave train that usually follows the first-arriving direct waves. These waves were first

analyzed by Aki (1969) who coined the term coda waves and suggested that these are backscattered

waves from the lateral heterogeneity. Aki & Chouet (1975) then proposed the single backscattering model

and the diffusion model to interpret the transfer of seismic energy by the random heterogeneities. The

scattering during seismic wave propagating from the source to the station causes a redistribution of seismic

energy which involves loss of direct wave energy and the excitation of coda waves as a consequence of

energy conservation (Sato et al., 2012). Another process that causes a decay of the seismic wave amplitude

is intrinsic attenuation or absorption that converts seismic energy into other forms of energy. As a result,

scattering attenuation and intrinsic attenuation are collectively referred to as seismic attenuation. Both

intrinsic and scattering attenuation lead to an exponential decay of wave amplitude with traveled distance

as described by the respective quality factors Qi and Qsc. The temporal decay of coda wave amplitude

can be described with the coda-Q (Aki, 1980; Yoshimoto et al., 1993). However, the relationship between

coda-Q and scattering or intrinsic attenuation is variable, which naturally leads to the question of how

to distinguish between the simultaneous influences of scattering and intrinsic attenuation on seismic

waveforms.

In order to separate scattering from the effect of absorption, the multiple scattering model was

proposed by Wu (1985). For the first time Wu (1985) introduced the radiative transfer theory (RTT) to

seismology. RTT describes the multiple scattering process including back and forward scattering, which

has the advantage of solving much more complicated problems (Wegler et al., 2006). To numerically

solve the radiative transfer equation, the Monte-Carlo method was used by Gusev & Abubakirov (1987)

and Hoshiba (1991). Following Wu (1985) and Hoshiba (1991), Fehler et al. (1992) proposed the

multiple lapse-time window analysis method (MLTWA) to separate absorption and scattering, in which

the seismic energy is integrated over different time windows since each attenuation parameter has a

different influence on the individual lapse times. RTT is proved as an efficient tool to investigate

absorption and seismic wave scattering of small-scale heterogeneity. Especially with the elastic radiative

transfer equations derived by Weaver (1990) and Ryzhik et al. (1996) and the Monte-Carlo method

applied in the elastic case (Margerin et al., 2000; Yoshimoto, 2000), RTT was widely used to synthesize

seismogram envelopes (Wegler et al., 2006; Przybilla et al., 2006) and investigate scattering and

intrinsic attenuation (Sens-Schönfelder & Wegler, 2006; Padhy et al., 2007; Eulenfeld & Wegler, 2016).

The approaches mentioned above are all based on the assumption of a uniform distribution of

heterogeneity and constant intrinsic attenuation. Imaging the spatial distribution of non-uniform

scattering and absorption properties has thus been a challenge. Using the MLTWA and following the

work of Hoshiba (1993), Carcolé & Sato (2010) mapped the scattering loss parameter Q−1
sc , intrinsic

absorption Q−1
i and the seismic albedo B0 (i.e. the ratio Q−1

sc /(Q
−1
sc +Q−1

i ) of scattering attenuation to

total attenuation) in Japan. A block with stronger scattering in a more homogeneous medium was used

to model the lateral differences in the propagation of Lg-waves in the western Pyreneean crust with a

Monte-Carlo simulation algorithm for the 3D elastic radiative transfer equations (Sens-Schönfelder

et al., 2009). Another study of the spatially variable attenuation and scattering structure in the western

Pyrenees was conducted by Calvet et al. (2013) based on the large lapse time coda decay as a proxy for
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intrinsic attenuation factor and peak delay time as the indicator of scattering.

Scattering in volcanoes has been studied extensively as their internal structure is very heterogeneous

and wave scattering ubiquitous. Spatial variations of heterogeneity have been investigated by De Siena

et al. (2013) who employed a rim model with reflective diffusive boundary conditions to describe the

distribution of heterogeneity at Campi Flegrei caldera, Italy. Prudencio et al. (2013) studied scattering

and attenuation in Tenerife island and mount St Helens was investigated by De Siena et al. (2014b) and

De Siena et al. (2016).

Compared to the FWI, these approaches for imaging heterogeneity and absorption have so far been

rather simple. The above-mentioned approaches either prescribed a certain geometry of the anomalous

regions (Sens-Schönfelder et al., 2009; De Siena et al., 2013) or estimated the parameters for a certain

combination of source and station that is attributed to the straight line connecting source and receiver

(Calvet et al., 2013; De Siena et al., 2014b). Although more complicated space-weighting functions like

Gaussian weighting function (Prudencio et al., 2013) or functions based on scattering and absorption

sensitivity kernels (Del Pezzo et al., 2016; Del Pezzo & Ibáñez, 2020) have been used, this approach is

mostly a heuristic regionalization, that is in some cases applied to the non-physical medium parameter

coda-Q that combines the effects of absorption and scattering (Jin & Aki, 2005; Bianco et al., 2002; Soergel

et al., 2020). It is not an inversion of the nonlinear tomographic problem for the spatial distribution of

heterogeneity and absorption that best describes the observations.

Takeuchi (2016) developed a differential Monte-Carlo method for simulating the perturbations of

seismogram envelopes due to the spatial changes in scattering and intrinsic attenuation parameters,

which offers a direct inversion method for the structure. This method approaches some ideas of the

conventional waveform inversion and was applied by Ogiso (2019) for the 3D estimation of scattering and

intrinsic attenuation in southwestern Japan.

This long-lasting quest for a reliable imaging method for attenuation and scattering on the one hand

and the mature imaging technology of the full waveform inversion for velocity on the other hand inspired

us to develop a new tomography method for the small-scale heterogeneity and high frequency absorption.

The application of the adjoint method in FWI firstly benefited from the precise numerical solution of the

wave equation (Komatitsch & Tromp, 1999; Fichtner & Igel, 2008), which allows simulating the seismic

waves propagation in arbitrary models of velocities, density or other elastic properties.

The statistical properties that describe the small-scale heterogeneity have no direct expression in the

wave equation which limits the applicability of FWI for spatial imaging of absorption and scattering. In

our study, the forward problem is solved by modelling the multiple nonisotropic scattering in a random

elastic medium based on the Radiative Transfer Equation using the Monte-Carlo method (Zhang et al.,

2021). The spatial variability of scattering and absorption is described by the spatial distribution of

fluctuation strength ε and intrinsic quality factors Q−1
P and Q−1

S in the random medium. Key to the

success of FWI is the efficient calculation of the gradient of the misfit function with respect to changes in

the model parameters (Fréchet derivative) which is used to iteratively update the model for minimization

of the misfit function. Although the choice of the misfit function in FWI can differ (Tromp et al., 2005;

Yuan et al., 2016; Tao et al., 2017), it is in general used as the adjoint source to generate the adjoint

wavefield which in turn is used to obtain the gradient for model updates. In the present paper we follow

the same approach and use the least-squares misfit between the observed and modelled envelopes as

adjoint source for the adjoint energy field to obtain the Fréchet derivatives.

5.2 Adjoint Tomography with the Radiative Transfer Equation

Full-waveform inversion (FWI) uses the discrepancy between observed seismograms and synthetic

waveforms calculated for a particular model to iteratively update the model until it fits the observations
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(Fichtner, 2010). The model usually describes the spatial distribution of elastic parameters like seismic

velocities and the synthetics are obtained by solving the wave equation in this model. Various

possibilities exist to quantify the discrepancy between the synthetics and the observation.

Mathematically the discrepancy is described by the misfit function that maps the observed and

synthetic waveforms to a scalar misfit value. Finding the gradient of the misfit with respect to all the

different model parameters is the core of the adjoint method and allows to obtain an image of the

elastic parameters in the subsurface.

Here we aim to formulate a similar approach for the inversion of seismogram envelopes using the

adjoint method with the Radiative Transfer Equation (RTE). The model in our case does not describe

the macroscopic seismic velocities as in FWI but the scattering and attenuation properties caused by

the small-scale heterogeneity. Instead of comparing the waveforms, envelope inversion compares the

seismogram envelopes with synthetic envelopes calculated on the basis of the RTE.

In scattering and absorbing media, spatial heterogeneity and intrinsic attenuation influence the energy

propagation and absorption, which finally results in the energy density observed as seismogram envelope.

To investigate these properties, we utilize the envelope of the full waveform including the ballistic wave

and the scattered coda wave. We use the least-squares misfit function:

χY X(m) =
∑
i

∑
j

1

2

∫ T

0

‖EY X(rj, t; ri,m)−DY X(rj, t; ri)‖2 dt . (5.1)

EY X(rj, t; ri,m) is the synthetic energy density simulated in the current model m, where ri and rj

respectively represent the positions of the i-th source and the j-th receiver. In what follows, the subscript

Y X of the energy density always indicates the wave mode X of emission at the source and the mode of

detection Y at the receiver. For the S-wave energy we use the total S-energy as the sum of the energies

of the two S-wave polarizations. This means that we disregard the specific influence of the S-wave

polarization on the sensitivity kernels. DY X(rj, t; ri) designates the observation data. In most practical

applications it is impossible to disentangle the recorded energy with respect to its mode and the mode

of excitation. But in order to facilitate the derivation, χY X(m) is used to represent each component of

the total misfit function χ(m). After the derivation we will discuss how to extend this formulation to

applications. The time window of the integral is somewhat arbitrary and indicates the range of lapse

times that is to be chosen in the inversion but is assumed to start at time 0. Then the differential of

misfit function reads:

δχY X(m) =
∑
i

∑
j

∫ T

0

[EY X(rj, t; ri,m)−DY X(rj, t; ri)]δEY X(rj, t; ri,m)dt , (5.2)

where δEY X(rj, t; ri,m) is the perturbation of energy density due to the perturbation of the model

m. We assume here that there are no changes in the macroscopic velocity structure and the shape of

the power spectral density function that describes the small scale fluctuations (see section 2.5). Under

these assumptions, perturbations of the recorded energy density are either caused by changes in the

amplitude of the small-scale fluctuations around the macroscopic velocity (e.g. due to the opening of

cracks) that lead to changes of the scattering strength or due to changes of intrinsic attenuation described

in transfer theory by the parameters fluctuation strength and intrinsic quality factors, respectively. A

similar parameterization has been used for example by Takeuchi (2016). These dependencies are discussed

in detail in Zhang et al. (2021) and can be expressed as

δEY X(rj, t; ri,m) = δEεY X(rj, t; ri, ε(r
′)) + δEQYX(rj, t; ri, Q(r′)) (5.3)
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where

δEεY X(rj, t; ri, ε(r
′)) =

1

ε2
0

∫
V d

δε2(r′) εKE
YX(r′, t; rj, ri)dV (r′) (5.4)

and

δEQYX(rj, t; ri, Q(r′)) = −ω
∫
V d

[δQ−1
P (r′) QPKE

YX(r′, t; rj, ri)+

δQ−1
S (r′) QSKE

YX(r′, t; rj, ri)]dV (r′) .

(5.5)

Here ε0 is the background value of the fluctuation strength. QP and QS are the intrinsic quality factors

of P- and S-waves, respectively. ω is the angular frequency. δε2(r′), δQ−1
P (r′) and δQ−1

S (r′) indicate the

perturbation of ε2, 1/QP and 1/QS at the position r′ respectively. V d is the full space in dimension d.

According to Zhang et al. (2021), the scattering sensitivity kernel and the attenuation sensitivity kernels

read:

εKE
YX(r′, t; rj, ri) =∑

W

∫
Sd

∫ t

0

{
GYW (rj, t− t′; r′,n)×

∑
V

[∫
Sd

cV gV�W
0 (ε2

0)fV�W (n,n′)EV X(r′, t′,n′; ri)dn
′

− cW gW�V
0 (ε2

0)EWX(r′, t′,n; ri)

]}
dt′dn

(5.6)

and

QPKE
YX (r′, t; rj, ri) =

∫
Sd

∫ t

0

GY P (rj, t− t′; r′,n)EPX (r′, t′,n; ri) dt
′dn (5.7)

QSKE
YX (r′, t; rj, ri) =

∫
Sd

∫ t

0

GY S (rj, t− t′; r′,n)ESX (r′, t′,n; ri) dt
′dn . (5.8)

The notation of the specific energy density EY X(r′, t′,n′) is used to indicate the dependence on the

propagation direction n′. GY X(rj, t− t′; r′,n) is Green’s function of the radiative transfer equation with

the unit source at the position r′ and an initial direction n. gW�V
0 (ε2

0) is the total scattering coefficient

that indicates the scattering probability of wave scattered from mode W to V with the background

fluctuation strength ε2
0. fV�W (n,n′) is the normalized differential scattering cross section. cV is the

macroscopic velocity of wave mode V . Sd denotes the unit sphere in space dimension d.

The iterative inversion requires Fréchet derivatives of the misfit function with respect to the model

changes that can be obtained with the adjoint method (Tromp et al., 2005). We first discuss the misfit

caused by variations of the scattering properties, that is the first term on the right-hand side of eq. (5.3):

δχεY X(m) =
∑
i

∑
j

∫ T

0

[EY X(rj, t; ri,m)−DY X(rj, t; ri)]

∫
V d

1

ε2
0

δε2(r′) εKE
YX(r′, t; rj, ri)dV (r′)dt

(5.9)

Inserting eq. (5.6) into eq. (5.9), exchanging the order of the integrals and the integration bounds we
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rewrite eq. (5.9) as:

δχεY X(m) =
∑
i

∑
j

∫
V d

∫ T

0

∫
Sd

∑
W

∫ T

t′
[EY X(rj, t; ri,m)−DY X(rj, t; ri)]GYW (rj, t− t′; r′,n)

×
∑
V

[∫
Sd

cV
gV�W

0 (ε2
0)

ε2
0

fV�W (n,n′)EV X(r′, t′,n′; ri)dn
′

− cW
gW�V

0 (ε2
0)

ε2
0

EWX(r′, t′,n; ri)

]
dndtdt′δε2(r′)dV (r′)

(5.10)

This equation allows us to estimate the change of the misfit function due to a local change δε2(r′).

However, it involves the Green’s function GYW (rj, t− t′; r′,n) which in practical terms requires a

simulation with a source at r′ which is every point in space where a perturbation δε2(r′) can occur.

Using the adjoint method we can circumvent this problem and generate the Fréchet derivative with one

simulation of the adjoint equation that has its source at the location of the original receiver. We omit

the derivation that is almost the same as shown in Tromp et al. (2005) for the wave equation. Note that

the reciprocity relationship of the elastic radiative transfer equations is (Zhang et al., 2021):

1

Sd
GYW (rj, t− t′; r′,n) = G†WY (r′, t− t′,−n; rj) , (5.11)

where G†WY (r′, t− t′,−n; rj) is the Green function of an elastic radiative transfer equations with the new

scattering coefficient g†W�V that obeys cV g
V�W = cW g

†W�V . With this Green’s function, the adjoint

wavefield is written as:

E†WY (r′, t′,n; rj) =

∫
V d

∫ t′

0

G†WY (r′, t′ − t,n; rj)F
†
Y X(t, r′′)dtdV (r′′) (5.12)

with the adjoint source:

F †Y X(t, r′′) = [EY X(rj, T − t; ri,m)−DY X(rj, T − t; ri)]δ(r
′′ − rj) , (5.13)

where δ(r′′ − rj) is the Dirac function. Note that the δ(r′′ − rj) in the expression of F †Y X(t, r′′) indicates

that the source position of the adjoint wavefield is the receiver position rj of the forward wavefield. The

expression of eq. (5.13) shows that the adjoint source is generated from the forward wavefield excited at

ri via the data misfit. Eq. (5.10) now can be written in a simplified form:

δχεY X(m) =

∫
V d

εKχ
Y X(r′)δε2(r′)dV (r′) (5.14)

where εKχ
Y X(r′) is the misfit kernel with respect to fluctuation strength ε which is:

εKχ
Y X(r′) =

∑
i

∑
j

Sd
∑
W

∫ T

0

∫
Sd

E†WY (r′, T − t′,−n; rj)×

∑
V

[∫
Sd

cV
gV�W

0 (ε2
0)

ε2
0

fV�W (n,n′)EV X(r′, t′,n′; ri)dn
′

− cW
gW�V

0 (ε2
0)

ε2
0

EWX(r′, t′,n; ri)

]
dndt′ .

(5.15)

Note the difference to the energy sensitivity kernel εKE
YX(r′) of eq. 5.6 which does not depend on the

data.



5.2. Adjoint Tomography with the Radiative Transfer Equation 65

Similarly, the misfit caused by the intrinsic attenuation is obtained. Eq. (5.2) is finally written as:

δχY X(m) =

∫
V d

εKχ
Y X(r′)δε2(r′)dV (r′)

+

∫
V d

[
QPKχ

Y X(r′)δQ−1
P (r′) + QSKχ

Y X(r′)δQ−1
S (r′)

]
dV (r′)

(5.16)

where the intrinsic attenuation misfit kernels are:

QPKχ
Y X(r′) = −

∑
i

∑
j

Sdω

∫ T

0

∫
Sd

E†PY (r′, T − t′,−n; rj)EPX (r′, t′,n; ri) dt
′dn (5.17)

QSKχ
Y X(r′) = −

∑
i

∑
j

Sdω

∫ T

0

∫
Sd

E†SY (r′, T − t′,−n; rj)ESX (r′, t′,n; ri) dt
′dn . (5.18)

Eqs. (5.15), (5.17) and (5.18) describe the kernels with respect to the misfit function χY X(m) which

compares the observed and simulated energy of recorded mode Y due to excitation of mode X. These

expressions are hard to apply since in most cases only the total energy D(rj, t; ri) is accessible. However,

with some common assumptions about the composition of the wavefield we can solve this problem.

Without considering the S-wave polarization, we split the total energy into two parts as:

D(rj, t; ri) = DP (rj, t; ri) +DS(rj, t; ri) (5.19)

The subscript of the observable indicates the recording mode of the energy. Zhang et al. (2021) discussed

the combination of the sensitivity kernels in Eqs. (5.6), (5.7) and (5.8) based on the ratio of the two

types of energies RSP = DS/DP . This ratio can be reasonably approximated under the assumption of

equipartition or it can be estimated using energy transfer simulations in the best available model. When

the lapse time is large enough to reach the equipartition state RSP = 2γ3 in 3D, where γ = cP /cS (Sato

et al., 2012). Moreover, a general source simultaneously emits P and S energy in the proportions SP and

SS with SP + SS = 1 for a unit source. The ratio between SP and SS that is required here, can either

be estimated from the data or based on the assumption of a theoretical source model. So we can rewrite

the misfit function:

χ(m) =
∑
i

∑
j

∑
Y

1

2

∫ T

0

∥∥∥∥∥∑
X

SXEY X(rj, t; ri,m)−DY (rj, t; ri)

∥∥∥∥∥
2

dt . (5.20)

The differential of the misfit function becomes:

δχ(m) =

∫
V d

∑
Y

εKχ
Y (r′)δε2(r′)dV (r′)

+

∫
V d

[∑
Y

QPKχ
Y (r′)δQ−1

P (r′) +
∑
Y

QSKχ
Y (r′)δQ−1

S (r′)

]
dV (r′)

(5.21)
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where the scattering total misfit kernel is:

εKχ
Y (r′) =

∑
i

∑
j

Sd
∑
W

∫ T

0

∫
Sd

E†WY (r′, T − t′,−n; rj)

×
∑
X

SX
∑
V

[∫
Sd

cV
gV�W

0 (ε2
0)

ε2
0

fV�W (n,n′)EV X(r′, t′,n′; ri)dn
′

−cW
gW�V

0 (ε2
0)

ε2
0

EWX(r′, t′,n; ri)

]
dndt′ .

(5.22)

Note the adjoint wavefield in this kernel is still based on Eq. (5.12) but the adjoint source now becomes:

F †Y (t, r′′) = [
∑
X

SXEY X(rj, T − t; ri,m)−DY (rj, T − t; ri)]δ(r
′′ − rj) . (5.23)

With the same adjoint source applied, the total misfit kernels with respect to intrinsic attenuation are

easy to obtain:

QPKχ
Y (r′ = −

∑
i

∑
j

Sdω
∑
X

SX

∫ T

0

∫
Sd

E†PY (r′, T − t′,−n; rj)EPX (r′, t′,n; ri) dt
′dn (5.24)

QSKχ
Y (r′) = −

∑
i

∑
j

Sdω
∑
X

SX

∫ T

0

∫
Sd

E†SY (r′, T − t′,−n; rj)ESX (r′, t′,n; ri) dt
′dn . (5.25)

5.3 Acoustic Case

For the propagation of a single wave mode in the acoustic case, the misfit function simplifies to:

χ(m) =
∑
i

∑
j

1

2

∫ T

0

‖E(rj, t; ri,m)−D(rj, t; ri)‖2 dt . (5.26)

We rewrite the Fréchet derivative as in section 5.2:

δχ(m) =

∫
V d

εKχ(r′)δε2(r′)dV (r′) +

∫
V d

QKχ(r′)δQ−1(r′)dV (r′) , (5.27)

where the misfit kernels are:

εKχ(r′) =
∑
i

∑
j

Sdα0
g0(ε2

0)

ε2
0

∫ T

0

∫
Sd

E†(r′, T − t′,−n; rj)

×

[∫
Sd

f(n,n′)E(r′, t′,n′; ri)dn
′ − E(r′, t′,n; ri)

]
dndt′

(5.28)

and

QKχ(r′) = −
∑
i

∑
j

Sdω

∫ T

0

∫
Sd

E†(r′, T − t′,−n; rj)E(r′, t′,n; ri)dndt
′ . (5.29)

The adjoint wavefield is written as:

E†(r′, t′,n; rj) =

∫
V d

∫ t′

0

G (r′, t′ − t,n; rj)F
†(t, r′′)dtdV (r′′) (5.30)
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with the adjoint source:

F †(t, r′′) = [E(rj, T − t; ri,m)−D(rj, T − t; ri)]δ(r
′′ − rj) (5.31)

Note that the reciprocity relationship in the acoustic case is simpler than the elastic case without

changing the scattering coefficient (Margerin et al., 2016):

1

Sd
G (rj, t; r

′,n) = G (r′, t,−n; rj) (5.32)

5.4 Iterative Inversion

The target of the inversion is the minimization of the misfit function. This is achieved by iterative updates

of the model converging toward the true model. The iterative inversion starts with the initial model (mε
0,

mQ
0 ) and uses the following initial search directions to update the model:

mε
k+1 = mε

k + ηεkh
ε
k (5.33)

mQ
k+1 = mQ

k + ηQk hQk . (5.34)

Here, mε
k and mQ

k are the models used in the simulation of the (k+1)-th iteration so that k = 0, 1, 2, 3 · · · .
hεk and hQk are the search directions derived from the the gradients of misfit function i.e. the misfit kernels
εKχ

k and QKχ
k . To derive the search directions from the gradients we employ the quasi-Newton L-BFGS

method (Liu & Nocedal, 1989). The benefit of this method is that we obtain an approximation of the

Hessian matrix of the misfit function to improve the convergence in comparison to a steepest decent

method. More details are discussed in Section 5.5. ηεk and ηQk are the step lengths of the model updates

in the resulting search directions. The step lengths are determined under the assumption that the misfit

is a quadratic function of the step length (Fichtner, 2010). Using two more simulations with different

trial step lengths in the hε and hQ directions we approximate these quadratic functions and estimate the

step lengths to reach their minima.

5.5 L-BFGS Method

The L-BFGS method is applied to approximate the Hessian matrix that allows us to generate the search

direction with the gradient (kernel). For the search direction hk of one parameter, we define the start

model as mk with the the gradient Kk in the (k+1)-th iteration. The L-BFGS algorithm is shown in

Algorithm 1 (Nocedal & Wright, 2006). The number of most recent iterations n is chosen for saving

memory in this quasi-Newton method. In our tests, it is set between three and the maximum since the

number of iterations is not huge. Note that k in this algorithm must be more than 0 so it does not work

for the first iteration. We use the steepest descent method to calculate the first search direction h0.

5.6 Numerical Examples

In the previous section we have outlined the mathematical formalism for an iterative adjoint tomography

of the radiative transfer equation to infer the distribution of heterogeneity in the subsurface with scattered

seismic waves. In this section we use numerical examples to demonstrate the performance of this approach.

We employ three synthetic examples in a 2D acoustic setting to illustrate how to realize the adjoint

tomography with the envelope for scattering and intrinsic attenuation. Two individual inversions are
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Algorithm 1 L-BFGS

qk ← Kk,
chose the number of most recent iterations n, n ≤ k
for i = k − 1 to k − n do

si = mi+1 −mi,
yi = Ki+1 −Ki,
ρi = 1/(yTi si),
αi = ρis

T
i qi+1,

qi = qi+1 − αiyi,
end for
rk−n =

[
(sTk−1yk−1)/(yTk−1yk−1)

]
qk−n,

for i = k − n to k − 1 do
βi = ρiy

T
i ri,

ri+1 = ri + (αi − βi)si,
end for
hk ← rk.

performed separately for the scattering and intrinsic attenuation structures separately with a uniform

distribution of the other property. The trade-off between heterogeneity and attenuation structure is

investigated in a third inversion in which the seismogram envelopes are inverted for the spatial distribution

of both parameters simultaneously. The macroscopic model parameters mean seismic velocity and mean

density are uniform in space. Forward and adjoint simulations are performed based on the radiative

transfer equation that was introduced by section 2.5 using the algorithm presented by Zhang et al.

(2021).

5.6.1 Scattering Inversion

The aim of the first inversion is the reconstruction of the medium heterogeneity, i.e. the spatial

distribution of ε which characterizes the amplitude of the small-scale fluctuation of the elastic

parameters around the large scale macroscopic mean. We call this scattering inversion as the

heterogeneity directly causes scattering. Intrinsic attenuation as described by Q−1 is constant

throughout the domain.

The observation data in this synthetic test is obtained with a Monte-Carlo simulation using Eq. (2.14)

in the true model that is shown in Figure 5.1a. The intrinsic attenuation Q−1(r) is uniform in space

(Figure 5.1b). For the application of FWI, a starting model is required that is a fair representation of the

target (Fichtner, 2010) and has to be inferred using a complementary method. In our case we assume

that the diffusion approximation (Wegler, 2004) or the multiple isotropic scattering approximation (Sens-

Schönfelder & Wegler, 2006) can be used to infer the background values of heterogeneity and attenuation.

Inspired by the scale of local to regional seismological experiments (Gaebler et al., 2019; Izgi et al.,

2020; van Dinther et al., 2021), the model extends over a 50 km by 50 km area and is discretized in

a 100 by 100 cells grid (Figure 5.1). There are two square anomaly areas in the ε model with a side

length of 10 km. Twenty-four numbered locations around the anomaly areas in Figure 5.1 represent the

co-located positions of the sources and receivers. When the source is at one location, all other locations

are the receivers, a layout inspired by seismic interferometry (Curtis et al., 2006) that can turn receivers

into virtual sources and the use of transducers in acoustic experiments that can act either as source or

receiver (Niederleithinger et al., 2015).

The macroscopic velocity is spatially uniform at 6 km/s and the density is 2.7 g·cm−3. The correlation

length a is constant 0.3 km. With an angular frequency ω = 30 rad·s−1 (i.e. f = 4.78 Hz) representing

high frequency seismic waves, the normalized wavenumber ak0 is 1.5. Since the forward modelling is

conducted with the Monte-Carlo method, 100 million particles are used to simulate the energy transport
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Fig. 5.1: The illustrations of the scattering anomaly model. The background of ε (left) is 0.1. The white and
the dark blue are two anomaly areas, respectively with the value 0.05 and 0.15. The attenuation model (right) is
homogeneous with the value 0.005. The red points represent both the sources and receivers. Note that the model
we demonstrated here is the partial space and there is no boundary for the simulation.

in the forward simulation for the true model to create the synthetic data. Although the propagation of

particles is free and there is no boundary of the model, a 100×100×150 grid of cell size 0.5 km × 0.5 km

× 0.1 s is used for recording the energy and the propagation direction is recorded in 72 non-overlapping

angular bins of 5◦ width.

The iterative inversion starts with a uniform initial model of ε = 0.1 that has to be inferred

independently. The corresponding total scattering coefficient g0 is 0.157 km−1 which is equivalent to an

inverse scattering quality factor Q−1
sc = 0.0314. The misfit obtained from the differences between the

simulations in the initial model and the observation (here it is the synthetic data simulated in the true

model) is used in the adjoint method that we introduced in section 5.3 to obtain the gradient of the

misfit function (sensitivity kernel) for each source-receiver couple. All kernels for every combination are

then summed to compute the misfit kernel for updating the model. The energy at the sources and the

stations (sources of the adjoint field) is much higher than elsewhere in the model resulting in

singularities of the gradients at these positions. In FWI this influence can be removed by a

pre-conditioner that was designed to approximate the Hessian matrix or its diagonal terms (Zhu et al.,

2015). In this study, we use a simple approach: a normalized Gaussian distribution subtracted from 1

(1− exp[−(r− ri)
2/2σ2]) is multiplied with the kernel for each source/sensor location rj to suppress the

singularities of the gradient. Additionally, we also apply a Gaussian smoothing filter to the kernel,

resulting in final misfit gradient. This step is usually regarded as a regularization procedure that

guarantees the stability of inversion (Zhu et al., 2015; Tao et al., 2018). For details about the

regularization which we applied here, please refer to Appendix 5.7.5.

Using the L-BFGS method the search direction of the ε2 model is obtained. In each iteration, two

tentative step lengths are tested by separate forward simulations and calculation of the misfit. The best

step length is determined as the minimum of a quadratic function fitted to the three misfit values obtained

for the initial model of the current iteration (step length zero) and the two tested step lengths. With this

step length, the initial model is updated each iteration. This workflow is repeated several times and the

model is iteratively improved until the misfit converges. Figure 5.2 shows the evolution of the normalized

misfit over 8 iterations which shows that after about 5 iterations the misfit starts to converge to 36%.

The slight increase in the misfit curve at the 6th and 8th iteration is due to changes in the details of the

model during the model update and will be discussed later. The rather rapid convergence results from
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Fig. 5.2: The misfit in the scattering inversion experiment alters with the number of iterations. The values are
normalized by the misfit between the uniform initial model and the true model shown in Figure 5.1.

the use of the L-BFGS method, the testing of the step length, and the good ray coverage (24 sources ×
23 receivers). But it is also clear that a significant improvement of the model is achieved after the first

iteration, documenting the nonlinearity of the problem and the benefit of the iterative inversion over the

single-step kernel based approaches (e.g. Obermann et al., 2013a; Sánchez-Pastor et al., 2019).

Figure 5.3 illustrates the inversion result of ε after 8 iterations. Although the initial model is uniform

which means that there is no a prior information given about the perturbations, the two anomaly areas of

the true model (Figure 5.3a) are successfully retrieved in location, shape and amplitude. To quantitatively

evaluate the results, three profiles across the anomaly at x = 12.5 km, x = 37.5 km, y = 25 km are shown

in Figure 5.3b. The evolution of the model in each iteration is shown with differently colored curves

ranging from the initial model (light yellow) to the final result (dark purple) compared with the true

model (red).

The location of the anomalies is picked up already in the 1st iteration while the amplitudes are

gradually fitted with successive iterations. This process is not monotonic but can include some oscillations

as seen for the negative anomaly where some overshoot in the central part after the fifth iteration is

corrected in subsequent iterations. For this reason the misfit curve slightly fluctuates around 36% after

the fifth iteration. Smaller step lengths can improve this behaviour but will increase the computational

costs and are more likely to result in local minima. Both in Figure 5.3a and Figure 5.3b, the final result

shows that the anomaly areas are smooth and do not exactly match the true model. This limitation

is partially due to the Gaussian smoothing we use to in the preconditioning of the gradient, but also

due to the setup of sources and receivers around the target area. Gaussian smoothing is chosen here

as a simple method for demonstration and should be replaced in further applications by more advanced

regularization techniques that are, for example, more suitable to resolve sharp-sided anomalies (Akcelik

et al., 2002).

In a realistic inversion scenario, one cannot compare the inverted model with the true model. The

only possibility to assess the final result, is the comparison of the modeled and measured envelopes.

Figure 5.4 shows envelopes of four source-receiver combinations and the adjoint sources (misfit) in the

different iteration from the initial (light yellow) to the final (dark purple) compared with the observation
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Fig. 5.3: The scattering inversion results: (a) the final model of ε after 8 iterations; (b) three profiles across the
anomalous areas (illustrated in the right column) of the updated model in each iteration from the initial model
(light yellow) to the final model (dark purple) compared with the true model (red).
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Fig. 5.4: The comparison of observed (red) and synthetic envelopes in each iteration from the initial (light
yellow) to the final (dark purple) as well as the corresponding adjoint sources in the scattering inversion.
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Fig. 5.5: The illustrations of the intrinsic attenuation anomaly model. The background of Q−1 (right) is 0.005.
The white and the dark blue are two anomaly areas, respectively with the value 0.0075 and 0.0025. The ε model
(left) is homogeneous with the value 0.1.

(red). Since the initial model is homogeneous, the synthetic energy density of direct wave is larger than

the observations in Figure 5.4a that shows a source-receiver combination in which the ballistic wave

passes through the stronger scattering anomaly. This results in increased energy loss of the ballistic

wave. The amplitude of the adjoint source gradually decreases indicating convergence of the modelled

envelope towards the data obtained in the true model. The same but with opposite sign can be observed

in Figure 5.4b that shows a source-receiver configuration for which the ballistic wave passes through the

anomaly with reduced heterogeneity. The energy of the ballistic peak is underestimated in the initial

model and gradually increases during the inversion.

Figure 5.4c shows a source-receiver combination that is similarly affected by both anomalies as the

ballistic wave passes through both anomaly areas. Since the effects of both anomalies compensate to some

extent the absolute amplitude of the adjoint source is smaller than in figures 5.4a and 5.4b. However, as

the effect of the increased heterogeneity on ε2 is larger than the effect of the reduced heterogeneity for

equal |∆ε| the adjoint source is positive and decreases in amplitude during the inversion.

The absolute amplitude of the adjoint source for the source-receiver combination for which the direct

wave does not pass through any anomalous region (Figure 5.4d) is even smaller. It has positive and

negative segments that are improved during the inversion but it is devoid of a signal associated to the

ballistic peak that is correctly represented by the initial model. The fluctuation of the adjoint source in

Figure 5.4d mainly represents the statistical fluctuations of the simulations with the Monte-Carlo method

and also contains some scattered waves from distant scatterers.

5.6.2 Intrinsic Attenuation Inversion

In this section, we conduct an inversion for the intrinsic attenuation only and fix the strength of the

heterogeneity ε. We call it intrinsic attenuation inversion. Figure 5.5 shows the new model in which

there are two anomaly areas in the Q−1 model with values of 0.0075 and 0.0025, respectively whereas

ε is uniform in space. The parameters of the background and the setup of the grid are the same as in

section 5.6.1.

Again the iterative inversion starts form a uniform initial model and the workflow follows section 5.6.1

but now the model of Q−1 is updated in each iteration. Figure 5.6 shows the evolution of the model

misfit during the inversion. It converges to a value of about 40% after the 7th iteration. The resulting
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Fig. 5.6: The misfit in the intrinsic attenuation inversion experiment alters with the number of iterations. The
values are normalized by the misfit between the uniform initial model and the true model shown in Figure 5.5.

model of the 9th iteration is shown in Figure 5.7. Both anomaly areas are recovered (Figure 5.7a) but

their shape is smoother compared to the inversion result for heterogeneity in section 5.6.1.

The envelope fits are shown in Figure 5.8 together with the adjoint sources. Figures 5.8a and 5.8b

show the source-receiver configurations with ballistic wave passing through the areas of smaller and

larger intrinsic attenuation, respectively. Both envelopes are fitted in a similar way over the course of

the iterations leading to a vanishing adjoint source of the ballistic waves and its early coda. The two

source-receiver combinations shown in Figures 5.8c and 5.8d that are affected by both anomaly areas

again have significantly smaller adjoint sources fluctuating around zero. No significant changes occur

here during the course of the inversion. This is to be expected since both anomalous areas have similar

influence on the envelope as a shift of Q−1 in both anomaly areas is 0.0025.

5.6.3 Simultaneous Inversion

In the previous sections we demonstrated that the iterative adjoint envelope tomography allows to recover

anomalies in the distribution of small-scale heterogeneity as well as in intrinsic attenuation. However,

in both cases we used a uniform model for the other property and did not update the respective part of

the model. This is not possible in a real application in which it is a prior unknown whether an observed

misfit between model and data is caused by attenuation or scattering. Consequently both parameters of

the model have to be updated simultaneously.

This simultaneous inversion of scattering and intrinsic attenuation is much more complicated than the

separate inversions. In this section, we combine the ε model that we used in section 5.6.1 for scattering

inversion and the Q−1 model from section 5.6.2 for the inversion of intrinsic attenuation. Both scattering

and intrinsic attenuation of the true model have two anomaly areas as shown in Figure 5.9. The workflow

of the simultaneous inversion is almost the same as the separate inversion. The only difference is that

both ε and Q−1 are updated in each iteration. As a result, the simultaneous update of the models requires

two different step lengths respectively for ε and Q−1. We have introduced in section 5.4 the assumption

that the relationship between the misfit and each step fits the quadratic function. Here, we estimate
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Fig. 5.8: The comparison of observed (red) and synthetic envelopes in each iteration from the initial (light yellow)
to the final (dark purple) as well as the corresponding adjoint sources in the intrinsic attenuation inversion.



5.6. Numerical Examples 75

0 10 20 30 40 50
y(km),East

0

10

20

30

40

50

x(
km

),N
or

th
1 2

3
4

5

6

7

8

9

10
11

121314
15

16

17

18

19

20

21

22
23

24
Source and Station

0 10 20 30 40 50
y(km),East

0

10

20

30

40

50

x(
km

),N
or

th

1 2
3

4

5

6

7

8

9

10
11

121314
15

16

17

18

19

20

21

22
23

24

Q 1
Source and Station

0.05

0.1

0.15

0.0025

0.005

0.0075

Fig. 5.9: The illustrations of the scattering and intrinsic attenuation anomaly model in the simultaneous
inversion. The background of ε and Q−1 is 0.1 and 0.005, respectively. The white and the dark blue are two
anomaly areas, with the value of 0.05 and 0.15 in the scattering model and the value of 0.0075 and 0.0025 in the
intrinsic attenuation model, respectively.

the step length independently using two trial step lengths for each parameter to determine the best step

length. Finally, four test simulations are required for each iteration.

As shown in Figure 5.10 the normalized misfit decreases to 24.81% after 8 iterations which is lower

than in the separated inversions. Although the absolute value of the misfit in each numerical test is

different, the faster decrease illustrates more significant changes in the envelopes due to the recovery of

the anomalies. The inversion results are shown in Figure 5.11. Figure 5.11a shows the final inverted

models after 8 iterations. The anomaly areas in the true model of ε and Q−1 are located in the north-

south and east-west directions, respectively. The model of ε is well recovered – similar to the result in

section 5.6.1. Profiles along the four lines shown in Figure 5.11b and Figure 5.11d illustrate that the

inverted model agrees well with the true ε model.

However, in the inverted model of Q−1 one can observe four anomaly areas. Two of them are located

in the east and west which agrees with the locations in the true model. The profiles across these two

areas in Figure 5.11c show that the amplitudes of these anomalies are underestimated. Normally the

underestimation of the amplitudes is reflected by the misfit and improved by more iterations. Yet, in

the joint inversion this process seems to be impaired by the presence of the other two anomaly areas in

the north and south. Since these areas with anomalies in ε introduce changes in the envelopes the misfit

can be reduced also by adapting the Q−1. Profiles through the Q−1 model across the locations of the ε

anomalies in Figure 5.11e show these misplaced anomalies. The trade-off between improvements of the

Q−1 and ε models will be discussed in the next section in detail.

The envelope fit and the adjoint sources in the simultaneous inversion are shown in Figure 5.12.

Both the redistribution of energy due to the changes in heterogeneity and the energy loss caused by

intrinsic attenuation anomaly contribute the changes in the envelopes. Disentangling these influences is

the challenge of the joint inversion which complicates the model updates.

Let us first consider the source-receiver combinations that are affected strongest by the anomalies in

heterogeneity because of the ballistic path traversing through the ε anomalies in Figures 5.12a, 5.12b and

5.12c. The convergence of these envelopes is similar to the separate inversion for ε in section 5.6.1.

As expected from the inverted model the evolution of envelopes affected by the attenuation anomalies

is different. The source-receiver combination with ballistic path across the stronger intrinsic attenuation

anomaly (Figure 5.12d) shows that the adjoint source improves in the first few iterations but then grows
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Fig. 5.10: The misfit in the simultaneous inversion experiment alters with the number of iterations. The values
are normalized by the misfit between the uniform initial model and the true model shown in Figure 5.9.

again (with opposite sign) in the later iterations. In contrast the envelope across the weak attenuation

area in Figure 5.12f nicely converges and the adjoint source remains minimal in the last iterations. In

general the amplitudes of the adjoint sources of source-receiver combinations with ballistic path through

the Q−1 anomalies in the east and west are smaller than those affected by the ε anomalies.

5.7 Discussion

To demonstrate that the mathematical framework of adjoint envelope tomography with the radiative

transfer equation which we have presented in sections 5.2∼5.5 is able to recover material properties, we

performed different synthetic tests. We want to remark first, that we used the radiative transfer MC-

algorithm for the inversion and for the simulation of the synthetic data. We chose this strategy over the

more realistic scenario of generating the synthetic data with wave field simulations to avoid the additional

fluctuations that would result from the specific realization of the medium heterogeneity that has to be

generated for the wave field simulation. This effect will be investigated in the future, but in this first

application we want to focus on the methodological aspects of the adjoint tomography. For the same

reason we restrict ourselves to the acoustic case in two dimensions.

In the three numerical experiments we assume that first order estimates of the large scale average

material properties are available form separate investigations, a prerequisite shared with FWI. In the

first two experiments we show that the adjoint tomography successfully recovers the heterogeneity and

absorption structures if the other material property is known and fixed. Significant improvements of the

model are achieved following the first iteration. These improvements cannot be achieved with existing

single step inversion approaches where sensitivity kernels are calculated in a uniform model. In both

experiments with the separate inversion for either heterogeneity or absorption the misfit converges after

a few iterations and the remaining misfit can be attributed to the enforced smoothness of the retrieved

model that prohibits further improvements. Successively lowering the smoothness constraint imposed by

the filtering of the gradient could be a strategy to reduce the misfit further. Such a strategy would be

similar to successively raising the high frequency limit in FWI.
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Fig. 5.11: The simultaneous inversion results: (a) the final model of ε and Q−1 after 8 iterations; (b)-(d) the
profiles across the anomalous areas (illustrated in the right column) of the updated model in each iteration from
the initial model (light yellow) to the final model (dark purple) compared with the true model (red).
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Fig. 5.12: The comparison of observed (red) and synthetic envelopes in each iteration from the initial (light
yellow) to the final (dark purple) as well as the corresponding adjoint sources in the simultaneous inversion.
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The situation is different in the third experiment in which we aim to invert the heterogeneity and

attenuation structures simultaneously. Figure 5.11a gives the impression that the intrinsic attenuation is

more difficult to constrain than heterogeneity. We will show in the following that this difficulty is due to

the intrinsic trade-off between ε and Q−1 in the inversion process and depends on the specific parameter

distribution that is to be imaged.

5.7.1 Trade-off

The fundamental problem we meet in the simultaneous inversion for heterogeneity and attenuation comes

from the trade-off between changes in ε and Q−1. Eq. (5.28) shows that the scattering kernel is composed

of two terms: (A) the active kernel that describes the energy gained by scattering from another directions;

and (B) the passive kernel that describes the loss of energy due to scattering in other directions (Margerin

et al., 2016; Zhang et al., 2021). The absorption kernel (Eq. (5.29)) has the shape of the passive kernel.

Separating the effects of ε and Q−1 in the inversion is complicated by the passive kernel that is part of

both kernels.

In order to quantify the influence of ε and Q−1 on the misfit, we design a test to calculate the misfit

caused by the changes of ε2 or Q−1. Note that the expression (5.28) is a function of ε2 while we use

ε for illustration. The model is shown in Figure 5.13. It contains only one anomaly area that is used

for ε and Q−1 separately, while the other parameter is kept uniform. Background values are as before

(ε = 0.1 and Q−1 = 0.005). We compare the adjoint sources caused by the two types of changes in the

anomaly area (∆ε2 = 0.02 or ∆Q−1 = 0.02). Two source-receiver combinations are shown for which the

ballistic wave crosses the anomaly or travels far away from the anomaly area as shown in Figure 5.14a

and 5.14b, respectively. Although the difference between the two perturbations (the blue and red curves)

is clearly observed in the later coda waves, it is impossible to estimate the character of the anomaly

from the ballistic wave. In the case of distant sensors in Figure 5.14b the wavefield obviously does not

encounter the anomaly prior to approximately 9 s making it impossible to learn anything about the

anomaly. But even in the case of ballistic propagation through the anomaly (Figure 5.14a) the effect of

increased scattering and increased attenuation on the ballistic wave and early coda is approximately the

same as both perturbations decrease the coherent energy.

The time window chosen in the simultaneous inversion test includes the whole period from 0 to 15

s so the misfit is dominated by the large amplitude ballistic waves. Since the scattering kernel for the

ballistic wave is dominated by the passive kernel and attenuation is only influenced by the passive kernel

variation of both scattering and attenuation can each explain misfit of the ballistic wave resulting in a

trade-off. This can only be resolved if sufficient weight is given to the late coda in which the active kernel

contributes to the scattering kernel.

Figure 5.14c shows the misfit for varying amplitudes of the anomalies. It allows to estimate the values

of ε and Q−1 at which both parameters have comparable influence on the misfit. The relative influence on

the misfit can be illustrated in the ε – Q−1 domain as shown in Figure 5.15 where the red line represents

the relationship Misfit(|∆ε2|) = Misfit(|∆Q−1|) which splits the domain into two parts. The green

and pink areas represent combinations of ε – Q−1 in which the misfit is dominated by the scattering and

intrinsic attenuation, respectively. A similar discussion of this trade-off on the fit to the envelopes was

conducted by Cormier & Sanborn (2019). Different from the adjoint tomography focused on the misfit

function, their work compared the influence of the two parameters on the measurements with MLTWA

which is affected by the choice of time windows. We will discuss the effects of the time window in our

approach in section 5.7.3.

The values of |∆ε2| and |∆Q−1| that we used in the numerical experiment for the simultaneous

inversion in section 5.6.3 are illustrated in Figure 5.15 by the blue dot and the red triangle for the
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Fig. 5.13: Model used for trade-off test. The anomaly area is separately perturbed by changes in ε and Q−1.
The other simulation parameters are the same as before.

positive and negative anomalies, respectively. It is clear that the misfit in this situation is dominated by

the anomalies in ε. To illustrate how this dominance affects the inversion Figure 5.16a shows the kernels

in the first iteration in this simultaneous inversion experiment. While the ε kernel correctly highlights

the areas of the ε anomalies in the north and south, the Q−1 kernels also highlights the ε anomalies

supplemented by moderate values at the locations of the Q−1 anomalies in the east and west. As a

consequence the Q−1 update starts off in the wrong direction. A similar effect but to a much smaller

extend can be observed for the ε kernel that shows a slight increase at the locations of the Q−1 anomalies

in the east and west. It is obvious that the misfit is dominated by the heterogeneity anomalies which

results in a bias of the absorption kernels and leads to the inverted model in Figure 5.11a.

On the contrary we can try to recover a model in which the anomalies of intrinsic attenuation dominate

the inversion as shown in left column of Figure 5.16b. The values of the |∆ε2| anomaly are 0.0019 and

0.0021 while that for |∆Q−1| is 0.005 as indicated by the green square and orange diamond in Figure 5.15.

As expected the resulting kernels of the first iteration shown in Figure 5.16b reflect the dominance of the

Q−1 anomalies. The anomaly areas of Q−1 are correctly recognized while the scattering kernel is biased

by the anomalies in absorption.

5.7.2 Influence of the Initial model

In the two individual inversions and the simultaneous inversion above, we assumed that the initial models

are all uniform meaning that there is no prior information about the location, shape or amplitude of

the anomaly. In the separate inversions for scattering and intrinsic attenuation the respectively other

parameter distribution is uniform, equals the true model and is not updated, leading to a good recovery

of each parameter as shown in Figure 5.3a and Figure 5.7a. If updates of both parameters are required,

the joint calculation may project the data misfit into updates of both ε and Q−1 and it is instructive to

investigate how the knowledge about one parameter influences the recovery of the other.

We assume that we have additional prior information about the ε structure such that we can start
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Fig. 5.14: Adjoint sources caused by two types of the changes in the anomaly area (∆ε2 = 0.02 or ∆Q−1 = 0.02):
(a) and (b) show two source-receiver configurations for which the ballistic wave traverses the anomaly or travels
far away from the anomaly area, respectively. (c) Misfits caused by varying amplitudes of the ∆ε2 and ∆Q−1

anomalies.
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Misfit(|∆Q−1|) is calculated by Figure 5.14 under the assumption that the relationship between the misfit
and changes is piecewise linear.
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Fig. 5.16: The kernels of the first iteration in two simultaneous inversion cases: (a) the misfit is dominated by
ε which is the case conducted in section 5.6.3, (b) the misfit is dominated by Q−1.
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Fig. 5.17: The kernels of the first iteration in the simultaneous inversion conducted in section 5.6.3 with different
initial models: (a) ε is the same as the true model while Q is homogeneous; (b) Q−1 is the same as the true model
while ε is homogeneous.

the inversion with a non-uniform but correct ε model. The kernels in the first iteration under this

condition are shown in Figure 5.17a. Now the intrinsic attenuation kernel highlights the correct anomaly

areas because there is no misfit from a wrong ε model. However, the Q−1 anomalies also show up in

the ε model, meaning that the correct ε model would be altered in a simultaneous inversion for both

parameters. The same applies when the correct Q−1 model but a uniform ε model is used to obtain the

kernels as shown in Figure 5.17b. The ε kernel highlights the correct anomalies in the north and south

while the Q−1 kernel would alter the correct model of absorption in a simultaneous inversion for both

parameters.

These tests show that the kernels of absorption and heterogeneity are both correctly recovered also if

the other parameter has a complicated spatial structure that is well described already. However, if the

structure of one or both parameters is not known and both parameters are inverted for, the contributions

to the data misfit of both parameters show up in both kernels to a variable degree.

5.7.3 Time Window for Full Envelope Inversion

In the experiments described above we use a time window that contains the whole envelope ranging

from the source time until the late coda at more than twice the travel time of the ballistic wave. This

choice corresponds to setting T in eq. (5.28) and (5.29) to the end of the time window. Although the

full information of wave propagation through the medium is utilized in this time window, we show in the

following how absorption and heterogeneity have different imprints on the envelopes at different lapse
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times.

Scattering reduces the energy of the ballistic wave and increases the coda wave while the intrinsic

attenuation absorbs the energy during the whole lapse time including both the ballistic wave and coda

waves. Since the effect of absorption and heterogeneity is the same for the ballistic wave one can anticipate

that the coda is crucial to distinguish between both effects which has been illustrated in Figures 5.14a and

5.14b. In this section we use the models discussed in section 5.7.1 with anomalies in both heterogeneity

and absorption and uniform initial models to study the effects of the ballistic wave and the coda wave

by separating them in different time windows.

Figure 5.18 and Figure 5.19 show results under the condition that the misfit is dominated by

heterogeneity and absorption, respectively. Figure 5.18a and Figure 5.18b show the misfit kernels in the

first iteration of the inversion with time windows restricted to the ballistic waves and coda waves,

respectively. The results for the ballistic time window shown in Figure 5.18a are similar to the ones in

Figure 5.16a with the full lapse time range and show the strong bias of the absorption kernel from the

anomalies in heterogeneity. This is reasonable since the energy peak of the ballistic wave dominates the

inversion when the full envelope is inverted and the effect on the ballistic wave energy is the same for

scattering and intrinsic attenuation. A significant improvement of the intrinsic attenuation kernel is

achieved by restricting the time window to the coda wave as shown in Figure 5.18b. The effect of the

heterogeneity anomaly on the absorption kernel is drastically reduced and reversed in polarity

compared to Figure 5.18a. This reflects the different effects of anomalies in heterogeneity and

absorption on coda waves and indicates a possibility to steer the inversion by a lapse time dependent

weighting of the misfit in the calculation of the misfit kernels.

Figures 5.19a and 5.19b show the absorption dominated misfit kernels restricted to ballistic and coda

wave time window, respectively. Here the absorption kernel is rather independent of the time window used

due to its dominant effect. The scattering kernel, however, is very different for the two time windows. The

kernels derived from both the coda and ballistic time windows are biased by the absorption anomalies, but

the bias has opposite polarity for the ballistic and coda windows while the polarity at the location of the

scattering anomalies is the same. An appropriate weighting of both time windows can thus improve the

inversion also in this situation. In conclusion, separating the ballistic wave and coda wave into separate

time windows indicates a potential strategy to improve the trade-off.

5.7.4 The Effect of Noise

The Monte-Carlo simulation which we use for the forward modelling is a stochastic method that introduces

fluctuations in the synthetic data. These random fluctuations can be regarded as the noise of observation.

However, the use of a sufficient amount of particles ensures convergence of the simulation suppressing

this random noise to a desired degree. For more details refer to Appendix B of Zhang et al. (2021). To

study a more realistic situation, we artificially add random noise to the synthetic data in our numerical

tests. Gaussian noise is generated with a specific signal-to-noise ratio (SNR) defined as:

SNR = 10× log10

EMS

NMS
(5.35)

where MS indicates the mean square of the noise free signal envelope E and the noise amplitude N . The

addition of Gaussian noise can lead to negative values of the envelope which seems unrealistic. However,

it is common practice in the analysis of scattered waves to estimate the noise energy from time windows

prior to the arrival of direct waves and subtract this noise energy from the signal. This process does also

lead to partially negative values in observed energy time series, consistent with our approach.

Figure 5.20 shows examples of the kernels in the first iteration for different SNR. The left column
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Fig. 5.18: The kernels of the first iteration in the simultaneous inversion whose misfit is dominated by ε with
different time windows: (a) ballistic wave; (b) coda wave. The results with the time window containing both
ballistic wave and coda wave is shown in Figures 5.16a.
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Fig. 5.19: The kernels of the first iteration in the simultaneous inversion whose misfit is dominated by Q−1 with
different time windows: (a) ballistic wave; (b) coda wave. The results with the time window containing both
ballistic wave and coda wave is shown in Figures 5.16b.
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illustrates the energy density and the adjoint source of one source-receiver couple. The black and red

curves indicate the original data and that with added noise, respectively. From top to bottom the SNR

is 20, 10 and 1, respectively. At the lowest level of noise (SNR = 20) shown in Figure 5.20a, the noise

has rather little influence on the energy density. Also the adjoint source is still clearly visible and there

is almost no difference between Figure 5.20a and Figure 5.16a that shows the result without any noise.

With increasing noise (SNR = 10), the coda part of the adjoint source is drowned in the noise but the

ballistic wave can be still recognized. Resulting changes in the scattering kernel shown in Figure 5.20b

are still minor but the intrinsic attenuation kernel starts to degrade. At the high level of noise (SNR

= 1), the additional fluctuations are comparable to the signal level. Although it is almost impossible

to recognize the adjoint source in the data of a single source-station combination the scattering kernel

shown in Figure 5.20c still reflects the anomaly areas in ε to some degree. Apparently information of the

numerous records that are combined in the kernel still facilitates recovery of a somewhat degraded image

even under the influence of strong noise.

5.7.5 Conditioning of the Misfit Kernels

The regularization in our inversion has two parts, which are (A) removing the singularities at the

sources/stations and (B) smoothing the results.

The source/receiver singularities are an intrinsic problem of the adjoint method. Their effect is

significant and it is almost impossible to recover the anomaly without removing them. We multiply the

kernels with a 2D Gaussian notch centered on each station and truncated at 2km distance. The kernels

before and after removing the singularities are shown in Figure 5.21 bottom left and upper middle,

respectively. Actually the influence of this step on kernels is mainly determined by the setup of sources

and stations, which can be reduced with high enough station coverage.

Moreover, the kernels are smoothed by a 2-D Gaussian filter with the same x- and y-axis standard

deviations σx = σy = σ. The length of σ is normally determined by the wavelength and the structure in

FWI and decreases with the model improving (Zhu et al., 2015). Our approach is based on RTE that

is beyond the limitation of the wavelength. But the model is discretized in a 100 by 100 cells grid with

the size of 0.5 km × 0.5 km. The Figures 5.21 shows the Gaussian filters with different σ (the upper

left) and the corresponding kernels after smoothing (the right two columns). The one with σ = 0 km is

the original kernel after removing the singularities at the sources and receivers. In the beginning, we set

the σ as 3 km and after more iterations reduce it to 2 km. The σ less than 2 km has never been used

which can result in the inversion becoming unstable. In order to demonstrate the effects from smoothing

with different σ on the adjoint sources, five simulations are conducted in these five models including the

initial model and four updated models based on four different smoothed kernels in Figures 5.21 using

the steepest descend. The resulting envelopes are shown in Figure 5.22. The comparison shows, that

the differences originating from the different smoothing of the kernels are insignificant compared to the

change of the envelopes resulting from the model update. This indicates that the precise choice of the

smoothing filter has minor influence on the result and our choice of the filter size of the order of the

station distance is acceptable.

5.8 Conclusion

We have presented a new physically rigorous tomography method for heterogeneity and attenuation. The

iterative tomography combines forward modelling of the radiative transfer equations with simulations

of the adjoint equations to obtain the Fréchet derivatives that guide the iterative model improvements.

This full envelope inversion is thus the radiative transfer counterpart to full waveform tomography but
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Fig. 5.20: The kernels of the first iteration in the simultaneous inversion conducted in section 5.6.3 with different
added noise: (a) SNR =20; (b) SNR =10; (c) SNR =1.
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Fig. 5.21: Gaussian smoothing filters with different σ (the upper left), the original date without removing the
singularities (the bottom left) and the corresponding kernels after removing the singularities and smoothing (the
right two columns).
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(b) Source 9 and station 17
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Fig. 5.22: Comparison of observed (red) and synthetic envelopes with the corresponding adjoint sources in
the initial model (blue) and four updated models. The four updated models are obtained with the steepest
descend method using the four differently smoothed kernels shown in the two rightmost columns of Figure 5.21.
Source-receiver configurations are shown in the insets.
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allows us to obtain information about the structure of the propagation medium on length scales below

the resolution limits of waveform tomography. We have demonstrated the success of this approach in a

synthetic test of 2D acoustic scattering.

The small-scale structure is statistically described by the spatially variable scattering and intrinsic

attenuation properties of the medium described by the fluctuation strength ε and intrinsic quality factor

Q−1. Seismic energy propagation in this medium is described by the radiative transfer equation with

uniform macroscopic velocity and density. The presence of nonuniform scattering and intrinsic attenuation

causes spatially variable seismic energy redistribution and loss with complex influence on the observed

seismic waveform envelopes. We therefore use the full envelopes of the observed seismic waveforms for

the inversion.

As objective function we use the squared difference between observed/synthetic and modeled data.

Inspired by FWI we use the adjoint method to derive the Fréchet derivatives of the least-square misfit

function. The radiative transfer equation is solved with the Monte-Carlo method in 2D with multiple

non-isotropic scattering in an acoustic medium with spatially variable heterogeneity and attenuation.

This algorithm is used to generate the synthetic data as well as for the forward and adjoint simulations.

The synthetic data could have been generated also with wavefield simulations which would have been a

more realistic experiment. However, we decided to use the same approach for generation of the synthetic

data that we use in the inversion to focus on the performance of the adjoint formalism that we present

here and leave the test against wavefield data for a later stage.

The numerical experiments demonstrate the success of the presented inversion concept. Fréchet

derivatives of the two experiments with separate inversions for either ε or Q−1 reliably guide the inversion

towards lower values of the misfit function. Models which better reproduce the synthetic envelopes as

expressed by lower misfit also converge towards the true model in the model space. We have also shown

that inversion is well behaved with respect to the addition of noise.

The iterative inversion correctly recovers the locations and amplitudes of the anomalies in each

parameter, if the other parameter is fixed at the correct value. If both parameters are free in the

inversion we observe a trade-off that is common to most inverse problems with multiple parameters. In

this case the inversion process is dominated by the parameter that has the stronger anomalies, i.e.

dominates the misfit function.

Although the trade-off between scattering and absorption cannot be avoided, some strategies exist to

improve the simultaneous inversion. At first, correct knowledge of one of the parameters improves the

recovery of the other. This means that independent knowledge of one parameter can be incorporated

to stabilize the inversion. Secondly, the time window used to construct the adjoint source affects the

recovery of the two parameters differently. While the late coda is essential to infer the distribution

of absorption, the ballistic wave and early coda is important to locate anomalies in the small-scale

heterogeneity. Applying a weighting between the influence of early and late coda in the inversion can

help to improve the recovery of both parameters.

Future developments of adjoint envelope tomography for scattering and absorption include the

application to real data (a laboratory study on a concrete test specimen is on the way), an extension to

3D and the treatment of elastic wave scattering. We hope that the approach presented here allows for

more detailed analysis of heterogeneous media, providing more accurate knowledge of heterogeneity and

attenuation structures of targets such as volcanoes, the Earth’s crust on a regional scale, and even the

deep Earth.



Chapter 6

Laboratory Experiment of AET

6.1 Introduction

For the first test of AET on real data, we selected an environment that is more controlled than a

seismological field experiment. We chose a metric-sized concrete specimen with embedded ultrasound

transducers and the known internal structure. Imaging man-made material, like concrete, is normally

done with ultrasound which is analog to seismic waves. Ultrasound imaging in concrete mainly utilizes

primary reflections but is strongly affected by scattering and intrinsic attenuation (Anugonda et al.,

2001; Turner & Anugonda, 2001). Consequently, imaging strong reflection anomalies, like tendon ducts

in the concrete, is primarily implemented using the ultrasonic pulse-echo method with the synthetic

aperture focusing technique (SAFT) (Schickert et al., 2003; Schickert, 2005). However, this approach

requires an array of transducers with a specific geometry of the sensors and high impedance contrast

of the anomaly, which restricts the ability to locate small-scale or weak contrasts in concrete. Recently

more advanced imaging methods, such as Reverse Time Migration (RTM) have been adopted from oil

exploration, improving the image quality, but still with significant limitations (Grohmann et al., 2017).

The same applies to the monitoring of weak changes in the medium (Planès & Larose, 2013) where

scattered coda waves have superior sensitivity as it has been mentioned for seismic waves in the Earth. A

localized change in the velocity causing perturbations in the ultrasound wavefield can be detected using

coda wave interferometry (Poupinet et al., 1984; Snieder et al., 2002) (CWI) and also located (Pacheco &

Snieder, 2005). With several years development, CWI has been widely applied to localize small or weak

changes in different media in response to stress (Larose et al., 2006; Niederleithinger & Wunderlich, 2013)

or damage induced changes (Schurr et al., 2011; Wang et al., 2020). For a detailed review refer to Planès

& Larose (2013). Recently, the results of several successful large scale evaluation experiments (Zhang

et al., 2016; Niederleithinger et al., 2018; Zhong et al., 2021) as well as an extension towards nonlinear

material parameters (e.g. Xue et al. (2021)) have been published.

Besides the direct way of simulating the ultrasound wave propagation in concrete, there are

alternative ways to describe the elastic energy distribution in space and time. In the diffusion theory,

the diffusion constant and dissipation are used to describe the ultrasonic scattering and intrinsic

attenuation (Anugonda et al., 2001; Becker et al., 2003). These two parameters can be estimated by

comparison between the experimental data and theoretical predictions using the diffusion model. This

allows people to describe the effect of uniformly distributed material damage (Ramamoorthy et al.,

2004; Deroo et al., 2010). On the other hand, the diffusion model has also been used for calculating the

sensitivity kernel of CWI in velocity changes or decorrelation which allows the imaging of the spatial

distribution of the changes (Rossetto et al., 2011; Zhang et al., 2016).

Although the diffusion model has been successfully implemented to simulate the wave scattering and

absorption, it is a simplification of the multiple-scattering process and hard to extend to more realistic

cases, like the early coda, short source-receiver distances, anisotropic scattering or spatially variable

91
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Fig. 6.1: Left panel: the photo of the concrete specimen. The red arrows indicate the location of ultrasonic
transducers and the green shading indicates the plane where transducers were embedded. Right panel: the
illustration of the transducer locations in the concrete specimen. The red points indicate nineteen ultrasonic
transducers that serve as the energy sources as well as receivers. The blue circles are four temperature sensors
that will be discussed in Section. 6.4.2. The orientation defined here is not the natural geographic coordinate.

heterogeneity. Wu (1985) first proposed the multiple scattering model and introduced the radiative

transfer theory to seismology. To numerically solve the radiative transfer equations, the Monte Carlo

method was introduced (Gusev & Abubakirov, 1987; Hoshiba, 1991), which allows for the ability to

simulate wave scattering in the spatially variable heterogeneity and intrinsic attenuation media (Zhang

et al., 2021). Instead of the diffusion constant and dissipation used in the diffusion model, the spatial

distribution of fluctuation strength ε in the random medium and the intrinsic quality factor Q−1 describe

the spatial variability of scattering and absorption.

The simulation of energy propagation with spatially variable properties using RTT allowed us to

introduce the adjoint method initially developed in FWI (Tarantola, 1984; Tromp et al., 2005; Fichtner

et al., 2006; Fichtner, 2010) for the imaging of scattering and absorption properties with scattered waves

(Zhang & Sens-Schönfelder, 2022).

6.2 Experiments

To test the adjoint envelope tomography against real data we choose an acoustic experiment conducted

in a reinforced concrete specimen at the German Federal Institute for Material Science and Testing

(BAM). The sample has a size of 4 m × 5 m with a height of 0.8 m as shown in Fig. 6.1 (Epple et al.,

2020). In this paper, the orientation defined as shown in Fig. 6.1 is for convenience to discuss and not

the natural geographic coordinate. All directions in the following discussion refer to this definition of

orientation. 19 ultrasonic transducers are embedded in the central layer of the specimen at 0.4 m height.

The transducers serve as the energy sources of ultrasound with a center frequency of 60 kHz and as

receivers. Both emission and recording of acoustic waves is laterally isotropic. This setup provides for 19

× 18 source-receiver combinations. The experiment has the following advantages for the present purpose:

(A) due to the rather flat shape of the specimen and the placement of the transducers in its central plane

we can restrict the energy propagation to the lateral directions and simplify the problem to 2D. (B) The

boundary conditions of the lateral edges of the specimen can easily be modeled using mirror sources. (C)

The embedded sensors that are located at least 30 cm away from the free surfaces reduces the excitation

of surface waves which are not treated in our approach.
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6.2.1 Data Processing

The ultrasound signals were recorded with sampling interval of 0.5 µs for a lapse time of 5 ms. Seven

identical experiments were performed on three consecutive days in October between 7:00 and 8:00 am.

An illustration of original data excited at source T0120 and recorded by receiver T0135 is shown in

Fig. 6.2(a). The first 200 samples, i.e. 0 - 0.1 ms precede the signal transmission and are recorded to

control the noise level (Niederleithinger et al., 2018). The impulse at 1 ms lapse time is visible on all

sensors and is caused by cross-talk between the high voltage source signal and the recording sensors. Data

is detrended by subtracting its mean (Fig. 6.2(b)). The cross-talk is used to extract the envelope of the

source signal and is then removed from the record (Fig. 6.2(c)) which band-pass filtered between 60 and

120 kHz to remove the high-frequency noise (Fig. 6.2(d)). The envelope of the filtered signal is extracted

using the Hilbert transform (Fig. 6.2(e)). Envelopes of the repeated experiments are averaged to obtain

the final envelope (Fig. 6.2(f)) for the inversion. The same processing is applied to the cross-talk to

obtain the final envelope of the source signal (Fig. 6.2(f) inset).

From the processed envelopes we noticed that certain sensors systematically recorded smaller

amplitudes than others, or excited less energetic waves. We attribute this to variable sensor coupling

including the conversion between electrical and mechanical signals as well as the mechanical coupling

between the transducer and the concrete. We estimate the coupling using the coda normalization

method (Sato et al., 2012) which states that the signal envelopes in the late coda should be independent

of location due to the equal distribution of elastic energy. We estimate one coupling coefficient for each

transducer acting as source and receiver, separately by averaging the late coda envelope (3.5 - 4.7 ms)

from the respective source or recorded at the respective station (Fig. 6.3(a)). Since the transducers act

both as source and receiver, the coupling should have similar effects on both the emission and

recording. This is consistent with the observations in Fig. 6.3(a). The influence on the envelope data

from the i-th source to the j-th station is eliminated by dividing by the corresponding values in

Fig. 6.3(a). An illustration of the coupling effect is shown in Fig. 6.3(b). The blue and red curves

indicate two combinations exchanging the source and the station, which should be identical due to

reciprocity. However, the sensor coupling introduces a difference between two curves shown in

Fig. 6.3(b) but can be corrected using the coupling corrections (Fig. 6.3(c)).

6.2.2 Diffusion Model

The iterative inversion starts with an initial model. The density of the concrete is provided by

Niederleithinger (2017) as 2.4 g· cm−3 and the velocity of the wave is estimated from the arrival time of

the ballistic waves as shown in Fig. 6.4. The transition from the noise level (blue) to wave signal (red)

indicates the arrival of the ballistic wave (dashed line) with a velocity of 4.475 m ·ms−1.

We have no prior information about the scattering and absorption properties, for the concrete in the

present experiment. A simple description of multiple-scattering and intrinsic attenuation of ultrasound

in concrete is provided by the diffusion model (Anugonda et al., 2001; Ramamoorthy et al., 2004). The

2D diffusion equation describes the energy radiating isotropically from a source (Wegler et al., 2006):

ED(r, t; ri) = E0
1

4πDt
e−

r2

4Dt e−
ω
Q t . (6.1)

The diffusion energy density ED(r, t; ri) at position r with the lapse time t is determined by the source

energy E0, diffusion constant D and intrinsic factor Q−1 at the specific angular frequency ω. ri is the

position of the source while the distance between the source and receiver is r = |r− ri|. To account for

the existence of boundaries that reflect the acoustic energy, ED(r, t; ri) is summed for all mirror sources

ri
mirr corresponding to ri (Zhang et al., 2018). Benefiting from the analytic solution of the diffusion
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Fig. 6.2: The illustration of data processing for one source-receiver combination(Source T0120 and Receiver
T0135): (a) the original data recorded in seven identical experiments; (b) the detrended data by subtracting its
mean; (c) the cross-talk removed from the record; (d) the filtered data with band-pass filtered between 60 and
120 kHz; (e) the envelope of the filtered signal using the Hilbert transform; (f) the averaged envelope of the
repeated experiments and the inset is the final envelope of the source signal.
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Fig. 6.4: The estimation for the velocity of the wave in the concrete specimen. All traces are displayed by the
logarithmic scale with the exact distance between the source and the receiver. The dashed line indicates the
boundary between the noise level (blue) and the wave signal (red), whose slope is 4.475 m ·ms−1.



96 CHAPTER 6. LABORATORY EXPERIMENT OF AET

Table 6.1: All background parameters estimated for the radiative transfer equation.

ω ρ α0 Q−1 E0 ε a
2π· 60 kHz 2.4 g · cm−3 4.475 m ·ms−1 0.003 12 0.13 0.011m

equation, we can estimate the parameters of the model by an interval search. Eq. 6.1 is rewritten as:

ln [ED(r, t; ri)] = lnE0 −
[
ln(4πDt) +

r2

4Dt

]
− ω

Q
t . (6.2)

Expression 6.2 consists of three terms in which lnE0 is constant. To speed up the process, we separately

estimate Q−1 from the later coda wave (3.5 - 4.7 ms) since the later coda wave is more sensitive to the

intrinsic attenuation (Zhang & Sens-Schönfelder, 2022).
[
ln(4πDt) + r2/4Dt

]
varies slowly in the late

coda. Therefore, −ω/Q is easily estimated from the slope of the logarithmic envelope in the late coda.

Fig. 6.5(a) shows the distribution of the estimated Q−1 values from all source-sensor combinations. The

mean and median value of this distribution are both 0.003 that will be used to estimate D in the diffusion

modeling and as initial model for inversion.

With the fixed value of Q−1, the source energy E0 can be extracted as the offset from the envelopes

for each assumed diffusion constant D. An interval of [50, 5000]mm2/s with step-length 10 mm2/s is

searched for the diffusion constant D. The diffusion model generated by Eq. 6.1 is convoluted with the

wavelet shown in Fig. 6.2(f) to compare with the observable. For all source-receiver combinations, the

distributions of D and E0 are shown in Fig. 6.5(b,c). According to this distribution, we fix the source

energy E0 in this study to 12. The diffusion constant D does not directly correspond to the parameters

used for the non-isotropic scattering in RTT. It corresponds to the transport scattering coefficient g∗

which is a version of g that is weighted by the cosine of the scattering angle θ. The relationship between

D and g∗ is given as (Wegler et al., 2006):

g∗0 =
α0

2D
(6.3)

where g∗0 is the average transport scattering coefficient that is defined as:

g∗0 =
1

2π

∫
2π

g(θ) [1− cos(θ)] dθ . (6.4)

g(θ) has been introduced as a function of scatter strength ε and correlation length a in Eq. 2.15. Assuming

that the correlation length a is uniform with a = 0.011 m (Anugonda et al., 2001) we calculate the values

of ε corresponding to the estimated values of D using expressions 2.15, 6.3 and 6.4. The distribution of ε

is shown in Fig. 6.5(d). We fix ε = 0.13 as background parameter describing the small scale heterogeneity

in the concrete specimen. Tab. 6.1 summarizes all background parameters estimated for the use with

Eq. 2.14.

6.2.3 Monte Carlo Simulation

The radiative transfer equation is solved using the Monte-Carlo method to simulate the energy

propagation (Zhang et al., 2021). To account for the free surface boundary conditions in the

Monte-Carlo simulations the particles are reflected at the four sides of the model. In this study, 100

million particles are used for each simulation. The field generated by source T0120 in the initial model

is illustrated in Fig. 6.6(a-f). Although the algorithm allows us to simulate in models with spatially

variable ε2(r) and Q−1(r), here we only illustrate propagation in an uniform model with the background

parameters given in Tab. 6.1. Note Fig. 6.6 only shows the energy density E (r, t), while we actually
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Fig. 6.5: The statistics histograms of the parameters: (a) Q−1, (b) E0 and (c) D estimated from all traces in
the diffusion model and (d) ε calculated according to (c).

simulate the specific energy density E (r,n, t) with information about the propagation direction.

The Monte Carlo method simulates a point-source in space and time. The simulation result is therefore

convolved with the source wavelet and multiplied with the same source energy E0 as diffusion model.

Fig. 6.6(g) shows a comparison of one observed envelope with the diffusion model and the MC simulation

in the background model. The blue and red curves represent the energy simulated with the diffusion

model and radiative transfer equation, respectively.

6.3 Imaging

Starting from the initial model with uniform parameters estimated with the diffusion approximation, we

use AET to infer the spatial distribution of the strength of heterogeneity and attenuation. Both material

properties influence the energy propagation causing a the trade-off between changes in the scattering

and absorption properties in a simultaneous inversion for both parameters as discussed in Zhang & Sens-

Schönfelder (2022). For the ballistic wavefield, i.e. the energy that propagates without being scattered,

the effect of scattering and attenuation is identical - leading to the impossibility of discerning both effects

with direct waves. But the trade-off also exists for arbitrary sub-segments of the propagation path of

coda waves. Only the combination between the energy that propagates directly between two points in

the medium and the energy that is scattered between these points allows us to resolve the trade-off since

heterogeneity increases the scattered part of the wavefield at the cost of the direct part. This trade-off

means that strong spatial differences of one parameter unavoidably map into the other parameter to some

extent (Cormier & Sanborn, 2019; Zhang & Sens-Schönfelder, 2022).

However, the fact that the early coda is important to image the heterogeneity while the later coda is

more sensitive to intrinsic attenuation (Calvet et al., 2013; Zhang & Sens-Schönfelder, 2022) helps us to

separately invert ε2(r) and Q−1(r) using the early and later coda, respectively. In this experiment, we
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Fig. 6.6: (a-f) The snapshots of the simulated energy density field from T0120 (red star)at different lapse times.
The scattering mean free path is 0.36 m and the mean free time is 0.08 ms. (g) the comparison among the
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the source so that the values are not the same as the envelopes shown in (g).
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simply define the early and later coda intervals by 1.7 - 3.5 ms and 3.5 - 4.7 ms respectively as shown in

Fig. 6.6(g) and use these time windows to image the absorption and scattering structures successively.

6.3.1 Intrinsic Attenuation Inversion

We first focus on the intrinsic attenuation inversion with Q−1(r) since the absorption influences the whole

envelope. The later coda wave (3.5 - 4.7 ms) is chosen as the time window to evaluate the misfit function

and the initial model Q−1
0 (r) is uniform with Q−1

0 = 0.003. The other parameters and the model of ε2(r)

are all uniform based on Tab. 6.1 and remain constant during the inversion, meaning that only Q−1
k (r)

is updated.

After 11 iterations of AET, the normalized misfit between the observed envelopes and synthetic data

converges to 66% as shown in Fig. 6.7(a). The decrease of the misfit is very fast in the beginning since the

initial model is uniform, slows down and stagnates from iteration 7. The benefit of iterative inversion as

compared to a linear kernel-based inversion (Ogiso, 2019) is that the model is further improved after the

first iteration based on the results of earlier iterations. The final inversion result is shown in Fig. 6.7(b).

The distribution of Q−1(r) shows a dominant first order structure with a maximum in the center and a

symmetry in the west-east and north-south directions. The decrease towards the sides is not isotropic

with the east-west direction showing faster decrease than the north-south direction. We will discuss the

interpretation of this result in the next section.

The misfit is the integral of the differences between the observed and modeled results in the specified

time window. However, we can also directly check the data fit of the envelopes. Fig. 6.8 shows the

data fit for some source-receiver combinations. The simulated envelopes in the final inverted model (red

solid curves) are compared with the initial model (blue dashed curves) and the observed data (black

solid curves). The locations of source and receiver in each combination are shown on the right side. For

the north-south oriented combinations T0119 -126, T0123 -130, T0126 -133 and T0130 -137 which are

located in the west and east, the envelopes of the inverted model become more similar to the observation

compared with the initial model, as expected for a successful inversion that minimizes the misfit. This is

caused by the decrease of Q−1 along the western and eastern sides of the model. There are no significant

improvements for station combinations T0120 -122 and T0134 -136 because already the initial model fits

the observations reasonably well in these areas and the model update during the inversion is marginal.

Envelope fits of the combinations T0124 -125 and T0131 -132 that transect through the whole specimen

do not improve. In fact the fit of these long distance east-west combinations slightly degrades in favor of

significant improvements of other pairs.

6.3.2 Scattering Inversion

Although the early coda wave is more sensitive to scattering, scattering inversion can benefit from using

a more reasonable model of Q−1 to suppress the influence of the absorption. In this step, we employ

the inversion result shown in Fig. 6.7(b) as the model of Q−1(r) and keep it constant throughout the

inversions for ε(r). The initial model of ε(r) is uniform and we use the earlier time window with lapse

times 1.7 - 3.5 ms (c.f. Fig. 6.6).

9 iterations were conducted until the normalized misfit converged to 77% which is shown in Fig. 6.9(a).

Note that although the simulation in the initial model in Fig. 6.9(a) is the same as the last one in

Fig. 6.7(a), the absolute value of misfit is not since the time windows are different. Fig. 6.9(b) shows

the inversion result of ε(r). The dominant value of it is about 0.14 which is a little higher than the

initial uniform model 0.13. The inferred distribution of heterogeneity has a more complex structure

than the attenuation structure. Stronger scattering is inferred in two areas at the western and eastern

boundaries and also in one anomaly of higher value in the south at about y = 2 m. An elongated features
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Fig. 6.7: (a)The misfits of the later coda time window varied with iterations for the absorption inversion. (b)
The inversion result of Q−1(r) after 11 iterations.
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triangle are source and receiver respectively) in the later coda wave (3.5 ms - 4.7 ms). The blue dashed and red
solid curves indicate the envelopes simulated in the initial model and the inverted model shown in Fig. 6.7(b),
respectively. The black curve is the real data from the concrete experiment.
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extends from the northern to the southern edge at about y = 3.4 m. A very low-value anomaly that

indicates reduced heterogeneity is located in the north-east corner. Interpretations are discussed in the

next section.

The data fits are shown in Fig. 6.10. Similar to what we discussed in Fig. 6.8, the different-distance

combinations are compared in the early coda waves time window. The inversion result is dominated by

the short-distance combinations which achieve a significantly improved data fit during the inversion. The

medium- and long-distance combinations do not improve clearly. Note that the y-scale of the graphs in

Fig. 6.10 is variable and combinations T0124-125 and T0131-132 have far smaller amplitudes.

6.4 Discussions

6.4.1 Misfit Evolution

In Section. 6.3, we have described two successive inversion runs for ε2(r) and Q−1(r) using the early and

later coda, respectively. We start with uniform models of both parameters, firstly update the model of

Q−1(r) only, and then fix the Q−1(r)-model and continue to update ε2(r). The time windows of the

misfit are chosen to use only the later coda for intrinsic attenuation inversion and only the early coda for

scattering inversion because of their sensitivities. Of course, the misfits of both time windows varied in

both inversions. Fig. 6.11 shows the evolution of the misfits of both time windows for the whole inversion

process. The red and blue curves indicate the misfits of the later and early coda, respectively. The solid

parts of the curves show the misfits that are optimized for during the inversion (they have been shown

in Fig. 6.7(a) and Fig. 6.9(a)) while the dashed lines indicate the misfit during the optimization of the

other time window.

The whole inversion is separated into two periods shown in Fig. 6.11. In the first period when we

only update Q−1(r) (red domain), the misfit of the later coda (the red solid curve) decreases since the

misfit kernel is based on this time window. Reasonably, with the improvement of the attenuation model

the misfit of the early coda (the blue dashed curve) decreases as well although it is not used to guide the

inversion. During the subsequent updating of ε2(r) (blue domain) the misfit of early coda time window

continues to decrease since it is used to calculate the adjoint source. On the contrary the misfit of the

late time window which is not used in this step re-increases slightly which is not surprising since this

time window was already optimized for in the Q−1(r)-inversion and does not inform the ε2(r)-inversion.

However, the mistfit change in the second run is dominated by the decrease of the misfit in the early time

window. Using both time windows together to guide the second part of the inversion run would possibly

have damped the misfit increase in the late time window, at the expense of smaller improvements in the

early time window.

6.4.2 Interpretation

We begin the discussion with an interpretation of the inferred attenuation. The attenuation anomaly

(Fig. 6.7b) is symmetric with respect to west-east and north-south axis in the center of the specimen

and appears to be affected by some large scale influence on the specimen rather than internal small scale

differences. Three processes could globally affect the specimen and result in a perturbation with the

symmetry observed in the attenuation structure: (A) diffusion of humidity, (B) temperature changes and

(C) stress distribution.

To investigate this hypothesis we make use of supplemental instrumentation. Additional to the 19

ultrasonic sensors, there were four temperature sensors embedded in the concrete specimen (shown in

Fig. 6.1) which measured the internal temperatures on three consecutive days in the morning between 6
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a.m and 8 a.m as shown in Fig. 6.12(a). This experiment was conducted during a phase of decreasing

temperatures in autumn. The temperature at each sensor decreased during the three successive days

but the sensors maintained rather constant offsets from one another. The central sensor T0128 shows

highest temperatures compared to the sensors closer to the rim. Smallest temperatures are observed in

the corner of the specimen at sensor T0137 while intermediate temperatures are observed along the sides.

We use the temperature measured on Oct. 28th at these four sensors to obtain an idea of the temperature

distribution within the specimen. We therefore use the geometric symmetry of the sensor locations to

interpolate the observations throughout the whole concrete in 2D using adjustable tension continuous

curvature splines by Generic Mapping Tools (GMT) (Wessel et al., 2013; Smith & Wessel, 1990). The

resulting temperature distribution within the concrete is shown in Fig. 6.12(b). This is clearly a rough

estimate of the internal temperature distribution, but it shares clear similarity with the inversion result

of Q−1(r) shown in Fig. 6.7(b).

It has been demonstrated that the temperature changes of the concrete can result in the velocity

perturbation but the sensitivity is only about 0.05 %K−1− 0.15 %K−1 (Niederleithinger & Wunderlich,

2013; Epple et al., 2020; Larose et al., 2006). Since the maximum temperature change during the

experiment is only 0.5 K(◦C) the observed temperature changes will thus have a negligible influence on

the propagation velocity and thus leave the envelopes unaffected which warrants the assumption of

uniform and constant velocity in this experiment. We did not find conclusive evidence in the literature

for the influence of temperature on attenuation in concrete or similar aggregates (at the present

temperature (Zong et al., 2020)).

The influence of humidity on attenuation has been clearly documented by a number of authors (Clark

et al., 1980; Green et al., 1993; Tisato & Quintal, 2014). Unfortunately in-situ observations of humidity

are not available to us and the specimen is insulated from the sides and covered for protection against

rain so that the humidity might be more or less uniform in the volume.
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Fig. 6.12: (a) The temperature measured on three consecutive days morning between 6 a.m and 8 a.m from four
embedded temperature sensors. (b) The temperature distribution of the whole concrete interpolated with four
temperature sensors (the black circles) based on the geometric symmetry.

A distribution of absorption with a very similar symmetry pattern in a sample of comparable size was

found by Liu & Guo (2005). These authors imaged the attenuation in a reinforced concrete block under

the highway bridge pier cap which had a size of 6 m × 8 m with a height of 1.5 m. Using direct waves

Liu & Guo (2005) inferred an inverse intrinsic quality factor of 0.0063 in the center of the block. This

value is close to our result 0.0045. Towards the sides of their block, attenuation increases 7 times while

it decreases 4 times in our results.

Different from absorption, the heterogeneity of the medium appears to be governed by internal

structure rather than an external influence since the inferred distribution is much more structured.

Fig. 6.13 shows the construction drawing of this concrete specimen. The strongest anomaly of increased

heterogeneity is found at the western edge of the specimen. This area corresponds to a volume of the

specimen that was cast with a different kind of concrete (salt concrete: 1600×1000×250 mm). Here,

salt was added to the concrete mix to be able to provoke rapid corrosion of rebar at a later stage. As

the concrete was poured separately by a different team and cured under different conditions, a different

density and porosity can be expected. We interpret the increased scattering inferred in this region to be

caused by the different properties of the salt-concrete.

The second prominent area of increased heterogeneity located in the west does not directly correspond

to model features from the construction plans. During the installation of the embedded sensors an

anomaly was detected in this area. While the calculated quantity of grout was sufficient to completely fill

the boreholes in all other locations, almost three times the amount was required for refilling the borehole

of sensor T0132. It can therefore be assumed that cavities were unintentionally created in this area during

concreting, which now contribute to the increased scattering.

Before this experiment, there were three heating cartridges inserted in the east, south and northwest

(Heating Cartridge A, Band C respectively in Fig. 6.13). Heating Cartridge A had been used to heat the

concrete to 510 ◦C (Niederleithinger, 2017) while the other two had not been activated. The concrete

after high-temperature heating generated thermal cracking and stress changes (Hager, 2013) that increase

scattering.

Three autoclaved aerated cube concretes with size of 0.3 m, four horizontal plastic pipes and one
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Fig. 6.13: The construction drawing of the concrete specimen. The western anomaly block is the salt concrete
that is different from the background material with the size of 1600×1000×250 mm. Four horizontal plastic
pipes, one vertical clamping channel, three autoclaved aerated cube concretes and three heating cartridges are
embedded.

horizontal perpendicular to the plastic pipes tension duct are also embedded in the concrete. Structures

of these sizes are out of the inversion resolution but can also affect the scattering to some degree.

A very prominent anomaly that is left to be discussed is the low-δε anomaly close to sensor T0122.

This anomaly is located right at the boundary of the inversion domain and converges towards extremely

low values of heterogeneity, i.e. locally homogeneous material. Its location directly on the boundary

close to a corner of the model leads us to the interpretation as an artifact. Fitting envelopes of

waveforms always requires significant averaging. In theory this averaging should be achieved by

repeated observations in statistically identical realizations of the experiment. In reality there is only a

single specimen and the averaging is realized on the one hand based on ergodicity by using long time

windows for the comparison between observations and synthetics and on the other hand by using

multiple source and receiver combinations. While the effect of long time windows is the same

everywhere in the sample the averaging by different sensor combinations is not. The reflecting

boundary conditions reduce the effective averaging by a factor of two along the edges and by a factor of

four in the corners. A prominent wiggle in the waveform that can coincidentally originate from the

constructive interference of scattered waves results in a strong pulse in the envelope (cf. Figs. 6.6, 6.8

and 6.10). Such a pulse can push the inversion into a certain direction and cannot effectively be

compensated by other sensor combinations with sensitivity to the same location since the mirror

sources have identical waveforms.

6.4.3 Resolution Test

Different tools exist to study the capabilities of the combination of a measurement setup and an inversion

method. Checkerboard tests (Lévěque et al., 1993) use a periodic pattern of variable wavelengths to infer

the minimum size of a feature to be resolved in different parts of the domain. Analytical approaches use

the sensitivity of the misfit function to changing perturbations (the Hessian) at the different locations in



106 CHAPTER 6. LABORATORY EXPERIMENT OF AET

0 1 2 3 4 5
y,East(m)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

x,
No

rth
(m

)

(a) 

0 1 2 3 4 5
y,East(m)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

x,
No

rth
(m

)

(b) 1/Q

0 1 2 3 4 5
y,East(m)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

x,
No

rth
(m

)

(c) 

0 1 2 3 4 5
y,East(m)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

x,
No

rth
(m

)
(d) 1/Q

0.00

0.05

0.10

0.15

0.20

0.25

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.00

0.05

0.10

0.15

0.20

0.25

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

Input

Output

Fig. 6.14: The resolution test: (a) the input model of ε(r) based on the construction plans of the concrete
specimen; (b) the input model of Q−1(r) based on the temperature distribution shown in Fig. 6.12(a). (c) and (d)
the inversion results of two parameters following the same workflow as the inversion for the laboratory experiment.

the domain to estimate the resolution capabilities (Fichtner & Trampert, 2011).

We take a different approach for the following reasons. Since we use reflecting boundary conditions

in a domain with an regular distribution of sensors we can assume that also the resolution capabilities

are rather uniform which would limit the value of a checkerboard test. The analytic approach using

the Hessian is either computationally very expensive or requires further development, that is beyond the

present scope. Here we ask the question: What would the inversion obtain if the structures were as we

interpret it from the actual imaging. Technically this question is answered by inverting a simplified version

of the obtained result that contains all structures which are regarded as relevant and interpreted. This

approach is often used in tomography to confirm that the interpreted structure could indeed be resolved

by the imaging (Koulakov et al., 2009; Jiang et al., 2014). For nonlinear problems such statements are

more useful than theoretical values of resolution length in a homogeneous background model.

The resolution test is conducted with the exact same procedure as used in Sec. 6.3 for the inversion,

including locations of sources and receivers, the parameters of the initial model and time window choices.

The input and output models are both shown in Fig. 6.14.

The test model of ε(r) is based on the construction plans of the concrete specimen and the inversion

result. The background value of ε(r) is designed not to be the same as the initial model but taken from

the inversion result as 0.14. Fig. 6.14(a) shows the input model for the resolution test that contains the

structures obtained in the inversion and some small elongated anomalies along the locations of channels

and reinforcement bars in the specimen. The input model of Q−1(r) (Fig. 6.14(b)) is based on the
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temperature distribution shown in Fig. 6.12(a).

Panels (c) and (d) of Fig. 6.14 show the resulting outputs of the synthetic inversion test. The output

of ε(r) shows that the background value is recovered well although it was different from the the initial

model. The three larger anomalies are localized well, but their shapes are not recovered in detail due

to limitations imposed by the by the number and the setup of sources and receivers and the intrinsic

smoothing of imaging with the envelope information, only. Likewise the thin elongated anomalies are not

resolved as could be expected from the locations of the 19 sensors of which only three are not arranged

along the rim of the specimen. The incorrectly inferred shape of the anomalies is connected to their peak

amplitudes which are partially overestimated during the inversion. Since the scattered energy depends

to first order on an integral scattering strength of the anomaly higher values in the centers of the larger

anomalies compensate for the lower strength along the edges of these anomalies. The inversion result of

Q−1(r) recovered the input structure well. However, decay in the north-south direction is underestimated

and the peak anomaly is overestimated.

From this test we conclude that the first order features interpreted from the imaged attenuation and

scattering structures would indeed show up as observed in the results. Due to ambiguity and limited

resolution we cannot exclude that smaller anomalies are present in the specimen.

6.5 Conclusions

This research presents the analysis of an acoustic experiment conducted in a 4 m by 5 m large concrete

specimen equipped with embedded acoustic sensors. We applied adjoint envelope tomography to image

the distribution of small-scale heterogeneity and intrinsic attenuation inside the specimen. To interrogate

the structure below the resolution limit of conventional tomography, AET was proposed to invert for the

statistical properties of the small scale heterogeneity as complementary information to the deterministic

structures that can only be imaged at larger scales. Although AET had been successfully tested in

numerical experiments, the application to experimental data in the present paper increases confidence in

the methodology in view of further applications to seismic imaging of the Earth.

We performed this experiment with ultrasonic transmission form embedded transducers in reinforced

concrete in analogy to seismic wave propagation in the Earth. The data recorded by 19 transducers

are compared with simulations of energy propagation based on the Radiative Transfer Equation. This

forward problem is solved by modelling the 2-D multiple nonisotropic scattering in an acoustic medium

with spatially variable heterogeneity and attenuation using the Monte-Carlo method. The misfit between

the observed and modeled envelopes is minimized by iteratively updating the model with the adjoint

method. The whole workflow of AET for the real data is introduced including the processing of the data

and the investigation of background values with the diffusion model. The fluctuation strength ε and

intrinsic quality factor Q−1 respectively representing the spatial variability of scattering and absorption

are separately inverted from different time windows. On the one side, the absorption inversion result

shows a strong point-symmetric geometry which we interpret as some large-scale spatially variable in the

specimen, but without a direct evidences for the causative process, e.g. temperature, humidity or stress.

The inverted distribution of scattering properties shows a more complex structure that can – to some

extent – be interpreted in terms of the known internal structure of the test specimen. The largest anomaly

of increased heterogeneity corresponds to a volume containing salt-concrete. Other anomalies are not as

clearly linked to the known features of the concrete and a strong anomaly of decreased heterogeneity

exists at the edge of the specimen that is interpreted as an artifact from envelope fluctuation that are

insufficiently averaged at the reflecting boundaries of the model domain.

Despite obvious room for improvement in terms of spatial resolution and power to resolve the trade-

off between scattering and attenuation the present results are encouraging. The spatial variability of
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attenuation and scattering strength improved the data fit by about 35% when averaged over both time

windows. This number appears small but cannot directly be compared to improvements known from

waveform inversion. Two effects contribute to the limitation of the data fit. Firstly the observed envelopes

are obtained in a real experiment and cannot be averaged over an ensemble of test specimens and thus

show fluctuations introduced by the interference of scattered waves that cannot be fit. Secondly also the

simulated envelopes contain additional fluctuations from the Monte-Carlo type simulation.

Future investigations to test the performance of the AET on real data will have to include dedicated

test specimens with known scattering and attenuation properties. Even though the present concrete

block with the embedded sensors was well suited for an application of AET is was already cast and the

different types of concrete could not the analyzed separately to obtain ground truth. An important field

of application for the presented approach is the monitoring of medium perturbations with coda waves

(Sens-Schönfelder & Brenguier, 2019). The spatial sensitivity of coda wave based monitoring depends on

the distribution of heterogeneity (Kanu & Snieder, 2015) and can thus be improved with the presented

method. We hope that AET will contribute to non-destructive testing of civil engineering structures and

investigations of wave propagation in the Earth.



Chapter 7

Pdiff Coda in the Core Shadow at High

Frequencies

7.1 Introduction

The observation of complexity in the seismograms, on the one hand, always inspires seismologists to

figure out the origin of different seismic phases. On the other hand, the investigation of these phases

revealed many details about the interior structure of the Earth. The traveltime and amplitude of direct

phases, like P -, S-, or surface-waves, are used for tomography of the large-scale structural features (Aki

& Lee, 1976; Li & Van Der Hilst, 2010; Zhu et al., 2012; Bozdaǧ et al., 2016; Lei et al., 2020; Simmons

et al., 2021). These studies show that Earth exhibits heterogeneity from the lithosphere down to the

deep mantle Earth. Two large low-shear-velocity provinces (LLSVPs) above the Core-Mantle Boundary

(CMB) indicate the presence of superplumes under the Pacific Ocean and Africa (Maruyama et al., 2007)

which are important for Earth’s dynamic processes and the thermal and chemical evolution of the mantle

(Garnero, 2004; French & Romanowicz, 2015; Koelemeijer et al., 2017).

Additionally there is seismic energy that does not arrive as one of the main seismic phases. Such

waves that usually tail the main seismic phases were first interpreted as scattered waves named seismic

coda by Aki (1969). Seismologists observed coda waves following most direct wave arrival and also

found some scattered energy arriving before the direct phases forming a precursors to the seismic phase.

Scattered energy is most prominently observed in short-period seismograms, like P coda, Pdiff coda, PP

precursors , PKP precursors and PKiKP coda (Shearer, 2015). However, in the seismology there is still

some uncertainty about the precise origin of some of these seismic observation. The PKP precursors

were firstly interpreted as scattered waves caused by small-scale heterogeneity near the CMB (Cleary &

Haddon, 1972; Haddon & Cleary, 1974; Hiemer & Thomas, 2022). Later, some studies interpreted them

as result of scattering that happened throughout the whole mantle (Hedlin et al., 1997; Margerin & Nolet,

2003; Mancinelli & Shearer, 2013). The existence of small-scale heterogeneity in the whole mantle also

matches results obtained from the stacking of PP precursors signals (Bentham et al., 2017) which are

thought to originate from scattering in the crust and uppermost mantle (Cleary et al., 1975; King et al.,

1975) or even including the middle mantle (Rost et al., 2008).

The strong small-scale heterogeneity in the near-surface is regarded as the main cause of the P

coda (Aki, 1973). However, synthetic models of scattering in the whole mantle also fit global stacks

of teleseismic P coda (Shearer & Earle, 2004). With the epicentral distance increasing above ≈ 100◦,

the core shadow inhibits the arrival of P waves at the surface. Diffraction along CMB generating the

Pdiff phase allows to observe waves propagating with mantle velocities at the longer distances. However,

the diffraction process is most effective at long wavelength and diminishes at high frequencies (Rost

et al., 2006). Besides the diffracted waves, the waves passing through the core e.g. PKP constitute the

first arriving energy in the long-period recording at long distances. Bataille & Lund (1996) observed

109
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that the ratio between the amplitudes of the ballistic phase and the coda changes drastically during the

transition from P to Pdiff . Therefore, Pdiff coda was suggested to originate from multiple scattering near

the CMB (Bataille et al., 1990; Tono & Yomogida, 1996). A more detailed investigation of Pdiff coda

was conducted by Earle & Shearer (2001). Their global stacking of short-period recordings for Pdiff coda

extends to long epicentral distances up to 130◦. They modeled the observation with single-scattering

theory but considered small-scale heterogeneity throughout the whole mantle. Pdiff coda are generated

from the scattering of both P and Pdiff .

In the present study, we focus on the Pdiff coda that used to be defined as the waves following the

Pdiff arrival time. We present new observation of Pdiff coda at high frequencies at a very long distance

(beyond 150◦) in stacked records of huge-magnitude global earthquakes in a time window between the

arrival times of Pdiff and PKIKP . We generate synthetic data with a proposed heterogeneity model

(Bentham et al., 2017) to interpret the origin of the Pdiff coda.

7.2 Observation

For the investigation of Pdiff coda in the core shadow, the epicentral distance range is chosen from 70◦ to

160◦. Long-distance Pdiff coda waves are hard to detect using small earthquakes since the energy of these

waves is small compared to the usual noise level at seismic stations. As a result, we select earthquakes

with magnitude ≥ 7.9 Mw from years 1994 to 2021 resulting in 52 events. The time window is chosen

from 280s before the arrival time of the P or Pdiff phase to 280s after PKiKP or PKIKP arrival which

allows us to evaluate the noise level and the signal-noise ratio. For each event, the data is downloaded

from all available stations in the IRIS and GFZ archives. After removing the instrument response and

detrending, the vertical component of the data is filtered by a band-pass filter within the frequency band

1.0 ∼ 2.0 Hz. The envelopes of the seismograms are computed using the Hilbert-Transform and then are

smoothed twice by computing a central moving average, respectively with time windows of 2.5 s and 8 s

length.

Figure 7.1 shows the theoretical arrival times of seismic phases from a 600-km depth earthquake

in the ak135 velocity model calculated using the Python package obspy.taup (Crotwell et al., 1999).

Additionally it shows processed envelopes in different distance regimes from a 600-km-deep event with

8.2 Mw on August 19, 2018, in the Fiji Islands region. The traces are all aligned to the arriving time

of the earliest core phase (either PKiKP or PKIKP ). In accordance with common naming we define

the P coda or Pdiff coda as the coda waves following the theoretical arrival time of the P or Pdiff phases,

even though this is somewhat misleading in terms of the origin of these waves. At short distances, e.g.

70◦ - 102◦ (the gray area), P coda window contains scattered P waves but additionally also coda waves

or precursors of pP , sP and PP phases. With distance increasing, the PKiKP or PKIKP becomes the

first arrival in the core shadow since the Pdiff do not propagate at so high frequency (Rost et al., 2006).

The same holds for pPdiff and sPdiff . However, scattered P -energy can arrive in the 200 s long Pdiff -coda

window before PKiKP or PKIKP arrivals (the light orange area). This energy has been studied up

to 130◦ distance by Earle & Shearer (2001). The constituents of this intermediate Pdiff coda window

are also manifold. It may contain scattered P or Pdiff energy but also some later parts or precursors of

PP and PKP . The frequently studied PKP precursor starts in this distance range, but it precedes the

PKP arrival by up to 20 s, only whereas the Pdiff coda starts more than 100 s prior to PKP . At even

larger distances (∆ > 130◦) we show that energy in the Pdiff coda window can be detected even more

than 150◦ away from the epicentre more than 100 s before the core phase (the orange area).
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Fig. 7.1: The theoretical arrival times of seismic phases from a 600-km depth earthquake calculated with the
ak135 model. The epicentral distance range is separated at 102◦ and 130◦ into three regions. For distances larger
than 102◦ the core phase is the earliest arrival as it surpasses the PP arrival. 130◦ is the maximum distance of
previous observations of energy in the with Pdiff coda window. The time window between arrival time of P or
Pdiff and PKiKP or PKIKP phases which is investigated here is indicated by color shading. Insets show the
logarithmic envelopes of single station vertical records from the 600 km deep event that occurred with 8.2 Mw on
August 19, 2018, in the Fiji Islands region. The traces are all aligned to the earliest arriving core phase (PKiKP
or PKIKP ). The color shadings indicates the P coda or Pdiff coda corresponding arrival time graph.
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by the horizontal histogram) and the high SNR (selected by the vertical histogram) are selected for stacking. (b)
The global distribution of good stations. Colorbar indicates the epicenter distance.

7.3 Stacking

Figure 7.1 shows that several orders of magnitude can separate the level of Pdiff coda energy from

the energy of the core phase. Global stacking can thus significantly improve the quality of the traces.

However, the Pdiff coda waves with their low energy are very sensitive to the noise level at each station.

To improve detection of this tiny signal, both the absolute noise level and signal-to-noise ratio (SNR)

are considered at each station individually. Noise level is measured in the time window of 200 to 50 s

before the theoretical arrival time of the P or Pdiff phase while the signal used in SNR is selected in the

time window of 0 to 150 s after PKiKP or PKIKP phase. Figure 7.2a shows a scatterer plot between

SNR (10 log10(Signal/Noise)) and noise level (log10Noise) of all available stations from the Fiji Island

earthquake (August 19, 2018). Each dot indicates one record in which the blue ones with the low noise

and the high SNR have been selected for stacking. Almost half of the traces are selected and the global

distribution of stations with selected traces is shown in Figure 7.2b. The color bar indicates the the

epicentral distance. The histograms in Figure 7.2a show that the selection is dominantly based on the

noise level of the stations, while the SNR criterion only removes some spurious stations with extremely

low noise level. For each event, we align the selected traces on the PKiKP or PKIKP arrival time

and average the logarithmic envelopes in every distance bin (2◦). We have stacked records from all 52

events individually using the same processing. Figure 7.3 shows the stacking results for two shallow, one

middle-depth, and two deep events. Besides the deep event we mentioned before (August 19, 2018 Fiji

Islands region earthquake, Figure 7.3a), another one is a 685.5 km deep event with 7.9 Mw on May 30,

2015, in the Bonin Islands, Japan region (Figure 7.3e). The shallow events respectively happened on

January 23, 2018 in the Gulf of Alaska with magnitude 7.9 Mw (Figure 7.3b) and on April 11, 2012 off

the west coast of northern Sumatra with 8.6 Mw (Figure 7.3c). The intermediate depth event occurred

on May 26, 2019 in northern Peru with 8.0 Mw, 122.4 km depth (Figure 7.3d). The P or Pdiff coda is

highlighted by the shading in the time window from the P or Pdiff phase to PKiKP or PKIKP phase

using the noise level as the baseline with the colors corresponding to Figure 7.1.

From almost all of these events we detect the Pdiff coda in the core shadow including very long distances

(the orange area). However, signals of shallow events are strongly influenced on the source side and it

is hard to identify Pdiff coda (Figure 7.3b) unless events with huge magnitude are used (Figure 7.3c, 8.6
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Fig. 7.3: The stacking results for two shallow, one intermediate depth, and two deep events. The P or Pdiff coda
is highlighted by shading in the time window from the P or Pdiff phase to the PKiKP or PKIKP phase using
the noise level as the baseline with colors corresponding to Figure 7.1. The histogram of the number of traces
used in the stacking for each distance bin is shown on the right with color corresponding epicentral distances in
Figure 7.2(b).

Mw). With the source depth increasing, the Pdiff coda becomes more clear even though the earthquake

magnitude is less (Figure 7.3d), especially for very deep earthquake (Figure 7.3e). In conclusion, although

we have investigated 52 events, the traces from the deep earthquakes with the huge magnitude constitute

the best observations of Pdiff coda (Figure 7.3a).

This dependence on the absolute signal level together with the frequency-magnitude distribution

means that a stack of different earthquakes is unlikely to be better than the record of the best event

alone. It is thus not reasonable to stack the traces from different events that have different depths and

magnitudes. Another reason why we use the events individually is that the shape of traces from the

shallow and deep events are different due to the arriving times of the pP , sP and PP phases, especially

at shorter distances. In this study, we focus on the 600 km deep Fiji Island event (Figure 7.3a) to study

the Pdiff coda.
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7.4 Modeling

7.4.1 Current Models of Whole Earth Scattering

The deterministic structure of the Earth has been investigated globally and regionally in many studies.

Seismic waveforms e.g. P - or S-waves or surface waves, inform about the elastics parameters of the

Earth since the elastic structure determines the seismic wave propagation including travel times and

amplitudes. Especially for the synthetic reconstruction of global seismograms, 1D spherically symmetric

velocity models of the Earth have been proposed based on the main teleseismic phases e.g. PREM

(Dziewonski & Anderson, 1981), iasp91 (Kennet, 1991) or ak135-F (Kennett et al., 1995; Montagner

& Kennett, 1996). More precise 3D Earth models have also been derived more recently, like SPiRaL

(Simmons et al., 2021). Compared to the deterministic large-scale structure of the Earth that can be

investigated with the major seismic phases, the distribution of small-scale heterogeneity is more difficult to

study since the resulting scattered energy is a secondary observation in global seismograms. The efficiency

of small-scale heterogeneity to scatter seismic waves increase with frequency such that scattered waves are

generally studied at frequencies above the range used for the investigation of ballistic waves. However, the

increase of intrinsic attenuation with frequency limits the interesting range towards very high frequencies.

Scattered coda waves or precursory arrivals are therefore often studied in the frequency range of a few

hertz.

This small-scale structure in the Earth can extend in the crust and mantle or the inner core. In the

liquid outer core small-scale heterogeneity is assumed to be erased by convection. The heterogeneity in

the shallow Earth has a strong influence on the scattered seismic wavefield. The tomography for the

crust shows strong lateral variations of scattering and intrinsic attenuation (Sens-Schönfelder et al., 2009;

Calvet et al., 2013; Mayor et al., 2016), especially in volcanoes (De Siena et al., 2016). A model of

scattering properties in the crust with ε = 2.9% and a = 0.27 km was derived by Gaebler et al. (2015)

using teleseismic P -wave coda as well as coda from local events. The deep Earth scattering is mostly

investigated using the PKP precursors. The heterogeneity existing near the CMB that causes the single-

scattering energy to arrive earlier than PKP at the surface explains the observation of precursors to PKP

(Cleary & Haddon, 1972; Haddon & Cleary, 1974). Later, scattering in the whole mantle was invoked to

explain the PKP precursor. Hedlin et al. (1997) proposed heterogeneity in the mantle characterized by

ε = 1% and a = 8 km while Margerin & Nolet (2003) and Mancinelli & Shearer (2013) proposed weaker

heterogeneity with ε = 0.1%. Whole mantle scattering was also used to explain the Pdiff coda with

ε = 1% and a = 2 km (Earle & Shearer, 2001) and a two-layers model with ε = 3 ∼ 4% and a = 4 km

in the upper mantle and ε = 0.5% and a = 8 km in the lower mantle to fit the observations of P coda

(Shearer & Earle, 2004).

In this paper, we consider the heterogeneity model developed by Bentham et al. (2017) to which we

refer as BRT2017. It includes scattering in the lithosphere and three-layers in the mantle as shown in the

left panel of Figure 7.4. Bentham et al. (2017) used a grid search including previous models to obtain

the BRT2017 model which is adjusted to fit the observation of globally stacked PP precursors in the

distance range form 70◦ to 120◦. Inner core scattering is excluded from this model.

7.4.2 Monte-Carlo Simulation

For modeling of the global seismic scattering, the Monte-Carlo simulation method which employs many

particles to represent the energy propagation is used to simulate the Earthquake in a 1D spherically

symmetric model with the main frequency 1 Hz. (Sens-Schönfelder et al., 2021). The reflection and

refraction obey the Snell’s law. Scattered waves are modeled using the radiative transfer equations in 3-
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D that describe multiple nonisotropic scattering in an elastic medium (Sens-Schönfelder et al., 2009). The

velocity, density and intrinsic attenuation models use the ak135-F spherical average model. The intrinsic

quality factors described in the ak135-F model state Qκ and Qµ. The radiative transfer equations require

the P-wave QP and S-wave QS quality factors. They have the relationships (Shearer, 2009):

Q−1
P = LQ−1

µ + (1− L)Q−1
κ (7.1)

QS = Qµ (7.2)

where L = (4/3)(β/α)2 and in the outer core QP = Qκ. α and β are the velocities of P-wave and S-wave,

respectively.

The middle and right panels of Figure 7.4, respectively, show the snapshots of the energy field from

Monte-Carlo simulation without scattering on the one hand and with 3D multiple nonisotropic scattering

using the heterogeneity model - the BRT2017 model on the other hand. Although the simulation is

conducted in 3D space, the model and recording of the wavefield are spherically symmetric. The source

is 600 km deep located at the right center of the cross section through the Earth (the black star). The

lapse time in Figure 7.4 is 1020 s. The simulation in the heterogeneous model shows a smoother energy

distribution compared to the homogeneous model. The energy filling the space between the main seismic

phases generated by scattering off the heterogeneity. The arrows in the figure indicates the location at

epicenter distance of 150◦, where some energy has already arrived at the illustrated 1020s lapse time in

the BRT2017 while no energy has reached the receiver in the model without scattering, yet.

The Monte-Carlo simulation uses the point-like source in space and time. In order to compare with

the observation, we convolved the envelope with a Gaussian source time function whose center of time

is 15 s and the standard deviation is 1.95 s. Figure 7.5 compares the observation form the Fiji event

(solid black curves) and the synthetics with scattering in the BRT2017 model (the solid red curves) and

without any scattering (the thin gray curves). The simulation results are normalized by the maximum

value of each trace before the time -50 s. Zero time is aligned to the arrival time of PKiKP or PKIKP .

To ease the comparison of the misfits between observations and simulations in the BRT2017 model are

filled with blue shading in the Pdiff time window ranging from the arrival time of the P or Pdiff phase to

20 s after the PKiKP or PKIKP phase.

Generally the modeled envelopes fit the observations well. Considering the fact that the BRT2017

model was derived from PP precursors especially, the fit of the Pdiff coda at large distances is remarkable.

A systematic misfit can be observed at about -50s at intermediate distances of about 96◦ ∼ 112◦. We
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discuss this issue in Section 7.7. For the Pdiff coda, the simulation results from the BRT2017 model

matched the observation very well and one can see that the first arrival of energy in the simulation

without scattering becomes later and later with increasing distance until the core phase PKIKP is the

first arriving phase. There is no Pdiff coda in the model without heterogeneity.

7.5 Origin of Pdiff Coda

In accordance with previous work we refer to the energy arriving more than 100 s before PKIKP at long

distances as Pdiff coda since it arrives after the theoretical arrival of the Pdiff phase. This terminology

avoids ambiguity with the term PKP precursor used for the energy arriving a few seconds before PKP

in the distance range 110◦ < ∆ < 140◦. Early interpretations of Pdiff coda believed it originates from

multiple scattering near the CMB in the D” layer (Bataille et al., 1990). This process would be rather

similar to diffraction that generates Pdiff , but would be more effective at high frequencies (Bataille &

Lund, 1996). With the scattering of the whole mantle proposed to interpret the PKP precursors (Hedlin

et al., 1997), Earle & Shearer (2001) presented the single-scattering modes like P -to-P , Pdiff -to-P or P -

to-Pdiff happening in the whole mantle to generate the Pdiff coda. However, Rost et al. (2006) reported

that Pdiff is not detectable at large distance in the short period.

These differing models pose the question whether Pdiff coda at long distances really originates from

scattering of Pdiff .

The simulation of scattered waves with the BRT2017 model matches the observation of Pdiff coda

very well. To figure out which part of the Earth contributes to the scattered energy in the different time

windows, we design many single-layer heterogeneity models based on the BRT2017 model. We divide the

mantle into layers of 200 km thickness overlain by a 100 km thick lithosphere layer. The simulation is

conducted for every single-layer heterogeneity model in which 3D multiple non-isotropic scattering can

only happen in this layer and whose scattering parameters correspond to the one of the BRT2017 model at

the respective depth while there is no scattering in other layers. The results are shown in Figure 7.6. Each

color curve indicates the simulation result from one single-layer heterogeneity model. The observation

is shown by the black curve and the simulation without any scattering and with scattering in the full

BRT2017 model (already shown in Figure 7.5) are shown by the red and gray curves, respectively.

In Figure 7.6 at distances before the core shadow e.g. 90◦, the P coda is dominated by scattering at

lithospheric heterogeneity (darkest blue curve). At the distance 100◦, Pdiff and its coda appears instead

of P . The Monte Carlo simulation does not reproduce diffraction but still matches the observation of

what is usually referred as Pdiff in the present frequency band above 1Hz. The energy of Pdiff mostly

originates from scattering in the lower mantle with an onset of all curves (about -250 s) at the time of the

theoretical Pdiff arrival resulting in a strong peak reproducing the observation at the Pdiff arrival time

and its early coda. Note that there is no energy at this time in the simulation without scattering (the

gray curve). With the distance increasing to 110◦ even 120◦, the peaks of the different layers separate

and arrive at different times and the later part of the coda energy stems from the shallower layers such

that all layers of the mantle contribute to Pdiff coda but with varying contributions at different travel

times. As consequence the peak at the Pdiff arrival time decreases in amplitude and the decay of its

coda is reduces towards larger distances until the energy level remains almost stable. This confirms

Bataille & Lund (1996)’s recognition that scattering is the main effect in the generation of high frequency

energy following the theoretical arrival time of Pdiff . It explains the observation of peaks decreasing with

increasing distance (Bataille & Lund, 1996; Earle & Shearer, 2001). What is usually called Pdiff at high

frequencies is actually scattered energy mostly from the lowermost mantle and should better be called

Pscatt. When the distance is larger than 130◦, it is hard to observe the so-called Pdiff arrival. Instead

there is a gradual increase of energy towards the Pdiff coda. Scattering near the CMB which contributes
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to the earliest coda energy decreases (orange curves). The increase shortly before the peak of the curve

at the PKIKP arrival at intermediate distances originates from the deeper layer, as expected for the

PKP precursor. At 160◦, the Pdiff coda can only originate from scattering in the middle mantle about

2000 km deep (yellow curve) as deeper scattering will not propagate energy around the core to these

distances. Such energy is not observed in the seismograms since its energy is below the level of the

noise even at the best stations. In conclusion, Pdiff and Pdiff coda at high frequencies are intrinsically

the same energy scattered from the mantle at different depth. Different depths contribute to different

arriving times generating the variable shapes of Pdiff and Pdiff coda at different distances. No diffraction

is involved in the propagation of this energy.

To illustrate the regions in which scattering can occur to contribute to the Pdiff coda, Figure 7.7

shows possible travel paths of Pdiff coda for nine different distances. The colored areas indicate potential

locations of single scattering (P ∗ P ) in the great circle plane with color encoding the resulting arrival

time at the station. The time is aligned to the arrival time of the PKIKP phase at each distance so the

red area is the scattering region that generates the Pdiff coda while scattering in the blue regions leads

to arrivals later than PKIKP . As the distance increases, the boundary between red and blue regions

shifts from shallow depth towards the deep Earth indicating that the large distance observations of Pdiff

rely on mid to lower mantle scattering.

Meanwhile, a shadow zone above the CMB starts to appear in the single-scattering region.

Scattering close to the CMB (e.g. in D”) cannot contribute to the Pdiff coda at larger than ≈ 150◦ any

more. Consequently, the region in which single scattering can generate Pdiff coda narrows towards

larger distances. The upper limit lowers to maintain short travel times and the lower limit rises for the
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energy to pass around the core as illustrated in the bottom left panel of Figure 7.7. At a distance

beyond 168◦ no Pdiff coda can be generated by single scattering (P ∗ P ) any more as confirmed by the

observations in Figure 7.6 We calculate the earliest possible time of this single-scattering at each

distance and compare it to the theoretical arrival time of Pdiff and the observed Pdiff coda in the right

bottom of Figure 7.7. The Pdiff phase lags behind the single-scattering onset time curve. This is to be

expected for large distances at which the region generating the earliest arrival becomes very narrow

with signal levels below the station noise leading to a gradual increase of energy while the computation

considers any possibility for the energy to reach the receiver . However, the observations follow this

curve more closely than the theoretical Pdiff arrival time confirming that there is no relation of the

observation to actual Pdiff propagation.

7.6 Sensitivity Kernels

The comparison of the data with the BRT2017 model in Figures 7.5 and 7.6 shows a good agreement

between modeled and observed envelopes. Inferring more detailed information about the mantle

heterogeneity is possible with the tools developed in Chapter 5 and Chapter 6.

The key to the application of AET is the calculation of the misfit kernels that are in turn derived

from the scattering sensitivity kernels which describe the relationships between changes in the strength of

fluctuation and seismogram envelopes as observable. The calculation of the scattering sensitivity kernels

requires the specific energy density EXY (r′, t,n; r0) that contains the information about propagation

direction. For now, the memory requirements of the 3D specific energy density for the whole Earth with

so long lapse time is too huge so that we can only record the wavefield of the energy density EXY (r′, t; r0).

Luckily, the changes in scattering in the Earth are basically the creation of new propagation paths that

causes the distortion of the coda waves, which can be quantified by the decorrelation sensitivity kernel

(Margerin et al., 2016). The Pdiff coda arrives so early at teleseismic distances that propagation as shear

energy can be excluded at that time since the S-wave energy has not enough time to arrive at the surface.

Therefore, the scattering mode can be simplified to multiple P -to-P scattering excluding S propagation.

The decorrelation sensitivity kernels proposed in Chapter 4 now are simplified as in the acoustic case. If

scattering is further assumed to be isotropic, the kernel can be rewritten as (Margerin et al., 2016):

εKdc
PP (r′, t; r, r0) =

∫ t

0

EPP (r′, t− t′; r)EPP (r′, t′; r0)

EPP (r, t; r0)
dt′ (7.3)

Figure 7.8 shows the decorrelation sensitivity kernels plotted with logarithmic values. The wavefield

EPP (r′, t; r0) is simulated with the BRT2017 model in 3D using the elastic multiple nonisotropic

scattering shown in the right panel of Fig. 7.4. The time is aligned to PKIKP arrival time at each

distance. The decorrelation sensitivity kernels show the influences from changes in the strength of the

fluctuation on the decorrelation of the seismograms. In fact, they also reflect how much of the energy

arriving at r′ from the source r0 can reach the station r with the lapse time t. Not like the assumption

of single scattering used in Figure 7.7, multiple scattering implemented in the BRT2017 model allows

for scattering across the entire mantle. As the distance increases and for earlier time, the high values of

sensitivity kernels approach the CMB and the scattering area become smaller. If the simulation of the

wavefield used for calculation of sensitivity kernels is without scattering, only single scattering at r′ can

generate energy at the receiver. This situation is illustrated in Figure 7.9 that is rather similar to

Figure 7.7. Both of them show a cone shape in the mantle above the CMB that are the possible areas

for single scattering.

Figure 7.8 and Figure 7.9 only show the cross-sections through the great-circle plane of the source
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Fig. 7.7: Top nine panels: the cross sections (the great circle plane) of all possible single-scattering positions
(the colored areas) for different epicenter distances. The color indicates the travel times resulting from single
scattering at different locations. Times are aligned to the arrival time of the PKIKP phase at each distance.
Red represents the scatterers for Pdiff coda arriving before PKIKP . Bottom left: The top of the red region (blue
curve) and the bottom of possible single-scattering region (red curve) approach each other in the middle mantle
at about 2000 km depth for an epicentral distances of 168◦. Bottom right: the earliest possible time (onset time)
of single scattering energy (red curve) at each distance compared with the theoretical arrival time of Pdiff (dashed
green curve) and the observed Pdiff coda energy (the color filling in which the gray area indicates logarithmic
energy below -9 ).
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Fig. 7.8: Cross sections (great circle plane, Φ=0◦) of the decorrelation sensitivity kernels. The scattering is
assumed to be isotropic. The wavefield is modeled in the BRT2017 model using the radiative transfer equations
that are the 3-D elastic multiple nonisotropic scattering shown in the right panel of Fig. 7.4. Note the color
bar indicates the logarithm of sensitivity kernels that are individually normalized by the maximum value of each
panel. The time is aligned to PKIKP arrival time of each distance.
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Fig. 7.9: Same as Fig. 7.8, but the wavefield is modeled in the homogeneous model.
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Fig. 7.10: Cross sections of decorrelation sensitivity kernels with different azimuth Φ tilted from the great circle
plane. The wavefield is modeled in the BRT2017 model. The first panel is the same as the first one in the second
column shown in the Fig. 7.8. Note the color bar indicates the logarithm of sensitivity kernels that are individually
normalized by the maximum value of each panel. The time -50 s is aligned to PKIKP arrival time at 140◦ .

and station. However the kernels are 3D features and Figure 7.10 and Figure 7.11 show cross sections

planes that are tilted from the great circle plane by azimuth Φ . The fastest travel paths are definitely

on the great-circle cross-section that includes source and station. With the azimuth Φ from 0◦ (the

source-station plane) to 90◦ (perpendicular to the source-station plane) in Figure 7.10, the high values

gradually concentrate at the source since the plane of this cross-section becomes farther away from the

station. The effective volume of the sensitivity kernels can be imagined as a clam shell lying bent above

the CMB. For single scattering (Figure 7.11), there is less possibility for scattering occurring farther off

the source-station plane and the effective volume gradually disappears near the CMB.

7.7 Discussion

We show observations of scattered seismic energy arriving several tens of seconds prior to the core phase at

distances as large as 150◦. We present Monte Carlo simulation for the global seismic energy propagation

in a heterogeneity model derived from PP precursors which match the Pdiff coda very well in Figure 7.5.

However, the misfits during 96◦ to 112◦ are likely related to precursors of PP from reflectiosn below

the surface which are not perfectly modelled. The 1D spherically symmetric model used here is ak135-F

in which the crust is considered continental. The intrinsic attenuation of the crust has strong lateral

variations and the thicknesses between continental and oceanic crust are different which can influence the

PP travel times as well as the shape of precursory signals. The stations shown in Figure 7.2 are mostly

distributed on the continents so that reflection points of the PP wave are probably located in oceanic

lithosphere. So we consider the misfit illustrated in Figure 7.5 to result from lateral differences that are
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Fig. 7.11: See the caption in Fig. 7.10, but the wavefield is modeled in the homogeneous model.

not captured in the 1D heterogeneity model BRT2017. Our observation targets, e.g. Pdiff and PKP

that are mostly affected by the receiver site determine the choice of the model as the continental crust.

Fortunately, the discussion of Pdiff coda mostly refers to arrival times well before PP such that there is

only marginal influence of the oceanic lithosphere on our conclusion.

Theoretically, pP can only propagate to 100◦ and then develops into pPdiff so the simulation without

scattering and diffraction cannot generate pP at larger distances. The earliest tiny phases shown in

Figure 7.5 by the gray curves at distances larger than 100◦ are not pP or pPdiff . These arrivals may come

from the reflections on the shallow Earth which are mixed with pP at short distances and can bypass the

core shadow and propagating to longer distances.

Our simulation only uses the P-energy as source since for the Pdiff coda the time is too early for

S-energy so that S-to-P scattering makes a very minor contribution to the energy in the time distance

window considered here.

7.8 Conlusions

We have for the first time observed the Pdiff coda at high frequencies (1∼2 Hz) at a very large epicenter

distance (even more than 150◦). The stacking of global earthquakes shows this signal is best observed for

earthquakes with huge magnitude and deep source. The Monte Carlo simulation using 3D non-isotropic

multiple scattering in a 1D spherically symmetric heterogeneity model - BRT2017 (Bentham et al., 2017)

that has a 4-layers structure from the lithosphere to CMB is compared with the global stacked high-SNR

Pdiff coda from a deep event (8.2 Mw, 600 km, August 19, 2018 Fiji Islands region). The synthetic

data coincides with the observation very well in the time window between arrival times of the Pdiff and

PKIKP , especially compared with the simulation without scattering which has a huge discrepancy to
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the observations. The good fit supports the existent of small-scale heterogeneity in the whole mantle. To

figure out the origin of Pdiff coda, we separate this model into multiple single-layer models to simulate

the scattered energy contributed from each layer. We believe the high-frequency Pdiff at long distances

(≥100◦) is intrinsically generated by the same process as the Pdiff coda. The lowermost-mantle scattering

contributes to the earliest part of Pdiff coda that used to be recognized as Pdiff when the distance is not

too large. With the scattering layer rising, the energy arrives coherently one after another which causes

the Pdiff coda to be devoid of the typical coda decrease. The depth range contributing to the generation of

the Pdiff coda narrows towards larger epicentral epicenter distance (≥130◦). Both, the lowermost mantle

and uppermost mantle may not contribute to Pdiff coda at long distances. We use single-scattering to

demonstrate all possible areas of scattering and their traveltimes compared with PKIKP . The top layer

of the region generating the Pdiff coda and the bottom of possible single-scattering region approach each

other in the middle mantle at about 2000 km depth at the epicenter distance of 168◦. The estimated

earliest time of single-scattering arrivals does not perfectly agree with Pdiff coda onset at large distances

most likely due to the gradual increase of coda energy and the low signal level that does not increase

above the noise level immediately after the onset time.



Chapter 8

Conclusion & Outlook

8.1 Conclusion

This thesis has proposed a new probabilistic seismic tomography method with scattered waves. Its target

is to image the small-scale heterogeneity structure of the Earth that affects the scattering and intrinsic

attenuation properties. I call this tomography method, Adjoint Envelope Tomography (AET).

The small-scale structures of the Earth below the wavelength are impossible to characterize by

deterministic tomography. Chapter 2 briefly introduced the concept of random media that are

statistically described by the fluctuation strength ε and correlation length a which respectively represent

the perturbation range of the velocity and the length scale of heterogeneity. The type of random media

is determined by the autocorrelation function (ACF). With random media, wave scattering is solved

using the elastic radiative transfer theory. The random velocity and density fluctuations of the medium

are assumed to follow an exponential ACF and the scattering is nonisotropic. Based on the above

theories, I extend the elastic radiative transfer equations to spatially variable heterogeneity such that

the fluctuation strength ε(r) and intrinsic quality factor Q−1(r) become functions of location r. The

simplification of the expressions in the acoustic approximation is also given.

The Monte Carlo method is used to numerically solve the radiative transfer equations in Chapter 3. In

order to simulate energy transport in the presence of spatially variable fluctuation strength and intrinsic

attenuation, I separate the effects of scattering and intrinsic attenuation in two models with individual

fluctuation strength and quality factor anomalies. Two models with spatially variable scattering and

intrinsic attenuation are compared with the statistically homogeneous model. The effects of stronger

scattering and attenuation can be clearly observed in the two anomaly models.

The specific energy density of the simulated wavefield is recorded for further development. The specific

energy density EY X (r,n, t) describes the angularly resolved energy density at position r at time t with

the propagation direction n. In the elastic case, the mode of excitation X and recording Y can either be

P- or S-wave. This quantity provides complete information about the energy transfer in an elastic medium

with spatially variable randomness and intrinsic attenuation. Following Margerin (2017), the reciprocity

theory of Green’s function in 2D elastic radiative transfer theory is derived which is an essential step in

the further application of the adjoint theory. The reciprocity theorem in the elastic radiative transfer

theory is similar to FWI but the simulation of the adjoint wavefield requires an exchange of the scattering

coefficients which is numerically implemented in the Monte Carlo method. The scattering pattern and

equipartition ratio both show good agreement between the theoretical expectation and the presented

Monte Carlo simulation, which verifies this method.

The complete information about the energy propagation allows for the computation of sensitivity

kernels of scattered elastic waves including ballistic and scattered waves. Chapter 4 investigates sensitivity

kernels in the form ψKφ
Y X , where ψ denotes the medium perturbation, φ denotes observable and Y,X

denote the excited wave mode X and recorded wave mode Y . Both, the observable and medium property

125
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need to be specified to identify the kernels. αKtt
Y X and βKtt

Y X are traveltime-velocity sensitivity kernels

to describe the effect of P- and S-wave velocity perturbation in space on the traveltime perturbations

of the seismogram. There are eight possible types of traveltime sensitivity kernels that result from the

propagation of the two elastic wave modes. Changes in the strength of random velocity and density

fluctuations ε can be observed as changes of the trace envelopes and decorrelation of the waveforms

leading to the energy-scattering kernel εKE
YX and the decorrelation-scattering kernel εKdc

Y X . The energy-

scattering kernel εKE
YX has positive and negative polarity whereas the decorrelation-scattering kernel

εKdc
Y X is strictly positive since any change in the scattering coefficient ε (independent of its sign) will

lead to an increase in decorrelation. Based on the observation of the decorrelation alone, one cannot

know whether it is due to an increase or a decrease of heterogeneity. The functional form of the energy-

attenuation kernels QKE
YX is the same as that of the traveltime-velocity kernels. Eight different kernels for

the combinations of the quality factors for P- and S-waves and the modes of excitation and recording are

obtained. The different kernels can be superimposed with the suitable weighting which can be obtained

from the simulation of the specific energy density if the actual sources in an experiment emit both, P-

and S-waves simultaneously or/and the receiver does not separate between P- and S-waves. I compared

sensitivity kernels in a statistically homogeneous model with kernels calculated in a model that contains

anomalies of the scattering properties to show the influence of spatial variations in scattering strength.

Obvious differences between kernels in the homogeneous and anomaly models exist in αKtt
SS and βKtt

PP

which are strongly affected by the scattering process because of the required mode conversion.

Based on the achievements from the modeling and the derivation of the sensitivity kernels, in chapter 5

I used the adjoint method to derive the Fréchet derivatives of the least-square misfit function which is

defined as the squared difference between observed/synthetic and modeled data as the objective function.

The Monte Carlo method is used to generate the synthetic data as well as for the forward and adjoint

simulations. The misfit kernels are derived with the format as εKχ
Y X(r) and QKχ

Y X(r) corresponding

to the sensitivity kernels, where χ is the misfit function. The iterative update directions for the models

ε(r) or Q−1(r) from the initial models are calculated with the L-BFGS method using the misfit kernels.

AET has been verified in numerical and laboratory experiments in chapter 5 and chapter 6, respectively.

The numerical experiments demonstrate the success of the presented inversion concept. Fréchet

derivatives of the two experiments with separate inversions for either ε or Q−1 reliably guide the inversion

towards lower values of the misfit function. Models which better reproduce the synthetic envelopes as

expressed by lower misfit also converge towards the true model in the model space. The inversion is also

well behaved with respect to the addition of noise. The iterative inversion correctly recovers the locations

and amplitudes of the anomalies in each parameter, if the other parameter is fixed at the correct value.

If both parameters are free in the inversion, a trade-off is observed which is common to most inverse

problems with multiple parameters. In this case, the inversion process is dominated by the parameter

that has the stronger anomalies, i.e. dominates the misfit function.

Although the trade-off between scattering and absorption cannot be avoided, I proposed some

strategies to improve the simultaneous inversion. At first, correct knowledge of one of the parameters

improves the recovery of the other. This means that independent knowledge of one parameter can be

incorporated to stabilize the inversion. Secondly, the time window used to construct the adjoint source

affects the recovery of the two parameters differently. While the late coda is essential to infer the

distribution of absorption, the ballistic wave and early coda is important to locate anomalies in the

small-scale heterogeneity. Applying a weighting between the influence of early and late coda in the

inversion can help to improve the recovery of both parameters.

The laboratory experiment is conducted in a 4 m by 5 m large reinforced concrete specimen

equipped with embedded ultrasonic transducers. The data recorded by 19 transducers are compared

with simulations of energy propagation based on the Radiative Transfer Equation. The forward
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problem is solved by modelling the 2-D multiple nonisotropic scattering in an acoustic medium with

spatially variable heterogeneity and attenuation. The misfit between observed and modeled envelopes is

minimized by iteratively updating the model with the adjoint method. Here I introduced a whole

workflow of AET for the real data including the processing of the data and the investigation of

background values with the diffusion model. The fluctuation strength ε and intrinsic quality factor Q−1

respectively representing the spatial variability of scattering and absorption are separately inverted

from different time windows. On the one side, the absorption inversion result shows a strong

point-symmetric geometry which we interpret as some large-scale parameter variation in the specimen,

but without a direct evidences for the causative process, e.g. temperature, humidity or stress a definite

interpretation is impossible. On the other side, the inverted distribution of scattering properties shows

a more complex structure that can – to some extent – be interpreted in terms of the known internal

structure of the test specimen. The largest anomaly of increased heterogeneity corresponds to a volume

containing salt-concrete. Other anomalies are not as clearly linked to the known features of the concrete

and a strong anomaly of decreased heterogeneity exists at the edge of the specimen that is interpreted

as an artifact from envelope fluctuation that are insufficiently averaged at the reflecting boundaries of

the model domain. Despite obvious room for improvement in terms of spatial resolution and power to

resolve the trade-off between scattering and attenuation the present results are encouraging.

The code for Monte Carlo simulation, scripts used to calculate the misfit kernels and the processed

data of the laboratory experiment is archived at https://github.com/TuoZhang-seism/AET_concrete.

An initial attempt to promote AET to investigate the 1D spherically symmetric heterogeneity model

of the Earth is conducted. The preliminary work about global records of Pdiff coda is presented in

chapter 7.

Existence of Pdiff coda at high frequencies (1∼2 Hz) is for the first time demonstrated at a very

large epicenter distance (even more than 150◦). The stacking results of global earthquakes show that

observations are best for the earthquakes with huge magnitude and deep source. Similar to the modeling

in the laboratory experiment, the Monte Carlo simulation is used but based on 3D non-isotropic multiple

scattering in a 1D spherically symmetric heterogeneity model. The synthetic data produced with the

heterogeneity model by Bentham et al. (2017) coincides well with the global stacked high-SNR Pdiff

coda from a deep event (8.2 Mw, 600 km, August 19, 2018 Fiji Islands region earthquake) in the time

window between arrival times of the Pdiff and PKIKP . Compared with the simulation without scattering

that shows a huge discrepancy the fit is remarkable. Separating the model into multiple single-layer, I

simulated the scattered energy that is contributed from each of theses depth layers. From this comparison,

I conclude (A) the high-frequency Pdiff at long distances (≥100◦) should be intrinsically the same as Pdiff

coda, (B) the lowermost-mantle scattering contributes to the earliest part of Pdiff coda that used to be

recognized as Pdiff when the distance is not too large, and (C) with the scattered layer rising above the

CMB, the energy arrives sequentially one after another, jointly forming the Pdiff coda. The volume that

can generate the Pdiff coda becomes narrower when the epicenter distance becomes larger (≥130◦). Both

the lowermost mantle and uppermost mantle lose the conditions to scatter the energy into the Pdiff coda

time window at long distances. I use single-scattering to demonstrate all possible areas of scattering

and their traveltime compared with PKIKP . Beyond 168◦ no Pdiff coda can be generated by single

scattering any more. Onset times of single scattered P ∗ P are followed by the observed seismic energy

with some delay at large distances resulting from the finite noise level that has to be exceeded to generate

an observable energy signal.

https://github.com/TuoZhang-seism/AET_concrete
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8.2 Outlook

This thesis has succeeded in developing the methodology of Adjoint Envelope Tomography (AET) and

has verified the efficiency by numerical and laboratory experiments. It has taken a large step towards

the final goal of an application of AET to imaging the small-scale structures of the Earth.

The preliminary work about the investigation of the scattered waves in the Earth has been finished

with the collection of observations that can be used later in an inversion based on the developed

methodologies. This step is analogous to collecting the ultrasonic data in the concrete experiment. The

tomography of the whole Earth with AET still faces some challenges. The calculation of the precise

sensitivity kernels requires the knowledge of the specific energy density. Recording of the specific energy

density that contains the information about propagation direction for the whole Earth requires a very

huge memory. Although the model can be spherically symmetric, the simulation and recording have to

deal with 3D in space. Including the time and two-dimensional directional vector, the data extend to 6

dimensions. Although this problem can be solved with growing high-performance computer, now a 1D

spherically symmetric heterogeneity Earth model is more realistic to achieve based on isotropic

scattering in which the directional information is not necessary. The inversion can start with an existing

initial model (e.g. BRT2017) combined with a fixed intrinsic attenuation model, like ak135−F . For the

small-scale heterogeneity of the Earth, the observed coda waves or precursors are believed to be most

sensitive. The Pdiff coda chosen in this thesis originates from the P -to-P scattering. Since this very

early arriving energy has the advantage that it is not disturbed by other seismic phases and that it

almost exclusively depends on P to P scattering which simplifies the inversion process. Future work can

consider more scattering pattern, including P -to-S, S-to-P and S-to-S that are contained in different

time-distance windows.

In addition to the global tomography, it is also interesting to work on the regional imaging of the near-

surface heterogeneity with AET. The crust exhibits stronger small-scale heterogeneity, like rock fractures,

small regional faults, or volcanic areas. The application of AET faces two challenges. On the one side,

the investigation of small-scale structures requires sufficient knowledge of deterministic structures. On

the other side, the forward modeling for RTT needs more adaptability in the lateral variation of elastic

properties. The development of Monte Carlo simulation needs to consider more complex velocity models.

Moreover, combined with other techniques, like CWI, the sensitivity kernels calculated with the precise

modeling can more accurately locate the changes in such media.

Lastly, in the laboratory experiment AET shows great potential in the field of engineering, like non-

destructive testing. Although I successfully inverted the scattering and absorption structures, the lack of

connection between the statistical properties mathematically described in RTT and the physical material

of the constructions makes the interpretation indirect. On the one hand, more experiments should be

conducted to strengthen this connection. On the other hand, ultrasonic experiments under different

conditions can be used in AET to monitor the changes in the material.
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Lévěque, J.-J., Rivera, L., & Wittlinger, G., 1993. On the use of the checker-board test to assess the

resolution of tomographic inversions, Geophysical Journal International , 115(1), 313–318.

Li, C. & Van Der Hilst, R. D., 2010. Structure of the upper mantle and transition zone beneath southeast

asia from traveltime tomography, Journal of Geophysical Research: Solid Earth, 115(B7).

Liu, D. C. & Nocedal, J., 1989. On the limited memory bfgs method for large scale optimization,

Mathematical Programming , 45(1-3), 503–528.

Liu, L. & Guo, T., 2005. Seismic non-destructive testing on a reinforced concrete bridge column using

tomographic imaging techniques, Journal of Geophysics and Engineering , 2(1), 23–31.

Liu, Q. & Gu, Y., 2012. Seismic imaging: From classical to adjoint tomography, Tectonophysics, 566,

31–66.

Mancinelli, N. & Shearer, P., 2016. Scattered energy from a rough core-mantle boundary modeled by a

monte carlo seismic particle method: Application to pkkp precursors, Geophysical Research Letters,

43(15), 7963–7972.

Mancinelli, N., Shearer, P., & Liu, Q., 2016. Constraints on the heterogeneity spectrum of earth’s upper

mantle, Journal of Geophysical Research: Solid Earth, 121(5), 3703–3721.

Mancinelli, N. J. & Shearer, P. M., 2013. Reconciling discrepancies among estimates of small-scale mantle

heterogeneity from PKP precursors, Geophysical Journal International , 195(3), 1721–1729.

Margerin, L., 2005. Introduction to radiative transfer of seismic waves, Geophysical Monograph-American

Geophysical Union, 157, 229.

Margerin, L., 2017. Computation of green’s function of 3-d radiative transport equations for non-isotropic

scattering of p and unpolarized s waves, Pure and Applied Geophysics, 174(11), 4057–4075.

Margerin, L. & Nolet, G., 2003. Multiple scattering of high-frequency seismic waves in the deep earth:

Pkp precursor analysis and inversion for mantle granularity, Journal of Geophysical Research: Solid

Earth, 108(B11).

Margerin, L., Campillo, M., & Tiggelen, B., 1998. Radiative transfer and diffusion of waves in a layered

medium: new insight into coda q, Geophysical Journal International , 134(2), 596–612.

Margerin, L., Campillo, M., & Van Tiggelen, B., 2000. Monte carlo simulation of multiple scattering of

elastic waves, Journal of Geophysical Research: Solid Earth, 105(B4), 7873–7892.

Margerin, L., Planès, T., Mayor, J., & Calvet, M., 2016. Sensitivity kernels for coda-wave interferometry

and scattering tomography: theory and numerical evaluation in two-dimensional anisotropically

scattering media, Geophysical Journal International , 204(1), 650–666.



Bibliography 135

Maruyama, S., Santosh, M., & Zhao, D., 2007. Superplume, supercontinent, and post-perovskite: Mantle

dynamics and anti-plate tectonics on the core–mantle boundary, Gondwana Research, 11(1), 7–37,

Island Arcs: Past and Present.

Mayor, J., Margerin, L., & Calvet, M., 2014. Sensitivity of coda waves to spatial variations of absorption

and scattering: radiative transfer theory and 2-d examples, Geophysical Journal International , 197(2),

1117–1137.

Mayor, J., Calvet, M., Margerin, L., Vanderhaeghe, O., & Traversa, P., 2016. Crustal structure of the

alps as seen by attenuation tomography, Earth and Planetary Science Letters, 439, 71–80.

Montagner, J.-P. & Kennett, B. L. N., 1996. How to reconcile body-wave and normal-mode reference

earth models, Geophysical Journal International , 125(1), 229–248.

Niederleithinger, E., 2017. Seismic Methods Applied to Ultrasonic Testing in Civil Engineering

(Habilitation Thesis), habilitation, RWTH Aachen.

Niederleithinger, E. & Wunderlich, C., 2013. Influence of small temperature variations on the ultrasonic

velocity in concrete, in AIP Conference Proceedings, vol. 1511, pp. 390–397, American Institute of

Physics.

Niederleithinger, E., Wolf, J., Mielentz, F., Wiggenhauser, H., & Pirskawetz, S., 2015. Embedded

ultrasonic transducers for active and passive concrete monitoring, Sensors, 15(5), 9756–9772.

Niederleithinger, E., Wang, X., Herbrand, M., & Müller, M., 2018. Processing ultrasonic data by coda

wave interferometry to monitor load tests of concrete beams, Sensors, 18(6), 1971.

Nishigami, K., 1991. A new inversion method of coda waveforms to determine spatial distribution of

coda scatterers in the crust and uppermost mantle, Geophysical Research Letters, 18(12), 2225–2228.

Nishigami, K., 1997. Spatial distribution of coda scatterers in the crust around two active volcanoes and

one active fault system in central japan: Inversion analysis of coda envelope, Physics of the Earth and

Planetary Interiors, 104(1-3), 75–89.

Nishigami, K., 2000. Deep crustal heterogeneity along and around the san andreas fault system in central

california and its relation to the segmentation, Journal of Geophysical Research: Solid Earth, 105(B4),

7983–7998.

Nocedal, J. & Wright, S., 2006. Numerical Optimization, Springer Science & Business Media.

Obermann, A., Planès, T., Larose, E., & Campillo, M., 2013a. Imaging preeruptive and coeruptive

structural and mechanical changes of a volcano with ambient seismic noise, Journal of Geophysical

Research: Solid Earth, 118(12), 6285–6294.

Obermann, A., Planès, T., Larose, E., Sens-Schönfelder, C., & Campillo, M., 2013b. Depth sensitivity of

seismic coda waves to velocity perturbations in an elastic heterogeneous medium, Geophysical Journal

International , 194(1), 372–382.

Obermann, A., Froment, B., Campillo, M., Larose, E., Planes, T., Valette, B., Chen, J., & Liu, Q., 2014.

Seismic noise correlations to image structural and mechanical changes associated with the mw 7.9 2008

wenchuan earthquake, Journal of Geophysical Research: Solid Earth, 119(4), 3155–3168.

Obermann, A., Planès, T., Hadziioannou, C., & Campillo, M., 2016. Lapse-time-dependent coda-wave

depth sensitivity to local velocity perturbations in 3-d heterogeneous elastic media, Geophysical Journal

International , 207(1), 59–66.



136 BIBLIOGRAPHY

Ogiso, M., 2019. A method for mapping intrinsic attenuation factors and scattering coefficients of s waves

in 3-d space and its application in southwestern japan, Geophysical Journal International , 216(2), 948–

957.

Pacheco, C. & Snieder, R., 2005. Time-lapse travel time change of multiply scattered acoustic waves,

The Journal of the Acoustical Society of America, 118(3), 1300–1310.

Pacheco, C. & Snieder, R., 2006. Time-lapse traveltime change of singly scattered acoustic waves,

Geophysical Journal International , 165(2), 485–500.

Padhy, S., Wegler, U., & Korn, M., 2007. Seismogram envelope inversion using a multiple isotropic

scattering model: Application to aftershocks of the 2001 bhuj earthquake, Bulletin of the Seismological

Society of America, 97(1B), 222–233.

Planès, T. & Larose, E., 2013. A review of ultrasonic coda wave interferometry in concrete, Cement and

Concrete Research, 53, 248–255.

Planès, T., Larose, E., Margerin, L., Rossetto, V., & Sens-Schönfelder, C., 2014. Decorrelation and phase-

shift of coda waves induced by local changes: multiple scattering approach and numerical validation,

Waves in Random and Complex Media, 24(2), 99–125.

Poupinet, G., Ellsworth, W., & Frechet, J., 1984. Monitoring velocity variations in the crust using

earthquake doublets: An application to the calaveras fault, california, Journal of Geophysical Research:

Solid Earth, 89(B7), 5719–5731.
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Appendix A

Born approximation of scattering

coefficients in 2-D in-plane elastodynamics

In this Appendix, we outline the computation of the scattering coefficients in a 2-D random elastic

medium based on the Born approximation. Our starting point is the following perturbed elastic wave

equation for the 2-D displacement field ui at circular frequency ω and position x:

− ρ0ω2ui(x)− C0
ijkl∂j∂kul(x)−

∫
S

Vij(x,x
′)uj(x

′)d2x′ = 0 (A.1)

where ρ0 and C0
ijkl denote, respectively, the density and elastic tensor of the homogeneous background

medium. Indices {i, j, · · · } refer to components of a vector or tensor in a 2-D cartesian system and the

Einstein summation convention is adopted. Below, we also employ the latine letters p, q and the greek

letter α to denote indices. V represents the scattering potential of the random fluctuations superposed

on the background. These fluctuations are assumed to be enclosed in the surface S. V may be expressed

in terms of the density and elastic tensor fluctuations, denoted by δρ(x) and δCijkl(x), as follows:

Vij(x,x
′) = δρ(x)ω2δ(x− x′)δij + ∂p

(
δCipqj(x)δ(x− x′)∂

′

q

)
(A.2)

The symbol ∂
′

q indicates that the partial derivative acts on the qth coordinate of the position vector x′.

We seek solutions to Eq. (A.1) of the form u = u0+usc where u0 is a solution of the elastodynamic Eq.

in the homogeneous background -i.e., a solution of (A.1) with V = 0- and usc is the field scattered by the

inhomogeneities contained in S. The formal solution to this problem is known as the Lippman-Schwinger

Eq.:

uα(r) = u0
α(r) +

∫
S

G0
αi(r,x)Vij(x,x

′)uj(x
′)d2x′ (A.3)

where G0 denotes the elastodynamic Green’s function of the background medium and r is the observation

point which we take at a large distance from the surface S. For sufficiently weak perturbations (to be

further discussed below), the field u in the inhomogeneous region may be replaced by the unperturbed

wavefield u0. This is known as the Born approximation in the literature and it forms the basis of our

calculation of the scattering coefficients. After substituting in Eq. (A.3) the scattering potential V

by its expression (A.2), we perform an integration by part to remove the partial derivative from the

elastic perturbations and obtain the following formal expression for the scattered field usc in the Born

approximation:

uscα (r) =ω2

∫
S

G0
αi(r,x)δρ(x)ui(x)d2x

−
∫
S

∂jG
0
αi(r,x)δCijkl(x)∂ku

0
l (x)d2x,

(A.4)
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ELASTODYNAMICS

where the partial derivatives act on the x variable. In the case of an isotropic background medium with

longitudinal and shear waves speeds given by cp,s, the far-field Green’s function (r → ∞) is given by

(Domı́nguez & Abascal, 1984):

G0
αi

(r,x) ≈ ir̂αr̂i
4ρ0c2p

√
2

πkpr
eikp(r−r̂·x)−iπ/4

+
iθ̂αθ̂i
4ρ0c2s

√
2

πksr
eiks(r−r̂·x)−iπ/4,

(A.5)

where kp,s = ω/cp,s and r̂ indicates a unit vector in the direction of r. The symbol θ̂ denotes a unit

vector perpendicular to r. Eq. (A.5) splits the far-field Green’s tensor into its longitudinal and transverse

parts. In the case where the unperturbed field is a plane wave with polarization vector p̂, wavenumber

kin ∈ kp, ks and propagation direction k̂, we write:

u0(x) = p̂eik
ink̂·x (A.6)

The scattered waves detected in the far-field with polarization vector ŝ ∈ {r̂, θ̂}, wave number kout ∈
{kp, ks} and corresponding propagation speed cout ∈ {cp, cs} will be noted uin�out(r). The superscripts

{in, out} are shortcuts for the ‘incoming’ and ‘outgoing’ wave modes. Using Eq. (A.4)-(A.6), we find:

uin�out
α (r) =

ŝα
4ρ0(cout)2

√
2

πkoutr
eik

outr−iπ/4

×
∫
S

(
δρ(x)ω2ŝ · p̂− kinkoutδCijkl(x)ŝir̂j k̂kp̂l

)
× ei(k

ink̂−koutr̂)·xd2x

(A.7)

It is worth noting that Eq. (A.7) is valid for an arbitrary elastic perturbations δC. We now specialize to

the isotropic case. By substituting the following expression:

δCijkl(x) = δλ(x)δijδkl + δµ(x)(δikδjl + δilδjk) (A.8)

into Eq. (A.7), computing the inner products of the polarization and wave propagation vectors with the

elastic perturbation tensor and making slight re-arrangements, we obtain:

uin�out
α (r) =ŝα

√
(kout)3

8πr
eik

outr−iπ/4

×
∫
S

[
δρ(x)

ρ0
ŝ · p̂− δλ(x)

ρ0cincout
(̂s · r̂)(p̂ · k̂)

− δµ(x)

ρ0cincout
((̂s · k̂)(r̂ · p̂) + (̂s · p̂)(r̂ · k̂))

]
ei(k

ink̂−koutr̂)·xd2x

(A.9)

Eq.(A.9) is the most general form of Born’s approximation in 2-D isotropic in-plane elastodynamics.

In seismologcal applications, it is common to assume that certain correlations exist between the elastic

parameters. To facilitate the application of this assumption, broadly known as ‘Birch law’ in the literature,

we adopt {ρ, cp, cs} as new independent variables. This is simply achieved by making the following

substitutions: δλ � (c2p − 2c2s)δρ+ 2ρ0cpδcp − 4ρ0csδcs, δµ � c2sδρ+ 2ρ0csδcs in Eq. (A.9). Furthermore,

we make the assumption that the fluctuations of velocities and density may be described by a single

zero-mean random function φ(x) with variance 〈ε2〉. We may nevertheless allow for different level of
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fluctuations for the density and velocities by writing:

δρ(x)

ρ0
= λρφ(x) ,

δcp,s(x)

cp,s
= λcp,sφ(x). (A.10)

In other words, the fluctuations of velocities and density are supposed to be perfectly correlated but have

possibly different variances. This assumption allows us to factorize the expression of the scattered field

as follows:

uin�out
α (r) =ŝα

√
(kout)3

8πr
X in�out(θ)eik

outr−iπ/4

×
∫
S

φ(x)ei(k
ink̂−koutr̂)·xd2x,

(A.11)

where θ denotes the angle between k̂ and r̂ and X in�out(θ) are scattering patterns that depend solely on

the velocities and density perturbations. As suggested by logging data (Wu et al., 1994), we will further

assume that P and S velocity fluctuations share the same variance 〈ε2〉, i.e. λcs = λcp = 1, and introduce

a parameter ν = λρ/λcp,s that determines the relative amplitude of density and velocity perturbations.

Below, we detail out the scattering patterns for all possible incoming and outgoing modes:

Xp�p(θ) =λρ(cos θ + 2γ−2 sin2 θ − 1) + 4γ−2λcs sin2 θ − 2λcp

=
[
ν cos θ + (2 + ν)(2γ−2 sin2 θ − 1)

]
Xp�s(θ) =λρ sin θ(2γ−1 cos θ − 1) + 4λcsγ

−1 sin θ cos θ

= sin θ
[
2γ−1(2 + ν) cos θ − ν

]
Xs�p(θ) =λρ sin θ(1− 2γ−1 cos θ)− 4λcsγ

−1 sin θ cos θ

=− sin θ
[
2γ−1(2 + ν) cos θ − ν

]
Xs�s(θ) =λρ(cos θ + 2 cos2 θ − 1) + 2λcs(1− 2 cos2 θ)

=
[
ν cos θ + (ν + 2)(2 cos2 θ − 1)

]

, (A.12)

where γ = cp/cs. We note that the scattering patterns involving mode conversions differ only by a sign

as a consequence of reciprocity. For each of the scattering patterns, the first Eq. allows one to keep

track of the contributions of each type of perturbation separately. It could be used to introduce more

general hypotheses than the simple Birch law employed in our work. The next step in the derivation is

the calculation of the mean-squared fields. Since all the terms in front of the integral in Eq. (A.9) are

deterministic, the key is to evaluate the following multiple integral:

I =

∫
S

∫
S

〈φ(x)φ(y)〉ei(k
ink̂−koutr̂)·x−i(kink̂−koutr̂)·yd2xd2y (A.13)

Assuming that the random process φ is spatially homogeneous, we write the spatial correlation function:

〈φ(x)φ(y)〉 = C(x− y) (A.14)

It is then natural to introduce a new set of barycentric coordinates such that:

x =ξ + ∆/2

y =ξ −∆/2
(A.15)

It may be verified that the determinant of the Jacobian of the transformation (A.15) equals 1. Assuming
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that the set S is convex, we may rewrite the integral I as follows:

I =

∫
S

d2ξ

∫
S∆

C(∆)e−i(k
ink̂−koutr̂)·∆d2∆, (A.16)

where S∆ is the domain of integration for the variable ∆. We now require (1) that the typical linear

dimension L of the domain S (and therefore also S∆) be much larger than the correlation length a of

the fluctuations; (2) that L is sufficiently small for the perturbative approach to apply. Physically, this

requires the following scaling relation: a� L� g−1
p,s, where gp,s is the total scattering coefficient of P, S

waves. This relation is known to break down in the high-frequency limit (ω → ∞). When assumptions

(1) applies, we may extend the domain of integration of the variable ∆ over the entire plane to obtain:

I ≈ SΦ(kink̂− koutr̂) (A.17)

where Φ is the power spectrum of the fluctuations, i.e., the Fourier transform of the spatial correlation

function C. In the case of a statistically isotropic random medium, Φ depends solely on the modulus of its

argument. As an illustration, in the popular case of a 2-D exponential random medium with correlation

length a, one has:

Φ(|m|) =
2πa2〈ε2〉

(1 + a2m2)3/2
(A.18)

We now define the scattering coefficients gin�out(r̂, k̂) as the ensemble averaged energy scattered per unit

time and unit angle into direction r̂, normalized by the incident energy flux density and the area S of

the inhomogeneous zone. This quantity has the unit of inverse length in 2-D and may be interpreted as

the attenuation factor of the incident plane wave due to the presence of the inhomogeneities. In the case

of a statistically isotropic medium, g is a function of the angle θ between r̂ and k̂ only. In the far-field

of the inhomogeneous zone, we may locally use a plane wave approximation for the scattered wave and

write its flux of energy across an elementary line element dl = rdθ as follows:

dEin�out

dt
=
ρ0ω2cout〈|uin�out(r)|2〉dl

2
(A.19)

After normalization by the incident energy flux J = ρ0ω2cin/2, angular aperture dθ, and surface S, we

find with the aid of the intermediate results (A.9), (A.17) and (A.19) the following expressions of the

scattering coefficients for all possible mode conversions:

gp�p(θ) =
k3
pX

p�p(θ)2

8π
Φ(2kp sin(θ/2))

gp�s(θ) =
k3
sX

p�s(θ)2

8πγ
Φ
(√

k2
p − 2kpks cos(θ) + k2

s

)
gs�p(θ) =

γk3
pX

s�p(θ)2

8π
Φ
(√

k2
p − 2kpks cos(θ) + k2

s

)
gs�s(θ) =

k3
sX

s�s(θ)2

8π
Φ (2ks sin(θ/2))

(A.20)
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